WorldWideScience

Sample records for biomass-derived syngas fermentation

  1. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges.

    Science.gov (United States)

    Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar

    2010-07-01

    The conversion of biomass-derived synthesis gas (or syngas in brief) into biofuels by microbial catalysts (such as Clostridium ljungdahlii, Clostridium autoethanogenum, Acetobacterium woodii, Clostridium carboxidivorans and Peptostreptococcus productus) has gained considerable attention as a promising alternative for biofuel production in the recent past. The utilization of the whole biomass, including lignin, irrespective of biomass quality, the elimination of complex pre-treatment steps and costly enzymes, a higher specificity of biocatalysts, an independence of the H(2):CO ratio for bioconversion, bioreactor operation at ambient conditions, and no issue of noble metal poisoning are among the major advantages of this process. Poor mass transfer properties of the gaseous substrates (mainly CO and H(2)) and low ethanol yield of biocatalysts are the biggest challenges preventing the commercialization of syngas fermentation technology. This paper critically reviews the existing literature in biomass-derived syngas fermentation into biofuels, specifically, different biocatalysts, factors affecting syngas fermentation, and mass transfer. The paper also outlines the major challenges of syngas fermentation, key performance index and technology road map, and discusses the further research needs. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Effect of steam during Fischer–Tropsch Synthesis using biomass-derived syngas

    Science.gov (United States)

    Zi Wang; Khiet Mai; Nitin Kumar; Thomas Elder; Leslie H. Groom; James J. Spivey

    2017-01-01

    Fischer–Tropsch synthesis (FTS) with biomass- derived syngas was performed using both iron-based 100Fe/6Cu/4K/25Al catalyst and ruthenium-based 5 % Ru/SiO2 catalyst. During FTS, different concentrations of steam were co-fed with the biomass-derived syngas to promote the water gas shift reaction and increase the H2/ CO ratio...

  3. Fe-based Fischer Tropsch Synthesis of biomass-derived syngas: Effect of synthesis method

    Science.gov (United States)

    Khiet Mai; Thomas Elder; Les Groom; James J. Spivey

    2015-01-01

    Two 100Fe/4Cu/4K/6Zn catalysts were prepared using two different methods: coprecipitation or impregnation methods. The effect of the preparation methods on the catalyst structure, catalytic properties, and the conversion of biomass-derived syngas via Fischer–Tropsch synthesis was investigated. Syngas was derived from gasifying Southern pine woodchips and had the...

  4. Effect of structural promoters on Fe-based Fischer-Tropsch synthesis of biomass derived syngas

    Science.gov (United States)

    Pratibha Sharma; Thomas Elder; Leslie H. Groom; James J. Spivey

    2014-01-01

    Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using Fischer–Tropsch (F–T) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO

  5. Catalytic removal of oxygen from biomass-derived syngas.

    Science.gov (United States)

    Yan, Qiangu; Wan, Caixia; Street, Jason; Yan, David W; Han, Jun; Yu, Fei

    2013-11-01

    Selective oxygen (O2) removal from wood-derived syngas was investigated over three types of ceria-modified alumina supported metal catalysts (i.e., Pt, Pd, and Cu). Complete O2 removal was observed with the Pt and Pd catalysts at a lower temperature than with the Cu catalyst. Gas hourly space velocity (GHSV) was another critical parameter affecting O2 removal, substantially reducing O2 conversion by all three catalysts at 4000 h(-1) or above. The Cu catalyst appeared to be most sensitive to GHSV. Among three catalysts, the Pd catalyst had the best performance on O2 removal. In addition to reaction conditions, CO2 and water vapor in the syngas also influenced O2 removal, both of which had adverse effects on O2 conversion. Stability tests indicated that both Pt and Pd catalysts were quite stable over a 300 h testing period while the Cu catalyst was deactivated after 50h and regenerated by elevating reaction temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  7. Energy Characterization and Gasification of Biomass Derived by Hazelnut Cultivation: Analysis of Produced Syngas by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    D. Monarca

    2012-01-01

    Full Text Available Modern agriculture is an extremely energy intensive process. However, high agricultural productivities and the growth of green revolution has been possible only by large amount of energy inputs, especially those coming from fossil fuels. These energy resources have not been able to provide an economically viable solution for agricultural applications. Biomass energy-based systems had been extensively used for transportation and on farm systems during World War II: the most common and reliable solution was wood or biomass gasification. The latter means incomplete combustion of biomass resulting in production of combustible gases which mostly consist of carbon monoxide (CO, hydrogen (H2 and traces of methane (CH4. This mixture is called syngas, which can be successfully used to run internal combustion engines (both compression and spark ignition or as substitute for furnace oil in direct heat applications. The aim of the present paper is to help the experimentation of innovative plants for electric power production using agro-forest biomass derived by hazelnut cultivations. An additional purpose is to point out a connection among the chemical and physical properties of the outgoing syngas by biomass characterization and gas-chromatography analysis.

  8. Bench- and Pilot-Scale Studies of Reaction and Regeneration of Ni-Mg-K/Al2O3 for Catalytic Conditioning of Biomass-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Magrini-Bair, K. A.; Jablonski, W. S.; Parent, Y. O.; Yung, M. M.

    2012-05-01

    The National Renewable Energy Laboratory (NREL) is collaborating with both industrial and academic partners to develop technologies to help enable commercialization of biofuels produced from lignocellulosic biomass feedstocks. The focus of this paper is to report how various operating processes, utilized in-house and by collaborators, influence the catalytic activity during conditioning of biomass-derived syngas. Efficient cleaning and conditioning of biomass-derived syngas for use in fuel synthesis continues to be a significant technical barrier to commercialization. Multifunctional, fluidizable catalysts are being developed to reform undesired tars and light hydrocarbons, especially methane, to additional syngas, which can improve utilization of biomass carbon. This approach also eliminates both the need for downstream methane reforming and the production of an aqueous waste stream from tar scrubbing. This work was conducted with NiMgK/Al{sub 2}O{sub 3} catalysts. These catalysts were assessed for methane reforming performance in (i) fixed-bed, bench-scale tests with model syngas simulating that produced by oak gasification, and in pilot-scale, (ii) fluidized tests with actual oak-derived syngas, and (iii) recirculating/regenerating tests using model syngas. Bench-scale tests showed that the catalyst could be completely regenerated over several reforming reaction cycles. Pilot-scale tests using raw syngas showed that the catalyst lost activity from cycle to cycle when it was regenerated, though it was shown that bench-scale regeneration by steam oxidation and H{sub 2} reduction did not cause this deactivation. Characterization by TPR indicates that the loss of a low temperature nickel oxide reduction feature is related to the catalyst deactivation, which is ascribed to nickel being incorporated into a spinel nickel aluminate that is not reduced with the given activation protocol. Results for 100 h time-on-stream using a recirculating/regenerating reactor suggest

  9. Sustainable production of syngas from biomass-derived glycerol by steam reforming over highly stable Ni/SiC.

    Science.gov (United States)

    Kim, Sung Min; Woo, Seong Ihl

    2012-08-01

    The production of syngas was investigated by steam reforming glycerol over Ni/Al(2)O(3), Ni/CeO(2), and Ni/SiC (which have acidic, basic, and neutral properties) at temperatures below 773 K. The complete and stable conversion of glycerol with a yield (higher than 90 %) of gaseous products (mainly syngas) was achieved over Ni/SiC during a 60 h reaction, whereas the conversion of glycerol continually decreases over Ni/Al(2)O(3) (by 49.8 %) and Ni/CeO(2) (by 77.1 %). The deactivation of Ni/Al(2)O(3) and Ni/CeO(2) is mainly caused by coke deposition because of the C-C cleavage of the byproducts produced by dehydration over acidic sites and condensation over basic sites. Gaseous products with a 1.0-1.9 syngas ratio (H(2)/CO) are produced over Ni/SiC. This ratio is required for the Fischer-Tropsch synthesis. However, a syngas ratio of more than 3.0 was observed over Ni/Al(2)O(3) and Ni/CeO(2) because of the high activity of the water-gas-shift reaction. Any dissociative or associative adsorption of water on Al(2)O(3) and CeO(2) promotes a water-gas-shift reaction and produces a higher syngas ratio. H(2) and CO were mainly produced by decomposition of glycerol through dehydrogenation and decarbonylation over Ni sites. Thus, SiC promotes an intrinsic contribution of nickel (dehydrogenation, and decarbonylation) without any byproducts from the dehydration and condensation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single-step syngas-to-distillates (S2D) process based on biomass-derived syngas--a techno-economic analysis.

    Science.gov (United States)

    Zhu, Yunhua; Jones, Susanne B; Biddy, Mary J; Dagle, Robert A; Palo, Daniel R

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Conversion of sewage sludge to commodity chemicals via syngas fermentation.

    Science.gov (United States)

    Ganigué, Ramon; Ramió-Pujol, Sara; Sánchez, Patricia; Bañeras, Lluís; Colprim, Jesús

    2015-01-01

    Gasification of sewage sludge allows the recovery of energy, and produces a mix of CO, CO₂and H₂called synthesis gas (or syngas), which can be fermented by acetogenic bacteria to added-value products. This work presents the conversion of syngas to organic acids and alcohols using both pure and mixed cultures. Pure culture kinetic experiments with Clostridium carboxidivorans P7 resulted in the production of high concentrations of acetate (454 mgC/L) and ethanol (167 mgC/L). The pH was the main factor driving solventogenesis, with about 50% of the products in the form of alcohols at pH 5. Conversely, laboratory-scale experiments using a carboxydotrophic mixed culture of the genus Clostridium enriched from anaerobic digester sludge of a municipal wastewater treatment plant was capable of producing mainly butyrate, with maximum concentration of 1,184 mgC/L.

  12. Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms

    DEFF Research Database (Denmark)

    Latif, Haythem; Zeidan, Ahmad; Nielsen, Alex Toftgaard

    2014-01-01

    Fermentation of syngas is a means through which unutilized organic waste streams can be converted biologically into biofuels and commodity chemicals. Despite recent advances, several issues remain which limit implementation of industrial-scale syngas fermentation processes. At the cellular level...

  13. Draft Genome Sequence of Clostridium aceticum DSM 1496, a Potential Butanol Producer through Syngas Fermentation

    OpenAIRE

    Song, Yoseb; Hwang, Soonkyu; Cho, Byung-Kwan

    2015-01-01

    Clostridium aceticum DSM 1496 is a Gram-negative anaerobic chemolithoautotrophic acetogenic bacterium that is capable of producing commodity chemicals from syngas fermentation. In this study, we report the draft genome sequence of the C.?aceticum DSM 1496 strain (4.16?Mb) to elucidate the syngas fermentation metabolic pathway.

  14. Draft Genome Sequence of Clostridium aceticum DSM 1496, a Potential Butanol Producer through Syngas Fermentation

    Science.gov (United States)

    Song, Yoseb; Hwang, Soonkyu

    2015-01-01

    Clostridium aceticum DSM 1496 is a Gram-negative anaerobic chemolithoautotrophic acetogenic bacterium that is capable of producing commodity chemicals from syngas fermentation. In this study, we report the draft genome sequence of the C. aceticum DSM 1496 strain (4.16 Mb) to elucidate the syngas fermentation metabolic pathway. PMID:25931594

  15. Draft Genome Sequence of Acetobacterium bakii DSM 8239, a Potential Psychrophilic Chemical Producer through Syngas Fermentation

    Science.gov (United States)

    Hwang, Soonkyu; Song, Yoseb

    2015-01-01

    Acetobacterium bakii DSM 8239 is an anaerobic, psychrophilic, and chemolithoautotrophic bacterium that is a potential platform for producing commodity chemicals from syngas fermentation. We report here the draft genome sequence of A. bakii DSM 8239 (4.14 Mb) to elucidate its physiological and metabolic properties related to syngas fermentation. PMID:26404601

  16. Traits of selected Clostridium strains for syngas fermentation to ethanol.

    Science.gov (United States)

    Martin, Michael E; Richter, Hanno; Saha, Surya; Angenent, Largus T

    2016-03-01

    Syngas fermentation is an anaerobic bioprocess that could become industrially relevant as a biorefinery platform for sustainable production of fuels and chemicals. An important prerequisite for commercialization is adequate performance of the biocatalyst (i.e., sufficiently high production rate, titer, selectivity, yield, and stability of the fermentation). Here, we compared the performance of three potential candidate Clostridium strains in syngas-to-ethanol conversion: Clostridium ljungdahlii PETC, C. ljungdahlii ERI-2, and Clostridium autoethanogenum JA1-1. Experiments were conducted in a two-stage, continuously fed syngas-fermentation system that had been optimized for stable ethanol production. The two C. ljungdahlii strains performed similar to each other but different from C. autoethanogenum. When the pH value was lowered from 5.5 to 4.5 to induce solventogenesis, the cell-specific carbon monoxide and hydrogen consumption (similar rate for all strains at pH 5.5), severely decreased in JA1-1, but hardly in PETC and ERI-2. Ethanol production in strains PETC and ERI-2 remained relatively stable while the rate of acetate production decreased, resulting in a high ethanol/acetate ratio, but lower overall productivities. With JA1-1, lowering the pH severely lowered rates of both ethanol and acetate production; and as a consequence, no pronounced shift to solventogenesis was observed. The highest overall ethanol production rate of 0.301 g · L(-1)  · h(-1) was achieved with PETC at pH 4.5 with a corresponding 19 g/L (1.9% w/v) ethanol concentration and a 5.5:1 ethanol/acetate molar ratio. A comparison of the genes relevant for ethanol metabolism revealed differences between C. ljungdahlii and C. autoethanogenum that, however, did not conclusively explain the different phenotypes. © 2015 Wiley Periodicals, Inc.

  17. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    Science.gov (United States)

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  18. Critical factors affecting the integration of biomass gasification and syngas fermentation technology

    Directory of Open Access Journals (Sweden)

    Karthikeyan D. Ramachandriya

    2016-05-01

    Full Text Available Gasification-fermentation is a thermochemical-biological platform for the production of fuels and chemicals. Biomass is gasified at high temperatures to make syngas, a gas composed of CO, CO2, H2, N2 and other minor components. Syngas is then fed to anaerobic microorganisms that convert CO, CO2 and H2 to alcohols by fermentation. This platform offers numerous advantages such as flexibility of feedstock and syngas composition and lower operating temperature and pressure compared to other catalytic syngas conversion processes. In comparison to hydrolysis-fermentation, gasification-fermentation has a major advantage of utilizing all organic components of biomass, including lignin, to yield higher fuel production. Furthermore, syngas fermentation microorganisms do not require strict CO:H2:CO2 ratios, hence gas reforming is not required. However, several issues must be addressed for successful deployment of gasification-fermentation, particularly those that involve the integration of gasification and fermentation. Most previous reviews have focused only on either biomass gasification or syngas fermentation. In this review, the critical factors that affect the integration of biomass gasification with syngas fermentation, such as carbon conversion efficiency, effect of trace gaseous species, H2 to CO ratio requirements, and microbial preference of carbon substrate, are thoroughly discussed.

  19. Preliminary Screening -- Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Dayton, D. C.

    2003-12-01

    In principle, syngas (primarily consisting of CO and H2) can be produced from any hydrocarbon feedstock, including: natural gas, naphtha, residual oil, petroleum coke, coal, and biomass. The lowest cost routes for syngas production, however, are based on natural gas, the cheapest option being remote or stranded reserves. Economic considerations dictate that the current production of liquid fuels from syngas translates into the use of natural gas as the hydrocarbon source. Nevertheless, the syngas production operation in a gas-to-liquids plant amounts to greater than half of the capital cost of the plant. The choice of technology for syngas production also depends on the scale of the synthesis operation. Syngas production from solid fuels can require an even greater capital investment with the addition of feedstock handling and more complex syngas purification operations. The greatest impact on improving the economics of gas-to liquids plants is through (1) decreasing capital costs associated with syngas production and (2) improving the thermal efficiency with better heat integration and utilization. Improved thermal efficiency can be obtained by combining the gas-to-liquids plant with a power generation plant to take advantage of the availability of low-pressure steam. The extensive research and development efforts devoted to syngas conversion to fuels and chemicals are documented in a vast amount of literature that tracks the scientific and technological advancements in syngas chemistry. The purpose of this report is to review the many syngas to products processes and summarize the salient points regarding the technology status and description, chemistry, catalysts, reactors, gas cleanliness requirements, process and environmental performances, and economics. Table 1 lists the products examined in this study and gives some facts about the technology as well as advantages and disadvantages. Table 2 summarizes the catalysts, process conditions, conversions, and

  20. Preliminary screening: Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dayton, D. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2003-12-01

    This report reviews the many syngas to products processes and summarizes the technology status and description, chemistry, catalysts, reactors, gas cleanliness requirements, process and environmental performances, and economics.

  1. Microbial catalysis of syngas fermentation into biofuels precursors - An experimental approach

    OpenAIRE

    Rai, Pratap Jung

    2017-01-01

    Search for environment-friendly sustainable energy sources is of global interest due to continuous depletion of fossil fuels resources and excessive carbon dioxide emissions. Syngas fermentation is one of the promising sustainable alternative for liquid biofuel and chemical production from energy content wastes/byproducts. This study mainly focuses on acetic acid and ethanol production via fermentation, using hydrogen and carbon dioxide as substrates to mimic syngas. A laboratory scale, batch...

  2. Upgrading syngas fermentation effluent usingClostridium kluyveriin a continuous fermentation.

    Science.gov (United States)

    Gildemyn, Sylvia; Molitor, Bastian; Usack, Joseph G; Nguyen, Mytien; Rabaey, Korneel; Angenent, Largus T

    2017-01-01

    The product of current syngas fermentation systems is an ethanol/acetic acid mixture and the goal is to maximize ethanol recovery. However, ethanol currently has a relatively low market value and its separation from the fermentation broth is energy intensive. We can circumvent these disadvantages of ethanol production by converting the dilute ethanol/acetic acid mixture into products with longer carbon backbones, which are of higher value and are more easily extracted than ethanol. Chain elongation, which is the bioprocess in which ethanol is used to elongate short-chain carboxylic acids to medium-chain carboxylic acids (MCCAs), has been studied with pure cultures and open cultures of microbial consortia (microbiomes) with several different substrates. While upgrading syngas fermentation effluent has been studied with open cultures, to our knowledge, no study exists that has performed this with pure cultures. Here, pure cultures of Clostridium kluyveri were used in continuous bioreactors to convert ethanol/acetic acid mixtures into MCCAs. Besides changing the operating conditions in regards to substrate loading rates and composition, the effect of in-line product extraction, pH, and the use of real syngas fermentation effluent on production rates were tested. Increasing the organic loading rates resulted in proportionally higher production rates of n -caproic acid, which were up to 40 mM day -1 (4.64 g L -1  day -1 ) at carbon conversion efficiencies of 90% or higher. The production rates were similar for bioreactors with and without in-line product extraction. Furthermore, a lower ethanol/acetic acid ratio (3:1 instead of 10:1) enabled faster and more efficient n -caproic acid production. In addition, n -caprylic acid production was observed for the first time with C. kluyveri (up to 2.19 ± 0.34 mM in batch). Finally, the use of real effluent from syngas fermentation, without added yeast extract, but with added defined growth factors, did maintain similar

  3. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi.

    Science.gov (United States)

    Liu, Kan; Atiyeh, Hasan K; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2012-01-01

    Ethanol production from syngas using three moderately alkaliphilic strains of a novel genus and species Alkalibaculum bacchi CP11(T), CP13 and CP15 was investigated in 250 ml bottle fermentations containing 100ml of yeast extract medium at 37 °C and pH 8.0. Two commercial syngas mixtures (Syngas I: 20% CO, 15% CO(2), 5% H(2), 60% N(2)) and (Syngas II: 40% CO, 30% CO(2), 30% H(2)) were used. Syngas I and Syngas II represent gasified biomass and coal, respectively. The maximum ethanol concentration (1.7 g l(-1)) and yield from CO (76%) were obtained with strain CP15 and Syngas II after 360 h. CP15 produced over twofold more ethanol with Syngas I compared to strains CP11(T) and CP13. In addition, CP15 produced 18% and 71% more ethanol using Syngas II compared to strains CP11(T) and CP13, respectively. These results show that CP15 is the most promising for ethanol production because of its higher growth and ethanol production rates and yield compared to CP11(T) and CP13. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation.

    Science.gov (United States)

    Kim, Young-Kee; Lee, Haryeong

    2016-03-01

    The effect of two types of nanoparticles on the enhancement of bioethanol production in syngas fermentation by Clostridium ljungdahlii was examined. Methyl-functionalized silica and methyl-functionalized cobalt ferrite-silica (CoFe2O4@SiO2-CH3) nanoparticles were used to improve syngas-water mass transfer. Of these, CoFe2O4@SiO2-CH3 nanoparticles showed better enhancement of syngas mass transfer. The nanoparticles were recovered using a magnet and reused five times to evaluate reusability, and it was confirmed that their capability for mass transfer enhancement was maintained. Both types of nanoparticles were applied to syngas fermentation, and production of biomass, ethanol, and acetic acid was enhanced. CoFe2O4@SiO2-CH3 nanoparticles were more efficient for the productivity of syngas fermentation due to improved syngas mass transfer. The biomass, ethanol, and acetic acid production compared to a control were increased by 227.6%, 213.5%, and 59.6%, respectively by addition of CoFe2O4@SiO2-CH3 nanoparticles. The reusability of the nanoparticles was confirmed by reuse of recovered nanoparticles for fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mevalonate production by engineered acetogen biocatalyst during continuous fermentation of syngas or CO₂/H₂ blend.

    Science.gov (United States)

    Kiriukhin, Michael; Tyurin, Michael

    2014-02-01

    Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425 mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered biocatalyst selectively producing mevalonate from synthesis gas or CO₂/H₂ blend. Acetate production and spore formation were eliminated from Clostridium sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of phosphotransacetylase, acetate kinase and early stage sporulation genes powered mevalonate accumulation in fermentation broth due to expression of synthetic thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using Tn7-approach. Recombinants produced 145 mM mevalonate in five independent single-step fermentation runs 25 days each in five repeats using syngas blend 60% CO and 40% H₂ (v/v) (p syngas (p < 0.005). Mevalonate from CO₂/H₂ blend might serve as a commercial route to mitigate global warming in proportion to CO₂ fermentation scale worldwide.

  6. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    Science.gov (United States)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results

  7. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms.

    Science.gov (United States)

    Latif, Haythem; Zeidan, Ahmad A; Nielsen, Alex T; Zengler, Karsten

    2014-06-01

    Fermentation of syngas is a means through which unutilized organic waste streams can be converted biologically into biofuels and commodity chemicals. Despite recent advances, several issues remain which limit implementation of industrial-scale syngas fermentation processes. At the cellular level, the energy conservation mechanism of syngas fermenting microorganisms has not yet been entirely elucidated. Furthermore, there was a lack of genetic tools to study and ultimately enhance their metabolic capabilities. Recently, substantial progress has been made in understanding the intricate energy conservation mechanisms of these microorganisms. Given the complex relationship between energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic manipulation tools have also been developed, paving the way for the use of metabolic engineering and systems biology approaches. Rational strain designs can now be deployed resulting in desirable phenotypic traits for large-scale production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols.

    Science.gov (United States)

    Liu, Kan; Atiyeh, Hasan K; Stevenson, Bradley S; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2014-01-01

    Higher alcohols such as n-butanol and n-hexanol have higher energy density than ethanol, are more compatible with current fuel infrastructure, and can be upgraded to jet and diesel fuels. Several organisms are known to convert syngas to ethanol, but very few can produce higher alcohols alone. As a potential solution, mixed culture fermentation between the syngas fermenting Alkalibaculum bacchi strain CP15 and propionic acid producer Clostridium propionicum was studied. The monoculture of CP15 produced only ethanol from syngas without initial addition of organic acids to the fermentation medium. However, the mixed culture produced ethanol, n-propanol and n-butanol from syngas. The addition of propionic acid, butyric acid and hexanoic acid to the mixed culture resulted in a 50% higher conversion efficiency of these acids to their respective alcohols compared to CP15 monoculture. These findings illustrate the great potential of mixed culture syngas fermentation in production of higher alcohols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  10. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  11. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    Science.gov (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of end products on fermentation profiles in Clostridium carboxidivorans P7 for syngas fermentation.

    Science.gov (United States)

    Zhang, Jie; Taylor, Steven; Wang, Yi

    2016-10-01

    Clostridium carboxidivorans P7 is a strict anaerobic bacterium capable of converting syngas to biofuels. However, its fermentation profiles is poorly understood. Here, various end-products, including acetic acid, butyric acid, hexanoic acid, ethanol and butanol were supplemented to evaluate their effects on fermentation profiles in C. carboxidivorans at two temperatures. At 37°C, fatty acids addition likely led to more corresponding alcohols production. At 25°C, C2 and C4 fatty acids supplementation resulted in more corresponding higher fatty acids, while supplemented hexanoic acid increased yields of C2 and C4 fatty acids and hexanol. Supplementation of ethanol or butanol caused increased production of C2 and C4 acids at both temperatures; however, long-chain alcohols were still more likely produced at lower temperature. In conclusion, fermentation profiles of C. carboxidivorans can be changed in respond to pre-added end-products and carbon flow may be redirected to desired products by controlling culture conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica.

    Science.gov (United States)

    Kimura, Zen-ichiro; Kita, Akihisa; Iwasaki, Yuki; Nakashimada, Yutaka; Hoshino, Tamotsu; Murakami, Katsuji

    2016-03-01

    Moorella thermoacetica is an anaerobic thermophilic acetogen that is capable of fermenting sugars, H(2)/CO(2) and syngas (H(2)/CO). For this reason, this bacterium is potentially useful for biotechnology applications, particularly the production of biofuel from CO(2). A soil isolate of M. thermoacetica, strain Y72, produces both ethanol and acetate from H(2)/CO(2); however, the maximum concentrations of these two products are too low to enable commercialization of the syngas fermentation process. In the present study, glycerol was identified as a novel electron sink among the fermentation products of strain Y72. Notably, a 1.5-fold increase in the production of ethanol (1.4 mM) was observed in cultures supplemented with glycerol during syngas fermentation. This discovery is expected to aid in the development of novel methods that allow for the regulation of metabolic pathways to direct and increase the production of desirable fermentative compounds. Copyright © 2015. Published by Elsevier B.V.

  14. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity.

    Science.gov (United States)

    Richter, Hanno; Loftus, Sarah E; Angenent, Largus T

    2013-01-01

    To ensure economic implementation of syngas fermentation as a fuel-producing platform, engineers and scientists must both lower operating costs and increase product value. A considerable part of the operating costs is spent to procure chemicals for fermentation medium that can sustain sufficient growth of carboxydotrophic bacteria to convert synthesis gas (syngas: carbon monoxide, hydrogen, and carbon dioxide) into products such as ethanol. Recently, we have observed that wildtype carboxydotrophic bacteria (including Clostridium ljungdahlii) can produce alcohols with a longer carbon chain than ethanol via syngas fermentation when supplied with the corresponding carboxylic acid precursors, resulting in possibilities of increasing product value. Here, we evaluated a proof-of-concept system to couple syngas fermentation with the carboxylate platform to both lower medium costs and increase product value. Our carboxylate platform concept consists of an open culture, anaerobic fermentor that is fed with corn beer from conventional yeast fermentation in the corn kernel-to-ethanol industry. The mixed-culture anaerobic fermentor produces a mixture ofcarboxylic acids at dilute concentrations within the carboxylate platform effluent (CPE). Besides providing carboxylic acid precursors, this effluent may represent an inexpensive growth medium. An elemental analysis demonstrated that the CPE lacked certain essential trace metals, but contained ammonium, phosphate, sodium, chloride, potassium, magnesium, calcium, and sulphate at required concentrations. CPE medium with the addition of a trace metal solution supported growth and alcohol production of C. ljungdahlii at similar or better levels compared with an optimized synthetic medium (modified ATCC 1754 medium). Other expensive supplements, such as yeast extract or macro minerals (ammonium, phosphate), were not required. Finally, n-butyric acid and n-caproic acid within the CPE were converted into their corresponding medium

  15. Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium.

    Science.gov (United States)

    Sun, Xiao; Atiyeh, Hasan K; Kumar, Ajay; Zhang, Hailin

    2018-01-01

    Biochar contains minerals and metals that can serve as nutrients for acetogens to produce ethanol via syngas fermentation. In this study, four fermentation media containing biochar from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC) were compared with standard yeast extract (YE) medium for syngas fermentation using Clostridium ragsdalei. Fermentations were performed in 250mL bottle reactors at 150rpm and 37°C with syngas containing CO:H 2 :CO 2 (40:30:30) by volume. Results showed that media containing RCBC and PLBC improved ethanol production by 16.3% and 58.9%, respectively, compared to YE medium. C. ragsdalei consumed 69% more H 2 and 40% more CO in PLBC medium compared to YE medium. However, no enhancement of ethanol production was observed in SGBC and FSBC media. The highest release of Na, K, Ca, Mg, S and P was from PLBC, which was considered to contribute in enhancement of ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes.

    Science.gov (United States)

    Vasudevan, Divya; Richter, Hanno; Angenent, Largus T

    2014-01-01

    Fermentation of syngas from renewable biomass, which is part of the syngas platform, is gaining momentum. Here, the objective was to evaluate a proof-of-concept bioprocessing system with diluted ethanol and acetic acid in actual syngas fermentation effluent as the substrate for chain elongation into the product n-caproic acid, which can be separated with less energy input than ethanol. Chain elongation is performed with open cultures of microbial populations (reactor microbiomes) as part of the carboxylate platform. The highest concentration of n-caproic acid of ~1 g L(-1) was produced at a pH of 5.44 and a production rate of 1.7 g L(-1) day(-1). A higher n-butyrate production rate of 20 g L(-1) day(-1) indicated that product toxicity was limiting the chain elongation step from n-butyric acid to n-caproic acid. This result shows that the syngas and carboxylate platforms can be integrated within a biorefinery, but that product separation is necessary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert; Wen, Zhiyou

    2014-01-01

    Highlights: • Syngas fermentation process is limited by gas-to-liquid mass transfer. • A novel monolithic biofilm reactor (MBR) for efficient mass transfer was developed. • MBR with slug flow resulted in higher k L a than bubble column reactor (BCR). • MBR enhanced ethanol productivity by 53% compared to BCR. • MBR was demonstrated as a promising reactor configuration for syngas fermentation. - Abstract: Syngas fermentation is a promising process for producing fuels and chemicals from lignocellulosic biomass. Currently syngas fermentation faces several engineering challenges, with gas-to-liquid mass transfer limitation representing the major bottleneck. The aim of this work is to evaluate the performance of a monolithic biofilm reactor (MBR) as a novel reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (k L a) of the MBR was evaluated in abiotic conditions within a wide range of gas flow rates (i.e., gas velocity in monolithic channels) and liquid flow rates (i.e., liquid velocity in the channels). The k L a values of the MBR were higher than those of a controlled bubble column reactor (BCR) in certain conditions, due to the slug flow pattern in the monolithic channels. A continuous syngas fermentation using Clostridium carboxidivorans P7 was conducted in the MBR system under varying operational conditions, with the variables including syngas flow rate, liquid recirculation between the monolithic column and reservoir, and dilution rate. It was found that the syngas fermentation performance – measured by such parameters as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid – depended not only on the mass transfer efficiency but also on the biofouling or abrading of the biofilm attached on the monolithic channel wall. At a condition of 300 mL/min of syngas flow rate, 500 mL/min of liquid flow rate, and 0.48 day −1 of dilution rate, the MBR produced much higher

  18. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.

    Science.gov (United States)

    Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2016-06-01

    An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol.

    Science.gov (United States)

    Liu, Kan; Atiyeh, Hasan K; Stevenson, Bradley S; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2014-01-01

    Syngas fermentation to fuels is a technology on the verge of commercialization. Low cost of fermentation medium is important for process feasibility. The use of corn steep liquor (CSL) instead of yeast extract (YE) in Alkalibaculum bacchi strain CP15 bottle fermentations reduced the medium cost by 27% and produced 78% more ethanol. When continuous fermentation was performed in a 7-L fermentor, 6g/L ethanol was obtained in the YE and YE-free media. When CSL medium was used in continuous fermentation, the maximum produced concentrations of ethanol, n-propanol and n-butanol were 8 g/L, 6 g/L and 1 g/L, respectively. n-Propanol and n-butanol were not typical products of strain CP15. A 16S rRNA gene-based survey revealed a mixed culture in the fermentor dominated by A. bacchi strain CP15 (56%) and Clostridium propionicum (34%). The mixed culture presents an opportunity for higher alcohols production from syngas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Deciphering Clostridium metabolism and its responses to bioreactor mass transfer during syngas fermentation.

    Science.gov (United States)

    Wan, Ni; Sathish, Ashik; You, Le; Tang, Yinjie J; Wen, Zhiyou

    2017-08-30

    This study used 13 C tracers and dynamic labeling to reveal metabolic features (nutrients requirements, pathway delineation and metabolite turnover rates) of Clostridium carboxidivorans P7, a model strain for industrial syngas fermentation, and its implication with bioreactor mass transfer. P7 shows poor activity for synthesizing amino acids (e.g., phenylalanine) and thus, needs rich medium for cell growth. The strain has multiple carbon fixation routes (Wood-Ljungdahl pathway, pyruvate:ferredoxin oxidoreductase reaction and anaplerotic pathways) and Re-citrate synthase (Ccar_06155) was a key enzyme in its tricarboxylic acid cycle (TCA) pathway. High fluxes were observed in P7's Wood-Ljungdahl pathway, right branch of TCA cycle, pyruvate synthesis, and sugar phosphate pathways, but the cells anabolic pathways were strikingly slow. In bioreactor culture, when syngas flowrate increased from 1 to 10 mL/min, P7 strain produced same amount of total extracellular products (acids and alcohols) but high flowrate favored alcohol accumulation. This observation was due to the mass transfer limitation influencing energy metabolism (CO/H 2 oxidation for cofactor generations) more prominently than carbon fixation. When syngas flowrate increased from 10 of 20 mL/min, the alcohol productivity was not improved and the labeling rate (~0.03 h -1 ) of key metabolite acetyl-CoA reached to P7 strain's metabolism limitation regime.

  1. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum.

    Science.gov (United States)

    Karmann, Stephanie; Follonier, Stéphanie; Egger, Daniel; Hebel, Dirk; Panke, Sven; Zinn, Manfred

    2017-11-01

    Recently, syngas has gained significant interest as renewable and sustainable feedstock, in particular for the biotechnological production of poly([R]-3-hydroxybutyrate) (PHB). PHB is a biodegradable, biocompatible polyester produced by some bacteria growing on the principal component of syngas, CO. However, working with syngas is challenging because of the CO toxicity and the explosion danger of H 2 , another main component of syngas. In addition, the bioprocess control needs specific monitoring tools and analytical methods that differ from standard fermentations. Here, we present a syngas fermentation platform with a focus on safety installations and process analytical technology (PAT) that serves as a basis to assess the physiology of the PHB-producing bacterium Rhodospirillum rubrum. The platform includes (i) off-gas analysis with an online quadrupole mass spectrometer to measure CO consumption and production rates of H 2 and CO 2 , (ii) an at-line flow cytometer to determine the total cell count and the intracellular PHB content and (iii) different online sensors, notably a redox sensor that is important to confirm that the culture conditions are suitable for the CO metabolization of R. rubrum. Furthermore, we present as first applications of the platform a fed-batch and a chemostat process with R. rubrum for PHB production from syngas. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Determination of the Genome and Primary Transcriptome of Syngas Fermenting Eubacterium limosum ATCC 8486.

    Science.gov (United States)

    Song, Yoseb; Shin, Jongoh; Jeong, Yujin; Jin, Sangrak; Lee, Jung-Kul; Kim, Dong Rip; Kim, Sun Chang; Cho, Suhyung; Cho, Byung-Kwan

    2017-10-20

    Autotrophic conversion of CO 2 to value-added biochemicals has received considerable attention as a sustainable route to replace fossil fuels. Particularly, anaerobic acetogenic bacteria are naturally capable of reducing CO 2 or CO to various metabolites. To fully utilize their biosynthetic potential, an understanding of acetogenesis-related genes and their regulatory elements is required. Here, we completed the genome sequence of the syngas fermenting Eubacterium limosum ATCC 8486 and determined its transcription start sites (TSS). We constructed a 4.4 Mb long circular genome with a GC content of 47.2% and 4,090 protein encoding genes. To understand the transcriptional and translational regulation, the primary transcriptome was augmented, identifying 1,458 TSSs containing a high pyrimidine (T/C) and purine nucleotide (A/G) content at the -1 and +1 position, respectively, along with 1,253 5'-untranslated regions, and principal promoter elements such as -10 (TATAAT) and -35 (TTGACA), and Shine-Dalgarno motifs (GGAGR). Further analysis revealed 93 non-coding RNAs, including one for potential transcriptional regulation of the hydrogenase complex via interaction with molybdenum or tungsten cofactors, which in turn controls formate dehydrogenase activity of the initial step of Wood-Ljungdahl pathway. Our results provide comprehensive genomic information for strain engineering to enhance the syngas fermenting capacity of acetogenic bacteria.

  3. Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates

    Science.gov (United States)

    Adams, Stephen S.; Scott, Syrona; Ko, Ching-Whan

    2015-05-19

    The present invention relates to methods for sustaining microorganism culture in a syngas fermentation reactor in decreased concentration or absence of various substrates comprising: adding carbon dioxide and optionally alcohol; maintaining free acetic acid concentrations; and performing the above mentioned steps within specified time.

  4. Draft Genome Sequence of Acid-Tolerant Clostridium drakei SL1T, a Potential Chemical Producer through Syngas Fermentation

    Science.gov (United States)

    Jeong, Yujin; Song, Yoseb; Shin, Hyeon Seok

    2014-01-01

    Clostridium drakei SL1T is a strictly anaerobic, H2-utilizing, and acid-tolerant acetogen isolated from an acidic sediment that is a potential platform for commodity chemical production from syngas fermentation. The draft genome sequence of this strain will enable determination of the acid resistance and autotrophic pathway of the acetogen. PMID:24831144

  5. Production of acids and alcohols from syngas in a two-stage continuous fermentation process.

    Science.gov (United States)

    Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2018-04-01

    A two-stage continuous system with two stirred tank reactors in series was utilized to perform syngas fermentation using Clostridium carboxidivorans. The first bioreactor (bioreactor 1) was maintained at pH 6 to promote acidogenesis and the second one (bioreactor 2) at pH 5 to stimulate solventogenesis. Both reactors were operated in continuous mode by feeding syngas (CO:CO 2 :H 2 :N 2 ; 30:10:20:40; vol%) at a constant flow rate while supplying a nutrient medium at different flow rates of 8.1, 15, 22 and 30 ml/h. A cell recycling unit was added to bioreactor 2 in order to recycle the cells back to the reactor, maintaining the OD 600 around 1 in bioreactor 2 throughout the experimental run. When comparing the flow rates, the best results in terms of solvent production were obtained with a flow rate of 22 ml/h, reaching the highest average outlet concentration for alcohols (1.51 g/L) and the most favorable alcohol/acid ratio of 0.32. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques.

    Science.gov (United States)

    Phillips, John R; Atiyeh, Hasan K; Tanner, Ralph S; Torres, Juan R; Saxena, Jyotisna; Wilkins, Mark R; Huhnke, Raymond L

    2015-08-01

    Clostridium carboxidivorans was grown on model syngas (CO:H2:CO2 [70:20:10]) in a defined nutrient medium with concentrations of nitrogen, phosphate and trace metals formulated to enhance production of higher alcohols. C. carboxidivorans was successfully grown in a limited defined medium (no yeast extract, no MES buffer and minimal complex chemical inputs) using an improved fermentation protocol. Low partial pressure of CO in the headspace, coupled with restricted mass transfer for CO and H2, was required for successful fermentation. In the absence of substrate inhibition (particularly from CO), growth limitation increased production of alcohols, especially butanol and hexanol. Concentrations of butanol (over 1.0g/L), hexanol (up to 1.0g/L) and ethanol (over 3.0g/L) were achieved in bottle fermentations. Minimal medium and controlled supply of CO and H2 should be used in characterizing candidate butanol and hexanol producing strains to select for commercial potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review.

    Science.gov (United States)

    Wainaina, Steven; Horváth, Ilona Sárvári; Taherzadeh, Mohammad J

    2018-01-01

    An effective method for the production of value-added chemicals from food waste and lignocellulosic materials is a hybrid thermal-biological process, which involves gasification of the solid materials to syngas (primarily CO and H 2 ) followed by fermentation. This paper reviews the recent advances in this process. The special focus is on the cultivation methods that involve the use of single strains, defined mixed cultures and undefined mixed cultures for production of carboxylic acids and higher alcohols. A rate limiting step in these processes is the low mass transfer between the gas and the liquid phases. Therefore, novel techniques that can enhance the gas-liquid mass transfer including membrane- and trickle-bed bioreactors were discussed. Such bioreactors have shown promising results in increasing the volumetric mass transfer coefficient (k L a). High gas pressure also influences the mass transfer in certain batch processes, although the presence of impurities in the gas would impede the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  9. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D. [National Renewable Energy Laboratory, Golden CO USA; Snowden-Swan, Lesley J. [Pacific Northwest National Laboratory, Richland WA USA; Talmadge, Michael [National Renewable Energy Laboratory, Golden CO USA; Dutta, Abhijit [National Renewable Energy Laboratory, Golden CO USA; Jones, Susanne [Pacific Northwest National Laboratory, Richland WA USA; Ramasamy, Karthikeyan K. [Pacific Northwest National Laboratory, Richland WA USA; Gray, Michel [Pacific Northwest National Laboratory, Richland WA USA; Dagle, Robert [Pacific Northwest National Laboratory, Richland WA USA; Padmaperuma, Asanga [Pacific Northwest National Laboratory, Richland WA USA; Gerber, Mark [Pacific Northwest National Laboratory, Richland WA USA; Sahir, Asad H. [National Renewable Energy Laboratory, Golden CO USA; Tao, Ling [National Renewable Energy Laboratory, Golden CO USA; Zhang, Yanan [National Renewable Energy Laboratory, Golden CO USA

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1) mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  10. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  11. Moorella Strains for the Production of Biochemicals from Syngas

    DEFF Research Database (Denmark)

    Redl, Stephanie; Jensen, Torbjørn Ølshøj; Nielsen, Alex Toftgaard

    In the process of sugar fermentation, a significant portion of lignocellulosic biomass is left unused. An alternative is the gasification into syngas, a carbon-rich gas mixture. Syngas serves as energy and carbon source for acetogenic bacteria, which can then produce biochemicals. In the syngas...... value biochemicals (acetone) from syngas using Moorella strains as cell factories. Moorella has outstanding abilities that make it especially suitable for the syngas fermentation process (thermophily, carbon source utilization). Firstly, the project focuses on understanding the primary metabolism...

  12. Syngas biomethanation: state-of-the-art review and perspectives

    DEFF Research Database (Denmark)

    Grimalt Alemany, Antonio; Skiadas, Ioannis V; Gavala, Hariklia N.

    2018-01-01

    Significant research efforts are currently being made worldwide to develop more efficient biomethane production processes from a variety of waste streams. The biomethanation of biomass-derived syngas can contribute to increasing the potential of methane production as it opens the way for the conv...

  13. Selective Oxidation of Biomass-Derived Chemicals

    DEFF Research Database (Denmark)

    Modvig, Amalie Elise

    . The objective of this dissertation was to develop new, alternative and sustainable methods for oxidative catalytic upgrading of biomass-derived compounds, with focus on oxidation of glycolaldehyde and simple alcohols as model substrates for larger sugars. Supported gold nanoparticle were studied...... for the selective oxidation of glycolaldehyde to glycolic acid, which has found applications in various industries. Limitations by competing reactions and catalyst deactivation was observed, affording up to 68% of glycolic acid at mild and aqueous conditions. The green oxidant, molecular oxygen, was applied...... for these oxidations and the reaction took place under base-free conditions. Oxidation of glycolaldehyde was further studied in the formation of formic acid. Efficient release of hydrogen from formic acid has proven formic acid a viable precursor for hydrogen, facilitating safe transportation and storage. Hydrogen has...

  14. A Hybrid Catalytic Route to Fuels from Biomass Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Laurel [LanzaTech, Inc.; Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lilga, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heijstra, Bjorn [LanzaTech, Inc.; Palou-Rivera, Ignasi [LanzaTech, Inc.; Handler, Robert [Michigan Technological Univ., Houghton, MI (United States)

    2017-12-31

    LanzaTech partnered with the Pacific Northwest National Laboratory (PNNL), Imperium Aviation Fuels, InEnTec, Orochem Technologies, the University of Delaware, Michigan Technological University, the National Renewable Energy Laboratory, and The Boeing Company, to develop a cost-effective hybrid conversion technology for catalytic upgrading of biomass-derived syngas to sustainable alternative jet fuel (SAJF) meeting the price, quality and environmental requirements of the aviation industry. Alternative “synthetic paraffinic kerosene” (SPK) blendstock produced from syngas via “Fischer-Tropsch” (F-T) or from lipids via “hydroprocessing of esters and fatty acids” (HEFA) are currently being used in commercial jet fuel blends containing at least 50% petroleum-based fuel. This project developed an alternative route to SAJF from ethanol, a type of “alcohol to jet” (ATJ) SPK. The project objective was to demonstrate a pathway that combines syngas fermentation to ethanol with catalytic upgrading of ethanol to sustainable alternative jet fuel and shows attractive overall system economics to drive down the price of biomass-derived jet fuel. The hybrid pathway was to be demonstrated on three biomass feedstocks: corn stover, woody biomass, and third biomass feedstock, cellulosic residues. The objective also included the co-production of chemicals, exemplified by 2,3-Butanediol (2,3-BDO), which can be converted to key chemical intermediates. The team successfully demonstrated that biomass syngas fermentation followed by catalytic conversion is a viable alternative to the Fischer-Tropsch process and produces a fuel with properties comparable to F-T and HEFA SPKs. Plasma gasification and gas fermentation were successfully integrated and demonstrated in continuous fermentations on waste wood, corn stover, and cellulosic bagasse. Gas fermentation was demonstrated to produce ethanol suitable for catalytic upgrading, isolating the upgrading from variations in biomass

  15. Methods for deoxygenating biomass-derived pyrolysis oil

    Science.gov (United States)

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  16. Sequential Mixed Cultures: From Syngas to Malic Acid.

    Science.gov (United States)

    Oswald, Florian; Dörsam, Stefan; Veith, Nicolas; Zwick, Michaela; Neumann, Anke; Ochsenreither, Katrin; Syldatk, Christoph

    2016-01-01

    Synthesis gas (syngas) fermentation using acetogenic bacteria is an approach for production of bulk chemicals like acetate, ethanol, butanol, or 2,3-butandiol avoiding the fuel vs. food debate by using carbon monoxide, carbon dioxide, and hydrogen from gasification of biomass or industrial waste gases. Suffering from energetic limitations, yields of C4-molecules produced by syngas fermentation are quite low compared with ABE fermentation using sugars as a substrate. On the other hand, fungal production of malic acid has high yields of product per gram metabolized substrate but is currently limited to sugar containing substrates. In this study, it was possible to show that Aspergilus oryzae is able to produce malic acid using acetate as sole carbon source which is a main product of acetogenic syngas fermentation. Bioreactor cultivations were conducted in 2.5 L stirred tank reactors. During the syngas fermentation part of the sequential mixed culture, Clostridium ljungdahlii was grown in modified Tanner medium and sparged with 20 mL/min of artificial syngas mimicking a composition of clean syngas from entrained bed gasification of straw (32.5 vol-% CO, 32.5 vol-% H2, 16 vol-% CO2, and 19 vol-% N2) using a microsparger. Syngas consumption was monitored via automated gas chromatographic measurement of the off-gas. For the fungal fermentation part gas sparging was switched to 0.6 L/min of air and a standard sparger. Ammonia content of medium for syngas fermentation was reduced to 0.33 g/L NH4Cl to meet the requirements for fungal production of dicarboxylic acids. Malic acid production performance of A. oryzae in organic acid production medium and syngas medium with acetate as sole carbon source was verified and gave YP∕S values of 0.28 g/g and 0.37 g/g respectively. Growth and acetate formation of C. ljungdahlii during syngas fermentation were not affected by the reduced ammonia content and 66 % of the consumed syngas was converted to acetate. The overall conversion

  17. Moorella Strains for the Production of Biochemicals from Syngas

    DEFF Research Database (Denmark)

    Redl, Stephanie; Jensen, Torbjørn Ølshøj; Nielsen, Alex Toftgaard

    In the process of sugar fermentation, a significant portion of lignocellulosic biomass is left unused. Analternative is the gasification into syngas, a carbon-rich gas mixture. Syngas serves as energy andcarbon source for acetogenic bacteria, which can then produce biochemicals. In the syngasferm......In the process of sugar fermentation, a significant portion of lignocellulosic biomass is left unused. Analternative is the gasification into syngas, a carbon-rich gas mixture. Syngas serves as energy andcarbon source for acetogenic bacteria, which can then produce biochemicals...... valuebiochemicals (acetone) from syngas using Moorella strains. Moorella has outstanding abilities likethermophily and carbon source conversion yields that make it especially suitable for the syngasfermentation process.The present project focuses on understanding the primary metabolism in acetogenic bacteria...

  18. Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation.

    Science.gov (United States)

    Wang, Yun-Qi; Yu, Shi-Jin; Zhang, Fang; Xia, Xiu-Yang; Zeng, Raymond J

    2017-03-01

    Conversion of organic wastes to syngas is an attractive way to utilize wastes. The produced syngas can be further used to produce a variety of chemicals. In this study, a hollow-fiber membrane biofilm reactor with mix cultures was operated at 55 °C to convert syngas (H 2 /CO 2 ) into acetate. A high concentration of acetate (42.4 g/L) was reached in batch experiment while a maximum acetate production rate of 10.5 g/L/day was achieved in the continuous-flow mode at hydraulic retention time (HRT) of 1 day. Acetate was the main product in both batch and continuous-flow experiments. n-Butyrate was the other byproduct in the reactor. Acetate accounted for more than 98.5 and 99.1% of total volatile fatty acids in batch and continuous modes, respectively. Illumina Miseq high-throughput sequencing results showed that microorganisms were highly purified and enriched in the reactor. The main genus was Thermoanaerobacterium (66% of relative abundance), which was usually considered as H 2 producer in the literature, however, likely played a role as a H 2 consumer in this study. This study provides a new method to generate the high producing rate and purity of acetate from syngas.

  19. Photoelectrochemical hydrogen production from biomass derivatives and water.

    Science.gov (United States)

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  20. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  1. Syngas Biorefinery and Syngas Utilization.

    Science.gov (United States)

    De Tissera, Sashini; Köpke, Michael; Simpson, Sean D; Humphreys, Christopher; Minton, Nigel P; Dürre, Peter

    2017-06-20

    Autotrophic acetogenic bacteria are able to capture carbon (CO or CO 2 ) through gas fermentation, allowing them to grow on a spectrum of waste gases from industry (e.g., steel manufacture and oil refining, coal, and natural gas) and to produce ethanol. They can also consume syn(thesis) gas (CO and H 2 ) made from the gasification of renewable/sustainable resources, such as biomass and domestic/agricultural waste. Acetogenic gas fermentation can, therefore, produce ethanol in any geographic region without competing for food or land. The commercialization of the process is now at an advanced stage. The real potential of acetogens, however, resides in their capacity to produce chemicals and fuels other than ethanol. This requires the redesign and implementation of more efficient metabolic pathways, adapting them to high performing manufacturing processes. Respective species, their bioenergetics, the genetic tools developed for their metabolic engineering, culture techniques and fermenter set-ups, as well as the commercialization, are comprehensively described and discussed in this chapter.

  2. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  3. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    Science.gov (United States)

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  4. Recent updates on lignocellulosic biomass derived ethanol - A review

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  5. Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst.

    Science.gov (United States)

    Lee, Jong-Min; Upare, Pravin P; Chang, Jong-San; Hwang, Young Kyu; Lee, Jeong Ho; Hwang, Dong Won; Hong, Do-Young; Lee, Seung Hwan; Jeong, Myung-Geun; Kim, Young Dok; Kwon, Young-Uk

    2014-11-01

    Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  7. Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum.

    Science.gov (United States)

    Revelles, O; Tarazona, N; García, J L; Prieto, M A

    2016-02-01

    The gasification of organic waste materials to synthesis gas (syngas), followed by microbial fermentation, provides a significant resource for generating bioproducts such as polyhydroxyalkanoates (PHA). The anaerobic photosynthetic bacterium, Rhodospirillum rubrum, is an organism particularly attractive for the bioconversion of syngas into PHAs. In this study, a quantitative physiological analysis of R. rubrum was carried out by implementing GC-MS and HPLC techniques to unravel the metabolic pathway operating during syngas fermentation that leads to PHA production. Further, detailed investigations of the central carbon metabolites using (13) C-labelled substrate showed significant CO2 assimilation (of 40%) into cell material and PHA from syngas carbon fraction. By a combination of quantitative gene expression and enzyme activity analyses, the main role of carboxylases from the central carbon metabolism in CO2 assimilation was shown, where the Calvin-Benson-Bassham cycle (CBB) played a minor role. This knowledge sheds light about the biochemical pathways that contribute to synthesis of PHA during syngas fermentation being valuable information to further optimize the fermentation process. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Integrated bioconversion of syngas into bioethanol and biopolymers.

    Science.gov (United States)

    Lagoa-Costa, Borja; Abubackar, Haris Nalakath; Fernández-Romasanta, María; Kennes, Christian; Veiga, María C

    2017-09-01

    Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO 2 /H 2 /N 2 , 30/10/20/40) as gaseous substrate. The second stage consisted in various fed-batch assays using a highly enriched PHA accumulating biomass as inoculum, where the potential for biopolymer production from the remaining acetic acid at the end of the syngas fermentation was evaluated. All of the acetic acid was consumed and accumulated as biopolymer, while ethanol and 2,3-butanediol remained basically unused. It can be concluded that a high C/N ratio in the effluent from the syngas fermentation stage was responsible for non-consumption of alcohols. A maximum PHA content of 24% was reached at the end of the assay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil

    Science.gov (United States)

    Kalnes, Tom N.

    2015-12-29

    Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.

  10. Production of distillate fuels from biomass-derived polyoxygenates

    Science.gov (United States)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  11. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria.

    Science.gov (United States)

    Bertsch, Johannes; Müller, Volker

    2015-01-01

    Synthesis gas (syngas) is a gas mixture consisting mainly of H2, CO, and CO2 and can be derived from different sources, including renewable materials like lignocellulose. The fermentation of syngas to certain biofuels, using acetogenic bacteria, has attracted more and more interest over the last years. However, this technology is limited by two things: (1) the lack of complete knowledge of the energy metabolism of acetogenic bacteria, and (2) the lack of sophisticated genetic tools for the modification of acetogens. In this review, we discuss the bioenergetic constraints for the conversion of syngas to different biofuels. We will mainly focus on Acetobacterium woodii, which is the best understood acetogen in terms of energy conservation. Syngas fermentation with Clostridium autoethanogenum will also be discussed, since this organism is well suited to convert syngas to certain products and already used in large-scale industrial processes.

  12. Rapid bio-methanation of syngas in a reverse membrane bioreactor: membrane encased microorganisms.

    Science.gov (United States)

    Youngsukkasem, Supansa; Chandolias, Konstantinos; Taherzadeh, Mohammad J

    2015-02-01

    The performance of a novel reverse membrane bioreactor (RMBR) with encased microorganisms for syngas bio-methanation as well as a co-digestion process of syngas and organic substances was examined. The sachets were placed in the reactors and examined in repeated batch mode. Different temperatures and short retention time were studied. The digesting sludge encased in the PVDF membranes was able to convert syngas into methane at a retention time of 1 day and displayed a similar performance as the free cells in batch fermentation. The co-digestion of syngas and organic substances by the RMBR (the encased cells) showed a good performance without any observed negative effects. At thermophilic conditions, there was a higher conversion of pure syngas and co-digestion using the encased cells compared to at mesophilic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Energy Characterization and Gasification of Biomass Derived by Hazelnut Cultivation: Analysis of Produced Syngas by Gas Chromatography

    OpenAIRE

    D. Monarca; A. Colantoni; M. Cecchini; L. Longo; L. Vecchione; M. Carlini; A. Manzo

    2012-01-01

    Modern agriculture is an extremely energy intensive process. However, high agricultural productivities and the growth of green revolution has been possible only by large amount of energy inputs, especially those coming from fossil fuels. These energy resources have not been able to provide an economically viable solution for agricultural applications. Biomass energy-based systems had been extensively used for transportation and on farm systems during World War II: the most common and reliable...

  14. Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2.

    Science.gov (United States)

    Ross, Michael B; Dinh, Cao Thang; Li, Yifan; Kim, Dohyung; De Luna, Phil; Sargent, Edward H; Yang, Peidong

    2017-07-12

    Using renewable energy to recycle CO 2 provides an opportunity to both reduce net CO 2 emissions and synthesize fuels and chemical feedstocks. It is of central importance to design electrocatalysts that both are efficient and can access a tunable spectrum of products. Syngas, a mixture of carbon monoxide (CO) and hydrogen (H 2 ), is an important chemical precursor that can be converted downstream into small molecules or larger hydrocarbons by fermentation or thermochemistry. Many processes that utilize syngas require different syngas compositions: we therefore pursued the rational design of a family of electrocatalysts that can be programmed to synthesize different designer syngas ratios. We utilize in situ surface-enhanced Raman spectroscopy and first-principles density functional theory calculations to develop a systematic picture of CO* binding on Cu-enriched Au surface model systems. Insights from these model systems are then translated to nanostructured electrocatalysts, whereby controlled Cu enrichment enables tunable syngas production while maintaining current densities greater than 20 mA/cm 2 .

  15. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  16. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.

    Science.gov (United States)

    Nichols, Nancy N; Dien, Bruce S; Guisado, Gema M; López, Maria J

    2005-01-01

    Bioabatement is a potential method to remove inhibitory compounds from lignocellulose hydrolysates that could be incorporated into a scheme for fermentation of ethanol from cellulose. Coniochaeta ligniaria NRRL30616, an Ascomycete that metabolizes furfural and 5-hydroxymethylfurfural, is a unique strain that may be useful for detoxifying biomass sugars. NRRL30616 and 23 related fungal strains were screened for the ability to metabolize furans and grow in dilute-acid hydrolysate of corn stover. NRRL30616 was the best strain for removal of inhibitors from hydrolysate, and abatement of hydrolysate by inoculation with the strain allowed subsequent yeast fermentation of cellulose to ethanol.

  17. fermentation

    African Journals Online (AJOL)

    user

    2012-05-17

    May 17, 2012 ... osmotic pressure, ethanol stress and other metabolic inhibitors accumulation in broth. At 48 h, the maximum ethanol concentration reached 137 g L-1, after which fermentation ended with the residual glucose at approximately 4.71 g L-1 and the volumetric productivity at approximately 2.54 g L-1 h-1.

  18. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  20. Suitability of marginal biomass-derived biochars for soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Buss, Wolfram [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Graham, Margaret C. [School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Shepherd, Jessica G. [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Mašek, Ondřej, E-mail: ondrej.masek@ed.ac.uk [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom)

    2016-03-15

    The term “marginal biomass” is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average + 82.8% Cr, + 226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition + 22.5 mg Cr kg{sup −1} biochar and + 44.4 mg Ni kg{sup −1} biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. - Highlights: • Marginal biomass feedstocks are materials of little economic value. • Biochar from biomass grown on PTE-rich soils tends to exceed guideline values. • Biochar from biomass with high mineral content can be a beneficial nutrient source. • Cr and Ni

  1. Suitability of marginal biomass-derived biochars for soil amendment

    International Nuclear Information System (INIS)

    Buss, Wolfram; Graham, Margaret C.; Shepherd, Jessica G.; Mašek, Ondřej

    2016-01-01

    The term “marginal biomass” is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average + 82.8% Cr, + 226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition + 22.5 mg Cr kg −1 biochar and + 44.4 mg Ni kg −1 biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. - Highlights: • Marginal biomass feedstocks are materials of little economic value. • Biochar from biomass grown on PTE-rich soils tends to exceed guideline values. • Biochar from biomass with high mineral content can be a beneficial nutrient source. • Cr and Ni from the

  2. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum.

    Science.gov (United States)

    Revelles, Olga; Beneroso, Daniel; Menéndez, J Angel; Arenillas, Ana; García, J Luis; Prieto, M Auxiliadora

    2017-11-01

    The massive production of urban and agricultural wastes has promoted a clear need for alternative processes of disposal and waste management. The potential use of municipal solid wastes (MSW) as feedstock for the production of polyhydroxyalkanoates (PHA) by a process known as syngas fermentation is considered herein as an attractive bio-economic strategy to reduce these wastes. In this work, we have evaluated the potential of Rhodospirillum rubrum as microbial cell factory for the synthesis of PHA from syngas produced by microwave pyrolysis of the MSW organic fraction from a European city (Seville). Growth rate, uptake rate, biomass yield and PHA production from syngas in R. rubrum have been analysed. The results revealed the strong robustness of this syngas fermentation where the purity of the syngas is not a critical constraint for PHA production. Microwave-induced pyrolysis is a tangible alternative to standard pyrolysis, because it can reduce cost in terms of energy and time as well as increase syngas production, providing a satisfactory PHA yield. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Fermentative Alcohol Production

    DEFF Research Database (Denmark)

    Martín, Mariano; Sánchez, Antonio; Woodley, John M.

    2018-01-01

    In this chapter we present some of key principles of bioreactor design for the production of alcohols by fermentation of sugar and syngas . Due to the different feedstocks, a detailed analysis of the hydrodynamics inside the units , bubble columns or stirred tank reactors , the gas-liquid mass...

  4. Step sites in syngas catalysis

    DEFF Research Database (Denmark)

    Rostrup-Nielsen, J.; Nørskov, Jens Kehlet

    2006-01-01

    Step sites play an important role in many catalytic reactions. This paper reviews recent results on metal catalysts for syngas reactions with emphasis on steam reforming. Modern characterization techniques (STEM, HREM...) and theoretical calculations (DFT) has allowed a more quantitative...

  5. Design of a tailor-made platform for syngas bioconversion into polyhydroxybutyrate.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-11-01

    Biodegradable polymers such as polyhydroxybutyrate (PHB) are part of the emerging portfolio of renewable materials, which are addressing the issue of plastic waste. Syngas, as a cheap, renewable and sustainable resource that can be obtained from biomass or waste, is viewed as an excellent feedstock for different bioprocesses, including syngas to PHB bioconversion. However, due to the hazardous nature of syngas, it is of utmost importance to consider safety aspects of the process. This recently developed tailor-made platform for safe syngas fermentation and PHB production addresses safety aspects and demonstrates the importance of robust online and in-line analytical tools allowing for monitoring and controlling of this bioprocess. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. HIGH EFFICIENCY SYNGAS GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested

  7. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  8. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    Science.gov (United States)

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  9. Pressurised combustion of biomass-derived, low calorific value, fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU-funded, international R + D project which is designed to aid European industry in addressing issues regarding pressurised combustion of biomass-derived, low calorific flue fuel gas. The objects of the project are: To design, manufacture and test a pressurised, high temperature gas turbine combustor for biomass derived LCV fuel gas; to develop a steady-state and dynamic model describing a combustor using biomass-derived, low calorific value fuel gases; to gather reliable experimental data on the steady-state and dynamic characteristics of the combustor; to study the steady-state and dynamic plant behaviour using a plant layout wich incorporates a model of a gas turbine suitable for operation on low calorific value fuel gas. (orig)

  10. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  11. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production hostMoorella thermoacetica.

    Science.gov (United States)

    Redl, Stephanie; Sukumara, Sumesh; Ploeger, Tom; Wu, Liang; Ølshøj Jensen, Torbjørn; Nielsen, Alex Toftgaard; Noorman, Henk

    2017-01-01

    Syngas fermentation is a promising option for the production of biocommodities due to its abundance and compatibility with anaerobic fermentation. Using thermophilic production strains in a syngas fermentation process allows recovery of products with low boiling point from the off-gas via condensation. In this study we analyzed the production of acetone from syngas with the hypothetical production host derived from Moorella thermoacetica in a bubble column reactor at 60 °C with respect to thermodynamic and economic feasibility. We determined the cost of syngas production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gas-liquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas- and corn stover-derived syngas were determined to be higher due to the higher feedstock costs (1724 and 2878 $/t acetone, respectively). We applied an approach of combining thermodynamic and economic assessment to analyze a hypothetical bioprocess in which the volatile product acetone is produced from syngas with a thermophilic microorganism. Our model allowed us to identify process metrics and quantify the variable production costs for different scenarios. Economical production of bulk chemicals is challenging, making rigorous thermodynamic/economic modeling critical before undertaking an experimental program and as an ongoing guide during the program. We intend this study to give an incentive to apply the demonstrated approach to other bioproduction processes.

  12. Step sites in syngas catalysis

    DEFF Research Database (Denmark)

    Rostrup-Nielsen, J.; Nørskov, Jens Kehlet

    2006-01-01

    Step sites play an important role in many catalytic reactions. This paper reviews recent results on metal catalysts for syngas reactions with emphasis on steam reforming. Modern characterization techniques (STEM, HREM...) and theoretical calculations (DFT) has allowed a more quantitative explanat...

  13. Bio-syngas production from biomass catalytic gasification

    International Nuclear Information System (INIS)

    Lv, Pengmei; Yuan, Zhenhong; Wu, Chuangzhi; Ma, Longlong; Chen, Yong; Tsubaki, Noritatsu

    2007-01-01

    A promising application for biomass is liquid fuel synthesis, such as methanol or dimethyl ether (DME). Previous studies have studied syngas production from biomass-derived char, oil and gas. This study intends to explore the technology of syngas production from direct biomass gasification, which may be more economically viable. The ratio of H 2 /CO is an important factor that affects the performance of this process. In this study, the characteristics of biomass gasification gas, such as H 2 /CO and tar yield, as well as its potential for liquid fuel synthesis is explored. A fluidized bed gasifier and a downstream fixed bed are employed as the reactors. Two kinds of catalysts: dolomite and nickel based catalyst are applied, and they are used in the fluidized bed and fixed bed, respectively. The gasifying agent used is an air-steam mixture. The main variables studied are temperature and weight hourly space velocity in the fixed bed reactor. Over the ranges of operating conditions examined, the maximum H 2 content reaches 52.47 vol%, while the ratio of H 2 /CO varies between 1.87 and 4.45. The results indicate that an appropriate temperature (750 o C for the current study) and more catalyst are favorable for getting a higher H 2 /CO ratio. Using a simple first order kinetic model for the overall tar removal reaction, the apparent activation energies and pre-exponential factors are obtained for nickel based catalysts. The results indicate that biomass gasification gas has great potential for liquid fuel synthesis after further processing

  14. Biofuel and Methyl Levulinate from Biomass-Derived Fractional Condensed Pyrolysis Oil and Alcohol

    NARCIS (Netherlands)

    Westerhof, Roel J.M.; Oudenhoven, Stijn R.G.; Hu, Xun; Heeres, Hero J.; Li, Chun-Zhu; Garcia-Perez, Manuel; Kersten, Sascha R.A.

    2017-01-01

    The aim of this research was to evaluate the potential for the stabilization of biomass-derived pyrolysis oils by using acid-catalyzed (Amberlyst 70) reactions with alcohol (T=140–170 °C, P≈20 bar (1 bar=105 Pa)). The alcohol-stabilized oils were further upgraded by catalytic hydrotreatment (T=400

  15. Biofuel and Methyl Levulinate from Biomass- Derived Fractional Condensed Pyrolysis Oil and Alcohol

    NARCIS (Netherlands)

    Westerhof, Roel. J. M.; Oudenhoven, Stijn R. G.; Hu, Xun; Heeres, Hero J.; Li, Chun-Zhu; Garcia-Perez, Manuel; Kersten, Sascha R. A.

    The aim of this research was to evaluate the potential for the stabilization of biomass-derived pyrolysis oils by using acidcatalyzed (Amberlyst 70) reactions with alcohol (T= 140-170 degrees C, P approximate to 20 bar (1 bar= 10(5) Pa)). The alcohol-stabilized oils were further upgraded by

  16. Process for producing ethanol from syngas

    Science.gov (United States)

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  17. Electrochemical Coupling of Biomass-Derived Acids: New C8Platforms for Renewable Polymers and Fuels.

    Science.gov (United States)

    Wu, Linglin; Mascal, Mark; Farmer, Thomas J; Arnaud, Sacha Pérocheau; Wong Chang, Maria-Angelica

    2017-01-10

    Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C 6 for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high-octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid-derived methylsuccinic monoester yields a chiral 2,5-dimethyladipic acid diester, another underutilized monomer owing to lack of availability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    Science.gov (United States)

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthesis, Hydrogenation, and Hydrodeoxygenation of Biomass-Derived Furans for Diesel Fuel

    OpenAIRE

    Louie, Ying Lin

    2017-01-01

    Hydrogenation and hydrodeoxygenation (HDO) processes are critical for the chemical conversion of lignocellulosic biomass into liquid transportation fuels such as gasoline, jet, and diesel. Hydro-treatment processes can remove undesired functionalities and reduce the oxygen content in biomass-derived oxygenates to produce candidates suitable for fuel blends. In this study, the liquid phase hydrogenation and hydrogenolysis of several model substrates including, 2,5-dimethylfuran (DMF), 5-methyl...

  20. Performance evaluation of premixed burner fueled with biomass derived producer gas

    OpenAIRE

    Punnarapong, P.; Sucharitakul, T.; Tippayawong, N.

    2017-01-01

    Energy consumption of liquefied petroleum gas (LPG) in ceramic firing process accounts for about 15–40% of production cost. Biomass derived producer gas may be used to replace LPG. In this work, a premixed burner originally designed for LPG was modified for producer gas. Its thermal performance in terms of axial and radial flame temperature distribution, thermal efficiency and emissions was investigated. The experiment was conducted at various gas production rates with equivalence ratios betw...

  1. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  2. Expression of amplified synthetic ethanol pathway integrated using Tn7-tool and powered at the expense of eliminated pta, ack, spo0A and spo0J during continuous syngas or CO2 /H2 blend fermentation.

    Science.gov (United States)

    Kiriukhin, M; Tyurin, M

    2013-04-01

    To engineer acetogen biocatalyst selectively overproducing ethanol from synthesis gas or CO2 /H2 as the only liquid carbonaceous product. Ethanol-resistant mutant originally capable of producing only acetate from CO2 /CO was engineered to eliminate acetate production and spore formation using our proprietary Cre-lox66/lox71-system. Bi-functional aldehyde/alcohol dehydrogenase was inserted into the chromosome of the engineered mutant using Tn7-based approach. Recombinants with three or six copies of the inserted gene produced 525 mmol l(-1) and 1018 mmol l(-1) of ethanol, respectively, in five independent single-step fermentation runs 25 days each (P fermentation can boost artificial integrated pathway performance. Cell energy released via elimination of phosphotransacetylase, acetate kinase and early-stage sporulation genes boosted ethanol production. Deletion of sporulation genes added theft-proof feature to the engineered biocatalyst. Production of ethanol from CO2 /H2 blend might be utilized as a tool to mitigate global warming proportional to CO2 fermentation scale. © 2013 The Society for Applied Microbiology.

  3. A novel syngas-fired hybrid heating source for solar-thermal applications: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Biomass-derived syngas as a hybrid energy source for solar thermal power plants. • A novel combustor concept using rich-catalytic and MILD combustion technologies. • Hybrid energy source for a solar-driven supercritical CO 2 -based Brayton cycle. • Comprehensive energetic and exergetic analysis of the combined system. - Abstract: A hybrid heating source using biomass-derived syngas is proposed to enable continuous operation of standalone solar thermal power generation plants. A novel, two-stage, low temperature combustion system is proposed that has the potential to provide stable combustion of syngas with near-zero NO x emissions. The hybrid heating system consists of a downdraft gasifier, a two-stage combustion system, and other auxiliaries. When integrated with a solar cycle, the entire system can be referred to as the integrated gasification solar combined cycle (IGSCC). The supercritical CO 2 Brayton cycle (SCO 2 ) is selected for the solar cycle due to its high efficiency. The thermodynamic performance evaluation of the individual unit and the combined system has been conducted from both energy and exergy considerations. The effect of parameters such as gasification temperature, biomass moisture content, equivalence ratio, and pressure ratio is studied. The efficiency of the IGSCC exhibited a non-monotonic behavior. A maximum thermal efficiency of 36.5% was achieved at an overall equivalence ratio of 0.22 and pressure ratio of 2.75 when the gasifier was operating at T g = 1073 K with biomass containing 20% moisture. The efficiency increased to 40.8% when dry biomass was gasified at a temperature of 973 K. The exergy analysis revealed that the maximum exergy destruction occurred in the gasification system, followed by the combustion system, SCO 2 cycle, and regenerator. The exergy analysis also showed that 8.72% of the total exergy is lost in the exhaust; however, this can be utilized for drying of the biomass.

  4. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum

    OpenAIRE

    Revelles, Olga; Beneroso, Daniel; Menéndez, J. Angel; Arenillas, Ana; García, J. Luis; Prieto, M. Auxiliadora

    2016-01-01

    Summary The massive production of urban and agricultural wastes has promoted a clear need for alternative processes of disposal and waste management. The potential use of municipal solid wastes (MSW) as feedstock for the production of polyhydroxyalkanoates (PHA) by a process known as syngas fermentation is considered herein as an attractive bio‐economic strategy to reduce these wastes. In this work, we have evaluated the potential of Rhodospirillum rubrum as microbial cell factory for the syn...

  5. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    Science.gov (United States)

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  6. Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol.

    Science.gov (United States)

    Singla, Ashish; Verma, Dipti; Lal, Banwari; Sarma, Priyangshu M

    2014-11-01

    The main aim of the present study was to enrich anaerobic mixed bacterial culture capable of producing ethanol from synthesis gas fermentation. Screening of thirteen anaerobic strains together with enrichment protocol helped to develop an efficient mixed culture capable of utilizing syngas for ethanol production. Physiological and operational parameters were optimized for enhanced ethanol production. The optimized value of operational parameters i.e. initial media pH, incubation temperature, initial syngas pressure, and agitation speed were 6.0±0.1, 37°C, 2kgcm(-2) and 100rpm respectively. Under these conditions ethanol and acetic acid production by the selected mixed culture were 1.54gL(-1) and 0.8gL(-1) respectively. Furthermore, up-scaling studies in semi-continuous fermentation mode further enhanced ethanol and acetic acid production up to 2.2gL(-1) and 0.9gL(-1) respectively. Mixed culture TERI SA1 was efficient for ethanol production by syngas fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites

    DEFF Research Database (Denmark)

    Tolborg, Søren; Meier, Sebastian; Shunmugavel, Saravanamurugan

    2016-01-01

    A highly selective self-condensation of glycolaldehyde to different C4 molecules has been achieved using Lewis acidic stannosilicate catalysts in water at moderate temperatures (40–100 °C). The medium-sized zeolite pores (10-membered ring framework) in Sn-MFI facilitate the formation of tetrose s...... undergo further conversion, leading to yields of up to 44 % of VGA using Sn-MFI in water. The use of Sn-MFI offers multiple possibilities for valorization of biomass-derived GA in water under mild conditions selectively producing C4 molecules....

  8. Methane from Syngas by Anaerobic Digestion

    OpenAIRE

    Shah, Sanjay; Bergland, Wenche Hennie; Bakke, Rune

    2017-01-01

    Anaerobic digestion (AD) is a prominent green technology used for methane production from organic waste. Previous studies have shown that the amount of CH4 produced during anaerobic digestion can be increased by adding inorganic electron donors such as H2 and CO, both which can be produced as syngas from wood. Syngas inflow is implemented in the ADM1 model and simulations are carried out with different syngas additions to a well-documented case of wastewater treatment plant sludge AD. Three d...

  9. Warm Cleanup of Coal-Derived Syngas: Multicontaminant Removal Process Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Kurt A.; Rainbolt, James E.; Li, Xiaohong S.; Braunberger, Beau; Li, Liyu; King, David L.; Dagle, Robert A.

    2017-02-15

    Warm cleanup of coal- or biomass-derived syngas requires sorbent and catalytic beds to protect downstream processes and catalysts from fouling. Sulfur is particularly harmful because even parts-per-million amounts are sufficient to poison downstream synthesis catalysts. Zinc oxide (ZnO) is a conventional sorbent for sulfur removal; however, its operational performance using real gasifier-derived syngas and in an integrated warm cleanup process is not well reported. In this paper, we report the optimal temperature for bulk desulfurization to be 450oC, while removal of sulfur to parts-per-billion levels requires a lower temperature of approximately 350oC. Under these conditions, we found that sulfur in the form of both hydrogen sulfide and carbonyl sulfide could be absorbed equally well using ZnO. For long-term operation, sorbent regeneration is desirable to minimize process costs. Over the course of five sulfidation and regeneration cycles, a ZnO bed lost about a third of its initial sulfur capacity, however sorbent capacity stabilized. Here, we also demonstrate, at the bench-scale, a process and materials used for warm cleanup of coal-derived syngas using five operations: 1) Na2CO3 for HCl removal, 2) regenerable ZnO beds for bulk sulfur removal, 3) a second ZnO bed for trace sulfur removal, 4) a Ni-Cu/C sorbent for multi-contaminant inorganic removal, and 5) a Ir-Ni/MgAl2O4 catalyst employed for ammonia decomposition and tar and light hydrocarbon steam reforming. Syngas cleanup was demonstrated through successful long-term performance of a poison-sensitive, Cu-based, water-gas-shift catalyst placed downstream of the cleanup process train. The tar reformer is an important and necessary operation with this particular gasification system; its inclusion was the difference between deactivating the water-gas catalyst with carbon deposition and successful 100-hour testing using 1 LPM of coal-derived syngas.

  10. Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein.

    Science.gov (United States)

    Hu, Yancheng; Li, Ning; Li, Guangyi; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    o-Xylene (OX) is a large-volume commodity chemical that is conventionally produced from fossil fuels. In this study, an efficient and sustainable two-step route is used to produce OX from biomass-derived pinacol and acrolein. In the first step, the phosphotungstic acid (HPW)-catalyzed pinacol dehydration in 1-ethyl-3-methylimidazolium chloride ([emim]Cl) selectively affords 2,3-dimethylbutadiene. The high selectivity of this reaction can be ascribed to the H-bonding interaction between Cl - and the hydroxy group of pinacol. The stabilization of the carbocation intermediate by the surrounding anion Cl - may be another reason for the high selectivity. Notably, the good reusability of the HPW/[emim]Cl system can reduce the waste output and production cost. In the second step, OX is selectively produced by a Diels-Alder reaction of 2,3-dimethylbutadiene and acrolein, followed by a Pd/C-catalyzed decarbonylation/aromatization cascade in a one-pot fashion. The sustainable two-step process efficiently produces renewable OX in 79 % overall yield. Analogously, biomass-derived crotonaldehyde and pinacol can also serve as the feedstocks for the production of 1,2,4-trimethylbenzene. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    Science.gov (United States)

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C 8 -C 19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mitigation of Syngas Cooler Plugging and Fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bockelie, Michael J. [Reaction Engineering International, Salt Lake City, UT (United States)

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  13. Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.

    Science.gov (United States)

    Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P

    2017-12-11

    Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Internal curing with lightweight aggregate produced from biomass-derived waste

    International Nuclear Information System (INIS)

    Lura, Pietro; Wyrzykowski, Mateusz; Tang, Clarence; Lehmann, Eberhard

    2014-01-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements

  16. Options of sugar beet pretreatment for hydrogen fermentation

    NARCIS (Netherlands)

    Grabarczyk, R.; Urbaniec, K.; Koukios, E.; Bakker, R.R.C.; Vaccari, G.

    2011-01-01

    Hydrogen is expected to play a major role in covering the future energy demand. To make its future uses sustainable, hydrogen should be produced from renewable resources, for example by bacterial fermentation of biomass-derived feedstocks. Sugar beet is recognised as one of the most interesting raw

  17. Mixed conducting membranes for syngas production

    Science.gov (United States)

    Dyer, Paul Nigel; Carolan, Michael Francis; Butt, Darryl; Van Doorn, Rene Hendrick Elias; Cutler, Raymond Ashton

    2002-01-01

    This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

  18. Pollutants removal from syngas using carbon materials

    International Nuclear Information System (INIS)

    Al-Dury, S.S.

    2009-01-01

    The incomplete combustion of biomass can cause the production of combustible gases including carbon monoxide (CO), hydrogen and methane. This study discussed a method of removing pollutants from syngas. Experiments were conducted using a fluidized bed atmospheric gasifier. The aim of the study was to characterize the solid waste pyrolysis and gasification process while developing a syngas cleanup and conditioning system. The unit was operated in both gasifying and combustion modes in order to compare traditional and alternative energy production values and environmental impacts. Active carbon, black cook and char coal samples were used as filters at temperatures ranging between 120 and 200 degrees C. Dolomite was used as a bed material. Results of the study showed that carbon materials can be used as a cheap and effective method of cleaning syngas during biomass gasifications conducted at low temperatures. 6 refs., 2 tabs., 5 figs.

  19. Status and prospects in higher alcohols synthesis from syngas.

    Science.gov (United States)

    Luk, Ho Ting; Mondelli, Cecilia; Ferré, Daniel Curulla; Stewart, Joseph A; Pérez-Ramírez, Javier

    2017-03-06

    Higher alcohols are important compounds with widespread applications in the chemical, pharmaceutical and energy sectors. Currently, they are mainly produced by sugar fermentation (ethanol and isobutanol) or hydration of petroleum-derived alkenes (heavier alcohols), but their direct synthesis from syngas (CO + H 2 ) would comprise a more environmentally-friendly, versatile and economical alternative. Research efforts in this reaction, initiated in the 1930s, have fluctuated along with the oil price and have considerably increased in the last decade due to the interest to exploit shale gas and renewable resources to obtain the gaseous feedstock. Nevertheless, no catalytic system reported to date has performed sufficiently well to justify an industrial implementation. Since the design of an efficient catalyst would strongly benefit from the establishment of synthesis-structure-function relationships and a deeper understanding of the reaction mechanism, this review comprehensively overviews syngas-based higher alcohols synthesis in three main sections, highlighting the advances recently made and the challenges that remain open and stimulate upcoming research activities. The first part critically summarises the formulations and methods applied in the preparation of the four main classes of materials, i.e., Rh-based, Mo-based, modified Fischer-Tropsch and modified methanol synthesis catalysts. The second overviews the molecular-level insights derived from microkinetic and theoretical studies, drawing links to the mechanisms of Fischer-Tropsch and methanol syntheses. Finally, concepts proposed to improve the efficiency of reactors and separation units as well as to utilise CO 2 and recycle side-products in the process are described in the third section.

  20. Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals.

    Science.gov (United States)

    Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin

    2017-10-23

    The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Review on the Production and Purification of Biomass-Derived Hydrogen Using Emerging Membrane Technologies

    Directory of Open Access Journals (Sweden)

    Hang Yin

    2017-10-01

    Full Text Available Hydrogen energy systems are recognized as a promising solution for the energy shortage and environmental pollution crises. To meet the increasing demand for hydrogen, various possible systems have been investigated for the production of hydrogen by efficient and economical processes. Because of its advantages of being renewable and environmentally friendly, biomass processing has the potential to become the major hydrogen production route in the future. Membrane technology provides an efficient and cost-effective solution for hydrogen separation and greenhouse gas capture in biomass processing. In this review, the future prospects of using gas separation membranes for hydrogen production in biomass processing are extensively addressed from two perspectives: (1 the current development status of hydrogen separation membranes made of different materials and (2 the feasibility of using these membranes for practical applications in biomass-derived hydrogen production. Different types of hydrogen separation membranes, including polymeric membranes, dense metal membranes, microporous membranes (zeolite, metal-organic frameworks (MOFs, silica, etc. are systematically discussed in terms of their fabrication methods, gas permeation performance, structure stability properties, etc. In addition, the application feasibility of these membranes in biomass processing is assessed from both practical and economic perspectives. The benefits and possibilities of using membrane reactors for hydrogen production in biomass processing are also discussed. Lastly, we summarize the limitations of the currently available hydrogen membranes as well as the gaps between research achievements and industrial application. We also propose expected research directions for the future development of hydrogen gas membrane technology.

  2. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran.

    Science.gov (United States)

    Saha, Basudeb; Bohn, Christine M; Abu-Omar, Mahdi M

    2014-11-01

    2,5-Dimethylfuran (DMF), a promising cellulosic biofuel candidate from biomass derived intermediates, has received significant attention because of its low oxygen content, high energy density, and high octane value. A bimetallic catalyst combination containing a Lewis-acidic Zn(II) and Pd/C components is effective for 5-hydroxymethylfurfural (HMF) hydrodeoxygenation (HDO) to DMF with high conversion (99%) and selectivity (85% DMF). Control experiments for evaluating the roles of zinc and palladium revealed that ZnCl2 alone did not catalyze the reaction, whereas Pd/C produced 60% less DMF than the combination of both metals. The presence of Lewis acidic component (Zn) was also found to be beneficial for HMF HDO with Ru/C catalyst, but the synergistic effect between the two metal components is more pronounced for the Pd/Zn system than the Ru/Zn. A comparative analysis of the Pd/Zn/C catalyst to previously reported catalytic systems show that the Pd/Zn system containing at least four times less precious metal than the reported catalysts gives comparable or better DMF yields. The catalyst shows excellent recyclability up to 4 cycles, followed by a deactivation, which could be due to coke formation on the catalyst surface. The effectiveness of this combined bimetallic catalyst has also been tested for one-pot conversion of fructose to DMF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Performance evaluation of premixed burner fueled with biomass derived producer gas

    Directory of Open Access Journals (Sweden)

    P. Punnarapong

    2017-03-01

    Full Text Available Energy consumption of liquefied petroleum gas (LPG in ceramic firing process accounts for about 15–40% of production cost. Biomass derived producer gas may be used to replace LPG. In this work, a premixed burner originally designed for LPG was modified for producer gas. Its thermal performance in terms of axial and radial flame temperature distribution, thermal efficiency and emissions was investigated. The experiment was conducted at various gas production rates with equivalence ratios between 0.8 and 1.2. Flame temperatures of over 1200 °C can be achieved, with maximum value of 1260 °C. It was also shown that the burner can be operated at 30.5–39.4 kWth with thermal efficiency in the range of 84 – 91%. The maximum efficiency of this burner was obtained at producer gas flow rate of 24.3 Nm3/h and equivalence ratio of 0.84.

  4. Synthesis of biomass derived carbon materials for environmental engineering and energy storage applications

    Science.gov (United States)

    Huggins, Mitchell Tyler

    Biomass derived carbon (BC) can serve as an environmentally and cost effective material for both remediation and energy production/storage applications. The use of locally derived biomass, such as unrefined wood waste, provides a renewable feedstock for carbon material production compared to conventional unrenewable resources like coal. Additionally, energy and capital cost can be reduced through the reduction in transport and processing steps and the use of spent material as a soil amendment. However, little work has been done to evaluate and compare biochar to conventional materials such as granular activated carbon or graphite in advanced applications of Environmental Engineering. In this work I evaluated the synthesis and compared the performance of biochar for different applications in wastewater treatment, nutrient recovery, and energy production and storage. This includes the use of biochar as an electrode and filter media in several bioelectrochemical systems (BES) treating synthetic and industrial wastewater. I also compared the treatment efficiency of granular biochar as a packed bed adsorbent for the primary treatment of high strength brewery wastewater. My studies conclude with the cultivation of fungal biomass to serve as a template for biochar synthesis, controlling the chemical and physical features of the feedstock and avoiding some of the limitations of waste derived materials.

  5. Bioconversion of Biomass-Derived Phenols Catalyzed by Myceliophthora thermophila Laccase

    Directory of Open Access Journals (Sweden)

    Anastasia Zerva

    2016-04-01

    Full Text Available Biomass-derived phenols have recently arisen as an attractive alternative for building blocks to be used in synthetic applications, due to their widespread availability as an abundant renewable resource. In the present paper, commercial laccase from the thermophilic fungus Myceliophthora thermophila was used to bioconvert phenol monomers, namely catechol, pyrogallol and gallic acid in water. The resulting products from catechol and gallic acid were polymers that were partially characterized in respect to their optical and thermal properties, and their average molecular weight was estimated via solution viscosity measurements and GPC. FT-IR and 1H-NMR data suggest that phenol monomers are connected with ether or C–C bonds depending on the starting monomer, while the achieved molecular weight of polycatechol is found higher than the corresponding poly(gallic acid. On the other hand, under the same condition, pyrogallol was dimerized in a pure red crystalline compound and its structure was confirmed by 1H-NMR as purpurogallin. The herein studied green synthesis of enzymatically synthesized phenol polymers or biological active compounds could be exploited as an alternative synthetic route targeting a variety of applications.

  6. Analysis of trickle-bed reactor for ethanol production from syngas using Clostridium ragsdalei

    Science.gov (United States)

    Devarapalli, Mamatha

    The conversion of syngas components (CO, CO2 and H2) to liquid fuels such as ethanol involves complex biochemical reactions catalyzed by a group of acetogens such as Clostridium ljungdahlii, Clostridium carboxidivorans and Clostridium ragsdalei. The low ethanol productivity in this process is associated with the low solubility of gaseous substrates CO and H2 in the fermentation medium. In the present study, a 1-L trickle-bed reactor (TBR) was analyzed to understand its capabilities to improve the mass transfer of syngas in fermentation medium. Further, semi-continuous and continuous syngas fermentations were performed using C. ragsdalei to evaluate the ability of the TBR for ethanol production. In the mass transfer studies, using 6-mm glass beads, it was found that the overall mass transfer coefficient (kLa/V L) increased with the increase in gas flow rate from 5.5 to 130.5 sccm. Further, an increase in the liquid flow rate in the TBR decreased the kLa/VL due to the increase in liquid hold up volume (VL) in the packing. The highest kLa/VL values of 421 h-1 and 178 h-1 were achieved at a gas flow rate of 130.5 sccm for 6-mm and 3-mm glass beads, respectively. Semi-continuous fermentations were performed with repetitive medium replacement in counter-current and co-current modes. In semi-continuous fermentations with syngas consisting of 38% CO, 5% N2, 28.5% CO2 and 28.5% H2 (by volume), the increase in H2 conversion (from 18 to 55%) and uptake (from 0.7 to 2.2 mmol/h) were observed. This increase was attributed to more cell attachment in the packing that reduced CO inhibition to hydrogenase along the column length and increased the H2 uptake. The maximum ethanol produced during counter-current and co-current modes were 3.0 g/L and 5.7 g/L, respectively. In continuous syngas fermentation, the TBR was operated at dilution rates between 0.006 h-1and 0.012 h -1 and gas flow rates between 1.5 sccm and 18.9 sccm. The highest ethanol concentration of 13 g/L was achieved at

  7. Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.

    Science.gov (United States)

    Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi

    2018-04-03

    Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production

    OpenAIRE

    Bhatia, Shashi Kant; Lee, Bo-Rahm; Sathiyanarayanan, Ganesan; Song, Hun Seok; Kim, Junyoung; Jeon, Jong-Min; Yoon, Jeong-Jun; Ahn, Jungoh; Park, Kyungmoon; Yang, Yung-Hun

    2016-01-01

    Various chemicals, i.e., furfural, vanillin, 4-hydroxybenzaldehyde and acetate produced during the pretreatment of biomass affect microbial fermentation. In this study, effect of vanillin, 4-hydroxybenzaldehyde and acetate on antibiotic production in Streptomyces coelicolor is investigated. IC 50 value of vanillin, 4-hydroxybenzaldehyde and acetate was recorded as 5, 11.3 and 115?mM, respectively. Vanillin was found as a very effective molecule, and it completely abolished antibiotic (undecyl...

  9. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    Science.gov (United States)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  10. Selective C-O Hydrogenolysis and Decarboxylation of Biomass-Derived Heterocyclic Compounds over Heterogeneous Catalysts

    Science.gov (United States)

    Chia, Mei

    The catalytic deoxygenation of biomass-derived compounds through selective C-O hydrogenolysis, catalytic transfer hydrogenation and lactonization, and decarboxylation to value-added chemicals over heterogeneous catalysts was examined under liquid phase reaction conditions. The reactions studied involve the conversion or production of heterocyclic compounds, specifically, cyclic ethers, lactones, and 2-pyrones. A bimetallic RhRe/C catalyst was found to be selective for the hydrogenolysis of secondary C-O bonds for a broad range cyclic ethers and polyols. Results from experimentally-observed reactivity trends, NH3 temperature-programmed desorption, fructose dehydration reaction studies, and first-principles density functional theory (DFT) calculations are consistent with the hypothesis of a bifunctional catalyst which facilitates acid-catalyzed ring-opening and dehydration coupled with metal-catalyzed hydrogenation. C-O hydrogenolysis and fructose dehydration activities were observed to decrease with an increase in reduction temperature and a decrease in the number of surface metallic Re atoms measured by in situ X-ray absorption spectroscopy. No C-O hydrogenolysis activity was detected over RhRe/C under water-free conditions. The activation of water molecules by Re atoms on the surface of metallic Rh is suggested to result in the formation of Bronsted acidity over RhRe/C. The catalytic transfer hydrogenation and lactonization of levulinic acid and its esters to gamma-valerolactone was accomplished through the Meerwein-Ponndorf-Verley reaction over metal oxide catalysts using secondary alcohols as the hydrogen donor. ZrO2 was a highly active material for CTH under batch and continuous flow reaction conditions; the initial activity of the catalyst was repeatedly regenerable by calcination in air, with no observable loss in catalytic activity. Lastly, the 2-pyrone, triacetic acid lactone, is shown to be a promising biorenewable platform chemical from which a wide range

  11. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas.

    Science.gov (United States)

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2016-01-01

    Synthesis gas, a mixture of CO, H2, and CO2, is a promising renewable feedstock for bio-based production of organic chemicals. Production of medium-chain fatty acids can be performed via chain elongation, utilizing acetate and ethanol as main substrates. Acetate and ethanol are main products of syngas fermentation by acetogens. Therefore, syngas can be indirectly used as a substrate for the chain elongation process. Here, we report the establishment of a synthetic co-culture consisting of Clostridium autoethanogenum and Clostridium kluyveri. Together, these bacteria are capable of converting CO and syngas to a mixture of C4 and C6 fatty acids and their respective alcohols. The co-culture is able to grow using solely CO or syngas as a substrate, and presence of acetate significantly stimulated production rates. The co-culture produced butyrate and caproate at a rate of 8.5 ± 1.1 and 2.5 ± 0.63 mmol/l/day, respectively. Butanol and hexanol were produced at a rate of 3.5 ± 0.69 and 2.0 ± 0.46 mmol/l/day, respectively. The pH was found to be a major factor during cultivation, influencing the growth performance of the separate strains and caproate toxicity. This co-culture poses an alternative way to produce medium-chain fatty acids and higher alcohols from carbon monoxide or syngas and the process can be regarded as an integration of syngas fermentation and chain elongation in one growth vessel.

  12. Catalysts for converting syngas into liquid hydrocarbons and methods thereof

    Science.gov (United States)

    Yu, Fei; Yan, Qiangu; Batchelor, William

    2016-03-15

    The presently-disclosed subject matter includes methods for producing liquid hydrocarbons from syngas. In some embodiments the syngas is obtained from biomass and/or comprises a relatively high amount of nitrogen and/or carbon dioxide. In some embodiments the present methods can convert syngas into liquid hydrocarbons through a one-stage process. Also provided are catalysts for producing liquid hydrocarbons from syngas, wherein the catalysts include a base material, a transition metal, and a promoter. In some embodiments the base material includes a zeolite-iron material or a cobalt-molybdenum carbide material. In still further embodiments the promoter can include an alkali metal.

  13. High temperature electrolysis for syngas production

    Science.gov (United States)

    Stoots, Carl M [Idaho Falls, ID; O'Brien, James E [Idaho Falls, ID; Herring, James Stephen [Idaho Falls, ID; Lessing, Paul A [Idaho Falls, ID; Hawkes, Grant L [Sugar City, ID; Hartvigsen, Joseph J [Kaysville, UT

    2011-05-31

    Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

  14. From feathers to syngas - technologies and devices.

    Science.gov (United States)

    Dudyński, Marek; Kwiatkowski, Kamil; Bajer, Konrad

    2012-04-01

    The poultry waste produced by industrial slaughterhouses typically contains not only feathers, but also a mixture of animal entrails, nails, blood, beaks and whole carcasses. Economical utilisation of this mixture, varying strongly in composition and moisture content, is, in general, difficult. We demonstrate that this awkward material can be successfully used for gasification in a simple, fixed-bed gasifier. The method of gasification, which we developed, enables control of the gasification process and ensures its stability in the operational regime of a working poultry processing plant. The installation, which has been working in Poland for 2 years, utilises 2 tons of feathers per hour and produces syngas of stable composition and fairly high quality. The syngas is burnt in the combustion chamber adjacent to the gasifier. Heat is recuperated in a boiler producing 3.5 tons per hour of technological steam continuously used for the operation of the slaughterhouse. The whole process complies with the stringent emission standards. In the paper we present the end-use device for feather utilisation and describe the underlying gasification and syngas combustion processes. Key elements of the whole installation are briefly discussed. The environmental impacts of the installation are summarized. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Satya P. [Battelle, Columbus, OH (United States); Garbark, Daniel B. [Battelle, Columbus, OH (United States); Taha, Rachid [Battelle, Columbus, OH (United States); Peterson, Rick [Battelle, Columbus, OH (United States)

    2017-09-30

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including: (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet

  16. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Yuriy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through

  17. Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans.

    Science.gov (United States)

    Zheng, Zhaojuan; Cai, Cong; Jiang, Ting; Zhao, Mingyue; Ouyang, Jia

    2014-08-01

    Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient L-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for L-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l(-1)  L-lactic acid was obtained from 100 g l(-1) xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l(-1)  L-lactic acid was obtained in 36 h and the yield was 83.09 %.

  18. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    Science.gov (United States)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  19. Acid-Base Bifunctional Zirconium N-Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides

    DEFF Research Database (Denmark)

    Li, Hu; He, Jian; Riisager, Anders

    2016-01-01

    sites, and their catalytic activity in converting biomass-derived carbonyl compounds to corresponding alcohols in 2-propanol. Particularly, a quantitative yield of furfuryl alcohol (FFA) was obtained from furfural (FUR) over organotriphosphate-zirconium hybrid (ZrPN) under mild conditions. The presence...... of Lewis basic sites adjacent to acid sites with an appropriate base/acid site ratio (1:0.7) in ZrPN significantly improved the yield of FFA. Mechanistic studies for the transformation of FUR to FFA with ZrPN in 2-propanol-d(8) evidently indicate CTH reaction proceeding via a direct intermolecular hydrogen...

  20. SOLID BIOMASS GASIFICATION AND THE COST OF THE SYNGAS

    Directory of Open Access Journals (Sweden)

    Gherman C.

    2012-12-01

    Full Text Available There has been determined the cost of syngas produced from straw and wood chips, for gasifiers of different capacities, under the conditions of the Republic of Moldova in this paper. The annual cost growth rates have been calculated. The levelized cost of syngas has been compared with the levelized cost of natural gas.

  1. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different ...

  2. Electrochemical oxidation of syngas on nickel and ceria anodes

    NARCIS (Netherlands)

    Tabish, A.N.; Patel, H.C.; Purushothaman Vellayani, A.

    2017-01-01

    Fuel flexibility of solid oxide fuel cells enables the use of low cost and practical fuels like syngas. Understanding of the oxidation kinetics with syngas is essential for proper selection of anode material and its design optimization. Using nickel and ceria pattern anodes, we study the

  3. Effect of Syngas Moisture Content on the Emissions of Micro-Gas Turbine Fueled with Syngas/LPG in Dual Fuel Mode

    Directory of Open Access Journals (Sweden)

    Sadig Hussain

    2014-07-01

    Full Text Available Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In this work, a micro-gas turbine with a thermal capacity of 50 kW was simulated using ASPEN Plus. The micro gas turbine system emissions were characterized using dry syngas fuels with a different composition, syngas 1 (10.53% H2, 24.94% CO, 2.03% CH4, 12.80% CO2, and 49.70% N2 and syngas 2 (21.62% H2, 32.48% CO, 3.72% CH4, 19.69% CO2, and 22.49% N2 mixed with LPG in a dual fueling mode. The effect of syngas moisture content was then studied by testing the system with moist syngas/LPG with a moisture content ranging from 0 to 20% by volume. The study demonstrates that the syngas moisture content has high influence on nitrogen oxides and carbon monoxide emissions. It’s found that for 5% syngas moisture content, the NOx emission were reduced by 75.5% and 83% for Syngas 1 and Syngas 2 respectively. On carbon monoxide emissions and for same moisture content ratio, the reduction was found to be 43% and 57% for syngas1 and syngas 2 respectively.

  4. Detoxification of biomass derived acetate via metabolic conversion to ethanol, acetone, isopropanol, or ethyl acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sillers, William Ryan; Van Dijken, Hans; Licht, Steve; Shaw, IV, Arthur J.; Gilbert, Alan Benjamin; Argyros, Aaron; Froehlich, Allan C.; McBride, John E.; Xu, Haowen; Hogsett, David A.; Rajgarhia, Vineet B.

    2017-03-28

    One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce lactate or acetate as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of lactate or acetate. Another aspect of the invention relates to a process for converting lignocellulosic biomass to lactate or acetate, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.

  5. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production.

    Science.gov (United States)

    Bhatia, Shashi Kant; Lee, Bo-Rahm; Sathiyanarayanan, Ganesan; Song, Hun Seok; Kim, Junyoung; Jeon, Jong-Min; Yoon, Jeong-Jun; Ahn, Jungoh; Park, Kyungmoon; Yang, Yung-Hun

    2016-12-01

    Various chemicals, i.e., furfural, vanillin, 4-hydroxybenzaldehyde and acetate produced during the pretreatment of biomass affect microbial fermentation. In this study, effect of vanillin, 4-hydroxybenzaldehyde and acetate on antibiotic production in Streptomyces coelicolor is investigated. IC 50 value of vanillin, 4-hydroxybenzaldehyde and acetate was recorded as 5, 11.3 and 115 mM, respectively. Vanillin was found as a very effective molecule, and it completely abolished antibiotic (undecylprodigiosin and actinorhodin) production at 1 mM concentration, while 4-hydroxybenzaldehyde and acetate have little effect. Microscopic analysis with field emission scanning electron microscopy (FESEM) showed that addition of vanillin inhibits mycelia formation and increases differentiation of S. coelicolor cells. Vanillin increases expression of genes responsible for sporulation (ssgA) and decreases expression of antibiotic transcriptional regulator (redD and actII-orf4), while it has no effect on genes related to the mycelia formation (bldA and bldN) and quorum sensing (scbA and scbR). Vanillin does not affect the glycolysis process, but may affect acetate and pyruvate accumulation which leads to increase in fatty acid accumulation. The production of antibiotics using biomass hydrolysates can be quite complex due to the presence of exogenous chemicals such as furfural and vanillin, and needs further detailed study.

  7. Multi-stage circulating fluidized bed syngas cooling

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  8. Syngas conversion to a light alkene and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2017-11-14

    Methods of producing a light alkene. The method comprises contacting syngas and tungstated zirconia to produce a product stream comprising at least one light alkene. The product stream is recovered. Methods of converting syngas to a light alkene are also disclosed. The method comprises heating a precursor of tungstated zirconia to a temperature of between about 350.degree. C. and about 550.degree. C. to form tungstated zirconia. Syngas is flowed over the tungstated zirconia to produce a product stream comprising at least one light alkene and the product stream comprising the at least one light alkene is recovered.

  9. Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor.

    Science.gov (United States)

    Arantes, Ana L; Alves, Joana I; Stams, Alfons J M; Alves, M Madalena; Sousa, Diana Z

    2017-11-21

    The substitution of natural gas by renewable biomethane is an interesting option to reduce global carbon footprint. Syngas fermentation has potential in this context, as a diverse range of low-biodegradable materials that can be used. In this study, anaerobic sludge acclimatized to syngas in a multi-orifice baffled bioreactor (MOBB) was used to start enrichments with CO. The main goals were to identify the key players in CO conversion and evaluate potential interspecies metabolic interactions conferring robustness to the process. Anaerobic sludge incubated with 0.7 × 10 5  Pa CO produced methane and acetate. When the antibiotics vancomycin and/or erythromycin were added, no methane was produced, indicating that direct methanogenesis from CO did not occur. Acetobacterium and Sporomusa were the predominant bacterial species in CO-converting enrichments, together with methanogens from the genera Methanobacterium and Methanospirillum. Subsequently, a highly enriched culture mainly composed of a Sporomusa sp. was obtained that could convert up to 1.7 × 10 5  Pa CO to hydrogen and acetate. These results attest the role of Sporomusa species in the enrichment as primary CO utilizers and show their importance for methane production as conveyers of hydrogen to methanogens present in the culture. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Assesment of the energy quality of the synthesis gas produced from biomass derived fuels conversion: Part I: Liquid Fuels, Ethanol

    International Nuclear Information System (INIS)

    Arteaga Perez, Luis E; Casas, Yannay; Peralta, Luis M; Granda, Daikenel; Prieto, Julio O

    2011-01-01

    The use of biofuels plays an important role to increase the efficiency and energetic safety of the energy processes in the world. The main goal of the present research is to study from the thermodynamics and kinetics the effect of the operational variables on the thermo-conversion processes of biomass derived fuels focused on ethanol reforming. Several models are developed to assess the technological proposals. The minimization of Gibbs free energy is the criterion applied to evaluate the performance of the different alternatives considering the equilibrium constraints. All the models where validated on an experimental data base. The gas composition, HHV and the ratio H2/CO are used as measures for the process efficiency. The operational parameters are studied in a wide range (reactants molar ratio, temperature and oxygen/fuel ratio). (author)

  11. Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Yu, Qiuhong; Lu, Yang; Peng, Tao; Hou, Xiaoyi; Luo, Rongjie; Wang, Yange; Yan, Hailong; Luo, Yongsong; Liu, Xianming; Kim, Jang-Kyo

    2017-01-01

    A promising hybrid material composed of tubular polypyrrole (T-PPy)-wrapped monodisperse biomass-derived carbon nanospheres (BCSs) was first synthesized successfully via a simple hydrothermal approach by using watermelon juice as the carbon source, and further used as an anchoring object for sulfur (S) of lithium–sulfur (Li–S) batteries. The use of BCSs with hydrophilic nature as a framework could provide large interface areas between the active materials and electrolyte, and improve the dispersion of T-PPy, which could help in the active material utilization. As a result, BCS@T-PPy/S as a cathode material exhibited a high capacity of 1143.6 mA h g −1 and delivered a stable capacity up to 685.8 mA h g −1 after 500 cycles at 0.5 C, demonstrating its promising application for rechargeable Li–S batteries. (paper)

  12. High efficient ethanol and VFA production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas fermenta......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fermentation. Therefore, the effect of different gases (pure CO, H2, and a synthetic syngas mixture), media (acetate medium and acetate-free medium), and biocatalyst (pure and mixed culture) were studied. Acetate was the most dominant product independent on inoculum type. The maximum concentration of volatile...

  13. A study of industrial hydrogen and syngas supply systems

    Science.gov (United States)

    Amos, W. J.; Solomon, J.; Eliezer, K. F.

    1979-01-01

    The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.

  14. Methods and systems for producing syngas

    Science.gov (United States)

    Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

    2013-02-05

    Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

  15. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528.

    Science.gov (United States)

    Tan, Yang; Liu, Juanjuan; Liu, Zhen; Li, Fuli

    2014-09-01

    Syngas utilizing bacterium Clostridium ljungdahlii DSM 13528 is a promising platform organism for a whole variety of different biofuels and biochemicals production from syngas. During syngas fermentation, C. ljungdahlii DSM 13528 could convert butanol into butyrate, which significantly reduces productivity of butanol. However, there has been no any enzyme involved in the degradation of butanol characterized in C. ljungdahlii DSM 13528. In this study two genes, CLJU_c24880 and CLJU_c39950, encoding putative butanol dehydrogenase (designated as BDH1 and BDH2) were identified in the genome of C. ljungdahlii DSM 13528 and qRT-PCR analysis showed the expression of bdh1 and bdh2 was significantly upregulated in the presence of 0.25% butanol. And the deduced amino acid sequence for BDH1 and BDH2 showed 69.85 and 68.04% identity with Clostridium acetobutylicum ADH1, respectively. Both BDH1 and BDH2 were oxygen-sensitive and preferred NADP(+) as cofactor and butanol as optimal substrate. The optimal temperature and pH for BDH1 were at 55 °C and pH 7.5 and specific activity was 18.07 ± 0.01 µmol min(-1)  mg(-1) . BDH2 was a thermoactive dehydrogenase with maximum activity at 65 °C and at pH 7.0. The specific activity for BDH2 was 11.21 ± 0.02 µmol min(-1)  mg(-1) . This study provided important information for understanding the molecular mechanism of butanol degradation and determining the targets for gene knockout to improve the productivity of butanol from syngas in C. ljungdahlii DSM 13528 in future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Combustion of Syngas Fuel in Gas Turbine Can Combustor

    OpenAIRE

    Chaouki Ghenai

    2010-01-01

    Numerical investigation of the combustion of syngas fuel mixture in gas turbine can combustor is presented in this paper. The objective is to understand the impact of the variability in the alternative fuel composition and heating value on combustion performance and emissions. The gas turbine can combustor is designed to burn the fuel efficiently, reduce the emissions, and lower the wall temperature. Syngas mixtures with different fuel compositions are produced through different coal and biom...

  17. Combustion of Syngas Fuel in Gas Turbine Can Combustor

    Directory of Open Access Journals (Sweden)

    Chaouki Ghenai

    2010-01-01

    Full Text Available Numerical investigation of the combustion of syngas fuel mixture in gas turbine can combustor is presented in this paper. The objective is to understand the impact of the variability in the alternative fuel composition and heating value on combustion performance and emissions. The gas turbine can combustor is designed to burn the fuel efficiently, reduce the emissions, and lower the wall temperature. Syngas mixtures with different fuel compositions are produced through different coal and biomass gasification process technologies. The composition of the fuel burned in can combustor was changed from natural gas (methane to syngas fuel with hydrogen to carbon monoxide (H2/CO volume ratio ranging from 0.63 to 2.36. The mathematical models used for syngas fuel combustion consist of the k-ε model for turbulent flow, mixture fractions/PDF model for nonpremixed gas combustion, and P-1 radiation model. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2 and nitrogen oxides (NOx per unit of energy generation is presented in this paper. The results obtained in this study show the change in gas turbine can combustor performance with the same power generation when natural gas or methane fuel is replaced by syngas fuels.

  18. High efficient ethanol and VFA production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    fermentation. Therefore, the effect of different gases (pure CO, H2, and a synthetic syngas mixture), media (acetate medium and acetate-free medium), and biocatalyst (pure and mixed culture) were studied. Acetate was the most dominant product independent on inoculum type. The maximum concentration of volatile......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...

  19. Gas fermentation: cellular engineering possibilities and scale up.

    Science.gov (United States)

    Heijstra, Björn D; Leang, Ching; Juminaga, Alex

    2017-04-12

    Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and municipal waste streams. Gasification of these materials allows all of the carbon to become available for product generation, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO 2 ), hydrogen (H 2 ) and nitrogen (N 2 ). Autotrophy-the ability to fix carbon such as CO 2 is present in all domains of life but photosynthesis alone is not keeping up with anthropogenic CO 2 output. One strategy is to curtail the gaseous atmospheric release by developing waste and syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus on acetogens are the focus of this review.

  20. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this

  1. Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Systems; Biddy, Mary [National; Jones, Susanne [Energy; Cai, Hao [Systems; Benavides, Pahola Thathiana [Systems; Markham, Jennifer [National; Tao, Ling [National; Tan, Eric [National; Kinchin, Christopher [National; Davis, Ryan [National; Dutta, Abhijit [National; Bearden, Mark [Energy; Clayton, Christopher [Energy; Phillips, Steven [Energy; Rappé, Kenneth [Energy; Lamers, Patrick [Bioenergy

    2017-10-30

    24 biomass-derived compounds and mixtures, identified based on their physical properties, that could be blended into fuels to improve spark ignition engine fuel economy were assessed for their economic, technology readiness, and environmental viability. These bio-blendstocks were modeled to be produced biochemically, thermochemically, or through hybrid processes. To carry out the assessment, 17 metrics were developed for which each bio-blendstock was determined to be favorable, neutral, or unfavorable. Cellulosic ethanol was included as a reference case. Overall, bio-blendstock yields in biochemical processes were lower than in thermochemical processes, in which all biomass, including lignin, is converted to a product. Bio-blendstock yields were a key determinant in overall viability. Key knowledge gaps included the degree of purity needed for use as a bio-blendstock as compared to a chemical. Less stringent purification requirements for fuels could cut processing costs and environmental impacts. Additionally, more information is needed on the blendability of many of these bio-blendstocks with gasoline to support the technology readiness evaluation. Overall, the technology to produce many of these blendstocks from biomass is emerging and as it matures, these assessments must be revisited. Importantly, considering economic, environmental, and technology readiness factors in addition to physical properties of blendstocks that could be used to boost fuel economy can help spotlight those most likely to be viable in the near term.

  2. Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction

    Science.gov (United States)

    Zhang, Man; Jin, Xin; Wang, Linan; Sun, Mengjia; Tang, Yang; Chen, Yongmei; Sun, Yanzhi; Yang, Xiaojin; Wan, Pingyu

    2017-07-01

    Biomass-derived carbon by activation with nitrogen and cobalt (denoted as NPACCo) was prepared by one-pot pyrolysis of pomelo peel with melamine, cobalt nitrate and potassium hydroxide, followed by acid leaching. NPACCo possesses high content of quaternary-N (2.5%) and pyridinic-N (1.7%), co-existences of amorphous and short-range ordered carbon, high specific surface area and pore structure with majority of micropores and small mesopores. As electrode material of supercapacitors, NPACCo exhibits high specific capacitance and good rate capability. At ultrahigh rate of 50 A g-1 (135 mA cm-2), the capacitance of NPACCo remains 246 F g-1, which is 6.3, 1.9 and 3.2 times as high as that of other three materials (PC, PAC and NPAC). The as-assembled symmetric supercapacitor of NPACCo delivers high energy density, high power density and excellent cycling stability. With respect to oxygen reduction reaction (ORR), NPACCo exhibits high onset potential (0.87 V), high half-wave potential (0.78 V), excellent methanol tolerance and low yield of H2O2. The ORR properties of NPACCo are comparable or superior to those of commercial Pt/C. This investigation of pomelo peel-based NPACCo would be valuable for development of both supercapacitor and ORR.

  3. Regenerable Subnanometer Pd Clusters on Zirconia for Highly Selective Hydrogenation of Biomass-Derived Succinic Acid in Water

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2016-07-01

    Full Text Available The size of metal particles is an important factor to determine the performance of the supported metal catalysts. In this work, we report subnanometer Pd clusters supported on zirconia by the microwave-assisted hydrothermal method. The presence of subnanometer Pd clusters on the zirconia surface was confirmed by two-dimensional Gaussian-function fits of the aberration-corrected high-angle annual dark-field images. These subnanometer Pd catalysts exhibit high catalytic performance for the hydrogenation of biomass-derived succinic acid to γ-butyrolactone in water and avoid the formation of overhydrogenated products, such as 1,4-butanediol and tetrahydrofuran. The catalyst with an ultra-low Pd loading of 0.2 wt. % demonstrated high selectivity (95% for γ-butyrolactone using water as a solvent at 473 K and 10 MPa. Moreover, it can be reused at least six times without the loss of catalytic activity, illustrating high performance of the small Pd clusters.

  4. Liquefaction of syngas by fischer-tropsch process (abstract)

    International Nuclear Information System (INIS)

    Khalid, N.; Saeed, M.M.; Riaz, M.; Khan, A.S.A.

    2011-01-01

    The Fischer-Tropsch process is a set of chemical reactions that convert syngas into liquid hydrocarbons and is gaining attention under the background of the resource depletion leading to the price hike of the petroleum oil. The diesel fuel obtained from syngas by Fischer-Tropsch process seems to be of high quality and environmental friendly. The present study deals with the optimization of the experimental conditions for the production/synthesis of mineral diesel from syngas by Fischer-Tropsch process. The catalyst was prepared by coating cobalt nitrate on alumina followed by calcinations and characterization by analytical techniques such as BET, SEM/EDXA and X-Ray diffraction. For the conversion of syngas to liquid fuel, the fixed bed column technique was employed. Different operational parameters such as temperature of the column, flow rate and pressure of the syngas were studied. The product formed was verified by comparing the GC/FID spectrum of the synthesized mineral diesel with commercial sample by employing GC analysis. The qualitative results indicate the success of the Fischer-Tropsch process in the present study. (author)

  5. Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst

    Science.gov (United States)

    Qiangu Yan; Fei Yu; Jian Liu; Jason Street; Jinsen Gao; Zhiyong Cai; Jilei Zhang

    2013-01-01

    A continuous process involving gasification, syngas cleaning, and Fischer–Tropsch (FT) synthesis was developed to efficiently produce synthetic aviation turbine fuels (SATFs). Oak-tree wood chips were first gasified to syngas over a commercial pilot plant downdraft gasifier. The raw wood syngas contains about 47% N2, 21% CO, 18% H2...

  6. Real-Time Monitoring of Trace Gas Concentrations in Syngas

    Directory of Open Access Journals (Sweden)

    Herbig J.

    2013-08-01

    Full Text Available A Proton Transfer Reaction Mass Spectrometer (PTR-MS was used for the analysis of syngas in an industrial Fischer-Tropsch process. A PTR-MS can detect a variety of volatile organic and inorganic compounds in real-time and with high sensitivity. Together with a multiplexer, this allows for online (real-time monitoring of the trace contaminations at different stages of a Fischer-Tropsch process. Several volatile compounds, such as HCN, H2S, RSH, carbonyls, acids, alcohols and others have been measured in Syngas. This paper describes the setup to monitor syngas using PTR-MS and summarizes the result of this proof-of-principle project.

  7. Microwave pyrolysis of microalgae for high syngas production.

    Science.gov (United States)

    Beneroso, D; Bermúdez, J M; Arenillas, A; Menéndez, J A

    2013-09-01

    The microwave induced pyrolysis of the microalgae Scenedesmus almeriensis and its extraction residue was carried out at 400 and 800°C. The results show that it is possible to obtain a gas fraction with a high content (c.a. 50vol.%) in H2 from both materials, regardless of the pyrolysis temperature. Furthermore, an outstanding syngas production and high gas yields were achieved. The maximum syngas concentration obtained was c.a. 94 vol.%, in the case of the pyrolysis of the residue at 800°C, indicating that the production of CO2 and light hydrocarbons was minimized. The same experiments were carried out in a conventional electric furnace in order to compare the products and yields obtained. It was found that microwave induced pyrolysis gives rise not only to higher gas yields but also to greater syngas and H2 production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  9. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J. [VTT Energy, Espoo (Finland). Energy Production Technologies] [and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  10. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    OpenAIRE

    Fei Sun; Jihui Gao; Yuwen Zhu; Xinxin Pi; Lijie Wang; Xin Liu; Yukun Qin

    2017-01-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cat...

  11. Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst.

    Science.gov (United States)

    Yan, Qiangu; Yu, Fei; Liu, Jian; Street, Jason; Gao, Jinsen; Cai, Zhiyong; Zhang, Jilei

    2013-01-01

    A continuous process involving gasification, syngas cleaning, and Fischer-Tropsch (FT) synthesis was developed to efficiently produce synthetic aviation turbine fuels (SATFs). Oak-tree wood chips were first gasified to syngas over a commercial pilot plant downdraft gasifier. The raw wood syngas contains about 47% N(2), 21% CO, 18% H(2), 12% CO(2,) 2% CH(4) and trace amounts of impurities. A purification reaction system was designed to remove the impurities in the syngas such as moisture, oxygen, sulfur, ammonia, and tar. The purified syngas meets the requirements for catalytic conversion to liquid fuels. A multi-functional catalyst was developed and tested for the catalytic conversion of wood syngas to SATFs. It was demonstrated that liquid fuels similar to commercial aviation turbine fuels (Jet A) was successfully synthesized from bio-syngas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effect of Syngas Moisture Content on the Emissions of Micro-Gas Turbine Fueled with Syngas/LPG in Dual Fuel Mode

    OpenAIRE

    Sadig Hussain; Sulaiman Shaharin A.; Said Mior A.

    2014-01-01

    Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In this work, a micro-gas turbine with a thermal capacity of 50 kW was simulated using ASPEN Plus. The micro gas turbine system emissions were characterized using dry syngas fuels with a different co...

  13. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles.

    Science.gov (United States)

    Yamaguchi, Sho; Baba, Toshihide

    2016-07-20

    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels.

  14. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    Science.gov (United States)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  15. Generalized model for predicting methane conversion to syngas in ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Abstract. Present work aims to provide a conceptual framework for predicting methane conversion efficiency and CO selectivity in a membrane reactor which may assist in selecting the type of membrane and minimizing the cost of syngas production.

  16. Syngas production by reforming of methane on perovskite catalysts ...

    Indian Academy of Sciences (India)

    T V Sagar

    production of chemicals like urea and salicylic acid is very limited, its transformation into fuels has attracted the attention of researchers recently.5,6 Reforming of methane with carbon dioxide to produce syngas is a. *For correspondence very attractive route to produce fuels and chemicals.7. This reaction has its importance ...

  17. Efficient utilization of bimetallic catalyst in low environment syngas ...

    Indian Academy of Sciences (India)

    Sonal

    2017-10-26

    Oct 26, 2017 ... environment syngas for liquid fuel production. SONAL, KAMAL K PANT. ∗ and SREEDEVI UPADHYAYULA. Department of Chemical Engineering, Indian Institute of Technology, Delhi 110 016, India. E-mail: kkpant@chemical.iitd.ac.in. MS received 27 May 2017; revised 21 August 2017; accepted 31 ...

  18. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  19. Pyrolysis of wood in arc plasma for syngas production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Konrád, Miloš; Kopecký, Vladimír; Hlína, Michal

    2006-01-01

    Roč. 10, č. 4 (2006), s. 557-570 ISSN 1093-3611 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma pyrolysis * gasfication * syngas * thermal plasma * biomass Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.343, year: 2006

  20. Semi-empirical model for estimating molar fraction of syngas ...

    African Journals Online (AJOL)

    The gasification energy efficiency also improved with temperature and residence time, as the quantity of tar was reduced during cracking. The model was validated by comparing the experimental and numerical data. Keywords: Syngas, Gasification, Pyrolysis, Residence time, Thermal cracking of tar, Semi-empirical model ...

  1. Zero Emissions Coal Syngas Oxygen Turbo Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Horazak

    2010-12-31

    Siemens Energy, Inc. (formerly Siemens Westinghouse Power Corporation) worked with Clean Energy Systems and Florida Turbine Technologies to demonstrate the commercial feasibility of advanced turbines for oxy-fuel based power systems that discharge negligible CO{sub 2} into the atmosphere. The approach builds upon ultra supercritical steam turbine and advanced gas turbine technology with the goal of attaining plant efficiencies above 50% in the 2015 timeframe. Conceptual designs were developed for baseline, near term, and long term oxy-fuel turbine cycles, representing commercial introductions of increasingly advanced thermal conditions and increasing exposure to steam-CO{sub 2} mixtures. An economic analysis and market demand study was performed by Science Applications International Corp. (SAIC), and indicated that long-term oxy-fuel turbine cycles start to look attractive in 2025 when the CO{sub 2} tax is assumed to reach $40/ ton, and by 2030 it has a clear advantage over both IGCC with sequestration and pulverized coal with sequestration. A separate risk analysis of the oxy-fuel combustor, HP turbine, re-heater, and IP turbine of the long-term cycle identified and categorized risks and proposed mitigation measures. In 2007 the program began to focus on a potential oxy-fuel turbine power generation demonstration project in the 2012 -13 time period while still maintaining a link to the requirements of the long-term oxy-syngas cycle. The SGT-900 turbine was identified as the best fit for modification into an intermediate pressure turbine (IPT) for this application. The base metals, bond coats, thermal barrier coatings (TBCs), and rotor materials used in the SGT-900 were tested for their ability to operate in the steam- CO{sub 2} environment of the oxy-fuel OFT-900. Test results indicated that these same materials would operate satisfactorily, and the plan, is to use SGT-900materials for the OFT-900. Follow-on programs for corrosion testing and evaluation of crack

  2. Chemical Kinetics in Support of Syngas Turbine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, Frederick

    2007-07-31

    This document is the final report on an overall program formulated to extend our prior work in developing and validating kinetic models for the CO/hydrogen/oxygen reaction by carefully analyzing the individual and interactive behavior of specific elementary and subsets of elementary reactions at conditions of interest to syngas combustion in gas turbines. A summary of the tasks performed under this work are: 1. Determine experimentally the third body efficiencies in H+O{sub 2}+M = HO{sub 2}+M (R1) for CO{sub 2} and H{sub 2}O. 2. Using published literature data and the results in this program, further develop the present H{sub 2}/O{sub 2}/diluent and CO/H{sub 2}/O{sub 2}/diluent mechanisms for dilution with CO{sub 2}, H{sub 2}O and N{sub 2} through comparisons with new experimental validation targets for H{sub 2}-CO-O{sub 2}-N{sub 2} reaction kinetics in the presence of significant diluent fractions of CO{sub 2} and/or H{sub 2}O, at high pressures. (task amplified to especially address ignition delay issues, see below). 3. Analyze and demonstrate issues related to NOx interactions with syngas combustion chemistry (task amplified to include interactions of iron pentacarbonyl with syngas combustion chemistry, see below). 4. Publish results, including updated syngas kinetic model. Results are summarized in this document and its appendices. Three archival papers which contain a majority of the research results have appeared. Those results not published elsewhere are highlighted here, and will appear as part of future publications. Portions of the work appearing in the above publications were also supported in part by the Department of Energy under Grant No. DE-FG02-86ER-13503. As a result of and during the research under the present contract, we became aware of other reported results that revealed substantial differences between experimental characterizations of ignition delays for syngas mixtures and ignition delay predictions based upon homogenous kinetic modeling. We

  3. Hydrogen and syngas production by superadiabatic combustion – A review

    International Nuclear Information System (INIS)

    Abdul Mujeebu, Muhammad

    2016-01-01

    Highlights: • A review on application of superadiabatic combustion for H 2 and syngas production. • Conversions of hydrocarbon fuels including biomass and hydrogen sulfide are focused. • It covers non-catalytic TPOX, HFC, hybrid PM-catalyst reactor and SAC without PM. • Separate sections deal the numerical modeling trends and the R&D challenges ahead. • There is wide scope for further research on SAC reactors with and without PM. - Abstract: The application of superadiabatic combustion (SAC) technology for hydrogen and syngas production has been a focus of intensive research in the recent past. A lot of researches have been reported on the conversion of various gaseous and liquid hydrocarbon fuels, hydrogen sulfide and biomass into hydrogen or syngas, by using SAC. The porous medium combustion has been recognized as the most feasible technique to realize SAC, and few recent studies reported to have achieved SAC even without a porous medium (PM). This article compiles the works done so far in this area and suggests future directions. Following the general background, the history of hydrogen/syngas production by SAC is provided. Further developments are organized in the subsequent sections, which include all the published works on SAC-based hydrogen production from hydrocarbon fuels, hydrogen sulfide and biomass. The works on hybrid PM-catalyst filtration combustion and numerical modeling of SAC-based hydrogen/syngas production are discussed in separate sections. Subsequently, the development of SAC reactor without PM is presented, followed by summary and conclusion. This review reveals that there is a wide scope for future research particularly on hybrid-filtration combustion, biomass gasification, hybrid PM-Catalyst reactors, SAC reactors without PM, and on development of efficient reformers for practical stationary and portable applications. Scope is also open for detailed characterizations, both experimental and numerical, with various PM materials and

  4. Vegetable Fermentation

    OpenAIRE

    Eifert, Joell

    2014-01-01

    People have been fermenting vegetables for centuries to increase the stability of fresh foods, to make the foods safer to eat in the absence of refrigeration and to enhance their flavor. Today, vegetable fermentation is done on a large-scale setting in factories as well as in households across the world. In the United States, the primary vegetables fermented are cucumbers (pickles), cabbage (sauerkraut and Kimchi) and olives. In many parts of the world, especially in developing countries wher...

  5. Electricity generation from carbon monoxide and syngas in a microbial fuel cell.

    Science.gov (United States)

    Hussain, Abid; Guiot, Serge R; Mehta, Punita; Raghavan, Vijaya; Tartakovsky, Boris

    2011-05-01

    Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.

  6. Near-field local flame extinction of oxy-syngas non-premixed jet flames: a DNS study

    OpenAIRE

    Ranga Dinesh, K.K.J.; Van Oijen, J.A; Luo, K.H.; Jiang, X.

    2014-01-01

    An investigation of the local flame extinction of H2/CO oxy-syngas and syngas-air nonpremixed jet flames was carried out using three-dimensional direct numerical simulations (DNS) with detailed chemistry by using flamelet generated manifold chemistry (FGM). The work has two main objectives: identify the influence of the Reynolds number on the oxy-syngas flame structure, and to clarify the local flame extinction of oxy-syngas and syngas-air flames at a higher Reynolds number.Two oxy-syngas fla...

  7. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst

    International Nuclear Information System (INIS)

    Yan, Kai; Chen, Aicheng

    2013-01-01

    Biomass-derived platform intermediate furfural and levulinic acid were efficiently hydrogenated to the value-added furfuryl alcohol and promising biofuel γ-valerolactone, respectively, using a noble-metal-free Cu–Cr catalyst, which was facilely and successfully synthesized by a modified co-precipitation method using the cheap metal nitrates. In the first hydrogenation of furfural, 95% yield of furfuryl alcohol was highly selectively produced at 99% conversion of furfural under the mild conditions. For the hydrogenation of levulinic acid, 90% yield of γ-valerolactone was highly selectively produced at 97.8% conversion. Besides, the physical properties of the resulting Cu–Cr catalysts were studied by XRD (X-ray diffraction), EDX (Energy-dispersive X-ray), TEM (Transmission electron microscopy) and XPS (X-ray photoelectron spectroscopy) to reveal their influence on the catalytic performance. Subsequently, different reaction parameters were studied and it was found that Cu 2+ /Cr 3+ ratios (0.5, 1 and 2), reaction temperature (120–220 °C) and hydrogen pressure (35–70 bar) presented important influence on the catalytic activities. In the end, the stability of the Cu–Cr catalysts was also studied. - Highlights: • A noble-metal-free Cu–Cr catalyst was successfully synthesized using metal nitrates. • Cu–Cr catalysts were highly selective hydrogenation of biomass-derived furfural to FA. • Cu–Cr catalysts were efficient for hydrogenation of biomass-derived LA to biofuel GVL. • The physical properties of the resulting Cu–Cr catalysts were systematically studied. • Reaction parameters and stability in the hydrogenation of furfural were studied in details

  8. Design of a tailor‐made platform for syngas bioconversion into polyhydroxybutyrate

    OpenAIRE

    Narancic, Tanja; O'Connor, Kevin E.

    2017-01-01

    Summary Biodegradable polymers such as polyhydroxybutyrate (PHB) are part of the emerging portfolio of renewable materials, which are addressing the issue of plastic waste. Syngas, as a cheap, renewable and sustainable resource that can be obtained from biomass or waste, is viewed as an excellent feedstock for different bioprocesses, including syngas to PHB bioconversion. However, due to the hazardous nature of syngas, it is of utmost importance to consider safety aspects of the process. This...

  9. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char

    OpenAIRE

    Al-Rahbi, AS; Williams, PT

    2017-01-01

    Carbonaceous materials have been proven to have a high catalytic activity for tar removal from the syngas produced from biomass gasification. The simultaneous reforming and gasification of pyrolysis gases and char could have a significant role in increasing the gas yield and decreasing the tar in the product syngas. This study investigates the use of tyre char as a catalyst for H2-rich syngas production and tar reduction during the pyrolysis-reforming of biomass using a two stage fixed bed re...

  10. Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide.

    Science.gov (United States)

    Wu, Linglin; Dutta, Saikat; Mascal, Mark

    2015-04-13

    3-Hydroxypropanoic acid (HPA), a precursor to acrylic acid, can be produced in high yield by oxidation of the biomass-derived platform chemical levulinic acid. While treatment of levulinic acid with H2 O2 under acidic conditions gives predominantly succinic acid, a remarkable reversal of selectivity is observed under basic conditions, leading either directly to HPA or, under modified conditions, initially to 3-(hydroperoxy)propanoic acid, which can be quantitatively hydrogenated to HPA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kinetics, Chemistry, and Morphology of Syngas Photoinitiated Chemical Vapor Deposition.

    Science.gov (United States)

    Farhanian, Donya; De Crescenzo, Gregory; Tavares, Jason R

    2017-02-28

    Syngas is the product of gasification processes and is used for the production of petrochemicals. Little attention has been paid to its use in the production of oligomeric thin films under ambient conditions. Herein, the nature of the photoinitiated chemical vapor deposition of films made from syngas using high-wavelength ultraviolet light is discussed, including an exploration of the oligomeric films' structure, synthesis mechanism, and growth kinetics. Specifically, X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analyses provide insight into the chemical structure, illustrating the effect of photogenerated radicals in the formation of aliphatic, anhydride, and cyclic structures. The films are covalently bonded to the substrate and chemically uniform. Electron and atomic force microscopy identify an islandlike morphology for the deposit. These insights into the mechanism and structure are linked to processing parameters through a study on the effect of residence time and treatment duration on the deposition rate, as determined through profilometry.

  12. Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Duchstein, Linus Daniel Leonhard; Wagner, Jakob Birkedal

    2012-01-01

    This work investigates the use of the bulk carbides Mo2C, WC, and NbC as catalysts for the conversion of syngas into higher alcohols. K2CO3/WC produces mainly CH3OH and CH4 with a low activity. NbC has a very low activity in CO hydrogenation. K2CO3/Mo2C produces mixed alcohols with a reasonable...

  13. A Review of Materials for Gas Turbines Firing Syngas Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  14. Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Gupta, A.K.

    2012-01-01

    Highlights: ► Gasification of sugarcane bagasse has been investigated using a semi batch reactor. ► Global reaction mechanism combining pyrolysis and gasification reactions is presented. ► High flow rates of syngas supported fragmentation and secondary reactions. ► CO flow rate increased at higher heating rates at the expense of CO 2 production. ► At high temperatures merger between pyrolysis and char gasification occurs. -- Abstract: Steam gasification of sugarcane bagasse has been investigated. A semi batch reactor with a fixed amount of sugarcane bagasse sample placed in steady flow of high temperature steam at atmospheric pressure has been used. The gasification of bagasse was examined at reactor and steam temperatures of 800, 900 and 1000 °C. The evolution of syngas flow rate and chemical composition has been monitored. The evolution of chemical composition and total flow rate of the syngas has been used to formulate a global reaction mechanism. The mechanism combines pyrolysis reaction mechanisms from the literature and steam gasification/reforming reactions. Steam gasification steps include steam–hydrocarbons reforming, char gasification and water gas shift reactions. Evidence of fragmentation, secondary ring opening reactions and tertiary reactions resulting in formation of gaseous hydrocarbons is supported by higher flow rates of syngas and hydrogen at high heating rates and high reactor temperatures. Increase in carbon monoxide flow rate at the expense of carbon dioxide flow rate with the increase in reactor temperature has been observed. This increase in the ratio of CO/CO 2 flow rate confirms the production of CO and CO 2 from the competing reaction routes. At 1000 °C gasification a total merging between the pyrolysis step and the char gasification step has been observed. This is attributed to acceleration of char gasification reactions and acceleration of steam–hydrocarbons reforming reactions. These hydrocarbons are the precursors to

  15. Syngas Generation from Organic Waste with Plasma Steam Reforming

    Science.gov (United States)

    Diaz, G.; Leal-Quiros, E.; Smith, R. A.; Elliott, J.; Unruh, D.

    2014-05-01

    A plasma steam reforming system to process waste is in the process of being set up at the University of California, Merced. The proposed concept will use two different plasma regimes, i.e. glow discharge and arc torches to process a percentage of the total liquid waste stream generated at the campus together with shredded local organic solid waste. One of the main advantages of the plasma technology to be utilized is that it uses graphite electrodes that can be fed to the reactor to achieve continuous operation, thus, electrode or nozzle life is not a concern. The waste to energy conversion process consists of two stages, one where a mixture of steam and hydrogen is generated from the liquid in a glow-discharge cell, and a second stage where the mixture of exhaust gases coming out of the first device are mixed with solid waste in a reactor operating in steam reforming mode interacting with a plasma torch to generate high-quality syngas. In this paper, the results of a thermodynamic model developed for the two stages are shown. The syngas composition obtained indicates that the fraction of CO2 present decreases with increasing temperature and the molar fractions of hydrogen and carbon monoxide become dominant. The fraction of water vapour present in the product gases coming out of the second stage needs to be condensed before the syngas can be utilized in a prime mover.

  16. Numerical study of a downdraft gasifier to produce syngas

    Science.gov (United States)

    Mandal, Soumya; Sarker, M. R. I.; Rahman, Md. Sazan; Beg, M. R. A.

    2017-06-01

    This study presents a numerical modeling of a downdraft gasifier. Wood (biomass) was considered as a feedstock for gasification as it is a cheap biomass and locally available. The numerical study was carried out to predict the flow behavior, the performance of the downdraft gasifier and the syngas composition precisely. The current downdraft gasifier was modeled using standard k-ɛ turbulence model, DPM for discrete phase, nonpremixed combustion model for combustion and DO radiation model for radiation modeling. The flow behavior and the temperature distribution of the downdraft wood gasifier were addressed which helped to understand the internal combustion phenomenon. Results also showed that the predicted syngas compositions were as follows: Nitrogen-54.12%, Hydrogen-8.10%, Carbon Monoxide-16.04%, Carbon Dioxide-13.01%, Methane-2.35%, Water vapor-05.10% by volume. In addition gasifier, thermal efficiency was found about 72%. This gasification process produces syngas which is directly usable as an alternative fuel to various IC engines.

  17. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

    2002-09-20

    The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

  18. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    gene ladB was identified and the deletion of the gene resulted in growth arrest on galactitol indicating that the enzyme is an essential part of the oxido-reductive galactose pathway in fungi. The last step of this pathway converts D-sorbitol to D-fructose by sorbitol dehydrogenase encoded by sdhA gene. Sorbitol dehydrogenase was found to be a medium chain dehydrogenase and transcription analysis suggested that the enzyme is involved in D-galactose and D-sorbitol catabolism. The thesis also demonstrates how the understanding of cell metabolism can be used to engineer yeast to produce glycolic acid. Glycolic acid is a chemical, which can be used for example in the cosmetic industry and as a precursor for biopolymers. Currently, glycolic acid is produced by chemical synthesis in a process requiring toxic formaldehyde and fossil fuels. Thus, a biochemical production route would be preferable from a sustainability point of view. Yeasts do not produce glycolic acid under normal conditions but it is a desired production host for acid production because of its natural tolerance to low pH conditions. As a proof of concept, pure model substrates, e.g. D-xylose and ethanol, were used as starting materials for glycolic acid production but the knowledge can be further applied to an expanded substrate range such as biomass derived sugars. Already the introduction of a heterologous glyoxylate reductase gene resulted in glycolic acid production in the yeasts S. cerevisiae and Kluyveromyces lactis. Further modifications of the glyoxylate cycle increased the production of glycolic acid and it was successfully produced in bioreactor cultivation. The challenge of biotechnology is to produce high value products from cheap raw materials in an economically feasible way. This thesis gives more basic understanding to the topic in the form of new information regarding L-rhamnose and D-galactose metabolism in eukaryotic microbes as well as provides an example on how cell metabolism can be

  19. Biomass-derived functional porous carbons as novel electrode material for the practical detection of biomolecules in human serum and snail hemolymph

    Science.gov (United States)

    Veeramani, Vediyappan; Madhu, Rajesh; Chen, Shen-Ming; Lou, Bih-Show; Palanisamy, Jayabal; Vasantha, Vairathevar Sivasamy

    2015-05-01

    The biomass-derived activated carbons (ACs) have been prepared with high surface areas up to 793 m2 g-1 is by ZnCl2 activation at three different temperatures, viz. AC700, AC800, and AC900. The AC samples were characterized by a variety of analytical and spectroscopy techniques. The as-synthesized ACs were adopted for the simultaneous electrochemical detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). For comparison, reduced graphene oxide (RGO) was employed for the proposed sensor. The high surface area, modulated pore size and the presence of oxygen surface functional groups like heteroatoms (83.427% C, 1.085% N, 0.383% S, and 0.861% H) in the biomass-derived AC is found to be responsible for the excellent catalytic activities of biomolecules. Fascinatingly, the facile sensor further used to detect biomolecules levels in the snail hemolymph and human blood serum. Notably, the obtained analytical parameters for the biomolecules detection over the AC modified GCE, outperforming several carbon-based modified electrodes in literatures.

  20. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-03

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  1. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg-1 and 84.6 Wh kg-1 at power densities of 731.25 W kg-1 and 24375 W kg-1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  2. Effect of H2 and CO contents in syngas during combustion using Micro Gas Turbine

    Science.gov (United States)

    Othman, N. F.; Boosroh, M. H.

    2016-03-01

    Synthetic gas or syngas is produced from the gasification process. Its main compositions are hydrogen, H2; carbon monoxide, CO; methane, CH4; carbon dioxide, CO2 and nitrogen, N2. Syngas is a substitute for the depleting natural gas (80-90%.vol. CH4). Natural gas is combusted in gas turbine in gas-fired power plant to produce electricity. However, combustion of syngas using gas turbine is expected to show different behavior compared to natural gas combustion. This is because of H2 and CO contents in syngas have higher adiabatic flame temperature than CH4. In this study, different quality of syngas with different contents of H2 (0.6-0.8 %.vol.) and CO (1-3 %.vol.) were combusted using 30kW Micro Gas Turbine (MGT). Performances of different syngas quality were studied using NOx, CO, CO2 emissions and combustion efficiency parameters. NOx and CO are the main pollutants from the combustion process. NOx emissions were the highest for syngas with H2 contents of 0.8 %.vol. and CO contents of 3 %.vol. CO emissions were in the range of 220-310 ppm for all the tested syngas. While, CO2 emissions were in the range of 0.96-1.06 % for all the tested syngas. Combustion efficiencies were reduced for syngas with CO contents of 1 %.vol. and H2 contents of 0.6-0.8 %.vol. This is most probably due to the dilution effect of N2 in syngas.

  3. Catalytic upgrading nitrogen-riched wood syngas to liquid hydrocarbon mixture over Fe-Pd/ZSM-5 catalyst

    Science.gov (United States)

    Qiangu Yan; Fei Yu; Zhiyong Cai; Jilei Zhang

    2012-01-01

    Biomass like wood chips, switchgrass and other plant residues are first converted to syngas through gasification process using air, oxygen or steam. A downdraft gasifier is performed for syngas production in Mississippi State. The syngas from the gasifier contains up to 49% (vol) N2. High-level nitrogen-containing (nitrogen can be up to 60%)...

  4. Evaluating the Effect of Syngas Composition on Micro gas turbine Performance

    Science.gov (United States)

    Fareeza, N.; Tan, E. S.; Kumaran, P.; Indra, T. M.; Fadzilah, N.; Yoshikawa, K.

    2016-03-01

    Syngas in nature can be derived from many sources for instance biomass, natural gas and any hydrocarbon feedstock. Therefore it can replace our reliance on the fossil fuel in future, as they are finite. This research covers the analysis on the combustion efficiency on eight syngas composition that have various hydrogen and carbon moxide (H2/CO) ratio and the comparisons on the nitric oxide (NOx) and carbon monoxide (CO) emissions. Each syngas was tested from 0kW load to 3kW load and all the data was taken upon the micro gas turbine (MGT) reaching stable and steady state conditions. It was found that high amount of hydrogen content in syngas lead to an increase in the combustion efficiency and emits more NOx emissions. CO emissions were released when the combustion efficiency is low and increase with the CO content in the syngas.

  5. Characterization of syngas produced from MSW gasification at commercial-scale ENERGOS Plants.

    Science.gov (United States)

    del Alamo, G; Hart, A; Grimshaw, A; Lundstrøm, P

    2012-10-01

    Characterization of the syngas produced in the gasification process has been performed at commercial-scale Energy-from-Waste plants under various conditions of lambda value and syngas temperature. The lambda value from the gasification process is here defined as the ratio of the gasification air to the total stoichiometric air for complete combustion of the fuel input. Evaluation of the syngas calorific value has been performed by three different methods, i.e., estimation of the syngas calorific value from continuous in-line process measurements by mass and energy conservation equations, measurement of the syngas composition based on gas chromatography and calculation of the Gross Calorific Value from the measured composition, and direct continuous measurement of the calorific value using based on gas calorimeter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Modeling of the reburning process using sewage sludge-derived syngas.

    Science.gov (United States)

    Werle, Sebastian

    2012-04-01

    Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite

    Science.gov (United States)

    Schulte, Mark J.; Wiltgen, Jeff; Ritter, John; Mooney, Charles B.; Flickinger, Michael C.

    2018-01-01

    We propose a novel approach to continuous bioprocessing of gases. A miniaturized coated-paper high gas fraction biocomposite absorber has been developed using slowly shaken horizontal anaerobic tubes with concentrated Clostridium ljungdahlii OTA1 absorbing syngas as a model system. These gas absorbers demonstrate elevated CO mass transfer with low power input, reduced liquid requirements, elevated substrate consumption, and increased product secretion compared to shaken suspended cells. We concentrate OTA1 in a cell paste which was coated by extrusion onto chromatography paper. Cell adhesion was by adsorption to the cellulose fibers; visualized by SEM. The C. ljungdahlii OTA1 coated paper mounted above the liquid level absorbs CO and H2 from a model syngas producing acetate with minimal ethanol. At 100 rpm shaking speed (7.7 W m−3) the optimal cell loading is 6.5 gDCW m−2 to maintain high CO absorbing reactivity without the cells coming off of the paper into the liquid phase. Reducing the medium volume from 10 mL to 4 mL (15% of tube volume) did not decrease CO reactivity. The reduced liquid volume increased secreted product concentration by 80%. The specific CO consumption by paper biocomposites was higher at all shaking frequencies <100 rpm than suspended cells under identical incubation conditions. At 25 rpm the biocomposite outperforms suspended cells for CO absorption by 2.5 fold, with a power reduction of 97% over the power input at 100 rpm. The estimated minimum apparent kLa for these biocomposite gas-absorbers is ~100 h−1, a 10 to 104 less power input than other syngas fermentation systems at similar kLa. Specific consumption rates in a biocomposite were measured as ~14 mmol gDCW−1 h−1. This work intensified CO absorption and reactivity by 14 fold to 94 mmol CO m−2 h−1 over previous C. ljungdahlii OTA1 work by our group. Specific acetate production rates were 23 mM h−1 or 46 mmol m−2 h−1. The specific rates and apparent kLa were shown to

  8. Heterogeneous catalytic process for alcohol fuels from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M.; Nagaki, D.A.

    1995-12-31

    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  9. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    Science.gov (United States)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  10. MILD combustion for hydrogen and syngas at elevated pressures

    Science.gov (United States)

    Huang, Mingming; Zhang, Zhedian; Shao, Weiwei; Xiong, Yan; Lei, Fulin; Xiao, Yunhan

    2014-02-01

    As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with gas recirculation was used in this simulation work to evaluate the effect of fuel type and pressure on threshold gas recirculation ratio of MILD mode. Ignition delay time is also an important design parameter for gas turbine combustor, this parameter is kinetically studied to analyze the effect of pressure on MILD mixture ignition. Threshold gas recirculation ratio of hydrogen MILD combustion changes slightly and is nearly equal to that of 10 MJ/Nm3 syngas in the pressure range of 1-19 atm, under the conditions of 298 K fresh reactant temperature and 1373 K exhaust gas temperature, indicating that MILD regime is fuel flexible. Ignition delay calculation results show that pressure has a negative effect on ignition delay time of 10 MJ/Nm3 syngas MILD mixture, because OH mole fraction in MILD mixture drops down as pressure increases, resulting in the delay of the oxidation process.

  11. Trends of Syngas as a Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Ftwi Yohaness Hagos

    2014-01-01

    Full Text Available Syngas from biomass and solid waste is a carbon-neutral fuel believed to be a promising fuel for future engines. It was widely used for spark-ignition engines in the WWII era before being replaced with gasoline. In this paper, the technological development, success, and challenges for application of syngas in power generating plants, the trends of engine technologies, and the potential of this fuel in the current engine technology are highlighted. Products of gasification vary with the variation of input parameters. Therefore, three different syngases selected from the two major gasification product categories are used as case studies. Their fuel properties are compared to those of CNG and hydrogen and the effects on the performance and emissions are studied. Syngases have very low stoichiometric air-fuel ratio; as a result they are not suitable for stoichiometric application. Besides, syngases have higher laminar flame speed as compared to CNG. Therefore, stratification under lean operation should be used in order to keep their performance and emissions of NOx comparable to CNG counterpart. However, late injection stratification leads to injection duration limitation leading to restriction of output power and torque. Therefore, proper optimization of major engine variables should be done in the current engine technology.

  12. Conversion of Biomass Syngas to DME Using a Microchannel Reactor

    International Nuclear Information System (INIS)

    Hu, Jianli; Wang, Yong; Cao, Chunshe; Elliott, Douglas C.; Stevens, Don J.; White, James F.

    2005-01-01

    The capability of a microchannel reactor for direct synthesis of dimethylether (DME) from biomass syngas was explored. The reactor was operated in conjunction with a hybrid catalyst system consisting of methanol synthesis and dehydration catalysts, and the influence of reaction parameters on syngas conversion was investigated. The activities of different dehydration catalysts were compared under DME synthesis conditions. Reaction temperature and pressure exhibited similar positive effects on DME formation. A catalytic stability test of the hybrid catalyst system was performed for 880 hours, during which CO conversion only decreased from 88% to 81%. In the microchannel reactor, the catalyst deactivation rate appeared to be much slower than in a tubular fixed-bed reactor tested for comparison. Test results also indicated that the dehydration reaction rate and the water depletion rate via a water-gas-shift reaction should be compatible in order to achieve high selectivity to DME. Using the microchannel reactor, it was possible to achieve a space time yield almost three times higher than commercially demonstrated performance results. A side-by-side comparison indicated that the heat removal capability of the microchannel reactor was at least six times greater than that of a commercial slurry reactor under similar reaction conditions

  13. Catalytic synthesis of diesel from syngas: Theoretical and practical aspects

    International Nuclear Information System (INIS)

    Khalid, N.; Saeed, M.M.

    2013-01-01

    The world energy needs have been increasing tremendously resulting in the depletion of the resources of fossil fuel and increase in the prices of crude oil. To meet the required needs or decrease the dependency at least in parts, the attention of the scientists is being focused on the generation of alternate sources for the diesel fuel and other valued products. The catalytic based Fisher-Tropsch process for the generation of liquid chemicals, specially the diesel fuels from syngas is gaining attention since the products formed are of relatively low cost, high quality and environmental friendly due to low aromaticity and sulphur contents. Two main characteristics of the Fischer-Tropsch synthesis (FTS) are the unavoidable production of a wide range of hydrocarbon products (olefins, paraffins, and oxygenated products) and the liberation of large amount of heat from the highly exothermic synthesis reactions. FT synthesis products are influenced by various factors like temperature and pressure of syngas, nature of the catalyst, and the type of reactors. All these parameters are discussed by focusing special attention to the synthesis of cobalt catalyst for the production of diesel fuel. (author)

  14. Syngas yield during pyrolysis and steam gasification of paper

    International Nuclear Information System (INIS)

    Ahmed, I.; Gupta, A.K.

    2009-01-01

    Main characteristics of gaseous yield from steam gasification have been investigated experimentally. Results of steam gasification have been compared to that of pyrolysis. The temperature range investigated were 600-1000 °C in steps of 100 °C. Results have been obtained under pyrolysis conditions at same temperatures. For steam gasification runs, steam flow rate was kept constant at 8.0 g/min. Investigated characteristics were evolution of syngas flow rate with time, hydrogen flow rate and chemical composition of syngas, energy yield and apparent thermal efficiency. Residuals from both processes were quantified and compared as well. Material destruction, hydrogen yield and energy yield is better with gasification as compared to pyrolysis. This advantage of the gasification process is attributed mainly to char gasification process. Char gasification is found to be more sensitive to the reactor temperature than pyrolysis. Pyrolysis can start at low temperatures of 400 °C; however char gasification starts at 700 °C. A partial overlap between gasification and pyrolysis exists and is presented here. This partial overlap increases with increase in temperature. As an example, at reactor temperature 800 °C this overlap represents around 27% of the char gasification process and almost 95% at reactor temperature 1000 °C.

  15. Techniques of power production from biogas and syngas. Extended abstract

    International Nuclear Information System (INIS)

    Couturier, Ch.

    2009-01-01

    The aim of this study is to achieve a state of the art on the techniques of electricity production (mainly engines and turbines) from biomass gases (biogas and syngas). After a brief description of the various routes to produce gas from biomass, i.e. anaerobic digestion and gasification, the study shows the composition of these gases, their constituents, the factors characterizing combustion, to finish on air emissions. Then, there is a description of the general principles and parameters of operation and adjustment of the main electricity production techniques: and their various possible associations. This chapter is concluded by a comparative synthesis on the scopes and maturity of each technique. The second chapter is a review of different processes to remove contaminants of biogas and syngas. It gives operating principle, feedback, costs and development. The third chapter is an economical, energy and environmental analysis of the techniques of electricity production. The fourth chapter is a technical guide, with some practical details to operate a plant about treatment, functioning of machines. This is also a synthesis of difficulties. An economic and environmental analysis of biogas plants permits to compare different choices. This guide gives information to actors in this field to make decisions. The study is finished by a synthesis with key points and research fields, followed by a conclusion. The last chapter lists resource materials: bibliography and patents of the last 10 years. Provided in appendix, there is a directory about actors like equipment manufacturers or operating contractors. (author)

  16. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.

  17. Upgrading of syngas hydrotreated fractionated oxidized bio-oil to transportation grade hydrocarbons

    International Nuclear Information System (INIS)

    Luo, Yan; Hassan, El Barbary; Guda, Vamshi; Wijayapala, Rangana; Steele, Philip H.

    2016-01-01

    Highlights: • Hydrotreating of fractionated oxidized bio-oil with syngas was feasible. • Hydrocarbon properties were similar with all syngas H 2 /CO molar ratios except viscosity. • Syngas with H 2 /CO molar ratio of (4:6) produced the highest hydrocarbon yield. • The produced hydrocarbons were in the range of gasoline, jet fuel and diesel boiling points. - Abstract: Fast pyrolysis bio-oils have the potential to replace a part of transportation fuels obtained from fossil. Bio-oil can be successfully upgraded into stable hydrocarbons (gasoline, jet fuel and diesel) through a two-stage hydrodeoxygenation process. Consumption large amount of expensive hydrogen during this process is the major hurdle for commercialization of this technology. Applying syngas in the hydrotreating step can significantly reduce the cost of the whole process and make it competitive. In this study, four different models of syngas with different H 2 concentrations (H 2 /CO molar ratios = 2:8, 4:6, 6:4 and 8:2) were used for the 1st-stage hydrotreating step of oxidized fractionated bio-oil (OFB). The 2nd-stage hydrocracking step was performed on the produced organic liquid products (OLPs) by using pure H 2 gas. The effect of syngas H 2 concentrations on the yields and properties of OLPs and the 2nd-stage hydrocarbons (HCs) was investigated. Physical and chemical properties of the 2nd-stage hydrocarbons were similar regardless syngas H 2 content, with the exception of the viscosity. Syngas with H 2 /CO molar ratio of 4:6 gave significantly highest HCs yield (24.8 wt.%) based on the OFB. Simulated distillation analysis proved that all 2nd-stage hydrocarbons were mixture from a wide range boiling point fuels. These results also indicated that the successful 1st-stage syngas hydrotreating step was having the potential to produce different hydrocarbons.

  18. Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas.

    Science.gov (United States)

    Ramió-Pujol, Sara; Ganigué, Ramon; Bañeras, Lluís; Colprim, Jesús

    2014-12-01

    The current energy model based on fossil fuels is coming to an end due to the increase in global energy demand. Biofuels such as ethanol and butanol can be produced through the syngas fermentation by acetogenic bacteria. The present work hypothesizes that formate addition would positively impact kinetic parameters for growth and alcohol production in Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 by diminishing the need for reducing equivalents. Fermentation experiments were conducted using completely anaerobic batch cultures at different pH values and formate concentrations. PETC cultures were more tolerant to formate concentrations than P7, specially at pH 5.0 and 6.0. Complete growth inhibition of PETC occurred at sodium formate concentrations of 30.0 mM; however, no differences in growth rates were observed at pH 7.0 for the two strains. Incubation at formate concentrations lower than 2.0 mM resulted in increased growth rates for both strains. The most recognizable effects of formate addition on the fermentation products were the increase in the total carbon fixed into acids and alcohols at pH 5.0 and pH 6.0, as well as, a higher ethanol to total products ratio at pH 7.0. Taken all together, these results show the ability of acetogens to use formate diminishing the energy demand for growth, and enhancing strain productivity. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  19. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  20. Fermentation Industry.

    Science.gov (United States)

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  1. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna; Sukumara, Sumesh; Ploeger, Tom

    2017-01-01

    production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gasliquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate...... under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas-and corn stover-derived syngas were determined...

  2. Continuous spin detonation of a syngas-air mixture in a plane-radial vortex combustor

    Science.gov (United States)

    Bykovskii, F. A.; Zhdan, S. A.; Vedernikov, E. F.

    2017-09-01

    Continuous spin detonation in syngas-air mixtures with three different syngas compositions [CO]/[H2] = 1/3, 1/2, and 1/1 is experimentally studied in a flow-type radial vortex combustor 500 mm in diameter. It is found that all these mixtures with three syngas compositions can be effectively burned in air in the detonation regime. Transverse detonation waves of identical structure are detected. The limits of existence of continuous detonation in terms of the specific flow rates of the mixtures (minimum values) are determined.

  3. Pd Alloy Membranes for Hydrogen Separation from Coal-Derived Syngas

    National Research Council Canada - National Science Library

    Alptekin, Gokhan O; DeVoss, Sarah; Amalfitano, Bob; Way, Douglas; Thoen, Paul; Lusk, Mark

    2006-01-01

    TDA Research Inc., in collaboration with Colorado School of Mines (CSM) is developing a sulfur and CO-tolerant membrane to produce the clean hydrogen from syngas using Pd membrane films prepared on a variety of supports (e.g...

  4. Performance analysis of a gas turbine for power generation using syngas as a fuel

    International Nuclear Information System (INIS)

    Lee, Jong Jun; Cha Kyu Sang; Kim, Tong Seop; Sohn, Jeong Lak; Joo, Yong Jin

    2008-01-01

    Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increase the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition

  5. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide......Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  6. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  7. Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value

    Science.gov (United States)

    Doustdar, O.; Wyszynski, M. L.; Mahmoudi, H.; Tsolakis, A.

    2016-09-01

    Bio-fuel produced from renewable sources is considered the most viable alternatives for the replacement of mineral diesel fuel in compression ignition engines. There are several options for biomass derived fuels production involving chemical, biological and thermochemical processes. One of the best options is Fischer Tropsch Synthesis, which has an extensive history of gasoline and diesel production from coal and natural gas. FTS fuel could be one of the best solutions to the fuel emission due to its high quality. FTS experiments were carried out in 16 different operation conditions. Mini structured vertical downdraft fixed bed reactor was used for the FTS. Instead of Biomass gasification, a simulated N2 -rich syngas cylinder of, 33% H2 and 50% N2 was used. FT fuels products were analyzed in GCMS to find the hydrocarbon distributions of FT fuel. Calorific value and lubricity of liquid FT product were measured and compared with commercial diesel fuel. Lubricity has become an important quality, particularly for biodiesel, due to higher pressures in new diesel fuel injection (DFI) technology which demands better lubrication from the fuel and calorific value which is amount of energy released in combustion paly very important role in CI engines. Results show that prepared FT fuel has desirable properties and it complies with standard values. FT samples lubricities as measured by ASTM D6079 standard vary from 286μm (HFRR scar diameter) to 417μm which are less than limit of 520μm. Net Calorific value for FT fuels vary from 9.89 MJ/kg to 43.29 MJ/kg, with six of the samples less than EN 14213 limit of 35MJ/kg. Effect of reaction condition on FT fuel properties was investigated which illustrates that in higher pressure Fischer-Tropsch reaction condition liquid product has better properties.

  8. Modeling syngas-fired gas turbine engines with two dilutants

    Science.gov (United States)

    Hawk, Mitchell E.

    2011-12-01

    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  9. Kinetic study and syngas production from pyrolysis of forestry waste

    International Nuclear Information System (INIS)

    Hu, Mian; Wang, Xun; Chen, Jian; Yang, Ping; Liu, Cuixia; Xiao, Bo; Guo, Dabin

    2017-01-01

    Highlights: • Pyrolysis process can be divided into three stages using differential DTG method. • A modified discrete DAEM model fitted experimental data well. • Fe/biochar catalyst showed a good performance on catalytic reforming process. - Abstract: Kinetic study and syngas production from pyrolysis of forestry waste (pine sawdust (PS)) were investigated using a thermogravimetric analyzer (TGA) and a fixed-bed reactor, respectively. In TGA, it was found that the pyrolysis of PS could be divided into three stages and stage II was the major mass reduction stage with mass loss of 73–74%. The discrete distributed activation energy model (DAEM) with discrete 200 first-order reactions was introduced to study the pyrolysis kinetic. The results indicated that the DAEM with 200 first-order reactions could approximate the pyrolysis process with an excellent fit between experimental and calculated data. The apparent activation energies of PS ranged from 147.86 kJ·mol −1 to 395.76 kJ·mol −1 , with corresponding pre-exponential factors of 8.30 × 10 13 s −1 to 3.11 × 10 25 s −1 . In the fixed-bed reactor, char supported iron catalyst was prepared for tar cracking. Compared with no catalyst which the gas yield and tar yield were 0.58 N m 3 /kg biomass and 201.23 g/kg biomass, the gas yield was markedly increased to 1.02 N m 3 /kg biomass and the tar yield was decreased to only 26.37 g/kg biomass in the presence of char supported iron catalyst. These results indicated that char supported iron catalyst could potentially be used to catalytically decompose tar molecules in syngas generated via biomass pyrolysis.

  10. Low Fermentation pH Is a Trigger to Alcohol Production, but a Killer to Chain Elongation

    Science.gov (United States)

    Ganigué, Ramon; Sánchez-Paredes, Patricia; Bañeras, Lluis; Colprim, Jesús

    2016-01-01

    Gasification of organic wastes coupled to syngas fermentation allows the recovery of carbon in the form of commodity chemicals, such as carboxylates and biofuels. Acetogenic bacteria ferment syngas to mainly two-carbon compounds, although a few strains can also synthesize four-, and six-carbon molecules. In general, longer carbon chain products have a higher biotechnological (and commercial) value due to their higher energy content and their lower water solubility. However, de-novo synthesis of medium-chain products from syngas is quite uncommon in acetogenic bacteria. An alternative to de-novo synthesis is bioproduction of short-chain products (C2 and C4), and their subsequent elongation to C4, C6, or C8 through reversed β-oxidation metabolism. This two-step synergistic approach has been successfully applied for the production of up to C8 compounds, although the accumulation of alcohols in these mixed cultures remained below detection limits. The present work investigates the production of higher alcohols from syngas by open mixed cultures (OMC). A syngas-fermenting community was enriched from sludge of an anaerobic digester for a period of 109 days in a lab-scale reactor. At the end of this period, stable production of ethanol and butanol was obtained. C6 compounds were only transiently produced at the beginning of the enrichment phase, during which Clostridium kluyveri, a bacterium able to carry out carbon chain elongation, was detected in the community. Further experiments showed pH as a critical parameter to maintain chain elongation activity in the co-culture. Production of C6 compounds was recovered by preventing fermentation pH to decrease below pH 4.5–5. Finally, experiments showed maximal production of C6 compounds (0.8 g/L) and alcohols (1.7 g/L of ethanol, 1.1 g/L of butanol, and 0.6 g/L of hexanol) at pH 4.8. In conclusion, low fermentation pH is critical for the production of alcohols, although detrimental to C. kluyveri. Fine control of

  11. Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation

    Directory of Open Access Journals (Sweden)

    Ramon eGanigué

    2016-05-01

    Full Text Available Gasification of organic wastes coupled to syngas fermentation allows the recovery of carbon in the form of commodity chemicals, such as carboxylates and biofuels. Acetogenic bacteria ferment syngas to mainly two-carbon compounds, although a few strains can also synthesize four-, and six-carbon molecules. In general, longer carbon chain products have a higher biotechnological (and commercial value due to their higher energy content and their lower water solubility. However, de-novo synthesis of medium-chain products from syngas is quite uncommon in bacteria. An alternative to de-novo synthesis is bioproduction of short-chain products (C2 and C4, and their subsequent elongation to C4, C6 or C8 through reversed β-oxidation metabolism. This two-step synergistic approach has been successfully applied for the production of up to C8 compounds, although, the accumulation of alcohols in these mixed cultures remained below detection limits. The present work investigates the production of higher alcohols from syngas by open mixed cultures (OMC. A syngas-fermenting community was enriched from sludge of an anaerobic digester for a period of 110 days in a lab-scale reactor. At the end of this period, stable production of ethanol and butanol was obtained. C6 compounds were only transiently produced at the beginning of the enrichment phase, during which Clostridium kluyveri, a bacterium able to carry out carbon chain elongation, was detected in the community. Further experiments showed pH as a critical parameter to maintain chain elongation activity in the co-culture. Production of C6 compounds was recovered by preventing fermentation pH to decrease below pH 4.5-5. Finally, experiments showed maximal production of C6 compounds (0.8 g/L and alcohols (1.7 g/L of ethanol, 1.1 g/L of butanol and 0.6 g/L of hexanol at pH 4.8. In conclusion, low fermentation pH is critical for the production of alcohols, although detrimental to C. kluyveri. Fine control of

  12. Syngas Treatment Unit for Small Scale Gasification - Application to IC Engine Gas Quality Requirement

    OpenAIRE

    L.C Laurence; D. Ashenafi

    2012-01-01

    Gasification is a process that converts carbonaceous materials (coal, biomass, organic waste) into carbon monoxide and hydrogen by reacting the raw material at high temperatures with a controlled amount of oxygen and/or steam. The resulting gas mixture: syngas, can be used in energy production process. Syngas may be burned directly in internal combustion engines, used to produce methanol and hydrogen, or converted via the Fischer-Tropsch process into synthetic fuel. In add...

  13. Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters

    Science.gov (United States)

    2015-12-01

    need SVOC semivolatile organic compound TCLP toxicity characteristic leaching procedure TQG tactical quiet generator TRICON triple container VOC...prototype thermal catalytic syngas-cleaning circuit . A schematic of the system is shown in Figure 8, with photographs of the system in Figures 9 and 10...the gasifier in Figure 8 is a combustor that was used to preheat the catalytic cleanup circuit at start-up by burning the raw syngas and sending the

  14. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, Tabitha J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cheng, Lei [Argonne National Lab. (ANL), Argonne, IL (United States); Nimlos, Mark R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mukarakate, Calvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robichaud, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Assary, Rajeev S. [Argonne National Lab. (ANL), Argonne, IL (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  15. Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kai, E-mail: kyan@lakeheadu.ca; Lafleur, Todd [Lakehead University, Department of Chemistry (Canada); Liao, Jiayou [Tianjin University, School of Chemical Engineering and Technology (China)

    2013-09-15

    Different loading of palladium (Pd) nanoparticles were successfully fabricated on multi-walled carbon nanotubes using Pd acetylacetonate as the precursor via a simple liquid impregnation method. The crystal phase, morphology, textural structure and the chemical state of the resulting Pd nanoparticles (Pd/CNT) catalysts were studied and the characterization results indicated that the uniform dispersion of small Pd nanoparticles with the size range of 1.0-4.5 nm was achieved. The synthesized Pd/CNT catalysts exhibited efficient performance for the catalytic hydrogenation of biomass-derived levulinic acid into biofuel {gamma}-valerolactone. In comparison with the commercial 5 wt% Pd/C and the 5 wt% Pd/CNT catalyst prepared by Pd nitrate precursor, much higher activities were achieved, whereas the biofuel {gamma}-valerolactone was highly produced with 56.3 % yield at 57.6 % conversion of levulinic acid on the 5 wt% Pd/CNT catalyst under mild conditions. The catalyst developed in this work may be a good candidate for the wide applications in the hydrogenation.

  16. Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid

    International Nuclear Information System (INIS)

    Yan, Kai; Lafleur, Todd; Liao, Jiayou

    2013-01-01

    Different loading of palladium (Pd) nanoparticles were successfully fabricated on multi-walled carbon nanotubes using Pd acetylacetonate as the precursor via a simple liquid impregnation method. The crystal phase, morphology, textural structure and the chemical state of the resulting Pd nanoparticles (Pd/CNT) catalysts were studied and the characterization results indicated that the uniform dispersion of small Pd nanoparticles with the size range of 1.0–4.5 nm was achieved. The synthesized Pd/CNT catalysts exhibited efficient performance for the catalytic hydrogenation of biomass-derived levulinic acid into biofuel γ-valerolactone. In comparison with the commercial 5 wt% Pd/C and the 5 wt% Pd/CNT catalyst prepared by Pd nitrate precursor, much higher activities were achieved, whereas the biofuel γ-valerolactone was highly produced with 56.3 % yield at 57.6 % conversion of levulinic acid on the 5 wt% Pd/CNT catalyst under mild conditions. The catalyst developed in this work may be a good candidate for the wide applications in the hydrogenation

  17. Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid

    Science.gov (United States)

    Yan, Kai; Lafleur, Todd; Liao, Jiayou

    2013-09-01

    Different loading of palladium (Pd) nanoparticles were successfully fabricated on multi-walled carbon nanotubes using Pd acetylacetonate as the precursor via a simple liquid impregnation method. The crystal phase, morphology, textural structure and the chemical state of the resulting Pd nanoparticles (Pd/CNT) catalysts were studied and the characterization results indicated that the uniform dispersion of small Pd nanoparticles with the size range of 1.0-4.5 nm was achieved. The synthesized Pd/CNT catalysts exhibited efficient performance for the catalytic hydrogenation of biomass-derived levulinic acid into biofuel γ-valerolactone. In comparison with the commercial 5 wt% Pd/C and the 5 wt% Pd/CNT catalyst prepared by Pd nitrate precursor, much higher activities were achieved, whereas the biofuel γ-valerolactone was highly produced with 56.3 % yield at 57.6 % conversion of levulinic acid on the 5 wt% Pd/CNT catalyst under mild conditions. The catalyst developed in this work may be a good candidate for the wide applications in the hydrogenation.

  18. Performance and emissions of a spark-ignited engine driven generator on biomass based syngas.

    Science.gov (United States)

    Shah, Ajay; Srinivasan, Radhakrishnan; To, Suminto D Filip; Columbus, Eugene P

    2010-06-01

    The emergence of biomass based energy warrants the evaluation of syngas from biomass gasification as a fuel for personal power systems. The objectives of this study were to determine the performance and exhaust emissions of a commercial 5.5 kW generator modified for operation with 100% syngas at different syngas flows and to compare the results with those obtained for gasoline operation at same electrical power. The maximum electrical power output for syngas operation was 1392 W and that for gasoline operation was 2451 W. However, the overall efficiency of the generator at maximum electrical power output for both the fuels were found to be the same. The concentrations of CO and NO(x) in the generator exhaust were lower for the syngas operation, respectively by 30-96% and 54-84% compared to the gasoline operation. However, the concentrations of CO(2) in the generator exhaust were significantly higher by 33-167% for the syngas operation. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

    OpenAIRE

    Chaouki Ghenai

    2015-01-01

    Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performanc...

  20. Thermodynamic analysis for syngas production from volatiles released in waste tire pyrolysis

    International Nuclear Information System (INIS)

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Arauzo, Inmaculada

    2014-01-01

    Highlights: • Pyrolysis experiments have been conducted in a continuous auger reactor. • Pyrolysis temperature influence on composition of both volatiles and char was studied. • A process for syngas production has been proposed from the volatiles. • Equivalence ratio down to 0.4 is a practical limit for syngas production. • The results provide essential data prior to perform any experimental campaign. - Abstract: This paper shows the maximum limit on syngas composition obtained from volatiles released in waste tire pyrolysis when they are submitted to an air–steam partial oxidation process. Thus, from mass and energy balances and a stoichiometric equilibrium model, syngas composition and reaction temperature as well as some process parameters were predicted by varying both the equivalence ratio (ER) and the steam to fuel ratio (SF). In addition, pyrolysis experiments were performed using a continuous auger reactor, and the influence of pyrolysis temperature on composition of both volatiles and char was studied. Consequently, the resulting syngas characteristics were correlated with the pyrolysis temperature. The stoichiometric equilibrium model showed that an ER down to 0.4 is a practical limit to perform the air–steam partial oxidation process. When the process is carried out only with air, volatiles obtained at high pyrolysis temperature lead to lower reaction temperature and higher LHV of syngas in comparison with those found at low pyrolysis temperature. The H 2 production is favored between 0.20 and 0.40 of ER and seems to be more influenced by the H/C ratio than by the water gas-shift reaction. On the other hand, the steam addition shows a more notable effect on the H 2 production for volatiles obtained at the highest pyrolysis temperature (600 °C) in agreement with the lower reaction temperature under these experimental conditions. This thermodynamic analysis provides essential data on the optimization of syngas production from volatiles

  1. Operation window and part-load performance study of a syngas fired gas turbine

    International Nuclear Information System (INIS)

    He, Fen; Li, Zheng; Liu, Pei; Ma, Linwei; Pistikopoulos, Efstratios N.

    2012-01-01

    Integrated coal gasification combined cycle (IGCC) provides a great opportunity for clean utilization of coal while maintaining the advantage of high energy efficiency brought by gas turbines. A challenging problem arising from the integration of an existing gas turbine to an IGCC system is the performance change of the gas turbine due to the shift of fuel from natural gas to synthesis gas, or syngas, mainly consisting of carbon monoxide and hydrogen. Besides the change of base-load performance, which has been extensively studied, the change of part-load performance is also of great significance for the operation of a gas turbine and an IGCC plant. In this paper, a detailed mathematical model of a syngas fired gas turbine is developed to study its part-load performance. A baseline is firstly established using the part-load performance of a natural gas fired gas turbine, then the part-load performance of the gas turbine running with different compositions of syngas is investigated and compared with the baseline. Particularly, the impacts of the variable inlet guide vane, the degree of fuel dilution, and the degree of air bleed are investigated. Results indicate that insufficient cooling of turbine blades and a reduced compressor surge margin are the major factors that constrain the part-load performance of a syngas fired gas turbine. Results also show that air bleed from the compressor can greatly improve the working condition of a syngas fired gas turbine, especially for those fired with low lower heating value syngas. The regulating strategy of a syngas fired gas turbine should also be adjusted in accordance to the changes of part-load performance, and a reduced scope of constant TAT (turbine exhaust temperature) control mode is required.

  2. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.

    Science.gov (United States)

    Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung

    2017-07-10

    Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Experimental investigation on a Common Rail Diesel engine partially fuelled by syngas

    International Nuclear Information System (INIS)

    Rinaldini, Carlo Alberto; Allesina, Giulio; Pedrazzi, Simone; Mattarelli, Enrico; Savioli, Tommaso; Morselli, Nicolò; Puglia, Marco; Tartarini, Paolo

    2017-01-01

    Highlights: • A current automotive Diesel engine is tested running on both Diesel fuel and syngas. • The syngas HHV is about 5 MJ/Nm 3 , allowing a 60% of Diesel substitution. • The engine brake efficiency is slightly increased running on syngas at high load. • In-cylinder pressure do not change very much even if Diesel fuel is strongly reduced. - Abstract: The high efficiency, reliability and flexibility of modern passenger car Diesel engines makes these power units quite attractive for steady power plants totally or partially running on fuels derived from biomass, in particular on syngas. The engine cost, which is obviously higher than that of current industrial engines, may not be a big obstacle, provided that the re-engineering work is limited and that performance and efficiency are enhanced. The goal of this work is to explore the potential of a current automotive turbocharged Diesel engine running on both Diesel fuel and syngas, by means of a comprehensive experimental investigation focused on the combustion process. The engine is operated at the most typical speed employed in steady power plants (3000 rpm), considering three different loads (50–100–300 Nm/16–31–94 kW). For each operating condition, the syngas rate is progressively increased until it provides a maximum heating power of 85 kW, while contemporarily reducing the amount of injected Diesel oil. Maximum care is applied to guarantee a constant quality of the syngas flow throughout the tests, as well as to maintain the same engine control parameters, in particular the boost pressure. It is found that in-cylinder pressure traces do not change very much, even when drastically reducing the amount of Diesel fuel: this is a very encouraging result, because it demonstrates that there is no need to radically modify the standard stock engine design. Another promising outcome is the slight but consistent enhancement of the engine brake efficiency: the use of syngas not only reduces the

  4. Synthesis of acrylates and methacrylates from coal-derived syngas

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L. [Bechtel, San Francisco, CA (United States)] [and others

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing of active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.

  5. Catalytic synthesis of long-chained alcohols from syngas

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt

    for the production of gasoline additives/replacements from biomass via a gasification process. It is observed that the sulfide catalyst is able to operate both with and without a sulfur source in the syngas feed, but the presence of a sulfur source like H2S can exert a significant influence on the catalytic....... Various catalysts based upon the bulk carbides Mo2C, WC and NbC have been synthesized and evaluated with respect to the catalytic behavior in highpressure CO hydrogenation. NbC is largely inactive, and K2CO3/WC produces mainly methanol and methane with a low activity, while K2CO3/Mo2C produces a mixture...... is qualitatively similar, although K provides a markedly better activity (31 % at 300 °C, 100 bar, 5000 h-1) and a better selectivity at identical conditions. At 275 °C an Li(CH3COO) promoted catalyst is very active and produces only hydrocarbons. If the effect of the different alkali promoters is compared...

  6. Low temperature catalytic reforming of heptane to hydrogen and syngas

    Directory of Open Access Journals (Sweden)

    M.E.E. Abashar

    2016-09-01

    Full Text Available The production of hydrogen and syngas from heptane at a low temperature is studied in a circulating fast fluidized bed membrane reactor (CFFBMR. A thin film of palladium-based membrane is employed to the displacement of the thermodynamic equilibrium for high conversion and yield. A mathematical model is developed to simulate the reformer. A substantial improvement of the CFFBMR is achieved by implementing the thin hydrogen membrane. The results showed that almost complete conversion of heptane and 46.25% increase of exit hydrogen yield over the value without membrane are achieved. Also a wide range of the H2/CO ratio within the recommended industrial range is obtained. The phenomena of high spikes of maximum nature at the beginning of the CFFBMR are observed and explanation offered. The sensitivity analysis results have shown that the increase of the steam to carbon feed ratio can increase the exit hydrogen yield up to 108.29%. It was found that the increase of reaction side pressure at a high steam to carbon feed ratio can increase further the exit hydrogen yield by 49.36% at a shorter reactor length. Moreover, the increase of reaction side pressure has an important impact in a significant decrease of the carbon dioxide and this is a positive sign for clean environment.

  7. Investigation of syngas interactions in alcohol synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Akundi, M.A.

    1998-04-15

    The primary objectives of the project are to (a) synthesize, by controlled sequential and co-impregnation techniques, three distinct composition metal clusters (consisting of Cu-Co-Cr and Cu-Fe-Zn): rich in copper (Methanol selective), rich in ferromagnetic metal (Co or Fe-Hydrocarbon selective) and intermediate range (mixed alcohol catalysts); (b) investigate the changes in the magnetic character of the systems due to interaction with CO, through Zero-field Nuclear Magnetic Resonance (ZFNMR) study of cobalt and Magnetic character (saturation magnetization and coercive field) analysis of the composite catalyst of Vibrating Sample Magnetometry (VSM); (c) examine the changes in syngas adsorption character of the catalyst as the composition changes, by FTIR Spectroscopic analysis of CO stretching frequencies; (d) determine the nature and size of these intermetallic clusters by Scanning Electron Microscopy (SEM); and (e) perform catalytic runs on selected samples and analyze the correlations between the physical and chemical characteristics. The catalysts chosen have a greater promise for industrial application than the Rh and Mo based catalysts. Several groups preparing catalysts by synthetic routes have reported divergent results for activity and selectivity. Generally the research has followed an empirical path and less effort is devoted to analyze the mechanisms and the scientific basis. The primary intent of this study is to analyze the nature of the intermetallic and gas-metal interactions and examine the correlations to catalytic properties.

  8. ISOBUTANOL FROM SYNGAS IN A THREE PHASE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2002-12-29

    With growing interest in oxygenates as octane booster for automotive fuels, various synthesis routes for these chemicals are being investigated. Among others, alternative routes to isobutene, the C4-components in MTBE-synthesis are under investigation. A promising path to isobutene is the heterogeneously catalyzed CO-hydrogenation to isobutanol with following dehydration (Fig. 1). As shown by thermodynamical studies, the heterogeneously catalyzed CO-hydrogenation to isobutanol is not expected to experience any thermodynamic constraints. However, heterogeneous hydrogenation of CO is a very exothermic process, a problem which can only be partly solved when being conducted in a plug flow reactor. When carried out in reaction vessels with moving catalyst bed (e.g. three phase stirred tank), heat transfer problems can be resolved, along with additional benefits connected with this reactor type. Several heterogeneous catalytic systems have been under investigation for their capability of isobutanol synthesis from syngas. Most promising catalysts for an active and selective isobutanol synthesis from CO are modified high temperature methanol catalysts.

  9. Effects of pressure on syngas/air turbulent nonpremixed flames

    Science.gov (United States)

    Lee, Bok Jik; Im, Hong G.; Ciottoli, Pietro Paolo; Valorani, Mauro

    2016-11-01

    Large eddy simulations (LES) of turbulent non-premixed jet flames were conducted to investigate the effects of pressure on the syngas/air flame behavior. The software to solve the reactive Navier-Stokes equations was developed based on the OpenFOAM framework, using the YSLFM library for the flamelet-based chemical closure. The flamelet tabulation is obtained by means of an in-house code designed to solve unsteady flamelets of both ideal and real fluid mixtures. The validation of the numerical setup is attained by comparison of the numerical results with the Sandia/ETH-Zurich experimental database of the CO/H2/N2 non-premixed, unconfined, turbulent jet flame, referred to as "Flame A". Two additional simulations, at pressure conditions of 2 and 5 atm, are compared and analyzed to unravel computational and scientific challenges in characterizing turbulent flames at high pressures. A set of flamelet solutions, representative of the jet flames under review, are analyzed following a CSP approach. In particular, the Tangential Stretching Rate (TSR), representing the reciprocal of the most energetic time scale associated with the chemical source term, and its extension to reaction-diffusion systems (extended TSR), are adopted.

  10. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Science.gov (United States)

    Awais Salman, Chaudhary; Schwede, Sebastian; Thorin, Eva; Yan, Jinyue

    2017-11-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  11. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. CFD Modeling of Syngas Combustion and Emissions for Marine Gas Turbine Applications

    Directory of Open Access Journals (Sweden)

    Ammar Nader R.

    2016-09-01

    Full Text Available Strong restrictions on emissions from marine power plants will probably be adopted in the near future. One of the measures which can be considered to reduce exhaust gases emissions is the use of alternative fuels. Synthesis gases are considered competitive renewable gaseous fuels which can be used in marine gas turbines for both propulsion and electric power generation on ships. The paper analyses combustion and emission characteristics of syngas fuel in marine gas turbines. Syngas fuel is burned in a gas turbine can combustor. The gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The analysis is performed numerically using the computational fluid dynamics code ANSYS FLUENT. Different operating conditions are considered within the numerical runs. The obtained numerical results are compared with experimental data and satisfactory agreement is obtained. The effect of syngas fuel composition and the swirl number values on temperature contours, and exhaust gas species concentrations are presented in this paper. The results show an increase of peak flame temperature for the syngas compared to natural gas fuel combustion at the same operating conditions while the NO emission becomes lower. In addition, lower CO2 emissions and increased CO emissions at the combustor exit are obtained for the syngas, compared to the natural gas fuel.

  13. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    Directory of Open Access Journals (Sweden)

    Salman Chaudhary Awais

    2017-01-01

    Full Text Available Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc. and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents the simulation model to predict the amount of biomethane produced by injecting the hydrogen and syngas. Hydrogen injection is modelled both in-situ and ex-situ while for syngas solely the ex-situ case has been studied. The results showed that 85% of the hydrogen conversion was achieved for the ex-situ reactor while 81% conversion rate was achieved for the in-situ reactor. The syngas could be converted completely in the bio-reactor. However, the addition of syngas resulted in an increase of carbon dioxide. Simulation of biomethanation of gas addition showed a biomethane concentration of 87% while for hydrogen addition an increase of 74% and 80% for in-situ and ex-situ addition respectively.

  15. Prediction of syngas quality for two-stage gasification of selected waste feedstocks.

    Science.gov (United States)

    De Filippis, Paolo; Borgianni, Carlo; Paolucci, Martino; Pochetti, Fausto

    2004-01-01

    This paper compares the syngas produced from methane with the syngas obtained from the gasification, in a two-stage reactor, of various waste feedstocks. The syngas composition and the gasification conditions were simulated using a simple thermodynamic model. The waste feedstocks considered are: landfill gas, waste oil, municipal solid waste (MSW) typical of a low-income country, the same MSW blended with landfill gas, refuse derived fuel (RDF) made from the same MSW, the same RDF blended with waste oil and a MSW typical of a high-income country. Energy content, the sum of H2 and CO gas percentages, and the ratio of H2 to CO are considered as measures of syngas quality. The simulation shows that landfill gas gives the best results in terms of both H2+CO and H2/CO, and that the MSW of low-income countries can be expected to provide inferior syngas on all three quality measures. Co-gasification of the MSW from low-income countries with landfill gas, and the mixture of waste oil with RDF from low-income MSW are considered as options to improve gas quality.

  16. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  17. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    Science.gov (United States)

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite.

    Science.gov (United States)

    Schulte, Mark J; Wiltgen, Jeff; Ritter, John; Mooney, Charles B; Flickinger, Michael C

    2016-09-01

    We propose a novel approach to continuous bioprocessing of gases. A miniaturized, coated-paper strip, high gas fraction, biocomposite absorber has been developed using slowly shaken horizontal anaerobic tubes. Concentrated Clostridium ljungdahlii OTA1 was used as a model system. These gas absorbers demonstrate elevated CO mass transfer with low power input, reduced liquid requirements, elevated substrate consumption, and increased product secretion compared to shaken suspended cells. Concentrated OTA1 cell paste was coated by extrusion onto chromatography paper. The immobilized system shows high, constant reactivity immediately upon rehydration. Cell adhesion was by adsorption to the cellulose fibers; visualized by SEM. The C. ljungdahlii OTA1 coated paper mounted above the liquid level absorbs CO and H2 from a model syngas secreting acetate with minimal ethanol. At 100 rpm shaking speed (7.7 Wm(-3) ) the optimal cell loading is 6.5 gDCW m(-2) to maintain high CO absorbing reactivity without the cells coming off of the paper into the liquid phase. Reducing the medium volume from 10 mL to 4 mL (15% of tube volume) did not decrease CO reactivity. The reduced liquid volume increased secreted product concentration by 80%. The specific CO consumption by paper biocomposites was higher at all shaking frequencies syngas fermentation systems reported in the literature at similar kL a. Specific consumption rates in a biocomposite were ∼14 mmol gDCW-1 h(-1) . This work intensified CO absorption and reactivity by 14-fold to 94 mmol CO m(-2) h(-1) over previous C. ljungdahlii OTA1 work by our group. Specific acetate production rates were 23 mM h(-1) or 46 mmol m(-2) h(-1) . The specific rates and apparent kL a scaled linearly with biocomposite coating area. Biotechnol. Bioeng. 2016;113: 1913-1923. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction

    Directory of Open Access Journals (Sweden)

    Hanno Richter

    2016-11-01

    Full Text Available Carboxydotrophic bacteria (CTB have received attention due to their ability to synthesize commodity chemicals from producer gas and synthesis gas (syngas. CTB have an important advantage of a high product selectivity compared to chemical catalysts. However, the product spectrum of wild-type CTB is narrow. Our objective was to investigate whether a strategy of combining two wild-type bacterial strains into a single, continuously fed bioprocessing step would be promising to broaden the product spectrum. Here, we have operated a syngas-fermentation process with Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction through gas stripping and product condensing within the syngas recirculation line. The main products from C. ljungdahlii fermentation at a pH of 6.0 were ethanol and acetate at net volumetric production rates of 65.5 and 431 mmol C•L-1•d-1, respectively. An estimated 2/3 of total ethanol produced was utilized by C. kluyveri to chain elongate with the reverse β-oxidation pathway, resulting in n-butyrate and n-caproate at net rates of 129 and 70 mmol C•L-1•d-1, respectively. C. ljungdahlii likely reduced the produced carboxylates to their corresponding alcohols with the reductive power from syngas. This resulted in the longer-chain alcohols n-butanol, n-hexanol, and n-octanol at net volumetric production rates of 39.2, 31.7, and 0.045 mmol C•L-1•d-1, respectively. The continuous production of the longer-chain alcohols occurred only within a narrow pH spectrum of 5.7-6.4 due to the pH discrepancy between the two strains. Regardless whether other wild-type strains could overcome this pH discrepancy, the specificity (mol carbon in product per mol carbon in all other liquid products for each longer-chain alcohol may never be high in a single bioprocessing step. This, because two bioprocesses compete for intermediates (i.e., carboxylates: 1 chain elongation; and 2 biological reduction. This innate

  20. A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture ofClostridium ljungdahliiandClostridium kluyveriwith In-Line Product Extraction.

    Science.gov (United States)

    Richter, Hanno; Molitor, Bastian; Diender, Martijn; Sousa, Diana Z; Angenent, Largus T

    2016-01-01

    Carboxydotrophic bacteria (CTB) have received attention due to their ability to synthesize commodity chemicals from producer gas and synthesis gas (syngas). CTB have an important advantage of a high product selectivity compared to chemical catalysts. However, the product spectrum of wild-type CTB is narrow. Our objective was to investigate whether a strategy of combining two wild-type bacterial strains into a single, continuously fed bioprocessing step would be promising to broaden the product spectrum. Here, we have operated a syngas-fermentation process with Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction through gas stripping and product condensing within the syngas recirculation line. The main products from C. ljungdahlii fermentation at a pH of 6.0 were ethanol and acetate at net volumetric production rates of 65.5 and 431 mmol C·L -1 ·d -1 , respectively. An estimated 2/3 of total ethanol produced was utilized by C. kluyveri to chain elongate with the reverse β-oxidation pathway, resulting in n -butyrate and n -caproate at net rates of 129 and 70 mmol C·L -1 ·d -1 , respectively. C. ljungdahlii likely reduced the produced carboxylates to their corresponding alcohols with the reductive power from syngas. This resulted in the longer-chain alcohols n -butanol, n -hexanol, and n -octanol at net volumetric production rates of 39.2, 31.7, and 0.045 mmol C·L -1 ·d -1 , respectively. The continuous production of the longer-chain alcohols occurred only within a narrow pH spectrum of 5.7-6.4 due to the pH discrepancy between the two strains. Regardless whether other wild-type strains could overcome this pH discrepancy, the specificity (mol carbon in product per mol carbon in all other liquid products) for each longer-chain alcohol may never be high in a single bioprocessing step. This, because two bioprocesses compete for intermediates (i.e., carboxylates): (1) chain elongation; and (2) biological reduction. This innate

  1. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Ben [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Turk, Brian [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Denton, David [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. (RTI), Research Triangle Park, NC (United States)

    2015-09-30

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilot scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit

  2. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Ismail B. [West Virginia University, Morgantown, WV (United States)

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  3. Selective and efficient synthesis of ethanol from dimethyl ether and syngas

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn

    an important role as a gasoline additive or substitute and a catalytic process has been demonstrated, in which dimethyl ether (DME) produced from synthesis gas is converted to methyl acetate (MA), which is subsequently converted to EtOH and methanol (MeOH). MeOH can afterwards be easily converted to DME, using...... well-established processes. Syngas can be produced from biomass, making the entire process sustainable and environmentally friendly. The main benefit of this method is its unprecedented selectivity towards EtOH, while MeOH, the primary by-product, and the unreacted syngas are easily recycled...

  4. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char

    International Nuclear Information System (INIS)

    Al-Rahbi, Amal S.; Williams, Paul T.

    2017-01-01

    Highlights: • Tyre char is used as catalyst and syngas source in pyrolysis-reforming of biomass. • Metals in tyre char catalyse tar decomposition. • Increased steam and higher temperature promotes H 2 production. • Syngas H 2 /CO ratio varied between 1.3 to 2. • A waste derived catalyst degrades tar and is also sacrificed for char gasification. - Abstract: Carbonaceous materials have been proven to have a high catalytic activity for tar removal from the syngas produced from biomass gasification. The simultaneous reforming and gasification of pyrolysis gases and char could have a significant role in increasing the gas yield and decreasing the tar in the product syngas. This study investigates the use of tyre char as a catalyst for H 2 -rich syngas production and tar reduction during the pyrolysis-reforming of biomass using a two stage fixed bed reactor. The biomass sample was pyrolysed under nitrogen at a pyrolysis temperature of 500 °C, the evolved pyrolysis volatiles were passed to a second stage with steam and the gases were reformed in the presence of tyre char as catalyst. The influence of catalyst bed temperature, steam to biomass ratio, reaction time and tyre ash metals were investigated. The influence of the catalytic activity of tyre ash minerals on composition of syngas and tar decomposition during the steam reforming of biomass was significant as the removal of minerals led to a decrease in the H 2 yield. Raising the steam injection rate and reforming temperature resulted in an increase in H 2 production as steam reforming and char gasification reactions were enhanced. The maximum H 2 content in the product syngas of 56 vol.% was obtained at a reforming temperature of 900 °C and with a steam to biomass mass ratio of 6 (g/g). Further investigation of the influence of the biomass:steam ratio on syngas quality showed that the H 2 :CO molar ratio was increased from 1.8 (steam: biomass ratio; 1.82 g g −1 ) to 3 (steam: biomass ratio; 6 g g −1 ).

  5. SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Linda Denton; Hana Lorethova; Tomasz Wiltowski; Court Moorefield; Parag Kulkarni; Vladimir Zamansky; Ravi Kumar

    2003-12-01

    This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of

  6. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas fermenta......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...... to highest VFA concentration was pure CO (100%) regardless of microbial composition of the inoculum and media composition. The addition of acetate had a negative impact on the VFA formation which was depending on the initial gas composition in head space....

  7. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.

    Science.gov (United States)

    Diner, Bruce A; Fan, Janine; Scotcher, Miles C; Wells, Derek H; Whited, Gregory M

    2018-01-01

    There is a growing interest in the use of microbial fermentation for the generation of high-demand, high-purity chemicals using cheap feedstocks in an environmentally friendly manner. One example explored here is the production of isoprene (C 5 H 8 ), a hemiterpene, which is primarily polymerized to polyisoprene in synthetic rubber in tires but which can also be converted to C 10 and C 15 biofuels. The strictly anaerobic, acetogenic bacterium Clostridium ljungdahlii , used in all of the work described here, is capable of glycolysis using the Embden-Meyerhof-Parnas pathway and of carbon fixation using the Wood-Ljungdahl pathway. Clostridium - Escherichia coli shuttle plasmids, each bearing either 2 or 3 different heterologous genes of the eukaryotic mevalonic acid (MVA) pathway or eukaryotic isopentenyl pyrophosphate isomerase (Idi) and isoprene synthase (IspS), were constructed and electroporated into C. ljungdahlii These plasmids, one or two of which were introduced into the host cells, enabled the synthesis of mevalonate and of isoprene from fructose and from syngas (H 2 , CO 2 , and CO) and the conversion of mevalonate to isoprene. All of the heterologous enzymes of the MVA pathway, as well as Idi and IspS, were shown to be synthesized at high levels in C. ljungdahlii , as demonstrated by Western blotting, and were enzymatically active, as demonstrated by in vivo product synthesis. The quantities of mevalonate and isoprene produced here are far below what would be required of a commercial production strain. However, proposals are made that could enable a substantial increase in the mass yield of product formation. IMPORTANCE This study demonstrates the ability to synthesize a heterologous metabolic pathway in C. ljungdahlii , an organism capable of metabolizing either simple sugars or syngas or both together (mixotrophy). Syngas, an inexpensive source of carbon and reducing equivalents, is produced as a major component of some industrial waste gas, and it can be

  8. Protein modification by fermentation

    DEFF Research Database (Denmark)

    Barkholt, Helle Vibeke; Jørgensen, P.B.; Sørensen, Anne Dorthe

    1998-01-01

    The effect of fermentation on components of potential significance for the allergenicity of pea was analyzed. Pea flour was fermented with three lactic acid bacteria, Pediococcus pentosaceus, Lactococcus raffinolactis, and Lactobacillus plantarum, and two fungi, Rhizopus microsporus, var. oligosp...

  9. Probiotic fermented dairy products

    OpenAIRE

    Adnan Tamime; Rajka Božanić; Irena Rogelj

    2003-01-01

    Fermented dairy products are the most popular vehicle used in theindustry for the implantation of the probiotic microflora in humans. Therefore this paper provides an overview of new knowledge on probiotic fermented dairy products. It involves historical developments, commercial probiotic microorganisms and products, and their therapeutic properties, possibilities of quality improvement of different types of newly developed fermented dairy products together with fermented goat’s milk products.

  10. Probiotic fermented dairy products

    Directory of Open Access Journals (Sweden)

    Adnan Tamime

    2003-04-01

    Full Text Available Fermented dairy products are the most popular vehicle used in theindustry for the implantation of the probiotic microflora in humans. Therefore this paper provides an overview of new knowledge on probiotic fermented dairy products. It involves historical developments, commercial probiotic microorganisms and products, and their therapeutic properties, possibilities of quality improvement of different types of newly developed fermented dairy products together with fermented goat’s milk products.

  11. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453.

    Science.gov (United States)

    Dasgupta, Diptarka; Ghosh, Debashish; Bandhu, Sheetal; Adhikari, Dilip K

    2017-07-01

    Optimum utilization of fermentable sugars from lignocellulosic biomass to deliver multiple products under biorefinery concept has been reported in this work. Alcohol fermentation has been carried out with multiple cell recycling of Kluyveromyces marxianus IIPE453. The yeast utilized xylose-rich fraction from acid and steam treated biomass for cell generation and xylitol production with an average yield of 0.315±0.01g/g while the entire glucose rich saccharified fraction had been fermented to ethanol with high productivity of 0.9±0.08g/L/h. A detailed insight into its genome illustrated the strain's complete set of genes associated with sugar transport and metabolism for high-temperature fermentation. A set flocculation proteins were identified that aided in high cell recovery in successive fermentation cycles to achieve alcohols with high productivity. We have brought biomass derived sugars, yeast cell biomass generation, and ethanol and xylitol fermentation in one platform and validated the overall material balance. 2kg sugarcane bagasse yielded 193.4g yeast cell, and with multiple times cell recycling generated 125.56g xylitol and 289.2g ethanol (366mL). Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Bench scale demonstration of the Supermethanol concept : The synthesis of methanol from glycerol derived syngas

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.

    2012-01-01

    An integrated process for the synthesis of methanol from aqueous glycerol involving reforming of the feed to syngas followed by methanol synthesis is successfully demonstrated in a continuous bench scale unit. Glycerol reforming was carried out at pressures of 24-27 MPa and temperatures of 948-998 K

  13. Gasification and effect of gasifying temperature on syngas quality and tar generation: A short review

    Science.gov (United States)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.

    2012-06-01

    Corrosion, erosion and plugging of the downstream equipments by tar and ash particle and, low energy content of syngas are the main problems of biomass gasification process. This paper attempts to review the findings of literature on the effect of temperature on syngas quality, and in alleviating the tar and ash problems in the gasification process. The review of literature indicates that as the gasification temperature increases, concentration of the resulting H2 and carbon conversion efficiency increase, the amount of tar in the syngas decreases. For the same condition, CH4 and CO concentration do not show consistent trend when the feedstock and gasification process varies. These necessitate the need for conducting an experiment for a particular gasification process and feedstock to understand fully the benefits of controlling the gasification temperature. This paper also tries to propose a method to improve the syngas quality and to reduce the tar amount by using preheated air and superheated steam as a gasifying media for oil palm fronds (OPF) gasification.

  14. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal.

    Science.gov (United States)

    Xie, Qinglong; Borges, Fernanda Cabral; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Hussain, Fida; Chen, Paul; Ruan, Roger

    2014-03-01

    In the present study, a microwave-assisted biomass gasification system was developed for syngas production. Three catalysts including Fe, Co and Ni with Al2O3 support were examined and compared for their effects on syngas production and tar removal. Experimental results showed that microwave is an effective heating method for biomass gasification. Ni/Al2O3 was found to be the most effective catalyst for syngas production and tar removal. The gas yield reached above 80% and the composition of tar was the simplest when Ni/Al2O3 catalyst was used. The optimal ratio of catalyst to biomass was determined to be 1:5-1:3. The addition of steam was found to be able to improve the gas production and syngas quality. Results of XRD analyses demonstrated that Ni/Al2O3 catalyst has good stability during gasification process. Finally, a new concept of microwave-assisted dual fluidized bed gasifier was put forward for the first time in this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.

    Science.gov (United States)

    Xie, Qinglong; Kong, Sifang; Liu, Yangsheng; Zeng, Hui

    2012-04-01

    A two-stage technology integrated with biomass catalytic pyrolysis and gasification processes was utilized to produce syngas (H(2)+CO). In the presence of different nickel based catalysts, effects of pyrolysis temperature and gasification temperature on gas production were investigated. Experimental results showed that more syngas and char of high quality could be obtained at a temperature of 750°C in the stage of pyrolysis, and in the stage of gasification, pyrolysis char (produced at 750°C) reacted with steam and the maximum yield of syngas was obtained at 850°C. Syngas yield in this study was greatly increased compared with previous studies, up to 3.29Nm(3)/kg biomass. The pyrolysis process could be well explained by Arrhenius kinetic first-order rate equation. XRD analyses suggested that formation of Mg(0.4)Ni(0.6)O and increase of Ni(0) crystallite size were two main reasons for the deactivation of nickel based catalysts at higher temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach.

    Science.gov (United States)

    Varga, Tamás; Olm, Carsten; Nagy, Tibor; Zsély, István Gy; Valkó, Éva; Pálvölgyi, Róbert; Curran, Henry J; Turányi, Tamás

    2016-08-01

    A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. ( Combust Flame , 2013, 160, 995-1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst , 2015, 35, 589-596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet-stirred reactors. The experimental conditions covered wide ranges of temperatures (800-2500 K), pressures (0.5-50 bar), equivalence ratios ( ϕ = 0.3-5.0), and C/H ratios (0-3). In total, 48 Arrhenius parameters and 5 third-body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H 2 /CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature-dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data.

  17. Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach

    Science.gov (United States)

    Varga, Tamás; Olm, Carsten; Nagy, Tibor; Zsély, István Gy.; Valkó, Éva; Pálvölgyi, Róbert; Curran, Henry. J.

    2016-01-01

    ABSTRACT A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. (Combust Flame, 2013, 160, 995–1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst, 2015, 35, 589–596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet‐stirred reactors. The experimental conditions covered wide ranges of temperatures (800–2500 K), pressures (0.5–50 bar), equivalence ratios (ϕ = 0.3–5.0), and C/H ratios (0–3). In total, 48 Arrhenius parameters and 5 third‐body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H2/CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature‐dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data. PMID:27840549

  18. SynGas production from organic waste using non-thermal-pulsed discharge.

    Science.gov (United States)

    Chun, Young N; Kim, Si W; Song, Hyoung O; Chae, Jae O

    2005-04-01

    The purpose of this study was to develop a technology that can convert biogas to synthesis gas (SynGas), a low-emission substituted energy, using a non-thermal-pulsed plasma method. To investigate the characteristics of SynGas production from simulated biogas, the reforming characteristics in relation to variations in pulse frequency, biogas component ratio (C3H8/CO2), vapor flow ratio (H2O/total flow rate [TFR]), biogas velocity, and pulse power were studied. A maximum conversion rate of 49.1% was achieved for the biogas when the above parameters were 500 Hz, 1.5, 0.52, 0.32 m/sec, and 657 W, respectively. Under the above conditions, the dry basis mole fractions of the SynGas were as follows: H2 = 0.645, CH4 = 0.081, C2H2 = 0.067, C3H6 = 0.049, CO = 0.008 and C2H4 = 0.004. The ratio of hydrogen to the other intermediates in the SynGas (H2/ITMs) was 3.1.

  19. A novel reactor configuration for packed bed chemical-looping combustion of syngas

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2013-01-01

    This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed

  20. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.

    Science.gov (United States)

    Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A

    2016-10-01

    Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tunable Syngas Production from CO2and H2O in an Aqueous Photoelectrochemical Cell.

    Science.gov (United States)

    Chu, Sheng; Fan, Shizhao; Wang, Yongjie; Rossouw, David; Wang, Yichen; Botton, Gianluigi A; Mi, Zetian

    2016-11-07

    Syngas, the mixture of CO and H 2 , is a key feedstock to produce methanol and liquid fuels in industry, yet limited success has been made to develop clean syngas production using renewable solar energy. We demonstrated that syngas with a benchmark turnover number of 1330 and a desirable CO/H 2 ratio of 1:2 could be attained from photoelectrochemical CO 2 and H 2 O reduction in an aqueous medium by exploiting the synergistic co-catalytic effect between Cu and ZnO. The CO/H 2 ratio in the syngas products was tuned in a large range between 2:1 and 1:4 with a total unity Faradaic efficiency. Moreover, a high Faradaic efficiency of 70 % for CO was acheived at underpotential of 180 mV, which is the lowest potential ever reported in an aqueous photoelectrochemical cell. It was found that the combination of Cu and ZnO offered complementary chemical properties that lead to special reaction channels not seen in Cu, or ZnO alone. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single-Pass Catalytic Conversion of Syngas into Olefins via Methanol.

    Science.gov (United States)

    Olsbye, Unni

    2016-06-20

    All together now: Combination in a single reactor of the catalysts for converting syngas into methanol and methanol into olefins was recently reported by Cheng et al. This approach considerably simplifies the catalytic conversion of natural gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Production and Recovery of C2-C4 Olefins from Syngas.

    Science.gov (United States)

    Murchison, C. B.; And Others

    1986-01-01

    Discusses reacting coal-derived hydrogen and carbon monoxide (syngas) at relatively high selectivity to ethylene, propylene, and butenes over novel catalysts. In addition, data are given which illustrate a unique ethylene removal step which is compatible with operating the olefin synthesis at low conversion. (JN)

  4. Conversion of Methane to Syngas by a Membrane-Based Oxidation-Reforming Process

    NARCIS (Netherlands)

    Chen, C.S.; Chen, Chusheng; Feng, Shao-Jie; Ran, S.; Zhu, Du-Chun; Liu, W.; Liu, Wei; Bouwmeester, Henricus J.M.

    2003-01-01

    Two processes in one space: Methane, the main component of natural gas, can be converted into syngas efficiently in a two-stage oxygen-permeable ceramic membrane reactor by means of integrated oxidation and reforming processes (see picture). This could be a cheaper alternative to the current

  5. Aggravated test of Intermediate temperature solid oxide fuel cells fed with tar-contaminated syngas

    Science.gov (United States)

    Pumiglia, Davide; Vaccaro, Simone; Masi, Andrea; McPhail, Stephen J.; Falconieri, Mauro; Gagliardi, Serena; Della Seta, Livia; Carlini, Maurizio

    2017-02-01

    In the present work, the effects of a tar-containing simulated syngas on an IT-SOFC (Intermediate Temperature Solid Oxide Fuel Cell) are evaluated. Performance and degradation rate of a planar anode-supported cell, operating under a simulated syngas obtained from steam-enriched air gasification of biomass, have been studied. The simulated syngas was contaminated using toluene as a model tar. Polarization curves and electrochemical impedance spectroscopy have been carried out under different toluene concentrations. A cell was then operated under a constant current density on a long run. EIS measurements were made during the operation to analyze the degradation, and the voltage evolution of the cell was compared to that obtained from another identical cell operated in clean syngas for 1000 h under similar conditions. A deep post-mortem characterization was performed by means of XRD measurements, Raman spectroscopy and SEM/EDS analysis. Results show that the presence of tar dramatically reduces the electrochemical performances of the cell, affecting both activation and mass transport processes. Post-mortem analysis shows the formation of carbon deposits, oxidation of Ni to NiO, segregation of ZrO2 from the YSZ phase, particle coarsening and enhanced fragility of the anode structure, in good agreement with what suggested from the electrochemical results.

  6. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    Science.gov (United States)

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.

  7. Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Shiquan Feng

    2017-01-01

    Full Text Available Based on the theory of direct relation graph (DRG and the sensitivity analysis, a reduced mechanism for the diesel-syngas dual fuel was constructed. Three small thresholds were applied in the process of the detailed mechanism simplification by DRG, and a skeletal mechanism with 185 elements and the 832 elementary reactions was obtained. According to the framework of the skeletal mechanism, the time-consuming approach of sensitivity analysis was employed for further simplification, and the skeletal mechanism was further reduced to the size of 158 elements and 705 reactions. The Chemkin software with the detailed mechanism was utilized to calculate the effect of syngas addition on the combustion characteristics of diesel combustion. The findings showed that the addition of syngas could reduce the ignition delay time and increase the laminar flame speed. Based on the reduced mechanism and engine parameters, a 3D model of the engine was constructed with the Forte code. The 3D model was adopted to study the effect of syngas addition on the performance and exhaust emissions of the engine and the relevant data of the experiment was used in the calibration of the 3D model.

  8. GUT FERMENTATION SYNDROME

    African Journals Online (AJOL)

    boaz

    individuals who became intoxicated after consuming carbohydrates, which became fermented in the gastrointestinal tract. These claims of intoxication without drinking alcohol, and the findings on endogenous alcohol fermentation are now called Gut. Fermentation Syndrome. This review will concentrate on understanding ...

  9. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  10. A Study on the Combustion Characteristics of a Generator Engine Running on a Mixture of Syngas and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hyun; Park, Cheol Woong [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Sun Youp; Kim, Chang Gi [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2011-07-15

    Internal combustion engines running on syngas, which can be obtained from biomass or organic wastes, are expected to be one of the suitable alternatives for power generation, because they are environment-friendly and do not contribute to the depletion of fossil fuels. However, syngas has variable compositions and a lower heating value than pure natural gas, owing to which the combustion conditions need to be adjusted in order to achieve stable combustion. In this study, a gas that has the same characteristics as syngas, such as low heating value (LHV), was produced by mixing N{sub 2} with compressed natural gas (CNG). In addition, this study investigates the combustion characteristics of syngas when it is mixed with hydrogen in a ratio ranging from 10% to 30% with a constant LHV of total gas.

  11. Assessment of syngas composition variability in a pilot-scale downdraft biomass gasifier by an extended equilibrium model.

    Science.gov (United States)

    Simone, Marco; Barontini, Federica; Nicolella, Cristiano; Tognotti, Leonardo

    2013-07-01

    A new simplified approach based on equilibrium modeling is proposed in this work to describe the correlations among syngas species experimentally observed in a pilot scale downdraft biomass gasifier operated with different feedstocks (biomass pellets and vine prunings). The modeling approach is based on experimental evidence on the presence of devolatilization products in the syngas and fluctuations of syngas composition during stationary operation, accounted for by introducing two empirical parameters, a by-pass index and a permeability index. The simplified model correctly reproduces the correlations among the main syngas species (including methane and ethylene) resulting from experimental data of pilot tests with different feedstocks and under a wide range of operating conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Near-zero emissions combustor system for syngas and biofuels

    International Nuclear Information System (INIS)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  13. High efficient conversion of CO2-rich bio-syngas to CO-rich bio-syngas using biomass char: a useful approach for production of bio-methanol from bio-oil.

    Science.gov (United States)

    Xu, Yong; Ye, Tong-qi; Qiu, Song-bai; Ning, Shen; Gong, Fei-yan; Liu, Yong; Li, Quan-xin

    2011-05-01

    A novel approach for high efficient conversion of the CO(2)-rich bio-syngas into the CO-rich bio-syngas was carried out by using biomass char and Ni/Al(2)O(3) catalyst, which was successfully applied for production of bio-methanol from bio-oil. After the bio-syngas conditioning, the CO(2)/CO ratio prominently dropped from 6.33 to 0.01-0.28. The maximum CO yield in the bio-syngas conditioning process reached about 1.96 mol/(mol CO(2)) with a nearly complete conversion of CO(2) (99.5%). The performance of bio-methanol synthesis was significantly improved via the conditioned bio-syngas, giving a maximum methanol yield of 1.32 kg/(kg(catalyst)h) with a methanol selectivity of 99%. Main reaction paths involved in the bio-syngas conditioning process have been investigated in detail by using different model mixture gases and different carbon sources. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Experimental and Numerical Study of the Micromix Combustion Principle Applied for Hydrogen and Hydrogen-Rich Syngas as Fuel with Increased Energy Density for Industrial Gas Turbine Applications

    OpenAIRE

    Funke, Harald H.-W.; Dickhoff, Jens; Keinz, Jan; Anis, Haj Ayed; Parente, Alessandro; Hendrick, Patrick

    2014-01-01

    The Dry Low NOx (DLN) Micromix combustion principle with increased energy density is adapted for the industrial gas turbine APU GTCP 36-300 using hydrogen and hydrogen-rich syngas with a composition of 90 %-Vol. hydrogen (H2) and 10 %-Vol. carbon-monoxide (CO). Experimental and numerical studies of several combustor geometries for hydrogen and syngas show the successful advance of the DLN Micromix combustion from pure hydrogen to hydrogen-rich syngas. The impact of the different fuel properti...

  15. Development of a mixed-conductive ceramic membrane for syngas production

    International Nuclear Information System (INIS)

    Etchegoyen, G.

    2005-10-01

    Natural gas conversion into syngas (H 2 +CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  16. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Amy, Fabrice [Air Products and Chemicals Inc., Allentown, PA (United States); Hufton, Jeffrey [Air Products and Chemicals Inc., Allentown, PA (United States); Bhadra, Shubhra [Air Products and Chemicals Inc., Allentown, PA (United States); Weist, Edward [Air Products and Chemicals Inc., Allentown, PA (United States); Lau, Garret [Air Products and Chemicals Inc., Allentown, PA (United States); Jonas, Gordon [Air Products and Chemicals Inc., Allentown, PA (United States)

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  17. Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

    DEFF Research Database (Denmark)

    Kohsri, Sompol; Meechai, Apichart; Prapainainar, Chaiwat

    2018-01-01

    guarantee a continuous 24 hours electricity supply in case of shortage of energy (during on cloudy day and at the nighttime). Two consecutive days of commissioning phase are necessary for the entire system to operate, which is a solid basis for including the syngas generator in the hybrid system......, in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can...... electricity generation....

  18. Catalytic reforming of methane to syngas in an oxygen-permeative membrane reactor

    Science.gov (United States)

    Urano, Takeshi; Kubo, Keiko; Saito, Tomoyuki; Hitomi, Atsushi

    2011-05-01

    For fuel cell applications, partial oxidative reforming of methane to syngas, hydrogen and carbon monoxide, was performed via a dense oxygen-permeative ceramic membrane composed by both ionic and electronic conductive materials. The modification of Ni-based catalyst by noble metals was investigated to increase oxygen permeation flux and decrease carbon deposition during reforming reaction. The role of each component in catalyst was also discussed.

  19. The use of biomass syngas in ic engines and ccgt plants: a comparative analysis

    OpenAIRE

    2010-01-01

    Abstract This paper studies the use of biomass syngas, obtained from pyrolysis or gasification, in traditional energy-production systems, specifically Internal Combustion (IC) engines and Combined Cycle Gas Turbine (CCGT) plants. The biomass conversion stage has been simulated by means of a gas-solid thermodynamic model. The IC and CCGT plant configurations were optimised to maximise heat and power production. Several types of biomass feedstock were studied to assess their potentia...

  20. Process simulation and comparison of biological conversion of syngas and hydrogen in biogas plants

    OpenAIRE

    Salman Chaudhary Awais; Schwede Sebastian; Thorin Eva; Yan Jinyue

    2017-01-01

    Organic waste is a good source of clean energy. However, different fractions of waste have to be utilized efficiently. One way is to find pathways to convert waste into useful products via various available processes (gasification, pyrolysis anaerobic digestion, etc.) and integrate them to increase the combined efficiency of the process. The syngas and hydrogen produced from the thermal conversion of biomass can be upgraded to biomethane via biological methanation. The current study presents ...

  1. Gasification of biomass in water/gas-stabilized plasma for syngas production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Konrád, Miloš; Kopecký, Vladimír; Hlína, Michal; Kavka, Tetyana; Van Oost, G.; Beeckman, E.; Defoort, B.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 1199-1206 ISSN 0011-4626. [Symposium on PlasmaPhysics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR(CZ) GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma pyrolysis * gasfication * syngas * thermal plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  2. Steam Plasma Treatment of Organic Substances for Hydrogen and Syngas Production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Hlína, Michal; Kopecký, Vladimír; Mašláni, Alan; Živný, Oldřich; Křenek, Petr; Serov, Anton; Hurba, Oleksiy

    2017-01-01

    Roč. 37, č. 3 (2017), s. 739-762 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA15-19444S Institutional support: RVO:61389021 Keywords : Plasma gasification * Thermal plasma * Steam plasma * Syngas * Organic waste Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.355, year: 2016

  3. Methane-rich syngas production from hydrocarbon fuels using multi-functional catalyst/capture agent

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Nicholas S.; Shekhawat, Dushyant; Berry, David A.; Surdoval, Wayne A.

    2017-02-07

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 400.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 400.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 400.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 400-900.degree. C. and pressures in excess of 10 atmospheres.

  4. Bluff-body stabilized flame dynamics of lean premixed syngas combustion

    Science.gov (United States)

    Im, Hong G.; Kim, Yu Jeong; Lee, Bok Jik; Kaust Team

    2015-11-01

    Recently, syngas combustion has been actively investigated for the potential application to integrated gasification combined cycle (IGCC) systems. While lean premixed combustion is attractive for both reduced emission and enhanced efficiency, flame instability becomes often an issue. Bluff-bodies have been adopted as effective flame holders for practical application of premixed flames. In the present study, high-fidelity direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized on a bluff-body, in particular at the near blow-off regime of the flame. A two-dimensional domain of 4 mm height and 20 mm length with a flame holder of a 1 mm-by-1 mm square geometry is used. For a syngas mixture with the equivalence ratio of 0.5 and the CO:H2 ratio of 1, several distinct flame modes are identified as the inflow velocity approaches to the blowoff limit. The sequences of extinction pathway and combustion characteristics are discussed.

  5. Syngas obtainment from the gasification of asphaltenes of the San Fernando crude oil

    International Nuclear Information System (INIS)

    Moreno A, Laura; Rodriguez C, Fabio; Afanador R, Luz E; Grosso V, Jorge

    2010-01-01

    In this work, we developed the first study in Colombia to obtain and evaluate syngas compositions derived from asphaltenes gasification. These asphaltenes came from the implementation of a Deasphalting process to San Fernando crude oil, with the purpose of looking for technological options for their utilization. We performed the design, installation and commissioning of facilities for the gasification of asphaltenes at laboratory scale, it following an experimental methodology, performing nine tests and considering temperature and agent gasification quantity (oxygen) as independent variables. The syngas derived from gasification was analyzed by two chromatographic techniques, which reported the presence of refinery gases and sulfur. We evidenced a growth tendency of CO, H 2 and sulfur composition and a decrease in CH 4 and CO 2 composition with temperature. The composition of the syngas was evaluated with different quantities of gasification agent (33%, 40% and 47% the amount of oxygen theoretically required for complete combustion) at each temperature levels operated. It was established that when using a 40% of gasification agent, you get greater average content of CO and H 2 , which are the interest gases in the gasification process.

  6. Syngas Production from Pyrolysis of Nine Composts Obtained from Nonhybrid and Hybrid Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Adéla Hlavsová

    2014-01-01

    Full Text Available A pyrolysis of compost for the production of syngas with an explicit H2/CO = 2 or H2/CO = 3 was investigated in this study. The composts were obtained from nonhybrid (perennial grasses (NHG and hybrid (perennial grasses (HG. Discrepancies in H2 evolution profiles were found between NHG and HG composts. In addition, positive correlations for NHG composts were obtained between (i H2 yield and lignin content, (ii H2 yield and potassium content, and (iii CO yield and cellulose content. All composts resulted in H2/CO = 2 and five of the nine composts resulted in H2/CO = 3. Exceptionally large higher heating values (HHVs of pyrolysis gas, very close to HHVs of feedstock, were obtained for composts made from mountain brome (MB, 16.23 MJ/kg, hybrid Becva (FB, 16.45 MJ/kg, and tall fescue (TF, 17.43 MJ/kg. The MB and FB composts resulted in the highest syngas formation with H2/CO = 2, whereas TF compost resulted in the highest syngas formation with H2/CO = 3.

  7. A numerical study on extinction and NOx formation in nonpremixed flames with syngas fuel

    KAUST Repository

    Chun, Kangwoo

    2011-11-01

    The flame structure, extinction, and NOx emission characteristics of syngas/air nonpremixed flames, have been investigated numerically. The extinction stretch rate increased with the increase in the hydrogen proportion in the syngas and with lower fuel dilution and higher initial temperature. It also increased with pressure, except for the case of highly diluted fuel at high pressure. The maximum temperature and the emission index of nitric oxides (EINOx) also increased in aforementioned conditions. The EINOx decreased with stretch rate in general, while the decreasing rate was found to be somewhat different between the cases of N2 and CO2 dilutions. The reaction paths of NOx formation were analyzed and represented as NO reaction path diagram. The increase in N radical resulted in larger NOx production at high initial temperature and pressure. As the pressure increases, EINOx increases slower due to the third-body recombination. The thermal NO mechanism is weakened for high dilution cases and non-thermal mechanisms prevail. The combustion conditions achieving higher extinction stretch rate can be lead to more NOx emission, therefore that the selection of optimum operation range is needed in syngas combustion. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  8. The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis

    Science.gov (United States)

    Hinkley, James T.; McNaughton, Robbie K.; Pye, John; Saw, Woei; Stechel, Ellen B.

    2016-05-01

    Reforming of methane is practiced on a vast scale globally for the production of syngas as a precursor for the production of many commodities, including hydrogen, ammonia and synthetic liquid fuels. Solar reforming can reduce the greenhouse gas intensity of syngas production by up to about 40% by using solar thermal energy to provide the endothermic heat of reaction, traditionally supplied by combustion of some of the feed. This has the potential to enable the production of solar derived synthetic fuels as drop in replacements for conventional fuels with significantly lower CO2 intensity than conventional gas to liquids (GTL) processes. However, the intermittent nature of the solar resource - both diurnal and seasonal - poses significant challenges for such a concept, which relies on synthesis processes that typically run continuously on very stable feed compositions. We find that the integration of solar syngas production to a GTL process is a non-trivial exercise, with the ability to turn down the capacity of the GTL synthesis section, and indeed to suspend operations for short periods without significant detriment to product quality or process operability, likely to be a key driver for the commercial implementation of solar liquid fuels. Projected costs for liquid fuel synthesis suggest that solar reforming and small scale gas to liquid synthesis can potentially compete with conventional oil derived transport fuels in the short to medium term.

  9. Power-to-Syngas: An Enabling Technology for the Transition of the Energy System?

    Science.gov (United States)

    Foit, Severin R; Vinke, Izaak C; de Haart, Lambertus G J; Eichel, Rüdiger-A

    2017-05-08

    Power-to-X concepts promise a reduction of greenhouse gas emissions simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power-to-syngas, that is, the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high-value chemicals, offers an efficient technology to couple different energy-intense sectors, such as "traffic and transportation" and "chemical industry". Syngas produced by co-electrolysis can thus be regarded as a key-enabling step for a transition of the energy system, which offers additionally features of CO 2 -valorization and closed carbon cycles. Here, we discuss advantages and current limitations of low- and high-temperature co-electrolysis. Advances in both fundamental understanding of the basic reaction schemes and stable high-performance materials are essential to further promote co-electrolysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Shape-Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate.

    Science.gov (United States)

    Jiao, Feng; Pan, Xiulian; Gong, Ke; Chen, Yuxiang; Li, Gen; Bao, Xinhe

    2018-03-02

    Syngas conversion via Fischer-Tropsch synthesis (FTS) is characterized by a wide distribution of hydrocarbon products ranging from one to a few ten carbon atoms. We report here that selectivity can be effectively steered toward ethylene employing the oxide-zeolite (OX-ZEO) catalyst concept with ZnCrOx-mordenite (MOR). The selectivity of ethylene alone reaches as high as 73% at 26% CO conversion, in stark contrast to a maximum 30% predicted for C₂ hydrocarbons by the Anderson-Schultz-Flory (ASF) model in FTS. Ethylene selectivity is also significantly higher than those obtained in any other direct syngas conversion or the multi-step methanol-to-olefin process. Selective site blocking experiments reveal that this highly selective pathway is realized over the catalytic sites within the 8-membered ring (8MR) side pockets of MOR via ketene as an intermediate. The 12MR channels are not at all selective for ethylene. This study provides substantive evidence for a new type of syngas chemistry with ketene as the key reaction intermediate that enables extraordinary ethylene selectivity within the OX-ZEO catalyst framework. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production.

    Science.gov (United States)

    Iaquaniello, G; Salladini, A; Palo, E; Centi, G

    2015-02-01

    Catalytic partial oxidation coupled with membrane purification is a new process scheme to improve resource and energy efficiency in a well-established and large scale-process like syngas production. Experimentation in a semi industrial-scale unit (20 Nm(3)  h(-1) production) shows that a novel syngas production scheme based on a pre-reforming stage followed by a membrane for hydrogen separation, a catalytic partial oxidation step, and a further step of syngas purification by membrane allows the oxygen-to-carbon ratio to be decreased while maintaining levels of feed conversion. For a total feed conversion of 40 %, for example, the integrated novel architecture reduces oxygen consumption by over 50 %, with thus a corresponding improvement in resource efficiency and an improved energy efficiency and economics, these factors largely depending on the air separation stage used to produce pure oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Syngas Production from Pyrolysis of Nine Composts Obtained from Nonhybrid and Hybrid Perennial Grasses

    Science.gov (United States)

    Hlavsová, Adéla; Raclavská, Helena; Juchelková, Dagmar; Škrobánková, Hana; Frydrych, Jan

    2014-01-01

    A pyrolysis of compost for the production of syngas with an explicit H2/CO = 2 or H2/CO = 3 was investigated in this study. The composts were obtained from nonhybrid (perennial) grasses (NHG) and hybrid (perennial) grasses (HG). Discrepancies in H2 evolution profiles were found between NHG and HG composts. In addition, positive correlations for NHG composts were obtained between (i) H2 yield and lignin content, (ii) H2 yield and potassium content, and (iii) CO yield and cellulose content. All composts resulted in H2/CO = 2 and five of the nine composts resulted in H2/CO = 3. Exceptionally large higher heating values (HHVs) of pyrolysis gas, very close to HHVs of feedstock, were obtained for composts made from mountain brome (MB, 16.23 MJ/kg), hybrid Becva (FB, 16.45 MJ/kg), and tall fescue (TF, 17.43 MJ/kg). The MB and FB composts resulted in the highest syngas formation with H2/CO = 2, whereas TF compost resulted in the highest syngas formation with H2/CO = 3. PMID:25101320

  13. Asian fungal fermented food

    NARCIS (Netherlands)

    Nout, M.J.R.; Aidoo, K.E.

    2010-01-01

    In Asian countries, there is a long history of fermentation of foods and beverages. Diverse micro-organisms, including bacteria, yeasts and moulds, are used as starters, and a wide range of ingredients can be made into fermented foods. The main raw materials include cereals, leguminous seeds,

  14. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  15. Fermented milk for hypertension

    DEFF Research Database (Denmark)

    Usinger, Lotte; Reimer, Christina; Ibsen, Hans

    2012-01-01

    Fermented milk has been suggested to have a blood pressure lowering effect through increased content of proteins and peptides produced during the bacterial fermentation. Hypertension is one of the major risk factors for cardiovascular disease world wide and new blood pressure reducing lifestyle i...

  16. Food Technologies: Fermentation

    NARCIS (Netherlands)

    Nout, M.J.R.

    2014-01-01

    Fermentation refers to the use of microorganisms to achieve desirable food properties in the fermented food or beverage. Although the word ‘fermentation’ indicates ‘anaerobic metabolism,’ it is also used in a broader sense to indicate all anaerobic and aerobic microbiological and biochemical

  17. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S. James [Gas Technology Inst., Des Plaines, IL (United States)

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful

  18. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.

    Science.gov (United States)

    Heinrich, Daniel; Raberg, Matthias; Fricke, Philipp; Kenny, Shane T; Morales-Gamez, Laura; Babu, Ramesh P; O'Connor, Kevin E; Steinbüchel, Alexander

    2016-10-15

    The purple nonsulfur alphaproteobacterium Rhodospirillum rubrum S1 was genetically engineered to synthesize a heteropolymer of mainly 3-hydroxydecanoic acid and 3-hydroxyoctanoic acid [P(3HD-co-3HO)] from CO- and CO 2 -containing artificial synthesis gas (syngas). For this, genes from Pseudomonas putida KT2440 coding for a 3-hydroxyacyl acyl carrier protein (ACP) thioesterase (phaG), a medium-chain-length (MCL) fatty acid coenzyme A (CoA) ligase (PP_0763), and an MCL polyhydroxyalkanoate (PHA) synthase (phaC1) were cloned and expressed under the control of the CO-inducible promoter P cooF from R. rubrum S1 in a PHA-negative mutant of R. rubrum P(3HD-co-3HO) was accumulated to up to 7.1% (wt/wt) of the cell dry weight by a recombinant mutant strain utilizing exclusively the provided gaseous feedstock syngas. In addition to an increased synthesis of these medium-chain-length PHAs (PHA MCL ), enhanced gene expression through the P cooF promoter also led to an increased molar fraction of 3HO in the synthesized copolymer compared with the P lac promoter, which regulated expression on the original vector. The recombinant strains were able to partially degrade the polymer, and the deletion of phaZ2, which codes for a PHA depolymerase most likely involved in intracellular PHA degradation, did not reduce mobilization of the accumulated polymer significantly. However, an amino acid exchange in the active site of PhaZ2 led to a slight increase in PHA MCL accumulation. The accumulated polymer was isolated; it exhibited a molecular mass of 124.3 kDa and a melting point of 49.6°C. With the metabolically engineered strains presented in this proof-of-principle study, we demonstrated the synthesis of elastomeric second-generation biopolymers from renewable feedstocks not competing with human nutrition. Polyhydroxyalkanoates (PHAs) are natural biodegradable polymers (biopolymers) showing properties similar to those of commonly produced petroleum-based nondegradable polymers. The

  19. Syngas suitability for solid oxide fuel cells applications produced via biomass steam gasification process: Experimental and modeling analysis

    Science.gov (United States)

    Pieratti, Elisa; Baratieri, Marco; Ceschini, Sergio; Tognana, Lorenzo; Baggio, Paolo

    The technologies and the processes for the use of biomass as an energy source are not always environmental friendly. It is worth to develop approaches aimed at a more sustainable exploitation of biomass, avoiding whenever possible direct combustion and rather pursuing fuel upgrade paths, also considering direct conversion to electricity through fuel cells. In this context, it is of particular interest the development of the biomass gasification technology for synthesis gas (i.e., syngas) production, and the utilization of the obtained gas in fuel cells systems, in order to generate energy from renewable resources. Among the different kind of fuel cells, SOFCs (solid oxide fuel cells), which can be fed with different type of fuels, seem to be also suitable for this type of gaseous fuel. In this work, the syngas composition produced by means of a continuous biomass steam gasifier (fixed bed) has been characterized. The hydrogen concentration in the syngas is around 60%. The system is equipped with a catalytic filter for syngas purification and some preliminary tests coupling the system with a SOFCs stack are shown. The data on the syngas composition and temperature profile measured during the experimental activity have been used to calibrate a 2-dimensional thermodynamic equilibrium model.

  20. Investigating the Plasma-Assisted and Thermal Catalytic Dry Methane Reforming for Syngas Production: Process Design, Simulation and Evaluation

    Directory of Open Access Journals (Sweden)

    Evangelos Delikonstantis

    2017-09-01

    Full Text Available The growing surplus of green electricity generated by renewable energy technologies has fueled research towards chemical industry electrification. By adapting power-to-chemical concepts, such as plasma-assisted processes, cheap resources could be converted into fuels and base chemicals. However, the feasibility of those electrified processes at large scale has not been investigated yet. Thus, the current work strives to compare, for first time in the literature, plasma-assisted production of syngas, from CH4 and CO2 (dry methane reforming, with thermal catalytic dry methane reforming. Specifically, both processes are conceptually designed to deliver syngas suitable for methanol synthesis (H2/CO ≥ 2 in mole. The processes are simulated in the Aspen Plus process simulator where different process steps are investigated. Heat integration and equipment cost estimation are performed for the most promising process flow diagrams. Collectively, plasma-assisted dry methane reforming integrated with combined steam/CO2 methane reforming is an effective way to deliver syngas for methanol production. It is more sustainable than combined thermal catalytic dry methane reforming with steam methane reforming, which has also been proposed for syngas production of H2/CO ≥ 2; in the former process, 40% more CO2 is captured, while 38% less H2O is consumed per mol of syngas. Furthermore, the plasma-assisted process is less complex than the thermal catalytic one; it requires higher amount of utilities, but comparable capital investment.

  1. Effects of Feed Composition and Feed Impurities in the Catalytic Conversion of Syngas to Higher Alcohols over Alkali-Promoted Cobalt–Molybdenum Sulfide

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Jensen, Peter Arendt; Jensen, Anker Degn

    2011-01-01

    Alkali-promoted cobalt–molybdenum sulfide is a potential catalyst for the conversion of syngas into higher alcohols. This work is an investigation of how the feed composition influences the behavior of the sulfide catalyst. In a sulfur-free syngas the production of higher alcohols is observed...

  2. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Mortensen, Peter Mølgaard; Trane, Rasmus

    2009-01-01

    The present work is an investigation of how the process conditions influence the synthesis of mixed alcohols from syngas over a K2CO3/Co/MoS2/C catalyst. The emphasis in the investigations is upon the effects of H2S in the syngas feed. However the effects of the temperature and of the partial pre...

  3. Fermentative alcohol production

    Science.gov (United States)

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  4. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.

    Science.gov (United States)

    Ren, Shoujie; Lei, Hanwu; Wang, Lu; Bu, Quan; Chen, Shulin; Wu, Joan; Julson, James; Ruan, Roger

    2013-05-01

    Microwave pyrolysis of torrefied Douglas fir sawdust pellet was investigated to determine the effects of torrefaction on the biofuel production. Compared to the pyrolysis of raw biomass, the increased concentrations of phenols and sugars and reduced concentrations of guaiacols and furans were obtained from pyrolysis of torrefied biomass, indicating that torrefaction as a pretreatment favored the phenols and sugars production. Additionally, about 3.21-7.50 area% hydrocarbons and the reduced concentration of organic acids were obtained from pyrolysis of torrefied biomass. Torrefaction also altered the compositions of syngas by reducing CO2 and increasing H2 and CH4. The syngas was rich in H2, CH4, and CO implying that the syngas quality was significantly improved by torrefaction process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation

    Directory of Open Access Journals (Sweden)

    Zeng Yan

    2014-12-01

    Full Text Available Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation were enhanced by employing various heating rate and different solvent. The catalytic properties were tested in syngas methanation. The result indicates that both of heating rate and solvent remarkably affect Ni particle size, which is a key factor to the catalytic activity of Ni-Al2O3 catalysts for syngas methanation. Moreover, the relationship between Ni particle size and the production rate of methane per unit mass was correlated. The optimal Ni-Al2O3 catalyst prepared in ethanol at 2°C/min, achieves a maximum production rate of methane at the mean size of 20.8 nm.

  6. Gasification of empty fruit bunch with carbon dioxide in an entrained flow gasifier for syngas production

    Science.gov (United States)

    Rahmat, N. F. H.; Rasid, R. A.

    2017-06-01

    The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 - 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.

  7. Cobalt carbide nanoprisms for direct production of lower olefins from syngas

    Science.gov (United States)

    Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui

    2016-10-01

    Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer-Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson-Schulz-Flory distribution, which is characterized by a maximum C2-C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2-C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

  8. Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Chatzichristodoulou, Christodoulos

    2011-01-01

    , up to 16Nmlcm−2min−1 at 900°C, were obtained when placing the membrane between air and humidified hydrogen (H2/H2O=20). Initial experiments for syngas production were performed by testing the CGO10 membrane with methane and steam feed.The mechanical integrity of CGO10 membranes during operation (heat...... film CGO membrane should therefore lie below the expansion limit of 0.1% expected to be critical for mechanical stability and thereby allows for operation at high temperatures and low oxygen partial pressures....

  9. Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas

    DEFF Research Database (Denmark)

    Mendes, Laiza V.P.; Snider, Jonathan L.; Fleischman, Samuel D.

    2017-01-01

    Novel catalysts for the selective production of higher alcohols from syngas could offer improved pathways towards synthetic fuels and chemicals. Cobalt–copper alloy catalysts have shown promising results for this reaction. To improve control over particle properties, a liquid phase nanoparticle...... and after catalytic testing in a flow reactor at 250 °C and 40 bar. The results show alloyed phases were obtained using the polyol method, resulting in selectivity towards higher alcohols, as high as 11.3% when supported on alumina. Segregation of cobalt and the formation of cobalt carbide were observed...

  10. Hot treatment and upgrading of syngas obtained by co-gasification of coal and wastes

    OpenAIRE

    Pinto, Filomena; André, Rui Neto; Carolino, Carlos; Miranda, Miguel

    2014-01-01

    Nowadays there is a great interest in producing energy through co-gasification of low grade coals and waste blends to increase the use of alternative feedstocks with low prices. The experimental results showed that the viability of co-gasification to process such blends and that by the right manipulation of coal and biomass or waste blends, syngas treatment and upgrading may be simplified and the cost of the overall process may be reduced. Blends of three different coal grades (sub-bitumi...

  11. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics.

    Science.gov (United States)

    Ashraf, Chowdhury; van Duin, Adri C T

    2017-02-09

    A detailed insight of key reactive events related to oxidation and pyrolysis of hydrocarbon fuels further enhances our understanding of combustion chemistry. Though comprehensive kinetic models are available for smaller hydrocarbons (typically C 3 or lower), developing and validating reaction mechanisms for larger hydrocarbons is a daunting task, due to the complexity of their reaction networks. The ReaxFF method provides an attractive computational method to obtain reaction kinetics for complex fuel and fuel mixtures, providing an accuracy approaching ab-initio-based methods but with a significantly lower computational expense. The development of the first ReaxFF combustion force field by Chenoweth et al. (CHO-2008 parameter set) in 2008 has opened new avenues for researchers to investigate combustion chemistry from the atomistic level. In this article, we seek to address two issues with the CHO-2008 ReaxFF description. While the CHO-2008 description has achieved significant popularity for studying large hydrocarbon combustion, it fails to accurately describe the chemistry of small hydrocarbon oxidation, especially conversion of CO 2 from CO, which is highly relevant to syngas combustion. Additionally, the CHO-2008 description was obtained faster than expected H abstraction by O 2 from hydrocarbons, thus underestimating the oxidation initiation temperature. In this study, we seek to systemically improve the CHO-2008 description and validate it for these cases. Additionally, our aim was to retain the accuracy of the 2008 description for larger hydrocarbons and provide similar quality results. Thus, we expanded the ReaxFF CHO-2008 DFT-based training set by including reactions and transition state structures relevant to the syngas and oxidation initiation pathways and retrained the parameters. To validate the quality of our force field, we performed high-temperature NVT-MD simulations to study oxidation and pyrolysis of four different hydrocarbon fuels, namely

  12. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.

    Science.gov (United States)

    Andersson, Robert; Boutonnet, Magali; Järås, Sven

    2012-07-20

    An on-line gas chromatographic (GC) system has been developed for rapid and accurate product analysis in catalytic conversion of syngas (a mixture of H₂ and CO) to alcohols, so called "higher alcohol synthesis (HAS)". Conversion of syngas to higher alcohols is an interesting second step in the route of converting coal, natural gas and possibly biomass to liquid alcohol fuel and chemicals. The presented GC system and method are developed for analysis of the products formed from syngas using alkali promoted MoS₂ catalysts, however it is not limited to these types of catalysts. During higher alcohol synthesis not only the wanted short alcohols (∼C₂-C₅) are produced, but also a great number of other products in smaller or greater amounts, they are mainly short hydrocarbons (olefins, paraffins, branched, non-branched), aldehydes, esters and ketones as well as CO₂, H₂O. Trace amounts of sulfur-containing compounds can also be found in the product effluent when sulfur-containing catalysts are used and/or sulfur-containing syngas is feed. In the presented GC system, most of them can be separated and analyzed within 60 min without the use of cryogenic cooling. Previously, product analysis in "higher alcohol synthesis" has in most cases been carried out partly on-line and partly off-line, where the light gases (gases at room temp) are analyzed on-line and liquid products (liquid at room temp) are collected in a trap for later analysis off-line. This method suffers from many drawbacks compared to a complete on-line GC system. In this paper an on-line system using an Agilent 7890 gas chromatograph equipped with two flame ionization detectors (FID) and a thermal conductivity detector (TCD), together with an Agilent 6890 with sulfur chemiluminescence dual plasma detector (SCD) is presented. A two-dimensional GC system with Deans switch (heart-cut) and two capillary columns (HP-FFAP and HP-Al₂O₃) was used for analysis of the organic products on the FIDs. Light

  13. Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst

    Science.gov (United States)

    Qiu, Song-bai; Huang, Wei-wei; Xu, Yong; Liu, Lu; Li, Quan-xin

    2011-02-01

    A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1Mo1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mo-based catalysts. The carbon conversion significantly increases with rising temperature below 340 °C, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kgcatal·h) with the C2+ (C2—C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based catalysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.

  14. Sulfur Tolerant Magnesium Nickel Silicate Catalyst for Reforming of Biomass Gasification Products to Syngas

    Directory of Open Access Journals (Sweden)

    Scott L. Swartz

    2012-04-01

    Full Text Available Magnesium nickel silicate (MNS has been investigated as a catalyst to convert tars and light hydrocarbons to syngas (CO and H2 by steam reforming and CO2 reforming in the presence of H2S for biomass gasification process at NexTech Materials. It was observed that complete CH4 conversion could be achieved on MNS catalyst granules at 800–900 °C and a space velocity of 24,000 mL/g/h in a simulated biomass gasification stream. Addition of 10–20 ppm H2S to the feed had no apparent impact on CH4 conversion. The MNS-washcoated monolith also showed high activities in converting methane, light hydrocarbons and tar to syngas. A 1200 h test without deactivation was achieved on the MNS washcoated monolith in the presence of H2S and/or NH3, two common impurities in gasified biomass. The results indicate that the MNS material is a promising catalyst for removal of tar and light hydrocarbons from biomass gasified gases, enabling efficient use of biomass to produce power, liquid fuels and valuable chemicals.

  15. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  16. Perovskite sensing materials for syngas composition monitoring and biomass gasifier numerical model validation: A preliminary approach

    Science.gov (United States)

    Pallozzi, V.; Di Carlo, A.; Zaza, F.; Villarini, M.; Carlini, M.; Bocci, E.

    2016-06-01

    Biomass gasification represents a suitable choice for global environmental impact reduction, but more efforts on the process efficiency need to be conducted in order to enhance the use of this technology. Studies on inputs and outputs of the process, as well as measurements and controls of syngas composition and correlated organic and inorganic impurities, are crucial points for the optimization of the entire process: models of the system and sensing devices are, thus, very attractive for this purpose. In particular, perovskite based chemoresistive sensors could represent a promising technology, since their simplicity in function, relatively low cost and direct high temperature operation. The aim of this work is to develop a steam fluidized bed biomass gasifier model, for the prediction of the process gas composition, and new perovskite compounds, LaFeO3 based, as sensing material of chemoresistive sensors for syngas composition and impurities measurements. Chemometric analysis on the combustion synthesis via citrate-nitrate technique of LaFeO3 was also performed, in order to evaluate the relationship between synthesis conditions and perovskite materials and, thus, sensor properties. Performance of different sensors will be tested, in next works, with the support of the developed gasifier model.

  17. Blowoff characteristics of bluff-body stabilized syngas premixed flame in a meso-scale channel

    Science.gov (United States)

    Lee, Bok Jik; Im, Hong G.; Kaust Team

    2014-11-01

    Syngas has been actively studied recently for the application to Integrated Gasification Combined Cycle systems. It is also considered a candidate of fuels for combustion-based portable power-generating devices accompanied with a micro-reformer. In the present study, high-fidelity reacting flow simulations are conducted to investigate the instability near the blowoff limit of syngas premixed flames stabilized by a bluff-body in a meso-scale channel. Flames in a two-dimensional channel of 1 mm height and 10 mm length with a square box of 0.5 mm sides is considered. When the vortex shedding in a non-reacting flow at a mean inflow velocity remains symmetric as time passes, the flame at this inflow velocity tends to remain stable. By increasing the mean inflow velocity from the solution of this stable condition, the blowoff limit of a CO-to-H2 ratio is identified. At near-blowoff regime, the detail dynamics of flame instability and combustion characteristics associated to the instability are presented. The comparison with the simulations for lean hydrogen/air premixed flames is also discussed.

  18. Graphene-Immobilized fac-Re(bipy)(CO)3Cl for Syngas Generation from Carbon Dioxide.

    Science.gov (United States)

    Zhou, Xin; Micheroni, Daniel; Lin, Zekai; Poon, Christopher; Li, Zhong; Lin, Wenbin

    2016-02-17

    We report the synthesis of fac-M(4-amino-bipy)(CO)3X (M = Mn and X = Br or M = Re and X = Cl, with bipy = 2,2'-bipyridine), their immobilization on graphene oxide (GrO) via diazonium grafting, and the use of Re-functionalized GrO for electrocatalytic syngas production. Infrared (IR) spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and electrocatalysis indicated successful grafting of the Re catalyst onto GrO. Re-functionalized GrO was then deposited onto a glassy carbon electrode (GCE) for CO2 reduction. Investigation of the Re-functionalized GCE for syngas production was performed in a CO2-saturated acetonitrile solution with 3.1 M H2O as the proton source and 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as the supporting electrolyte. Cyclic voltammetry (CV), controlled potential electrolysis (CPE), and gas chromatography (GC) were employed to determine its CO2-to-CO conversion performance. The Re catalyst shows a turnover frequency (TOF) for generating CO up to 4.44 s(-1) with a CO/H2 ratio of 7:5.

  19. Recent Advances in Supported Metal Catalysts for Syngas Production from Methane

    Directory of Open Access Journals (Sweden)

    Mohanned Mohamedali

    2018-03-01

    Full Text Available Over the past few years, great attention is paid to syngas production processes from different resources especially from abundant sources, such as methane. This review of the literature is intended for syngas production from methane through the dry reforming (DRM and the steam reforming of methane (SRM. The catalyst development for DRM and SRM represents the key factor to realize a commercial application through the utilization of more efficient catalytic systems. Due to the enormous amount of published literature in this field, the current work is mainly dedicated to the most recent achievements in the metal-oxide catalyst development for DRM and SRM in the past five years. Ni-based supported catalysts are considered the most widely used catalysts for DRM and SRM, which are commercially available; hence, this review has focused on the recent advancements achieved in Ni catalysts with special focus on the various attempts to address the catalyst deactivation challenge in both DRM and SRM applications. Furthermore, other catalytic systems, including Co-based catalysts, noble metals (Pt, Rh, Ru, and Ir, and bimetallic systems have been included in this literature review to understand the observed improvements in the catalytic activities and coke suppression property of these catalysts.

  20. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    Science.gov (United States)

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C.

  1. Syngas from sugarcane pyrolysis. An experimental study for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Al Arni, Saleh [Department of Chemical and Process Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, GE (Italy); Bosio, Barbara; Arato, Elisabetta [Department of Civil, Environmental and Architectural Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, GE (Italy)

    2010-01-15

    The use of biomass for the production of electrical energy is a promising technological solution for those countries where there are problems with the disposal of agricultural waste and/or the production of low-cost energy. The gasification and/or pyrolysis of the biomass produces a gas rich in hydrogen that can be used in a fuel cell system to produce electrical energy with reduced environmental impact and significant energy recovery. In this work, a study of the pyrolysis of Brazilian sugarcane bagasse was carried out. The experimental process consisted of the pyrolysis of the biomass material in a batch pyrolysis reactor. In some runs the biomass was dry, while in others it was pre-treated by the addition of water. It was noted that the water added to the biomass before the pyrolysis process resulted in a decrease in the quantity of steam added to the fuel cell feeding gas, necessary to avoid carbon deposition, and in an increase in cell power, but, at the same time, caused a decrease in the quantity of syngas produced. Then, the composition of the gas obtained from the experimental pyrolysis of the sugarcane was inserted in a simulation tool of a molten carbonate fuel cell system in order to estimate the feasibility of the entire process in terms of operating conditions and electrical performance. The present study indicates that the syngas obtained from the sugarcane biomass (about 40%) can be converted into electricity using a fuel cell system with a high efficiency. (author)

  2. Bio-syngas production from agro-industrial biomass residues by steam gasification.

    Science.gov (United States)

    Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge

    2016-12-01

    This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Syngas production from olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Skoulou, V.; Zabaniotou, A. [Laboratory of Plant Design, Department of Chemical Engineering, Aristotle University of Thessaloniki, University Box 455, University Campus, Thessaloniki 54124 (Greece); Stavropoulos, G.; Sakelaropoulos, G. [Chemical Process Engineering Laboratory (CPEL), Department of Chemical Engineering, Aristotle University of Thessaloniki, University Box 455, University Campus, Thessalonki 54124 (Greece)

    2008-02-15

    This study presents a laboratory fixed-bed gasification of olive kernels and olive tree cuttings. Gasification took place with air, in a temperature range of 750-950 C, for various air equivalence ratios (0.14-0.42) and under atmospheric pressure. In each run, the main components of the gas phase were CO, CO{sub 2}, H{sub 2} and CH{sub 4}. Experimental results showed that gasification with air at high temperatures (950 C) favoured gas yields. Syngas production increased with reactor temperature, while CO{sub 2}, CH{sub 4}, light hydrocarbons and tar followed the opposite trend. An increase of the air equivalence ratio decreased syngas production and lowered the product gas heating value, while favouring tar destruction. It was found that gas from olive tree cuttings at 950 C and with an air equivalence ratio of 0.42 had a higher LHV (9.41MJ/Nm{sup 3}) in comparison to olive kernels (8.60MJ/Nm{sup 3}). Olive kernels produced more char with a higher content of fixed carbon (16.39 w/w%) than olive tree cuttings; thus, they might be considered an attractive source for carbonaceous material production. (author)

  4. Detailed H2 and CO Electrochemistry for a MEA Model Fueled by Syngas

    KAUST Repository

    Lee, W. Y.

    2015-07-17

    © The Electrochemical Society. SOFCs can directly oxidize CO in addition to H2, which allows them to be coupled to a gasifier. Many membrane-electrode-assembly (MEA) models neglect CO electrochemistry due to sluggish kinetics and the water-gas-shift reaction, but CO oxidation may be important for high CO-content syngas. The 1D-MEA model presented here incorporates detailed mechanisms for both H2 and CO oxidation, individually fitted to experimental data. These mechanisms are then combined into a single model, which provides a good fit to experimental data for H2/CO mixtures. Furthermore, the model fits H2/CO data best when a single chargetransfer step in the H2 mechanism is assumed to be rate-limiting for all current densities. This differs from the result for H2/H2O mixtures, where H2 adsorption becomes rate-limiting at high current densities. These results indicate that CO oxidation cannot be neglected in MEA models running on CO-rich syngas, and that CO oxidation can alter the H2 oxidation mechanism.

  5. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  6. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.

    Science.gov (United States)

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan

    2015-09-01

    This study aimed to obtain the maximum possible gas yield and the high quality syngas production from microwave pyrolysis of rice husk with rice husk char and rice husk char-supported metallic (Ni, Fe and Cu) catalysts. The rice husk char-supported metallic catalysts had developed pore structure and catalytic activity for gas productions and tar conversion. The temperature-rising characteristic, product yields, properties of gas products and tar conversion mechanisms were investigated. It was found that three rice husk char-supported metallic catalysts improved the microwave absorption capability and increased heating rate and final temperature. Rice husk char-supported Ni catalyst presented most effective effects on gas production, e.g. the gas yield is 53.9%, and the volume concentration of desired syngas is 69.96%. Rice husk char-supported Ni and Fe catalysts played pivotal roles in tar conversion that less heavy compounds can be detected along with the reduction of organic compound number. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Iron-Doped BaMnO3for Hybrid Water Splitting and Syngas Generation.

    Science.gov (United States)

    Haribal, Vasudev Pralhad; He, Feng; Mishra, Amit; Li, Fanxing

    2017-09-11

    A rationalized strategy to optimize transition-metal-oxide-based redox catalysts for water splitting and syngas generation through a hybrid solar-redox process is proposed and validated. Monometallic transition metal oxides do not possess desirable properties for water splitting; however, density functional theory calculations indicate that the redox properties of perovskite-structured BaMn x Fe 1-x O 3-δ can be varied by changing the B-site cation compositions. Specifically, BaMn 0.5 Fe 0.5 O 3-δ is projected to be suitable for the hybrid solar-redox process. Experimental studies confirm such predictions, demonstrating 90 % steam-to-hydrogen conversion in water splitting and over 90 % syngas yield in the methane partial-oxidation step after repeated redox cycles. Compared to state-of-the-art solar-thermal water-splitting catalysts, the rationally designed redox catalyst reported is capable of splitting water at a significantly lower temperature and with ten-fold increase in steam-to-hydrogen conversion. Process simulations indicate the potential to operate the hybrid solar-redox process at a higher efficiency than state-of-the-art hydrogen and liquid-fuel production processes with 70 % lower CO 2 emissions for hydrogen production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of zinc on the production of alcohol by Clostridium carboxidivorans P7 using model syngas.

    Science.gov (United States)

    Li, Demao; Meng, Chunxiao; Wu, Guanxun; Xie, Bintao; Han, Yifan; Guo, Yaqiong; Song, Chunhui; Gao, Zhengquan; Huang, Zhiyong

    2018-01-01

    Renewable energy, including biofuels such as ethanol and butanol from syngas bioconversed by Clostridium carboxidivorans P7, has been drawing extensive attention due to the fossil energy depletion and global eco-environmental issues. Effects of zinc on the growth and metabolites of C. carboxidivorans P7 were investigated with model syngas as the carbon source. The cell concentration was doubled, the ethanol content increased 3.02-fold and the butanol content increased 7.60-fold, the hexanol content increased 44.00-fold in the medium with 280 μM Zn 2+ , when comparing with those in the control medium [Zn 2+ , (7 μM)]. Studies of the genes expression involved in the carbon fixation as well as acid and alcohol production in the medium with 280 μM Zn 2+ indicated that fdhII was up-regulated on the second day, acs A, fdhII, bdh35 and bdh50 were up-regulated on the third day and bdh35, acsB, fdhI, fdhIII, fdhIV, buk, bdh10, bdh35, bdh40 and bdh50 were up-regulated on the fourth day. The results indicated that the increased Zn 2+ content increased the alcohol production through increase in the gene expression of the carbon fixation and alcohol dehydrogenase.

  9. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production.

    Science.gov (United States)

    Dong, Qing; Niu, Miaomiao; Bi, Dongmei; Liu, Weiyu; Gu, Xuexin; Lu, Chen

    2018-02-06

    Microwave-assisted pyrolysis of moso bamboo with the activated carbon-supported iron(III) ion catalyst was carried out with the aim of obtaining high quality and quantity syngas(H 2  + CO). The effect of the catalyst on moso bomboo pyrolysis involving the temperature-rising characteristics, product distribution, tar conversion and gas compositions were investigated. The results indicated that the catalyst improved the microwave-absorption capability and increased the maximum reaction temperatures. The formation of gases was promoted by the catalyst mainly at the expense of the tar, indicating the catalyst had an excellent activity for the tar conversion .The catalyst had the positive influence on the formation of syngas with the maximum content reaching up to 81.14 vol% with H 2 /CO being 1.04 and inhibited the production of CH 4 and CO 2 . The loading of iron(III) ion into activated carbon exerted a significant influence on bamboo pyrolysis. The addition of the catalyst increased the thermal efficiency of the reaction system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Methane assisted solid oxide co-electrolysis process for syngas production

    Science.gov (United States)

    Wang, Yao; Liu, Tong; Lei, Libin; Chen, Fanglin

    2017-03-01

    In this study, methane assisted high temperature steam/CO2 co-electrolysis process is performed on symmetrical cells with a configuration of SFM-SDC/LSGM/SFM-SDC to produce high-quality synthesis gas (syngas, a mixture of H2 and CO). The Nernst potential has been evaluated for solid oxide cells in the methane assisted mode, which is reduced by nearly one order of magnitude through substituting the anode atmosphere from air to methane. The open circuit voltage (OCV) is -0.06 V at 800 °C, and an electrolysis current density of -242 mAcm-2 has been obtained at 850 °C and 0.3 V. Effects of operating conditions on products composition have been revealed by using the chemical equilibrium co-electrolysis model and HSC software. High-quality syngas with high conversion rate of CO2 to CO as well as ideal H2/CO molar ratio of 2 could be achieved in both electrode sides by adjusting appropriate operating conditions. The short-term cell voltage is slightly fluctuant less than 0.05 V at 850 °C and -120 mAcm-2, in which condition carbon deposition has been observed in the SFM-SDC anode due to the low O2-/CH4 ratio.

  11. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik

    2016-07-15

    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  12. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  13. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  14. Karakterisasi Unjuk Kerja Diesel Engine Generator Set Sistem Dual Fuel Solar-Syngas Hasil Gasifikasi Briket Municipal Solid Waste (MSW Secara Langsung

    Directory of Open Access Journals (Sweden)

    Achmad Rizkal

    2017-01-01

    Full Text Available Sejalan dengan semakin banyaknya kebutuhan energi untuk dapat digunakan sebagai bahan bakar maka perlu adanya pengembangan gas biomassa sebagai bahan bakar alternatif pada motor pembakaran dalam maka akan dilakukan penelitian mengenai aplikasi sistem dual fuel gas hasil gasifikasi biomassa municipal solid waste (msw pada sistem downdraft dengan minyak solar pada motor diesel stasioner. Penelitian ini bertujuan untuk mengetahui seberapa besar solar yang tersibtitusi dengan adanya penambahan syngas yang disalurkan secara langsung. Penelitian ini dilakukan secara eksperimental dengan proses pemasukan aliran syngas yang dihasilkan downdraft municipal solid waste (MSW kedalam saluran udara mesin diesel generator set secara langsung menggunakan sistem mixer. Pengujian dilakukan dengan putaran konstan 2000 rpm dengan pembebanan bervariasi dari 200 watt sampai dengan 2000 watt dengan interval 200 watt. Bahwa produksi syngas dari reaktor gasifikasi ditambahkan sistem bypass untuk mengetahui kesesuaian antara reaktor gasifikasi dan mesin generatorset data ṁ syngas yang dibutuhkan mesin diesel, ṁ syngas yang di bypass untuk mendapatkan kesesuaian antara produksi syngas dan yang di bypass.  Data-data yang diukur dari penelitian ini menunjukkan bahwa besar nilai mass flowrate gas syngas yang dibutuhkan mesin diesel pada AFR reaktor gasifier 1,39 sebesar 0,0003748 kg/s. Mass flowrate gas syngas yang di bypass menunjukkan nilai 0 pada saat sistem dijalankan karena seluruh gas syngas masuk kedalam ruang bakar. AFR rata-rata sebesar 14,54 ,Nilai Spesifik fuel consumption (sfc mengalami peningkatan 68% dari kondisi standar single fuel , Nilai efesiensi thermal mengalami kenaikan sebesar 7% dari kondisi single fuel, Nilai daya rata-rata sebesar 2,28kW, Nilai torsi rata-rata sebesar 10,94 N.m. Solar yang tersibtitusi sebesar 48%. Nilai temperatur (coolant, mesin, oil, dan gas buang pada setiap pembebanan mengalami kenaikan.

  15. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    KAUST Repository

    Wu, Hongjun

    2017-07-13

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  16. Gridley Ethanol Demonstration Project Utilizing Biomass Gasification Technology: Pilot Plant Gasifier and Syngas Conversion Testing; August 2002 -- June 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This report is part of an overall evaluation of using a modified Pearson Pilot Plant for processing rice straw into syngas and ethanol and the application of the Pearson technology for building a Demonstration Plant at Gridley. This report also includes information on the feedstock preparation, feedstock handling, feedstock performance, catalyst performance, ethanol yields and potential problems identified from the pilot scale experiments.

  17. Modeling and Measurements of a 16 kW Turbulent Nonadiabatic Syngas Diffusion Flame in a Cooled Cylindrical Combustion Chamber

    NARCIS (Netherlands)

    Louis, J.J.J.; Kok, Jacobus B.W.; Klein, S.A.

    2001-01-01

    A model is presented to predict nonadiabatic combustion of syngas under gas turbine conditions. Mixing, combustion, and heat loss are described with four independent scalar variables. These are the mixture fraction, an enthalpy variable and two reaction progress variables for combustion of hydrogen

  18. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas : A review

    NARCIS (Netherlands)

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and

  19. Research on Cellular Instabilities of Lean Premixed Syngas Flames under Various Hydrogen Fractions Using a Constant Volume Vessel

    Directory of Open Access Journals (Sweden)

    Hong-Meng Li

    2014-07-01

    Full Text Available An experimental study of the intrinsic instabilities of H2/CO lean (φ = 0.4 to φ = 1.0 premixed flames at different hydrogen fractions ranging from 0% to 100% at elevated pressure and room temperature was performed in a constant volume vessel using a Schlieren system. The unstretched laminar burning velocities were compared with data from the previous literature and simulated results. The results indicate that excellent agreements are obtained. The cellular instabilities of syngas-air flames were discussed and critical flame radii were measured. When hydrogen fractions are above 50%, the flame tends to be more stable as the equivalence ratio increases; however, the instability increases for flames of lower hydrogen fractions. For the premixed syngas flame with hydrogen fractions greater than 50%, the decline in cellular instabilities induced by the increase in equivalence ratio can be attributed to a reduction of diffusive-thermal instabilities rather than increased hydrodynamic instabilities. For premixed syngas flames with hydrogen fractions lower than 50%, as the equivalence ratio increases, the cellular instabilities become more evident because the enhanced hydrodynamic instabilities become the dominant effect. For premixed syngas flames, the enhancement of cellular instabilities induced by the increase in hydrogen fraction is the result of both increasing diffusive-thermal and hydrodynamic instabilities.

  20. CLC in packed beds using syngas and CuO/Al2O3: model description and experimental validation

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2014-01-01

    The objective of this work is to study the performance of the oxygen carrier in a packed bed with periodic switching between oxidizing and reducing conditions. In this paper the performance of CuO/Al2O3 as the oxygen carrier in a packed bed reactor with syngas as the fuel are investigated, while

  1. Investigation of syngas interaction in alcohol synthesis catalysts. Quartery technical progress report, July 1, 1995--September 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Akundi, M.A.

    1996-02-01

    This report presents the work done on {open_quotes}Investigation of Syngas Interaction in Alcohol Synthesis Catalysts{close_quotes} during the last three months. In this report the results of the work done on the effect of CO adsorption on the magnetic character of cobalt in the Cu/Co/Cr catalysts is discussed.

  2. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  3. Lump Kinetic Analysis of Syngas Composition Effect on Fischer-Tropsch Synthesis over Cobalt and Cobalt-Rhenium Alumina Supported Catalyst

    OpenAIRE

    Dewi Tristantini; Ricky Kristanda Suwignjo

    2016-01-01

    This study investigated lump kinetic analysis of Fischer-Tropsch synthesis over Cobalt and Cobalt-Rhenium Alumina supported catalyst (Co/γ-Al2O3 and Co-Re/γ-Al2O3) at 20 bars and 483 K using feed gas with molar H2/CO ratios of 1.0 to 2.1. Syngas with H2/CO molar ratio of 1.0 represents syngas characteristic derived from biomass, while the 2.1 molar ratio syngas derived from coal. Rhenium was used as the promoter for the cobalt catalyst. Isothermal Langmuir adsorption mechanism was used to bui...

  4. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas

    OpenAIRE

    Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-01-01

    Syngas, a CO and H2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO2 and H+/H2O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C3N4 composite (a CO2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co3O4, MoS2, Au and Pt serve as t...

  5. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation.

    Science.gov (United States)

    Salvachúa, Davinia; Mohagheghi, Ali; Smith, Holly; Bradfield, Michael F A; Nicol, Willie; Black, Brenna A; Biddy, Mary J; Dowe, Nancy; Beckham, Gregg T

    2016-01-01

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. However, SA production from biomass-derived hydrolysates has not yet been fully explored or developed. Here, we employ Actinobacillus succinogenes 130Z to produce succinate in batch fermentations from various substrates including (1) pure sugars to quantify substrate inhibition, (2) from mock hydrolysates similar to those from DAP containing single putative inhibitors, and (3) using the hydrolysate derived from two pilot-scale pretreatments: first, a mild alkaline wash (deacetylation) followed by DAP, and secondly a single DAP step, both with corn stover. These latter streams are both rich in xylose and contain different levels of inhibitors such as acetate, sugar dehydration products (furfural, 5-hydroxymethylfurfural), and lignin-derived products (ferulate, p-coumarate). In batch fermentations, we quantify succinate and co-product (acetate and formate) titers as well as succinate yields and productivities. We demonstrate yields of 0.74 g succinate/g sugars and 42.8 g/L succinate from deacetylated DAP hydrolysate, achieving maximum productivities of up to 1.27 g/L-h. Moreover, A. succinogenes is shown to detoxify furfural via reduction to furfuryl alcohol, although an initial lag in succinate production is observed when furans are present. Acetate seems to be the

  6. Experimental investigation of syngas flame stability using a multi-tube fuel injector in a high pressure combustor

    Science.gov (United States)

    Maldonado, Sergio Elzar

    Over 92% of the coal consumed by power plants is used to generate electricity in the United States (U.S.). The U.S. has the world's largest recoverable reserves of coal, it is estimated that reserves of coal will last more than 200 years based in current production and demand levels. Integrated Gasification Combined Cycle (IGCC) power plants aim to reduce the amount of pollutants by gasifying coal and producing synthesis gas. Synthesis gas, also known as syngas, is a product of coal gasification and can be used in gas turbines for energy production. Syngas is primarily a mixture of hydrogen and carbon monoxide and is produced by gasifying a solid fuel feedstock such as coal or biomass. The objective of the thesis is to create a flame stability map by performing various experiments using high-content hydrogen fuels with varying compositions of hydrogen representing different coal feedstocks. The experiments shown in this thesis were performed using the High-Pressure Combustion facility in the Center for Space Exploration Technology Research (CSETR) at the University of Texas at El Paso (UTEP). The combustor was fitted with a novel Multi-Tube fuel Injector (MTI) designed to improve flame stability. This thesis presents the results of testing of syngas fuels with compositions of 20, 30, and 40% hydrogen concentrations in mixtures with carbon monoxide. Tests were completed for lean conditions ranging from equivalence ratios between 0.6 and 0.9. The experimental results showed that at an equivalence ratio of 0.6, a stable flame was not achieved for any of the fuel mixtures tested. It was also observed that the stability region of the syngas flame increased as equivalence ratio and the hydrogen concentration in syngas fuel increases with the 40% hydrogen-carbon monoxide mixture demonstrating the greatest stability region. Design improvements to the MTI are also discussed as part of the future work on this topic.

  7. State of affairs on pollutants and syngas removal techniques stemming from thermal treatment of waste by gasification. Extended abstract

    International Nuclear Information System (INIS)

    Megret, O.; Bequet, L.

    2011-10-01

    The aim of the current study is to outline the state of affairs related to pollutants and slaughtering techniques of syngas that result both from waste thermal treatment by gasification. The study starts by a review permitting to classify the gasification techniques applied to waste thermal treatment. This review leads to distinguish between auto-thermal and allo-thermal equipments. Furthermore, are described, in this first part, the general principles and parameters of functioning and adjustment of the factors characterizing the thermal treatment in reducing atmosphere. It is also about the composition of the syngas products according to the different driving behaviours of gasifiers. Finally, we state succinctly, on one hand, the possible promotion procedures in the frame of syngas development and, on the other hand, the thresholds that we ought to reach in order to make this promotion achievable. The second part of the study deals with the characteristics of the pollutants located in the syngas. This description took the shape of a detailed index card where pollutants are classified into minority components (including those of pollutants, those of gaseous and those of particulates) according to their concentrations, to their driving behaviours and to their thermochemical conditions of formation (temperature, pressure, response-type agents, atmosphere...). In the last part, we discuss the current and the considered types of slaughtering devices in reducing atmosphere in relation with their performance in slaughtering and regarding the departure point of syngas promotion ways. Finally, are exposed the key postures and the barricades within those technologies. Hereupon, research axes are proposed. (authors)

  8. Other Polyesters from Biomass Derived Monomers

    NARCIS (Netherlands)

    Es, van D.S.; Klis, van der F.; Knoop, J.R.I.; Molenveld, K.; Sijtsma, L.; Haveren, van J.

    2013-01-01

    In the transition from a fossil-based to a bio-based economy the introduction of bio-based chemicals can be achieved via two distinctly different approaches. The first approach is based on the conversion of bio-mass into existing (petro)chemicals; the ‘drop-in’ approach. The main benefit of this

  9. Hydrogenation of biomass-derived substrates

    Science.gov (United States)

    Gordon, John C.; Waidmann, Christopher R.

    2016-06-07

    The .alpha.,.beta.-unsaturated ketone moiety of a substrate representative of non-food based biomass was hydrogenated to the corresponding saturated alcohol moiety using a composition including (1) a copper salt; (2) a phosphine; (3) a polar aprotic solvent such as acetonitrile, and (4) a compound suitable for providing hydrogen for the hydrogenation, such as a suitable silane material or a suitable siloxane material.

  10. Stabilization of biomass-derived pyrolysis oils

    NARCIS (Netherlands)

    Venderbosch, R. H.; Ardiyanti, A. R.; Wildschut, J.; Oasmaa, A.; Heeres, H. J.

    BACKGROUND: Biomass is the only renewable feedstock containing carbon, and therefore the only alternative to fossil-derived crude oil derivatives. However, the main problems concerning the application of biomass for biofuels and bio-based chemicals are related to transport and handling, the limited

  11. Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3

    Energy Technology Data Exchange (ETDEWEB)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

    2004-12-31

    This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

  12. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    Food fermentations are typically performed without actively supplying air. Except for possible surface microorganisms, oxygen will only be transiently available and the redox reactions during the fermentation need to be in balance. Production of ATP from fermentation of carbohydrates typically in...... of the redox properties of strains used to compose food cultures.......Food fermentations are typically performed without actively supplying air. Except for possible surface microorganisms, oxygen will only be transiently available and the redox reactions during the fermentation need to be in balance. Production of ATP from fermentation of carbohydrates typically...... involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...

  13. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers......This work deals with the gasification of coal and heavy oil for syngas production using Computational Fluid Dynamics (CFD). Gasification which includes complex physical and chemical processes such as turbulence, multiphase flow, heat and mass transfer and chemical reactions has been modeled using...... dioxide is overestimated. The deviation is fairly small, particularly for the improved chemical kinetics scheme. The heavy oil gasification model has been validated for a pilot-scale entrained-flow gasifier operating under different oxygen ratios. A gasification model similar to that developed for coal...

  14. Rapid Asymmetric Transfer Hydroformylation (ATHF) of Disubstituted Alkenes Using Paraformaldehyde as a Syngas Surrogate.

    Science.gov (United States)

    Fuentes, José A; Pittaway, Rachael; Clarke, Matthew L

    2015-07-20

    As an alternative to conventional asymmetric hydroformylation (AHF), asymmetric transfer hydroformylation (ATHF) by using formaldehyde as a surrogate for syngas is reported. A catalyst derived from commercially available [Rh(acac)(CO)2 ] (acac=acetylacetonate) and 1,2-bis[(2S,5S)-2,5-diphenylphospholano]ethane(1,5-cyclooctadiene) (Ph-BPE) stands out in terms of both activity and enantioselectivity. Remarkably, not only are high selectivities achievable, the reactions are very simple to perform, and higher enantioselectivity (up to 96 % ee) and/or turnover frequencies than those achievable by using the same catalyst (or other leading catalysts) can be obtained by using typical conditions for AHF. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  15. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites

    Science.gov (United States)

    Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan

    2016-12-01

    This work focused on the catalytic transformation of methane (CH4) and carbon dioxide (CO2) into syngas (mixture of CO and H2). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400-700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.

  16. System and process for the production of syngas and fuel gasses

    Science.gov (United States)

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Benefiel, Bradley C

    2015-04-21

    The production of gasses and, more particularly, to systems and methods for the production of syngas and fuel gasses including the production of hydrogen are set forth. In one embodiment system and method includes a reactor having a molten pool of a material comprising sodium carbonate. A supply of conditioned water is in communication with the reactor. A supply of carbon containing material is also in communication with the reactor. In one particular embodiment, the carbon containing material may include vacuum residuum (VR). The water and VR may be kept at desired temperatures and pressures compatible with the process that is to take place in the reactor. When introduced into the reactor, the water, the VR and the molten pool may be homogenously mixed in an environment in which chemical reactions take place including the production of hydrogen and other gasses.

  17. Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications

    International Nuclear Information System (INIS)

    Gupta, Mayank; Pramanik, Santanu; Ravikrishna, R.V.

    2016-01-01

    Highlights: • Syngas-fired combustor concept as hybrid heat source for solar thermal application. • Experimental characterization of catalytic combustor under fuel-rich conditions. • Stable operation, quick startup, and high turn-down ratio demonstrated. • Reacting flow CFD simulations of single channel of catalytic monolith. - Abstract: This paper describes the development and operation of a catalytic combustion system for use with syngas as an important component of a hybrid heating source for solar-thermal power generation. The reactor consists of a cylindrical ceramic monolith with porous alumina washcoat in which platinum is distributed as the catalyst. Two fuel-rich equivalence ratios were studied over a range of flow rates. The fuel-rich conditions permit low temperature combustion without the problem of hotspots likely to occur under fuel-lean conditions with hydrogen-containing fuels. Experimental data of temperature and species concentration at the exit of the reactor have been reported for a maximum fuel thermal input of 34 kW. The system exhibited quick start-up with a light-off time of around 60 s and a steady-state time of around 200 s as determined from the transient temperature profiles. The experimental results have also been complemented with detailed two-dimensional numerical simulations for improved understanding of the combustion characteristics in the reactor. The simulations suggest that the combustion system can be operated at a turn-down ratios far in excess of 1.67, which is the maximum value that has been investigated in the present setup. Stable operation, quick startup, and high turn-down ratio are some of the key features that enable the proposed combustion system to accommodate the transients in solar-thermal applications.

  18. Computational characterization of ignition regimes in a syngas/air mixture with temperature fluctuations

    KAUST Repository

    Pal, Pinaki

    2016-07-27

    Auto-ignition characteristics of compositionally homogeneous reactant mixtures in the presence of thermal non-uniformities and turbulent velocity fluctuations were computationally investigated. The main objectives were to quantify the observed ignition characteristics and numerically validate the theory of the turbulent ignition regime diagram recently proposed by Im et al. 2015 [29] that provides a framework to predict ignition behavior . a priori based on the thermo-chemical properties of the reactant mixture and initial flow and scalar field conditions. Ignition regimes were classified into three categories: . weak (where deflagration is the dominant mode of fuel consumption), . reaction-dominant strong, and . mixing-dominant strong (where volumetric ignition is the dominant mode of fuel consumption). Two-dimensional (2D) direct numerical simulations (DNS) of auto-ignition in a lean syngas/air mixture with uniform mixture composition at high-pressure, low-temperature conditions were performed in a fixed volume. The initial conditions considered two-dimensional isotropic velocity spectrums, temperature fluctuations and localized thermal hot spots. A number of parametric test cases, by varying the characteristic turbulent Damköhler and Reynolds numbers, were investigated. The evolution of the auto-ignition phenomena, pressure rise, and heat release rate were analyzed. In addition, combustion mode analysis based on front propagation speed and computational singular perturbation (CSP) was applied to characterize the auto-ignition phenomena. All results supported that the observed ignition behaviors were consistent with the expected ignition regimes predicted by the theory of the regime diagram. This work provides new high-fidelity data on syngas ignition characteristics over a broad range of conditions and demonstrates that the regime diagram serves as a predictive guidance in the understanding of various physical and chemical mechanisms controlling auto

  19. An Investigation of Fuel Mixing and Reaction in a CH4/Syngas/Air Premixed Impinging Flame with Varied H2/CO Proportion

    OpenAIRE

    Chih-Pin Chiu; Szu-I Yeh; Yu-Ching Tsai; Jing-Tang Yang

    2017-01-01

    For industrial applications, we propose a concept of clean and efficient combustion through burning syngas on an impinging burner. We performed experimental measurements of particle image velocimetry, OH radical (OH*) chemiluminescence, flame temperature, and CO emission to examine the fuel mixing and reaction of premixed impinging flames of CH4/syngas/air with H2/CO in varied proportions. The velocity distribution of the combustion flow field showed that a deceleration area in the main flow ...

  20. An Investigation of Fuel Mixing and Reaction in a CH4/Syngas/Air Premixed Impinging Flame with Varied H2/CO Proportion

    Directory of Open Access Journals (Sweden)

    Chih-Pin Chiu

    2017-07-01

    Full Text Available For industrial applications, we propose a concept of clean and efficient combustion through burning syngas on an impinging burner. We performed experimental measurements of particle image velocimetry, OH radical (OH* chemiluminescence, flame temperature, and CO emission to examine the fuel mixing and reaction of premixed impinging flames of CH4/syngas/air with H2/CO in varied proportions. The velocity distribution of the combustion flow field showed that a deceleration area in the main flow formed through the mutual impingement of two jet flows, which enhanced the mixing of fuel and air because of an increased momentum transfer. The deceleration area expanded with an increased CO proportion, which indicated that the mixing of fuel and air also increased with the increased CO proportion. Our examination of the OH* chemiluminescence demonstrated that its intensity increased with increased CO proportion, which showed that the reaction between fuel and air accordingly increased. CO provided in the syngas hence participated readily in the reaction of the CH4/syngas/air premixed impinging flames when the syngas contained CO in a large proportion. Although the volume flow rate of the provided CO quadrupled, the CO emission increased by only 12% to 15%. The results of this work are useful to improve the feasibility of fuel-injection systems using syngas as an alternative fuel.

  1. Low-Cost Syngas Shifting for Remote Gasifiers: Combination of CO2 Adsorption and Catalyst Addition in a Novel and Simplified Packed Structure

    Directory of Open Access Journals (Sweden)

    Ricardo A. Narváez C.

    2018-02-01

    Full Text Available This paper presents the technical validation of a novel, low-complexity alternative based on the inclusion of a patented (IEPI-MU-2016-185 packed bed for improving the performance of remote, small-scale gasification facilities. This study was carried out in an updraft, atmospheric-pressure gasifier, outfitted with a syngas reflux line, air and oxygen feed, and an upper packed-bed coupled to the gasification unit to improve the syngas quality by catalytic treatment and CO2 adsorption. The experimental facility is located in the rural community San Pedro del Laurel, Ecuador. Gasification experiments, with and without packed material in the upper chamber, were performed to assess its effect on the syngas quality. The assessment revealed that the packed material increases the carbon monoxide (CO content in the syngas outlet stream while carbon dioxide (CO2 was reduced. This option appears to be a suitable and low-complexity alternative for enhancing the content of energy vectors of syngas in gasification at atmospheric pressure since CO/CO2 ratios of 5.18 and 3.27 were achieved against reported values of 2.46 and 0.94 for operations which did not include the addition of packed material. It is concluded that the upper packed-bed is an active element able to modify syngas characteristics since CO2 content was reduced.

  2. Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications.

    Science.gov (United States)

    Schievano, Andrea; Pepé Sciarria, Tommy; Vanbroekhoven, Karolien; De Wever, Heleen; Puig, Sebastià; Andersen, Stephen J; Rabaey, Korneel; Pant, Deepak

    2016-11-01

    Electro-fermentation (EF) merges traditional industrial fermentation with electrochemistry. An imposed electrical field influences the fermentation environment and microbial metabolism in either a reductive or oxidative manner. The benefit of this approach is to produce target biochemicals with improved selectivity, increase carbon efficiency, limit the use of additives for redox balance or pH control, enhance microbial growth, or in some cases enhance product recovery. We discuss the principles of electrically driven fermentations and how EF can be used to steer both pure culture and microbiota-based fermentations. An overview is given on which advantages EF may bring to both existing and innovative industrial fermentation processes, and which doors might be opened in waste biomass utilization towards added-value biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Carbohydrates for fermentation.

    Science.gov (United States)

    Peters, Dietmar

    2006-01-01

    Biomass accumulated by the photosynthetic fixation of carbon dioxide is the only renewable carbon source, and hence, the only renewable raw material for the chemical industry. Carbohydrates are the main constituents of biomass and occur as cell wall and storage carbohydrates, transportation carbohydrates and glycoconjugates. Cellulose, hemicelluloses and starch in particular as well as pectin, inulin and saccharose to a smaller extent are the most abundant carbohydrates. Glucose is the most important monosaccharide and monomer of polysaccharides in natural carbohydrates. Thus, it is the most abundant organic compound on earth. Production of pulp from wood cellulose, applications of starch for paper making as well as uses of glucose and saccharose for fermentation are the most important chemical and technical uses of carbohydrates. Carbohydrates used as fermentation feedstock are essential for the chemical industry. Their importance is steadily growing due to the increasing implementation of biotechnological processes.

  4. The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body

    KAUST Repository

    Kim, Yu Jeong

    2017-01-05

    Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

  5. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents

    Directory of Open Access Journals (Sweden)

    Suk-Hwan Kang

    2017-10-01

    How to Cite: Kang, S.H., Ryu, J.H., Kim, J.H., Kim, H.S., Yang, H.C., Chung, D.Y. (2017. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 452-459 (doi:10.9767/bcrec.12.3.592.452-459

  6. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review

    OpenAIRE

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and active phase. A thorough analysis of the published literature on this topic reveals that efficiency in the production of liquid fuels correlates well with the proximity of FTS and acid sites. Moreover,...

  7. Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO2Electroreduction.

    Science.gov (United States)

    He, Rong; Zhang, An; Ding, Yilun; Kong, Taoyi; Xiao, Qing; Li, Hongliang; Liu, Yan; Zeng, Jie

    2018-02-01

    Electroreduction of CO 2 is a sustainable approach to produce syngas with controllable ratios, which are required as specific reactants for the optimization of different industrial processes. However, it is challenging to achieve tunable syngas production with a wide ratio of CO/H 2 , while maintaining a high current density. Herein, cadmium sulfoselenide (CdS x Se 1- x ) alloyed nanorods are developed, which enable the widest range of syngas proportions ever reported at the current density above 10 mA cm -2 in CO 2 electroreduction. Among CdS x Se 1- x nanorods, CdS nanorods exhibit the highest Faradaic efficiency (FE) of 81% for CO production with a current density of 27.1 mA cm -2 at -1.2 V vs. reversible hydrogen electrode. With the increase of Se content in CdS x Se 1- x nanorods, the FE for H 2 production increases. At -1.2 V vs. RHE, the ratios of CO/H 2 in products vary from 4:1 to 1:4 on CdS x Se 1- x nanorods (x from 1 to 0). Notably, all proportions of syngas are achieved with current density higher than ≈25 mA cm -2 . Mechanistic study reveals that the increased Se content in CdS x Se 1- x nanorods strengthens the binding of H atoms, resulting in the increased coverage of H* and thus the enhanced selectivity for H 2 production in CO 2 electroreduction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Health benefits of fermented foods.

    Science.gov (United States)

    Şanlier, Nevin; Gökcen, Büşra Başar; Sezgin, Aybüke Ceyhun

    2017-09-25

    In the past, the beneficial effects of fermented foods on health were unknown, and so people primarily used fermentation to preserve foods, enhance shelf life, and improve flavour. Fermented foods became an important part of the diet in many cultures, and over time fermentation has been associated with many health benefits. Because of this, the fermentation process and the resulting fermented products have recently attracted scientific interest. In addition, microorganisms contributing to the fermentation process have recently been associated with many health benefits, and so these microorganisms have become another focus of attention. Lactic acid bacteria (LAB) have been some of the most studied microorganisms. During fermentation, these bacteria synthesize vitamins and minerals, produce biologically active peptides with enzymes such as proteinase and peptidase, and remove some non-nutrients. Compounds known as biologically active peptides, which are produced by the bacteria responsible for fermentation, are also well known for their health benefits. Among these peptides, conjugated linoleic acids (CLA) have a blood pressure lowering effect, exopolysaccharides exhibit prebiotic properties, bacteriocins show anti-microbial effects, sphingolipids have anti-carcinogenic and anti-microbial properties, and bioactive peptides exhibit anti-oxidant, anti-microbial, opioid antagonist, anti-allergenic, and blood pressure lowering effects. As a result, fermented foods provide many health benefits such as anti-oxidant, anti-microbial, anti-fungal, anti-inflammatory, anti-diabetic and anti-atherosclerotic activity. However, some studies have shown no relationship between fermented foods and health benefits. Therefore, this paper aims to investigate the health effects of fermented foods.

  9. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  10. Recombinant Zymomonas for pentose fermentation

    Science.gov (United States)

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  11. Pentose fermentation by recombinant zymomonas

    Science.gov (United States)

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark; Mohagheghi, Ali; Newman, Mildred M.; McMillan, James D.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  12. Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

    2014-12-30

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

  13. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.

    Science.gov (United States)

    Mondal, Kartick; Sasmal, Sankar; Badgandi, Srikant; Chowdhury, Dipabali Roy; Nair, Vinod

    2016-11-01

    During the past decade, there has been increasing global concern over the rise of anthropogenic CO 2 emission into the Earth's atmosphere (J Air Waste Manage Assoc 53:645-715, 2003). The utilization of CO 2 to produce any valuable product is need of the hour. The production of syngas from CO 2 and CH 4 seems to be one of the promising alternatives in terms of industrial utilization, as it offers several advantages: (a) mitigation of CO 2 , (b) transformation of natural gas and CO 2 into valuable syngas, and (c) producing syngas with H 2 /CO ratio 1 which may further be used for the production of valuable petrochemicals (J Air Waste Manage Assoc 53:645-715, 2003). A conceptual design for the production of synthesis gas by dry reforming of methane is presented here. An economic assessment of this process with an integrated methanol production section as a case was conceptualized and compared with the conventional steam methane reforming route to produce methanol. The economic study indicated that dry reforming of natural gas/methane is a competitive process with lower operating and capital costs in comparison with steam reforming assuming negligible cost of CO 2 import.

  14. Thermal Methane Conversion to Syngas Mediated by Rh1-Doped Aluminum Oxide Cluster Cations RhAl3O4.

    Science.gov (United States)

    Li, Ya-Ke; Yuan, Zhen; Zhao, Yan-Xia; Zhao, Chongyang; Liu, Qing-Yu; Chen, Hui; He, Sheng-Gui

    2016-10-05

    Laser ablation generated RhAl 3 O 4 + heteronuclear metal oxide cluster cations have been mass-selected using a quadrupole mass filter and reacted with CH 4 or CD 4 in a linear ion trap reactor under thermal collision conditions. The reactions have been characterized by state-of-the-art mass spectrometry and quantum chemistry calculations. The RhAl 3 O 4 + cluster can activate four C-H bonds of a methane molecule and convert methane to syngas, an important intermediate product in methane conversion to value-added chemicals. The Rh atom is the active site for activation of the C-H bonds of methane. The high electron-withdrawing capability of Rh atom is the driving force to promote the conversion of methane to syngas. The polarity of Rh oxidation state is changed from positive to negative after the reaction. This study has provided the first example of methane conversion to syngas by heteronuclear metal oxide clusters under thermal collision conditions. Furthermore, the molecular level origin has been revealed for the condensed-phase experimental observation that trace amounts of Rh can promote the participation of lattice oxygen of chemically very inert support (Al 2 O 3 ) to oxidize methane to carbon monoxide.

  15. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior

  16. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  17. Desain Pabrik Synthetic Gas (Syngas dari Gasifikasi Batu Bara Kualitas Rendah sebagai Pasokan Gas PT Pupuk Sriwidjaja

    Directory of Open Access Journals (Sweden)

    Toto Iswanto

    2015-12-01

    Full Text Available Menurut data dari Kementrian Energi dan Sumber Daya Mineral (ESDM tahun 2013, cadangan gas bumi Indonesia saat ini sebesar 170 TSCF dan akan habis dalam kurun waktu 59 tahun, dengan estimasi tidak ada peningkatan atau penurunan produksi. Di lain pihak, industri-industri kimia di Indonesia, semisal industri pupuk, sangat mengandalkan pasokan gas alam sebagai bahan baku pupuk maupun sumber energi. Permasalahan utama yang dihadapi industri pupuk dewasa ini adalah kurangnya pasokan gas alam untuk proses produksi. Di PT Pupuk Sriwidjaja misalnya, kebutuhan gas alam rata-rata untuk proses produksi amonia dan urea mencapai 225 MMSCFD. Namun, pasokan gas dari Pertamina selalu kurang dari jumlah tersebut. Karena selalu berulang, maka hal ini akan mengganggu kinerja PT Pupuk Sriwidjaja sebagai garda terdepan pertahanan pangan nasional bersama petani. Salah satu jenis sumber daya alam yang potensial mengganti dan atau mensubtitusi pemakaian gas alam adalah Synthetic Gas (Syngas. Syngas merupakan gas campuran yang komponen utamanya adalah gas karbon monoksida (CO dan hidrogen (H2 yang dapat digunakan sebagai bahan bakar dan juga dapat digunakan sebagai bahan baku dalam proses pembuatan zat kimia baru seperti metana, amonia, dan urea. Syngas dapat diperoleh dari proses gasifikasi batu bara dimana batu bara diubah dari bentuk padat menjadi gas. Batu bara yang merupakan bahan baku pembuatan syngas jumlahnya sangat melimpah di Indonesia. Menurut data dari Kementrian ESDM tahun 2011, total sumber daya batu bara di Indonesia diperkirakan 119,4 miliar ton, dimana 48%-nya terletak di Sumatera Selatan dan 70% deposit batu bara di Sumatera Selatan tersebut adalah batu bara muda berkualitas rendah. Deposit batu bara terbesar di Sumatera Selatan terletak di Kab. Muara Enim yang letaknya tidak terlalu jauh dengan PT Pupuk Sriwidjaja. Ditambah lagi dengan adanya PT Bukit Asam sebagai produsen terbesar batu bara di Kab. Muara Enim tentu akan mempermudah pasokan batu bara

  18. Alcohol by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tamoki, H.

    1973-08-22

    Alcohol was obtained by culturing Saccharomyces diastaticus and S. cerevisiae on a medium containing saccharified starch as the main carbon source. Starch was saccharified with either acid or enzyme. Thus, 185 ml fermented mash (10.52% EtOH) was obtained by culturing yeast starter on 200 ml saccharified solution containing yeast extract 2 and peptone 2 g for 94 hours at 30 degrees; the saccharified solution was prepared by adding 0.006 mole NaCl, 0.001 mole CaCl2, and 40 mg bacterial dextrinogenic amylase to 20% potato starch suspension and allowed to react for 30 minutes at 75 degrees.

  19. TRADITIONAL FERMENTED FOODS OF LESOTHO

    Directory of Open Access Journals (Sweden)

    Tendekayi H. Gadaga

    2013-06-01

    Full Text Available This paper describes the traditional methods of preparing fermented foods and beverages of Lesotho. Information on the preparation methods was obtained through a combination of literature review and face to face interviews with respondents from Roma in Lesotho. An unstructured questionnaire was used to capture information on the processes, raw materials and utensils used. Four products; motoho (a fermented porridge, Sesotho (a sorghum based alcoholic beverage, hopose (sorghum fermented beer with added hops and mafi (spontaneously fermented milk, were found to be the main fermented foods prepared and consumed at household level in Lesotho. Motoho is a thin gruel, popular as refreshing beverage as well as a weaning food. Sesotho is sorghum based alcoholic beverage prepared for household consumption as well as for sale. It is consumed in the actively fermenting state. Mafi is the name given to spontaneously fermented milk with a thick consistency. Little research has been done on the technological aspects, including the microbiological and biochemical characteristics of fermented foods in Lesotho. Some of the traditional aspects of the preparation methods, such as use of earthenware pots, are being replaced, and modern equipment including plastic utensils are being used. There is need for further systematic studies on the microbiological and biochemical characteristics of these these products.

  20. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  1. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  2. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Liu, Jing; Yan, Beibei; Shan, Rui

    2015-12-01

    The catalytic steam gasification of bio-oil/biochar slurry (bioslurry) for hydrogen-rich syngas production was investigated in a fixed-bed reactor using LaXFeO3 (X=Ce, Mg, K) perovskite-type catalysts. The effects of elemental substitution in LaFeO3, temperature, water to carbon molar ratio (WCMR) and bioslurry weight hourly space velocity (WbHSV) were examined. The results showed that La0.8Ce0.2FeO3 gave the best performance among the prepared catalysts and had better catalytic activity and stability than the commercial 14 wt.% Ni/Al2O3. The deactivation caused by carbon deposition and sintering was significantly depressed in the case of La0.8Ce0.2FeO3 catalyst. Both higher temperature and lower WbHSV contributed to more H2 yield. The optimal WCMR was found to be 2, and excessive introducing of steam reduced hydrogen yield. The La0.8Ce0.2FeO3 catalyst gave a maximum H2 yield of 82.01% with carbon conversion of 65.57% under the optimum operating conditions (temperature=800°C, WCMR=2 and WbHSV=15.36h(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Gasification of refinery sludge in an updraft reactor for syngas production

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Reem; Eldmerdash, Usama [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4} compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.

  4. Development of a pilot-scale acid gas removal system for coal syngas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Kim, S.H.; Kang, K.H.; Yoo, Y.D.; Yun, Y. [Inst. of Advanced Engineering, Yongin (Republic of Korea)

    2007-11-15

    The Korean pilot-scale gasification facility consists of a coal gasifier, hot gas filtering system, and acid gas removal (AGR) system. The syngas stream from the coal gasification at the rate of 100-120 Nm{sup 3}hr included pollutants such as fly ash, H{sub 2}S, COS, etc. The acid gas, such as H{sub 2}S and COS, is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether (DME) in the catalytic reactor. A hydrolysis system was installed to hydrolyze COS into H{sub 2}S. The designed operation temperature and pressure of the COS hydrolysis system are 150{sup o}C and 8 kg/cm{sup 2}. After the hydrolysis system, COS was reduced below 1 ppm at the normal operating condition. The normal designed operation temperature and pressure of the AGR system are below 40 {sup o}C and 8 kg/cm{sup 2}. Fe-chelate was used as an absorbent. H{sub 2}S was removed below 0.5 ppm in the AGR system when the maximum concentration of H{sub 2}S was 900 ppm. A small scale COS adsorber was also installed and tested to remove COS below 0.5 ppm. COS was removed below 0.1 ppm after the COS adsorbents such as the activated carbon and ion exchange resin.

  5. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    Science.gov (United States)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  6. Study of Syngas Conversion to Light Olefins by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hossein Atashi

    2013-01-01

    Full Text Available The effect of adding MgO to a precipitated iron-cobalt-manganese based Fischer-Tropsch synthesis (FTS catalyst was investigated via response surface methodology. The catalytic performance of the catalysts was examined in a fixed bed microreactor at a total pressure of 1–7 bar, temperature of 280–380°C, MgO content of 5–25% and using a syngas having a H2 to CO ratio equal to 2.The dependence of the activity and product distribution on MgO content, temperature, and pressure was successfully correlated via full quadratic second-order polynomial equations. The statistical analysis and response surface demonstrations indicated that MgO significantly influences the CO conversion and chain growth probability as well as ethane, propane, propylene, butylene selectivity, and alkene/alkane ratio. A strong interaction between variables was also evidenced in some cases. The decreasing effect of pressure on alkene to alkane ratio is investigated through olefin readsorption effects and CO hydrogenation kinetics. Finally, a multiobjective optimization procedure was employed to calculate the best amount of MgO content in different reactor conditions.

  7. Natural gas reforming of carbon dioxide for syngas over Ni–Ce–Al catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Zhan, Yiqiu; Street, Jason; To, Filip; Yu, Fei

    2017-07-01

    A series of Ni–Ce–Al composite oxides with various Ni molar contents were synthesized via the refluxed co-precipitation method and used for natural gas reforming of CO2 (NGRC) for syngas production. The effect of Ni molar content, reaction temperature, feed gas ratio and gas hourly space velocity (GHSV) on the Ni–Ce–Al catalytic performance was investigated. The Ni10CeAl catalyst was selected to undergo 30 h stability test and the conversion of CH4 and CO2 decreased by 2.8% and 2.6%, respectively. The characterization of the reduced and used Ni10CeAl catalyst was performed using BET, H2-TPR, in-situ XRD, TEM, and TGA-DTG techniques. The in-situ XRD results revealed that Ce2O3, CeO2 and CeAlO3 coexisted in the Ni10CeAl catalyst after reduction at 850 °C for 2 h. The results of the TEM analysis revealed that the Ni particle size increased after the NGRC reaction, which mainly caused the catalyst deactivation.

  8. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan, E-mail: doan.phamminh@mines-albi.fr

    2016-12-30

    Highlights: • Formation of nanoparticles of Pt and Ru on hydroxyapatite surface support (HAP). • Pt catalyst more active and stable than Ru catalyst in dry reforming of methane (DRM). • Low carbon deposition on the surface of Pt catalyst after reaction. • Quantification of water as by-product of the reaction for the first time. • Good mass balance of the reaction. - Abstract: This work focused on the catalytic transformation of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) into syngas (mixture of CO and H{sub 2}). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400–700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.

  9. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    Science.gov (United States)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.

  10. Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning

    Directory of Open Access Journals (Sweden)

    Robert S. Frazier

    2015-01-01

    Full Text Available Biomass gasification has the potential to produce renewable fuels, chemicals and power at large utility scale facilities. In these plants catalysts would likely be used to reform and clean the generated biomass syngas. Traditional catalysts are made from transition metals, while catalysts made from biochar are being studied. A life cycle assessment (LCA study was performed to analyze the sustainability, via impact assessments, of producing a metal catalyst versus a dedicated biochar catalyst. The LCA results indicate that biochar has a 93% reduction in greenhouse gas (GHG emissions and requires 95.7% less energy than the metal catalyst to produce. The study also estimated that biochar production would also have fewer impacts on human health (e.g., carcinogens and respiratory impacts than the production of a metal catalyst. The possible disadvantage of biochar production in the ecosystem quality is due mostly to its impacts on agricultural land occupation. Sensitivity analysis was carried out to assess environmental impacts of variability in the two production systems. In the metal catalyst manufacture, the extraction and production of nickel (Ni had significant negative effects on the environmental impacts. For biochar production, low moisture content (MC, 9% and high yield type (8 tons/acre switchgrass appeared more sustainable.

  11. Gasification of refuse derived fuel in a fixed bed reactor for syngas production.

    Science.gov (United States)

    Dalai, Ajay K; Batta, Nishant; Eswaramoorthi, I; Schoenau, Greg J

    2009-01-01

    Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H2 and CO are found to be the major products, along with CO2 and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H2 and CO selectivities was studied, and the optimum temperature for better H2 and CO selectivity was determined to be 725 degrees C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H2 under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution.

  12. On the use of supported ceria membranes for oxyfuel process/syngas production

    DEFF Research Database (Denmark)

    Lobera, M.P.; Serra, J.M.; Foghmoes, Søren Preben Vagn

    2011-01-01

    -rich environments and/or decomposition in reducing gas environments. The oxygen flux through supported thin film membranes of Ce0.9Gd0.1O1.95−δ (CGO) with 2 mol.% of cobalt was measured for oxygen separation in oxyfuel processes and in syngas production and degradation was compared to perovskite...... with an oxygen reduction catalyst. Oxygen separation was studied using air as feed and argon/CO2 or argon/CH4 mixtures as sweep gas in the temperature range 750–1000 °C. The supported membrane exhibited a maximum oxygen flux of ca. 5 ml min−1 cm−2 at 1000 °C when diluted methane was used as sweep gas. The CGO......Ceramic oxygen transport membranes (OTMs) enable selective oxygen separation from air at high temperatures. Among several potential applications for OTMs, the use in (1) oxygen production for oxyfuel power plants and (2) the integration in high-temperature catalytic membrane reactors for alkane...

  13. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  14. Experiments and numerical studies on a Syngas-fired Ultra low NOx combustor

    KAUST Repository

    S, Krishna

    2017-06-06

    Exhaust measurements of temperature and pollutants in a syngas-fired model trapped vortex combustor for stationary power generation applications are reported. The performance was further evaluated for configurations where mixing enhancement was obtained using struts in the mainstream flow. Mainstream premixing of fuel was also studied to investigate its effect on emissions. The exhaust temperature pattern factor was found to be poor for baseline cases, but improved with the introduction of struts. NO emissions were steadily below 3-ppm across various flow conditions, whereas CO emissions tended to increase with increasing Momentum Flux Ratios (MFRs) and mainstream fuel addition. Combustion efficiencies ~96% were observed for all conditions. The performance characteristics were found to be favourable at higher MFRs with low pattern factors and high combustion efficiencies. Numerical simulations employing RANS and LES with Presumed Probability Distribution Function (PPDF) model were also carried out. Mixture fraction profiles in the TVC cavity for non-reacting conditions show that LES simulations are able to capture the mean mixing field better than the RANS-based approach. This is attributed to the prediction of the jet decay rate and is reflected on the mean velocity magnitude fields, which reinforce this observation at different sections in the cavity. Both RANS and LES simulations show close agreement with the experimentally measured OH concentration, however, the RANS approach does not perform satisfactorily in capturing the trend of velocity magnitude. LES simulations clearly capture the trend observed in exhaust measurements which is primarily attributed to the flame stabilization mechanism.

  15. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    Science.gov (United States)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060

  16. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production.

    Science.gov (United States)

    Hong, Yu; Chen, Wanru; Luo, Xiang; Pang, Chengheng; Lester, Edward; Wu, Tao

    2017-08-01

    In this study, three different marine biomasses, i.e., microalgae-spirulina, chlorella and macroalgae-porphyra, were pyrolyzed in a laboratory-scale multimode-microwave cavity at 400, 550 and 700°C. Ovalbumin and cellulose were also chosen as model compounds to simulate algae. The influence of heating rate on pyrolysis and the βi curves of different samples under different temperatures were studied in detail. The porphyra was found to be the most reactive and produced the largest gaseous fraction (87.1wt%) amongst the three algae, which comprised of 73.3vol% of syngas. It was found that nitrogenated compounds in bio-oil were derived from protein in algae while carbohydrate led to the formation of PAHs. For the production of bio-oil, protein-rich microalgae is favorable compared with porphyra due to their lower amount of PAHs, while porphyra is more suitable for the production of H 2 +CO rich gas product, which is comparable with that of conventional gasification processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  18. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas.

    Science.gov (United States)

    Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-11-28

    Syngas, a CO and H 2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO 2 and H + /H 2 O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C 3 N 4 composite (a CO 2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co 3 O 4 , MoS 2 , Au and Pt serve as the HER component. The Co 3 O 4 -CDots-C 3 N 4 electrocatalyst is found to be the most efficient among the combinations studied. The H 2 /CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H 2 . Insight into the mechanisms balancing between CO 2 reduction and H 2 evolution when applying the HER-CDots-C 3 N 4 catalyst concept is provided.

  19. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. (AJST) INFLUENCE OF FERMENTATION AND COWPEA ...

    African Journals Online (AJOL)

    opiyo

    Cowpeas was the main source of glucose/galactose. Fermentation caused a reduction in stacchyose and glucose/galactose. The mixing of cowpea flour with fermented maize dough prior to drying (single component fermentation) gave similar effects on sugar concentrations as detected in the co-fermented samples ...

  1. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.

    Science.gov (United States)

    Irfan, Muhammad; Chen, Qun; Yue, Yan; Pang, Renzhong; Lin, Qimei; Zhao, Xiaorong; Chen, Hao

    2016-07-01

    In the present study, pyrolysis of Achnatherum splendens L. was performed under three different pyrolysis temperature (300, 500, and 700°C) to investigate the characteristics of biochar, bio-oil, and syngas. Biochar yield decreased from 48% to 24%, whereas syngas yield increased from 34% to 54% when pyrolysis temperature was increased from 300 to 700°C. Maximum bio-oil yield (27%) was obtained at 500°C. The biochar were characterized for elemental composition, surface, and adsorption properties. The results showed that obtained biochar could be used as a potential soil amendment. The bio-oil and syngas co-products will be evaluated in the future as bioenergy sources. Overall, our results suggests that A. splendens L. could be utilized as a potential feedstock for biochar and bioenergy production through pyrolytic route. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    Science.gov (United States)

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.

  3. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    OpenAIRE

    Chin-Feng Chan; Ching-Cheng Huang; Ming-Yuan Lee; Yung-Sheng Lin

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  4. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan

    2014-08-01

    Full Text Available Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  5. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system.

    Science.gov (United States)

    Xu, Huijuan; Liang, Cuiyi; Yuan, Zhenhong; Xu, Jingliang; Hua, Qiang; Guo, Ying

    2017-06-01

    Bioconversion of CO/syngas to produce ethanol is a novel route in bioethanol production, which can be accomplished by some acetogens. Specific culture vessels and techniques are needed to cultivate these microorganisms since they are anaerobic and substrates are gaseous. In this work, gas-sampling bag was applied as a gas-cultivation system to study CO/syngas bioconversion by Clostridium autoethanogenum and was demonstrated to be efficient because of its flexibility and excellent ability to maintain the headspace atmosphere. C. autoethanogenum can use CO as the sole carbon and energy source to produce ethanol, acetate as well as CO 2 . In the experimental range, higher ethanol production was favored by higher yeast extract concentrations, and the maximum ethanol concentration of 3.45g/L was obtained at 1.0g/L of yeast extract. Study with various bottled gases showed that C. autoethanogenum preferred to use CO other than CO 2 and produced the highest level of ethanol with 100% CO as the substrate. C. autoethanogenum can also utilize biomass-generated syngas (36.2% CO, 23.0% H 2 , 15.4% CO 2 , 11.3% N 2 ), but the process proceeded slowly and insufficiently due to the presence of O 2 and C 2 H 2 . In our study, C. autoethanogenum showed a better performance in the bioconversion of CO to ethanol than Clostridium ljungdahlii, a strain which has been most studied, and for both strains, ethanol production was promoted by supplementing 0.5g/L of acetate. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases

    International Nuclear Information System (INIS)

    Sun, Yongqi; Seetharaman, Seshadri; Liu, Qianyi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2016-01-01

    In this study, the thermodynamics of a novel strategy, i.e., biomass/CO 2 gasification integrated with heat recovery from hot slags in the steel industry, were systemically investigated. Both the target syngas yield and the polluting gas release were considered where the effect of gasifying conditions including temperature, pressure and CO 2 reacted was analyzed and then the roles of hot slags were further clarified. The results indicated that there existed an optimum temperature for the maximization of H 2 production. Compared to blast furnace slags, steel slags remarkably increased the CO yield at 600–1400 °C due to the existence of iron oxides and decreased the S-containing gas releases at 400–700 °C, indicating potential desulfurizing ability. The identification of biomass/CO 2 gasification thermodynamics in presence of slags could thus provide important clues not only for the deep understanding of biomass gasification but also for the industrial application of this emerging strategy from the viewpoint of syngas optimization and pollution control. - Highlights: • Biomass/CO 2 gasification was integrated with the heat recovery from hot slags. • Both syngas yield and polluting gas release during gasification were determined. • There existed an optimum temperature for the maximization of H 2 production. • Steel slags increased CO yield at 600–1400 °C due to the existence of iron oxides. • Steel slags remarkably decreased the releases of S-containing gas at 400–700 °C.

  7. Theoretical characterization of the surface composition of ruthenium nanoparticles in equilibrium with syngas

    Science.gov (United States)

    Cusinato, Lucy; Martínez-Prieto, Luis M.; Chaudret, Bruno; Del Rosal, Iker; Poteau, Romuald

    2016-05-01

    A deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction of CO and H with the surface of the catalyst. In this context, the single- and co-adsorption of CO and H to the surface of a 1 nm ruthenium nanoparticle has been investigated with density functional theory. Using several indexes (d-band center, crystal overlap Hamilton population, density of states), a systematic analysis of the bond properties and of the electronic states has also been done, in order to bring an understanding of structure/property relationships at the nanoscale. The H : CO surface composition of this ruthenium nanoparticle exposed to syngas has been evaluated according to a thermodynamic model fed with DFT energies. Such ab initio thermodynamic calculations give access to the optimal H : CO coverage values under a wide range of experimental conditions, through the construction of free energy phase diagrams. Surprisingly, under the Fischer-Tropsch synthesis experimental conditions, and in agreement with new experiments, only CO species are adsorbed at the surface of the nanoparticle. These findings shed new light on the possible reaction pathways underlying the Fischer-Tropsch synthesis, and specifically the initiation of the reaction. It is finally shown that the joint knowledge of the surface composition and energy descriptors can help to identify possible reaction intermediates.A deeper understanding of the relationship between experimental reaction conditions and the surface composition of nanoparticles is crucial in order to elucidate mechanisms involved in nanocatalysis. In the framework of the Fischer-Tropsch synthesis, a resolution of this complex puzzle requires a detailed understanding of the interaction

  8. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly; Tadd, Andrew; Schwank, Johannes; Kibler, Roland; McLean, David; Samineni, Mahesh; Smith, Ryan; Parvathikar, Sameer; Mayne, Joe; Westrich, Tom; Mader, Jerry; Faubert, F. Michael

    2010-07-30

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were

  9. Pyrolysis-catalytic dry (CO2) reforming of waste plastics for syngas production: Influence of process parameters

    OpenAIRE

    Md Saad, J; Williams, PT

    2017-01-01

    Catalytic dry (CO2) reforming of waste plastics was carried out in a two stage, pyrolysis-catalytic reforming fixed bed reactor to optimise the production of syngas (H2 + CO). The effects of changing the process parameters of, catalyst preparation conditions, catalyst temperature, CO2 input rate and catalyst:plastic ratio were investigated. The plastics used was a mixture of plastics simulating that found in municipal solid waste and the catalyst used was Ni-Co-Al2O3. The results showed that ...

  10. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Howard [Advanced Cooling Technologies, Inc, Lancaster, PA (United States); Chen, Chien-Hua [Advanced Cooling Technologies, Inc, Lancaster, PA (United States)

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  11. Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2

    International Nuclear Information System (INIS)

    Chen, Xuejing; Jiang, Jianguo; Li, Kaimin; Tian, Sicong; Yan, Feng

    2017-01-01

    Highlights: • The effect of O 2 content from 0 to 15% on Ni/SiO 2 are studied for biogas reforming. • The presence of O 2 in biogas improves CH 4 conversion and stability of biogas reforming. • An obvious carbon-resistance effect is observed due to the carbon gasification effect of O 2 in biogas. • The presence of O 2 in biogas greatly helps inhibit the catalyst sintering. - Abstract: We report an energy-efficient biogas reforming process with high and stable methane conversions by O 2 presence. During this biogas reforming process, the effects of various O 2 concentrations in biogas on initial conversions and stability at various temperatures on a Ni/SiO 2 catalyst were detailed investigated. In addition, theoretical energy consumption and conversions were calculated based on the Gibbs energy minimization method to compare with experimental results. Carbon formation and sintering during the reforming process were characterized by thermal gravity analysis, the Brunauer-Emmett-Teller method, X-ray diffraction, and high-resolution transmission electron microscopy to investigate the feasibility of applying this process to an inexpensive nickel catalyst. The results showed that 5% O 2 in biogas improved the CH 4 conversion and stability of biogas reforming. The enhancement of stability was attributed to the inhibited sintering, our first finding, and the reduced carbon deposition at the same time, which sustained a stable conversion of CH 4 , and proved the applicability of base Ni catalyst to this process. Higher O 2 concentrations (⩾10%) in biogas resulted in severe decrease in CO 2 conversion and greater H 2 O productivity. Our proposed biogas reforming process, with a high and stable conversion of CH 4 , reduced energy input, and the applicability to inexpensive base metal catalyst, offers a good choice for biogas reforming with low O 2 concentrations (⩽5%) to produce syngas with high energy efficiency.

  12. Syngas to Synfuels Process Development Unit Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C. [Iowa State Univ., Ames, IA (United States)

    2012-03-30

    The process described is for the gasification of 20 kg/h of biomass (switchgrass) to produce a syngas suitable for upgrading to Fischer-Tropsch (FT) liquid fuels (gas, diesel, waxes, etc.). The gas stream generated from gasification is primarily composed of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), steam (H2O), and methane (CH4), but also includes tars, particulate matter, ammonia (NH3), hydrogen cyanide (HCN), hydrogen chloride (HCl), hydrogen sulfide ( H2S), carbonyl sulfide (COS), etc. as contaminants. The gas stream passes through an array of cleaning devices to remove the contaminants to levels suitable for FT synthesis of fuels/chemicals. These devices consist primarily of an oil scrubber (to remove tars and remaining particulates), sulfur scrubber (to remove sulfur compounds), and a wet scrubber (to remove NH3, HCl and remaining water soluble contaminants). The ammonia and oil scrubbers are absorption columns with a combination of random and structured packing materials, using water and oil as the adsorption liquids respectively. The ammonia scrubber performed very well, while operating the oil scrubber proved to be more difficult due to the nature of tar compounds. The sulfur scrubber is a packed bed absorption device with solid extrudates of adsorbent material, primarily composed of ZnO and CuO. It performed well, but over a limited amount of time due to fouling created by excess tar/particulate matter and oil aerosols. Overall gas contaminants were reduced to below 1 ppm NH3, and less than 1 ppm collective sulfur compounds.

  13. Parametric study on catalytic tri-reforming of methane for syngas production

    International Nuclear Information System (INIS)

    Chein, Rei-Yu; Wang, Chien-Yu; Yu, Ching-Tsung

    2017-01-01

    A two-dimensional numerical model for syngas production from tri-reforming of methane (TRM) in adiabatic tubular fixed-bed reactors was established. From the results obtained, it was found that reactant must be preheated to certain temperatures for TRM activation. Although the delay factor accounting for the varying catalytic bed activities produced different temperature and species mole fraction profiles in the reactor upstream, the reactor performance was delay factor independent if the reactor outlet results were used because nearly identical temperature and species mole fraction variations were obtained at the reactor downstream. The numerical results also indicated that reverse water-gas shift reaction plays an important role for H 2 and CO yields. With higher O 2 in reactant, high temperature resulted, leading to lower H 2 /CO ratio. The absence of H 2 O in the reactant caused dry reforming of methane as the dominant reaction, resulting in H 2 /CO ratio close to unity. With the absence of CO 2 in the reactant, steam reforming of methane was the dominant reaction, resulting in H 2 /CO ratio close to 3. Using flue gas from combustion as TRM feedstock, it was found that H 2 /CO ratio was enhanced using lower CH 4 amount in reactant. High-temperature flue gas was suggested for TRM for the activation requirement. - Highlights: • Reactant must be preheated to certain temperature for tri-reforming of methane (TRM) activation. • A delay factor is used to account for varying catalytic activity. • TRM performance is delay factor independent when reactor outlet results are used. • Water-gas shift reaction plays an important role in H 2 yield, CO yield and H 2 /CO ratio in TRM. • Low CH 4 and high temperature are suggested when flue gas is used in TRM.

  14. Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas

    International Nuclear Information System (INIS)

    Tao, Jun; Lu, Qiang; Dong, Changqing; Du, Xiaoze; Dahlquist, Erik

    2015-01-01

    Highlights: • ECR technique was proposed to convert biomass gasification tar model compounds. • Electric current enhanced the reforming efficiency remarkably. • The highest toluene conversion reached 99.9%. • Ni–CeO 2 /γ-Al 2 O 3 exhibited good stability during the ECR performance. - Abstract: Electrochemical catalytic reforming (ECR) technique, known as electric current enhanced catalytic reforming technique, was proposed to convert the biomass gasification tar into syngas. In this study, Ni–CeO 2 /γ-Al 2 O 3 catalyst was prepared, and toluene was employed as the major feedstock for ECR experiments using a fixed-bed lab-scale setup where thermal electrons could be generated and provided to the catalyst. Several factors, including the electric current intensity, reaction temperature and steam/carbon (S/C) ratio, were investigated to reveal their effects on the conversion of toluene as well as the composition of the gas products. Moreover, toluene, two other tar model compounds (benzene and 1-methylnaphthalene) and real tar (tar-containing wastewater) were subjected to the long period catalytic stability tests. All the used catalysts were analyzed to determine their carbon contents. The results indicated that the presence of electric current enhanced the catalytic performance remarkably. The toluene conversion reached 99.9% under the electric current of 4 A, catalytic temperature of 800 °C and S/C ratio of 3. Stable conversion performances of benzene, 1-methylnaphthalene and tar-containing wastewater were also observed in the ECR process. H 2 and CO were the major gas products, while CO 2 and CH 4 were the minor ones. Due to the promising capability, the ECR technique deserves further investigation and application for efficient tar conversion

  15. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  16. Starter cultures for kimchi fermentation.

    Science.gov (United States)

    Lee, Mo-Eun; Jang, Ja-Young; Lee, Jong-Hee; Park, Hae-Woong; Choi, Hak-Jong; Kim, Tae-Woon

    2015-05-01

    Kimchi is a traditional Korean vegetable product that is naturally fermented by various microorganisms present in the raw materials. Among these microorganisms, lactic acid bacteria dominate the fermentation process. Natural fermentation with unsterilized raw materials leads to the growth of various lactic acid bacteria, resulting in variations in the taste and quality of kimchi, which may make it difficult to produce industrial-scale kimchi with consistent quality. The use of starter cultures has been considered as an alternative for the industrial production of standardized kimchi, and recent trends suggest that the demand for starter cultures is on the rise. However, several factors should be carefully considered for the successful application of starter cultures for kimchi fermentation. In this review, we summarize recent studies on kimchi starter cultures, describe practical problems in the application of industrial-scale kimchi production, and discuss the directions for further studies.

  17. OXYGEN MANAGEMENT DURING ALCOHOLIC FERMENTATION

    OpenAIRE

    MOENNE VARGAS, MARÍA ISABE

    2013-01-01

    Oxygen additions are a common practice in winemaking, as oxygen has a positive effect in fermentative kinetics, biomass synthesis and improvement of color, structure and :flavor in treated wines. However, most oxygen additions are carried out heuristically through pump-over operations solely on a know-how basis, which is difficult to manage in terms of the exact quantity of oxygen transferred to the fermenting must. It is important to estímate the amount of oxygen added because...

  18. One-Step DME synthesis from coal-derived, CO-rich syngas in a slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y.; Jo, S.H.; Ryu, H.J.; Yi, C.K.; Jin, G.T. [Korea Institute of Energy Research, Taejon (Republic of Korea). Zero Emission Technology Research Center

    2008-07-15

    This study investigates one-step dimethyl ether (DME) synthesis from coal-derived, CO-rich syngas over a bifunctional catalyst comprising a methanol synthesis catalyst (Cu/ZnO/Al{sub 2}O{sub 3}) and a methanol dehydration catalyst ({gamma}-Al{sub 2}O{sub 3}). The liquid-phase DME synthesis was carried out in a slurry reactor that provided good mixing and excellent heat removal. Higher CO conversion and DME space time yield (STY) were observed at a higher reaction temperature and a higher pressure. A lower gas hourly space velocity (GHSV) cansed higher CO conversion, but a lower DME STY. Excessive content of {gamma}-Al{sub 2}O{sub 3} had an adverse effect on both CO conversion and DME STY. Among various H{sub 2}:CO ratios, the maximum DME STY (13.5 mol/kg-cat/h) was observed at a H{sub 2}:CO ratio of 1-0. CO{sub 2} in the feed syngas had a negative effect on DME synthesis. The results and data obtained in this study can be used as basic data for the design and operation of a large scale bubble column reactor and for further application to a three-phase fluidized bed reactor.

  19. Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production

    Science.gov (United States)

    Kim, Si-Won; Kim, Hyoungchul; Yoon, Kyung Joong; Lee, Jong-Ho; Kim, Byung-Kook; Choi, Wonjoon; Lee, Jong-Heun; Hong, Jongsup

    2015-04-01

    High temperature co-electrolysis of steam/CO2 mixtures using solid oxide cells has been proposed as a promising technology to mitigate climate change and power fluctuation of renewable energy. To make it viable, it is essential to control the complex reacting environment in their fuel electrode. In this study, dominant reaction pathway and species transport taking place in the fuel electrode and their effect on the cell performance are elucidated. Results show that steam is a primary reactant in electrolysis, and CO2 contributes to the electrochemical performance subsequently in addition to the effect of steam. CO2 reduction is predominantly governed by thermochemical reactions, whose influence to the electrochemical performance is evident near limiting currents. Chemical kinetics and mass transport play a significant role in co-electrolysis, given that the reduction reactions and diffusion of steam/CO2 mixtures are slow. The characteristic time scales determined by the kinetics, diffusion and materials dictate the cell performance and product compositions. The fuel electrode design should account for microstructure and catalysts for steam electrolysis and thermochemical CO2 reduction in order to optimize syngas production and store electrical energy effectively and efficiently. Syngas yield and selectivity are discussed, showing that they are substantially influenced by operating conditions, fuel electrode materials and its microstructure.

  20. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    Science.gov (United States)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  1. Exergy Analysis of a Syngas-Fueled Combined Cycle with Chemical-Looping Combustion and CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Álvaro Urdiales Montesino

    2016-08-01

    Full Text Available Fossil fuels are still widely used for power generation. Nevertheless, it is possible to attain a short- and medium-term substantial reduction of greenhouse gas emissions to the atmosphere through a sequestration of the CO2 produced in fuels’ oxidation. The chemical-looping combustion (CLC technique is based on a chemical intermediate agent, which gets oxidized in an air reactor and is then conducted to a separated fuel reactor, where it oxidizes the fuel in turn. Thus, the oxidation products CO2 and H2O are obtained in an output flow in which the only non-condensable gas is CO2, allowing the subsequent sequestration of CO2 without an energy penalty. Furthermore, with shrewd configurations, a lower exergy destruction in the combustion chemical transformation can be achieved. This paper focus on a second law analysis of a CLC combined cycle power plant with CO2 sequestration using syngas from coal and biomass gasification as fuel. The key thermodynamic parameters are optimized via the exergy method. The proposed power plant configuration is compared with a similar gas turbine system with a conventional combustion, finding a notable increase of the power plant efficiency. Furthermore, the influence of syngas composition on the results is investigated by considering different H2-content fuels.

  2. Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review

    International Nuclear Information System (INIS)

    Xu, Xinhai; Li, Peiwen; Shen, Yuesong

    2013-01-01

    Highlights: • Issues of reforming of heavy hydrocarbon fuels are reviewed. • The advantages of autothermal reforming over other types of reforming are discussed. • The causes and solutions of the major problems for reforming reactors are studied. • Designs and startup strategies for autothermal reforming reactors are proposed. - Abstract: This paper reviews the technological features and challenges of autothermal reforming (ATR) of heavy hydrocarbon fuels for producing hydrogen and syngas onboard to supply fuels to fuel cells for auxiliary power units. A brief introduction at the beginning enumerates the advantages of using heavy hydrocarbon fuels onboard to provide hydrogen or syngas for fuel cells such as solid oxide fuel cells (SOFCs). A detailed review of the reforming and processing technologies of diesel and jet fuels is then presented. The advantages of ATR over steam reforming (SR) and partial oxidation reforming (POX) are summarized, and the ATR reaction is analyzed from a thermodynamic point of view. The causes and possible solutions to the major problems existing in ATR reactors, including hot spots, formation of coke, and inhomogeneous mixing of fuel, steam, and air, are reviewed and studied. Designs of ATR reactors are discussed, and three different reactors, one with a fixed bed, one with monoliths, and one with microchannels are investigated. Novel ideas for design and startup strategies for ATR reactors are proposed at the end of the review

  3. Synthesis of Ethanol from Syngas over Rh/MCM-41 Catalyst: Effect of Water on Product Selectivity

    Directory of Open Access Journals (Sweden)

    Luis Lopez

    2015-10-01

    Full Text Available The thermochemical processing of biomass is an alternative route for the manufacture of fuel-grade ethanol, in which the catalytic conversion of syngas to ethanol is a key step. The search for novel catalyst formulations, active sites and types of support is of current interest. In this work, the catalytic performance of an Rh/MCM-41 catalyst has been evaluated and compared with a typical Rh/SiO2 catalyst. They have been compared at identical reaction conditions (280 °C and 20 bar, at low syngas conversion (2.8% and at same metal dispersion (H/Rh = 22%. Under these conditions, the catalysts showed different product selectivities. The differences have been attributed to the concentration of water vapor in the pores of Rh/MCM-41. The concentration of water vapor could promote the water-gas-shift-reaction generating some extra carbon dioxide and hydrogen, which in turn can induce side reactions and change the product selectivity. The extra hydrogen generated could facilitate the hydrogenation of a C2-oxygenated intermediate to ethanol, thus resulting in a higher ethanol selectivity over the Rh/MCM-41 catalyst as compared to the typical Rh/SiO2 catalyst; 24% and 8%, respectively. The catalysts have been characterized, before and after reaction, by N2-physisorption, X-ray photoelectron spectroscopy, X-ray diffraction, H2-chemisorption, transmission electron microscopy and temperature programmed reduction.

  4. Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2011-08-01

    Full Text Available Biomass gasification has yet to obtain industrial acceptance. The high residual tar concentrations in syngas prevent any ambitious utilization. In this paper a novel gas purification technology based on catalytic hydrocracking is introduced, whereby most of the tarry components can be converted and removed. Pilot scale experiments were carried out with an updraft gasifier. The hydrocracking catalyst was palladium (Pd. The results show the dominant role of temperature and flow rate. At a constant flow rate of 20 Nm3/h and temperatures of 500 °C, 600 °C and 700 °C the tar conversion rates reached 44.9%, 78.1% and 92.3%, respectively. These results could be increased up to 98.6% and 99.3% by using an operating temperature of 700 °C and lower flow rates of 15 Nm3/h and 10 Nm3/h. The syngas quality after the purification process at 700 °C/10 Nm3/h is acceptable for inner combustion (IC gas engine utilization.

  5. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what

  6. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 1: Influence of operating conditions

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  7. Feasibility Study of a Novel Membrane Reactor for Syngas Production. Part 1: Experimental Study of O2 Permeation through Perovskite Membranes under Reducing and Non-Reducing Atmospheres

    NARCIS (Netherlands)

    Zhang Wenxing, Z.W.; Zhang, Wenxing; Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution, the feasibility of a novel membrane reactor for energy efficient syngas production is investigated by means of an experimental and a simulation study. In Part 1, a detailed experimental study is performed on the O2 permeation through a perovskite membrane with composition

  8. Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion

    NARCIS (Netherlands)

    Hua, B.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Yan, N.; Chen, J.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    Solid oxide fuel cells (SOFCs) deliver an energy-efficient and eco-friendly pathway to convert biogas into syngas and electricity. However, many problems still need to be solved before their commercialization. Some of the disadvantages of biogas SOFC technology include coking and sulfur poisoning

  9. Fermentation of irradiated sugarcane must

    Energy Technology Data Exchange (ETDEWEB)

    Alcarde, Andre Ricardo; Horii, Jorge [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: aralcard@esalq.usp.br; Walder, Julio Marcos Melges [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia

    2003-12-01

    Bacillus and Lactobacillus are bacteria that usually contaminate the ethanolic fermentation by yeasts and my influence yeast viability. As microorganisms can be killed by ionizing radiation, the efficacy of gamma radiation in reducing the population of certain contaminating bacteria from sugarcane must was examined and, as a consequence, the beneficial effect of lethal doses of radiation on some parameters of yeast-based ethanolic fermentation was verified. Must from sugarcane juice was inoculated with bacteria of the general Bacillus and Lactobacillus. The contaminated must was irradiated with 2.0, 4.0, 6.0, 8.0 and 10.0 kGy of gamma radiation. After ethanolic fermentation by the yeast (Saccharomyces cerevisiae) the total and volatile acidity produced during the process were evaluated: yeast viability and ethanol yield were also recorded. Treatments of gamma radiation reduced the population of the contaminating bacteria in the sugarcane must. The acidity produced during the fermentation decreased as the dose rate of radiation increased. Conversely, the yeast viability increased as the dose rate of radiation increased. Gamma irradiation was an efficient treatment to decontaminate the must and improved its parameters related to ethanolic fermentation, including ethanol yield, which increased 1.9%. (author)

  10. Treatment of biomass to obtain fermentable sugars

    Science.gov (United States)

    Dunson, Jr., James B.; Tucker, Melvin [Lakewood, CO; Elander, Richard [Evergreen, CO; Hennessey, Susan M [Avondale, PA

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  11. Experiments with Fungi Part 2: Fermentation.

    Science.gov (United States)

    Dale, Michele; Hetherington, Shane

    1996-01-01

    Gives details of three experiments with alcoholic fermentation by yeasts which yield carbon dioxide and ethanol. Lists procedures for making cider, vinegar, and fermentation gases. Provides some historical background and detailed equipment requirements. (DDR)

  12. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  13. PYRUVATE FERMENTATION BY STREPTOCOCCUS FAECALIS.

    Science.gov (United States)

    DEIBEL, R H; NIVEN, C F

    1964-07-01

    Deibel, R. H. (American Meat Institute Foundation, Chicago, Ill.), and C. F. Niven, Jr. Pyruvate fermentation by Streptococcus faecalis. J. Bacteriol. 88:4-10. 1964.-Streptococcus faecalis, as opposed to S. faecium, utilizes pyruvate as an energy source for growth. The fermentation is adaptive, as demonstrated by growth experiments in a casein-hydrolysate medium and the fermentation of pyruvate by cell suspensions. The principal products of pyruvate catabolism were acetoin, CO(2), and lactic, acetic, and formic acids, although carbon recoveries were low due to the formation of slime. End-product analyses suggested that both the phosphoroclastic and dismutation systems were active in pyruvate breakdown. Studies with cell-free extracts indicated a thiamine diphosphate requirement for active pyruvate catabolism. The involvement of lipoic acid in the phosphoroclastic system was investigated, and, although inconclusive results were obtained, no association of this cofactor with phosphoroclastic activity could be made.

  14. Thua nao: Thai fermented soybean

    Directory of Open Access Journals (Sweden)

    Ekachai Chukeatirote

    2015-09-01

    Full Text Available Thua nao is a traditionally fermented food in Thailand. It is manufactured by fermenting cooked soybeans with naturally occurring microbes. There are also similar products including natto in Japan, kinema in India, and chongkukjang in Korea. In Thailand, thua nao is widely consumed, especially by people in the northern part. The product is generally regarded as a protein supplement and widely used as a condiment. Two major types of thua nao can be distinguished; fresh and dried forms. To date, scientific information on thua nao is scarce and thus this article aims to document the updated knowledge of Thai thua nao.

  15. PAT tools for fermentation processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Bolic, Andrijana; Svanholm, Bent

    2012-01-01

    The publication of the Process Analytical Technology (PAT) guidance has been one of the most important milestones for pharmaceutical production during the past ten years. The ideas outlined in the PAT guidance are also applied in other industries, for example the fermentation industry. Process...... knowledge is central in PAT projects. This manuscript therefore gives a brief overview of a number of PAT tools for collecting process knowledge on fermentation processes: on-line sensors, mechanistic models and small-scale equipment for high-throughput experimentation. The manuscript ends with a short...

  16. PAT tools for fermentation processes

    DEFF Research Database (Denmark)

    Gernaey, Krist

    The publication of the Process Analytical Technology (PAT) guidance has been one of the most important milestones for pharmaceutical production during the past ten years. The ideas outlined in the PAT guidance are also applied in other industries, for example the fermentation industry. Process...... knowledge is central in PAT projects. This presentation therefore gives a brief overview of a number of PAT tools for collecting process knowledge on fermentation processes: - On-line sensors, where for example spectroscopic measurements are increasingly applied - Mechanistic models, which can be used...

  17. Biotransformation of algal waste by biological fermentation ...

    African Journals Online (AJOL)

    To treat this garbage of algae, we employed a biological fermentation process using lactic acid bacteria (BL11) and yeast (THE 16). These were isolated and selected for their acidifying and fermentation qualities, respectively. The fermentation resulted in a decrease of pH from 7.4 to 3.75 and a reduction of the different ...

  18. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  19. Fermentation of pretreated corncob hemicellulose hydrolysate to ...

    African Journals Online (AJOL)

    To investigate the effect of unknown fermentation inhibitors in corncob hemicellulose acid hydrolysate processed by pretreatment and detoxification on fermentation, corncob hemicellulose acid hydrolysate and artificially prepared hydrolysate were fermented in parallel by Candida shehatae YHFK-2. The results show that ...

  20. Phytosynthesized iron nanoparticles: effects on fermentative ...

    Indian Academy of Sciences (India)

    of FeSO4 and FeNPs on batch fermentative H2 production from glucose was investigated. The fermentation exper- iments reveal that the ... control (no supplementation) and FeSO4 containing media. The maximum H2 yield of 1.9 mol ... tion, dark fermentative process has been recognized as the most suitable because of its ...

  1. Traditional fermented foods and beverages of Namibia

    Directory of Open Access Journals (Sweden)

    Jane Misihairabgwi

    2017-09-01

    Conclusion: Fermented foods and beverages play a major role in the diet, socioeconomic, and cultural activities of the Namibian population. Most are spontaneously fermented. Research is scarce and should be conducted on the microbiology, biochemistry, nutritional value, and safety of the fermented foods and beverages to ensure the health of the population.

  2. Comparison of biochemical changes during alcoholic fermentation ...

    African Journals Online (AJOL)

    Whatever the type of fermentation, yields of ethanol was highest at 30°C. Fermentation conducted with controlled yeast gave a better yield of ethanol with 8.4 % than spontaneous fermentation that yielded only 4.3 %. There were significant differences (p<0.05) between both alcohol productivity and yield at spontaneous and ...

  3. Fermentation du citron par inoculation microbienne | Bousmaha ...

    African Journals Online (AJOL)

    The present work attempts to replace the traditional process known in Morocco by a controlled process allowing the fermentation and the preservation of lemon. We isolated and selected lactic bacteria and yeasts with big acidifying capacity and with high fermentative potential able to preserve and to ferment in a natural way ...

  4. Biomethanation Of Syngas Using Anaerobic Sludge: Shift In The Catabolic Routes With The CO Partial Pressure Increase

    Directory of Open Access Journals (Sweden)

    Silvia Sancho-Navarro

    2016-08-01

    Full Text Available Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2 can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB reactor treating waste water, and elucidates the CO conversion routes to methane at 35±3˚C. Kinetic activity tests under CO at partial pressures (pCO varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L, and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2 and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES, fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥ 1 atm. However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO bacteria oxidized acetate into CO2 and H2. The disaggregation

  5. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  6. Biomass low-temperature gasification in a rotary reactor prior to cofiring of syngas in power boilers

    International Nuclear Information System (INIS)

    Ostrowski, Piotr; Maj, Izabella; Kalisz, Sylwester; Polok, Michał

    2017-01-01

    Highlights: • An innovative method of gasification with use of flue gas was investigated. • Gasification temperature ranging from 350 °C was considered. • Discussed gasification unit is connected to a power boiler. • Syngas with combustible components is recirculated to the boiler. • Wide range of biomass and waste fuels can be used as a feedstock. - Abstract: The paper presents results of the investigation of an innovative biomass and alternative fuel low-temperature gasification method before co-firing in industrial or power plant boilers. Before running industrial-size installation, laboratory tests were carried out to determine usability of alternative fuels to low-temperature gasification process. Tests were conducted in a laboratory reactor designed and constructed specifically for this purpose. The experimental stand enables recording of the weight loss of a sample and syngas composition. The process occurs for a fuel sample of a constant weight and known granulation and with a flue gas of known composition used as a gasifying agent. The aim of the laboratory research was to determine the usability of selected biomass fuel for indirect co-firing in power boilers and to build a knowledge base for industrial-size process by defining the process kinetics (time for fuel to remain in the reactor), recommended fuel granulation and process temperature. Presented industrial-size gasification unit has been successfully built in Marcel power plant in Radlin town, Poland. It consist an innovative rotary gasification reactor. Gasification process takes place with use of flue gas from coal and coke-oven fired boiler as a gasifying agent with recirculation of resulting gas (syngas) with combustible components: CO, H 2 , CH 4 . C n H m to the boiler’s combustion chamber. The construction of the reactor allows the use of a wide range of fuels (biomass, industrial waste and municipal waste). This paper presents the results of the reactor tests using coniferous

  7. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.

    Science.gov (United States)

    Sancho Navarro, Silvia; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2016-01-01

    Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the

  8. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  9. Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter

    OpenAIRE

    Aka S. Koffi; N'Goran Yao; Philippe Bastide; Denis Bruneau; Diby Kadjo

    2017-01-01

    Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize ...

  10. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation.

    Science.gov (United States)

    Xu, Jingyang; Liu, Nian; Qiao, Kangjian; Vogg, Sebastian; Stephanopoulos, Gregory

    2017-07-03

    Acetic acid can be generated through syngas fermentation, lignocellulosic biomass degradation, and organic waste anaerobic digestion. Microbial conversion of acetate into triacylglycerols for biofuel production has many advantages, including low-cost or even negative-cost feedstock and environmental benefits. The main issue stems from the dilute nature of acetate produced in such systems, which is costly to be processed on an industrial scale. To tackle this problem, we established an efficient bioprocess for converting dilute acetate into lipids, using the oleaginous yeast Yarrowia lipolytica in a semicontinuous system. The implemented design used low-strength acetic acid in both salt and acid forms as carbon substrate and a cross-filtration module for cell recycling. Feed controls for acetic acid and nitrogen based on metabolic models and online measurement of the respiratory quotient were used. The optimized process was able to sustain high-density cell culture using acetic acid of only 3% and achieved a lipid titer, yield, and productivity of 115 g/L, 0.16 g/g, and 0.8 g⋅L -1 ⋅h -1 , respectively. No carbon substrate was detected in the effluent stream, indicating complete utilization of acetate. These results represent a more than twofold increase in lipid production metrics compared with the current best-performing results using concentrated acetic acid as carbon feed.

  11. Catalytic partial oxidation and membrane separation to optimize the conversion of natural gas to syngas and hydrogen.

    Science.gov (United States)

    Capoferri, Daniela; Cucchiella, Barbara; Iaquaniello, Gaetano; Mangiapane, Alessia; Abate, Salvatore; Centi, Gabriele

    2011-12-16

    The multistep integration of hydrogen-selective membranes into catalytic partial oxidation (CPO) technology to convert natural gas into syngas and hydrogen is reported. An open architecture for the membrane reactor is presented, in which coupling of the reaction and hydrogen separation is achieved independently and the required feed conversion is reached through a set of three CPO reactors working at 750, 750 and 920 °C, compared to 1030 °C for conventional CPO technology. Obtaining the same feed conversion at milder operating conditions translates into less natural gas consumption (and CO(2) emissions) and a reduction of variable operative costs of around 10 %. It is also discussed how this energy-efficient process architecture, which is suited particularly to small-to-medium applications, may improve the sustainability of other endothermic, reversible reactions to form hydrogen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Carbon coated (carbonous) catalyst in ebullated bed reactor for production of oxygenated chemicals from syngas/CO2

    International Nuclear Information System (INIS)

    Peizheng Zhou

    2002-01-01

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R and D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO 2 efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates

  13. Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor

    Science.gov (United States)

    Iqbal, S.; Benim, A. C.; Fischer, S.; Joos, F.; Kluβ, D.; Wiedermann, A.

    2016-10-01

    Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally. In the investigation, an emphasis is placed upon the external flue gas recirculation, which is a promising technology for increasing the efficiency of the carbon capture and storage process, which, however, can change the combustion behaviour significantly. A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas. Flames are also investigated numerically using the open source CFD software OpenFOAM. In the numerical simulations, a laminar flamelet model based on mixture fraction and reaction progress variable is adopted. As turbulence model, the SST model is used within a URANS concept. Computational results are compared with the experimental data, where a fair agreement is observed.

  14. CARBON COATED (CARBONOUS) CATALYST IN EBULLATED BED REACTOR FOR PRODUCTION OF OXYGENATED CHEMICALS FROM SYNGAS/CO2

    Energy Technology Data Exchange (ETDEWEB)

    Peizheng Zhou

    2002-12-30

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R&D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO{sub 2} efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates.

  15. Syngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers

    International Nuclear Information System (INIS)

    Kleiminger, L.; Li, T.; Li, K.; Kelsall, G.H.

    2015-01-01

    . Unfortunately, larger differences between the thermal expansion coefficients of quartz and YSZ precluded using a quartz tube to house the micro-tubular reactor. However, the kinetic results, CO/H 2 yields from off-gas analysis, diffusional considerations and model predictions of reactant and product gas adsorption on Ni suggested that syngas should be produced by electrochemical reduction of steam to H 2 , followed by its Ni-catalysed chemical reaction with CO 2 .

  16. Korean traditional fermented soybean products: Jang

    Directory of Open Access Journals (Sweden)

    Donghwa Shin

    2015-03-01

    Fermented products are going beyond the boundaries of their use as mere side dishes, and are seeing significant increases in their use as a functional food. Kanjang (fermented soy sauce, Doenjang (fermented soybean paste, and Gochujang (fermented red pepper paste are the most well-known fermented products in Korea. These products occupy an important place in people's daily lives as seasonings and are used in many side dishes. It has been proven through clinical studies that these products have many health benefits, such as their ability to fight cancer and diabetes, and to prevent obesity and constipation.

  17. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting...... yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  18. Mystery behind Chinese liquor fermentation

    NARCIS (Netherlands)

    Jin, Guangyuan; Zhu, Yang; Xu, Yan

    2017-01-01

    Background Chinese liquor, a very popular fermented alcoholic beverage with thousands of years’ history in China, though its flavour formation and microbial process have only been partly explored, is facing the industrial challenge of modernisation and standardisation for food quality and safety as

  19. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  20. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula o...

  1. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  2. On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC)

    Energy Technology Data Exchange (ETDEWEB)

    Azis, M.M.; Jerndal, E.; Leion, H.; Mattisson, T.; Lyngfelt, A. [Chalmers, Gothenburg (Sweden)

    2010-11-15

    Chemical-looping combustion (CLC) is a combustion technique where the CO{sub 2} produced is inherently separated from the rest of the flue gases with a considerably low energy penalty. For this reason, CLC has emerged as one of the more attractive options to capture CO{sub 2} from fossil fuel combustion. When applying CLC with solid fuels, the use of a low cost oxygen carrier is highly important, and one such low cost oxygen carrier is the mineral ilmenite. The current work investigates the reactivity of several ilmenites, some which are synthetically produced by freeze granulation and two natural minerals, one Norwegian ilmenite and one South African ilmenite. A laboratory fluidized bed reactor made of quartz was used to simulate a two reactor CLC system by alternating the reduction and oxidation phase. The fuel was syngas containing 50% CO and 50% H{sub 2}. A mixture of 6g of ilmenite with 9 g inert quartz of diameter 125-180 {mu} m was exposed to a flow of 900mL{sup n}/min syngas in the reduction phase. During the oxidation phase, a 900mL/{sub n}min flow of 10% O{sub 2} diluted in N{sub 2} was used. The experimental results showed that all ilmenites give higher conversion of H{sub 2} than of CO. Generally, synthetic ilmenites have better CO and H{sub 2} conversion than natural ilmenites and synthetic ilmenites prepared with an excess of Fe generally showed higher total conversion of CO than synthetic ilmenites with an excess of Ti. Most synthetic ilmenites and the Norwegian ilmenite showed good fluidization properties during the experiments. However, for two of the synthetically produced materials, and for the South African ilmenite, particle agglomerations were visible at the end of the experiment.

  3. Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation

    Science.gov (United States)

    Tsodikov, M. V.; Ellert, O. G.; Nikolaev, S. A.; Arapova, O. V.; Bukhtenko, O. V.; Maksimov, Yu. V.; Kirdyankin, D. I.; Vasil'kov, A. Yu.

    2018-03-01

    Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-C nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the CO2 atmosphere, dry reforming takes place to give syngas with the CO/H2 ratio of 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90-94%. [Figure not available: see fulltext.

  4. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    Science.gov (United States)

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-01

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Heterogeneous catalytic process for alcohol fuels from syngas. Fifteenth quarterly technical progress report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. The previous best catalysts consisted of potassium-promoted Pd on a Zn/Cr spinel oxide prepared via controlled pH precipitation. The authors have now examined the effect of cesium addition to the Zn/Cr spinel oxide support. Surprisingly, cesium levels required for optimum performance are similar to those for potassium on a wt% basis. The addition of 3 wt% cesium gives isobutanol rates > 170 g/kg-hr at 440 C and 1,500 psi with selectivity to total alcohols of 77% and with a methanol/isobutanol mole ratio of 1.4: this performance is as good as their best Pd/K catalyst. The addition of both cesium and palladium to a Zn/Cr spinel oxide support gives further performance improvements. The 5 wt% cesium, 5.9 wt% Pd formulation gives isobutanol rates > 150 g/kg-hr at 440 C and only 1,000 psi with a selectivity to total alcohols of 88% and with a methanol/isobutanol mole ratio of 0.58: this is their best overall performance to date. The addition of both cesium and palladium to a Zn/Cr/Mn spinel oxide support that contains excess Zn has also been examined. This spinel was the support used in the synthesis of 10-DAN-54, the benchmark catalyst. Formulations made on this support show a lower overall total alcohol rate than those using the spinel without Mn present, and require less cesium for optimal performance.

  6. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaohong S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xing, Rong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spies, Kurt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rainbolt, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Liyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Braunberger, B. [Western Research Inst., Laramie, WY (United States)

    2014-10-01

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330°C when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted Mg

  7. The Brewing Process: Optimizing the Fermentation

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-11-01

    Full Text Available Beer is a carbonated alcoholic beverage obtained by alcoholic fermentation of malt wort boiled with hops. Brown beer obtained at Beer Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca was the result of a recipe based on blond, caramel and black malt in different proportions, water, hops and yeast. This study aimed to monitorize the evolution of wort in primary and secondary alcoholic fermentation in order to optimize the process. Two wort batches were assambled in order to increase the brewing yeast fermentation performance. The primary fermentation was 14 days, followed by another 14 days of secondary fermentation (maturation. The must fermentation monitoring was done by the automatic FermentoStar analyzer. The whole fermentation process was monitorized (temperature, pH, alcohol concentration, apparent and total wort extract.

  8. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  9. Commercialization of a novel fermentation concept.

    Science.gov (United States)

    Mazumdar-Shaw, Kiran; Suryanarayan, Shrikumar

    2003-01-01

    Fermentation is the core of biotechnology where current methodologies span across technologies based on the use of either solid or liquid substrates. Traditionally, solid substrate fermentation technologies have been the widely practiced in the Far East to manufacture fermented foods such as soya sauce, sake etc. The Western World briefly used solid substrate fermentation for the manufacture of antibiotics and enzymes but rapidly replaced this technology with submerged fermentation which proved to be a superior technology in terms of automation, containment and large volume fermentation. Biocon India developed its enzyme technology based on solid substrate fermentation as a low-cost, low-energy option for the production of specialty enzymes. However, the limitations of applying solid substrate fermentation to more sophisticated biotechnology products as well as large volume fermentations were recognized by Biocon India as early as 1990 and the company embarked on a 8 year research and development program to develop a novel bioreactor capable of conducting solid substrate fermentation with comparable levels of automation and containment as those practiced by submerged fermentation. In addition, the novel technology enabled fed-batch fermentation, in situ extraction and other enabling features that will be discussed in this article. The novel bioreactor was christened the "PlaFractor" (pronounced play-fractor). The next level of research on this novel technology is now focused on addressing large volume fermentation. This article traces the evolution of Biocon India's original solid substrate fermentation to the PlaFractor technology and provides details of the scale-up and commercialization processes that were involved therein. What is also apparent in the article is Biocon India's commercially focused research programs and the perceived need to be globally competitive through low costs of innovation that address, at all times, processes and technologies that

  10. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jairam Choudhary

    2016-05-01

    Full Text Available Lignocellulosic biomass is the most abundant renewable source of energy that has been widely explored as second-generation biofuel feedstock. Despite more than four decades of research, the process of ethanol production from lignocellulosic (LC biomass remains economically unfeasible. This is due to the high cost of enzymes, end-product inhibition of enzymes, and the need for cost-intensive inputs associated with a separate hydrolysis and fermentation (SHF process. Thermotolerant yeast strains that can undergo fermentation at temperatures above 40°C are suitable alternatives for developing the simultaneous saccharification and fermentation (SSF process to overcome the limitations of SHF. This review describes the various approaches to screen and develop thermotolerant yeasts via genetic and metabolic engineering. The advantages and limitations of SSF at high temperatures are also discussed. A critical insight into the effect of high temperatures on yeast morphology and physiology is also included. This can improve our understanding of the development of thermotolerant yeast amenable to the SSF process to make LC ethanol production commercially viable.

  11. Development of a mixed-conductive ceramic membrane for syngas production; Developpement d'une membrane ceramique conductrice mixte pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, G

    2005-10-15

    Natural gas conversion into syngas (H{sub 2}+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  12. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition.

    Science.gov (United States)

    Han, Rong; Liu, Jinwen; Zhao, Chenxi; Li, Yuliang; Chen, Aixia

    2016-06-01

    After biophysical drying, a novel biophysical dried sludge particle was obtained. This work aims to investigate the function and effects of particle sizes and moisture contents on the fast pyrolysis of biophysical dried sludge particles. The results showed that large particles (>4 mm) favoured the oil generation with a maximum value of 19.0%, and small particles (syngas production and induced higher H2 and CO emission, owing to the well-developed microstructure, enrichment of cellulose, and enhanced catalytic effects during the charring process. The introduction of proper moisture content (53.9% to 62.6%) to biophysical dried sludge was found to dramatically enhance syngas yield, hydrogen production, and carbon conversion efficiency. H2 molar concentration reached a maximum of 46.02% at a moisture content of 53.9%, which was attributed to the steam reforming and steam gasification accompanying the initial biophysical dried sludge pyrolysis. © The Author(s) 2016.

  13. Probiotics in Dairy Fermented Products

    OpenAIRE

    Andrade Araújo, Emiliane; Dos Santos Pires , Ana Clarissa; Soares Pinto, Maximiliano; Jan, Gwenael; De Carvahlo, Antonio Fernandes

    2012-01-01

    Interest in the role of probiotics for human health began as early as 1908 when Metchnikoff associated the intake of fermented milk with prolonged life (Lourens-Hattingh and Vilijoen, 2001b). However, the relationship between intestinal microbiota and good health and nutrition has only recently been investigated. Therefore, it was not until the 1960’s that health benefit claims began appearing on foods labels. In recent years,there has been an increasing interest in probiotic foods, which...

  14. Marine sponges as microbial fermenters

    OpenAIRE

    Hentschel, Ute; Usher, Kayley M.; Taylor, Michael W.

    2006-01-01

    The discovery of phylogenetically complex, yet highly sponge-specific microbial communities in marine sponges, including novel lineages and even candidate phyla, came as a surprise. At the same time, unique research opportunities opened up, because the microorganisms of sponges are in many ways more accessible than those of seawater. Accordingly, we consider sponges as microbial fermenters that provide exciting new avenues in marine microbiology and biotechnology. This review covers recent fi...

  15. Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N; Nielsen, Benjamin C; Hawk, Jeffrey A

    2013-08-01

    High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 °C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 °C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

  16. Promoting the ambient-condition stability of Zr-doped barium cerate: Toward robust solid oxide fuel cells and hydrogen separation in syngas

    Science.gov (United States)

    Yang, Ying; Zeng, Yimin; Amirkhiz, Babak S.; Luo, Jing-Li; Yan, Ning

    2018-02-01

    Increasing the stability of perovskite proton conductor against atmospheric CO2 and moisture attack at ambient conditions might be equally important as that at the elevated service temperatures. It can ease the transportation and storage of materials, potentially reducing the maintenance cost of the integral devices. In this work, we initially examined the surface degradation behaviors of various Zr-doped barium cerates (BaCe0.7Zr0.1Y0.1Me0.1O3) using XRD, SEM, STEM and electron energy loss spectroscopy. Though that the typical lanthanide (Y, Yb and Gd) and In incorporated Zr-doped cerates well resisted CO2-induced carbonation in air at elevated temperatures, they were unfortunately vulnerable at ambient conditions, suffering slow decompositions at the surface. Conversely, Sn doped samples (BCZYSn) were robust at both conditions yet showed high protonic conductivity. Thanks to that, the anode supported solid oxide fuel cells equipped with BCZYSn electrolyte delivered a maximum power density of 387 mW cm-2 at 600 °C in simulated coal-derived syngas. In the hydrogen permeation test using BCZYSn based membrane, the H2 flux reached 0.11 mL cm-2 min-1 at 850 °C when syngas was the feedstock. Both devices demonstrated excellent stability in the presence of CO2 in the syngas.

  17. Investigation on the effect of blending ratio and airflow rate on syngas profile produced from co-gasification of blended feedstock

    Directory of Open Access Journals (Sweden)

    Inayat Muddasser

    2017-01-01

    Full Text Available Shortages of feedstock supply due to seasonal availability, high transportation costs, and lack of biomass market are creating serious problems in continues operation of bioenergy industry. Aiming at this problem, utilization of blended feedstock is proposed. In this work blends of two different biomasses (wood and coconut shells were co-gasified using externally heated downdraft gasifier. The effects of varying biomass blending ratio and airflow rate on gaseous components of syngas and its heating value were investigated. The results obtained from the experiments revealed that W20:CS80 blend yielded higher values for H2 (20 Vol.% and HHV (18 MJ/Nm3 as compared to the other blends. The higher airflow rate has a negative effect on syngas profile and heating value. The CO and CH4 were observed higher at the start of the process, however, CO was observed decreasing afterward, and the CH4 dropped to 5.0 Vol.%. The maximum H2 and CH4 were obtained at 2.5 LPM airflow rate. The process was noticed more stable at low air flow rates. The HHV was observed higher at the start of process at low airflow rate. It is concluded that low airflow rate and a higher ratio of coconut shells can improve the syngas quality during co-gasification.

  18. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  19. Influence of Fuel Moisture Content and Reactor Temperature on the Calorific Value of Syngas Resulted from Gasification of Oil Palm Fronds

    Science.gov (United States)

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2014-01-01

    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm3. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm3, as compared to nearly double (4.95 MJ/Nm3) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm3 was recorded for higher oxidation zone temperature values. PMID:24578617

  20. Efficient Synthesis of Ethanol from CH4 and Syngas on a Cu-Co/TiO2 Catalyst Using a Stepwise Reactor

    Science.gov (United States)

    Zuo, Zhi-Jun; Peng, Fen; Huang, Wei

    2016-10-01

    Ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst is studied using experiments, density functional theory (DFT) and microkinetic modelling. The experimental results indicate that the active sites of ethanol synthesis from CH4 and syngas are Cu and CoO, over which the ethanol selectivity is approximately 98.30% in a continuous stepwise reactor. DFT and microkinetic modelling results show that *CH3 is the most abundant species and can be formed from *CH4 dehydrogenation or through the process of *CO hydrogenation. Next, the insertion of *CO into *CH3 forms *CH3CO. Finally, ethanol is formed through *CH3CO and *CH3COH hydrogenation. According to our results, small particles of metallic Cu and CoO as well as a strongly synergistic effect between metallic Cu and CoO are beneficial for ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst.