WorldWideScience

Sample records for biomass thermochemical conversion

  1. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  2. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  3. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  4. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  5. 1982 annual report: Biomass Thermochemical Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  6. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  7. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  8. Biomass Thermochemical Conversion Program. 1984 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  9. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed.

  10. Renewable energy obtained by thermochemical conversion of biomass and wastes

    International Nuclear Information System (INIS)

    Full text: The production of energy from alternative sources is one of the main strategic tools for the sustainable development of modern society. In this regard, different kinds of biomass and wastes can contribute to the production of energy by means of chemical, thermal and biological processes. Energy technologies based on biomass and waste are undergoing rapid development: processes are optimized, new ideas are proposed for technical application. Despite the growing interest for the use of these technologies, in many countries their implementation still is at a low level, mainly for reasons other than technical and economical (i.e., low public acceptability, bad experience from the past, insufficient knowledge and experience, and others). Due to the wide range of feedstocks, biomass has a broad geographic distribution, in some cases offering a least-cost and near-term alternative. Renewable sources of energy will have a major role to the energy balance in upcoming years. Romania has an important renewable energy potential in solar, wind energy and biomass and offers utilization availabilities at local and national level. The 'Strategy of capitalizing renewable energy sources', drawn up by the Ministry of Economy and Commerce proposes year 2015 as target for the share of renewable sources to reach about 10-12 % of the overall energy supply. Thermochemical biomass conversion does include a number of possible roots to produce useful fuels and chemicals from the initial biomass feedstock. The basis of thermochemical conversion is the pyrolysis process. This paper focuses on this process in order to produce gas mixtures with high H2 content as the main products, significant amounts of liquid and a reactive carbon-rich char as the main by-products.The relationship between the composition of the starting materials, the process conditions and the desired product yields has also investigated to find out what are the optimum parameters of thermochemical conversion

  11. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  12. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  13. Biomass thermochemical conversion. Overview of results; Biomassan jalostus. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The BIOENERGY Programme comprised two research institute projects, one enterprise project and two demonstration projects in 1996. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of the storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants. Development of biomass gasification/gas engine concepts suitable for diesel power plants was also initiated. In addition to techno-economic assessments, experimental work was carried out focusing on the cleaning of gasification gas for engine use. Conversion of by-products from the pulping industry, in particular crude soap, into liquid fuels was studied by laboratory tests. Results obtained within IEA Bioenergy Agreement are also surveyed and a new three-year work plan is presented in the overview. (orig.)

  14. Artificial Neural Networks for Thermochemical Conversion of Biomass

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles

    2015-01-01

    Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...... other authors. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier, can be successfully predicted by applying neural networks. The results obtained show high agreement...

  15. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  16. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    Science.gov (United States)

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass.

  17. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  18. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    Science.gov (United States)

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass. PMID:25204798

  19. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  20. Dioxins and dioxin-like compounds in thermochemical conversion of biomass : formation, distribution and fingerprints

    OpenAIRE

    Gao, Qiuju

    2016-01-01

    In the transition to a sustainable energy supply there is an increasing need to use biomass for replacement of fossil fuel. A key challenge is to utilize biomass conversion technologies in an environmentally sound manner. Important aspects are to minimize potential formation of persistent organic pollutants (POPs) such as dioxins and dioxin-like compounds. This thesis involves studies of formation characteristics of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and naphthal...

  1. Secondary reactions of tar during thermochemical biomass conversion[Dissertation 14341

    Energy Technology Data Exchange (ETDEWEB)

    Morf, P.O.

    2001-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology in Zurich presents and discusses the results obtained during the examination of the processes involved in the formation and conversion of tar in biomass gasification plant. Details are given on the laboratory reactor system used to provide separated tar production and conversion for the purposes of the experiments carried out. The results of analyses made of the tar and the gaseous products obtained after its conversion at various temperatures are presented. The development of kinetic models using the results of the experiments that were carried out is described. The results of the experiments and modelling are compared with the corresponding results obtained using a full-scale down-draft, fixed-bed gasifier. The author is of the opinion that the reaction conditions found in full-scale gasifiers can be well simulated using heterogeneous tar conversion experiments using the lab reactor system.

  2. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  3. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  4. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Science.gov (United States)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  5. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  6. Thermochemical conversion of biomass to liquid products in the aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2005-10-15

    Aqueous liquefaction of biomass samples was carried out in an autoclave in the reaction temperature range of 550-650 K. In this study, the maximum liquid yield (49%) was obtained from the spruce wood powder at 650 K. It is clear that the yield of liquid products increase with increasing liquefaction temperature for each biomass sample. In general, composition of liquefaction products depends on structural composition of the sample. The yield of water soluble fraction increases with increasing lignin content of the biomass sample, and the highest water soluble fraction (WSF) yield was obtained for hazelnut shell at liquefaction temperature around 650 K, which was about 21%. The yield of heavy oil generally decreases with increasing lignin content of the biomass sample, and the highest heavy oil yield was obtained for beech wood at liquefaction temperature around 650 K, which was about 28%. The yield of acetone insoluble fraction (residue) decreases with increasing liquefaction temperature for all of runs. (Author)

  7. Thermochemical Conversion of Woody Biomass to Fuels and Chemicals Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P. [Univ. of Maine, Orono, ME (United States)

    2015-09-30

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoin College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.

  8. Thermochemical behavior of pretreated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amit Kumar

    2011-07-01

    Mankind has to provide a sustainable alternative to its energy related problems. Bioenergy is considered as one of the potential renewable energy resources and as a result bioenergy market is also expected to grow dramatically in future. However, logistic issues are of serious concern while considering biomass as an alternative to fossil fuel. It can be improved by introducing pretreated wood pellet. The main objective of this thesis is to address thermochemical behaviour of steam exploded pretreated biomass. Additionally, process aspects of torrefaction were also considered in this thesis. Steam explosion (SE) was performed in a laboratory scale reactor using Salix wood chips. Afterwards, fuel and thermochemical aspects of SE residue were investigated. It was found that Steam explosion pretreatment improved both fuel and pellet quality. Pyrolysis of SE residue reveals that alerted biomass composition significantly affects its pyrolysis behaviour. Contribution from depolymerized components (hemicellulose, cellulose and lignin) of biomass was observed explicitly during pyrolysis. When devolatilization experiment was performed on pellet produced from SE residue, effect of those altered components was observed. In summary, pretreated biomass fuel characteristics is significantly different in comparison with untreated biomass. On the other hand, Process efficiency of torrefaction was found to be governed by the choice of appropriate operating conditions and the type of biomass.

  9. Synthesis and design of optimal biorefinery using an expanded network with thermochemical and biochemical biomass conversion platforms

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    2013-01-01

    This study presents the development of an expanded biorefinery processing network for producing biofuels that combines biochemical and thermochemical conversion platforms. The expanded network is coupled to a framework that uses a superstructure based optimization approach to generate and compare...... of 72 processing intervals . This superstructure was integrated with an earlier developed superstructure for biochemical conversion routes thereby forming a formidable number of biorefinery alternatives. The expanded network was demonstrated to be versatile and useful as a decision support tool...... for identifying at early stage optimal biorefinery concept with respect to technical, economic and environmental criteria....

  10. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  11. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  12. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    Science.gov (United States)

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 °C, pyrolysis at 550 °C, and torrefaction at 300 °C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated.

  13. Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass

    NARCIS (Netherlands)

    de Wild, P. J.; den Uil, H.; Reith, J. H.; Kiel, J. H. A.; Heeres, H. J.

    2009-01-01

    Pyrolysis of lignocellulosic biomass leads to an array Of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose. ce

  14. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  15. Biomass conversion processes for energy and fuels

    Science.gov (United States)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  16. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    Energy Technology Data Exchange (ETDEWEB)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  17. Contributions ECN biomass to 'Developments in thermochemical biomass conversion' conference. 17-22 September 2000, Tyrol, Austria

    Energy Technology Data Exchange (ETDEWEB)

    Boerrigter, H.; Daey Ouwens, C.; Van Doorn, J.; Van der Drift, A.; Hofmans, H.; Huijnen, H.; Kersten, S.R.A.; Kiel, J.H.A.; Moonen, R.H.W.; Mozaffarian, M.; Neeft, J.P.A.; Oosting, T.P.; Den Uil, H.; Visser, H.J.M.; Zwart, R.W.R. [ECN , Biomass, Petten (Netherlands)

    2000-07-01

    This report contains the contributions (7) of the business unit ECN Biomass of the Netherlands Energy Research Foundation (ECN) in Petten, Netherlands, to the title conference. Separate abstracts were prepared for each of the seven papers: (1) Effect of fuel size and process temperature on fuel gas quality from CFB gasification of biomass; (2) Gas mixing in a pilot scale (500 KW{sub th}) air blown circulating fluidised bed biomass gasifier; (3) Guideline for sampling and analysis of 'tars' and particles in biomass producer gases; (4) Biomass ash - bed material interactions leading to agglomeration in fluidised bed combustion and gasification; (5) Production of substitute natural gas by biomass hydrogasification; (6) CASST. A new and advanced process for biomass gasification; and (7) New developments in the field of tri-generation from biomass and waste. A survey.

  18. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hensley, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schaidle, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  19. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, Dragan

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of wat

  20. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L. J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  1. Analysis of the Effects of Compositional and Configurational Assumptions on Product Costs for the Thermochemical Conversion of Lignocellulosic Biomass to Mixed Alcohols -- FY 2007 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-05

    The purpose of this study was to examine alternative biomass-to-ethanol conversion process assumptions and configuration options to determine their relative effects on overall process economics. A process-flow-sheet computer model was used to determine the heat and material balance for each configuration that was studied. The heat and material balance was then fed to a costing spreadsheet to determine the impact on the ethanol selling price. By examining a number of operational and configuration alternatives and comparing the results to the base flow sheet, alternatives having the greatest impact the performance and cost of the overall system were identified and used to make decisions on research priorities.

  2. Hydrothermal conversion of biomass

    OpenAIRE

    Knezevic, Dragan

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experime...

  3. Response of thermochemical and biochemical conversion processes to lignin concentration in alfalfa stems

    Science.gov (United States)

    The technologies currently in place to convert lignocellulosic biomass to energy are either biochemical or thermochemical, the efficiencies of which may vary depending on the composition of the feedstock. One variable that conversion technologists have wrestled with, particularly in the simultaneous...

  4. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  5. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sahir, A. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  6. Catalytic conversion of biomass to fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garten, R. L.; Ushiba, K. K.; Cooper, M.; Mahawili, I.

    1978-01-01

    This report presents an assessment and perspective concerning the application of catalytic technologies to the thermochemical conversion of biomass resources to fuels. The major objectives of the study are: to provide a systematic assessment of the role of catalysis in the direct thermochemical conversion of biomass into gaseous and liquid fuels; to establish the relationship between potential biomass conversion processes and catalytic processes currently under development in other areas, with particular emphasis on coal conversion processes; and to identify promising catalytic systems which could be utilized to reduce the overall costs of fuels production from biomass materials. The report is divided into five major parts which address the above objectives. In Part III the physical and chemical properties of biomass and coal are compared, and the implications for catalytic conversion processes are discussed. With respect to chemical properties, biomass is shown to have significant advantages over coal in catalytic conversion processes because of its uniformly high H/C ratio and low concentrations of potential catalyst poisons. The physical properties of biomass can vary widely, however, and preprocessing by grinding is difficult and costly. Conversion technologies that require little preprocessing and accept a wide range of feed geometries, densities, and particle sizes appear desirable. Part IV provides a comprehensive review of existing and emerging thermochemical conversion technologies for biomass and coal. The underlying science and technology for gasification and liquefaction processes are presented.

  7. Analysis of the Effects of Compositional and Configurational Assumptions on Product Costs for the Thermochemical Conversion of Lignocellulosic Biomass to Mixed Alcohols – FY 2007 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2009-02-01

    The purpose of this study was to examine alternative biomass-to-ethanol conversion process assumptions and configuration options to determine their relative effects on overall process economics. A process-flow-sheet computer model was used to determine the heat and material balance for each configuration that was studied. The heat and material balance was then fed to a costing spreadsheet to determine the impact on the ethanol selling price. By examining a number of operational and configuration alternatives and comparing the results to the base flow sheet, alternatives having the greatest impact the performance and cost of the overall system were identified and used to make decisions on research priorities. This report, which was originally published in December 2008, has been revised primarily to correct information presented in Appendix B -- Base Case Flow Sheets and Model Results. The corrections to Appendix B include replacement of several pages in Table B.1 that duplicated previous pages of the table. Other changes were made in Appendix B to correct inconsistencies between stream labels presented in the tables and the stream labels in the figures.

  8. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  9. Energy from Biomass for Conversion of Biomass

    Science.gov (United States)

    Abolins, J.; Gravitis, J.

    2009-01-01

    Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

  10. Comparison of conversion pathways for lignocellulosic biomass to biofuel in Mid-Norway

    OpenAIRE

    Berg, Heidi Ødegård

    2013-01-01

    This work investigates one biochemical and one thermochemical biomass-to-liquid biofuel conversion pathway in terms of lignocellulose conversion to liquid Fischer-Tropsch diesel. The focus has been on comparing the two conversion pathways in terms of identifying their energy flows and respective feed to fuel ratios. The conversion pathways investigated comprise two-stage conversion sequences including biomass-to-gas conversion and gas-to-liquid conversion, exerted by anaerobic digestion or ga...

  11. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  12. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, E. C. D.; Talmadge, M.; Dutta, A.; Hensley, J.; Schaidle, J.; Biddy, M.; Humbird, D.; Snowden-Swan, L. J.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  13. Thermochemical Process Development Unit

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to demonstrate and evaluate the thermochemical conversion of biomass to produce syngas or pyrolysis oil that can be further converted to fuels...

  14. Biomass Conversion Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-05

    To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today’s vehicles and infrastructure.

  15. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  16. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  17. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-

  18. A review on conversion of biomass to biofuel by nanocatalysts

    Directory of Open Access Journals (Sweden)

    Mandana Akia

    2014-03-01

    Full Text Available The world’s increasing demand for energy has led to an increase in fossil fuel consumption. However this source of energy is limited and is accompanied with pollution problems. The availability and wide diversity of biomass resources have made them an attractive and promising source of energy. The conversion of biomass to biofuel has resulted in the production of liquid and gaseous fuels that can be used for different means methods such as thermochemical and biological processes. Thermochemical processes as a major conversion route which include gasification and direct liquefaction are applied to convert biomass to more useful biofuel. Catalytic processes are increasingly applied in biofuel development. Nanocatalysts play an important role in improving product quality and achieving optimal operating conditions. Nanocatalysts with a high specific surface area and high catalytic activity may solve the most common problems of heterogeneous catalysts such as mass transfer resistance, time consumption, fast deactivation and inefficiency. In this regard attempts to develop new types of nanocatalysts have been increased. Among the different biofuels produced from biomass, biodiesel has attained a great deal of attention. Nanocatalytic conversion of biomass to biodiesel has been reported using different edible and nonedible feedstock. In most research studies, the application of nanocatalysts improves yield efficiency at relatively milder operating conditions compared to the bulk catalysts.

  19. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  20. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  1. Bioenergy II. Biomass Valorisation by a Hybrid Thermochemical Fractionation Approach

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.J.; Den Uil, H.; Reith, J.H. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands); Lunshof, A.; Hendriks, C.; Van Eck, E. [Radboud University, Nijmegen (Netherlands); Heeres, E. [University of Groningen, Groningen (Netherlands)

    2009-11-15

    The need for green renewable sources is adamant because of the adverse effects of the increasing use of fossil fuels on our society. Biomass has been considered as a very attractive candidate for green energy carriers, chemicals and materials. The development of cheap and efficient fractionation technology to separate biomass into its main constituents is highly desirable. It enables treatment of each constituent separately, using dedicated conversion technologies to get specific target chemicals. The synergistic combination of aquathermolysis (hot pressurised water treatment) and pyrolysis (thermal degradation in the absence of oxygen) is a promising thermolysis option, integrating fractionation of biomass with production of valuable chemicals. Batch aquathermolysis in an autoclave and subsequent pyrolysis using bubbling fluidised bed reactor technology with beech, poplar, spruce and straw indicate the potential of this hybrid concept to valorise lignocellulosic biomass. Hemicellulose-derived furfural was obtained in yields that ranged from 2 wt% for spruce to 8 wt% for straw. Hydroxymethylfurfural from hemicellulose was obtained in yields from 0.3 wt% for poplar to 3 wt% for spruce. Pyrolysis of the aquathermolised biomass types resulted in 8 wt% (straw) to 11 wt% (spruce) of cellulose-derived levoglucosan. Next to the furfurals and levoglucosan, appreciable amounts of acetic acid were obtained as well from the aquathermolysis step, ranging from 1 wt% for spruce to 5 wt% for straw. To elucidate relations between the chemical changes occurring in the biomass during the integrated process and type and amount of the chemical products formed, a 13C-solid state NMR study has been conducted. Main conclusions are that aquathermolysis results in hemicellulose degradation to lower molecular weight components. Lignin ether bonds are broken, but apart from that, lignin is hardly affected by the aquathermolysis. Cellulose is also retained, although it seems to become more

  2. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  3. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    and supply chain models specifically for biomass to bioenergy production. The study suggest that this species can be profitably managed for biomass production with rotation length of 11 to 12 years and with a stand tree density of 1,200 trees per acre. Optimum rotation length is greatly affected by seedlings costs and biomass productivity. In the fourth study, a evaluation of seven different feedstocks (loblolly pine, natural mixed hardwood, Eucalyptus, switchgrass, miscanthus, corn stover and sweet sorghum) is made in terms of supply chain, biomass delivered costs, dollar per ton of carbohydrate and dollar per million BTU delivered to a biorefinery. Forest feedstocks present better advantages in terms of a well established supply chain, year round supply and no need for biomass storage. In the same context biomass delivered costs, as well as cost to delivered one ton of carbohydrate and one million BTU is lower in forest feedstocks. In the fifth study, conversion costs, profitability and sensitivity analysis for a novel pretreatment process, green liquor, are modeled for ethanol production with loblolly pine, natural mixed hardwood and Eucalyptus as feedstocks, evaluated in two investment scenarios: green field and repurposing of an old kraft pulp mill. Better financial returns are perceived in the natural hardwood - repurposing scenario, mainly due to lower CAPEX and lower enzyme charge and cost. In the sixth study, conversion cost, CAPEX, ethanol yield and profitability for the thermochemical process (indirect gasification and production of mixed alcohol) is simulated for loblolly pine, natural hardwood, eucalyptus, corn stover and switchgrass. Higher ethanol yield with forest feedstock (due to higher content of %C and %H) result in better economic performance, when compare to agriculture biomass. This research indicates that forest feedstock outperform agriculture biomass in terms of delivered costs, supply chain, ethanol yield and process profitability. Loblolly

  4. Trends and Challenges in Catalytic Biomass Conversion

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup; Egeblad, Kresten; Taarning, Esben

    2013-01-01

    . The conversion of biomass-derived substrates, such as glycerol, by hydrogenolysis to the important chemicals ethylene glycol and propane diols. Secondly, the conversion of carbohydrates by Lewis acidic zeolites to yield alkyl lactates, and finally the conversion of lignin, an abundant low value source of biomass...

  5. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Fernandes, T V; Bos, G J Klaasse; Zeeman, G; Sanders, J P M; van Lier, J B

    2009-05-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-treatment, the plant material was anaerobically digested in batch bottles under mesophilic conditions for 40 days. From the pre-treatment and subsequent anaerobic digestion experiments, it was concluded that when the lignin content of the plant material is high, thermo-chemical pre-treatments have a positive effect on the biodegradability of the substrate. Calcium hydroxide pre-treatment improves the biodegradability of lignocellulosic biomass, especially for high lignin content substrates, like bracken. Maleic acid generates the highest percentage of dissolved COD during pre-treatment. Ammonium pre-treatment only showed a clear effect on biodegradability for straw. PMID:19144515

  6. Process and apparatus for conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2006-01-01

    The invention is directed to a process for the conversion of cellulosic biomass, in particular lignocellulose-containing biomass into fermentable sugars. The invention is further directed to apparatus suitable for carrying out such processes. According to the invention biomass is converted into ferm

  7. Comprehensive characterisation of sewage sludge for thermochemical conversion processes - Based on Singapore survey.

    Science.gov (United States)

    Chan, Wei Ping; Wang, Jing-Yuan

    2016-08-01

    Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. PMID:27189138

  8. Process and apparatus for conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2006-01-01

    The invention is directed to a process for the conversion of biomass, in particular lignocellulose-containing biomass into a product that may be further processes in a fermentation step. The invention is further directed to apparatus suitable for carrying out such processes. According to the inventi

  9. Bioenergy II : Biomass Valorisation by a Hybrid Thermochemical Fractionation Approach

    NARCIS (Netherlands)

    de Wild, Paul J.; den Uil, Herman; Reith, Johannes H.; Lunshof, Anton; Hendriks, Carlijn; van Eck, Ernst R. H.; Heeres, Erik J.

    2009-01-01

    The need for green renewable sources is adamant because of the adverse effects of the increasing use of fossil fuels on our society. Biomass has been considered as a very attractive candidate for green energy carriers, chemicals and materials. The development of cheap and efficient fractionation tec

  10. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  11. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    Science.gov (United States)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  12. Hydrothermal conversion of biomass to liquid energy sources; Hydrothermale Konversion von Biomasse zu fluessigen Energietraegern

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Michael; Peters, Mario; Klemm, Marco; Nelles, Michael [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany)

    2013-10-01

    Beside thermo-chemical processes like pyrolysis, torrefaction and gasification another process group called hydrothermal conversion of biomass comes into the focus of research and development. Especially for wet biomass this process has several advantages: as the reaction medium is water wet biomass not needs to be dried. Beside the reaction pathways, which are still not completely understood, it is important to investigate reactor concepts. That gives the possibility to continuously process the given biomass to deduce specific process conditions for the production of chemicals and fuels. Experiments were conducted in a newly developed tubular reactor at temperatures from 150 to 270 C and reaction times from 1 to 6 min. By studying the HPLC analysis of the liquid products the formation and degradation of several products which may be utilized as base materials for chemicals and fuels (furfural, 5-HMF etc.) was conducted. The experiments illustrate the possibility to influence product composition to a certain extend only by varying temperature and time of the hydrothermal process. That could result in an economic and feasible way to produce intermediate chemicals from biomass. In a second step these product analysis will be used to develop catalysts and investigate the possibilities of in-situ-hydrogenation and synthesis of further valuable chemicals and fuels. (orig.)

  13. Direct conversion of algal biomass to biofuel

    Science.gov (United States)

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  14. Thermochemical Conversion of Lignin for Fuels and Chemicals: A Review Conversion thermochimique de la lignine en carburants et produits chimiques : une revue

    Directory of Open Access Journals (Sweden)

    Joffres B.

    2013-10-01

    Full Text Available Lignin is one of the biomass components potentially usable as renewable resource to produce fuels or chemicals. After separation from the lignocellulosic matrix, this macromolecule is nowadays essentially valorized by combustion in paper mills. If second generation ethanol is produced in the future from lignocellulosic biomass, some increasing reserves of lignin will be available in addition to the ones coming from the paper industry. The main thermochemical ways such as pyrolysis, solvolysis, hydrothermal conversion and hydroconversion considered for the valorization of the lignin are reviewed in this article. La lignine est une des composantes de la biomasse lignocellulosique potentiellement valorisable comme ressource renouvelable pour la production de carburants ou de produits chimiques. Après séparation de la matrice lignocellulosique, cette macromolécule est de nos jours essentiellement utilisée comme combustible dans l’industrie papetière. Outre cette filière papetière, la production d’éthanol de seconde génération à partir de la cellulose aura comme conséquence la mise à disponibilité d’encore plus grandes quantités de lignine. De nouvelles applications pourront donc être proposées pour l’utilisation de cette bio-ressource. Les différentes voies thermochimiques : pyrolyse, solvolyse, conversion hydrothermale et hydroconversion envisagées pour la valorisation de la lignine sont décrites dans cet article.

  15. Thermochemical pretreatment of underutilized woody biomass for manufacturing wood composites

    Science.gov (United States)

    Pelaez Samaniego, Manuel Raul

    Prescribed fires, one method for reducing hazardous fuel loads from forest lands in the US, are limited by geographical, environmental, and social impacts. Mechanical operations are an alternative type of fuel treatment but these processes are constrained by the difficulty of economically harvesting and/or using large amounts of low-value woody biomass. Adoption and integration of new technologies into existing wood composite facilities offer better utilization of this material. A pretreatment that enables integration of technologies in a typical composite facility will aid with diversification of product portfolio (e.g. wood composites, fuel pellets, liquid fuels, chemicals). Hot water extraction (HWE) is an option for wood pretreatment. This work provides a fundamental understanding of the physicochemical changes to wood resulting from HWE, and how these changes impact processing and performance of composites. Specific objectives were to: 1) review literature on studies related to the manufacture of composites produced with thermally pretreated wood, 2) manufacture wood plastic composites (WPC) and particleboard using HWE wood and evaluate the impacts of pretreatment on product properties, 3) develop an understanding of the effect of HWE on lignin properties, specifically lignin at the cells surface level after migration from cell walls and middle lamella, 4) discern the influence of lignin on the fiber surface on processing WPCs, and, 5) investigate the effect of changing the pretreatment environment (inert gas instead of water) on lignin behavior. Results show that HWE enhances the resistance of both WPCs and particleboard to water with positive or no effect on mechanical properties. Reduction of hemicelluloses and lignin property changes are suggested as the main reasons for enhancing interaction between wood fiber and resins during composite processing. Lignin on the surface of particles after HWE interacts with thermoplastics during WPCs compounding, thus

  16. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    E.J. Ras; B. McKay; G. Rothenberg

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present her

  17. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  18. Thermochemical conversion of livestock wastes: carbonization of swine solids.

    Science.gov (United States)

    Ro, K S; Cantrell, K B; Hunt, P G; Ducey, T F; Vanotti, M B; Szogi, A A

    2009-11-01

    Slow pyrolysis or carbonization promotes the conversion of animal manures such as swine manure into charcoal. In this paper, the carbonizing kinetics of swine solids taken from different treatment stages were investigated with a thermogravimetric analyzer. Compared to their biologically stabilized counterpart (lagoon sludge) with an activation energy of 160 kJ mol(-1), the activation energies for fresh swine solid samples such as homogenized flushed manure and dewatered solids were much lower between 92 and 95 kJ mol(-1). Compared to the kinetics of first order decomposition of cellulose, the pyrolytic decomposition of the swine manures were more complex with the reaction orders varying at 3.7 and 5.0. The two different mathematical methods employed in this paper yielded the similar values of activation energy (E) and pre-exponential factor (A), confirming the validity of these methods. The results of this study provide useful information for development of farm-scale swine solid carbonization process. PMID:19442517

  19. Fundamental study of novel mid- and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; SUI Jun; LIU QiBin

    2009-01-01

    A new approach to application of mid- and low-temperature solar thermochemical technology was in-troduced and investigated. Concentrated solar thermal energy in the range of 150--300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons. The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level. The new mechanism was used to integrate two novel solar thermal power systems: A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion, for developing highly efficient solar energy use to generate electricity. An innovative prototype of a 5-kW solar receiver/reactor, as the key process for realizing the proposed system, was designed and manu-factured. Furthermore, experimental validation of energy conversion of the mid- and low-temperature solar thermochemical processes were conducted. In addition, a second practical and viable approach to the production of hydrogen, in combination with the novel mid- and low-temperature solar thermo-chemical process, was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming. The results obtained here indicate that the development of mid- and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy, and may enable step-wise approaches to cost-effective, globally scalable solar energy systems.

  20. Fundamental study of novel mid-and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.

  1. Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gassner, Martin; Marechal, Francois [Industrial Energy Systems Laboratory, Ecole Polytechnique Federale de Lausanne Station postale 9, CH-1015 Lausanne (Switzerland)

    2009-11-15

    A detailed thermo-economic model considering different technological alternatives for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass is presented. First, candidate technology for processes based on biomass gasification and subsequent methanation is discussed and assembled in a general superstructure. Both energetic and economic models for biomass drying with air or steam, thermal pretreatment by torrefaction or pyrolysis, indirectly and directly heated gasification, methane synthesis and carbon dioxide removal by physical absorption, pressure swing adsorption and polymeric membranes are then developed. Performance computations for the different process steps and some exemplary technology scenarios of integrated plants are carried out, and overall energy and exergy efficiencies in the range of 69-76% and 63-69%, respectively, are assessed. For these scenarios, the production cost of SNG including the investment depreciation is estimated to 76-107 EUR MWh{sup -1}{sub SNG} for a plant capacity of 20 MW{sub th,biomass}, whereas 59-97 EUR MWh{sup -1}{sub SNG} might be reached at scales of 150 MW{sub th,biomass} and above. Based on this work, a future thermo-economic optimisation will allow for determining the most promising options for the polygeneration of fuel, power and heat. (author)

  2. Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study

    Directory of Open Access Journals (Sweden)

    E. Virmond

    2013-06-01

    Full Text Available Besides high industrial development, Brazil is also an agribusiness country. Each year about 330 million metrics tons (Mg of biomass residues are generated, requiring tremendous effort to develop biomass systems in which production, conversion and utilization of bio-based products are carried out efficiently and under environmentally sustainable conditions. For the production of biofuels, organic chemicals and materials, it is envisaged to follow a biorefinery model which includes modern and proven green chemical technologies such as bioprocessing, pyrolysis, gasification, Fischer-Tropsch synthesis and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This paper presents promising options for valorization of Brazilian agroindustrial biomass sources and residues originating from the biofuel production chains as renewable energy sources and addresses the main aspects of the thermochemical technologies which have been applied.

  3. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Laurence; Gassner, Martin; Marechal, Francois [Industrial Energy Systems Laboratory, Ecole Polytechnique Federale de Lausanne, Station postale 9, CH-1015 Lausanne (Switzerland)

    2010-12-15

    A detailed thermo-economic model combining thermodynamics with economic analysis and considering different technological alternatives for the thermochemical production of liquid fuels from lignocellulosic biomass is presented. Energetic and economic models for the production of Fischer-Tropsch fuel (FT), methanol (MeOH) and dimethyl ether (DME) by means of biomass drying with steam or flue gas, directly or indirectly heated fluidized bed or entrained flow gasification, hot or cold gas cleaning, fuel synthesis and upgrading are reviewed and developed. The process is integrated and the optimal utility system is computed. The competitiveness of the different process options is compared systematically with regard to energetic, economic and environmental considerations. At several examples, it is highlighted that process integration is a key element that allows for considerably increasing the performance by optimal utility integration and energy conversion. The performance computations of some exemplary technology scenarios of integrated plants yield overall energy efficiencies of 59.8% (crude FT-fuel), 52.5% (MeOH) and 53.5% (DME), and production costs of 89, 128 and 113 EURMWh{sup -1} on fuel basis. The applied process design approach allows to evaluate the economic competitiveness compared to fossil fuels, to study the influence of the biomass and electricity price and to project for different plant capacities. Process integration reveals in particular potential energy savings and waste heat valorization. Based on this work, the most promising options for the polygeneration of fuel, power and heat will be determined in a future thermo-economic optimization. (author)

  4. Biomass Conversion into Solid Composite Fuel for Bed-Combustion

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The purpose of this research is the conversion of different types of biomass into solid composite fuel. The subject of research is the heat conversion of biomass into solid composite fuel. The research object is the biomass of the Tomsk region (Russia: peat, waste wood, lake sapropel. Physical experiment of biomass conversion is used as method of research. The new experimental unit for thermal conversion of biomass into carbon residue, fuel gas and pyrolysis condensate is described. As a result of research such parameters are obtained: thermotechnical biomass characteristics, material balances and product characteristics of the heat-technology conversion. Different methods of obtaining solid composite fuel from the products of thermal technologies are considered. As a result, it is established: heat-technology provides efficient conversion of the wood chips and peat; conversion of the lake sapropel is inefficient since the solid composite fuel has the high ash content and net calorific value.

  5. Study on thermochemical liquefaction of biomass feedstocks; Biomass genryo no yuka hanno tokusei ni kansuru kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-10

    Liquefaction is applied to various biomass wastes and unused biomass to study characteristics of the liquefaction in each case. The paper described the system of the conversion and use of biomass into energy, conducted the positioning of the liquefaction, and outlined a history of the liquefaction chemistry and the study. To obtain basic data of characteristics of the liquefaction of various biomass raw materials, the liquefaction was conducted changing operational factors for the purpose of clarifying the product distribution of oil and by-products and oil properties. A comprehensive consideration was made of the liquefaction based on basic data and literature reports on the liquefaction of various biomass. From the above-mentioned studies, it was concluded that the energy can be recovered in a form of oil by applying the liquefaction to various biomass materials. A series of the study clarified effects of various operational factors on characteristics of the liquefaction as well as effects of classification of biomass materials and composition of the materials on characteristics of the liquefaction. 141 refs., 78 figs., 56 tabs.

  6. Process and apparatus for the conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2008-01-01

    The invention is directed to a process for the conversion of cellulosic biomass, in particular lignocellulose-containing biomass into fermentable sugars. The invention is further directed to apparatus suitable for carrying out such processes. According to the invention biomass is converted into ferm

  7. Optimized WtE Conversion of Municipal Solid Waste in Shanghai Applying Thermochemical Technologies

    OpenAIRE

    Dai, Siyang

    2016-01-01

    Thermochemical technologies have been proven effective in treating municipal solid waste (MSW) for many years. China, with a rapid increase of MSW, plans to implement more environmental friendly ways to treat MSW than landfill, which treats about 79 % of total MSW currently. The aim of this master thesis was to find out a suitable thermochemical technology to treat MSW in Shanghai, China. Several different thermochemical technologies are compared in this thesis and plasma gasification was sel...

  8. Thermochemical conversion of hazelnut shell to gaseous products for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2005-03-15

    The gasification of biomass is a thermochemical process, which results in a high production of gaseous products and small quantities of char and ash. Steam reforming of hydrocarbons, partial oxidation of heavy oil residues, selected steam reforming of aromatic compounds, and gasification of coals and solid wastes to yield a mixture of H2 and CO (syn gas), followed by water-gas shift reaction to produce H2 and CO2, are well established processes. Hydrogen is a sustainable, non-polluting source of energy that can be used in mobile and stationary applications. The samples, both untreated and impregnated with K2 CO3, were pyrolyzed from 298 K (initial temperature) to 650, 672, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000 and 1025 K, and 975, 1075, 1175 and 1225 K temperatures. Alkali pyrolytic runs were carried out in the presence of 10.0, 20.0, 30.0 and 50.0 wt% K2 CO3 of used shell sample. Steam gasification runs were carried out at 925, 975, 1025, 1075, 1175 and 1225 K temperatures. The ratios of water-to-hazelnut shell sample (W/HS) were 0.7 and 1.9 in steam gasification runs. The total volume and the yield of gas from both pyrolysis increase with increasing temperature. The highest hydrogen-rich gas yields were obtained from the alkali (30% K2 CO3) at 1025 K and from steam gasification (W/HS = 1.9) at 1225 K runs. (author)

  9. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Leslie [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  10. Biomass to Butanol Conversion: Recent Technologies and Process Economics

    Science.gov (United States)

    To gain independence from foreign oil, we focused our research program on biological conversion of biomass to butanol. The biomass feedstocks that we have investigated include wheat straw, barley straw, corn stover, and switchgrass with a significant degree of hydrolysis and fermentation variability...

  11. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems

    International Nuclear Information System (INIS)

    Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air-steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.

  12. Nanostructure enzyme assemblies for biomass conversion

    Science.gov (United States)

    Biomass represents a vast resource for production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaerobic ...

  13. Lignocellulosic biomass conversion to ethanol by Saccharomyces

    Science.gov (United States)

    As interest in alternative energy sources rises, the concept of agriculture as an energy producer has become increasingly attractive (Outlaw et al. 2005). Renewable biomass, including lignocellulosic materials and agricultural residues, are low-cost materials for bioethanol production (Bothast and ...

  14. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  16. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany

    International Nuclear Information System (INIS)

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO2eq-reduction compared to the fossil reference fuel (83.8 g CO2eq/MJfuel /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO2eq-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H2) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V registered -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H2). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H2-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO2eq-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO2eq-saving is between 72 (H2) and 95 % (Fischer-Tropsch-diesel or -gasoline). When the production costs of the thermochemical

  17. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  18. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

    Directory of Open Access Journals (Sweden)

    Alejandro Amadeus Castro Vega

    2010-04-01

    Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

  19. Evaluation of the conversion efficiency of the 180Nm3/h Johansson Biomass Gasifier™

    Directory of Open Access Journals (Sweden)

    Ntshengedzeni S. Mamphweli, Edson L. Meyer

    2010-01-01

    Full Text Available Biomass gasification is the thermochemical conversion of biomass materials into a producer gas, which is a mixture of carbon monoxide, carbon dioxide, methane, hydrogen, nitrogen and water vapour. The 180Nm3/h System Johansson Biomass Gasifier (SJBG at Eskom research and Innovation Centre is used for research and development initiatives, and also for demonstration purposes. The aim of this research was to investigate the efficiency of the gasifier and. This is done through an analysis of the gas profiles at the gasifier using a custom-built gas and temperature measurement system. Non-Dispersive Infrared gas detection technique is applied to monitor the volume and quality of producer gas. Palladium/Nickel gas sensing is applied to monitor the hydrogen content in the gas stream. Temperature in the gasifier is monitored through the use of type K thermocouples. The gas and temperature sensors are connected to the data logger interfaced to a computer. The heating value of the producer gas was determined from the percentage composition of the combustible gases. Evaluation of the efficiency of this gasifier was done before the installation of a 300Nm3/h at a rural village. The gasifier achieved an efficiency of 75% with an average gas heating value of 6MJ/Nm3.

  20. Biomass conversion. The interface of biotechnology, chemistry and materials science

    Energy Technology Data Exchange (ETDEWEB)

    Baskar, Chinnappan [Myongji Univ., Yongin (Korea, Republic of). Dept. of Environmental Engineering and Biotechnology; Baskar, Shikha [Uttarakhand Technical Univ. (India). THDC Inst. of Hydropower Engineering and Technology, Tehri; Dhillon, Ranjit S. (eds.) [Punjab Aricultural Univ. (India). Dept. of Chemistry

    2012-11-01

    Gives state-of-the-art of biomass conversion plus future development. Connects the applications into the fields of biotechnology, microbiology, chemistry, materials science. Written by international experts. The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.

  1. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  2. Zeolite-catalyzed biomass conversion to fuels and chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Osmundsen, Christian Mårup; Yang, Xiaobo;

    2011-01-01

    Heterogeneous catalysts have been a central element in the efficient conversion of fossil resources to fuels and chemicals, but their role in biomass utilization is more ambiguous. Zeolites constitute a promising class of heterogeneous catalysts and developments in recent years have demonstrated...

  3. Chemical comparisons of liquid fuel produced by thermochemical liquefaction of various biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.A.; Molton, P.M.; Landsman, S.D.

    1980-12-01

    Liquefaction of biomass in aqueous alkali at temperatures up to 350/sup 0/C is an effective way to convert solid wastes into liquid fuels. The liqefaction oils of several forms of biomass differing in proportions of cellulose, hemi-cellulose, lignin, protein, and minerals were studied and their chemical composition compared. It was that the proportions of chemical components varied considerably depending on the type of biomass liquefied. However, all the oils, even those produced from cellulose, had similar chemical characteristics due to the presence of significant quantities of phenols. These phenols are at least partially responsible for the corrosivity and viscosity commonly associated with biomass oils. The differences in chemical component distribution in the various biomass oils might successfully be exploited if the oil is to be used as a chemical feedstock. If the oil is to be used as a fuel, however, then reaction conditions will be a more important consideration than the source of biomass.

  4. Inorganic Species Behaviour in Thermochemical Processes for Energy Biomass Valorisation Comportement des espèces inorganiques dans les procédés thermochimiques de valorisation énergétique de la biomasse

    Directory of Open Access Journals (Sweden)

    Froment K.

    2013-09-01

    Full Text Available Inorganic species from biomass (wood or agricultural waste exhibit large variations in compositions and amounts, depending on the origin of the biomass (nature, growing conditions and location. Different thermal conversion processes (combustion, pyrolysis, gasification or other and various technologies (grate furnace, fixed or fluidized bed, entrained flow reactor using biomass, provide a wide variety of operating conditions with differences in atmosphere, pressure and temperature. During any thermal process and mainly depending on initial composition of the biomass, process temperature and atmosphere, some of the inorganic species react and may form liquid or gas compounds, alone or combined with other species: they may either be trapped at different locations during the process or released in the gas. The potential interactions of inorganic species with reactor walls, bed materials (in fluidized bed reactors, transfer lines and downstream process units are not well understood for most species. Both technical and economic issues about inorganic species behaviour are probably growing to become important in a near future: pressure on timber markets is growing and prices have already been rising : one solution is to replace this noble and "clean" resource (wood by ash richer feedstock, like straw, dedicated energetic cultures, agricultural or even municipal solid waste. Biogas production from waste deposits is a good example to show how waste can be valorised. Going further (thermochemical conversion with such ash rich feedstock will increase the potential of their re-use but also the technical difficulties in a dramatic extent; soil enrichment for the agriculture currently largely depends on the re-use of biomass, completed with artificial fertilisers. The question how to re-use the inorganic material in biomass after thermo-chemical conversion is an important subject. The objective of this paper is to present a global review of the technological

  5. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. PMID:27393832

  6. An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy

    Directory of Open Access Journals (Sweden)

    Weidong Huang

    2015-01-01

    Full Text Available There is not enough land for the current bioenergy production process because of its low annual yield per unit land. In the present paper, an integrated biomass production and conversion process for sustainable bioenergy is proposed and analyzed. The wastes from the biomass conversion process, including waste water, gas and solid are treated or utilized by the biomass production process in the integrated process. Analysis of the integrated process including the production of water hyacinth and digestion for methane in a tropical area demonstrates several major advantages of the integrated process. (1 The net annual yield of methane per unit land can reach 29.0 and 55.6 km3/h for the present and future (2040 respectively, which are mainly due to the high yield of water hyacinth, high biomethane yield and low energy input. The land demand for the proposed process accounts for about 1% of the world’s land to meet the current global automobile fuels or electricity consumption; (2 A closed cycle of nutrients provides the fertilizer for biomass production and waste treatment, and thus reduces the energy input; (3 The proposed process can be applied in agriculturally marginal land, which will not compete with food production. Therefore, it may be a good alternative energy technology for the future.

  7. Antioxidant Properties of Pyroligneous Acid Obtained by Thermochemical Conversion of Schisandra chinensis Baill

    OpenAIRE

    Ma, Chunhui; Li, Wei; ZU, Yuangang; Yang, Lei; Li, Jian

    2014-01-01

    Sustainable development of renewable resources is a major challenge globally. Biomass is an important renewable energy source and an alternative to fossil fuels. Pyrolysis of biomass is a promising method for simultaneous production of biochar, bio-oil, pyroligneous acid (PA), and gaseous fuels. The purpose of this study was to investigate the pyrolysis process and products yields of Schisandra chinensis fruits with different pyrolysis powers. The obtained PA was extracted with organic solven...

  8. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  9. Energy Conversion Analysis of a Novel Solar Thermochemical System Coupled with Fuel Cells

    OpenAIRE

    Vinck, Ian; Ozalp, Nesrin

    2015-01-01

    Fossil fuels have been the main supply of power generation for use in manufacturing, transportation, residential and commercial sectors. However, environmentally adverse effects of fossil fuel conversion systems combined with pending shortage raise major concerns. As a promising approach to tackle these challenges, this paper presents a novel energy conversion system comprising of a solar thermal reactor coupled with hydrogen fuel cell and carbon fuel cell for electricity generation. The syst...

  10. Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Isah Y. Mohammed

    2015-04-01

    Full Text Available Study on Napier grass leaf (NGL, stem (NGS and leaf and stem (NGT was carried out. Proximate, ultimate and structural analyses were evaluated. Functional groups and crystalline components in the biomass were examined. Pyrolysis study was conducted in a thermogravimetric analyzer under nitrogen atmosphere of 20 mL/min at constant heating rate of 10 K/min. The results reveal that Napier grass biomass has high volatile matter, higher heating value, high carbon content and lower ash, nitrogen and sulfur contents. Structural analysis shows that the biomass has considerable cellulose and lignin contents which are good candidates for good quality bio-oil production. From the pyrolysis study, degradation of extractives, hemicellulose, cellulose and lignin occurred at temperature around 478, 543, 600 and above 600 K, respectively. Kinetics of the process was evaluated using reaction order model. New equations that described the process were developed using the kinetic parameters and data compared with experimental data. The results of the models fit well to the experimental data. The proposed models may be a reliable means for describing thermal decomposition of lignocellulosic biomass under nitrogen atmosphere at constant heating rate.

  11. Antioxidant Properties of Pyroligneous Acid Obtained by Thermochemical Conversion of Schisandra chinensis Baill

    Directory of Open Access Journals (Sweden)

    Chunhui Ma

    2014-12-01

    Full Text Available Sustainable development of renewable resources is a major challenge globally. Biomass is an important renewable energy source and an alternative to fossil fuels. Pyrolysis of biomass is a promising method for simultaneous production of biochar, bio-oil, pyroligneous acid (PA, and gaseous fuels. The purpose of this study was to investigate the pyrolysis process and products yields of Schisandra chinensis fruits with different pyrolysis powers. The obtained PA was extracted with organic solvents, including ethyl formate, dichloromethane, methanol and tetrahydrofuran. The antioxidant activities, including the free radical scavenging activity and ferric reducing power, of the PA extracts were investigated. The synthetic antioxidants butylated hydroxyanisole and butylated hydroxytoluene were used as positive controls. A dichloromethane extract of PA showed excellent antioxidant properties compared to the other extracts. The chemical compositions of the PA extracts were determined by GC-MS, and further proved that the dichloromethane extract had the best antioxidant characteristics among the extracts tested.

  12. Antioxidant properties of pyroligneous acid obtained by thermochemical conversion of Schisandra chinensis Baill.

    Science.gov (United States)

    Ma, Chunhui; Li, Wei; Zu, Yuangang; Yang, Lei; Li, Jian

    2014-01-01

    Sustainable development of renewable resources is a major challenge globally. Biomass is an important renewable energy source and an alternative to fossil fuels. Pyrolysis of biomass is a promising method for simultaneous production of biochar, bio-oil, pyroligneous acid (PA), and gaseous fuels. The purpose of this study was to investigate the pyrolysis process and products yields of Schisandra chinensis fruits with different pyrolysis powers. The obtained PA was extracted with organic solvents, including ethyl formate, dichloromethane, methanol and tetrahydrofuran. The antioxidant activities, including the free radical scavenging activity and ferric reducing power, of the PA extracts were investigated. The synthetic antioxidants butylated hydroxyanisole and butylated hydroxytoluene were used as positive controls. A dichloromethane extract of PA showed excellent antioxidant properties compared to the other extracts. The chemical compositions of the PA extracts were determined by GC-MS, and further proved that the dichloromethane extract had the best antioxidant characteristics among the extracts tested.

  13. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Delaware, Newark, DE (United States). Dept. of Mathematical Sciences

    2016-03-01

    The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.

  14. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  15. Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass-related model fuels

    DEFF Research Database (Denmark)

    Lucassen, Arnas; Zhang, Kuiwen; Warkentin, Julia;

    2012-01-01

    . For this, thermochemical values for a number of intermediates had to be determined from quantum chemistry calculations. Also, specific sets of reactions were incorporated for the two fuels. While many trends seen in the experiments can be successfully reproduced by the simulations, additional efforts......Laminar premixed flames of the two smallest isomeric amines, dimethylamine and ethylamine, were investigated under one-dimensional low-pressure (40mbar) conditions with the aim to elucidate pathways that may contribute to fuel-nitrogen conversion in the combustion of biomass. For this, identical...... flames of both fuels diluted with 25% Ar were studied for three different stoichiometries (Φ=0.8, 1.0, and 1.3) using in situ molecular-beam mass spectrometry (MBMS). Quantitative mole fractions of reactants, products and numerous stable and reactive intermediates were determined by electron ionization...

  16. Biomass Conversion in Ionic Liquids - in-situ Investigations

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas

    Due to rising oil prices and global warming caused by CO2 emissions, there is an increased demand for new types of fuels and chemicals derived from biomass. This thesis investigates catalytic conversion of cellulose into sugars in ionic liquids and the important platform chemical 5......-hydroxymethylfurfural (HMF). The thesis focuses on kinetic and mechanistic investigations using new in-situ FTIR spectroscopic methods based on the ATR-principle. At first the kinetics of cellulose hydrolysis and the simultaneously HMF formation was investigated in the ionic liquid 1-butyl-2,3-dimethylimidazolium...... activation energies suggest that the ionic liquid acts co-catalytic by stabilizing the oxocarbenium transition state. The chromium catalyzed conversion of glucose to HMF in ionic liquid 1-butyl-3-methylimidazolium chloride with CrCl3⋅6H2O and CrCl2 as catalysts was investigated. The CrCl3⋅6H2O catalyst...

  17. Proceedings of the Chernobyl phytoremediation and biomass energy conversion workshop

    International Nuclear Information System (INIS)

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chernobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium (137Cs) and strontium (90Sr). The 137Cs and 90Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place

  18. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  19. A-xylosidase enhanced conversion of plant biomass into fermentable sugars

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jonathan D.; Scott-Craig, John S.; Borrusch, Melissa

    2016-08-02

    The invention relates to increasing the availability of fermentable sugars from plant biomass, such as glucose and xylose. As described herein, .alpha.-xylosidases can be employed with cellulases to enhance biomass conversion into free, fermentable sugar residues.

  20. MULTISCALE MATHEMATICS FOR BIOMASS CONVERSION TO RENEWABLE HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Vlachos, Dionisios; Plechac, Petr; Katsoulakis, Markos

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  1. Ergosterol-to-Biomass Conversion Factors for Aquatic Hyphomycetes

    Science.gov (United States)

    Gessner, Mark O.; Chauvet, Eric

    1993-01-01

    Fourteen strains of aquatic hyphomycete species that are common on decaying leaves in running waters were grown in liquid culture and analyzed for total ergosterol contents. Media included an aqueous extract from senescent alder leaves, a malt extract broth, and a glucose-mineral salt solution. Concentrations of ergosterol in fungal mycelium ranged from 2.3 to 11.5 mg/g of dry mass. The overall average was 5.5 mg/g. Differences among both species and growth media were highly significant but followed no systematic pattern. Stationary-phase mycelium had ergosterol contents 10 to 12% lower or higher than mycelium harvested during the growth phase, but these differences were only significant for one of four species examined. Availability of plant sterols in the growth medium had no clear effect on ergosterol concentrations in two species tested. To convert ergosterol contents determined in field samples to biomass values of aquatic hyphomycetes, a general multiplicative factor of 182 is proposed. More accurate estimates would be obtained with species-specific factors. Using these in combination with estimates of the proportion of the dominant species in a naturally established community on leaves resulted in biomass estimates that were typically 20% lower than those obtained with the general conversion factor. Improvements of estimates with species-specific factors may be limited, however, by intraspecific variability in fungal ergosterol content. PMID:16348874

  2. Advancements and future directions in enzyme technology for biomass conversion.

    Science.gov (United States)

    Zhang, Zisheng; Donaldson, Adam A; Ma, Xiaoxun

    2012-01-01

    Enzymatic hydrolysis of pre-treated lignocellulosic biomass is an ideal alternative to acid hydrolysis for bio-ethanol production, limited primarily by pre-treatment requirements and economic considerations arising from enzyme production costs and specific activities. The quest for cheaper and better enzymes has prompted years of bio-prospecting, strain optimization through genetic engineering, enzyme characterization for simple and complex lignocellulosic feedstock, and the development of pre-treatment strategies to mitigate inhibitory effects. The recent shift to systematic characterizations of de novo mixtures of purified proteins is a promising indicator of maturation within this field of study, facilitating progression towards feedstock assay-based rapid enzyme mixture optimization. It is imperative that international standards be developed to enable meaningful comparisons between these studies and the construction of a database of enzymatic activities and kinetics, aspects of which are explored here-in. Complementary efforts to improve the economic viability of enzymatic hydrolysis through process integration and reactor design are also considered, where membrane-confinement shows significant promise despite the associated technological challenges. Significant advancements in enzyme technology towards the economic conversion of lignocellulosic biomass should be expected within the next few years as systematic research in enzyme activities conforms to that of traditional reaction engineering. PMID:22306162

  3. Biomass conversion and expansion factors are afected by thinning

    Directory of Open Access Journals (Sweden)

    Teresa Duque Enes

    2014-12-01

    Full Text Available Aim of the study: The objective of this paper is to investigate the use of Biomass Conversion and Expansion Factors (BCEFs in maritime pine (Pinus pinaster Ait. stands subjected to thinning.Area of the study: The study area refers to different ecosystems of maritime pine stands inNorthern Portugal.Material and methods: The study is supported by time data series and cross sectional data collected in permanent plots established in the North of Portugal. An assessment of BCEF values for the aboveground compartments and for total was completed for each studied stand. Identification of key variables affecting the value of the BCEFs in time and with thinning was conducted using correlation analysis. Predictive models for estimation of the BCEFs values in time and after thinning were developed using nonlinear regression analysis.Research highlights: For periods of undisturbed growth, the results show an allometric relationship between the BCEFs, the dominant height and the mean diameter. Management practices such as thinning also influence the factors. Estimates of the ratio change before and after thinning depend on thinning severity and thinning type. The developed models allow estimating the biomass of the stands, for the aboveground compartments and for total, based on information of stand characteristics and of thinning descriptors. These estimates can be used to assess the forest dry wood stocks to be used for pulp, bioenergy or other purposes, as well as the biomass quantification to support the evaluation of the net primary productivity.Keywords: carbon; softwood; thinning; volume; wood energy; maritime pine.

  4. Biological conversion of biomass to methane. Quarterly progress report, September 1--November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, J T

    1978-12-01

    The viability of wheat straw as a feedstock for methane production by anaerobic digestion was investigated and the results obtained compared with that obtained with corn stover. Poor conversion was obtained with the wheat straw under thermophilic conditions, but better than that obtained with corn. In addition the residue has no value as an animal feed. A mild thermochemical pretreatment of the corn prior to anaerobic digestion improved the conversion efficiency and the value of the residue as an animal feed. It is assumed that similar pretreatment of wheat straw would improve its conversion efficiency. Slurry and pumping characteristics of wheat straw particles were reported. (JSR)

  5. Conversion of henequen pulp to microbial biomass by submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Blancas, A. (Center of Scientific Research of Yucatan, Merida, Mexico); Alpizar, L.; Larios, G.; Saval, S.; Huitron, C.

    1982-01-01

    Mexico has cellulosic by-products that could be developed as renewable food sources for animal consumption. Sugarcane bagasse and henequen pulp are the most important of these materials because they are abundant, cheap, renewable, and nontoxic, in addition to being underutilized. A significant research and development effort has centered on the production of single-cell protein from sugarcane begasse. Nevertheless, there are no large-scale processes that utilize this substrate as a source of carbon, probably because of the extensive physical or chemical pretreatment that is needed. Henequen pulp is a by-product which is obtained in large amounts in southeastern Mexico in the process of removing fibers from the leaves of agave (sisal). A group has been working on a fermentative process that will increase the protein content of the henequen pulp by microbial conversion. The primary aim is to carry out the conversion without chemical pretreatment of the substrate and without a separation step for cells and residual substrate. A gram-negative cellulolytic bacteria has been isolated which grows well on microcrystalline cellulose, pectin, and xylane and it is able to convert an appreciable fraction of henequen pulp to microbial biomass. In this article, some results on the effect of substrate and nitrogen source concentration, on the protein enrichment of the henequen pulp, as well as the content of essential amino acids of fermented henequen pulp are presented. 4 figures.

  6. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  7. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    OpenAIRE

    Lee, H. V.; S. B. A. Hamid; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulo...

  8. A Review of Thermal Co-Conversion of Coal and Biomass/Waste

    Directory of Open Access Journals (Sweden)

    Aime Hilaire Tchapda

    2014-02-01

    Full Text Available Biomass is relatively cleaner than coal and is the only renewable carbon resource that can be directly converted into fuel. Biomass can significantly contribute to the world’s energy needs if harnessed sustainably. However, there are also problems associated with the thermal conversion of biomass. This paper investigates and discusses issues associated with the thermal conversion of coal and biomass as a blend. Most notable topics reviewed are slagging and fouling caused by the relatively reactive alkali and alkaline earth compounds (K2O, Na2O and CaO found in biomass ash. The alkali and alkaline earth metals (AAEM present and dispersed in biomass fuels induce catalytic activity during co-conversion with coal. The catalytic activity is most noticeable when blended with high rank coals. The synergy during co-conversion is still controversial although it has been theorized that biomass acts like a hydrogen donor in liquefaction. Published literature also shows that coal and biomass exhibit different mechanisms, depending on the operating conditions, for the formation of nitrogen (N and sulfur species. Utilization aspects of fly ash from blending coal and biomass are discussed. Recommendations are made on pretreatment options to increase the energy density of biomass fuels through pelletization, torrefaction and flash pyrolysis to reduce transportation costs.

  9. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Science.gov (United States)

    Lee, H. V.; Hamid, S. B. A.; Zain, S. K.

    2014-01-01

    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein. PMID:25247208

  10. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  11. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany; Ganzheitliche Analyse thermochemischer Verfahren bei der Nutzung fester Biomasse zur Kraftstoffproduktion in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Henssler, Martin

    2015-04-28

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO{sub 2eq}-reduction compared to the fossil reference fuel (83.8 g CO{sub 2eq}/MJ{sub fuel} /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO{sub 2eq}-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H{sub 2}) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V {sup registered} -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H{sub 2}). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H{sub 2}-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO{sub 2eq}-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO{sub 2eq}-saving is between 72 (H{sub 2}) and 95 % (Fischer

  12. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    Science.gov (United States)

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-01

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.

  13. Flow-through biological conversion of lignocellulosic biomass

    Science.gov (United States)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  14. Catalytic conversion of biomass to bio-syncrude oil

    Energy Technology Data Exchange (ETDEWEB)

    Mante, Ofei Daku [Virginia Polytechnic Institute and State University, Biological Systems Engineering, Blacksburg, VA (United States); Agblevor, Foster A. [Utah State University, Biological Engineering, Logan, UT (United States)

    2011-12-15

    The conversion of biomass to transportation fuels and chemicals has been of immense interest in recent years. In this study, the production of high quality bio-oil (bio-syncrude oil) was achieved by catalytically cracking pyrolysis vapors from hybrid poplar in a dual-fluidized bed reactor. The catalytic deoxygenation of the primary pyrolysis vapors was achieved with a commercial HZSM-5 at 425-450 C. The organic, water, char, coke, and gas yields were 11.9, 20.9, 16.5, 3.8, and 46.8 wt.%, respectively. This work demonstrated that the use of a fluidized bed reactor for the catalytic upgrading reduces coke formation and increases catalyst lifetime. The concentration of the permanent gases was in the order of CO > CO{sub 2}> C{sub 3}H{sub 6}> CH{sub 4}> H{sub 2}> other C{sub 2}-C{sub 4}. The light bio-syncrude (LBS) oil collected from the condenser was predominately aromatic hydrocarbons. The heavy bio-syncrude (HBS) oil collected from the electrostatic precipitator consisted of mainly phenols, methyl-substituted phenols, naphthalenes, benzenediols, and naphthalenol. The bio-syncrude oils were low in oxygen, less viscous, less acidic, stable, and high in energy density. The higher heating value of the light and heavy bio-syncrude oil was 36.89 and 33.98 MJ/kg, respectively. The distillate yields from the atmospheric distillation showed that 91 wt.% of the LBS oil distills up to 220 C and 76 wt.% of the HBS oil distills up to 440 C. Accelerated stability test of the oils at 90 C for 24 h and storage of the oils at room temperature for 10 months showed that the bio-syncrude oils were stable. The catalytic deoxygenation of the pyrolysis vapors resulted in the removal of undesirable oxygenates such as levoglucosan, carboxylic acids, aldehydes, and ketones. The bio-syncrude oil can be considered as a suitable feed for use in a petroleum refinery for the production of transportation fuels and chemicals. (orig.)

  15. Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles

    International Nuclear Information System (INIS)

    In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range. - Highlights: • Supercritical CO2 cycles are proposed for biomass to electricity conversion. • Four boiler design options are considered. • High total system efficiency is due to the part-flow cascaded configuration. • The efficiency is higher than that of other small/medium size alternative systems

  16. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-05-02

    The U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.

  17. Solar Thermochemical Conversion of CO2 into C via SnO2/SnO Redox Cycle: A Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Dareen Dardor

    2015-04-01

    Full Text Available In this paper we report the computational thermodynamic modeling of the solar thermochemical SnO2/SnO redox cycle for solid C production via CO2 splitting. In this redox cycle, the first step corresponds to the solar thermal reduction of SnO2 into SnO and O2 in presence of inert atmosphere. The second step, which is a nonsolar exothermic stage, is the reaction of SnO with CO2 to produce solid C together with SnO2 that is recycled back to the first step. Commercially available HSC Chemistry software and databases were used for the computational thermodynamic modeling of this process. The thermodynamic analysis was performed in two sections: 1 equilibrium composition analysis, and 2 exergy analysis. Results obtained via the computational thermodynamic modeling are presented in detail. The simulation results indicate that the solar thermochemical SnO2/SnO redox cycle for solid C production via CO2 splitting can achieve the solar to fuel conversion efficiency upto 12%.

  18. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Howard [Advanced Cooling Technologies, Inc, Lancaster, PA (United States); Chen, Chien-Hua [Advanced Cooling Technologies, Inc, Lancaster, PA (United States)

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  19. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment.

    Science.gov (United States)

    Liu, Zhi-Hua; Qin, Lei; Jin, Ming-Jie; Pang, Feng; Li, Bing-Zhi; Kang, Yong; Dale, Bruce E; Yuan, Ying-Jin

    2013-03-01

    Effects of dry and wet storage methods without or with shredding on the conversion of corn stover biomass were investigated using steam explosion pretreatment and enzymatic hydrolysis. Sugar conversions and yields for wet stored biomass were obviously higher than those for dry stored biomass. Shredding reduced sugar conversions compared with non-shredding, but increased sugar yields. Glucan conversion and glucose yield for non-shredded wet stored biomass reached 91.5% and 87.6% after 3-month storage, respectively. Data of micro-structure and crystallinity of biomass indicated that corn stover biomass maintained the flexible and porous structure after wet storage, and hence led to the high permeability of corn stover biomass and the high efficiency of pretreatment and hydrolysis. Therefore, the wet storage methods would be desirable for the conversion of corn stover biomass to fermentable sugars based on steam explosion pretreatment and enzymatic hydrolysis.

  20. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    Science.gov (United States)

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels. PMID:22779440

  1. Impact of harvest time and switchgrass cultivar on conversion to sugars and pyrolysis oils using biochemical and thermochemical routes

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.), a perennial grass native to much of North America, is undergoing development as a dedicated energy crop. While high-biomass yield is necessary for the development of switchgrass as a bioenergy crop, composition of the biomass and nutrient content as they relate to...

  2. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  3. Biomass supply chain management in North Carolina (part 1: predictive model for cropland conversion to biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Kevin R Caffrey

    2016-03-01

    Full Text Available Increased interest in biomass cultivation requires detailed analysis of spatial production potential of possible biorefinery locations, with emphasis on feedstock production cost minimization. Integrated assessment of publicly available spatial data on current crop production, soil type, and yield potential, coupled with techno-economic production cost estimates, can support a functional method for rapid analysis of potential biorefinery sites. A novel predictive model was developed to determine cropland conversion using a probabilistic profit based equation for multiple biomass crops: giant reed, miscanthus, switchgrass, and sorghum (with either canola or barley as a winter crop. The three primary regions of North Carolina (Mountains, Piedmont, and Coastal Plain were used as a case study and with a single parameter uncertainty analysis was completed. According to the model, the county chosen to represent the Coastal Plain (Duplin County had the largest potential acreage that would be converted (15,071 ha, 7.1% total land, 9.3% of cropland primarily to sorghum with canola as a winter crop. Large portions were also predicted to convert to giant reed and switchgrass, depending on the price and yield parameters used. The Piedmont (Granville County, 7697 ha, 5.5% total land, 6.9% cropland and Mountain (Henderson County, 2117 ha, 2.2% total land, 2.3% cropland regions were predicted to convert primarily to switchgrass acreage for biomass production, with much less available biomass overall compared to the Coastal Plain. This model provided meaningful insight into regional cropping systems and feedstock availability, allowing for improved business planning in designated regions. Determination of cropland conversion is imperative to develop realistic biomass logistical operations, which in conjunction can assist with rapid determination of profitable biomass availability. After this rapid analysis method is conducted in-depth on-ground biorefinery

  4. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Scarlata, C.; Tan, E. C. D.; Ross, J.; Lukas, J.; Sexton, D.

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  5. Biomass conversion into biofuels by non–classical methods / Yolandi Nortjé

    OpenAIRE

    Nortjé, Yolandi

    2011-01-01

    This investigation was launched in view of two imminent needs in industry today, viz. development of an alternative fuel to replace rapidly dwindling fossil fuel resources, preferably by biomass conversion, and production of a biofuel as a new energy source by implementing clean technology complying with the requirements of green chemistry. Seed from the diesel tree (Jatropha curcas L.) and sawdust from pine (Pinus taeda L.) were selected as biomass sources since their properties, like ric...

  6. Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.; Preston, J.F.; Aldrich, H.C.

    2003-12-01

    Production of energy from renewable sources is receiving increased attention due to the finite nature of fossil fuels and the environmental impact associated with the continued large scale use of fossil energy sources. Biomass, a CO2-neutral abundant resource, is an attractive alternate source of energy. Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals. Extracellular cellulases produced by fungi are commercially developed for depolymerization of cellulose in biomass to glucose for fermentation by appropriate biocatalysts in a simultaneous saccharification and fermentation (SSF) process. Due to the differences in the optimum conditions for the activity of the fungal cellulases and the growth and fermentation characteristics of the current industrial biocatalysts, SSF of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity leading to higher than required cost of cellulase in SSF. We have isolated bacterial biocatalysts whose growth and fermentation requirements match the optimum conditions for commercial fungal cellulase activity (pH 5.0 and 50 deg. C). These isolates fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to L(+)-lactic acid. Xylose was metabolized through the pentose-phosphate pathway by these organisms as evidenced by the fermentation profile and analysis of the fermentation products of 13C1-xylose by NMR. As expected for the metabolism of xylose by the pentose-phosphate pathway, 13C-lactate accounted for more than 90% of the total 13C-labeled products. All three strains fermented crystalline cellulose to lactic acid with the addition of fungal cellulase (Spezyme CE) (SSF) at an optimum of about 10 FPU/g cellulose. These isolates also fermented cellulose and sugar cane bagasse hemicellulose acid hydrolysate simultaneously. Based on fatty acid profile and 16S rRNA sequence, these

  7. Fundamental mechanisms for conversion of volatiles in biomass and waste combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Hindiyarti, L.; Marshall, P.; Livbjerg, H.; Dagaut, P.; Jensen, Anker; Frandsen, Flemming

    2007-03-15

    This project deals with the volatile oxidation chemistry in biomass and waste fired systems, emphasizing reactions important for pollutants emissions (NO{sub x}, SO{sub 2}, HCl, aerosols). The project aims to extend existing models and databases with a number of chemical subsystems that are presently not well understood, but are particularly important in connection with combustion of biomass and waste. The project is divided into 3 tasks. Task 1: Conversion of chlorine, sulfur and alkali gas phase components in combustion of biomass. Task 2: Formation mechanisms for NO{sub x} in the freeboard of grate combustion of biomass. Task 3: Oxidation mechanisms for oxygenated hydrocarbons in the volatiles from pyrolysis of biomass. (au)

  8. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  9. Process Design and Economicsfor the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  10. Biomass gasification: the understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    NARCIS (Netherlands)

    Meng, X.

    2012-01-01

    As one of the currently available thermo-chemical conversion technologies, biomass gasification has received considerable interest since it increases options for combining with various power generation systems. The product gas or syngas produced from biomass gasification is environmental friendly al

  11. Reduced bed temperature at thermo-chemical conversion of difficult fuels; Saenkt baeddtemperatur vid termokemisk omvandling av svaara braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Haraldsson, Conny; Johansson, Andreas; Claesson, Frida; Baefver, Linda; Ryde, Daniel

    2010-05-15

    This work investigates the prospect of reducing the concentrations of alkali chlorides in the flue gas by lowering the temperature in the bottom zone of a fluidized bed (FB) furnace below the often used 850 deg C. The directive of a retention time of at least two seconds above 850 deg C is fulfilled by the raise of the flue gas temperature that follows the combustion of unburned gases at the point of injection of secondary and tertiary air, above the bottom bed zone. The aim of the present experiments is to determine the dependency between the temperature and the amount of alkali metals leaving the bottom bed for some selected waste and biomass fuels. The results are intended for plant owners as well as boiler manufacturers. The experiments were performed in an FB-reactor, which was externally heated to specific temperatures between 550 and 850 deg C. The reactor is made of a quartz glass tube with an inner diameter of 60 mm and a length of 1.2 m. The fluidized bed rests upon a porous plate of sintered quartz. The bed material used was 180 gram purified sea sand with particle sizes between 0.1 and 0.3 mm. The fluidizing gas was a mixture of nitrogen and air, introduced in the bottom of the reactor by mass flow controllers. At the outlet of the reactor, the flue gas was divided between conventional gas analyzers and an ICP-MS instrument. The gas flow to the ICP-MS instrument was cooled before a slip stream was sucked out via a capillary to a nebulizer from which the sample gas was led to the ICP-MS instrument. The function of the nebulizer is normally to form an aerosol of liquids, but here it was used solely as a pump. In addition, a known flow of krypton was added into the nebulizer to be used as an internal standard. The novel technique to measure the amount of alkali metals on-line from a batch fired FB-reactor has been shown to work in practice and to provide interesting results, which so far is qualitative only. Further development and calibration work is

  12. Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment

    International Nuclear Information System (INIS)

    Highlights: ► A thermochemical biorefinery based on bio-DME as intermediate is studied. ► The assessed concepts (12) lead to multi-product generation (polygeneration). ► In all concepts DME is converted by carbonylation or hydrocarbonylation. ► Rates of return are similar to or higher than plants producing a single product. -- Abstract: Thermochemical biorefinery based on dimethyl ether (DME) as an intermediate is studied. DME is converted into methyl acetate, which can either be hydrogenated to ethanol or sold as a co-product. Considering this option together with a variety of technologies for syngas upgrading, 12 different process concepts are analyzed. The considered products are ethanol, methyl acetate, H2, DME and electricity. The assessment of each alternative includes biomass pretreatment, gasification, syngas clean-up and conditioning, DME synthesis and conversion, product separation, and heat and power integration. A plant size of 500 MWth processing poplar chips is taken as a basis. The resulting energy efficiency to products ranges from 34.9% to 50.2%. The largest internal rate of return (28.74%) corresponds to a concept which produces methyl acetate, DME and electricity (exported to grid). A sensitivity analysis with respect to total plant investment (TPI), total operation costs (TOC) and market price of products was carried out. The overall conclusion is that, despite its greater complexity, this kind of thermochemical biorefinery is more profitable than thermochemical bioprocesses oriented to a single product.

  13. Ensiling as pretreatment of grass for lignocellulosic biomass conversion

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten

    an efficient production of ethanol. Lastly, the conversion of xylan was extremely low in both grass and grass silage. Optimization of the enzymatic saccharification of grass was attempted through improvement of the hemicellulase content in the enzyme blend. However, neither additional xylanases (Cellic HTec2......® and ß-xylosidase) nor hemicellulose degrading esterases (acetyl xylan esterase and ferulic acid esterase) showed any improvements of xylan or glucan convertibility. Furthermore, hemicellulases were added before ensiling in order to assist and improve the pretreatment effect. This resulted in, however.......3. Furthermore, the HTT pretreatment of both grass and grass silage gave considerably lower xylan convertibility than HTT of wheat straw and wheat straw silage. The reason for the inaccessible xylan in grass is believed to be found in a high complexity of branching and cross linkages creating a heterogeneous...

  14. Atomic layer deposition overcoating: tuning catalyst selectivity for biomass conversion.

    Science.gov (United States)

    Zhang, Hongbo; Gu, Xiang-Kui; Canlas, Christian; Kropf, A Jeremy; Aich, Payoli; Greeley, Jeffrey P; Elam, Jeffrey W; Meyers, Randall J; Dumesic, James A; Stair, Peter C; Marshall, Christopher L

    2014-11-01

    The terraces, edges, and facets of nanoparticles are all active sites for heterogeneous catalysis. These different active sites may cause the formation of various products during the catalytic reaction. Here we report that the step sites of Pd nanoparticles (NPs) can be covered precisely by the atomic layer deposition (ALD) method, whereas the terrace sites remain as active component for the hydrogenation of furfural. Increasing the thickness of the ALD-generated overcoats restricts the adsorption of furfural onto the step sites of Pd NPs and increases the selectivity to furan. Furan selectivities and furfural conversions are linearly correlated for samples with or without an overcoating, though the slopes differ. The ALD technique can tune the selectivity of furfural hydrogenation over Pd NPs and has improved our understanding of the reaction mechanism. The above conclusions are further supported by density functional theory (DFT) calculations.

  15. THERMO-MECHANICAL PULPING AS A PRETREATMENT FOR AGRICULTURAL BIOMASS FOR BIOCHEMICAL CONVERSION

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-03-01

    Full Text Available The use of thermo-mechanical pulping (TMP, an existing and well known technology in the pulp and paper industry, is proposed as a potential pretreatment pathway of agriculture biomass for monomeric sugar production in preparation for further fermentation into alcohol species. Three agricultural biomass types, corn stover, wheat straw, and sweet sorghum bagasse, were pretreated in a TMP unit under two temperature conditions, 160 ºC and 170 ºC, and hydrolyzed using cellulase at 5, 10, and 20 FPU/g OD biomass. Wheat straw biomass was further pretreated at different conditions including: i soaking with acetic acid, ii longer steaming residence time (15 and 30 min, and iii refined at lower disk gap (0.0508 and 0.1524 mm. Preliminary results showed that carbohydrate conversion increased from 25% to 40% when the TMP temperature was increased from 160 to 170 ºC. Carbohydrate conversion was relatively similar for the three biomasses under the same pretreatment conditions and enzyme loading. Acetic acid soaking and refining at a reduce disk gap increases carbohydrate conversion. Further studies within this technological field to identify optimum process and TMP conditions for pretreatment are suggested.

  16. Engineering bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.;

    2014-01-01

    A comparison between two numerical models describing the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. Both models consider the incoming biomass as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed...

  17. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals

    NARCIS (Netherlands)

    Deuss, Peter J.; Barta, Katalin; de Vries, Johannes G.

    2014-01-01

    The transition from a petroleum-based infrastructure to an industry which utilises renewable resources is one of the key research challenges of the coming years. Biomass, consisting of inedible plant material that does not compete with our food production, is a suitable renewable feedstock. In recen

  18. Implications of cellobiohydrolase glycosylation for use in biomass conversion

    Directory of Open Access Journals (Sweden)

    Decker Stephen R

    2008-05-01

    Full Text Available Abstract The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina, is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline and phosphoric acid swollen (amorphous cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.

  19. Characterization of second generation biomass under thermal conversion and the fate of nitrogen

    NARCIS (Netherlands)

    Giuntoli, J.

    2010-01-01

    This dissertation deals with the characterization of several biomass materials under thermal conversion conditions using small--scale equipment. The fuels are tested under the conditions of slow and fast heating rate pyrolysis and combustion, with the main goal of investigating the chemistry of fuel

  20. One-Pot Catalytic Conversion of Cellulose and of Woody Biomass Solids to Liquid Fuels

    NARCIS (Netherlands)

    Matson, Theodore D.; Barta, Katalin; Iretskii, Alexei V.; Ford, Peter C.

    2011-01-01

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a

  1. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...

  2. Engineering Saccharomyces cerevisiae for consolidated bioprocessing in starch and biomass conversion

    Science.gov (United States)

    The conversion of starch or biomass to biofuel is a two-stage process involving enzymatic treatment, followed by yeast fermentation. An alternative route would be to consolidate the process by engineering Saccharomyces cerevisiae capable of both saccharification and fermentation. An approach was d...

  3. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  4. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  5. Power Generation from Biomass by Thermochemical Processes%热化学过程中生物电能的产生

    Institute of Scientific and Technical Information of China (English)

    A V Bridgwater

    2007-01-01

    Bioenergy is now accepted as having the potential to provide the major part of the projected renewable energy provisions of the future as biofuels in the form of gas,liquid or solid fuels or electricity and heat. There are three main routes to providing these biofuels-thermal conversion,biological conversion and physical conversion - all of which employ a range of chemical reactor configurations and designs.This paper focuses on thermochemical conversion processes for their higher efficiencies, lower costs and greater versatility in providing a wide range of energy, fuel and chemical options.In particular the so-called advanced technologies of gasification and fast pyrolysis are described and discussed.The primary products that can be derived as gas, liquid and solid fuels are characterised, as well as the secondary products of electricity and/or heat, liquid fuels and a considerable number of chemicals. The main technical and non-technical barriers to the market deployment of the various technologies are summarised.%目前,生物能被视为在未来有潜力提供大部分可再生能源的储备,它可以以气体、液体或固体燃料形式提供生物燃料或者用于发电和供热.有三种主要的提供生物能的途径,即热转换、生物转换和物理转换,这些方法都需要配置和设计各种各样的化学反应器.文章重点研究能高效、低成本、高度通用地提供大量能量、燃料和化学产品的热化学转换过程.特别研究和讨论了所谓的先进的气化和快速热解技术,其主要产品可以是气体、液体或固体燃料,而其副产品则是电能和/或热能、液体燃料及大量的化学品.文章还对阻碍不同技术的市场配置的主要技术性和非技术性壁垒进行了概述.

  6. Efficient conversion of solar energy to biomass and electricity.

    Science.gov (United States)

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  7. Application of radiation technology to biomass conversion processes

    International Nuclear Information System (INIS)

    The work carried out at the Instituto de Pesquisas Energeticas e Nucleares (IPEN) is reported for the following research projects: wood powdering of pre-irradiated chips; effect of combining electron beam processing (EBP) with other pretreatments on the saccharification of lignocellulosic materials; radiation immobilization of enzymes. The EBP of eucalyptus chips at an average dose of 1.5 x 105 Gy allowed a reduction of the energy required to produce a given weight of wood particles smaller than 300 μm by a factor of five. Wood powder of this particle size proved to be an excellent fuel for suspension firing system and could be used as raw material to feed continuous hydrolytic processes. Conversion efficiencies of 25.8% and 53.4%, respectively, were obtained in the production of reducing sugar by enzymatic hydrolysis of eucalyptus wood and sugarcane bagasse when materials were previously irradiated at 105 Gy, pulverized at 50 mesh and impregnated with 2% NaOH solution. Immobilization of cellulase by radiation induced polymerization of hydroxy-ethyl-methacrylate(HEMA) was effective when made at - 780C in the presence of silica gel adsorbents or polyethylene glycol. (Author)

  8. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, Moreno L.; Westerhof, R.J.M.; Rossum, van G.; Oudenhoven, S.R.G; Kersten, S.R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the pro

  9. Continuous drying of wood energy as a way of preconditioning before its thermochemical conversion : experimental and numerical approaches

    OpenAIRE

    Colin, Julien

    2011-01-01

    The dry conversion routes of wood to energy require more and more improvement in the quality of raw material, particularly regarding to its moisture content. That is why a preliminary step of preconditioning tends to be developed on the industrial sites. The use of continuous dryers is then tempting because of their low cost and their perfect integration in the production line. However it is not without pitfall: the climatic conditions heterogeneity inside the dryer, on the one hand, and the ...

  10. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion

    Directory of Open Access Journals (Sweden)

    Yongwu Lu

    2012-06-01

    Full Text Available Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2, which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.

  11. EERC Center for Biomass Utilization 2006

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, Christopher J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Aulich, Ted R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Folkedahl, Bruce C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Strege, Joshua R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Patel, Nikhil [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Shockey, Richard E. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

    2009-05-27

    The Center for Biomass Utilization® 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  12. Reactor scale up for biological conversion of cellulosic biomass to ethanol.

    Science.gov (United States)

    Shao, Xiongjun; Lynd, Lee; Bakker, André; LaRoche, Richard; Wyman, Charles

    2010-05-01

    The absence of a systematic scale-up approach for biological conversion of cellulosic biomass to commodity products is a significant bottleneck to realizing the potential benefits offered by such conversion. Motivated by this, we undertook to develop a scale-up approach for conversion of waste paper sludge to ethanol. Physical properties of the system were measured and correlations were developed for their dependence upon cellulose conversion. Just-suspension of solid particles was identified as the scale up criterion based on experiments at lab scale. The impeller speed for just solids suspension at large scale was predicted using computational fluid dynamics simulations. The scale-up strategy was validated by analyzing mixing requirements such as solid-liquid mass transfer under the predicted level of agitation at large scale. The scale-up approach enhances the prediction of reactor performance and helps provide guidelines for the analysis and design of large scale bioreactors based on bench scale experimentation. PMID:19649658

  13. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical

  14. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    Science.gov (United States)

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  15. A Review of the Role of Amphiphiles in Biomass to Ethanol Conversion

    Directory of Open Access Journals (Sweden)

    William Gibbons

    2013-04-01

    Full Text Available One of the concerns for economical production of ethanol from biomass is the large volume and high cost of the cellulolytic enzymes used to convert biomass into fermentable sugars. The presence of acetyl groups in hemicellulose and lignin in plant cell walls reduces accessibility of biomass to the enzymes and makes conversion a slow process. In addition to low enzyme accessibility, a rapid deactivation of cellulases during biomass hydrolysis can be another factor contributing to the low sugar recovery. As of now, the economical reduction in lignin content of the biomass is considered a bottleneck, and raises issues for several reasons. The presence of lignin in biomass reduces the swelling of cellulose fibrils and accessibility of enzyme to carbohydrate polymers. It also causes an irreversible adsorption of the cellulolytic enzymes that prevents effective enzyme activity and recycling. Amphiphiles, such as surfactants and proteins have been found to improve enzyme activity by several mechanisms of action that are not yet fully understood. Reduction in irreversible adsorption of enzyme to non-specific sites, reduction in viscosity of liquid and surface tension and consequently reduced contact of enzyme with air-liquid interface, and modifications in biomass chemical structure are some of the benefits derived from surface active molecules. Application of some of these amphiphiles could potentially reduce the capital and operating costs of bioethanol production by reducing fermentation time and the amount of enzyme used for saccharification of biomass. In this review article, the benefit of applying amphiphiles at various stages of ethanol production (i.e., pretreatment, hydrolysis and hydrolysis-fermentation is reviewed and the proposed mechanisms of actions are described.

  16. Bioenergy Research Programme. Yearbook 1994. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and project numbered 60. The research area of biomass conversion consisted of 8 projects in 1994, and the research area of bioenergy utilization of 13 projects. The results of these projects carried out in 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well at wood processing industry as at power plants. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. Possibilities to produce agrofibre in investigated at a laboratory study

  17. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.

    Science.gov (United States)

    Luo, Helen Y; Lewis, Jennifer D; Román-Leshkov, Yuriy

    2016-06-01

    Zeolites containing Sn, Ti, Zr, Hf, Nb, or Ta heteroatoms are versatile catalysts for the activation and conversion of oxygenated molecules owing to the unique Lewis acid character of their tetrahedral metal sites. Through fluoride-mediated synthesis, hydrophobic Lewis acid zeolites can behave as water-tolerant catalysts, which has resulted in a recent surge of experimental and computational studies in the field of biomass conversion. However, many open questions still surround these materials, especially relating to the nature of their active sites. This lack of fundamental understanding is exemplified by the many dissonant results that have been described in recent literature reports. In this review, we use a molecular-based approach to provide insight into the relationship between the structure of the metal center and its reactivity toward different substrates, with the ultimate goal of providing a robust framework to understand the properties that have the strongest influence on catalytic performance for the conversion of oxygenates. PMID:27146555

  18. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z. A.

    2016-06-01

    This work deals with conversion of naphthalene (C10H8) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  19. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schuetzle, Dennis [Renewable Energy Institute International, Sacramentao, CA (United States); Tamblyn, Greg [Renewable Energy Institute International, Sacramentao, CA (United States); Caldwell, Matt [Renewable Energy Institute International, Sacramentao, CA (United States); Hanbury, Orion [Renewable Energy Institute International, Sacramentao, CA (United States); Schuetzle, Robert [Greyrock Energy, Sacramento, CA (United States); Rodriguez, Ramer [Greyrock Energy, Sacramento, CA (United States); Johnson, Alex [Red Lion Bio-Energy, Toledo, OH (United States); Deichert, Fred [Red Lion Bio-Energy, Toledo, OH (United States); Jorgensen, Roger [Red Lion Bio-Energy, Toledo, OH (United States); Struble, Doug [Red Lion Bio-Energy, Toledo, OH (United States)

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  20. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  1. Process modelling of biomass conversion to biofuels with combined heat and power.

    Science.gov (United States)

    Sharma, Abhishek; Shinde, Yogesh; Pareek, Vishnu; Zhang, Dongke

    2015-12-01

    A process model has been developed to study the pyrolysis of biomass to produce biofuel with heat and power generation. The gaseous and solid products were used to generate heat and electrical power, whereas the bio-oil was stored and supplied for other applications. The overall efficiency of the base case model was estimated for conversion of biomass into useable forms of bio-energy. It was found that the proposed design is not only significantly efficient but also potentially suitable for distributed operation of pyrolysis plants having centralised post processing facilities for production of other biofuels and chemicals. It was further determined that the bio-oil quality improved using a multi-stage condensation system. However, the recycling of flue gases coming from combustor instead of non-condensable gases in the pyrolyzer led to increase in the overall efficiency of the process with degradation of bio-oil quality. PMID:26402874

  2. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    Science.gov (United States)

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments. PMID:26948108

  3. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  4. Potential Routes for Thermochemical Biorefineries

    OpenAIRE

    García Haro, Pedro; Ollero de Castro, Pedro Antonio; Vidal-Barrero, José Fernando; Villanueva Perales, Ángel Luis

    2013-01-01

    This critical review focuses on potential routes for the multi-production of chemicals and fuels in the framework of thermochemical biorefineries. The up-to-date research and development in this field has been limited to BTL/G (biomass-to-liquids/gases) studies, where biomass-derived synthesis gas (syngas) is converted into a single product with/without the co-production of electricity and heat. Simultaneously, the interest on biorefineries is growing but mostly refers to the biochemical proc...

  5. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    Energy Technology Data Exchange (ETDEWEB)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  6. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO3- solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  7. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    OpenAIRE

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Rudolf, Andreas

    2008-01-01

    The potential offered by biomass for solving some of the world's energy problems is widely recognized. The energy contained in biomass can be utilized either directly as in combustion or by converting the biomass into a liquid fuel for transportation. The Catliq® (catalytic liquid conversion) process is a second generation process for the production of bio-oil from different biomass-based waste materials. The process is carried out at subcritical conditions (280-350 °C and 180-250 bar) and in...

  8. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  9. Effect of Maize Biomass Composition on the Optimization of Dilute-Acid Pretreatments and Enzymatic Saccharification

    NARCIS (Netherlands)

    Torres Salvador, A.F.; Weijde, van der R.T.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into

  10. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  11. Yearbook 1993: Bioenergy Research Programme. Utilization of bioenergy and biomass conversion

    Science.gov (United States)

    Alakangas, Eija

    BIOENERGIA Research Programme is one of the energy technology programs of the Finnish Ministry of Trade and Industry. The aim of the program is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. R&D projects will also develop new economically competitive biofuels and new equipment and methods for production, handling, and utilization of biofuels. The total funding for 1993 was 45 million FIM and the number of projects 50. The research area of biomass conversion consists of 7 projects in 1993, and the research area of bioenergy utilization of 10 projects. The results of these projects carried out in 1993 and the plans for 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well as wood processing industry and power plants than it is possible at present day appliances. The conversion research in 1993 was pointed at refining of the waste liquors of pulping industry and the extraction of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and combustion tests. The target of the bioenergy utilization research is to demonstrate three to four new utilization technologies or methods. Each of these plants should have a potential of 0.2 - 0.3 million toe. The 1993 projects consisted of three main categories: reduction of emissions from small-scale combustion equipment, development of different equipment and methods for new power plant technologies, and the studies concerning additional usage of wood fuels in forest industry.

  12. Mixed culture biotechnology for syngas conversion

    OpenAIRE

    Alves, J.I.; Pereira, Filipa Maria Rodrigues; Sousa, D.Z.; Alves, M. M.

    2012-01-01

    Bioconversion of recalcitrant biomass/waste into bulk chemicals or biofuels is not practicable. Gasification of these materials produces syngas (mainly composed of CO2, CO and H2) that can be converted to products of interest, both by thermochemical or microbial processes. Thus far, industrial microbial processes focus on syngas conversion to ethanol, but other products such as butanol, acetic acid, butyric acid, hydrogen and methane can be obtained as well. In this work, microbial syngas con...

  13. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  14. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Tan, E. C. D.; Biddy, M. J.; Beckham, G. T.; Scarlata, C.; Jacobson, J.; Cafferty, K.; Ross, J.; Lukas, J.; Knorr, D.; Schoen, P.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  15. Progress in the technology of energy conversion from woody biomass in Indonesia

    Institute of Scientific and Technical Information of China (English)

    Tjutju Nurhayati; Yani Waridi; Han Roliadi

    2006-01-01

    Sustainable and renewable natural resources as biomass that contains carbon and hydrogen elements can be a potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, traditional markets as well as skimmed coconut oil and straws from rice cultivation.Four kinds of energy-conversion technologies have been empirically tested in Indonesia. First, gasification of rubber wood from unproductive rubber trees to generate heat energy for the drying of fermented chocolate seeds. Secondly, energy conversion from organic vegetable waste by implementing thermophylic fermentation methods that produce biogas as a fuel and for generating electricity and also concurrently generate organic by-products called hygen compost. Thirdly, gasification of charcoal and wood sawdust for electricity generation. Finally, environment-friendly energy conversion by carbonizing small-diameter logs, sawdust, wood slabs and coconut shells into charcoal. This yielded charcoal integrated with wood vinegar production through condensation of smoke/vapors emitted during carbonization, thereby mitigating the impact of air pollution. Among the four experimental technologies that of integrated charcoal and wood vinegar production had been spectacularly developed and favored by rural communities. This technology brought added value to the process and product due to the wood vinegar,useful as bio-pesticide,plant-growth hormone and organic fertilizer. Such integrated and environment-friendly production, therefore,should be sustained, because Indonesia occupies a significant and worldwide position as charcoal-producing and marketing country.The technology of integrated wood vinegar

  16. The biomass valorization / the electric power in processes: innovation and challenges; valorisation de la biomasse / l'electricite dans les procedes: innovation et defis

    Energy Technology Data Exchange (ETDEWEB)

    Dahy, M. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Leclercq, M. [Ministere de l' Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres; Gosse, G. [Institut National de Recherches Agronomiques (INRA), 75 - Paris (France); Lacour, P.A. [AFOCEL, 34 - St Clement de Riviere (France); Ballerini, D.; Duplan, J.L.; Monot, F. [Institut Francais du Petrole (IFP), 69 - Lyon (France); Seiler, J.M. [CEA Grenoble, 38 (France); Ancelme, A. [Syndicat National des Producteurs d' Alcools Agricoles (SNPAA), 92 - Neuilly (France); Vermeersch, G. [Sofiproteol, 75 - Paris (France); Hervouet, V. [Total, La Defense, 92 - Courbevoie (France); Rouveirolles, P. [Renault, 92 6 Boulogne Billancourt (France); Bellot, M. [Electricite de France (EDF), 75 - Paris (France); Pascual, C. [ELYO Cylergie, 69 - Ecully (France); Girard, M. [PRONOVIAL, 51 - Reims (France); Bernard, D. [ARKEMA, 69 - Lyon (France); Dussaud, J.; Vrevin, L. [Ahlstrom Research and Services, Edinburgh, Midlothian (United Kingdom); Mentink, L. [Roquette Freres (Italy)

    2005-07-01

    In a context of an insufficient offer on processes/technology, this day is devoted to the processes adapted to the biomass conversion in energy, fuels and other products. It provides presentations on the biomass economy and regulations, the different channels, the thermochemical processes to produce synthetic fuels and hydrogen, the ethanol production, refiners, automotive industry, an electric power, producer point of view, the byproducts. (A.L.B.)

  17. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA)

    Energy Technology Data Exchange (ETDEWEB)

    Idris, S.S.; Rahman, N.A.; Ismail, K.; Alias, A.B.; Rashid, Z.A.; Aris, M.J. [University of Teknol MARA Malaysia, Shah Alam (Malaysia). Faculty of Chemical Engineering

    2010-06-15

    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 to 900{sup o}C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends.

  18. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment.

    Science.gov (United States)

    Feng, Yu; Li, Guangyu; Li, Xiangyu; Zhu, Ning; Xiao, Bo; Li, Jian; Wang, Yujue

    2016-08-01

    This study investigated microwave-assisted formic acid (MW-FA) pretreatment as a possible way to improve aromatic production from catalytic fast pyrolysis (CFP) of lignocellulosic biomass. Results showed that short duration of MW-FA pretreatment (5-10min) could effectively disrupt the recalcitrant structure of beech wood and selectively remove its hemicellulose and lignin components. This increased the accessibility of cellulose component of biomass to subsequent thermal conversion in CFP. Consequently, the MW-FA pretreated beech wood produced 14.0-28.3% higher yields (26.4-29.8C%) for valuable aromatic products in CFP than the untreated control (23.2C%). In addition, the yields of undesired solid residue (char/coke) decreased from 33.1C% for the untreated control to 28.6-29.8C% for the MW-FA pretreated samples. These results demonstrate that MW-FA pretreatment can provide an effective way to improve the product distribution from CFP of lignocellulose. PMID:27176672

  19. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.

    Science.gov (United States)

    Brethauer, Simone; Studer, Michael H

    2015-01-01

    Lignocellulosic biomass - such as wood, agricultural residues or dedicated energy crops - is a promising renewable feedstock for production of fuels and chemicals that is available at large scale at low cost without direct competition for food usage. Its biochemical conversion in a sugar platform biorefinery includes three main unit operations that are illustrated in this review: the physico-chemical pretreatment of the biomass, the enzymatic hydrolysis of the carbohydrates to a fermentable sugar stream by cellulases and finally the fermentation of the sugars by suitable microorganisms to the target molecules. Special emphasis in this review is put on the technology, commercial status and future prospects of the production of second-generation fuel ethanol, as this process has received most research and development efforts so far. Despite significant advances, high enzyme costs are still a hurdle for large scale competitive lignocellulosic ethanol production. This could be overcome by a strategy termed 'consolidated bioprocessing' (CBP), where enzyme production, enzymatic hydrolysis and fermentation is integrated in one step - either by utilizing one genetically engineered superior microorganism or by creating an artificial co-culture. Insight is provided on both CBP strategies for the production of ethanol as well as of advanced fuels and commodity chemicals. PMID:26598400

  20. Solar Thermochemical Conversion of CO2 into C via SnO2/SnO Redox Cycle: A Thermodynamic Study

    OpenAIRE

    Dareen Dardor; Rahul Bhosale

    2015-01-01

    In this paper we report the computational thermodynamic modeling of the solar thermochemical SnO2/SnO redox cycle for solid C production via CO2 splitting. In this redox cycle, the first step corresponds to the solar thermal reduction of SnO2 into SnO and O2 in presence of inert atmosphere. The second step, which is a nonsolar exothermic stage, is the reaction of SnO with CO2 to produce solid C together with SnO2 that is recycled back to the first step. Commercially available HSC ...

  1. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  2. Ordered Mesoporous Polymers for Biomass Conversions and Cross-Coupling Reactions.

    Science.gov (United States)

    Liu, Fujian; Wu, Qin; Liu, Chen; Qi, Chenze; Huang, Kuan; Zheng, Anmin; Dai, Sheng

    2016-09-01

    Amino group-functionalized, ordered mesoporous polymers (OMP-NH2 ) were prepared using a solvent-free synthesis by grinding mixtures of solid raw precursors (aminophenol, terephthaldehyde), using block copolymer templates, and curing at 140-180 °C. OMP-NH2 was functionalized with acidic sites and incorporated with palladium, giving multifunctional solid catalysts with large Brunauer-Emmett-Teller (BET) surface areas, abundant and ordered mesopores, good thermal stabilities, controllable concentrations, and good dispersion of active centers. The resultant solid catalysts showed excellent catalytic activities and good reusability in biomass conversions and cross-coupling reactions-much superior to those of various reported solid catalysts such as Amberlyst 15, SBA-15-SO3 H, and Pd/C and comparable to those of homogeneous catalysts such as heteropoly acid, HCl, and palladium acetate. A facile green approach was developed for the synthesis of ordered mesoporous polymeric solid catalysts with excellent activities for conversion of low-cost feedstocks into useful chemicals and clean biofuels. PMID:27529676

  3. Sustainable production of bioenergy and bio-char from the straw of high biomass soybean lines via fast pyrolysis

    Science.gov (United States)

    The straws of two high-biomass soybean lines developed at ARS for bioenergy were subjected to thermochemical conversion by fast pyrolysis. The objective was to evaluate the potential use of the straw for the production of liquid fuel intermediates that can be burned “as is” and/or potentially upgra...

  4. On the gasification of wet biomass in supercritical water : over de vergassing van natte biomassa in superkritiek water

    NARCIS (Netherlands)

    Withag, J.A.M.

    2013-01-01

    Supercritical water gasification (SCWG) is a challenging thermo-chemical conversion route for wet biomass and waste streams into hydrogen and/or methane. At temperatures and pressures above the critical point the physical properties of water differ strongly from liquid water or steam. Because of the

  5. Biomass gasification: the understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    OpenAIRE

    Meng, X.

    2012-01-01

    As one of the currently available thermo-chemical conversion technologies, biomass gasification has received considerable interest since it increases options for combining with various power generation systems. The product gas or syngas produced from biomass gasification is environmental friendly alternatives to conventional petrochemical fuels for the production of electricity, hydrogen, synthetic transportation biofuels and other chemicals. The product gas normally contains the major compon...

  6. Analytical Investigations of Kinetic and Heat Transfer in Slow Pyrolysis of a Biomass Particle

    OpenAIRE

    S.J Ojolo; C.A. Osheku; M.G Sobamowo

    2013-01-01

    The utilization of biomass for heat and power generation has aroused the interest of most researchers especially those of energy .In converting solid fuel to a usable form of energy,pyrolysis plays an integral role. Understanding this very important phenomenon in the thermochemical conversion processes and representing it with appropriate mathematical models is vital in the design of pyrolysis reactors and biomass gasifiers. Therefore, this study presents analytical solutions to the kinetic a...

  7. A review of biomass quality research relevant to the use of poplar and willow for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, W.A. (Toronto Univ., Ontario (CA). Faculty of Forestry); Sennerby-Forsse, L. (Swedish Univ. of Agricultural Sciences, Uppsala (SE). Dept. of Ecology and Environmental Research); Layton, P. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    It has been recognized that the chemical and physical properties of biomass feedstocks can play an important role in the efficiency of most energy conversion processes. These properties include the ratio of bark to wood, moisture content, specific gravity, calorific or heating value, and the relative content of extractives, {alpha}-cellulose, hemicellulose, and lignin. A review of the literature dealing with the quality of poplar and willow biomass feedstock for energy conversion revealed that considerable variation existed in many of these traits. This variation may make it possible to improve the quality of feedstock through breeding and selection. Little information exists with respect to heritability (both in the broad sense and narrow sense), the genetic correlation between characters, and the presence of genotype-environment interaction. A better understanding of these parameters is essential if the apparent variability is to be used to improve biomass quality. (author).

  8. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  9. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra

    2010-06-01

    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. PMID:20153633

  10. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    Science.gov (United States)

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (Pcell-wall carbohydrate hydrolysis of corn stover, (ii) the lowest initial cell-wall carbohydrate concentration, (iii) the lowest dry matter remaining after pretreatment, and (iv) the highest amount of monosaccharides released during enzymatic hydrolysis. However, bm corn stover did not reduce the severity of aqueous ammonia steeping pretreatment needed to maximize DM hydrolysis during SSCF compared with normal corn stover. In the remaining studies (Chapters 3 thru 5), a system for analyzing the quality of lignocellulosic biomass feedstocks for biochemical conversion to biofuels (i.e., pretreatment, enzymatic hydrolysis, and fermentation) was developed. To accomplish this, a carbohydrate availability model was developed to characterize feedstock quality. The model partitions carbohydrates within a feedstock material into fractions based on their availability to be converted to fermentable

  11. Coal conversion and biomass conversion: Volume 1: Final report on USAID (Agency for International Development)/GOI (Government of India) Alternate Energy Resources and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Saluja, J.

    1987-06-30

    The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.

  12. Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability.

    Science.gov (United States)

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Kan, Yue

    2014-01-01

    There is often over 50% carbon loss during the thermal conversion of biomass into biochar, leading to it controversy for the biochar formation as a carbon sequestration strategy. Sometimes the biochar also seems not to be stable enough due to physical, chemical, and biological reactions in soils. In this study, three phosphorus-bearing materials, H3PO4, phosphate rock tailing (PRT), and triple superphosphate (TSP), were used as additives to wheat straw with a ratio of 1: 0.4-0.8 for biochar production at 500°C, aiming to alleviate carbon loss during pyrolysis and to increase biochar-C stabilization. All these additives remarkably increased the biochar yield from 31.7% (unmodified biochar) to 46.9%-56.9% (modified biochars). Carbon loss during pyrolysis was reduced from 51.7% to 35.5%-47.7%. Thermogravimetric analysis curves showed that the additives had no effect on thermal stability of biochar but did enhance its oxidative stability. Microbial mineralization was obviously reduced in the modified biochar, especially in the TSP-BC, in which the total CO2 emission during 60-d incubation was reduced by 67.8%, compared to the unmodified biochar. Enhancement of carbon retention and biochar stability was probably due to the formation of meta-phosphate or C-O-PO3, which could either form a physical layer to hinder the contact of C with O2 and bacteria, or occupy the active sites of the C band. Our results indicate that pre-treating biomass with phosphors-bearing materials is effective for reducing carbon loss during pyrolysis and for increasing biochar stabilization, which provides a novel method by which biochar can be designed to improve the carbon sequestration capacity. PMID:25531111

  13. The prominent role of fungi and fungal enzymes in the ant-fungus biomass conversion symbiosis.

    Science.gov (United States)

    Lange, L; Grell, M N

    2014-06-01

    Molecular studies have added significantly to understanding of the role of fungi and fungal enzymes in the efficient biomass conversion, which takes place in the fungus garden of leaf-cutting ants. It is now clear that the fungal symbiont expresses the full spectrum of genes for degrading cellulose and other plant cell wall polysaccharides. Since the start of the genomics era, numerous interesting studies have especially focused on evolutionary, molecular, and organismal aspects of the biological and biochemical functions of the symbiosis between leaf-cutting ants (Atta spp. and Acromyrmex spp.) and their fungal symbiont Leucoagaricus gongylophorus. Macroscopic observations of the fungus-farming ant colony inherently depict the ants as the leading part of the symbiosis (the myrmicocentric approach, overshadowing the mycocentric aspects). However, at the molecular level, it is fungal enzymes that enable the ants to access the nutrition embedded in recalcitrant plant biomass. Our hypothesis is that the evolutionary events that established fungus-farming practice were predisposed by a fascinating fungal evolution toward increasing attractiveness to ants. This resulted in the ants allowing the fungus to grow in the nests and began to supply plant materials for more fungal growth. Molecular studies also confirm that specialized fungal structures, the gongylidia, with high levels of proteins and rich blend of enzymes, are essential for symbiosis. Harvested and used as ant feed, the gongylidia are the key factor for sustaining the highly complex leaf-cutting ant colony. This microbial upgrade of fresh leaves to protein-enriched animal feed can serve as inspiration for modern biorefinery technology. PMID:24728757

  14. Conversion and utilisation of biomass from Swedish agriculture; Foeraedling och avsaettning av jordbruksbaserade biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2007-05-15

    Biomass feedstock from agriculture can be refined and converted into several different energy carriers and utilised for different energy services, such as production of heat, electricity or transportation fuel. The feedstock may be residues and by-products, such as straw and manure, or energy crops cultivated under different conditions depending on variations in regional and local conditions. Similar variations exist in the regional and local conditions for the refining and utilisation of the bioenergy and its by-products. The overall aim of this report is to analyse and describe the technical and physical conditions of different agriculture-based bioenergy systems using the existing infrastructure and potential new systems expected to be developed in the future. To which extent this technical/physical potential will be utilised in the future depends mainly on economic conditions and financial considerations. These aspects are not included in this study. Furthermore, potential possibilities to utilise existing infrastructure within the forest industry are not included. The report starts with an analysis and description of the energy efficiency of different bioenergy systems, from the production of the biomass to the final use of the refined energy carrier, expressed as the amount of heat, electricity or transportation fuel produced per hectare and year. The possibilities to co-produce different energy carries in bio-refineries are also analysed. The next part of the report includes an analysis of the variation in the regional conditions for the conversion and utilisation of the different energy carriers, based on existing infrastructure, for instance, district heating systems, individual heating systems, combined heat and power production, utilisation of by-products as feed in animal production, utilisation of digestion residues as fertilisers, the supply of forest fuels, etc. The report also includes a discussion of the environmental impact of an increased

  15. Enzymatic conversion of pretreated biomass into fermentable sugars for biorefinery operation

    Science.gov (United States)

    Gao, Dahai

    2011-12-01

    Depleting petroleum reserves and potential climate change caused by fossil fuel consumption have attracted significant attention towards the use of alternative renewable resources for production of fuels and chemicals. Lignocellulosic biomass provides a plentiful resource for the sustainable production of biofuels and biochemicals and could serve as an important contributor to the world energy portfolio in the near future. Successful biological conversion of lignocellulosic biomass requires an efficient and economical pretreatment method, high glucose/xylose yields during enzymatic hydrolysis and fermentation of both hexose and pentose to ethanol. High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. Core glycosyl hydrolases were isolated and purified from various sources to help rationally optimize an enzyme cocktail to digest ammonia fiber expansion (AFEX) treated corn stover. The four core cellulases were endoglucanase I (EG I), cellobiohydrolase I (CBH I), cellobiohydrolase II (CBH II) and beta-Glucosidase (betaG). The two core hemicellulases were an endoxylanase (EX) and a beta-xylosidase (betaX). A diverse set of accessory hemicellulases from bacterial sources was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (˜20 mg protein/g glucan) using an in-house developed enzyme cocktail and this cocktail was compared to commercial enzyme. Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products

  16. Simulation of a process for the two-stage thermal conversion of biomass into the synthesis gas

    Science.gov (United States)

    Kosov, V. F.; Lavrenov, V. A.; Zaichenko, V. M.

    2015-11-01

    The paper presents results of simulation of a process for the two-stage thermal conversion of wood biomass into the synthesis gas. The first stage of process is pyrolysis of raw materials, the second stage is cracking of volatile pyrolysis products which blown through the char at a temperature of about 1000° C. Char is a porous biomass residue with carbon content about 90%. The simulation based on the results of experimental investigations of a pilot plant with capacity up to 50 kg of raw material per hour. The main result of simulation is estimation of an energy conversion efficiency of wood biomass into synthesis gas for three different operation modes. The first mode is conversion of biomass into fuel gas and char, and the char is not further used. The second mode is the same, but char used as fuel for producing heat for own demand of the process. The third mode includes gasification of char by means of water steam, aimed to obtaining an additional yield of synthesis gas. The simulation shown, that total efficiency of power plant was 17.1% in the first mode, 22.4% in the second mode and 22.6% in the third mode.

  17. Cell Wall Targeted in planta Iron Accumulation Enhances Biomass Conversion and Seed Iron Concentration in Arabidopsis and Rice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haibing; Wei, Hui; Ma, Guojie; Antunes, Mauricio S.; Vogt, Stefan; Cox, Joseph; Zhang, Xiao; Liu, Xiping; Bu, Lintao; Gleber, S. Charlotte; Carpita, Nicholas C.; Makowski, Lee; Himmel, Michael E.; Tucker, Melvin P.; McCann, Maureen C.; Murphy, Angus S.; Peer, Wendy A.

    2016-10-01

    Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.

  18. Bioenergy research programme. Yearbook 1996. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma. Vuosikirja 1996. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P. [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning bioenergy use was 10 and biomass conversion 6. Results of the projects carried out in 1996 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2- 0.3 million toe/a till the year 2000. The aims have been achieved in the field of fuel handling technologies and small-scale combustion concepts, but large-scale demonstration projects before the year 2000 seems to be a very challenging aim. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of use as well as the total economy of the production. The objective of biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilisation of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe/a by the year 2000 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants

  19. Biochemical conversions of lignocellulosic biomass for sustainable fuel-ethanol production in the upper Midwest

    Science.gov (United States)

    Brodeur-Campbell, Michael J.

    Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest — hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues — according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% of theoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure

  20. Development of A Flexible System for the Simultaneous Conversion of Biomass to Industrial Chemicals and the Production of Industrial Biocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway; Hooker, Brian S.; Skeen, R S.; Anderson, D B.; Lankey, R. L.; Anastas, P. T.

    2002-01-01

    A flexible system was developed for the simultaneous conversion of biomass to industrial chemicals and the production of industrial biocatalysts. In particular, the expression of a bacterial enzyme, beta-glucuronidase (GUS), was investigated using a genetically modified starch-degrading Saccharomyces strain in suspension cultures in starch media. Different sources of starch including corn and waste potato starch were used for yeast biomass accumulation and GUS expression studies under controls of inducible and constitutive promoters. A thermostable bacterial cellulase, Acidothermus cellulolyticus E1 endoglucanase gene was also cloned into an episomal plasmid expression vector and expressed in the starch-degrading Saccharomyces strain.

  1. A thermochemical energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Toyeguti, K.; Indzima, T.

    1982-08-09

    Mercury is used as the active mass of the anode in the converter and 0/sub 2/ is used as the active cathode material. The reaction of Mercury + 1/2 0/sub 2/-Hg0 occurs with a discharge. With heating to 500/sup 0/C the regeneration of the Mercury, Hg0 yields Mercury + 1/2 0/sub 2/, occurs. The device for performing the thermochenical conversion of energy contains an element body, an oxygen chamber, an oxygen electrode, a chamber with an alkaline liquid electrolyte, a separator, an auxiliary separator, an electrode and a chamber with the Mercury. The thermochemical reaction occurs in the reactor to which the Hg0 is transported along a pipe which has a refrigerator and a valve. The Mercury is fed into the element from a reservoir. The Mercury reduced in the reactor and in a reaction tower is fed into it through a closed cycle. The bellows is connected with the reactor by a pipe with a refrigerator. Through it the 0/sub 2/ goes in a closed cycle to the chamber. The current forming reactions are Hg + 20H-anion yields Hg0 + H/sub 2/0 + 2e and 1/2 0/sub 2/ + H/sub 2/0 + 2e yields 20H-anion. The voltage on the outleads of the element is approximately 0.3 volts.

  2. Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis.

    Science.gov (United States)

    Galkin, Konstantin I; Krivodaeva, Elena A; Romashov, Leonid V; Zalesskiy, Sergey S; Kachala, Vadim V; Burykina, Julia V; Ananikov, Valentine P

    2016-07-11

    Spectral studies revealed the presence of a specific arrangement of 5-hydroxymethylfurfural (5-HMF) molecules in solution as a result of a hydrogen-bonding network, and this arrangement readily facilitates the aging of 5-HMF. Deterioration of the quality of this platform chemical limits its practical applications, especially in synthesis/pharma areas. The model drug Ranitidine (Zantac®) was synthesized with only 15 % yield starting from 5-HMF which was isolated and stored as an oil after a biomass conversion process. In contrast, a much higher yield of 65 % was obtained by using 5-HMF isolated in crystalline state from an optimized biomass conversion process. The molecular mechanisms responsible for 5-HMF decomposition in solution were established by NMR and ESI-MS studies. A highly selective synthesis of a 5-HMF derivative from glucose was achieved using a protecting group at O(6) position.

  3. Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis.

    Science.gov (United States)

    Galkin, Konstantin I; Krivodaeva, Elena A; Romashov, Leonid V; Zalesskiy, Sergey S; Kachala, Vadim V; Burykina, Julia V; Ananikov, Valentine P

    2016-07-11

    Spectral studies revealed the presence of a specific arrangement of 5-hydroxymethylfurfural (5-HMF) molecules in solution as a result of a hydrogen-bonding network, and this arrangement readily facilitates the aging of 5-HMF. Deterioration of the quality of this platform chemical limits its practical applications, especially in synthesis/pharma areas. The model drug Ranitidine (Zantac®) was synthesized with only 15 % yield starting from 5-HMF which was isolated and stored as an oil after a biomass conversion process. In contrast, a much higher yield of 65 % was obtained by using 5-HMF isolated in crystalline state from an optimized biomass conversion process. The molecular mechanisms responsible for 5-HMF decomposition in solution were established by NMR and ESI-MS studies. A highly selective synthesis of a 5-HMF derivative from glucose was achieved using a protecting group at O(6) position. PMID:27271823

  4. Compact conversion of natural gas and biomass to DME in microstructured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Myrstad, Rune

    2010-07-01

    Efficient production of easily distributable fuel from natural gas or biomass in the small-to-medium scale calls for a more compact and efficient process than using conventional technology. Microstructured reactors have improved heat and mass transfer properties which make them suitable for process intensified production of liquid fuel from synthesis gas and demonstration plants using such technology are announced. Dimethyl ether (DME) can be used as an intermediate in the production of several industrial chemicals and DME is also used as an aerosol propellant because of its environmentally benign properties. Since DME has high cetane number and is considered as an ultra-clean fuel with reduced NO{sub x}, SO{sub x}, and PM emissions, DME has emerged as a substitute for auto diesel fuel and bio-DME is one of the most promising second-generation biofuels. DME can be prepared in a one-step process from synthesis gas, which is thermodynamically and economically favourable to the two step process consisting of methanol synthesis followed by dehydration of methanol to DME. As the direct process is strongly exothermic, the reaction heat has to be effectively removed from the reaction system in order to maintain a safe and economic operational mode. Direct DME synthesis possesses a high volumetric heat production rate and hence the temperature control is a main challenge. Besides this, parameters such as syngas composition, pressure, contact time and catalytic system affect the conversion and yield. In this work direct DME synthesis from syngas in a microstructured packed bed reactor was demonstrated to operate at practically isothermal conditions. The performance of the catalyst was enhanced by elimination of the undesired phenomena related to the exothermic process, such as hot spot formation and side reactions. The influence of process parameters on methanol selectivity and DME productivity was studied. The highest CO conversion was achieved by a H{sub 2}-rich syngas at

  5. Consequences of forest conversion to pasture and fallow on soil microbial biomass and activity in the eastern Amazon

    OpenAIRE

    Melo de, V. S.; Desjardins, Thierry; Silva, M.L.; E.R. Santos; Sarrazin, Max; Santos, M. M. L. S.

    2012-01-01

    The main change in soil use in Amazonia is, after slash and burn deforestation followed by annual crops, the establishment of pastures. This conversion of forest to pasture induces changes in the carbon cycle, modifies soil organic matter content and quality and affects biological activity responsible for numerous biochemical and biological processes essential to ecosystem functioning. The aim of this study was to assess changes in microbial biomass and activity in fallow and pasture soils af...

  6. SUNgas: Thermochemical Approaches to Solar Fuels

    Science.gov (United States)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2

  7. Thermal conversion of biomass with emphasis on product distribution, reaction kinetics and sulfur abatement.

    OpenAIRE

    Khalil, Roger A.

    2009-01-01

    Most of the work performed in this study has concentrated on the thermal decomposition of biomass. This was done because to the simple fact that biomass is mainly composed of volatiles that evaporates prior to the gasification stage.The characteristics of the devolatilized products during pyrolysis are reported in Paper I for several fuels types that have been considered as sources for energy production due to their fast growing abilities. Paper I also reports results for the same biomass typ...

  8. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  9. Influence of feedstock particle size on lignocellulose conversion--a review.

    Science.gov (United States)

    Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay

    2011-08-01

    Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

  10. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    Directory of Open Access Journals (Sweden)

    Erik R. Venteris

    2014-09-01

    Full Text Available Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. We summarize our past results in a new analysis to explore the relative economic impact of these design choices. Our growth model is used to predict average biomass production for two saline strains (Nannocloropsis salina, Arthrospira sp., one fresh to brackish strain (Chlorella sp., DOE strain 1412, and one freshwater strain (order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE and hydrothermal liquefaction (HTL technologies. National-scale models of water, CO2 (as flue gas, land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area, a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1. Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive strain, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 1.8 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on rank, but the most costly resource component varies from site to site. The highest rank UFs are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations.

  11. Practical issues in catalytic and hydrothermal biomass conversion: concentration effects on reaction pathways

    NARCIS (Netherlands)

    Z.W. Srokol; G. Rothenberg

    2010-01-01

    Converting biomass to biofuels and chemicals calls for practical and simple processes, since it must compete economically with both burning and anaerobic bacterial digestion. Here we employ concentrated glucose solutions as a biomass model compound, using a pressure-controlled batch reactor setup fo

  12. A techno-economic evaluation of a biomass energy conversion park

    NARCIS (Netherlands)

    Dael, Van M.; Passel, van S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.

    2013-01-01

    Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conve

  13. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion

    Science.gov (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  14. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).

    Science.gov (United States)

    Schildhauer, Tilman J; Biollaz, Serge M A

    2015-01-01

    Production of Synthetic Natural Gas (SNG) from biomass is an important step to decouple the use of bioenergy from the biomass production with respect to both time and place. While anaerobic digestion of wet biomass is a state-of-the art process, wood gasification to producer gas followed by gas cleaning and methanation has only just entered the demonstration scale. Power-to-Gas applications using biogas from biomass fermentation or producer gas from wood gasification as carbon oxide source are under development. Due to the importance of the (catalytic) methanation step in the production of SNG from dry biomass or within Power-to-Gas applications, the specific challenges of this step and the developed reactor types are discussed in this review. PMID:26598404

  15. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  16. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  17. Thermochemical characterization of banana leaves as a potential energy source

    International Nuclear Information System (INIS)

    Highlights: • The chemical composition of semi-dried banana leaves are similar to the other biomass. • The semi-dried leaves present high release of energy under inert and oxidant atmosphere. • The energy released on pyrolysis and combustion can be used to dry the wet banana leaves. • The thermochemical conversion processes can reduce the waste volume significantly. • The banana leaves have potential to use as biomass through combustion and pyrolysis process. - Abstract: Wet and semi-dried banana leaves were characterized through elemental and proximate analyses, lignocellulosic fraction and thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and high heating value analysis to assess their use as biomass in generating energy through combustion; they were also assessed to determine the potential of obtaining value-added products through pyrolysis. The wet banana leaves had high moisture content of 74.7%. The semi-dried samples exhibited 8.3% moisture, 78.8% volatile solids, 43.5% carbon and a higher heating value of 19.8 MJ/kg. The nitrogen and sulfur contents in the banana leaves were very low. The semi-dried and wet leaves had hemicellulose and lignin contents close to other biomass fuels, and the semi-dried leaves had the lowest cellulose content, of 26.7%. The wet and semi-dried samples showed the same thermal events in oxidizing and inert atmospheres, but with distinctly different mass loss and energy release intensities. The chemical characteristics and the thermal behavior demonstrated by the semi-dried samples indicate their potential for use as biomass, with results similar to other agro-industrial wastes currently used

  18. A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion.

    Science.gov (United States)

    Nakazawa, Hikaru; Kawai, Tetsushi; Ida, Noriko; Shida, Yosuke; Shioya, Kouki; Kobayashi, Yoshinori; Okada, Hirofumi; Tani, Shuji; Sumitani, Jun-ichi; Kawaguchi, Takashi; Morikawa, Yasushi; Ogasawara, Wataru

    2016-01-01

    The ability of the Trichoderma reesei X3AB1strain enzyme preparations to convert cellulosic biomass into fermentable sugars is enhanced by the replacement of xyn3 by Aspergillus aculeatus β-glucosidase 1 gene (aabg1), as shown in our previous study. However, subsequent experiments using T. reesei extracts supplemented with the glycoside hydrolase (GH) family 10 xylanase III (XYN III) and GH Family 11 XYN II showed increased conversion of alkaline treated cellulosic biomass, which is rich in xylan, underscoring the importance of XYN III. To attain optimal saccharifying potential in T. reesei, we constructed two new strains, C1AB1 and E1AB1, in which aabg1 was expressed heterologously by means of the cbh1 or egl1 promoters, respectively, so that the endogenous XYN III synthesis remained intact. Due to the presence of wild-type xyn3 in T. reesei E1AB1, enzymes prepared from this strain were 20-30% more effective in the saccharification of alkaline-pretreated rice straw than enzyme extracts from X3AB1, and also outperformed recent commercial cellulase preparations. Our results demonstrate the importance of XYN III in the conversion of alkaline-pretreated cellulosic biomass by T. reesei.

  19. Hydrothermal Conversion in Near-Critical Water – A Sustainable Way of Producing Renewable Fuels

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Pedersen, Thomas Helmer; Rosendahl, Lasse

    2014-01-01

    Liquid fuels from biomass will form an essential part of meeting the grand challenges within energy. The need for renewable and sustainable energy sources is triggered by a number of factors; like increase in global energy demand, depletion of conventional resources, climate issues and the desire...... for national/regional energy independence. Especially in marine, aviation and heavy land transport suitable carbon neutral drop-in fuels from biomass are needed, since electrification of those is rather unlikely. Hydrothermal conversion (HTC) of biomass offers a solution and is a sustainable way of converting...... biomass feedstocks to valuable bio-crude. HTC is a high pressure and medium temperature thermochemical biomass conversion process and converts aqueous biomasses under sub- or super-critical conditions to a bio-crude similar to fossil crude oil. This chapter deals with the chemical reaction pathways during...

  20. A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China

    Institute of Scientific and Technical Information of China (English)

    L(U) Shuguo; Wang Xuchen; Han Boping

    2009-01-01

    A one-year field study was conducted to determine the conversion ratio of phytoplankton biomass carbon (Phyto-C) to chlorophyll-a (Chl-a) in Jiaozhou Bay, China. We measured suspended particulate organic carbon (POC) and phytoplankton Chl-a samples collected in surface water monthly from March 2005 to February 2006. The temporal and spatial variations of Chl-a and POC concentrations were observed in the bay. Based on the field measurements, a linear regression model II was used to generate the conversion ratio of Phyto-C to Chl-a. In most cases, a good linear correlation was found between the observed POC and Chl-a concentrations, and the calculated conversion ratios ranged from 26 to 250 with a mean value of 56 ìg ìg~(-1). The conversion ratio in the fall was higher than that in the winter and spring months, and had the lowest values in the summer. The ratios also exhibited spatial variations, generally with low values in the near shore regions and relatively high values in offshore waters. Our study suggests that temperature was likely to be the main factor influencing the observed seasonal variations of conversion ratios while nutrient supply and light penetration played important roles in controlling the spatial variations.

  1. Improving Heterogeneous Catalyst Stability for Liquid-phase Biomass Conversion and Reforming

    OpenAIRE

    Héroguel, Florent Emmanuel; Rozmysłowicz, Bartosz; Luterbacher, Jeremy

    2015-01-01

    Biomass is a possible renewable alternative to fossil carbon sources. Today, many bio-resources can be converted to direct substitutes or suitable alternatives to fossil-based fuels and chemicals. However, catalyst deactivation under the harsh, often liquid-phase reaction conditions required for biomass treatment is a major obstacle to developing processes that can compete with the petrochemical industry. This review presents recently developed strategies to limit reversible and irreversible ...

  2. Effects of grassland conversion and tillage intensities on soil microbial biomass, residues and community structure

    OpenAIRE

    Murugan, Rajasekaran

    2013-01-01

    Agricultural intensification has a strong impact on level of soil organic matter (SOM), microbial biomass stocks and microbial community structure in agro-ecosystems. The size of the microbial necromass C pool could be about 40 times that of the living microbial biomass C pool in soils. Due to the specificity, amino sugar analysis gives more important information on the relative contribution of fungal and bacterial residues to C sequestration potential of soils. Meanwhile, the relationship be...

  3. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Matthiesen, John; Hoff, Thomas; Liu, Chi; Pueschel, Charles; Rao, Radhika; Tessonnier, Jean-Philippe

    2014-06-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (< 300°C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  4. Functional carbons and carbon nanohybrids for the catalytic conversion of biomass to renewable chemicals in the condensed phase

    Institute of Scientific and Technical Information of China (English)

    John Matthiesen; Thomas Hoff; Chi Liu; Charles Pueschel; Radhika Rao; Jean-Philippe Tessonnier

    2014-01-01

    The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Com-pared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures (<300 °C) and in the condensed phase to pre-vent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.

  5. Thermochemical surface engineering of steels

    OpenAIRE

    2015-01-01

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels

  6. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  7. Controlled production of cellulases in plants for biomass conversion. Progress report, June 15, 1996--March 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Danna, K.J.

    1997-06-01

    The goal of this project is to facilitate conversion of plant biomass to usable energy by developing transgenic plants that express genes for microbial cellulases, which can be activated after harvest of the plants. In particular, we want to determine the feasibility of targeting an endoglucanase and a cellobiohydrolase to the plant apoplast (cell wall milieu). The apoplast not only contains cellulose, the substrate for the enzymes, but also can tolerate large amounts of foreign protein. To avoid detrimental effects of cellulase expression in plants, we have chosen enzymes with high temperature optima; the genes for these enzymes are from thermophilic organisms that can use cellulose as a sole energy source.

  8. Biomass boiler energy conversion system analysis with the aid of exergy-based methods

    International Nuclear Information System (INIS)

    Highlights: • Conventional exergy analysis and advanced exergy analysis are performed. • The combustion process dominates the exergy destruction. • Increase excess air will decrease the overall boiler exergy efficiency. • Increase the SH temperatures will increase the overall boiler exergy efficiency. • The avoidable exergy destructions in the air heaters are very small. - Abstract: The objective of this paper is to establish a theoretical framework for the exergy analysis and advanced exergy analysis of a real biomass boiler. These analyses can be used for both the diagnosis and optimization of a biomass boiler as well as for the design of a new biomass boiler. Conventional exergy analysis is performed to recognize the source(s) of inefficiency and irreversibility and identify exergy destruction in different components of the biomass boiler. An advanced exergy analysis is performed to provide comprehensive information about the avoidable exergy destruction and real fuel-saving potential for each component, as well as the overall system. Sensitivity studies of several design parameters including the excess air, biomass moisture and steam parameters were evaluated. The results show that the maximum exergy destruction occurs in the combustion process, followed by the Water Walls (WW) & Radiant Superheater (RSH) and the Low Temperature Superheater (LTSH). The fuel-saving and exergy efficiency improvement strategies for different components are discussed in this paper

  9. Bioenergy Research Programme, Yearbook 1995. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma, vuosikirja 1995. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Centre TEKES. The aim of the bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The research area of biomass conversion consisted of 8 projects in 1995, and the research area of bioenergy utilization of 14 projects. The results of these projects carried out in 1995 are presented in this publication. The aim of the biomass conversion is to produce more bio-oils and electric power as well as wood processing industry as at power plants than it is possible at present appliances. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel-oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. The main aim of the research in bioenergy utilization is to create the technological potential for increasing the bioenergy use. The aim is further defined as to get into commercial phase 3-4 new techniques or methods and to start several demonstrations, which will have 0.2-0.3 million toe bioenergy utilization potential

  10. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    Science.gov (United States)

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. PMID:25283435

  11. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method.

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-01-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134-57.500 gr ethanol kg(-1) Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis. PMID:27291594

  12. Biotechnological research and development for biomass conversion to chemicals and fuels

    Science.gov (United States)

    Villet, R.

    1980-08-01

    Revitalization of the older fermentation industry and development of biotechnology largely based on lignocellulose are proposed. Specific research projects are outlined in these two areas and also for the following: microbial formation of hydrocarbons; methane from anaerobic digestion; lignin; methanol. For cellulose conversion to ethanol the relative merits using added cellulases or, alternatively, direct fermentation with anaerobic thermophiles, are discussed. In selecting suitable feedstocks for biotechnological processes there is a need to use a production extraction conversion system as a basis for evaluation.

  13. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar; Xiao, R; Huber, George W.

    2011-01-01

    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  14. Development of an efficient catalyst for the pyrolytic conversion of biomass into transport fuel

    NARCIS (Netherlands)

    Nguyen, Tang Son

    2014-01-01

    Fast pyrolysis is a promising technique to convert biomass into a liquid fuel/fuel precursor, known as bio-oil. However, compared to conventional crude oil, bio-oil has much higher oxygen content which results in various detrimental properties and limits its application. Thus the first part of this

  15. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Nielsen, Rasmus Glar

    2013-01-01

    This paper assesses the environmental performance of biomass gasification for electricity production based on wheat straw and compares it with that of alternatives such as straw-fired electricity production and fossil fuel-fired electricity production. In the baseline simulation, we assume that t...

  16. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  17. BIOETHANOL PRODUCTION BY MISCANTHUS AS A LIGNOCELLULOSIC BIOMASS: FOCUS ON HIGH EFFICIENCY CONVERSION TO GLUCOSE AND ETHANOL

    Directory of Open Access Journals (Sweden)

    Minhee Han Mail

    2011-04-01

    Full Text Available Current ethanol production processes using crops such as corn and sugar cane have been well established. However, the utilization of cheaper lignocellulosic biomass could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. In this study, Miscanthus, a lignocellulosic biomass, was pretreated using NaOH to produce bioethanol. The pretreatment and enzymatic hydrolysis conditions were evaluated by response surface methodology (RSM. The optimal conditions were found to be 145.29 °C, 28.97 min, and 1.49 M for temperature, reaction time, and NaOH concentration, respectively. Enzymatic digestibility of pretreated Miscanthus was examined at various enzyme loadings (10 to 70 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase. Regarding enzymatic digestibility, 50 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase were selected as the test concentrations, resulting in a total glucose conversion rate of 83.92%. Fermentation of hydrolyzed Miscanthus using Saccharomyces cerevisiae resulted in an ethanol concentration of 59.20 g/L at 20% pretreated biomass loading. The results presented here constitute a significant contribution to the production of bioethanol from Miscanthus.

  18. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO2, and reduced emissions of SO2, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO2 and SO2, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO2, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for achieving

  19. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chien-Ju

    2010-05-16

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially

  20. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chien-Ju [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially

  1. Biomass Conversion Strategies and the Renewable Production of Hydrogen using Heterogeneous Metal Catalysts

    Science.gov (United States)

    Carrasquillo-Flores, Ronald

    Biomass is a renewable carbon source that can be processed into fuels and chemicals in a biorefinery. However, there are a number of challenges that need to be overcome for biomass utilization to be viable. The work presented herein aims to address two existing challenges in biomass processing schemes, namely the efficient utilization of all fractions of lignocellulosic biomass and the renewable production of the hydrogen necessary to reduce the oxygen functionalities native in biomass. First, lignin was depolymerized to produce a renewable phenolic solvent mixture. Biphasic reactions with this solvent and aqueous solution of glucose or xylose produce 5-hydroxymethylfurfural (HMF) and furfural, respectively, at high yields. HMF and furfuryl alcohol could also be upgraded into levulinic acid at high yields. The yields are due to the capacity of the solvent to partition these molecules and prevent their degradation. Second, propyl guaiacol, a component of the phenolic solvent, was used for biphasic reactions where ball milled biomass substrates were used. These substrates are converted to furfural and HMF at high yields due to the partition of these molecules into the solvent and the on-demand production of glucose and xylose from the substrate, minimizing the formation of humins. A study of the water-gas shift reaction over Pt-based catalysts was conducted. Alloying Pt with Re was found to increase the catalytic activity and microkinetic modeling revealed Pt is a good representation of the active site and Re acts as a promoter slightly destabilizing CO binding. A study on formic acid decomposition over Au catalysts was performed. Experiments, density functional theory and microkinetic modeling results indicate the reaction proceeds completely on highly undercoordinated Au atoms with any high coordination atom being largely inert. Motivated by the results on Au catalysts, the metal-support interaction was investigated for the reverse water-gas shift reaction. Using a

  2. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    International Nuclear Information System (INIS)

    Highlights: • Well to pump environmental assessment of two thermochemical processing pathways. • NER of 1.23 and GHG emissions of −11.4 g CO2-eq (MJ)−1 for HTL pathway. • HTL represents promising conversion pathway based on use of wet biomass. • NER of 2.27 and GHG emissions of 210 g CO2-eq (MJ)−1 for pyrolysis pathway. • Pyrolysis pathway: drying microalgae feedstock dominates environmental impact. - Abstract: Microalgae is being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the environmental impact of two different thermochemical conversion technologies for the microalgae-to-biofuel process through life cycle assessment. A system boundary of “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of −11.4 g CO2-eq (MJ renewable diesel)−1. Biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2-eq (MJ renewable diesel)−1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and

  3. Biomass thermal conversion : pelletisation of lignocelluloses and the effect on the gasification process

    OpenAIRE

    Kallis, Kyriakos Xenofon

    2012-01-01

    Agricultural residues and energy crops constitute an important part of the energy chain although they are not being used extensively in the energy generation processes since they are associated with disadvantages such as low bulk and energy densities and handling problems. One solution is the pelletisation of these residues, which solves a great deal of these problems and enables the competition of biomass with other types of fuels. A large amount of work, concerning the combus...

  4. Two-Stage Conversion of Land and Marine Biomass for Biogas and Biohydrogen Production

    OpenAIRE

    Nkemka, Valentine

    2012-01-01

    The replacement of fossil fuels by renewable fuels such as biogas and biohydrogen will require efficient and economically competitive process technologies together with new kinds of biomass. A two-stage system for biogas production has several advantages over the widely used one-stage continuous stirred tank reactor (CSTR). However, it has not yet been widely implemented on a large scale. Biohydrogen can be produced in the anaerobic two-stage system. It is considered to be a useful fuel for t...

  5. Catalytic conversion of biomass-derived synthesis gas to liquid fuels

    OpenAIRE

    Suárez París, Rodrigo

    2016-01-01

    Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food co...

  6. Primary conversion of lignocellulosic biomass for the production of furfural and levulinic acid

    OpenAIRE

    Rojas, karla Dussan

    2014-01-01

    peer-reviewed The production of energy and chemicals from renewable resources has gained significant attention as a means to support the transition from fossil fuels towards clean and sustainable technologies. Due to its availability and rich carbohydrate composition, lignocellulosic biomass represents a valuable starting material and requires primary processes to unlock its components. The main focus of this research was to study and develop further knowledge on the primary ...

  7. The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion.

    Science.gov (United States)

    Marcolongo, Loredana; Ionata, Elena; La Cara, Francesco; Amore, Antonella; Giacobbe, Simona; Pepe, Olimpia; Faraco, Vincenza

    2014-11-01

    The fungal arabinofuranosidase from Pleurotus ostreatus PoAbf recombinantly expressed in Pichia pastoris rPoAbf and its evolved variant rPoAbf F435Y/Y446F were tested for their effectiveness to enhance the enzymatic saccharification of three lignocellulosic biomasses, namely Arundo donax, corn cobs and brewer's spent grains (BSG), after chemical or chemical-physical pretreatment. All the raw materials were subjected to an alkaline pretreatment by soaking in aqueous ammonia solution whilst the biomass from A. donax was also pretreated by steam explosion. The capability of the wild-type and mutant rPoAbf to increase the fermentable sugars recovery was assessed by using these enzymes in combination with different (hemi)cellulolytic activities. These enzymatic mixtures were either entirely of commercial origin or contained the cellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli in substitution to the commercial counterparts. The addition of the arabinofuranosidases from P. ostreatus improved the hydrolytic efficiency of the commercial enzymatic cocktails on all the pretreated biomasses. The best results were obtained using the rPoAbf evolved variant and are represented by increases of the xylose recovery up to 56.4%. These data clearly highlight the important role of the accessory hemicellulolytic activities to optimize the xylan bioconversion yields.

  8. Nanostructured materials and their role as heterogeneous catalysts in the conversion of biomass to biofuels

    Science.gov (United States)

    Cadigan, Chris

    Prior to the discovery of inexpensive and readily available fossil fuels, the world relied heavily on biomass to provide its energy needs. Due to a worldwide growth in demand for fossil fuels coupled with the shrinkage of petroleum resources, and mounting economic, political, and environmental concerns, it has become more pressing to develop sustainable fuels and chemicals from biomass. The present dissertation studies multiple nanostructured catalysts investigated in various processes related to gasification of biomass into synthesis gas, and further upgrading to biofuels and value added chemicals. These reactions include: syngas conditioning, alcohol synthesis from carbon monoxide hydrogenation, and steam reforming ethanol to form higher hydrocarbons. Nanomaterials were synthesized, characterized, studied in given reactions, and then further characterized post-reaction. Overall goals were aimed at determining catalytic activities towards desired products and determining which material properties were most desirable based on experimental results. Strategies to improve material design for second-generation materials are suggested based on promising reaction results coupled with pre and post reaction characterization analysis.

  9. Microwave-assisted conversion of biomass derived hemicelluloses into xylo-oligosaccharides by novel sulfonated bamboo-based catalysts

    International Nuclear Information System (INIS)

    Hemicelluloses are the major constituent of biomass and their hydrolysis products xylo-oligosaccharides (XOS) are of great importance to the food, chemical and pharmaceutical industries. In this work, catalytic conversion of bamboo hemicelluloses into XOS was developed using novel solid acid catalysts of sulfonated bamboo-based carbon material (BCS). The Fourier Transform Infrared Spectroscopy characterization of BCS confirmed the successful introduction of acid groups (including –SO3H, –COOH and phenolic –OH) onto its surface. The effects of reaction temperature, residence time and solid acid-to-water ratio on the performance of catalytic conversion were investigated. The maximum XOS yield of 54.7 wt% based on xylan content was obtained at 150 °C for 45 min with a solid acid to water mass ratio of 1:200. The use of water solvent with BCS provides a green and efficient process for hemicellulose conversion. - Highlights: • Sulfonated bamboo-based carbon (BCS) with active groups was synthesized. • Microwave irradiation was adopted to increase the reaction efficiency. • XOS with higher DP was preferentially obtained under mild conditions. • Xylose and XOS with lower DP were preferentially obtained under severe conditions. • Limited byproducts were detected in the hydrolysis reaction

  10. Biomass conversion in the fungal garden of the leaf-cutter ant Acromyrmex echinatior

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Nygaard, Sanne; Linde, Tore;

    2011-01-01

    It has been demonstrated that fungal enzymes play a significant role in the fungal garden conversion of the fresh-cut leaves into accessible food for the ant larvae (Schiøtt et al. 2008, BMC Microbiol, 8:40; Licht et al. 2010, Evolution 64: 2055-2069). However, so far specific documentation of co...

  11. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    Energy Technology Data Exchange (ETDEWEB)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae

  12. Biological research survey for the efficient conversion of biomass to biofuels.

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Michael Stuart; Andrews, Katherine M. (Computational Biosciences)

    2007-01-01

    The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.

  13. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion

    OpenAIRE

    Mussgnug, Jan H.; Thomas-Hall, Skye; Rupprecht, Jens; Foo, Alexander; Klassen, Viktor; McDowall, Alasdair; Schenk, Peer M.; Kruse, Olaf; Hankamer, Ben

    2007-01-01

    The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H-2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii) have evolved genetic strategies to assemble large light-harvesting antenna com...

  14. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    Science.gov (United States)

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-01

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. PMID:27241180

  15. The structural characterization of corn stalks hemicelluloses during active oxygen cooking as a pretreatment for biomass conversion

    Directory of Open Access Journals (Sweden)

    Jian-Bin Shi

    2012-11-01

    Full Text Available The structural characteristics of corn stalks hemicelluloses during the active oxygen cooking process as a pretreatment of biomass conversion were investigated in this work. The hemicelluloses obtained from the corn stalks, pulp, and yellow liquor were evaluated by high-performance anion-exchange chromatography (HPAEC, Fourier transform infrared spectroscopy (FT-IR, gel permeation chromatography (GPC, and 1H-13C 2D hetero-nuclear single quantum coherence (HSQC spectroscopy. Based on the sugar and GPC analysis, FT-IR, and NMR spectroscopy, it could be concluded that the hemicelluloses were composed of backbones of (1→4-β-D-xylopyranose substituted α-L-arabinofuranose and 4-O-methyl-α-D-glucuronic acid. During the cooking process, the hemicelluloses with more side chains were removed from raw material. The backbones were significantly damaged as well. Additionally, the ester linkages in the raw material were completely broken after the cooking.

  16. Biomass conversion through radiation immobilization of enzymes and microorganisms and pre-irradiation techniques at IPEN/CNEN, Sao Paulo

    International Nuclear Information System (INIS)

    The search for alternative renewable sources of energy is receiving increasing attention in developed and less developed countries. At the IPEN-CNEN/SP several interconnected radiation technology applications in the field of biomass conversion have been developed, which included: 1) wood powdering of pre-irradiated wood chips for fuel production; 2) saccharification of lignocellulosic materials by combining electron beam processing (EBP) with other physical and chemical pre-treatments; 3) radiation immobilization of enzymes and microorganisms (yeasts) used in the saccharification of lignocellulosic wastes and ethanol production processes; 4) production of complementary cattle feed by NH3 and NaOH impregnation of pre-irradiated sugarcane bagasse; 5) study of radiosensitivity of yeast cells and yeast ethanol production system; 6) initial tests of bioreactivity of radiation-induced polymers. (author). 19 refs, 2 tabs

  17. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.

    Science.gov (United States)

    Luque, Luis; Westerhof, Roel; Van Rossum, Guus; Oudenhoven, Stijn; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2014-06-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the products was used as the thermochemical process to obtain a pyrolysis-oil rich in anhydro-sugars (levoglucosan) and low in inhibitors. After hydrolysis of these anhydro-sugars, glucose was obtained which was successfully fermented, after detoxification, to obtain bioethanol. Ethanol yields comparable to traditional biochemical processing were achieved (41.3% of theoretical yield based on cellulose fraction). Additional benefits of the proposed biorefinery concept comprise valuable by-products of the thermochemical conversion like bio-char, mono-phenols (production of BTX) and pyrolytic lignin as a source of aromatic rich fuel additive. The inhibitory effect of thermochemically derived fermentation substrates was quantified numerically to compare the effects of different process configurations and upgrading steps within the biorefinery approach. PMID:24681340

  18. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  19. Integrated Process for the Catalytic Conversion of Biomass-Derived Syngas into Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lebarbier, Vanessa M.; Smith, Colin D.; Flake, Matthew D.; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.

    2016-04-19

    Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge for U.S. scientists. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. The composition of the resulting hydrocarbon fuel can be modulated to meet specified requirements. Biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C2+ oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C7+) is finally sent to a fourth reactor that is needed for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that ~75% of the hydrocarbons present are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.

  20. Biotechnological research and development for biomass conversion to chemicals and fuels

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R.

    1980-08-01

    It is likely that a growing need to produce chemicals and fuels from renewable resources will stimulate the development of biotechnology as a commerical enterprise of considerable potential. The purpose of the analysis and the development structure that could lead to establishing this new technology are presented. Two general goals are recommended: (i) in the near term, to revive the older fermentation industry and, by the addition of sophisticated technology, to make it competitive; (ii) in the longer term, to develop a new biotechnology largely based on lignocellulose. Specific research projects are outlined in these two areas and also for the following: microbial formation of hydrocarbons; methane from anaerobic digestion; lignin; methanol. For cellulose conversion to ethanol the relative merits of using added cellulases or, alternatively, direct fermentation with anaerobic thermophiles, are discussed. In selecting suitable feedstocks for biotechnological processes there is a need to use a production-extraction-conversion system as a basis for evaluation. An effective research workforce for developing biotechnology must be pluridisciplinary. The strategy adopted at the Solar Energy Research Institute is to design the Biotechnology Branch as an integrated set of three Groups: Biochemistry and Molecular Genetics; Microbiology; Chemical and Biochemical Engineering.

  1. Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides

    Directory of Open Access Journals (Sweden)

    Hermanson Spencer

    2011-02-01

    Full Text Available Abstract Background High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides. Results The core fungal cellulases in the optimal cocktail include cellobiohydrolase I [CBH I; glycoside hydrolase (GH family 7A], cellobiohydrolase II (CBH II; GH family 6A, endoglucanase I (EG I; GH family 7B and β-glucosidase (βG; GH family 3. Hemicellulases tested along with the core cellulases include xylanases (LX1, GH family 10; LX2, GH family 10; LX3, GH family 10; LX4, GH family 11; LX5, GH family 10; LX6, GH family 10, β-xylosidase (LβX; GH family 52, α-arabinofuranosidase (LArb, GH family 51 and α-glucuronidase (LαGl, GH family 67 that were cloned, expressed and/or purified from different bacterial sources. Different combinations of these enzymes were tested using a high-throughput microplate based 24 h hydrolysis assay. Both family 10 (LX3 and family 11 (LX4 xylanases were found to most efficiently hydrolyze AFEX pretreated corn stover in a synergistic manner. The optimal mass ratio of xylanases (LX3 and LX4 to cellulases (CBH I, CBH II and EG I is 25:75. LβX (0.6 mg/g glucan is crucial to obtaining monomeric xylose (54% xylose yield, while LArb (0.6 mg/g glucan and LαGl (0.8 mg/g glucan can both further increase xylose yield by an additional 20%. Compared with Accellerase 1000, a purified cocktail of cellulases supplemented with accessory hemicellulases will not only increase both glucose and xylose yields but will also decrease the total enzyme loading

  2. Exploring the myth of nascent hydrogen and its implications for biomass conversions.

    Science.gov (United States)

    Fábos, Viktória; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2012-11-01

    Iron (and to a lesser extent manganese) in the wall of a 316 stainless steel (SS) reactor is responsible for the hydrogenation of cyclohexanone to cyclohexanol when using an aqueous formic acid solution under high temperature and pressure water (HTPW) conditions. However, not only dilute formic acid but also aqueous solutions of several other organic and mineral acids in the presence of iron are active in this reaction covering a range of aldehydes and ketones, even under ambient conditions. The stoichiometry, kinetics, and the possible mechanisms of both dihydrogen production as well as of the hydrogenation of the model compound cyclohexanone were examined. The reduction is essentially stoichiometric with respect to metallic iron, and the conversions are highly dependent on the speed of stirring as well as temperature and reactant concentrations. Importantly, it is established unequivocally that water participates in dihydrogen gas formation (hydrogen atoms originate from both the acid and water molecules) and facilitates substrate reduction. PMID:22952036

  3. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts.

    Science.gov (United States)

    Nguyen, T S; Zabeti, M; Lefferts, L; Brem, G; Seshan, K

    2013-08-01

    Upgrading of biomass pyrolysis vapors over 20 wt.% Na2CO3/γ-Al2O3 catalyst was studied in a lab-scale fix-bed reactor at 500°C. Characterization of the catalyst using SEM and XRD has shown that sodium carbonate is well-dispersed on the support γ-Al2O3. TGA and (23)Na MAS NMR suggested the formation of new hydrated sodium phase, which is likely responsible for the high activity of the catalyst. Catalytic oil has much lower oxygen content (12.3 wt.%) compared to non-catalytic oil (42.1 wt.%). This comes together with a tremendous increase in the energy density (37 compared to 19 MJ kg(-1)). Decarboxylation of carboxylic acids was favoured on the catalyst, resulting to an oil almost neutral (TAN=3.8mg KOH/g oil and pH=6.5). However, the mentioned decarboxylation resulted in the formation of carbonyls, which correlates to low stability of the oil. Catalytic pyrolysis results in a bio-oil which resembles a fossil fuel oil in its properties.

  4. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh;

    ) process is a second generation process for the production of bio-oil from different biomass-based waste materials. The process is carried out at subcritical conditions (280-350 °C and 180-250 bar) and in the presence of homogeneous (KOH) and heterogeneous (ZrO2) catalysts. The great advantage with the Cat......Liq® process compared with combustion is that also wet material can be processed. In the process, the waste is transformed to bio-oil, combustible gases and water-soluble organic compounds. The raw material used in this study was DDGS (Dried Distilled Grain with Solubles), a residual product in 1st generation...... ethanol production, available in huge quantities. DDGS is today used as animal feed but in a future with increasing production of DDGS, converting it into bio-oil may be an attractive alternative. The bio-oil can be used for green electricity production or it can be upgraded to bio-diesel. In the current...

  5. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion

    Directory of Open Access Journals (Sweden)

    Fernando Segato

    2016-07-01

    Full Text Available Current cellulosic biomass hydrolysis is based on the one-time use of cellulases. Cellulases immobilized on magnetic nanocarriers offer the advantages of magnetic separation and repeated use for continuous hydrolysis. Most immobilization methods focus on only one type of cellulase. Here, we report co-immobilization of two types of cellulases, β-glucosidase A (BglA and cellobiohydrolase D (CelD, on sub-20 nm superparamagnetic nanoparticles. The nanoparticles demonstrated 100% immobilization efficiency for both BglA and CelD. The total enzyme activities of immobilized BglA and CelD were up to 67.1% and 41.5% of that of the free cellulases, respectively. The immobilized BglA and CelD each retained about 85% and 43% of the initial immobilized enzyme activities after being recycled 3 and 10 times, respectively. The effects of pH and temperature on the immobilized cellulases were also investigated. Co-immobilization of BglA and CelD on MNPs is a promising strategy to promote synergistic action of cellulases while lowering enzyme consumption.

  6. Ionizing Radiation Conversion of Lignocellulosic Biomass from Sugarcane Bagasse to Production Ethanol Biofuel

    International Nuclear Information System (INIS)

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 75 % with 30 kGy of absorbed dose. (author)

  7. Change of physical and chemical properties of the solid phase during biomass pyrolysis; Aenderung der physikalisch-chemischen Eigenschaften des Feststoffs waehrend der Biomassepyrolyse

    Energy Technology Data Exchange (ETDEWEB)

    Klose, Wolfgang [Kassel Univ. (Germany). Inst. fuer Thermische Energietechnik; Rincon, Sonia; Gomez, Alexander [Universidad Nacional de Colombia, Bogota (Colombia). Dept. de Ingenieria Mecanica y Mecatronica

    2009-01-15

    The effects of the final pyrolysis temperature on the development of the chemical composition and on the porosity of biomass undergoing pyrolysis are investigated through experiments in a thermobalance at laboratory scale of grams. Changes in the grain size of individual particles of biomass during pyrolysis are also investigated as a function of temperature in a microscope equipped with heating and camera. Oil palm shells are selected as raw materials due to their availability as biomass residue and their physical and chemical characteristics. These experiments are important for reactor design purposes in the field of thermochemical conversion, offering important information for the mathematical modelling of the processes. (orig.)

  8. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  9. Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2011-08-01

    Full Text Available Biomass gasification has yet to obtain industrial acceptance. The high residual tar concentrations in syngas prevent any ambitious utilization. In this paper a novel gas purification technology based on catalytic hydrocracking is introduced, whereby most of the tarry components can be converted and removed. Pilot scale experiments were carried out with an updraft gasifier. The hydrocracking catalyst was palladium (Pd. The results show the dominant role of temperature and flow rate. At a constant flow rate of 20 Nm3/h and temperatures of 500 °C, 600 °C and 700 °C the tar conversion rates reached 44.9%, 78.1% and 92.3%, respectively. These results could be increased up to 98.6% and 99.3% by using an operating temperature of 700 °C and lower flow rates of 15 Nm3/h and 10 Nm3/h. The syngas quality after the purification process at 700 °C/10 Nm3/h is acceptable for inner combustion (IC gas engine utilization.

  10. Reviews on Hydrogen Production from Thermochemical Gasification of Biomass with Supercritical Water Heated by Concentrated Solar Energy%太阳能聚焦供热的生物质超临界水热化学气化制氢研究进展

    Institute of Scientific and Technical Information of China (English)

    郭烈锦; 陈敬炜

    2013-01-01

    介绍了太阳能聚焦供热的生物质超临界水热化学气化制氢的基本原理、特点、优势、关键技术与系统构成,及其与之相关的太阳能热化学制氢、生物质超临界水气化制氢技术等的国内外最新研究进展.进一步指出了这种集能量聚集、转化、储存利用耦合于一体的新型理论、技术和系统的发展趋势和研究内容.%An update review on the research progress of hydrogen production from thermo-chemical gasification of biomass in supercritical water (SCWG) heated by concentrated solar energy at home and abroad is presented. Following a description of the solar thermo-chemical hydrogen methods, a hydrogen production method by SCWG is introduced, including the hydrogen production principles, kinetics and mechanisms of biomass gasification reaction, development status of SCWG and so on. Then, the principles, advantages, key technologies, the composition of the system and the latest development of SCWG using concentrated solar energy are shown, and the above technology integrated different theories and technologies, such as solar energy concentration, energy transfer and storage technologies. Finally, the further development trends and research contents of this technology is pointed out.

  11. Controlled production of cellulases in plants for biomass conversion. Annual report, March 11, 1997--March 14, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Danna, K.J.

    1998-06-01

    The goal of this project is to facilitate conversion of plant biomass to usable energy by developing transgenic plants that express genes for microbial cellulases, which can be activated after harvest of the plants. In particular, the feasibility of targeting an endoglucanase and a cellobiohydrolase to the plant apoplast (cell wall milieu) is to be determined. To avoid detrimental effects of cellulose expression in plants, enzymes with high temperature optima were chosen; the genes for these enzymes are from thermophilic organisms that can use cellulose as a sole energy source. During the past year (year 2 of the grant), efforts have been focused on testing expression of endoglucanase E{sub 1}, from Acidothermus cellulolyticus, in the apoplast of both tobacco suspension cells and Arabidopsis thaliana plants. Using the plasmids constructed during the first year, transgenic cells and plants that contain the gene for the E{sub 1} catalytic domain fused to a signal peptide sequence were obtained. This gene was constructed so that the fusion protein will be secreted into the apoplast. The enzyme is made in large quantities and is secreted into the apoplast. More importantly, it is enzymatically active when placed under optimal reaction conditions (high temperature). Moreover, the plant cells and intact plants exhibit no obvious problems with growth and development under laboratory conditions. Work has also continued to improve binary vectors for Agrobacterium-mediated transformation, to determine activity of E{sub 1} at various temperatures, and to investigate the activity of the 35S Cauliflower Mosaic Virus promoter in E. coli. 9 figs.

  12. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    Muth, jr., David J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Argo, Andrew [Sundrop Fuels, Golden, CO (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cafferty, Kara [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  13. Biomass Compositional Analysis for Energy Applications

    Science.gov (United States)

    Hames, Bonnie R.

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  14. The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W.

    1997-10-01

    The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200{degrees} to 220{degrees}c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours.

  15. Catalytic Conversion of Biomass

    Directory of Open Access Journals (Sweden)

    Rafael Luque

    2016-09-01

    Full Text Available Petroleum, natural gas and coal supply most of the energy consumed worldwide and their massive utilization has allowed our society to reach high levels of development in the past century.[...

  16. Critical success factors for biomass. Identification/specification of critical success factors in the development and market introduction of biomass conversion systems for the production of electricity and/or heat and/or gaseous/liquid secondary energy carriers

    International Nuclear Information System (INIS)

    The Dutch government has set the policy target that in 2020 10% of the total energy consumption has to be provided by means of renewable energy sources. Biomass is expected to play a major role (25-30%) in this future renewable energy based energy supply system. However, it is still unclear if this biomass-based target will be reached. Although studies showed that success or failure of innovations and projects depend on a multitude of scientific, technical, economic and societal variables, a number of questions still remained unanswered. This information often concentrated exclusively on the cost price aspects. This study is conducted to identify the internal and external barriers or constraints other than cost aspects, which are of vital importance to a successful penetration of biomass in the Dutch energy market. Barriers with a decreasing influence on the market introduction of bioenergy in the Netherlands are: short-term contractability of biomass (organic waste streams) for energy purposes, applicable emission and waste policies, and unfamiliarity of bioenergy by the public and government. Barriers that potentially could play an important role on the market introduction of bioenergy in the Netherlands in the near future are: long-term contractability of biomass (organic waste streams and energy crops) for energy purposes, the 'new' emission constraints and their potential negative influence on the implementation of small-scale biomass-based combined-cycle plants, the rivalry of bioenergy with other renewable energy based technologies in a liberalising energy market, the social acceptance of bioenergy, the future European agriculture policy (energy crops), and the current status and development perspectives of biomass-based energy conversion technologies. 66 refs

  17. Biomass in Multifunction Crop Plants: Cooperative Research and Development Final Report, CRADA Number CRD-05-163

    Energy Technology Data Exchange (ETDEWEB)

    Decker, S. R.

    2011-10-01

    An array of cellulase, hemicellulase, and accessory enzymes were tested for their ability to increase the conversion levels and rates of biomass to sugar after being subjected to thermochemical pretreatment. The genes were cloned by Oklahoma State University and expressed, purified, and tested at NREL. Several enzymes were noted to be effective in increasing conversion levels, however expression levels were typically very low. The overall plan was to express these enzymes in corn as a possible mechanism towards decreased recalcitrance. One enzyme, cel5A endoglucanase from Acidothermus cellulolyticus, was transformed into both tobacco and corn. The transgenic corn stover and tobacco were examined for their susceptibility to thermochemical pretreatment followed by enzymatic digestion.

  18. Synergistic evaluation of the biomass/coal blends for co-gasification purposes

    Directory of Open Access Journals (Sweden)

    S Gaqa, S Mamphweli, D Katwire, E Meyer

    2014-01-01

    Full Text Available Approximately 95% of electricity in South Africa is generated from coal, which is a fossil fuel that has detrimental environmental impacts. Eskom has started investigating the possibility of co-firing coal with biomass to improve their carbon footprint. However, co-firing utilizes approximately 80% of water and results in extensive environmental impacts. This research seeks to investigate the possibility of co-gasification of coal and biomass, which is a thermochemical process that uses about a third of the water required by a coal-fired power station, and results in much lower emissions. Thermogravimetric analysis (TGA was conducted to investigate the existence of a synergy between coal and biomass during gasification. Various coal/biomass blends were investigated using TGA. The synergistic effect between the two feedstock as determined through TGA allowed the prediction of the gasification characteristics of the blends that most likely gave the highest conversion efficiency. Preliminary results suggested the existence of this synergy.

  19. Thermochemical Biorefineries with multiproduction using a platform chemical

    OpenAIRE

    García Haro, Pedro; Villanueva Perales, Ángel Luis; Arjona, Ricardo; Ollero de Castro, Pedro Antonio

    2014-01-01

    This critical review focuses on potential routes for the multi-production of chemicals and fuels in the framework of thermochemical biorefineries. The up-to-date research and development in this field has been limited to BTL/G (biomass-to-liquids/gases) studies, where biomass-derived -synthesis gas (syngas) is converted into a single product with/without the co-production of -electricity and heat. Simultaneously, the interest on biorefineries is growing but mostly refers to the biochemical pr...

  20. Solid Heteropolyacids (HPAs) in Hydrolytic Conversion of Biomass%固体杂多酸在生物质水解转化中的应用

    Institute of Scientific and Technical Information of China (English)

    张建明; 翟尚儒; 黄德智; 翟滨; 安庆大

    2012-01-01

    With global oil production flattening out, attention is being increasingly paid to a kind of renewable clean energy--biomass. Heteropolyacids are important catalysts in the so-called clean technologies. They possess strong acidity, structural flexibility and fairly high thermal stability. It would be preferable to carry out the heteropolyacids-catalyzed reaction in biomass hydrolytic conversion. The performance of heteropolyacids towards hydrolysis of biomass in pure water, organic solvents and biphasic systems exhibit different advantages and limitations. In this paper, we reviewed the latest progress in the hydrolytic conversion of biomass into valuable chemicals using heteropolyacids in different catalytic systems. Highly effective utilization of biomass has positive effects on solving energy problems and achieving sustainable development of energy and chemical industry. Heteropolyacids used as excellent green catalyst will possess extensive application prospect in biomass conversion.%随着化石资源的日益枯竭,寻求可替代清洁能源已成为全球重大课题。生物质是一种可再生的清洁能源,目前人们尝试通过利用生物质转化缓解日益增长的能源需求。杂多酸是应用在清洁工艺中的重要催化剂,结构和酸度的设计调变性及较高的热稳定性,使其广泛用于生物质的水解转化反应平台。目前固体杂多酸在水溶剂、有机溶剂及两相体系中降解生物质有着各自不同的优缺点。本文综述了杂多酸在不同反应体系中水解转化生物质制备精细化学品的研究进展,并对其在生物质水解转化利用中的应用前景进行了展望。

  1. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  2. Comparative assessment of marine biomass materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Show, I.T. Jr.; Piper, L.E.; Lupton, S.E.; Stegen, G.R.

    1979-09-01

    The objectives of this study were to assess potential marine biomass sources and their preprocessing requirements. For the assessment of marine biomass sources, a priority list of marine plants was developed based on maximum potential organic yields, maximum potential calorific yields, and chemical composition. Yields were maximized and undesirable chemical properties minimized. The priority list was used to estimate maximum potential yields from US coastal water (from shore to the 200-mile limit of the Fisheries Conservation Zone). Preprocessing schemes were compared based on a comparative evaluation of energy consumption for each preprocessing step. The priority list of potential biomass sources produced 13 potential genera; five showed calorific yields far in excess of the other eight. These five (Laminaria, Chondrus, Fucus, Gracilaria, and Macrocystis) had calorific yields in excess of 50 x 10/sup 3/ kcal/m/sup 2/ - yr. No genus was found to be universally applicable to all US territorial waters. It was estimated that maximum potential national yield without mechanical nutrient upwelling could be as high as 30 x 10/sup 5/ Btu/yr (30 quad). Results of the preprocessing study indicated that harvesting and size reduction operations may consume a large proportion of the energy available from the harvested biomass. It was found that biochemical conversion preprocessing incurs the least energy loss. It was also found that thermochemical conversion is probably not appropriate for marine biomass due to preprocessing energy losses.

  3. GIS-BASED location optimization of a biomass conversion plant on contaminated willow in the Campine region (Belgium)

    International Nuclear Information System (INIS)

    The Campine region is diffusely contaminated with heavy metals like cadmium. Since traditional excavation techniques are too expensive, phytoremediation is preferred as a remediation technique. In a previous study, the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium was assessed. Based on recently upgraded figures of willow potential from phytoremediation on agricultural land in the seven most contaminated municipalities of the Belgian Campine region, the current paper uses GIS-knowledge to investigate which of three previously identified locations is most suitable for a biomass plant, taking into account the spatial distribution of the contaminated willow supply and the total cost of willow transport. Biomass transport distance from the centroid of each contaminated agricultural parcel to each of the three potential biomass plant locations was determined following Euclidian distance calculations and distance calculations over the existing road network. A transport cost model consisting of distance fixed and distance dependent biomass transport costs was developed. Of the locations identified, the Overpelt Fabriek site results in the lowest biomass transport distance and costs. When willow allocation for each parcel occurs based on the nearest potential plant location, transport costs are on average 23% lower than when all biomass is transported to the single Overpelt Fabriek site location. Therefore, when only considering transport costs, installing a smaller plant at each of the three potential plant locations would be less expensive than when installing a single biomass plant at the Overpelt Fabriek site. -- Highlights: ► Overpelt Fabriek site most attractive for time frames considered. ► Average tortuosity factor in Campine region between 1.27 and 1.42. ► Share of willow transport costs in willow supply costs 21%. ► Optimal allocation of willow results in lower transport costs

  4. Bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.;

    2013-01-01

    Because of the complexity to describe and solve thermo-chemical processes occurring in a fuel bed in grate-fired boiler, it is often necessary to simplify the process and use modeling techniques based on overall mass, energy and species conservation. A comparison between two numerical models...... to describe the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. In this work both models consider the incoming solid fuel as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed is treated as a 0D system, but the thermo...... concentrations and velocity of the producer gas leaving the fuel bed provided by the two models are compared. A sensitivity analysis with respect to mass flow rate of the primary air is also performed, as well as a further comparison regarding the dependence of the producer gas properties on the initial moisture...

  5. Screening of various low-grade biomass materials for low temperature gasification: Method development and application

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Ravenni, Giulia; Holm, Jens Kai;

    2015-01-01

    method and the subsequent use of the method to identify promising e but currently unproven, low-grade biomass resources for conversion in Pyroneer systems. The technical assessment is conducted by comparing the results from a series of physical-mechanical and thermochemical experiments to a set of proven...... references. The technical assessment is supplemented by an evaluation of practical application and overall energy balance. Applying the developed method to 4 references and 18 unproven low-grade potential fuels, indicated that one of these unproven candidates was most likely unsuited for Pyroneer...

  6. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  7. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  8. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid.

    Science.gov (United States)

    Yi, Guangshun; Teong, Siew Ping; Li, Xiukai; Zhang, Yugen

    2014-08-01

    A simple and effective water extraction method is presented for the purification 5-hydroxylmethylfurfural (HMF) obtained from a biomass dehydration system. Up to 99% of the HMF can be recovered and the HMF in aqueous solution is directly converted to 2,5-furandicarboxylic acid (FDCA) as the sole product. This purification technique allows an integrated process to produce FDCA from fructose via HMF prepared in an isopropanol monophasic system, with an overall FDCA yield of 83% obtained. From Jerusalem raw artichoke biomass to FDCA via HMF prepared in a water/MIBK (methyl isobutyl ketone) biphasic system, an overall FDCA yield of 55% is obtained. PMID:24889713

  9. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  10. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  11. Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons

    Science.gov (United States)

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.

    2015-11-01

    Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.

  12. Technical and economic data biomass-based energy conversion systems for the production of gaseous and/or liquid energy carriers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The objectives of this study are: (1) to give an indication of the expected development of the currently mainly fossil fuel based Dutch energy supply system to a future CO{sub 2}-emission 'free' energy supply system, and (2) to present main technological, economic, and environmental characteristics of three promising renewable energy based technologies for the production of gaseous and/or liquid secondary energy carriers and/or electricity and/or heat, viz.: (a) biomass hydrogasification for SNG (synthetic natural gas) production; (b) trigeneration of methanol and CHP (combined heat and power) from biomass by integrating a 'once-through' LPMEOH (liquid phase methanol) process into a 'conventional BIG/CC (Biomass-Integrated-Gasifier/Combined Cycle) system; and (c) trigeneration of Fischer-Tropsch derived transportation fuels and CHP from biomass by integrating a 'once-through' FT-process (Fischer-Tropsch) into a 'conventional' BIG/CC-system. Biomass conversion systems, for the production of CHP, transportation fuels, and as biofeedstock for the petrochemical industry, will play a substantial role in meeting the future Dutch renewable energy policy goals. In case fossil fuel prices remain low, additional policies are needed to reach these goals. Biomass will also play a significant role in reaching significant CO{sub 2} emission reduction in Western Europe. In which sector the limited amount of biomass available/contractable can be applied best is still unclear, and therefore needs further research. By biomass hydrogasification it is possible to produce SNG with more or less the same composition as Groningen natural gas. In case relatively cheap hydrogen-rich waste gas streams are used in the short-term, the SNG production costs will he in the same order of magnitude as the market price for Dutch natural gas for small consumers (fl 0.6/Nm{sup 3}). The calculated minimum production costs for the 'green' fuels

  13. 4-Hydroxybenzoic acid from hydrothermal pretreatment of oil palm empty fruit bunches - Its origin and influence on biomass conversion

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Mogensen, Kit H.; Jeppesen, Martin D.;

    2016-01-01

    or fucose, e.g. pectin rich biomasses. Assessment of the influence of 4-hydroxybenzoic acid in the enzymatic hydrolysis of pretreated oil palm empty fruit bunches as well as its presence during fermentation showed that 4-hydroxybenzoic acid is not inhibiting or mediating neither on the enzymatic hydrolysis...

  14. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  15. Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim Abdul Mutalib

    2010-08-01

    Full Text Available Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.

  16. Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L. and energy cane (Saccharum complex in an inductively heated reactor

    Directory of Open Access Journals (Sweden)

    Gustavo Aguilar

    2015-12-01

    Full Text Available In the face of fluctuating petroleum costs and a growing demand for energy, the need for an alternative and sustainable energy source has increased. A viable solution for this problem can be attained by using thermochemical conversion, pyrolysis, of existing biomass sources for the production of liquid fuels. This study focuses on the effect that biomass particle size has on the conversion of biomass into liquid pyrolysis oil. Energy cane and Chinese tallow tree biomass were pyrolyzed at 550 ℃. The particle size ranges studied were < 0.5, 0.5 to 1.4, 1.4 to 2.4 and, 2.4 to 4.4 mm. The results indicate that the range from 0.5-1.4 mm is a better range for optimizing bio-oil production while keeping water content low.

  17. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  18. Evaluation of the Relative Merits of Herbaceous and Woody Crops for Use in Tunable Thermochemical Processing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon-Hyun [Ceres, Inc., Thousand Oaks, CA (United States); Martinalbo, Ilya [Choren USA, LLC, Houston, TX (United States)

    2011-12-01

    This report summarizes the work and findings of the grant work conducted from January 2009 until September 2011 under the collaboration between Ceres, Inc. and Choren USA, LLC. This DOE-funded project involves a head-to-head comparison of two types of dedicated energy crops in the context of a commercial gasification conversion process. The main goal of the project was to gain a better understanding of the differences in feedstock composition between herbaceous and woody species, and how these differences may impact a commercial gasification process. In this work, switchgrass was employed as a model herbaceous energy crop, and willow as a model short-rotation woody crop. Both crops are species native to the U.S. with significant potential to contribute to U.S. goals for renewable liquid fuel production, as outlined in the DOE Billion Ton Update (http://www1.eere.energy.gov/biomass/billion_ton_update.html, 2011). In some areas of the U.S., switching between woody and herbaceous feedstocks or blending of the two may be necessary to keep a large-scale gasifier operating near capacity year round. Based on laboratory tests and process simulations it has been successfully shown that suitable high yielding switchgrass and willow varieties exist that meet the feedstock specifications for large scale entrained flow biomass gasification. This data provides the foundation for better understanding how to use both materials in thermochemical processes. It has been shown that both switchgrass and willow varieties have comparable ranges of higher heating value, BTU content and indistinguishable hydrogen/carbon ratios. Benefits of switchgrass, and other herbaceous feedstocks, include its low moisture content, which reduce energy inputs and costs for drying feedstock. Compared to the typical feedstock currently being used in the Carbo-V® process, switchgrass has a higher ash content, combined with a lower ash melting temperature. Whether or not this may cause inefficiencies in the

  19. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  20. Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking

    OpenAIRE

    Jiu Huang; Klaus Gerhard Schmidt; Zhengfu Bian

    2011-01-01

    Biomass gasification has yet to obtain industrial acceptance. The high residual tar concentrations in syngas prevent any ambitious utilization. In this paper a novel gas purification technology based on catalytic hydrocracking is introduced, whereby most of the tarry components can be converted and removed. Pilot scale experiments were carried out with an updraft gasifier. The hydrocracking catalyst was palladium (Pd). The results show the dominant role of temperature and flow rate. At a cons...

  1. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  2. Thermochemical data for reactor materials

    International Nuclear Information System (INIS)

    This report describes a computer database of thermochemical properties of nuclear reactor materials to be used for source term calculations in reactor accident codes. In the first part, the structure and the content of the computer file is described. In the second part a set of thermochemical data is presented pertaining to chemical reactions occurring during severe nuclear reactor accidents and involving fuel (uranium dioxide), fission products and structural materials. These data are complementary to those collected in the databook recently published by Cordfunke and Potter after a study supported by the Commission of the European Communities. The present data were collected from review articles and databanks and follow a discussion on the uncertainties and errors involved in the calculation of complex chemical equilibria in the extrapolated temperature range

  3. Investigating the Role of Extensin Proteins in Poplar Biomass Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Margaret Brigham; Decker, Stephen R.; Bedinger, Patricia A.

    2016-04-13

    The biological conversion of cellulosic biomass to biofuel is hindered by cell wall recalcitrance, which can limit the ability of cellulases to access and break down cellulose. The purpose of this study was to investigate whether hydroxyproline-rich cell wall proteins (extensins) are present in poplar stem biomass, and whether these proteins may contribute to recalcitrance. Three classical extensin genes were identified in Populus trichocarpa through bioinformatic analysis of poplar genome sequences, with the following proposed names: PtEXTENSIN1 (Potri.001G019700); PtEXTENSIN2 (Potri.001G020100); PtEXTENSIN3 (Potri.018G050100). Tissue print immunoblots localized the extensin proteins in poplar stems to regions near the vascular cambium. Different thermochemical pretreatments reduced but did not eliminate hydroxyproline (Hyp, a proxy for extensins) from the biomass. Protease treatment of liquid hot water-pretreated poplar biomass reduced Hyp content by a further 16% and increased subsequent glucose yield by 20%. These data suggest that extensins may contribute to recalcitrance in pretreated poplar biomass, and that incorporating protease treatment into pretreatment protocols could result in a small but significant increase in the yield of fermentable glucose.

  4. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov;

    2015-01-01

    in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid.......The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...

  5. Biomass Conversion to Hydrocarbon Fuels Using the MixAlcoTM Process Conversion de la biomasse en combustibles hydrocarbonés au moyen du procédé MixAlcoTM

    Directory of Open Access Journals (Sweden)

    Taco-Vasquez S.

    2013-04-01

    Full Text Available The MixAlcoTM process converts biomass to hydrocarbons (e.g., gasoline using the following generic steps: pretreatment, fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, oligomerization and saturation. This study describes the production of bio-gasoline from chicken manure and shredded office paper, both desirable feedstocks that do not require pretreatment. Using a mixed culture of microorganisms derived from marine soil, the biomass was fermented to produce a dilute aqueous solution of carboxylate salts, which were subsequently descummed and dried. The dry salts were thermally converted to raw ketones, which were distilled to remove impurities. Using Raney nickel catalyst, the distilled ketones were hydrogenated to mixed secondary alcohols ranging from C3 to C12. Using zeolite HZSM-5 catalyst, these alcohols were oligomerized to hydrocarbons in a plug -flow reactor. Finally, these unsaturated hydrocarbons were hydrogenated to produce a mixture of hydrocarbons that can be blended into commercial gasoline. Le procédé MixAlcoTM convertit la biomasse en hydrocarbures (par exemple, en essence selon les étapes génériques suivantes : prétraitement, fermentation, écumage, déshydratation, cétonisation thermique, distillation, hydrogénation, oligomérisation et saturation. Cette étude décrit la production de bioessence à partir de fumier de poulet et de papier en lambeaux, ces deux sources étant des matières premières convoitées ne nécessitant pas de prétraitement. À l’aide d’une culture mixte de microorganismes dérivés de sols marins, la biomasse a été soumise à une fermentation de manière à produire une solution aqueuse diluée de sels de carboxylates, ultérieurement écumés et séchés. Les sels séchés ont été thermiquement convertis en cétones brutes, ensuite distillées afin d’éliminer les impuretés. À l’aide du catalyseur à base de nickel de Raney, les c

  6. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica;

    2014-01-01

    into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  7. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.; Oswald, W.J.

    1996-03-21

    There is growing evidence that global warming could become a major global environmental threat during the 21st century. The precautionary principle commands preventive action, at both national and international levels, to minimize this potential threat. Many near-term, relatively inexpensive, mitigation options are available. In addition, long-term research is required to evaluate and develop advanced, possibly more expensive, countermeasures, in the eventuality that they may be required. The utilization of power plant CO{sub 2} and its recycling into fossil fuel substitutes by microalgae cultures could be one such long-term technology. Microalgae production is an expanding industry in the U.S., with three commercial systems (of approximately 10 hectare each) producing nutriceuticals, specifically beta-carotene, extracted from Dunaliella, and Spirulina biomass. Microalgae are also used in wastewater treatment. Currently production costs are high, about $10,000/ton of algal biomass, almost two orders of magnitude higher than acceptable for greenhouse gas mitigation. This report reviews the current state-of-the-art, including algal cultivation and harvesting-processing, and outlines a technique for achieving very high productivities. Costs of CO{sub 2} mitigation with microalgae production of oils ({open_quotes}biodiesel{close_quotes}) are estimated and future R&D needs outlined.

  8. Biomass Conversion and Expansion Factors for Young Norway Spruce (Picea abies (L. Karst. Trees Planted on Non-Forest Lands in Eastern Carpathians

    Directory of Open Access Journals (Sweden)

    Ioan DUTCA

    2010-12-01

    Full Text Available In this study biomass conversion and expansion factors (BCEFs were developed for young Norway spruce trees planted on non-forest lands, in order to support quantification of carbon stock changes in biomass pools of afforestation works. Regression models for stem volume and stem wood density were also developed. The data set included 250 trees collected from 25 plantations between 1 and 12 years old, located in the Eastern Carpathians of Romania. The study shows that BCEFs decreased with increasing tree dimensions, following an exponential trend. In all proposed models the highest prediction was reached when both variables considered (i.e. root-collar diameter and height were used together. However, used separately, height produced a slightly higher prediction compared to root-collar diameter. Stem volume was well predicted by both root-collar diameter and height. Anyway, a significant improvement in prediction resulted when both variables were used together. Stem wood density decreased sharply with the increase of the two tree dimensions used as variables.

  9. Investigation on syngas production via biomass conversion through the integration of pyrolysis and air–steam gasification processes

    International Nuclear Information System (INIS)

    Highlights: • Innovation in gasifier design. • Integration of pyrolysis and steam gasification processes. • Energy saving, improvement of gasifier efficiency, syngas and hydrogen yield. • Overall investigation on gasification parameters. • Optimization conditions of integration of pyrolysis and gasification process. - Abstract: Fuel production from agro-waste has become an interesting alternative for energy generation due to energy policies and greater understanding of the importance of green energy. This research was carried out in a lab-scale gasifier and coconut shell was used as feedstock in the integrated process. In order to acquire the optimum condition of syngas production, the effect of the reaction temperature, equivalence ratio (ER) and steam/biomass (S/B) ratio was investigated. Under the optimized condition, H2 and syngas yield achieved to 83.3 g/kg feedstock and 485.9 g/kg feedstock respectively, while LHV of produced gases achieved to 12.54 MJ/N m3

  10. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy a

  11. OECD/NEA thermochemical database

    International Nuclear Information System (INIS)

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs

  12. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts

    Science.gov (United States)

    Guo, Xingcui; Guan, Jing; Li, Bin; Wang, Xicheng; Mu, Xindong; Liu, Huizhou

    2015-11-01

    Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered metal-support interactions and electronic state of ruthenium. Ru located outside of the tubes showed excellent catalytic performance than those encapsulated inside the nanotubes. Additionally, the introduction of WOx into Ru/CNTs significantly improved the hydrogenolysis activities, and a complete conversion of sorbitol with up to 60.2% 1,2-PD and EG yields was obtained on RuWOx/CNTs catalyst upon addition of Ca(OH)2. Stability study showed that this catalyst was highly stable against leaching and poisoning and could be recycled several times.

  13. Biological conversion of biomass to methane corn stover studies. Project report, December 1, 1977-August 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, J T; Quindry, G E

    1979-06-01

    A series of experiments was conducted to determine the performance characteristics of the methane fermentation process using corn stover obtained from the University of Illinois farms and processed through four parallel fermenters each having a capacity of 775 liters. A continuous feed system was employed to determine the conversion efficiency. The dewatering characteristics of the effluents and the quality of the liquid and solid residues were determined. The biodegradability of corn stover is low. Data obtained at a fermentation temperature of 59 +-1/sup 0/C show that only 36 percent of the volatile solids are biodegradable. The first order rate constant for this conversion was found to be 0.25 day/sup -1/. Pretreatment with caustic (NaOH) concentration of 0.30 molar (5 g/100 g dry stover) and a temperature of 115/sup 0/C for one hour increased the biodegradable fraction to 71 percent of the volatile solids. The reactor slurries were easily dewatered by both vacuum filtration and centrifugation. Corn stover does not appear to be attractive economically at the present energy prices. At a chemical cost of $154/tonne ($140/ton), the NaOH pretreatment adds approximately $5.2/tonne to the cost of processing the stover. At a methane yield of 0.25 m/sup 3//kg of solids fed, this adds a total cost of $2/100 m/sup 3/ ($0.57/MCF) for this process alone. Addition of stover acquisition costs ($20/dry tonne of stover), total processing costs without gas cleanup ($21/tonne) and residue disposal ($3/tonne of wet cake), the cost of fuel gas would be in the neighborhood of $9.76/GJ ($10.30/10/sup 6/ Btu).This cost excludes all profit, taxes, etc. associated with private financing. Depending upon financing methods, tax incentives, etc., it may be necessary to add up to an additional $2.00/GJ to the cost of this fuel gas.

  14. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    , to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...... of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options. "Biomass Recalcitrance" is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology.......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...

  15. Qualitative and kinetic analysis of torrefaction of lignocellulosic biomass using DSC-TGA-FTIR

    Directory of Open Access Journals (Sweden)

    Bimal Acharya

    2015-11-01

    Full Text Available Torrefaction is a thermochemical conversion technique to improve the fuel properties of lignocellulosic biomass by treating at temperature 200 ℃-300 ℃ in the minimum oxygen environment for a reasonable residence time. In this study, thermal decomposition and thermal activities of miscanthus and wheat straw during the torrefaction at 200 ℃, 275 ℃, and 300 ℃ in a nitrogen environment for 45 minutes of residence time are analyzed in a simultaneous thermogravimetric analyzer (micro TGA with a differential scanning calorimetry (DSC, and a macro-TGA. The output of the micro TGA is fed into the Fourier transform infrared spectrometry (FTIR and qualitative analysis of the gaseous product is carried out. The composition of different gas products during the torrefaction of biomass are compared critically and kinetics were analyzed. It is found that the weight loss due to degradation of initial biomass in second stage (torrefaction process is a much faster conversion process than the weight loss process in the first stage (drying process. The weight loss of biomass increases with increase in the residence time and torrefaction treatment temperatures. The yield after torrefaction is a solid bio-coal product. The torrefied product were less reactive and has nearly 25% better heating value than the raw biomass. Between the two feedstocks studied, torrefied miscanthus proved to be a more stable fuel than the torrefied wheat straw. The major gaseous components observed during torrefaction are water, carbon dioxide, carbon monoxide, 1,2-Dibromethylene.

  16. Basic mechanisms of photosynthesis and applications to improved production and conversion of biomass to fuels and chemical products

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, M. [Georgia Institute of Tech., Atlanta, GA (United States); Greenbaum, E. [Oak Ridge National Laboratory, TN (United States); Wasielewski, M. [Argonne National Lab., IL (United States)

    1996-09-01

    Natural photosynthesis, the result of 3.5 billion years of evolutionary experimentation, is the best proven, functional solar energy conversion technology. It is responsible for filling the vast majority of humanity`s energy, nutritional, and materials needs. Understanding the basic physical chemical principles underlying photosynthesis as a working model system is vital to further exploitation of this natural technology. These principles can be used to improve or modify natural photosynthesis so that it is more efficient or so that it can produce unusual products such as hydrogen, methane, methanol, ethanol, diesel fuel substitutes, biodegradable materials, or other high value chemical products. Principles garnered from the natural process can also be used to design artificial photosynthetic devices that employ analogs of natural antenna and reaction center function, self-assembly and repair concepts, photoinduced charge transfer processes, photoprotection, and dark reactions that facilitate catalytic action to convert light into, useful chemical or electrical energy. The present broad understanding of many structural and functional aspects of photosynthesis has resulted from rapid recent research progress. X-ray structures of several key photosynthetic reaction centers and antenna systems are available, and the overall principles controlling photoinduced energy and electron transfer are being established.

  17. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  18. Hydrogen production from high-moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Matsumura, Y.; Onuma, M.T. [Univ. of Hawaii, Honolulu, HI (United States)] [and others

    1995-09-01

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. However, wet biomass is not regarded as a promising feedstock for conventional thermochemical conversion processes because the cost of drying the material is too high. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) and various wet biomass species (water hyacinth, algae) can be completely gasified in supercritical water at 600{degrees}C and 34.5 MPa after a 30 s residence time. But higher concentrations of glucose evidenced incomplete conversion. For this reason, flow reactors were fabricated which could accommodate packed beds of catalyst, and studies were initiated of the steam reforming (gasification) reactions in the presence of various candidate heterogeneous catalysts. The goal is to identify active catalysts for steam reforming biomass slurries in supercritical water. Soon after tests began, a suitable class of carbon-based catalysts was discovered. These catalysts effect complete (>99%) conversion of high-concentration glucose (up to 22% by weight) to a hydrogen-rich synthesis gas. High space velocities are realized [>20 (g/hr)/g], and the catalyst is stable over a period of several hours. The carbon catalyst is not expensive, and exists in a wide variety of forms and compositions. After this discovery, work has focused on four interrelated tasks: (1) tests to identify the most active form and composition of the catalyst; (2) tests employing the preferred catalyst to study the effect of feedstock composition on carbon conversion and gas composition; (3) studies of catalyst deactivation and subsequent reactivation, including the in-house synthesis of bifunctional catalysts which incorporate promoters and stabilizers; and (4) the design and fabrication of a larger, new reactor with a slurry feeder intended to handle high-concentration, wet biomass feeds.

  19. Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion.

    Directory of Open Access Journals (Sweden)

    Emily B Hollister

    Full Text Available The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55 °C, but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, γ-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes.

  20. Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass.

    Science.gov (United States)

    Van Poucke, R; Nachenius, R W; Agbo, K E; Hensgen, F; Bühle, L; Wachendorf, M; Ok, Y S; Tack, F M G; Prins, W; Ronsse, F; Meers, E

    2016-10-01

    The aim of this research was to establish whether hydrothermal conditioning and subsequent thermochemical processing via batch torrefaction or slow pyrolysis may improve the fuel quality of grass residues. A comparison in terms of fuel quality was made of the direct thermochemical processing of the feedstock versus hydrothermal conditioning as a pretreatment prior to thermochemical processing. Hydrothermal conditioning reduced ash content, and particularly nitrogen, potassium and chlorine contents in the biomass. The removal of volatile organic matter associated with thermochemical processes can increase the HHV to levels of volatile bituminous coal. However, slow pyrolysis only increased the HHV of biomass provided a low ash content (<6%) feedstock was used. In conclusion, hydrothermal conditioning can have a highly positive influence on the efficiency of thermochemical processes for upgrading low-value (high-ash) biomass to a higher quality fuel. PMID:26976062

  1. Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass.

    Science.gov (United States)

    Van Poucke, R; Nachenius, R W; Agbo, K E; Hensgen, F; Bühle, L; Wachendorf, M; Ok, Y S; Tack, F M G; Prins, W; Ronsse, F; Meers, E

    2016-10-01

    The aim of this research was to establish whether hydrothermal conditioning and subsequent thermochemical processing via batch torrefaction or slow pyrolysis may improve the fuel quality of grass residues. A comparison in terms of fuel quality was made of the direct thermochemical processing of the feedstock versus hydrothermal conditioning as a pretreatment prior to thermochemical processing. Hydrothermal conditioning reduced ash content, and particularly nitrogen, potassium and chlorine contents in the biomass. The removal of volatile organic matter associated with thermochemical processes can increase the HHV to levels of volatile bituminous coal. However, slow pyrolysis only increased the HHV of biomass provided a low ash content (<6%) feedstock was used. In conclusion, hydrothermal conditioning can have a highly positive influence on the efficiency of thermochemical processes for upgrading low-value (high-ash) biomass to a higher quality fuel.

  2. Energy Conversion and Storage Program: 1992 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  3. Emission control through primary measures in biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Houshfar, Ehsan; Skreiberg, Oeyvind; Loevaas, Terese

    2010-07-01

    Full text: Biomass as one of the renewable sources of energy and the only carbon containing renewable resource is known as a collective term for many different forms of combustible material derived from plant sources. It can be material that has been taken from a primary production process (chip wood from forestry) or re-claimed material (such as used, clean untreated pallets, waste). To utilize biomass, the conversion pathway could be done in three different ways: thermochemical, biological and physical. Thermochemical technology (including pyrolysis, gasification and combustion) is the most widely used technology to utilize biomass. In addition to the three main elements: O, H and C as the major part, there are also some other minor or trace elements included in the biomass structure such as N, S, Cl and ash elements, contributing to emissions and operational problems (e.g. corrosion and fouling) To avoid emissions, both primary measures and secondary measures can be used. Primary measures are used to avoid creation of these emissions, while secondary measures remove the emissions from the exhaust gas. Thus primary measures are dealing with the combustion zone and improvements to this area, while secondary measures look at the exit of combustion chamber, i.e. the flue gas, to reduce the emission levels. Incomplete combustion of biomass will lead to carbon monoxide, hydrocarbons, particulate matter and polycyclic aromatic hydrocarbons, while complete combustion will lead to NOx and SOx emissions. SCR and SNCR are common secondary measures to reduce NOx emissions. LCA studies have shown that the main pollutant from wood combustion will be NOx, with an emission impact factor as high as 38.6%. Staging technologies (i.e., air-staging and fuel-staging) and flue gas recirculation are possible primary measures to reduce the NOx emission level from biomass combustion. Staged air combustion is maybe the most effective method of NOx emission reduction by primary measures

  4. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(III) minerals and microbial biomass

    Science.gov (United States)

    Halama, Maximilian; Swanner, Elizabeth D.; Konhauser, Kurt O.; Kappler, Andreas

    2016-09-01

    Anoxygenic phototrophic Fe(II)-oxidizing bacteria potentially contributed to the deposition of Archean banded iron formations (BIFs), before the evolution of cyanobacterially-generated molecular oxygen (O2), by using sunlight to oxidize aqueous Fe(II) and precipitate Fe(III) (oxyhydr)oxides. Once deposited at the seafloor, diagenetic reduction of the Fe(III) (oxyhydr)oxides by heterotrophic bacteria produced secondary Fe(II)-bearing minerals, such as siderite (FeCO3) and magnetite (Fe3O4), via the oxidation of microbial organic carbon (i.e., cellular biomass). During deeper burial at temperatures above the threshold for life, thermochemical Fe(III) reduction has the potential to form BIF-like minerals. However, the role of thermochemical Fe(III) reduction of primary BIF minerals during metamorphism, and its impact on mineralogy and geochemical signatures in BIFs, is poorly understood. Consequently, we simulated the metamorphism of the precursor and diagenetic iron-rich minerals (ferrihydrite, goethite, hematite) at low-grade metamorphic conditions (170 °C, 1.2 kbar) for 14 days by using (1) mixtures of abiotically synthesized Fe(III) minerals and either microbial biomass or glucose as a proxy for biomass, and (2) using biogenic minerals formed by phototrophic Fe(II)-oxidizing bacteria. Mössbauer spectroscopy and μXRD showed that thermochemical magnetite formation was limited to samples containing ferrihydrite and glucose, or goethite and glucose. No magnetite was formed from Fe(III) minerals when microbial biomass was present as the carbon and electron sources for thermochemical Fe(III) reduction. This could be due to biomass-derived organic molecules binding to the mineral surfaces and preventing solid-state conversion to magnetite. Mössbauer spectroscopy revealed siderite contents of up to 17% after only 14 days of incubation at elevated temperature and pressure for all samples with synthetic Fe(III) minerals and biomass, whereas 6% of the initial Fe(III) was

  5. Thermochemical data acquisition - Part II

    International Nuclear Information System (INIS)

    The study was a joint effort of the four laboratories AEA Harwell, Winfrith, ECN Petten and the Free University of Brussels. Thermochemical data have been determined for a number of fission product and reactor material compounds. Critical assessments have also been made of the available thermochemical data on a number of systems. These data complement the results from similar studies conducted in 1990 (see EUR 14004 EN), and can be used in the appropriate computer codes for calculations of the speciation and transport properties of the fission products during a severe reactor accident. The work load was subdivided as follows: experimental studies of Harwell, Winfrith and Petten (Chapters 1 to 7) have focused on the vaporization of tellurium dioxide, caesium ruthenate, strontium and barium borate, indium hydroxide, caesium telluride, caesium phosphate, caesium hydroxide and caesium iodate and on the thermodynamic properties of the condensed phases Cdl2, Cs2Cdl4, Cs2Si4O9, Cs2ZrO3, SrB4O7, and Ba3B2O6. Critical evaluations have been made of a number of tellurides of importance in severe accident assessments, and analysis have been made of the Fe-Te, Ni-Te and Cr-Te systems. Tables of thermodynamic properties over the temperature range 298.15 to 3 000 K are given. The data are believed to predict the fission product species and their transport in case of severe reactor accidents with greater confidence. The Free University of Brussels (Chapter 8) carried out thermodynamic studies of the systems Cs-Te, In-Te and Cs-In-Te using the mass spectrometric Knudsen cell method. The gas phases formed between 800 and 1 300 K were investigated and the partial pressure and relative ionization cross-sections of the system components were determined

  6. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery.

    Science.gov (United States)

    Maurya, Rahulkumar; Paliwal, Chetan; Ghosh, Tonmoy; Pancha, Imran; Chokshi, Kaumeel; Mitra, Madhusree; Ghosh, Arup; Mishra, Sandhya

    2016-08-01

    In view of commercialization of microalgal biofuel, the de-oiled microalgal biomass (DMB) is a surplus by-product in the biorefinery process that needs to be exploited to make the process economically attractive and feasible. This DMB, rich in carbohydrates, proteins, and minerals, can be used as feed, fertilizer, and substrate for the production of bioethanol/bio-methane. Further, thermo-chemical conversion of DMB results into fuels and industrially important chemicals. Future prospects of DMB also lie with its conversion into novel biomaterials like nanoparticles and carbon-dot which have biomedical importance. The lowest valued application of DMB is to use it for adsorption of dyes and heavy metals from industrial effluents. This study reviews how DMB can be utilized for different applications and in the generation of valuable co-products. The value addition of DMB would thereby improve the overall cost economics of the microalgal bio-refinery. PMID:27161655

  7. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles

    International Nuclear Information System (INIS)

    This paper presents a process analysis of ZnO/Zn, Fe3O4/FeO and Fe2O3/Fe3O4 thermochemical cycles as potential high efficiency, large scale and environmentally attractive routes to produce hydrogen by concentrated solar energy. Mass and energy balances allowed estimation of the efficiency of solar thermal energy to hydrogen conversion for current process data, accounting for chemical conversion limitations. Then, the process was optimized by taking into account possible improvements in chemical conversion and heat recoveries. Coupling of the thermochemical process with a solar tower plant providing concentrated solar energy was considered to scale up the system. An economic assessment gave a hydrogen production cost of 7.98$ kg-1 and 14.75$ kg-1 of H2 for, respectively a 55 MWth and 11 MWth solar tower plant operating 40 years

  8. Characterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement.

    Science.gov (United States)

    Qian, Yuanchao; Zhong, Lixia; Hou, Yunhua; Qu, Yinbo; Zhong, Yaohua

    2016-01-01

    The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG) activity but lower β-glucosidase (BGL) activity than those of the others. A uracil auxotroph strain, SP4, was constructed by pyr4 deletion in SN1 to improve transformation efficiency. The BGL1-encoding gene bgl1 under the control of a modified cbh1 promoter was overexpressed in SP4. A transformant, SPB2, with four additional copies of bgl1 exhibited a 17.1-fold increase in BGL activity and a 30.0% increase in filter paper activity. Saccharification of corncob residues with crude enzyme showed that the glucose yield of SPB2 is 65.0% higher than that of SP4. These results reveal the feasibility of strain improvement through the development of an efficient genetic transformation platform to construct a balanced cellulase system for biomass conversion. PMID:27621727

  9. Review of solar high-temperature thermochemical reactor%太阳能高温热化学反应器研究进展

    Institute of Scientific and Technical Information of China (English)

    马婷婷; 朱跃钊; 陈海军; 马炎; 金丽珠; 杨丽; 廖传华

    2014-01-01

    将高温光热转换和热化学过程集成,可使太阳能和化石资源(包括水或生物质)提级为氢或合成气资源,是热点课题之一。太阳能高温反应器是实现该过程的关键,但存在均温性差、转化效率低及反应物烧结失效的缺点。本文简述了太阳能高温热化学转化过程的原理,回顾了其由直接热解水制氢演变至化石资源改质和提级的历程,分析了塔式和碟式高温热发电集热器(也称为吸热器或接收器)移植用作太阳能高温反应器的可行性及其局限。综述了直接照射式和间接照射式太阳能高温反应器的研究进展,评述了热管(板)在改善太阳能高温反应器均温性和提高传热效率上的优势,阐述了间接照射式太阳能高温反应器在热化学转化过程的典型示范。指出基于热管(板)的间接照射式太阳能高温反应器为主导发展方向之一。%Using solar energy to drive high-temperature thermochemical process has the potential to produce hydrogen or synthesis gas. Both solar energy and fossil resources (including water or biomass) are upgraded through this integrated process. Recently,research interests have been focused on this process. The solar high-temperature reactor (SHTR) is one of the keys to this process. The shortcomings of traditional SHTRs,such as large temperature gradient in reaction areas,low thermo-chemical conversion efficiency and inactivation of reactants due to sintering,are the main barriers to its commercialization. Principles of solar thermochemical conversion are briefly introduced. The solar high-temperature thermochemical conversion process was originally hydrogen production by direct thermal dissociation of water,and evolved to modification or upgrading of fossil resources. SHTRs were derived from solar collectors (also known as solar absorbers or receivers) commonly used in solar tower or dish concentrating power generation. The

  10. Biomass gasification in fixed bed type down draft: theoretical and experimental aspects; Gasificacao de biomassa em leito fixo tipo concorrente: aspectos teoricos e experimentais

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Juan Daniel; Andrade, Rubenildo Vieira; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2008-07-01

    Actually are recognizing the advantages of biomass in reducing dependence on fossil fuels and significant reduction in emissions of greenhouse effect gases such as Co2. Also are known the different conversion of biomass routes for their use or exploitation, such as thermochemical process (gasification, pyrolysis and combustion), the biological process (fermentation and transesterification) and the physical process (densification, reducing grain and mechanical pressing). In this sense, the gasification is regarded as the most promising mechanism to obtain a homogeneous gaseous fuel with sufficient quality in the small scale distributed generation. This work presents some aspects of biomass gasification in fixed bed, as well as some preliminary results in the evaluation and operation of fixed bed down draft gasifier with double stage air supply of the NEST, identifying the adequate air supply quantity (equivalence ratio in the range of 0,35 to 0,45) for obtaining a fuel gas with lower heating value around 4 MJ/N m3. (author)

  11. Techno-economic assessment of FT unit for synthetic diesel production in existing stand-alone biomass gasification plant using process simulation tool

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Narataruksa, Phavanee; Tungkamani, Sabaithip;

    2014-01-01

    such as Fischer-Tropsch (FT) diesel. The embedding of the FT plant into the stand-alone based on power mode plants for production of a synthetic fuel is a promising practice, which requires an extensive adaptation of conventional techniques to the special chemical needs found in a gasified biomass. Because......For alternative thermo-chemical conversion process route via gasification, biomass can be gasified to produce syngas (mainly CO and H2). On more applications of utilization, syngas can be used to synthesize fuels through the catalytic process option for producing synthetic liquid fuels...... there are currently no plans to engage the FT process in Thailand, the authors have targeted that this work focus on improving the FT configurations in existing biomass gasification facilities (10 MWth). A process simulation model for calculating extended unit operations in a demonstrative context is designed...

  12. Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan J.; Aranda-Almansa, Guadalupe [Universidad de Castilla-La Mancha, Departamento de Mecanica Aplicada e Ingenieria de Proyectos, Escuela Tecnica Superior de Ingenieros Industriales (Edificio Politecnico), Avenida Camilo Jose Cela s/n, 13071 Ciudad Real (Spain); Bula, Antonio [Universidad del Norte, Departamento de Ingenieria Mecanica, Km.5 Antigua Via Puerto Colombia, Barranquilla (Colombia)

    2010-06-15

    Experimental tests in an entrained flow gasifier have been carried out in order to evaluate the effect of the biomass particle size and the space residence time on the gasifier performance and the producer gas quality. Three types of biomass fuels (grapevine pruning and sawdust wastes, and marc of grape) and a fossil fuel (a coal-coke blend) have been tested. The results obtained show that a reduction in the fuel particle size leads to a significant improvement in the gasification parameters. The thermochemical characterisation of the resulting char-ash residue shows a sharp increase in the fuel conversion for particles below 1 mm diameter, which could be adequate to be used in conventional entrained flow gasifiers. Significant differences in the thermochemical behaviour of the biomass fuels and the coal-coke blend have been found, especially in the evolution of the H{sub 2}/CO ratio with the space time, mainly due to the catalytic effect of the coal-coke ash. The reaction temperature and the space time have a significant effect on the H{sub 2}/CO ratio (the relative importance of each of these parameters depending on the temperature), this value being independent of the fuel particle size. (author)

  13. Critical factors affecting the integration of biomass gasification and syngas fermentation technology

    Directory of Open Access Journals (Sweden)

    Karthikeyan D. Ramachandriya

    2016-05-01

    Full Text Available Gasification-fermentation is a thermochemical-biological platform for the production of fuels and chemicals. Biomass is gasified at high temperatures to make syngas, a gas composed of CO, CO2, H2, N2 and other minor components. Syngas is then fed to anaerobic microorganisms that convert CO, CO2 and H2 to alcohols by fermentation. This platform offers numerous advantages such as flexibility of feedstock and syngas composition and lower operating temperature and pressure compared to other catalytic syngas conversion processes. In comparison to hydrolysis-fermentation, gasification-fermentation has a major advantage of utilizing all organic components of biomass, including lignin, to yield higher fuel production. Furthermore, syngas fermentation microorganisms do not require strict CO:H2:CO2 ratios, hence gas reforming is not required. However, several issues must be addressed for successful deployment of gasification-fermentation, particularly those that involve the integration of gasification and fermentation. Most previous reviews have focused only on either biomass gasification or syngas fermentation. In this review, the critical factors that affect the integration of biomass gasification with syngas fermentation, such as carbon conversion efficiency, effect of trace gaseous species, H2 to CO ratio requirements, and microbial preference of carbon substrate, are thoroughly discussed.

  14. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    Energy Technology Data Exchange (ETDEWEB)

    Czernik, S.; Wang, D.; Chornet, E. [National Renewable Energy Lab., Golden, CO (United States). Center for Renewable Chemical Technologies and Materials

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  15. Supercritical Water Gasification of Wet Biomass: Modeling and Experiments

    NARCIS (Netherlands)

    Yakaboylu, O.

    2016-01-01

    In the following decades, biomass will play an important role among the other renewable energy sources globally as it is already the fourth largest energy resource after coal, oil and natural gas. It is possible to obtain gaseous, liquid or solid biofuels from biomass via thermochemical or biochemic

  16. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  17. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang;

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  18. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Science.gov (United States)

    Li, Shuaifeng; Su, Jianrong; Liu, Wande; Lang, Xuedong; Huang, Xiaobo; Jia, Chengxinzhuo; Zhang, Zhijun; Tong, Qing

    2015-01-01

    The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded. PMID:26397366

  19. Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, Paloma; Ballesteros, Ignacio; Negro, Maria Jose; Oliva, Jose Miguel; Gonzalez, Alberto; Ballesteros, Mercedes [Renewable Energy Department-CIEMAT, Biofuels Unit, Madrid (Spain)

    2012-06-15

    In this work, forage sorghum biomass was studied as feedstock for ethanol production by a biological conversion process comprising the steps of hydrothermal steam explosion pretreatment, enzymatic hydrolysis with commercial enzymes, and fermentation with the yeast Saccharomyces cerevisiae. Steam explosion conditions were optimized using a response surface methodology considering temperature (180-230 C) and time (2-10 min). Sugar recovery in the pretreatment and the enzymatic digestibility of the pretreated solid were used to determine the optimum conditions, i.e., 220 C and 7 min. At these conditions, saccharification efficiency attained 89 % of the theoretical and the recovery of xylose in the prehydrolyzate accounted for 35 % of the amount of xylose present in raw material. Then, a simultaneous hydrolysis and fermentation (SSF) process was tested at laboratory scale on the solid fraction of forage sorghum pretreated at optimum condition, in order to evaluate ethanol production. The effect of the enzyme dose and the supplementation with xylanase enzyme of the cellulolytic enzyme cocktail was studied at increasing solid concentration up to 18 % (w/w) in SSF media. Results show good performance of SSF in all consistencies tested with a significant effect of increasing enzyme load in SSF yield and final ethanol concentration. Xylanase supplementation allows increasing solid concentration up to 18 % (w/w) with good SSF performance and final ethanol content of 55 g/l after 4-5 days. Based on this result, about 190 l of ethanol could be obtained from 1 t of untreated forage sorghum, which means a transformation yield of 85 % of the glucose contained in the feedstock. (orig.)

  20. A Paradigm for Biomass Conversion

    Science.gov (United States)

    The questions 1) what is it, 2) how is it converted, 3) how is it analyzed and measured have been applied to improved forages, proposed new strategies for grass as a biofuel, and the processing and quality of natural fibers and co-products. For forages, improvements have been made in particular cel...

  1. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

  2. Biomass-powered Solid Oxide Fuel Cells: Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  3. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  4. Biomass to energy

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the biomass to energy. It explains the biomass principle, the possibility of biomass to energy conversion, the first generation of biofuels (bio ethanol, ETBE, bio diesel, flex fuel) and their advantages and limitations, the european regulatory framework and policy with the evolutions and Total commitments in the domain. (A.L.B.)

  5. Development of an extruder-feeder biomass direct liquefaction process. Volume 2, Parts 4--8: Final report

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. [Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE`s Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  6. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  7. Hydrothermal carbonization of waste biomass

    OpenAIRE

    Basso, Daniele

    2016-01-01

    Hydrothermal carbonization (in acronym, HTC) is a thermochemical conversion process through which it is possible to directly transform wet organic substrates into a carbonaceous material, referred as hydrochar. Hydrochar has chemical and physical characteristics that make it similar to fossil peats and lignite. Depending on the process conditions, mostly temperature and residence time, this material can be enriched in its carbon content, modifying its structure and providing it interesting ch...

  8. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    Science.gov (United States)

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. PMID:25265865

  9. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid.

  10. Thermochemical characteristics of chitosan-polylactide copolymers

    Science.gov (United States)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  11. Some Aspects of Thermochemical Decomposition of Peat

    Directory of Open Access Journals (Sweden)

    Y. A. Losiuk

    2008-01-01

    Full Text Available The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  12. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.; Oswald, W.J.

    1994-01-15

    This report provides an economic analysis and feasibility study for the utilization by microalgal systems of carbon dioxide generated from coal-fired power plants. The resulting biomass could be a fuel substitute for fossil fuels.

  13. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass.

    Directory of Open Access Journals (Sweden)

    Till Meineke

    Full Text Available The production of ethanol from pretreated plant biomass during fermentation is a strategy to mitigate climate change by substituting fossil fuels. However, biomass conversion is mainly limited by the recalcitrant nature of the plant cell wall. To overcome recalcitrance, the optimization of the plant cell wall for subsequent processing is a promising approach. Based on their phylogenetic proximity to existing and emerging energy crops, model plants have been proposed to study bioenergy-related cell wall biochemistry. One example is Brachypodium distachyon, which has been considered as a general model plant for cell wall analysis in grasses. To test whether relative phylogenetic proximity would be sufficient to qualify as a model plant not only for cell wall composition but also for the complete process leading to bioethanol production, we compared the processing of leaf and stem biomass from the C3 grasses B. distachyon and Triticum aestivum (wheat with the C4 grasses Zea mays (maize and Miscanthus x giganteus, a perennial energy crop. Lambda scanning with a confocal laser-scanning microscope allowed a rapid qualitative analysis of biomass saccharification. A maximum of 108-117 mg ethanol·g(-1 dry biomass was yielded from thermo-chemically and enzymatically pretreated stem biomass of the tested plant species. Principal component analysis revealed that a relatively strong correlation between similarities in lignocellulosic ethanol production and phylogenetic relation was only given for stem and leaf biomass of the two tested C4 grasses. Our results suggest that suitability of B. distachyon as a model plant for biomass conversion of energy crops has to be specifically tested based on applied processing parameters and biomass tissue type.

  14. A phenomenological energy model of biomass pyrolysis under autothermal fluidized bed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, J.; Beaton, P. [University of the Orient, Santiago de Cuba (Cuba). Faculty of Mechanical Engineering; Zanzi, R. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-06-15

    In Cuba a variety of types of biomass is being investigated for energy conversion through thermochemical processes into solid, liquid, and gas products. A continuous bench fluidized bed pyrolysis has been designed and is currently under testing. In this article, a transport model has been developed to simulate the axial temperature fields in a bench. The model and experimental results indicated that (1) two zones exist inside of the fluidization column, the dense bed where the exothermic and endothermic reactions are active, and the freeboard zone where the temperature of the pyrolysis product decreases continuously; (2) the bed temperature increases with an increase in the air factor. The predicted temperature is in quantitative agreement with experimental measurements. (Author)

  15. CHARACTERIZATION OFWASTE BIOMASS FROM GREENHOUSE ROSE CULTIVATION AND PACKAGING

    Directory of Open Access Journals (Sweden)

    Giovanni Cascone

    2010-06-01

    Full Text Available In this work a characterization of the waste biomass originating from a rose cultivation under greenhouse was carried out. Two types of biomass were examined: one made of both branches and leaves, and the other made up only of branches. For each type of biomass the following properties were determined: percentage of carbon, hydrogen and nitrogen, content of moisture, volatile matter and ashes, gross and net calorific value. The results show that the biomass made of only branches has a better quality than the biomass with leaves for use in thermo-chemical processes.

  16. Waste biomass-to-energy supply chain management: a critical synthesis.

    Science.gov (United States)

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. PMID:20231084

  17. Electrifying biomass

    International Nuclear Information System (INIS)

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  18. Electrochemical & Thermochemical Behavior of Cerium(IV) Oxide delta

    Science.gov (United States)

    Chueh, William C.

    The mixed-valent nature of nonstoichiometric ceria (CeO2-delta ) gives rise to a wide range of intriguing properties, such as mixed ionic and electronic conduction and oxygen storage. Surface and transport behavior in rare-earth (samaria) doped and undoped ceria were investigated, with particular emphasis on applications in electrochemical and thermochemical energy conversion processes such as fuel cells and solar fuel production. The electrochemical responses of bulk-processed ceria with porous Pt and Au electrodes were analyzed using 1-D and 2-D transport models to decouple surface reactions, near-surface transport and bulk transport. Combined experimental and numerical results indicate that hydrogen electro-oxidation and hydrolysis near open-circuit conditions occur preferentially over the ceria | gas interface rather than over the ceria | gas | metal interface, with the rate-limiting step likely to be either surface reaction or transport through the surface oxygen vacancy depletion layer. In addition, epitaxial thin films of ceria were grown on zirconia substrates using pulsed-laser deposition to examine electrocatalysis over well-defined microstructures. Physical models were derived to analyze the electrochemical impedance response. By varying the film thickness, interfacial and chemical capacitance were decoupled, with the latter shown to be proportional to the small polaron densities. The geometry of microfabricated metal current collectors (metal = Pt, Ni) was also systematically varied to investigate the relative activity of the ceria | gas and the ceria | metal | gas interfaces. The data suggests that the electrochemical activity of the metal-ceria composite is only weakly dependent on the metal due to the relatively high activity of the ceria | gas interface. In addition to electrochemical experiments, thermochemical reduction-oxidation studies were performed on ceria. It was shown that thermally-reduced ceria, upon exposure to H 2O and/or CO2, can be

  19. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. 4th Quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.

    1994-12-28

    Microalgae cultivation in large open ponds is the only photosynthetic process likely to directly utilize power plant flue gas CO{sub 2} for production of biomass. The algal biomass can be converted into substitutes for fossil fuels, in particular liquid fuels such as biodiesel (vegetable oil methyl or ethyl esters), thus reducing atmospheric CO{sub 2} levels and the potential for global warming. This concept is being investigated, among others, at the National Renewable Energy Laboratory at Golden, Colorado, with support from PETC.

  20. Biomass production and bioconversion to both fuel and food employing solar energy technology - An alternative to conventional farming and the conversion of food to fuel

    Science.gov (United States)

    Wise, D. L.

    1981-01-01

    A process for the bioconversion of high-yield biomass to both fuel and food, judged more efficient than the conventional production of soybean meal and methanol, is described. Attention is given the diversion of farm land for the production of a conventional food/energy crop, such as corn, that will be subsequently converted to a liquid fuel. The technique presented involves growing biomass at optimum crop yield, then converting it to synthesis gas and finally, through bioconversion, to single-cell protein and methanol. Background for the various aspects of the system and its preliminary engineering economics are provided.

  1. Thermal conductivity measurement of thermochemical storage materials

    OpenAIRE

    Fopah-Lele, Armand; N'Tsoukpoe, Kokouvi Edem,; Osterland, Thomas; Kuznik, Frederic; Ruck, Wolfgang K.L.

    2015-01-01

    Thermal properties related to heat and mass transfer are crucial when designing thermochemical heat storage systems. Therefore, enhancing this phenomenon lies in the thermal conductivity of the used material. The effective thermal conductivity of salt hydrates and host matrices is measured using two different methods by differential scanning calorimeter from 100 to 200 °C and radial flow apparatus called guarded hot cartridge from 20 to 70 °C, where the method effect is less than 12%. On this...

  2. Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production.

    Science.gov (United States)

    Passos, Fabiana; Felix, Leonardo; Rocha, Hemyle; Pereira, Jackson de Oliveira; de Aquino, Sérgio

    2016-06-01

    This study assessed thermochemical pretreatment of microalgae harvested from a full-scale wastewater treatment pond prior to its anaerobic digestion using acid and alkaline chemical doses combined with thermal pretreatment at 80°C. Results indicated that alkaline and thermal pretreatment contributed mostly to glycoprotein and pectin solubilisation; whilst acid pretreatment solubilised mostly hemicellulose, with lower effectiveness for proteins. Regarding the anaerobic biodegradability, biochemical methane potential (BMP) tests showed that final methane yield was enhanced after almost all pretreatment conditions when compared to non-pretreated microalgae, with the highest increase for thermochemical pretreatment at the lowest dose (0.5%), i.e. 82% and 86% increase for alkaline and acid, respectively. At higher doses, salt toxicity was revealed by K(+) concentrations over 5000mg/L. All BMP data from pretreated biomass was successfully described by the modified Gompertz model and optimal condition (thermochemical 0.5% HCl) showed an increase in final methane yield and the process kinetics. PMID:26990398

  3. Hydrogen from biomass: state of the art and research challenges

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  4. In situ NMR spectroscopy: inulin biomass conversion in ZnCl₂ molten salt hydrate medium-SnCl₄ addition controls product distribution.

    Science.gov (United States)

    Wang, Yingxiong; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Shi, Jing; Hou, Xianglin

    2015-01-22

    The dehydration of inulin biomass to the platform chemicals, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA), in ZnCl2 molten salt hydrate medium was investigated. The influence of the Lewis acid catalyst, SnCl4, on the product distribution was examined. An in situ(1)H NMR technique was employed to follow the reaction at the molecular level. The experimental results revealed that only 5-HMF was obtained from degradation of inulin biomass in ZnCl2 molten salt hydrate medium, while the LA was gradually becoming the main product when the reaction temperature was increased in the presence of the Lewis acid catalyst SnCl4. In situ NMR spectroscopy could monitor the reaction and give valuable insight.

  5. Biomass Compositional Analysis Laboratory (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  6. Catalytic Conversion of Biomass Pyrolysis Vapours over Sodium-Based Catalyst; A Study on teh State of Sodium on the Catalyst

    NARCIS (Netherlands)

    Nguyen, Tang Son; Lefferts, Leon; Gupta, K.B. Sai Sankar; Seshan, Kulathuiyer

    2015-01-01

    In situ upgrading of biomass pyrolysis vapours over Na2CO3/γ-Al2O3 catalysts was studied in a laboratory-scale fixed-bed reactor at 500 °C. Catalytic oil exhibits a significant improvement over its non-catalytic counterpart, such as lower oxygen content (12.3 wt % compared to 42.1 wt %), higher ener

  7. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  8. Pyrolysis of microalgal biomass in carbon dioxide environment.

    Science.gov (United States)

    Cho, Seong-Heon; Kim, Ki-Hyun; Jeon, Young Jae; Kwon, Eilhann E

    2015-10-01

    This work mechanistically investigated the influence of CO2 in the thermo-chemical process of microalgal biomass (Chlorella vulgaris and Microcystis aeruginosa) to achieve a fast virtuous cycle of carbon via recovering energy. This work experimentally justified that the influence of CO2 in pyrolysis of microalgal biomass could be initiated at temperatures higher than 530 °C, which directly led to the enhanced generation of syngas. For example, the concentration of CO from pyrolysis of M. aeruginosa increased up to ∼ 3000% at 670 °C in the presence of CO2. The identified universal influence of CO2 could be summarized by the expedited thermal cracking of VOCs evolved from microalgal biomass and by the unknown reaction between VOCs and CO2. This identified effectiveness of CO2 was different from the Boudouard reaction, which was independently occurred with dehydrogenation. Thus, microalgal biomass could be a candidate for the thermo-chemical process (pyrolysis and gasification).

  9. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  10. Fluidized-bed gasification of biomass: Conversion of fine carabon particles in the freeboard; Biomassevergasung in der Wirbelschicht: Umsatz von feinen Kohlenstoffpartikeln im Freeboard

    Energy Technology Data Exchange (ETDEWEB)

    Miccio, F. [Ist. Ricerche sulla Combustione-CNR, Napoli (Italy); Moersch, O.; Spliethoff, H.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1998-09-01

    The conversion of carbon particles in gasification processes was investigated in a fluidized-bed reactor of the Institute of Chemical Engineering and Steam Boiler Technology of Stuttgart University. This reactor is heated electrically to process temperature, and freeboard coal particles can be sampled using an isokinetic probe. The fuel used in the experiments consisted of beech wood chips. The temperature and air rating, i.e. the main parameters of the process, were varied in order to investigate their influence on product gas quality and carbon conversion. The conversion rate is influenced to a significant extent by grain disintegration and discharge of carbon particles. In gasification conditions, a further conversion process takes place in the freeboard. (orig.) [Deutsch] In dieser Arbeit wird die Umsetzung von Kohlenstoffpartikeln unter Vergasungsbedingungen untersucht. Die Versuche wurden an einem Wirbelschichtreaktor des Instituts fuer Verfahrenstechnik und Dampfkesselwesen der Universitaet Stuttgart durchgefuehrt. Dieser Reaktor wird elektrisch auf Prozesstemperatur beheizt. Mit Hilfe einer isokinetischen Sonde koennen Proben von Kohlenstoffpartikeln im Freeboard genommen werden. Als Brennstoff wurden zerkleinerte Buchenholz-Hackschnitzel eingesetzt. Variiert wurden als Hauptparameter des Prozesses Temperatur und Luftzahl. Untersucht wurde der Einfluss dieser Parameter auf die Qualitaet des Produktgases und die Umsetzung des Kohlenstoffes. Kornzersetzungs- und Austragsvorgaenge von Kohlenstoffpartikeln spielen eine wichtige Rolle fuer den Kohlenstoffumsatz. Unter Vergasungsbedingungen findet im Freeboard eine weitere Umsetzung der Partikel statt. (orig.)

  11. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  12. Clean fuels from biomass

    Science.gov (United States)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  13. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    yields of solar energy/hydrogen conversion and the hydrogen quantities produced by a central receiver tower solar process. A size of the process and of the solar plant has been carried out in order to estimate by an economic study, the cost of hydrogen production by these thermochemical cycles coupled to a concentrated solar energy source. (O.M.)

  14. Analysis and comparison of biomass pyrolysis/gasification condensates: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.

    1986-06-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longer term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.

  15. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  16. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.

  17. A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources

    International Nuclear Information System (INIS)

    Highlights: • A novel thermochemical CO2 and H2O splitting cycle has been proposed. • The approach can alleviate the greenhouse effect and produce the syngas. • The experiments are performed to validate the cycle effectiveness. • The maximum theoretical energy conversion efficiency of the cycle reaches 43.5%. - Abstract: A novel thermochemical cycle, which uses alternative energy sources (such as solar, geothermal, and safe nuclear) to dissociate CO2 and H2O, is proposed. The cycle can effectively reduce CO2 emission from the combustion of fossil fuels. The products of the cycle include carbon monoxide, hydrogen and oxygen. Carbon monoxide and hydrogen can be used to synthesize hydrocarbons and liquid fuels. Oxygen can be used in oxy-fuel combustion. The proposed chemical reactions are performed to validate the cycle effectiveness and superiority. Experiments are conducted to investigate and characterize the reactive chemical systems. The maximum theoretical energy conversion efficiency of the cycle reaches 43.5%

  18. Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction

    Science.gov (United States)

    Guo, Chaozhong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Chen, Changguo

    2015-09-01

    The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of protein-rich enoki mushroom (Flammulina velutipes) biomass at 900 °C with carbon nanotubes as a conductive agent and inserting matrix. We found that various forms of nitrogen (nitrile, pyrrolic and graphitic) were incorporated into the carbon molecular skeleton of the product, which exhibited more excellent ORR electrocatalytic activity and better durability in alkaline medium than those in acidic medium. Remarkably, the ORR half-wave potential measured on our material was around 0.81 V in alkaline medium, slightly lower than that on the commercial 20 wt% Pt/C catalyst (0.86 V). Meanwhile, the ORR followed the desired 4-electron transfer mechanism involving the direct reduction pathway. The ORR performance was also markedly better than or at least comparable to the leading results in the literature based on biomass-derived carbon-based catalysts. Besides, we significantly proposed that the graphitic-nitrogen species that is most responsible for the ORR activity can function as the electrocatalytically active center for ORR, and the pyrrolic-nitrogen species can act as an effective promoter for ORR only. The results suggested a promising route based on economical and sustainable fungi biomass towards the large-scale production of valuable carbon nanomaterials as highly active and stable metal-free catalysts for ORR under alkaline conditions.The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of

  19. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  20. Life cycle assessment of microalgae to biofuel: Thermochemical processing through hydrothermal liquefaction or pyrolysis

    Science.gov (United States)

    Bennion, Edward P.

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.

  1. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-01

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  2. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-01

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered. PMID:26641878

  3. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  4. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  5. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-04

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representative large volume, sustainable feedstock.

  6. Biomass Gasification Research Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005, GTI conducted intensive field characterizations of biomass-derived syngas at GTI’s FFTF during a concurrent test of pelletized wood-fueled gasification and catalyst performance investigated under Cooperative Agreement DE-FG36-04GO14314. In 2006 GTI continued its sampling development and verification activities at GTI’s FFTF with a follow-on set of calibration measurements. The combination of the sample conditioning and sample stream transport methods developed under Cooperative Agreement DE-FC36-03GO13175, and the assembly and coordination of gas analyzers and data collection and analyses under Cooperative Agreement DE-FC36-02GO12024, have provided a new, powerful, enabling capability for on-line data characterizations of biomass- and coal-derived syngas from thermochemical conversion process streams.

  7. Vegetal and animal biomass; Les biomasses vegetales et animales

    Energy Technology Data Exchange (ETDEWEB)

    Combarnous, M. [Bordeaux-1 Univ., Lab. Energetique et Phenomenes de Transfert, UMR CNRS ENSAM, 33 - Talence (France)

    2005-07-01

    This presentation concerns all types of biomass of the earth and the seas and the relative implicit consumptions. After an evaluation of the food needs of the human being, the author discusses the solar energy conversion, the energetic flux devoted to the agriculture production, the food chain and the biomass. (A.L.B.)

  8. Chemical Imaging of Catalyst Deactivation during the Conversion of Renewables at the Single Particle Level: The Etherification of Biomass-based Polyols with Alkenes over H-Beta Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    A Parvulescu; D Mores; E Stavitski; C Teodorescu; P Bruijnicx; R Klein Gebbing; B Weckhuysen

    2011-12-31

    The etherification of biomass-based alcohols with various linear {alpha}-olefins under solvent-free conditions was followed in a space- and time-resolved manner on 9 {micro}m large H-Beta zeolite crystals by confocal fluorescence microscopy. This allowed us to visualize the interaction with the substrate and distribution of the coke products into the catalyst at the level of an individual zeolite crystal during the etherification process. The spectroscopic information obtained on the micrometer-scale zeolite was in line with the results obtained with bulk characterization techniques and further confirmed by the catalytic results obtained both for micrometer-scale and nanoscale zeolites. This allowed us to explain the influence of the substrate type (glycerol, glycols, and alkenes) and zeolite properties (Si/Al ratio and particle size) on the etherification activity. The etherification of the biomass-based alcohols takes place mainly on the external surface of the zeolite particles. The gradual blockage of the external surface of the zeolite results in a partial or total loss of etherification activity. The deactivation could be attributed to olefin oligomerization. The high conversions obtained in the etherification of 1,2-propylene glycol with long linear alkenes (up to 80%) and the pronounced deactivation of the zeolite observed in the etherification of glycerol with long linear alkenes (max. 20% conversion) were explained by the spectroscopic measurements and is due to differences in the adsorption, i.e., in the center of the zeolite particle for glycerol and on the external surface in the case of glycols.

  9. Biomass to energy; La valorisation energetique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the biomass to energy. It explains the biomass principle, the possibility of biomass to energy conversion, the first generation of biofuels (bio ethanol, ETBE, bio diesel, flex fuel) and their advantages and limitations, the european regulatory framework and policy with the evolutions and Total commitments in the domain. (A.L.B.)

  10. Thermochemical hydrogen sensor based on chalcogenide nanowire arrays

    International Nuclear Information System (INIS)

    The hydrogen gas-sensing properties have been investigated of two types of thermochemical hydrogen (TCH) sensors composed of thermoelectric layers based on chalcogenide nanowire arrays and anodic aluminum oxide (AAO) templates. The monomorphic-type TCH sensor, which had only Bi2Te3 nanowire arrays, showed an output signal of 23.7 μV in response to 5 vol% hydrogen gas at room temperature, whereas an output signal of 215 μV was obtained from an n–p junction-type TCH sensor made of connected Bi2Te3 and Sb2Te3 nanowire arrays in an AAO template. Despite its small deposition area, the output signal of the n–p sensor was more than nine times that of the monomorphic sensor. This observation can be explained by the difference in electrical connections (parallel and serial conversions) in the TCH sensor between each type of nanowire array. Also, our n–p sensor had a wide detection range for hydrogen gas (from 400 ppm to 45 vol%) and a fast response time of 1.3 s at room temperature without requiring external power. (paper)

  11. Monolithic HTGR - reformer design and cost summary: thermochemical pipeline application

    International Nuclear Information System (INIS)

    This summary report updates conceptual designs and cost estimates for monolithic High Temperature Gas-Cooled Reactor (HTGR) plants used as a source of process heat. The GFY 82 studies summarized in this report address design improvements and cost reductions for High Temperature Process Heat Systems selected in GFY 81. The GFY 81 studies consisted primarily of evaluating various configurations for a single (monolithic) HTGR rated at 1170 MWt used as part of a Thermochemical Pipeline (TCP) System. In the TCP concept, a helium-heated reformer produces syngas which can be transported up to 100 miles via pipeline to a methanation plant, where it is converted to methane. This exothermic process generates high-temperature steam for nearby process steam users. The methane is then returned to the nuclear plant site for conversion to syngas in the reformers. The work performed in GFY 82 on the monolithic HTGR-R plants is described. The results of the cost improvement studies are reviewed. A cost evaluation of the HTGR-R plants incorporating the GFY 82 changes is included. Recommendations for follow-on work on the HTGR-R monolithic plants are provided

  12. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  13. Base-load solar thermal power using thermochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, A.; Lovegrove, K. [Australian National Univ., Canberra, ACT (Australia); Filippi, E. [Ammonia Casale, Lugano (Switzerland); Fricker, H. [FC Consulting, Rickenbach (Switzerland); Schmitz-Goeb, M. [L and C Steinmuller GmbH, Process Engineering Div., Gummersbach (Germany); Chandapillai, M. [Siemens Power Generation Asia Pacific Sdn, Bhd., Industrial Power Plants, Kuala Lumpur (Malaysia)

    1999-03-01

    Using a closed-loop thermochemical system based on the reversible ammonia reaction is one of the possible ways for building solar thermal power systems capable of providing electricity on a 24-hour basis without the need for any fossil fuel back-up. In a collaborative effort between industrial and academic partners from Australia, Switzerland, Germany and Malaysia, a study was undertaken to examine the techno-economic viability of this solar concept by formulating a preliminary design for a hypothetical 10 MW{sub e} demonstration system in Central Australia. It was found that a carefully designed demonstration solar power plant, which dominantly uses proven and standard materials, components and technologies, is likely to cost of the order of AUD 157 million and operate with a net solar-to-electric conversion efficiency of 18% and a capacity factor of 80%. This will result in leveled electricity costs (LEC) of about AUD 0.24 per kWh{sub e}. (authors)

  14. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 16000C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO5, was studied in some detail. (Auth.)

  15. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Science.gov (United States)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  16. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Science.gov (United States)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  17. CHEETAH: A next generation thermochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L.; Souers, P.

    1994-11-01

    CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0. We have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. We find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with the new standard run command. CHEETAH will make the use of thermochemical codes more attractive to practical explosive formulators. We have also made an extensive effort to improve over the results of TIGER. CHEETAH`s version of the BKW equation of state (BKWC) is able to accurately reproduce energies from cylinder tests; something that other BKW parameter sets have been unable to do. Calculations performed with BKWC execute very quickly; typical run times are under 10 seconds on a workstation. In the future we plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.

  18. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H2 production from SCWG of PSR is 1.05 × 1010 kgH2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO2) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 1010 kgH2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from SCWG

  19. Energy conversion & storage program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  20. The pyrolytic mechanism of the main components in woody biomass and their interactions

    OpenAIRE

    Shen, D. K.

    2011-01-01

    The global demand of the volume of woody biomass (such as wood, logging residue, sawdust and so on) is huge and increased annually, due to its new application for the energy/fuel production during recent years. Pyrolysis is termed as a promising thermo-chemical technology to convert woody biomass to liquid, gas and solid fuels/chemicals. The better understanding of the pyrolysis mechanism of woody biomass is demanding considering the thermal performance of individual components (hemicellul...

  1. A Short Historical Review of Fast Pyrolysis of Biomass Une brève revue historique de la pyrolyse rapide de la biomasse

    Directory of Open Access Journals (Sweden)

    Radlein D.

    2013-10-01

    Full Text Available In this short review, we survey the historical progress of fast pyrolysis technologies for thermochemical liquefaction of biomass to produce so-called "bio-oil". Our focus is on the potential applications of bio-oil as a liquid fuel for heat and power generation. We point out some of the inherent properties of bio-oil that create difficulties standing in the way of these applications. Finally, we take a brief look at some processes that aim to valorize bio-oil by conversion to higher value liquid fuel products. Dans cette revue nous nous proposons de dresser un rappel historique des progrès relatifs aux technologies de liquéfaction thermochimiques par pyrolyse rapide, encore appelée pyrolyse flash, de la biomasse pour produire ce que l’on appelle communément une "bio-huile". Nous insisterons sur ses applications comme combustible liquide pour la production de chaleur et d’électricité. Nous ferons ressortir quelques propriétés spécifiques aux bio-huiles qui peuvent créer des difficultés d’usage. Nous terminerons par un bref aperçu de quelques procédés permettant de valoriser la bio-huile en carburants liquides de plus forte valeur ajoutée.

  2. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  3. Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass

    International Nuclear Information System (INIS)

    To minimize the production costs of sugar cane, for the diverse sites of production found in La Réunion, an improved understanding of the influence of temperature on the dry matter radiation quotient is required. Existing models simulate poorly the temperature-radiation interaction. A model of sugar cane growth has been fitted to the results from two contrasting sites (mean temperatures: 14-30 °C; total radiation: 10-25 MJ·m-2·d-1), on a ratoon crop of cv R570, under conditions of non-limiting resources. Radiation interception, aerial biomass, the fraction of millable stems, and their moisture content, were measured. The time-courses of the efficiency of radiation interception differed between sites. As a function of the sum of day-degrees, they were similar. The dry matter radiation quotient was related to temperature. The moisture content of millable stems depended on the day-degree sum. On the other hand, the leaf/stem ratio was independent of temperature. The relationships established enabled the construction of a simple model of yield potential. Applied to a set of sites representing the sugar cane growing area of La Réunion, it gave a good prediction of maximum yields. (author)

  4. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  5. Thermochemical factors affecting the dehalogenation of aromatics.

    Science.gov (United States)

    Sadowsky, Daniel; McNeill, Kristopher; Cramer, Christopher J

    2013-12-17

    Halogenated aromatics are one of the largest chemical classes of environmental contaminants, and dehalogenation remains one of the most important processes by which these compounds are degraded and detoxified. The thermodynamic constraints of aromatic dehalogenation reactions are thus important for understanding the feasibility of such reactions and the redox conditions necessary for promoting them. Accordingly, the thermochemical properties of the (poly)fluoro-, (poly)chloro-, and (poly)bromobenzenes, including standard enthalpies of formation, bond dissociation enthalpies, free energies of reaction, and the redox potentials of Ar-X/Ar-H couples, were investigated using a validated density functional protocol combined with continuum solvation calculations when appropriate. The results highlight the fact that fluorinated aromatics stand distinct from their chloro- and bromo- counterparts in terms of both their relative thermodynamic stability toward dehalogenation and how different substitution patterns give rise to relevant properties, such as bond strengths and reduction potentials.

  6. Alternative route of process modification for biofuel production by embedding the Fischer-Tropsch plant in existing stand-alone power plant (10 MW) based on biomass gasification - Part I: A conceptual modeling and simulation approach (a case study in Thailand)

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Cheali, Peam; Narataruksa, Phavanee;

    2014-01-01

    The utilization of syngas shows a highly potential to improve the economic potential of the stand-alone power unit-based gasification plants as well as enhancing the growing demand of transportation fuels. The thermochemical conversion of biomass via gasification to heat and power generations from...... a base case process model coupled with techno-economic evaluation for the FT synthesis. In particular, the FT process configurations are designed and assessed using current kinetic laboratory data by our research group for modeling specific reactions in PFR reactor. The calculation of equipment sizing...... the integrated- and non-integrated FT syntheses with respect to techno-economic criteria. The integration of FT synthesis with biomass gasification in this study results in the significant assessment of energy efficiency and cost reduction by 36.92% and 16%, respectively. (C) 2014 Elsevier Ltd. All rights...

  7. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  8. Hydrogen production from biomass. Optimization of gasification by experimental by experimental statistical design; Produccion de hidrogeno a partir de biomasa. Optimizacion de la gasificacion por aplicacion del diseno estadistico de experimentos

    Energy Technology Data Exchange (ETDEWEB)

    Arteche Calvo, A.

    2008-07-01

    Biomass conversion into a gas with high content in hydrogen is considered as a future alternative to obtain energy and chemicals products for renewable sources. One of the current technologies for this purpose is the gasification using steam as gasification agent. The technical objective of this work is the study of the process of biomass gasification with steam and oxygen as thermochemical process of transformation of biomass to obtain the maximum amount of hydrogen with lowest tar content. Materials and Methods. An experimental statistical strategy with three variables and two levels of operation was planned to optimize the gasification process. the study was conducted without changing the type of biomass-fed, the type of catalyst used and the quantity of bed inside the gasifier. Two mathematical models have been obtained as results. Both of them correlated the experimental factors to the production of hydrogen and tars. The design of experiments methodology has been applied to assess the influence os several experimental factors, such as the introduced amount of steam, the use of catalyst and oxygen, both in the production of hydrogen, as in the minimization of the formation of tars. This statistical technique has enabled the modeling of the selected biomass gasification performing the minimum number of pilot plant tests to identify possible improvements and optimizations both in the yield of produced hydrogen as in the generation of tars. (Author) 10 refs.

  9. Bioenergy from wastewater-based biomass

    Directory of Open Access Journals (Sweden)

    Ronald C. Sims

    2016-01-01

    Full Text Available The U.S. Department of Energy (DOE has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1 wastewater treatment systems that can be used to cultivate algae biomass, and (2 land application/treatment systems for non-food terrestrial biomass. These existing infrastructures could be used in the relatively near future for waste-based biomass production and conversion to bioenergy, thereby reducing capital costs and scalability challenges while making a contribution to energy independence and national security.

  10. Microencapsulation of salts for enhanced thermochemical storage materials

    OpenAIRE

    Cuypers, R.; de Jong, A. J.; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage either suffer from practical issues like limited physical and mechanical stability and severe corrosivity (salt hydrates), or thermal storage capacities that are too low to substantially cover sea...

  11. Thermochemical Reactions for Solar Energy Storage and Fuel Production

    OpenAIRE

    Roeb, Martin; Sattler, Christian

    2013-01-01

    Thermochemical multistep processes are promising options to face future energy problems. Such reactions can be used to enhance the availability of solar energy in terms of energy transport, of energy demand/supply management and of potential energy related applications. Coupling concentrated sunlight to suitable sequences of thermochemical reaction enables the production of hydrogen, syngas and other fuels derived from those precursors by water- and CO2-splitting as well as the storage of sol...

  12. Evaluation of selected steel thermochemical treatment technologies using foresight methods

    OpenAIRE

    A.D. Dobrzańska-Danikiewicz; E. Hajduczek; M. Polok-Rubiniec; M. Przybył; K. Adamaszek

    2011-01-01

    Purpose: The purpose of this article is to evaluate the development efficiency of classical steel thermochemical treatment. The criterion assumed for dividing the technologies into groups was the thermochemical treatment kind. Three technology groups were selected to realised researches, as follows: nitriding, carburising and diffusion boriding.Design/methodology/approach: In the framework of foresight-materials science researches: a group of matrices characterising technology strategic posit...

  13. Non-equilibrium thermochemical heat storage in porous media

    DEFF Research Database (Denmark)

    Nagel, T.; Shao, H.; Singh, Ashok;

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also....... The specification, validation and application of the full model to a calcium hydroxide/calcium oxide based thermochemical storage system are the subject of part 2 of this study. © 2013 Elsevier Ltd....

  14. Analysis and comparison of biomass pyrolysis/gasification condensates: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.

    1985-09-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The analyses were performed in order to provide more detailed data concerning these condensates for the different process research groups and to allow a determination of the differences in properties of the condensates as a function of reactor environment. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases, aqueous phases and, in some cases, both phases depending on the output of the particular reactor system. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay). The analytical data demonstrate the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. 55 refs., 13 figs., 6 tabs.

  15. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction.

    Science.gov (United States)

    Zhao, Shuai; Wei, Hui; Lin, Chien-Yuan; Zeng, Yining; Tucker, Melvin P; Himmel, Michael E; Ding, Shi-You

    2016-01-01

    It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources. PMID:26858740

  16. Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and iron accumulation reveal novel components of Arabidopsis-endophyte interaction that can benefit downstream biomass deconstruction

    Directory of Open Access Journals (Sweden)

    Shuai eZhao

    2016-01-01

    Full Text Available It is known that plant growth promoting bacteria (PGPB elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e. the molecules with high affinity for iron, respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant’s iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.

  17. Bioenergy from wastewater-based biomass

    OpenAIRE

    Sims, Ronald C.; Sean K. Bedingfield; Reese Thompson; Sims, Judith L.

    2016-01-01

    The U.S. Department of Energy (DOE) has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would...

  18. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  19. Bio-H2. Application potential of biomass related hydrogen production technologies to the Dutch energy infrastructure of 2020-2050

    International Nuclear Information System (INIS)

    This study supports the implementation of biomass related hydrogen production technologies, within the goals of the Dutch government. A market analyses has been made of the application potential of hydrogen within the Dutch energy infrastructure of the future. A technology analysis has been made by means of determination of the important technical, ecological and economic figures of biomass related hydrogen production technologies and a comparison with other alternative conventional and renewable hydrogen production technologies. The industrial interest for the final implementation of biomass related hydrogen production technologies has been analysed by means of a round-table discussion. From the study and round-table discussion the following conclusions can be drawn for the market analysis, technology analysis and technology/market combinations of hydrogen from biomass. Market analysis: In the long term centralised hydrogen production is the most attractive option, because of low costs of hydrogen production. For the short- and midterm decentralised hydrogen production is an option as an intermediate solution. Technology analysis: For the conversion of biomass to H2 there are four thermochemical processes and five biochemical processes. In general thermochemical processes are large-scale, high efficiency, lab/pilot status with expensive feedstock. Biochemical processes are small-scale, low efficiency, lab/pilot status with gate-fee priced feedstock. Market-Technology combinations: Small-scale markets such as micro-CHP and mixing of hydrogen and natural gas are only expected in the transition phase (2020-2050). Large-scale markets such as the hydrogen production for the national pipeline for refuelling stations will be developed after 2050. The pipeline on city scale is feasible for the short term as well for the long term. It is recommended to carry out additional studies for those cases, which seem to be most promising, viz.: (1) hydrogen production by

  20. A Path Forward for Low Carbon Power from Biomass

    OpenAIRE

    Amanda D. Cuellar; Howard Herzog

    2015-01-01

    The two major pathways for energy utilization from biomass are conversion to a liquid fuel (i.e., biofuels) or conversion to electricity (i.e., biopower). In the United States (US), biomass policy has focused on biofuels. However, this paper will investigate three options for biopower: low co-firing (co-firing scenarios refer to combusting a given percentage of biomass with coal) (5%–10% biomass), medium co-firing (15%–20% biomass), and dedicated biomass firing (100% biomass). We analyze the ...

  1. Base rate for the category extended lifetime thermal conversion of biomass (supplementary advise SDE+ 2014)renewable energy support scheme); Basisbedrag voor de categorie verlengde levensduur thermische conversie van biomassa (aanvullend advies SDE+ 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, A.J. [ECN Beleidsstudies, Petten (Netherlands); Wassenaar, J.A.; Jans, G. [DNV KEMA, Arnhem (Netherlands)

    2013-10-15

    This memo supplements the final advice for the base rates 2014. On request of the Dutch Ministry of Economic Affairs the advice in this memo concerns the base rate for the title category: extended lifetime for thermal conversion of biomass, combined generation [Dutch] Deze notitie vormt een aanvulling op het eindadvies voor de basisbedragen 2014. Op verzoek van het ministerie van Economische Zaken wordt in deze notitie geadviseerd over het basisbedrag voor de categorie 'verlengde levensduur thermische conversie van biomassa, gecombineerde opwekking'. Ten opzichte van eerdere jaren is in dit advies sprake van een gewijzigde referentie-installatie, waardoor het advies van toepassing is op installaties die onder de huidige MEP-regeling vallen en als brandstof gebruik maken van B-hout. Deze notitie is tot stand gekomen na besloten marktconsultatie, waarbij vier beheerders van relevante BEC-installaties zijn geconsulteerd. Het geadviseerde basisbedrag voor warmte en elektriciteit bij gecombineerde opwekking uit verlengde levensduur thermische conversie van biomassa is 18,1 euro/GJ. Voor nadere informatie over de SDE-regeling van 2014 inclusief het 'Eindadvies basisbedragen SDE+ 2014' zie onderstaande link.

  2. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  3. 生物质醋液生产原料筛选及其转化技术研究%Row Materials Screening and Conversion Technologies of Vinegar Biomass

    Institute of Scientific and Technical Information of China (English)

    时新宁; 柳金凤; 彭丽; 秦军; 邓平

    2011-01-01

    中国是农业大国,农林生物资源丰富,但农林生物质利用还很局限,项目将从植物资源综合利用的角度出发,重点介绍生物质醋液生产原料的筛选、基本理化性质与得率的变化情况以及转化技术的研究,并确定生物质醋液的最佳工艺参数和生产流程.最终寻求一种农林生物质高效、无公害、资源化利用的方法,研制出高效稳定的醋液,对下一步作为植物生长调节剂、发展有机生态农牧业和走可持续发展之路提供技术支撑和服务平台.试验结果表明:在相同条件(温度、通风量等)下,以芦苇为原材料,将含水率调节到15%左右,热解温度调到600℃,通过精制方法所获得的醋液得率高、焦油含量低、质量好,再利用静置方法静置4-6个月,所获得的醋液pH变化小、性质较为稳定、成本低、效果最好.%China is a large agricultural country, which has rich in biological resources, agriculture and forestry, but forest biomass is still limited to be used. So from the perspective of comprehensive utilization of plant resources, focusing on the raw production screening of biomass vinegar, physical and chemical properties, yield changes and the technology conversion, and determined the optimal process parameters and production processes of biomass vinegar. Ultimately find a highly efficient, non-pollution, resource use of the method for forestry biomass, and to develop a highly efficient and stable vinegar solution. The next step as a plant growth regulator, the way to develop organic farming and sustainable ecological would provide technical support and service platform. The results showed that in the same conditions (temperature, ventilation, etc), the reed as raw materials would be adjusted the moisture content to 15% and of the pyrolysis temperature to 600℃, and the vinegar obtained were high yield, low tar and good quality, Then, standing for 4-6 months, the vinegar obtained were small

  4. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  5. Thermochemical parameters of caffeine, theophylline, and xanthine

    Energy Technology Data Exchange (ETDEWEB)

    Ngo Tuan Cuong; Truong Ba Tai [Department of Chemistry, and Mathematical Modeling and Computational Science Center (LMCC), Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Vu Thi Thu Ha [Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Minh Tho Nguyen, E-mail: minh.nguyen@chem.kuleuven.b [Department of Chemistry, and Mathematical Modeling and Computational Science Center (LMCC), Katholieke Universiteit Leuven, B-3001 Leuven (Belgium)

    2010-04-15

    Thermochemical parameters of caffeine 1, theophylline 2, xanthine 3, uracil, and imidazole derivatives are determined by quantum chemical calculations. Using the composite G3B3 method, the standard heat of formation of caffeine in the gaseous phase amounts to DELTA{sub f}H{sub g}{sup 0}(1)=-243+-8kJ.mol{sup -1}, which lends a support for the recent experimental value of -237.0 +- 2.5 kcal . mol{sup -1}. We also obtain DELTA{sub f}H{sub g}{sup 0}(2)=-232+-8kJ.mol{sup -1}andDELTA{sub f}H{sub g}{sup 0}(3)=-209+-8kJ.mol{sup -1}. The adiabatic ionization energies are IE{sub a}(1) = 7.9 eV, IE{sub a}(2) = 8.1 eV, and IE{sub a}(3) = 8.5 eV using B3LYP calculations. The enhanced ability of caffeine to eject electron, as compared to the parent compounds and cyclic components, is of interest with regard to its potential use as a corrosion inhibitor.

  6. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  7. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  8. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures ? A comprehensive review

    OpenAIRE

    Monlau, Florian; Sambusiti, Cécilia; Barakat, Abdellatif; M. Quéméneur; Trably, Eric; Steyer, Jean-Philippe; Carrère, Hélène

    2014-01-01

    Nowadays there is a growing interest on the use of both lignocellulosic and algae biomass to produce biofuels (i.e. biohydrogen, ethanol and methane), as future alternatives to fossil fuels. In this purpose, thermal and thermo-chemical pretreatments have been widely investigated to overcome the natural physico-chemical barriers of such biomass and to enhance biofuel production from lignocellulosic residues and, more recently, marine biomass (i.e. macro and microalgae). However, the pretreatme...

  9. Biomass energy systems and the environment

    Science.gov (United States)

    Braunstein, H. M.; Kanciruk, P.; Roop, R. D.; Sharples, F. E.; Tatum, J. S.; Oakes, K. M.

    The technology, resources, applied, and experimental features of biomass energy resources are explored, with an emphasis on environmental and social implications of large-scale biomass development. The existing land and water based biomass resource is described in terms of available energy, ecological concerns, agricultural crops, livestock production, freshwater systems, and ocean systems. Attention is given to proposed systems of biomass energy production from forestry and silviculture, agricultural crops, livestock wastes, and freshwater and ocean systems. A survey is made of various biomass materials, techniques for conversion to gas, liquid fuels, or for direct combustion, and impacts of large-scale biomass production and harvest are examined. Particular note is made of the effects of scaling biomass conversion systems, including near- and long-term applications, and ethics and aesthetic concerns.

  10. Hydrogen from biomass: state of the art and research challenges; TOPICAL

    International Nuclear Information System (INIS)

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  11. Wind, biomass, hydrogen: renewable energies; Vent, biomasse, hydrogene: energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Rakotosson, V.; Brousse, Th.; Guillemet, Ph.; Scudeller, Y.; Crosnier, O.; Dugas, R.; Favier, F.; Zhou, Y.; Taberna, P.M.; Simon, P.; Toupin, M.; Belanger, D.; Ngo, Ch.; Djamie, B.; Guyard, Ch.; Tamain, B.; Ruer, J.; Ungerer, Ph.; Bonal, J.; Flamant, G

    2007-06-15

    This press kit gathers a series of articles about renewable energies: the compared availabilities of renewable energy sources (comparison at a given time); offshore wind turbines (projects under development, cost optimisation); hydrogen for transports: present day situation (production, transport and storage, hydrogen conversion into mechanical energy, indirect use in biomass conversion); biomass: future carbon source (resource potential in France, pyrolysis and fermentation, development of biofuels and synthetic fuels, stakes for agriculture); beneficial standards for the heat pumps market (market organization and quality approach); collecting solar energy (solar furnaces and future solar power plants, hydrogen generation). (J.S.)

  12. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  13. Refining fast pyrolysis of biomass

    OpenAIRE

    Westerhof, Roel Johannes Maria

    2011-01-01

    Pyrolysis oil produced from biomass is a promising renewable alternative to crude oil. Such pyrolysis oil has transportation, storage, and processing benefits, none of which are offered by the bulky, inhomogeneous solid biomass from which it originates. However, pyrolysis oil has both a different composition to and different properties from crude oil. This makes its direct use in those applications and conversion processes originally developed for fossil feeds problematic. Improvement of the ...

  14. Desilication from illite by thermochemical activation

    Institute of Scientific and Technical Information of China (English)

    姜涛; 崔智鑫; 李光辉; 范晓慧; 黄柱成; 邱冠周

    2004-01-01

    Illite occurs widely in bauxite ores and results in low alumina grade of the ores. Differential thermal analysis (DTA), thermal gravimetric analysis (TGA) and X-ray diffraction analysis (XRD) show the OH groups split off from the structural framework of illite between 500 ℃ and 700 ℃. With the increase in temperature up to about 1 100 ℃, the layer structure of illite breaks up and Si in the layers is transformed into the amorphous state. Meanwhile, mullite comes out at 1 100 ℃. Quartz occurring in illite keeps unchanged in structure in the range of 500 -1 200 ℃. A desilication process from illite by thermochemical activation followed by alkali leaching is therefore developed on the basis of the behavior that amorphous silica is alkali soluble. The investigation finds that the optimum parameters for desilication are activation temperature of 1 100 - 1 150 ℃, activation time of 90 - 120 min, leaching temperature of 95 - 110 ℃, leaching time of 90 - 120 min and concentration of caustic soda (Na2Ok) 120 - 150 g/L. An overall desilication about 45% is attained under these conditions. XRD analysis confirms that the active amorphous SiO2 has been dissolved in the alkali solution and removed from the samples, while quartz and mullite have not. The investigation also shows that the formation of mullite during activation and formation of sodium hydroalu minosilicates (Na96 Al96 Si96 O384 and 0.95Na2 O · Al2 O3 · 3.25SiO2 · 4.79 H2 O) during leaching lead to the relatively low desilication of illite.

  15. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  16. Conversion parameters determination for stand biomass estimation of four subtropical forest types based on national forest inventory system%亚热带4种森林生物量估算转换参数的研究

    Institute of Scientific and Technical Information of China (English)

    侯燕南; 吴惠俐; 项文化; 邓湘雯

    2016-01-01

    Synthesis of stand biomass data of 4 typical forests (Cunninghamia lanceonata forest,Pinus massoniana forest, deciduous broadleaved forest and evergreen broadleaved forest) from National Forest Inventory in subtropical area, we determine conversion parameters for stand biomass estimation based on stand volumes and analyzed how stand characteristics affect the parameters. The results showed that: (1) The mean values of wood basic density (Wd) of dominant trees ofCunninghamia lanceonata forest,Pinus massoniana forest, deciduous broadleaved forest and evergreen broadleaved forest were 0.313 3, 0.412 5, 0.502 1 and 0.527 4, respectively. The Wd was affected by tree provenance, species, site conditions, stand age (A), stand density(D) and other factors. (2) The mean values of biomass expansion factor (Bef) ofCunninghamia lanceonata forest,Pinus massoniana forest, deciduous broadleaved forest and evergreen broadleaved forest were 1.308 9, 1.265 4, 1.423 3 and 1.308 9, respectively, and the mean values of root: shoot ratio (R) were 0.169 4, 0.177 2, 0.239 1 and 0.263 5, respectively. (3) TheBef and R values of these four forests were increased with the increases ofA, average diameter at breast height (Dbh) and average tree height (H), and reduced with the increases ofD, excepted the R values of thePinus massoniana forest had no obvious change with A. Due to obvious differences between these four forests, so we should select conversion parameters according to specific forest when estimating forest biomass.%对我国亚热带森林资源调查中典型的4种森林类型(杉木林、马尾松林、落叶阔叶林和常绿阔叶林)的林分生物量数据进行整合分析,计算4种森林类型从林分蓄积量估算林分生物量的主要转换参数平均值,并分析影响转换参数的林分因子。结果表明:(1)杉木林、马尾松林、落叶阔叶林和常绿阔叶林4种森林类型中优势树种的木材基本密度平均值分别为0.3133

  17. Prospects for biogenic natural gas. Pt. I. Production from wet and dry biomass; Perspektiven fuer Bio-Erdgas. T. I.. Bereitstellung aus nasser und trockener Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Leible, Ludwig; Kaelber, Stefan; Kappler, Gunnar [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (DE). Inst. fuer Technikfolgenabschaetzung und Systemanalyse (ITAS); Eltrop, Ludger; Stenull, Maria [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Lansche, Jens [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Agrartechnik; Poboss, Norman [Stuttgart Univ. (DE). Inst. fuer Feuerungs- und Kraftwerkstechnik (IFK); Stuermer, Bernd; Kelm, Tobias [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany); Koeppel, Wolfgang [Deutsche Vereinigung des Gas- und Wasserfaches e.V. (DVGW), Forschungsstelle am Engler-Bunte-Institut (EBI), Karlsruhe (Germany)

    2012-07-01

    Biogenic natural gas offers as substitute for natural gas (SNG) various opportunities for different types of biomass for a more efficient handling and energy use in the power, heat and fuel sector. Part I of this publication deals with techno-economic aspects of SNG production based on biogas and thermo-chemically produced gas. Associated GHG emissions are discussed as well. Part II focuses on the utilization of biogenic natural gas for heat, power and fuel production. A comparison with fossil natural gas and the direct use of biogas or thermo-chemically produced gas is included. (orig.)

  18. New Developments in Thermo-Chemical Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Bernd Edenhofer

    2004-01-01

    Thermo-chemical diffusion processes like carburising, nitriding and boronizing play an important part in modern manufacturing technologies. They exist in many varieties depending on the type of diffusing element used and the respective process procedure. The most important industrial heat treatment process is case-hardening, which consists of thermochemical diffusion process carburising or its variation carbonitriding, followed by a subsequent quench. The latest developments of using different gaseous carburising agents and increasing the carburising temperature are one main area of this paper. The other area is the evolvement of nitriding and especially the ferritic nitrocarburising process by improved process control and newly developed process variations using carbon, nitrogen and oxygen as diffusing elements in various process steps. Also boronizing and special thermo-chemical processes for stainless steels are discussed.

  19. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  20. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2013-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds

  1. Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR

    Institute of Scientific and Technical Information of China (English)

    WU Xinxin; ONUKI Kaoru

    2005-01-01

    A very promising technology to achieve a carbon free energy system is to produce hydrogen from water, rather than from fossil fuels. Iodine-sulfur (IS) thermochemical water decomposition is one promising process. The IS process can be used to efficiently produce hydrogen using the high temperature gas-cooled reactor (HTGR) as the energy source supplying gas at 1000℃. This paper describes that demonstration experiment for hydrogen production was carried out by an IS process at a laboratory scale. The results confirmed the feasibility of the closed-loop operation for recycling all the reactants besides the water, H2, and O2. Then the membrane technology was developed to enhance the decomposition efficiency. The maximum attainable one-pass conversion rate of HI exceeds 90% by membrane technology, whereas the equilibrium rate is about 20%.

  2. Thermochemical production of hydrogen via multistage water splitting processes

    Science.gov (United States)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  3. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  4. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  5. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  6. EERC Center for Biomass Utilization 2005

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  7. Biomass Program 2007 Accomplishments - Full Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  8. Biomass electrochemistry : from cellulose to sorbitol

    NARCIS (Netherlands)

    Kwon, Youngkook

    2013-01-01

    The primary goal of this thesis is to study the potential role of electrochemistry in finding new routes for sustainable chemicals from biomass in aqueous-phase solutions. In order to assess the potential of electrochemistry in biomass conversion, we developed an online HPLC system by using a fracti

  9. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation c

  10. Molecular energetics condensed-phase thermochemical techniques

    CERN Document Server

    Simoes, Jose A Martinho

    2008-01-01

    1. Thermochemistry and Molecular Energetics 2. the Thermodynamic Background 3. The Kinetic Background 4. Gas Phase Ion Energetics 5. Bond Energies References for Part I 6. Oveerview of Condensed Phase Methods 7. Combustion Calorimetry 8. Isoperibol Reaction-Solution Calorimetry 9. Heat Flow Calorimetry 10. Photocalorimetry 11. Titration Calorimetry 12. Differential Scanning Calorimetry (DSC) 13. Photoacoustic Calorimetry 14. Equilibrium in Solution 15. Kinetics in Solution 16. Electrochemical Measurements References for Part II Appendices Units, Conversion Factors, and Funda

  11. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  12. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  13. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in

  14. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  15. A novel thermochemical energy storage and transportation concept based on concentrated solar irradiation-aided CaO-looping

    Science.gov (United States)

    Obermeier, Jonas; Müller, Karsten; Karagiannakis, George; Stubos, Athanasios; Arlt, Wolfgang

    2016-05-01

    To overcome the temporal and regional gap of surplus solar energy, the concept of thermochemical heat storage is discussed. In this particular case, the application of CaO and CaCO3 as energy carrying compounds for a trans-regional energy distribution concept is analyzed regarding the effective energetic and exergetic storage density. In a comprehensive sensitivity analysis, the influences of reaction temperature, conversion and heat recovery strategies are worked out. It can be seen that the effective storage density is strongly influenced by the preheating of reactants from ambient to reaction temperature. Thus, high conversion rates during forward and reverse reaction as well as improved heat recovery ratios are necessary to achieve a high energetic storage density. In case of effective exergetic storage density, carbonation temperature reaches an optimum. The method presented in this contribution can be applied to similar thermochemical heat storage systems and the results are of great importance for the process design and development of the suggested concept.

  16. Second Generation Gaseous Biofuels: from Biomass to Gas Grid

    International Nuclear Information System (INIS)

    Gaseous biofuels and biomethane production by thermochemical pathway has many assets and, already, it should be seen as an essential component of future French and European energy panorama by 2020. As a biomass gasification process is used, a very wide range of biomass is accessible, guaranteeing a significant development potential of the sector. Because of the inherent advantages of the methanation reaction, methanation processes have very high overall energy efficiency, today comparable to other technologies for energy recovery from biomass. Moreover, these can be further enhanced by a waste heat valorization. The existence of technology adapted to installations of medium size (20-80 MW biomethane) promotes strong integration in the local area and is exemplary in a framework of sustainable development. Most of the steps of the process of biomethane production from biomass are at present commercially available. However, the technical feasibility of the whole production line of biomethane was not demonstrated to an industrial scale yet. (authors)

  17. Coprocessing of biooils from biomass pyrolysis and bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Feng, M.; Daruwalla, S.; Daruwalla, D.D. [Southwest Research Inst., San Antonia, TX (United States). Dept. of Chemical Engineering

    2009-07-01

    Liquid biooils can be produced from the thermochemical treatment of biomass by pyrolysis. However, because of their poor volatility, high viscosity, coking, corrosiveness, and cold flow problems, biooils cannot be used directly as transportation fuel. Biooils can be upgraded into a liquid transportation fuel by hydrodeoxygenation with typical hydrotreating procedure with sulfided cobalt and molybdenum (CoMo) or nickel molybdenum (NiMo) as catalysts in the current oil refinery facilities. Coprocessing of biooils and bitumen from oil sand provides an opportunity to process the two feeds at the same time which can be achieved by injection of pyrolytic biooils and vacuum gas oil (VGO) from bitumen into a fluid catalytic cracking (FCC) unit if the acid number of the biooils is below 35. Typically the biooils are diluted to about 1.5 to 5 per cent in the VGO feed to be processed. For the blends of VGO and biooils, the biooils appear to facilitate the cracking of the VGO and shift yields toward light ends, lower light cycle oil. They also clarify slurry oil, which makes the process more cost effective. This paper briefly reviewed the typical methods for bitumen pretreatment and preliminary upgrading. The paper also discussed the current status of coprocessing of biooils and hydrocarbons, and suggested two possible processes for coprocessing bitumen with biooils and biopitches. The impact on the hydrodesulphurization process conversion of dibenzothiophenic compounds was also studied, showing no differences of the inhibiting effect between these molecules. 8 refs., 4 tabs., 6 figs.

  18. Biomass power; Biomasse-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Woergetter, M.

    2003-07-01

    The author reports about use of biomass in Austria and Bavaria: power generation, production of biodiesel, bioethanol, energy efficiency of small biomass furnaces. (uke) [German] Bioenergie wird von breiten Kreisen als wichtiger Ansatz in Richtung einer nachhaltigen Entwicklung in Europa gesehen. Die Herausforderung liegt dabei im neuen Herangehen an Entscheidungen; Dimensionen der Wirtschaft, der Umwelt und der Gesellschaft sind dabei zu beruecksichtigen. Bioenergie ist somit keine reine Frage der Umwelt, sondern zielt auf den Umbau unseres Systems in Richtung Nachhaltigkeit. (orig.)

  19. Biorefinery Technologies for Biomass Conversion Into Chemicals and Fuels Towards Zero Emissions (Review) / Nulles Emisiju Princips Biomasas Konversijas Tehnoloģijās Aizstājot Fosilos Resursus (Pārskata Raksts)

    Science.gov (United States)

    Gravitis, J.; Abolins, J.

    2013-10-01

    Exhausting of world resources, increasing pollution, and climate change are compelling the shift of the world economy from continuous growth to a kind of economy based on integration of technologies into zero emissions production systems. Transition from non-renewable fossil resources to renewable resources provided by solar radiation and the current processes in biosphere is seen in the bio-refinery approach - replacing crude oil refineries by biomass refineries. Biotechnology and nano-technologies are getting accepted as important players along with conventional biomass refinery technologies. Systems design is a significant element in the integration of bio-refinery technologies in clusters. A number of case-studies, steam explosion auto-hydrolysis (SEA) in particular, are reviewed to demonstrate conversion of biomass into value-added chemicals and fuels. Analysis of energy flows is made as part of modelling the SEA processes, the eMergy (energy memory) approach and sustainability indices being applied to assess environmental impacts. Resursu izsīkums, vides piesārņojums un globāla mēroga klimatiskās izmaiņas ir civilizācijas izdzīvošanai būtiski faktori, kas virza pasaules ekonomikas pārmaiņas, atsakoties no nepārtrauktas izaugsmes idejas par labu tādai ekonomikai, kas balstās uz atjaunojošamies resursiem un dažādu tehnoloģiju integrācijemisiju principam atbilstošās ražošanas sistēmās. Saules radiācijas ierosinātajos planētas biosfērā notiekošajos procesos radīto organisko vielu pārstrādes kompleksi, kas operē ievērojot sabalansētu nulles emisiju principu, tiek uzlūkoti kā tās ekonomiskās (ražošanas) struktūras, kurām jānodrošina pāreja uz atjaunojošos resursu izmantošanu, aizstājot esošās fosilo resursu (naftas, ogļu) pārstrādes rūpnīcas. Līdzās jau apgūtajām biomasas rafinēšanas tehnoloģijām svarīga un pieaugoša loma ekonomiskās sistēmas resursu bāzes nomaiņā ir bio- un nanotehnolo

  20. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  1. Evaluation of Brazilian biomasses as potential feedstocks for fuel production via fast pyrolysis

    Science.gov (United States)

    The utilization of lignocellulosic materials to generate energy is constantly expanding around the world. In addition to the well-known biofuels such as ethanol and biodiesel, advanced biofuels obtained by thermochemical conversion routes have been explored, including pyrolysis oil, biochar and syng...

  2. Across-phase biomass pyrolysis stoichiometry, energy balance, and product formation kinetics

    Science.gov (United States)

    Predictive correlations between reactions occurring in the gas-, liquid- and solid-phases are necessary to economically utilize the thermochemical conversion of agricultural wastes impacting the food, water, and energy nexus. On the basis of an empirical mass balance (99.7%), this study established...

  3. PNEUMATIC CONVEYING OF BIOMASS PARTICLES: A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Heping; Cui

    2006-01-01

    Processes involving biomass are of growing interest, but handling and conveying biomass particles are challenging due to the unusual physical properties of biomass particles. This paper reviews recent work on pneumatic conveying of biomass particles, especially agricultural particles and pulp fibres. Experimental work has been mainly carried out to determine a range of parameters, such as pressure drop, particle velocity, flow regime and electrostatic charging for both horizontal and vertical conveying. Models ranging from empirical to CFD models are also being developed. Difficulties in representing turbulence and interactions among biomass particles and between the particles and fluid have so far limited the success of advanced modeling. Further work is needed to improve understanding of multiphase biomass pneumatic conveying and to assist in the development of biomass energy and conversion processes.

  4. Wood into the natural gas distribution system. Sweden and Finland as a pioneer for the gasification of biomass; Holz ins Gasnetz. Schweden und Finnland als Vorreiter fuer Grossanlagen zur Biomasse-Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Dany, Christian

    2013-04-01

    Right now, the thermochemical gasification of biomass and waste is developed on many fronts due to the manifold and attractive options. In Lahti (Finland) a large plant for waste incineration already has gone into operation. A plant for energy production from biomethane from wood is currently being built in Gothenburg (Sweden).

  5. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  6. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  7. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  8. Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses

    International Nuclear Information System (INIS)

    Ammonia is an important input into agriculture and is used widely as base chemical for the chemical industry. It has recently been proposed as a sustainable transportation fuel and convenient one-way hydrogen carrier. Employing typical meteorological data for Palmdale, CA, solar energy is considered here as an inexpensive and renewable energy alternative in the synthesis of NH3 at ambient pressure and without natural gas. Thermodynamic process analysis shows that a molybdenum-based solar thermochemical NH3 production cycle, conducted at or below 1500 K, combined with solar thermochemical H2 production from water may operate at a net-efficiency ranging from 23 to 30% (lower heating value of NH3 relative to the total energy input). Net present value optimization indicates ecologically and economically sustainable NH3 synthesis at above about 160 tons NH3 per day, dependent primarily on heliostat costs (varied between 90 and 164 dollars/m2), NH3 yields (ranging from 13.9 mol% to stoichiometric conversion of fixed and reduced nitrogen to NH3), and the NH3 sales price. Economically feasible production at an optimum plant capacity near 900 tons NH3 per day is shown at relative conservative technical assumptions and at a reasonable NH3 sales price of about 534 ± 28 dollars per ton NH3. -- Highlights: ► Conceptual reactant and process improvements of solar-driven NH3 synthesis at 1 bar. ► Thermodynamic underpinnings of a Molybdenum reactant. ► Process analysis determining energy and materials requirements and the net-efficiency. ► Net present value analysis accounting for yield, investment, and sales price variations.

  9. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass

  10. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass

  11. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  12. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  13. Thermochemical treatment of radioactive waste by using powder metal fuels

    International Nuclear Information System (INIS)

    Full text: A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins, mixed, organic or chlorine-containing radioactive waste as well as in order to decontaminate heavily contaminated surfaces. Conventional treatment methods of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species or in case of contaminated materials - complete removal of contamination from surface. The thermochemical treatment of radioactive waste uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. Thermochemical treatment technologies use the energy of chemical reactions in the mixture of waste with PMF to sustain both decomposition and synthesis processes as well as processes of isomorphic substitutions of hazardous elements into stable mineral forms. The composition of the PMF is designed in such a way as to minimise the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the mineral or glass like final products. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Thermochemical treatment technologies are very efficient, easy to apply, they have low capital investment and can be used both at large and small facilities. An advantage of thermochemical technologies is their autonomy. Thus these technologies can be successfully applied in order to treat small amount of waste without usage of complex and expensive equipment. They can be used also in emergency situations. Currently the thermochemical treatment technologies were developed and demonstrated to be feasible as follows: 1. Decontamination of surfaces; 2. Processing of organic waste; 3. Vitrification of dusty

  14. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    CERN Document Server

    Blecic, Jasmina; Bowman, M Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...

  15. The status quo and prospect of biomass power generation in China

    Institute of Scientific and Technical Information of China (English)

    Zhuang Huiyong; Zhang Yanru

    2009-01-01

    Facing the pressure of fossil energy exhaustion and environment pollution, people begin to search for clean and renewable energy to partly substitute fossil energy and realize sustainable development. As the fourth type of ener-gy, biomass energy has many advantages: wide distribution, large quantity, being renewable, clean, storable and trans-portable and so on. By adopting thermo-chemical and biochemical technologies, biomass energy can be converted to high quality solid, liquid and gaseous energy products, and provide convenient heat and power energy for human being's production and daily life. This paper presented the status quo of biomass power generation industry in China and also introduced briefly the future development models.

  16. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  17. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    OpenAIRE

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method o...

  18. Thermochemical data for CVD modeling from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  19. Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    OpenAIRE

    Sattler, Christian; Agrafiotis, Christos; Roeb, Martin; Tescari, Stefania; Wong, Bunsen

    2015-01-01

    Recent developments in solar-thermal power generation aim as well to achieve higher temperatures to increase the efficiencies of the power cycles as to store the solar energy to enable baseload power generation from a transient energy source. Thermochemical redox processes are an option to store large amounts of solar energy in a compact storage system. The enthalpy effects of these reversible chemical reactions can be exploited. Oxides of multivalent metals in particular, capable of being...

  20. Thermochemical Properties ( D° 0and IP) of the Lanthanide Monohalides

    Science.gov (United States)

    Kaledin, Leonid A.; Heaven, Michael C.; Field, Robert W.

    1999-02-01

    Thermochemical data for the lanthanide monohalides have been combined with recent ligand field theory calculations (A. L. Kaledin, M. C. Heaven, R. W. Field, and L. A. Kaledin (1996).J. Mol. Spectrosc.179, 310) to estimate the dissociation energies and ionization potentials for allLnX(whereLn∈ Ba through Lu, andX∈ F, Cl, Br, or I) molecules and the dissociation energies for theLnX+ions. Owing to the negligible involvement of the core-like 4felectrons in bonding, the dissociation energies and ionization potentials of allLnXmolecules, whereLn∈ Ba through Lu, andX∈ O, S, F, Cl, Br, or I, should vary withLnatom in a simple linear manner, provided that corrections are made for differences inf-orbital occupancy between theLnXmolecule and the freeLnatom or between theLnXmolecule and theLnX+molecular ion. We provide such a model here and, in so doing, correct several inconsistencies in the thermochemical data. Based on thermochemical data (A. A. Kitaev, I. S. Gotkis, P. G. Val'kov, and K. C. Krasnov (1996).Russ. Chem. Phys.7, 1685) and recent spectroscopic observations (M. C. McCarthy, J. C. Bloch, R. W. Field, and L. A. Kaledin (1996)J. Mol. Spectrosc.179, 251), a revised value for the ionization potential of DyF, IP(DyF) = 5.85 ± 0.06 eV, is proposed.