WorldWideScience

Sample records for biomass sensing system

  1. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  2. An empirical, integrated forest biomass monitoring system

    Science.gov (United States)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  3. Application of remote sensing technique in biomass change detection

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... technology provides an efficient avenue of assessment of biomass content of any area. ... use data, can be integrated into GIS together with results from remote sensing analysis ...

  4. Biomass estimation as a function of vertical forest structure and forest height: potential and limitations for radar remote sensing

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Biber, Peter; Pretzsch, Hans

    2010-01-01

    One common method to estimate biomass is measuring forest height and applying allometric equations to get forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this purpose vertical biomass profiles were calculated usi...

  5. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Washington University- St. Louis: Muthanna Al-Dahhan (Principal Investigator)

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately

  6. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  7. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  8. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  9. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  10. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  11. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  12. Spatio-temporal modelling of biomass of intensively grazed perennial dairy pastures using multispectral remote sensing

    Science.gov (United States)

    Edirisinghe, Asoka; Clark, Dave; Waugh, Deanne

    2012-06-01

    Pasture biomass is a vital input for management of dairy systems in New Zealand. An accurate estimate of pasture biomass information is required for the calculation of feed budget, on which decisions are made for farm practices such as conservation, nitrogen use, rotational lengths and supplementary feeding leading to profitability and sustainable use of pasture resources. The traditional field based methods of measuring pasture biomass such as using rising plate metres (RPM) are largely inefficient in providing the timely information at the spatial extent and temporal frequency demanded by commercial environments. In recent times remote sensing has emerged as an alternative tool. In this paper we have examined the Normalised Difference Vegetation Index (NDVI) derived from medium resolution imagery of SPOT-4 and SPOT-5 satellite sensors to predict pasture biomass of intensively grazed dairy pastures. In the space and time domain analysis we have found a significant dependency of time over the season and no dependency of space across the scene at a given time for the relationship between NDVI and field based pasture biomass. We have established a positive correlation (81%) between the two variables in a pixel scale analysis. The application of the model on 2 selected farms over 3 images and aggregation of the predicted biomass to paddock scale has produced paddock average pasture biomass values with a coefficient of determination of 0.71 and a standard error of 260 kg DM ha-1 in the field observed range between 1500 and 3500 kg DM ha-1. This result indicates a high potential for operational use of remotely sensed data to predict pasture biomass of intensively grazed dairy pastures.

  13. Economics of multifunctional biomass systems

    International Nuclear Information System (INIS)

    Ignaciuk, A.

    2006-01-01

    ) ethane-diol (1,2EDO). Two novel technologies based on biorefinery principles to produce b io-nylon and propane-diol (1,3PDO), a substitute of 1,2EDO, are explored. Those technologies are: (1) the Refiner process and (2) the Press process. Moreover, this chapter analyzes the cascading possibilities of the substituted materials. Disposed biomass-based products are used as a cheap fuel option in the Bioelectricity sector. In such a way, the cascading system is mimicked, where the biomass resources are first used for the production of chemicals, and the end product is later used for electricity production. This chapter analyzes to what extent utilizing large scale cascading systems can influence the sectoral production of other commodities and the related influence on land use. Finally, Chapter 7 contains the conclusions and policy recommendations that can be drawn from the analyses in the previous chapters. In this chapter, the research questions will also be answered

  14. Forest above Ground Biomass Inversion by Fusing GLAS with Optical Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Xiaohuan Xi

    2016-03-01

    Full Text Available Forest biomass is an important parameter for quantifying and understanding biological and physical processes on the Earth’s surface. Rapid, reliable, and objective estimations of forest biomass are essential to terrestrial ecosystem research. The Geoscience Laser Altimeter System (GLAS produced substantial scientific data for detecting the vegetation structure at the footprint level. This study combined GLAS data with MODIS/BRDF (Bidirectional Reflectance Distribution Function and ASTER GDEM data to estimate forest aboveground biomass (AGB in Xishuangbanna, Yunnan Province, China. The GLAS waveform characteristic parameters were extracted using the wavelet method. The ASTER DEM was used to compute the terrain index for reducing the topographic influence on the GLAS canopy height estimation. A neural network method was applied to assimilate the MODIS BRDF data with the canopy heights for estimating continuous forest heights. Forest leaf area indices (LAIs were derived from Landsat TM imagery. A series of biomass estimation models were developed and validated using regression analyses between field-estimated biomass, canopy height, and LAI. The GLAS-derived canopy heights in Xishuangbanna correlated well with the field-estimated AGB (R2 = 0.61, RMSE = 52.79 Mg/ha. Combining the GLAS estimated canopy heights and LAI yielded a stronger correlation with the field-estimated AGB (R2 = 0.73, RMSE = 38.20 Mg/ha, which indicates that the accuracy of the estimated biomass in complex terrains can be improved significantly by integrating GLAS and optical remote sensing data.

  15. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  16. Multi-functional biomass systems

    NARCIS (Netherlands)

    Dornburg, Veronika

    2004-01-01

    Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share of biomass applications in Europe is their often-high production costs, among others due to the relatively low availability of

  17. Liquid Level Sensing System

    Science.gov (United States)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  18. Biomass universal district heating systems

    Science.gov (United States)

    Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo

    2017-11-01

    In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  19. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  20. A tree biomass and carbon estimation system

    Science.gov (United States)

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  1. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    Science.gov (United States)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  2. Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis

    Science.gov (United States)

    Zolkos, S. G.; Goetz, S. J.; Dubayah, R.

    2012-12-01

    Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.

  3. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  4. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  5. Studying Sensing-Based Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2013-01-01

    Recent sensing-based systems involve a multitude of users, devices, and places. These types of systems challenge existing approaches for conducting valid system evaluations. Here, the author discusses such evaluation challenges and revisits existing system evaluation methodologies....

  6. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  7. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  8. Design of biomass district heating systems

    International Nuclear Information System (INIS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2009-01-01

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions

  9. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4

  10. Herbaceous biomass predication from environmental and remote sensing indicators

    CSIR Research Space (South Africa)

    Dudeni-Tlhone, N

    2012-11-01

    Full Text Available Feeding patterns and distribution of herbivores animals are known to be influenced by quality and quantity of forage such as grass. Modelling indicators of grass quality and biomass are critical in understanding such patterns and for decision makers...

  11. Biomass energy inventory and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Kasile, J.D. [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was used as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.

  12. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded

  13. Agricultural biomass monitoring on watersheds based on remotely sensed data.

    Science.gov (United States)

    Tamás, János; Nagy, Attila; Fehér, János

    2015-01-01

    There is a close quality relationship between the harmful levels of all three drought indicator groups (meteorological, hydrological and agricultural). However, the numerical scale of the relationships between them is unclear and the conversion of indicators is unsolved. Different areas or an area with different forms of drought cannot be compared. For example, from the evaluation of meteorological drought using the standardized precipitation index (SPI) values of a river basin, it cannot be stated how many tonnes of maize will be lost during a given drought period. A reliable estimated rate of yield loss would be very important information for the planned interventions (i.e. by farmers or river basin management organisations) in terms of time and cost. The aim of our research project was to develop a process which could provide information for estimating relevant drought indexes and drought related yield losses more effectively from remotely sensed spectral data and to determine the congruency of data derived from spectral data and from field measurements. The paper discusses a new calculation method, which provides early information on physical implementation of drought risk levels. The elaborated method provides improvement in setting up a complex drought monitoring system, which could assist hydrologists, meteorologists and farmers to predict and more precisely quantify the yield loss and the role of vegetation in the hydrological cycle. The results also allow the conversion of different-purpose drought indices, such as meteorological, agricultural and hydrological ones, as well as allow more water-saving agricultural land use alternatives to be planned in the river basins.

  14. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  15. Independent System Operators and Biomass Power

    International Nuclear Information System (INIS)

    Porter, Kevin L.

    1999-01-01

    Since the Federal Energy Regulatory Commission issued its landmark open access transmission rule in 1996, the idea of creating and establishing independent system operators (ISOs) has gained momentum. ISOs may help combine individual utility transmission systems into more regional transmission networks, which ultimately will allow biomass companies to transmit power over longer distances while paying a single transmission rate. To the extent that ISOs are combined or operated with power exchanges, however, biomass companies will likely face even more competitive market pressures. Few operators have experience with ISOs and power exchanges, but preliminary results show that short-term electricity market prices are probably too low for most biomass companies to compete against. Without policy measures, biomass companies may have to pursue strategic opportunities with short-term, spot-market sales; direct bilateral sales to customers; alternative power exchanges; and perhaps a ''green'' power market and sales to ancillary service markets. In addition, prices will likely be more volatile in a restructured market so biomass generators should be selling during those times

  16. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  17. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass

    Science.gov (United States)

    Jun-Hak Lee; Yekang Ko; E. Gregory McPherson

    2016-01-01

    Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed...

  18. Thermal remote sensing of active vegetation fires and biomass burning events [Chapter 18

    Science.gov (United States)

    Martin J. Wooster; Gareth Roberts; Alistair M.S. Smith; Joshua Johnston; Patrick Freeborn; Stefania Amici; Andrew T. Hudak

    2013-01-01

    Thermal remote sensing is widely used in the detection, study, and management of biomass burning occurring in open vegetation fires. Such fires may be planned for land management purposes, may occur as a result of a malicious or accidental ignition by humans, or may result from lightning or other natural phenomena. Under suitable conditions, fires may spread rapidly...

  19. Lidar remote sensing of above-ground biomass in three biomes.

    Science.gov (United States)

    Michael A. Lefsky; Warren B. Cohen; David J. Harding; Geoffrey G. Parkers; Steven A. Acker; S. Thomas. Gower

    2002-01-01

    Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, estimation of carbon storage in moderate to high biomass forests is difficult for conventional optical and radar sensors. Lidar (light detection and ranging) instruments measure the vertical...

  20. Displacement sensing system and method

    Science.gov (United States)

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  1. The Role of Remote Sensing in Assessing Forest Biomass in Appalachian South Carolina

    Science.gov (United States)

    Shain, W.; Nix, L.

    1982-01-01

    Information is presented on the use of color infrared aerial photographs and ground sampling methods to quantify standing forest biomass in Appalachian South Carolina. Local tree biomass equations are given and subsequent evaluation of stand density and size classes using remote sensing methods is presented. Methods of terrain analysis, environmental hazard rating, and subsequent determination of accessibility of forest biomass are discussed. Computer-based statistical analyses are used to expand individual cover-type specific ground sample data to area-wide cover type inventory figures based on aerial photographic interpretation and area measurement. Forest biomass data are presented for the study area in terms of discriminant size classes, merchantability limits, accessibility (as related to terrain and yield/harvest constraints), and potential environmental impact of harvest.

  2. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models

    Science.gov (United States)

    H. Viana; J. Aranha; D. Lopes; Warren B. Cohen

    2012-01-01

    Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...

  3. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  4. Wireless Damage Location Sensing System

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  5. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  6. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  7. Uncertainty of Forest Biomass Estimates in North Temperate Forests Due to Allometry: Implications for Remote Sensing

    Directory of Open Access Journals (Sweden)

    Razi Ahmed

    2013-06-01

    Full Text Available Estimates of above ground biomass density in forests are crucial for refining global climate models and understanding climate change. Although data from field studies can be aggregated to estimate carbon stocks on global scales, the sparsity of such field data, temporal heterogeneity and methodological variations introduce large errors. Remote sensing measurements from spaceborne sensors are a realistic alternative for global carbon accounting; however, the uncertainty of such measurements is not well known and remains an active area of research. This article describes an effort to collect field data at the Harvard and Howland Forest sites, set in the temperate forests of the Northeastern United States in an attempt to establish ground truth forest biomass for calibration of remote sensing measurements. We present an assessment of the quality of ground truth biomass estimates derived from three different sets of diameter-based allometric equations over the Harvard and Howland Forests to establish the contribution of errors in ground truth data to the error in biomass estimates from remote sensing measurements.

  8. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  9. Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China

    Directory of Open Access Journals (Sweden)

    Ling Du

    2014-06-01

    Full Text Available Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004–2008 and the spatially explicit MODIS Land Cover Type product (MCD12C1 were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05°, ~5600 m. Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha−1 during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.

  10. Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review

    Directory of Open Access Journals (Sweden)

    J. M. Barbosa

    2014-01-01

    Full Text Available Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB. New remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful for regional or global analyses.

  11. Remote sensing and modeling. A tool to provide the spatial information for biomass production potential

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.P.; Wisskirchen, K.; Schroedter-Homscheidt, M. [DLR, Wessling (Germany). German Remote Sensing Data Center; Borg, E.; Fichtelmann, B. [DLR, Neustrelitz (Germany). German Remote Sensing Data Center

    2006-07-01

    Earth observation from space has been successfully demonstrated over a wide range of monitoring activities, mostly with the aim of measuring the spatial and temporal distribution of biophysical and geophysical parameters as e.g. the Normalized Difference Vegetation Index (NDVI), the land surface temperature (LST) or the land use classification (LCC). With the growing need for more reliable information of global biomass activity in the frame of climate change, the identification and quantification of carbon sinks and sources got of importance. The goal of our activities is to use time series of remote sensing data and carbon modeling to assess the biomass of large regions. Future activities will be discussed as reprocessing of archived time series (e.g. 30 years) of remote sensing data, which will be used as input to biomass modeling, improving the spatial resolution of local, historic land use maps by processing archived Landsat data (30m), using an innovative classification processor for deriving actual multi-temporal land use maps based MERIS data (300m) and delivering a biomass equivalent indicator as productivity indicator. (orig.)

  12. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  13. Handbook of biomass downdraft gasifier engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T B; Das, A

    1988-03-01

    This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

  14. Dry season biomass estimation as an indicator of rangeland quantity using multi-scale remote sensing data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-10-01

    Full Text Available vegetation is green and photosynthetic active. During dry season, biomass estimation is always not plausible using vegetation indices. The aim of this study is to estimate dry biomass using the multi-scale remote sensing data in the savanna ecosystem. Field...

  15. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    Science.gov (United States)

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  16. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  17. Bioinspired Infrared Sensing Materials and Systems.

    Science.gov (United States)

    Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao

    2018-05-11

    Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    Royle, D.J.; Hunter, Tom; McNabb, H.S. Jr.

    1998-01-01

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  19. ESTIMATION OF FOREST BIOMASS BASED ON MULITI-SOURCE REMOTE SENSING DATA SET – A CASE STUDY OF SHANGRI-LA COUNTY

    Directory of Open Access Journals (Sweden)

    W. Feng

    2018-04-01

    Full Text Available Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.

  20. Estimation of Forest Biomass Based on Muliti-Source Remote Sensing Data Set - a Case Study of Shangri-La County

    Science.gov (United States)

    Feng, Wanwan; Wang, Leiguang; Xie, Junfeng; Yue, Cairong; Zheng, Yalan; Yu, Longhua

    2018-04-01

    Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.

  1. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  2. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  3. Structural Studies of Biomass Degrading Enzyme Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lunin, Vladimir V.; Alahuhta, Markus; Brunecky, Roman; Donohoe, Bryon; Xu, Qi; Bomble, Yannick J.; Himmel, Michael E.

    2014-08-05

    Renewable energy today comprises wind, photovoltaics, geothermal, and biofuels. Biomass is the leading source of renewable, sustainable energy used for the production of liquid transportation fuels. While the focus is shifting today from the ethanol towards next generation or advanced biofuels the real challenge however remains the same: reducing the recalcitrance of biomass to deconstruction, which yields the sugars needed for further processing.

  4. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  5. Incentives and market development to establish sustainable biomass systems

    International Nuclear Information System (INIS)

    Matteson Gary, C.

    2009-01-01

    Business-as-usual is not acceptable when it comes to the future for biomass-to-energy/product conversion industry. Incentives and market development need to be applied to guide the owners and operators towards the sustainable practices. Sustainability for biomass is defined to be future energy fuels and bio products that are secure, renewable, and accessible locally, affordable, and pollution free. Intensives are required to convert biomass-to-energy/product conversion systems that are not sustainable into sustainable formats. (Author)

  6. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  7. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  8. Modeling mangrove biomass using remote sensing based age and growth estimates

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Feliciano, E. A.; Lee, S. K.; Trettin, C.; Mangora, M.; Rahman, M.

    2016-12-01

    Mangroves are highly regarded coastal forests because of their ecosystem services and high carbon storage potential. In addition, these forests can develop rapidly in locations where congenial environmental conditions and sediment supply are available. Monitoring the growth and age of developing mangrove forests is crucial for sustainable management and estimating carbon stocks. Combining imagery from radar and optical satellites (e.g., TanDEM-X and Landsat), we can estimate young mangrove growth and age at regional and continental scales. We used TanDEM-X radar interferometry for modeling canopy height in 2013 and Landsat to measure land cover change from 1990 to 2013. Annual NDVI composites were determined for each calendar year between 1990 and 2013. New land areas gained from the transition of water to vegetation were determined by the differences in annual NDVI composites and the reference year 2013. The year of the greatest NDVI difference that met the threshold criteria was used as the initial tree height (0 m). Annual canopy height growth rates were estimated by the duration between land generation times and 2013 canopy height models derived from TanDEM-X and very-high resolution optical data. In this presentation, we compare growth rates and biomass accumulation in mangrove forests at four river deltas; the Zambezi (Mozambique), Rufiji (Tanzania), Ganges (Bangladesh), and Mekong (Vietnam). The spatial patterns of growth rates coincided with characteristic successional paradigms and stream morphology, where the maximum growth rates typically occurred along prograding creek banks. Initial comparisons between height-only and growth-age biomass indicate that the latter tend to overestimate biomass for younger forest stands of similar height. Both the vertical (e.g., canopy height) and horizontal (e.g., expansion) growth rates measured from remote sensing can garner important information regarding mangrove succession and primary productivity. Continued research

  9. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  10. Development of a catalytic system for gasification of wet biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350{degrees}C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversions of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  11. Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes

    Science.gov (United States)

    Halligan, K. Q.; Roberts, D. A.

    2006-12-01

    Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation

  12. Remote Sensing-based estimates of herbaceous aboveground biomass on the Mongolian Plateau

    Science.gov (United States)

    John, R.; Chen, J.; Kim, Y.; Ouyang, Z.; Park, H.; Shao, C.

    2015-12-01

    Grasslands comprise most of the land area on the Mongolian Plateau, which includes Mongolia (MG), and the province of Inner Mongolia (IM). Substantial land cover/use change in the recent past, driven by a combination of post-liberalization, socio-economic changes as well as extreme climatic events has resulted in degradation of grasslands in structure and function, for e.g., their carbon sequestration ability. Hence there is a need for precise estimation of above-ground biomass (AGB). In this study, we collected surface reflectance spectra from field radiometry and quadrats and line transects, which include percentage of ground cover, vegetation height, above ground biomass, and species richness, during the growing season, between the periods, 2006-2011 in IM and 2011-2015 in MG. The field sampling was stratified by the dominant vegetation types on the plateau, including the meadow steppe, typical steppe, and the desert steppe. These sampling data were used as training and validation data for developing and testing predictive models for total herbaceous vegetation, and AGB, using Landsat and MODIS-surface reflectance bands and derived vegetation indices optimized for low cover conditions. Our results show that the independent ground sampling data were significantly correlated with remotely sensed estimates. In addition to providing measures of carbon sequestration to the community, these predictive models offer decision makers and rangeland managers the ability to accurately monitor grassland dynamics, control livestock stocking rates in these remote and extensive grasslands.

  13. System, method, and apparatus for remote measurement of terrestrial biomass

    Science.gov (United States)

    Johnson, Patrick W [Jefferson, MD

    2011-04-12

    A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

  14. White Pine Co. Public School System Biomass Conversion Heating Project

    Energy Technology Data Exchange (ETDEWEB)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  15. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  16. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  17. Biomass District Heat System for Interior Rural Alaska Villages

    Energy Technology Data Exchange (ETDEWEB)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  18. A national-scale remote sensing-based methodology for quantifying tidal marsh biomass to support "Blue Carbon" accounting

    Science.gov (United States)

    Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Thomas, N.; Windham-Myers, L.; Castaneda, E.; Kroeger, K. D.; Gonneea, M. E.; O'Keefe Suttles, J.; Megonigal, P.; Troxler, T.; Schile, L. M.; Davis, M.; Woo, I.

    2016-12-01

    According to 2013 IPCC Wetlands Supplement guidelines, tidal marsh Tier 2 or Tier 3 accounting must include aboveground biomass carbon stock changes. To support this need, we are using free satellite and aerial imagery to develop a national scale, consistent remote sensing-based methodology for quantifying tidal marsh aboveground biomass. We are determining the extent to which additional satellite data will increase the accuracy of this "blue carbon" accounting. Working in 6 U.S. estuaries (Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA), we built a tidal marsh biomass dataset (n=2404). Landsat reflectance data were matched spatially and temporally with field plots using Google Earth Engine. We quantified percent cover of green vegetation, non-vegetation, and open water in Landsat pixels using segmentation of 1m National Agriculture Imagery Program aerial imagery. Sentinel-1A C-band backscatter data were used in Chesapeake, Mississippi Delta and Puget Sound. We tested multiple Landsat vegetation indices and Sentinel backscatter metrics in 30m scale biomass linear regression models by region. Scaling biomass by fraction green vegetation significantly improved biomass estimation (e.g. Cape Cod: R2 = 0.06 vs. R2 = 0.60, n=28). The best vegetation indices differed by region, though indices based on the shortwave infrared-1 and red bands were most predictive in the Everglades and the Mississippi Delta, while the soil adjusted vegetation index was most predictive in Puget Sound and Chesapeake. Backscatter metrics significantly improved model predictions over vegetation indices alone; consistently across regions, the most significant metric was the range in backscatter values within the green vegetation segment of the Landsat pixel (e.g. Mississippi Delta: R2 = 0.47 vs. R2 = 0.59, n=15). Results support using remote sensing of biomass stock change to estimate greenhouse gas emission factors in tidal

  19. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  20. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1998-01-01

    This study aims to develop a dispersed cooperative intellectualized system technique and a sensing system required for construction of a robot group inspectable in patrol and maintainable in selfish in a plant with large scale and complex variety. In particular, in order to establish a system with flexibility response to environment and soundness durable to abnormal accident, a cooperative active sensing technique and real-time active vision sensing technique were started. On the base of last two years results, in 1996 fiscal year, important and expansion of each element technique was conducted to start a study on movement of focussing point which was an important function of the active vision sensing. (G.K.)

  1. Simulation and assessment of agricultural biomass supply chain systems

    Directory of Open Access Journals (Sweden)

    D. Pavlou

    2017-05-01

    Full Text Available Agricultural biomass supply chain consists of a number of interacted sequential operations affected by various variables, such as weather conditions, machinery systems, and biomass features. These facts make the process of biomass supply chain as a complex system that requires computational tools, e.g. simulation and mathematical models, for their assessment and analysis. A biomass supply chain simulation model developed on the ExtendSim 8 simulation environment is presented in this paper. A number of sequential operations are applied in order biomass to be mowed, harvested, and transported to a biorefinery facility. Different operational scenarios regarding the travel distance between field and biorefinery facility, number of machines, and capacity of machines are analyzed showing how different parameters affect the processes within biomass supply chain in terms of time and cost. The results shown that parameters such as area of the field, travel distance, number of available machines, capacity of the machines, etc. should be taken into account in order a less time and/ or cost consuming machinery combination to be selected.

  2. Intelligent hand-portable proliferation sensing system

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-01-01

    Argonne National Laboratory, with support from DOE's Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system

  3. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  4. LCA of biomass-based energy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    2012-01-01

    on the reference year 2008, energy scenarios for 2030 and 2050 were assessed. For 2050 three alternatives for supply of transport fuels were considered: (1) fossil fuels, (2) rapeseed based biodiesel, and (3) Fischer–Tropsch based biodiesel. Overall, the results showed that greenhouse gas emissions per PJ energy...... supplied could be significantly reduced (from 68 to 17 Gg CO2-eq/PJ) by increased use of wind and residual biomass resources as well as by electrifying the transport sector. Energy crops for production of biofuels and the use of these biofuels for heavy terrestrial transportation were responsible for most...... environmental impacts in the 2050 scenarios, in particular upstream impacts from land use changes (LUCs), fertilizer use and NOx emissions from the transport sector were critical. Land occupation (including LUC effects) caused by energy crop production increased to a range of 600–2100 × 106 m2/PJ depending...

  5. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1997-01-01

    Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled ''Economic Development through Biomass Systems Integration'', with the objective of investigating the feasibility of integrated biomass energy systems utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide., CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO 2 emissions are in the most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass. (author)

  6. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1996-01-01

    Electric Power Research Institute (EPRI) and US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled 'Economic Development through Biomass Systems Integration', with the objective to investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full cycle for four of these case studies, which have been examined with regard to the emissions of greenhouse gases, especially CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared to a 100% coal power system. By introducing a DFSS on former farmland, the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly, as much as 95%. The important conclusion is the great potential of reducing greenhouse gas emissions through the offset of coal by biomass. 23 refs,, 8 figs, 2 tabs

  7. Estimating above-ground biomass on mountain meadows and pastures through remote sensing

    Science.gov (United States)

    Barrachina, M.; Cristóbal, J.; Tulla, A. F.

    2015-06-01

    Extensive stock-breeding systems developed in mountain areas like the Pyrenees are crucial for local farming economies and depend largely on above-ground biomass (AGB) in the form of grass produced on meadows and pastureland. In this study, a multiple linear regression analysis technique based on in-situ biomass collection and vegetation and wetness indices derived from Landsat-5 TM data is successfully applied in a mountainous Pyrenees area to model AGB. Temporal thoroughness of the data is ensured by using a large series of images. Results of on-site AGB collection show the importance for AGB models to capture the high interannual and intraseasonal variability that results from both meteorological conditions and farming practices. AGB models yield best results at midsummer and end of summer before mowing operations by farmers, with a mean R2, RMSE and PE for 2008 and 2009 midsummer of 0.76, 95 g m-2 and 27%, respectively; and with a mean R2, RMSE and PE for 2008 and 2009 end of summer of 0.74, 128 g m-2 and 36%, respectively. Although vegetation indices are a priori more related with biomass production, wetness indices play an important role in modeling AGB, being statistically selected more frequently (more than 50%) than other traditional vegetation indexes (around 27%) such as NDVI. This suggests that middle infrared bands are crucial descriptors of AGB. The methodology applied in this work compares favorably with other works in the literature, yielding better results than those works in mountain areas, owing to the ability of the proposed methodology to capture natural and anthropogenic variations in AGB which are the key to increasing AGB modeling accuracy.

  8. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Hirai, Shigeoki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro

    1999-01-01

    In order to realize autonomous type nuclear plant, three-dimensional geometrical modelling method, and a basic technology on information collection and processing system preparation in some nuclear basic technology developments such as 'study on system evaluation of nuclear facility furnished with artificial intelligence for nuclear power' and 'study on adaptability evaluation of information collection and processing system into autonomous type plant' had already been developed. In this study, a study on sensing system required for constructing robot groups capable of conducting autonomously traveling inspection and maintenance in large scale, complicated and diverse plant has been processed by aiming at establishment of dispersed cooperative intelligent system technology. In 1997 fiscal year, integration of cooperative visual sensing technique was attempted. And, at the same time, upgrading of individual element technology and transportation method essential to the integrated system were investigated. As a result, an operative active sensing prototype system due to transportation robot groups furnished with real time processing capacity on diverse informations by integration of cooperative active sensing technique and real time active sensing technique developed independently plural transportation robot. (G.K.)

  9. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  10. Technoeconomic analysis of a biomass based district heating system

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    This paper discussed a proposed biomass-based district heating system to be built for the Pictou Landing First Nation Community in Nova Scotia. The community centre consists of 6 buildings and a connecting arcade. The methodology used to size and design heating, ventilating and air conditioning (HVAC) systems, as well as biomass district energy systems (DES) were discussed. Annual energy requirements and biomass fuel consumption predictions were presented, along with cost estimates. A comparative assessment of the system with that of a conventional oil fired system was also conducted. It was suggested that the design and analysis methodology could be used for any similar application. The buildings were modelled and simulated using the Hourly Analysis Program (HAP), a detailed 2-in-1 software program which can be used both for HVAC system sizing and building energy consumption estimation. A techno-economics analysis was conducted to justify the viability of the biomass combustion system. Heating load calculations were performed assuming that the thermostat was set constantly at 22 degrees C. Community centre space heating loads due to individual envelope components for 3 different scenarios were summarized, as the design architecture for the buildings was not yet finalized. It was suggested that efforts should be made to ensure air-tightness and insulation levels of the interior arcade glass wall. A hydronic distribution system with baseboard space heating units was selected, comprising of a woodchip boiler, hot water distribution system, convective heating units and control systems. The community has its own logging operation which will provide the wood fuel required by the proposed system. An outline of the annual allowable harvest covered by the Pictou Landing Forestry Management Plan was presented, with details of proposed wood-chippers for the creation of biomass. It was concluded that the woodchip combustion system is economically preferable to the

  11. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems

    Science.gov (United States)

    Saatchi, Sassan; Moghaddam, Mahta

    1995-01-01

    In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.

  12. Productivity and cost of conventional understory biomass harvesting systems

    Science.gov (United States)

    Douglas E. Miller; Thomas J. Straka; Bryce J. Stokes; William Watson

    1987-01-01

    Conventional harvesting equipment was tested for removing forest understory biomass (energywood) for use as fuel. Two types of systems were tested--a one-pass system and a two-pass system. In the one-pass system, the energywood and pulpwood were harvested simultaneously. In the two-pass system, the energywood was harvested in a first pass through the stand, and the...

  13. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  14. Soil microbial biomass in an agroforestry system of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Rosane C. Rodrigues

    2015-01-01

    Full Text Available Agroforestry systems (AFS are considered alternative land use options to help prevent soil degradation and improve soil microbial biomass and organic C status. However, it is unclear how different densities of babassu palm [Attalea speciosa (syn. Orbignya phalerata], which is an important tree in Northeast Brazil, affect the soil microbial biomass. We investigated the soil microbial biomass C and activity under AFS with different densities of babassu palm associated with Brachiaria brizantha grass. Soil microbial biomass C (MBC, soil microbial biomass N (MBN, MBC:total organic C ratio, fluorescein diacetate hydrolysis and dehydrogenase activity showed highest values in plots with high density of babassu palm. On the other hand, the respiratory quotient (qCO2 was significantly greater in plots without babassu palm. Brachiaria brizantha in monoculture may promote C losses from the soil, but AFS with high density of babassu palm may increase the potential of soils to accumulate C.Keywords: Enzyme activity, tropical soil, babassu palm, silvopastoral system, soil quality.DOI: 10.17138/TGFT(341-48

  15. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    Grado, S.C.; Strauss, C.H.

    1993-01-01

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L -1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  16. Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data

    Directory of Open Access Journals (Sweden)

    D. Stroppiana

    2010-12-01

    Full Text Available We compare five global inventories of monthly CO emissions named VGT, ATSR, MODIS, GFED3 and MOPITT based on remotely sensed active fires and/or burned area products for the year 2003. The objective is to highlight similarities and differences by focusing on the geographical and temporal distribution and on the emissions for three broad land cover classes (forest, savanna/grassland and agriculture. Globally, CO emissions for the year 2003 range between 365 Tg CO (GFED3 and 1422 Tg CO (VGT. Despite the large uncertainty in the total amounts, some common spatial patterns typical of biomass burning can be identified in the boreal forests of Siberia, in agricultural areas of Eastern Europe and Russia and in savanna ecosystems of South America, Africa and Australia. Regionally, the largest difference in terms of total amounts (CV > 100% and seasonality is observed at the northernmost latitudes, especially in North America and Siberia where VGT appears to overestimate the area affected by fires. On the contrary, Africa shows the best agreement both in terms of total annual amounts (CV = 31% and of seasonality despite some overestimation of emissions from forest and agriculture observed in the MODIS inventory. In Africa VGT provides the most reliable seasonality. Looking at the broad land cover types, the range of contribution to the global emissions of CO is 64–74%, 23–32% and 3–4% for forest, savanna/grassland and agriculture, respectively. These results suggest that there is still large uncertainty in global estimates of emissions and it increases if the comparison is carried by out taking into account the temporal (month and spatial (0.5° × 0.5° cell dimensions. Besides the area affected by fires, also vegetation characteristics and conditions at the time of burning should also be accurately parameterized since they can greatly influence the global estimates of CO emissions.

  17. Poster Abstract: Towards a Categorization Framework for Occupancy Sensing Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Lazarova-Molnar, Sanja; Jradi, Muhyiddine

    2015-01-01

    on occupancy sensing systems goes beyond basic methods, there is an increasing need for better comparison of proposed occupancy sensing systems. Developers of occupancy sensing systems are also lacking good frameworks for understanding different options when building occupancy sensing systems. This poster...

  18. Multichannel analog temperature sensing system

    International Nuclear Information System (INIS)

    Gribble, R.

    1985-08-01

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer

  19. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  20. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  1. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  2. Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda

    Directory of Open Access Journals (Sweden)

    Henry Matieu

    2011-10-01

    Full Text Available Abstract Background Assessing biomass is gaining increasing interest mainly for bioenergy, climate change research and mitigation activities, such as reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+. In response to these needs, a number of biomass/carbon maps have been recently produced using different approaches but the lack of comparable reference data limits their proper validation. The objectives of this study are to compare the available maps for Uganda and to understand the sources of variability in the estimation. Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset. Results The comparison of the biomass/carbon maps show strong disagreement between the products, with estimates of total aboveground biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution patterns. Compared to the reference map based on country-specific field data and a national Land Cover (LC dataset (estimating 468 Tg, maps based on biome-average biomass values, such as the Intergovernmental Panel on Climate Change (IPCC default values, and global LC datasets tend to strongly overestimate biomass availability of Uganda (ranging from 578 to 2201 Tg, while maps based on satellite data and regression models provide conservative estimates (ranging from 343 to 443 Tg. The comparison of the maps predictions with field data, upscaled to map resolution using LC data, is in accordance with the above findings. This study also demonstrates that the biomass estimates are primarily driven by the biomass reference data while the type of spatial maps used for their stratification has a smaller, but not negligible, impact. The differences in format, resolution and biomass definition used by the maps, as well as the fact that some datasets are not independent from the

  3. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  4. Dynamics of Technological Innovation Systems. The Case of Biomass Energy

    International Nuclear Information System (INIS)

    Negro, S.O.

    2007-01-01

    The starting point is that the current energy system largely depends on fossil fuels. This phenomenon, which is labelled as carbon lock-in, causes a long breakthrough period for renewable energy. The most suitable theoretical approach to analyse the development, diffusion and implementation of emergent technologies, such as renewable energy, is the Technological Innovation Systems' (TIS) perspective. This approach focuses on a particular technology and includes all those factors (institutions, actors, and networks) that influence its development. Recent research has identified several so-called System Functions that need to be fulfilled for a TIS to support successfully the evolution of a technology. In this paper we will use the following set of System Functions: F1: Entrepreneurial Activities, F2: Knowledge Development (learning), F3: Knowledge Diffusion through Networks, F4: Guidance of the Search, F5: Market Formation, F6: Resources Mobilisation, F7: Counteracting Resistance to Change (also Support from Advocacy Coalitions). By focusing on the System Functions the key processes that occur in a system which influence the development, diffusion and implementation of that technology will be identified and insight will be gained in the system dynamics. The System Functions are not independent but interact and influence each other. The nature of interactions whether they are positive or negative will influence the performance of the system respectively. Positive System Function fulfilment can lead to positive, i.e. virtuous cycles of processes that strengthen each other and lead to the building up of momentum that creates a process of creative destruction within the incumbent system. According to the same reasoning, a system in decline is characterised by one or more vicious cycles, where the System Functions interact and reinforce each other in a negative way. The results from the case studies showed that different functional patterns occurred for the Biomass

  5. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    Science.gov (United States)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  6. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  7. Initial results of the spatial distribution of rubber trees in Peninsular Malaysia using remotely sensed data for biomass estimate

    International Nuclear Information System (INIS)

    Shidiq, I P A; Ismail, M H; Kamarudin, N

    2014-01-01

    The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age

  8. Initial results of the spatial distribution of rubber trees in Peninsular Malaysia using remotely sensed data for biomass estimate

    Science.gov (United States)

    Shidiq, I. P. A.; Ismail, M. H.; Kamarudin, N.

    2014-02-01

    The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age.

  9. Economic development through biomass system integration: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M.M. [Northern States Power Co., Minneapolis, MN (United States)

    1995-10-01

    This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

  10. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  11. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  12. Laboratory Studies of Carbon Emission from Biomass Burning for use in Remote Sensing

    Science.gov (United States)

    Wald, Andrew E.; Kaufman, Yoram J.

    1998-01-01

    Biomass burning is a significant source of many trace gases in the atmosphere. Up to 25% of the total anthropogenic carbon dioxide added to the atmosphere annually is from biomass burning. However, this gaseous emission from fires is not directly detectable from satellite. Infrared radiance from the fires is. In order to see if infrared radiance can be used as a tracer for these emitted gases, we made laboratory measurements to determine the correlation of emitted carbon dioxide, carbon monoxide and total burned biomass with emitted infrared radiance. If the measured correlations among these quantities hold in the field, then satellite-observed infrared radiance can be used to estimate gaseous emission and total burned biomass on a global, daily basis. To this end, several types of biomass fuels were burned under controlled conditions in a large-scale combustion laboratory. Simultaneous measurements of emitted spectral infrared radiance, emitted carbon dioxide, carbon monoxide, and total mass loss were made. In addition measurements of fuel moisture content and fuel elemental abundance were made. We found that for a given fire, the quantity of carbon burned can be estimated from 11 (micro)m radiance measurements only within a factor of five. This variation arises from three sources, 1) errors in our measurements, 2) the subpixel nature of the fires, and 3) inherent differences in combustion of different fuel types. Despite this large range, these measurements can still be used for large-scale satellite estimates of biomass burned. This is because of the very large possible spread of fire sizes that will be subpixel as seen by Moderate Resolution Imaging Spectroradiometer (MODIS). Due to this large spread, even relatively low-precision correlations can still be useful for large-scale estimates of emitted carbon. Furthermore, such estimates using the MODIS 3.9 (micro)m channel should be even more accurate than our estimates based on 11 (micro)m radiance.

  13. Hybrid system for fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacin de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Mareda de Luna, 3, Zaragoza 50018, (Spain)

    2006-12-15

    Renewable energy sources are essential paths towards sustainable development and CO{sub 2} emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive use of this energy source is being avoided by some technical problems as fouling and slagging in the surfaces of boiler heat exchangers. Although these phenomena were extensively studied in the last decades in order to optimize the behaviour of large coal power boilers, a simple, general and effective method for fouling control has not been developed. For biomass boilers, the feedstock variability and the presence of new components in ash chemistry increase the fouling influence in boiler performance. In particular, heat transfer is widely affected and the boiler capacity becomes dramatically reduced. Unfortunately, the classical approach of regular sootblowing cycles becomes clearly insufficient for them. Artificial Intelligence (AI) provides new means to undertake this problem. This paper illustrates a methodology based on Neural Networks (NNs) and Fuzzy-Logic Expert Systems to select the moment for activating sootblowing in an industrial biomass boiler. The main aim is to minimize the boiler energy and efficiency losses with a proper sootblowing activation. Although the NN type used in this work is well-known and the Hybrid Systems had been extensively used in the last decade, the excellent results obtained in the use of AI in industrial biomass boilers control with regard to previous approaches makes this work a novelty. (Author)

  14. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    Science.gov (United States)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  15. Evaluating the remote sensing and inventory-based estimation of biomass in the western Carpathians

    Science.gov (United States)

    Magdalena Main-Knorn; Gretchen G. Moisen; Sean P. Healey; William S. Keeton; Elizabeth A. Freeman; Patrick Hostert

    2011-01-01

    Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used for...

  16. Biomass assessment of microbial surface communities by means of hyperspectral remote sensing data.

    Science.gov (United States)

    Rodríguez-Caballero, Emilio; Paul, Max; Tamm, Alexandra; Caesar, Jennifer; Büdel, Burkhard; Escribano, Paula; Hill, Joachim; Weber, Bettina

    2017-05-15

    Dryland vegetation developed morphological and physiological strategies to cope with drought. However, as aridity increases, vascular plant coverage gets sparse and microbially-dominated surface communities (MSC), comprising cyanobacteria, algae, lichens and bryophytes together with heterotropic bacteria, archaea and fungi, gain relevance. Nevertheless, the relevance of MSC net primary productivity has only rarely been considered in ecosystem scale studies, and detailed information on their contribution to the total photosynthetic biomass reservoir is largely missing. In this study, we mapped the spatial distribution of two different MSC (biological soil crusts and quartz fields hosting hypolithic crusts) at two different sites within the South African Succulent Karoo (Soebatsfontein and Knersvlakte). Then we characterized both types of MSC in terms of chlorophyll content, and combining these data with the biocrust and quartz field maps, we estimated total biomass values of MSCs and their spatial patterns within the two different ecosystems. Our results revealed that MSC are important vegetation components of the South African Karoo biome, revealing clear differences between the two sites. At Soebatsfontein, MSC occurred as biological soil crusts (biocrusts), which covered about one third of the landscape reaching an overall biomass value of ~480gha -1 of chlorophyll a+b at the landscape scale. In the Knersvlakte, which is characterized by harsher environmental conditions (i.e. higher solar radiation and potential evapotranspiration), MSC occurred as biocrusts, but also formed hypolithic crusts growing on the lower soil-immersed parts of translucent quartz pebbles. Whereas chlorophyll concentrations of biocrusts and hypolithic crusts where insignificantly lower in the Knersvlakte, the overall MSC biomass reservoir was by far larger with ~780gha -1 of chlorophyll a+b. Thus, the complementary microbially-dominated surface communities promoted biomass formation within

  17. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...... for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than...

  18. Biomass gasification systems for residential application: An integrated simulation approach

    International Nuclear Information System (INIS)

    Prando, Dario; Patuzzi, Francesco; Pernigotto, Giovanni; Gasparella, Andrea; Baratieri, Marco

    2014-01-01

    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  19. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  20. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  1. Economic and policy factors driving adoption of institutional woody biomass heating systems in the United States

    Science.gov (United States)

    Jesse D. Young; Nathaniel M. Anderson; Helen T. Naughton; Katrina Mullan

    2018-01-01

    Abundant stocks of woody biomass that are associated with active forest management can be used as fuel for bioenergy in many applications. Though factors driving large-scale biomass use in industrial settings have been studied extensively, small-scale biomass combustion systems commonly used by institutions for heating have received less attention. A zero inflated...

  2. Rapid deployable global sensing hazard alert system

    Science.gov (United States)

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  3. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  4. Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods

    International Nuclear Information System (INIS)

    Raciti, Steve M.; Hutyra, Lucy R.; Newell, Jared D.

    2014-01-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ∼ 1 m spatial scale. Mean tree canopy cover was estimated to be 25.5 ± 1.5% and carbon storage was 355 Gg (28.8 Mg C ha −1 ) for the City of Boston. Tree biomass was highest in forest patches (110.7 Mg C ha −1 ), but residential (32.8 Mg C ha −1 ) and developed open (23.5 Mg C ha −1 ) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R 2 = 0.26, p = 0.04) and correlated with Priority Planting Index values (R 2 = 0.55, p = 0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston

  5. Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods

    Energy Technology Data Exchange (ETDEWEB)

    Raciti, Steve M., E-mail: Steve.M.Raciti@Hofstra.edu [Department of Biology, Hofstra University, Gittleson Hall, Hempstead, NY 11549 (United States); Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Boston, MA 02215 (United States); Hutyra, Lucy R.; Newell, Jared D. [Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Boston, MA 02215 (United States)

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ∼ 1 m spatial scale. Mean tree canopy cover was estimated to be 25.5 ± 1.5% and carbon storage was 355 Gg (28.8 Mg C ha{sup −1}) for the City of Boston. Tree biomass was highest in forest patches (110.7 Mg C ha{sup −1}), but residential (32.8 Mg C ha{sup −1}) and developed open (23.5 Mg C ha{sup −1}) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R{sup 2} = 0.26, p = 0.04) and correlated with Priority Planting Index values (R{sup 2} = 0.55, p = 0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic

  6. Biomass Burning Emissions in the Cerrado of Brazil Computed with Remote Sensing Data and GIS

    Science.gov (United States)

    Guild, Liane S.; Brass, James A.; Chatfield, Robert B.; Hlavka, Christine A.; Riggan, Philip J.; Setzer, Alberto; Pereira, Joao A. Raposo; Peterson, David L. (Technical Monitor)

    1994-01-01

    Biomass burnin is a common force in much of the developing tropical world where it has wide-ranging environmental impacts. Fire is a component of tropical deforestation and is 0 p often used to clear broad expanses of land for shifting agriculture and cattle ranching. Frequent burning in the tropical savannas is a distinct problem from that of primary forest. In Brazil, most of the burning occurs in the cerrado which occupies approximately 1,800,000 km2, primarily on the great plateau in central Brazil. Wildland and agricultural fires are dramatic sources of regional air pollution in central Brazil. Biomass burning is an important source of a large number of trace gases including greenhouse gases and other chemically active species. Knowledge of trace gas emissions from biomass burning in Brazil is limited by a number of factors, most notably relative emission factors for gases from specific fire types/fuels and accurate estimates of temporal and spatial distribution and extent of fire activity. Estimates of trace gas emissions during September 1992 will be presented that incorporates a digital map of vegetation classes, pyrogenic emission factors calculated from ground and aircraft missions, and Instituto Nacional de Pesquisas Espaciais (INPE) fire products derived from Advanced Very High Resolution Radiometer (AVHRR) data. The regional emissions calculated from National Oceanographic and Atmospheric Administration (NOAA) AVHRR estimates of fire activity will provide an independent estimate for comparison with results obtained by the National Aeronautics and Space Administration (NASA) Transport and Atmospheric Chemistry Near the Equator - Atlantic (TRACE-A) experiments.

  7. Micro-system inertial sensing technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  8. Distributed fiber optic moisture intrusion sensing system

    Science.gov (United States)

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  9. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  10. Cosmic Ray Neutron Sensing in Complex Systems

    Science.gov (United States)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of

  11. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop

    Science.gov (United States)

    A radio-controlled unmanned helicopter-based LARS (Low-Altitude Remote Sensing) platform was used to acquire quality images of high spatial and temporal resolution, in order to estimate yield and total biomass of a rice crop (Oriza Sativa, L.). Fifteen rice field plots with five N-treatments (0, 33,...

  12. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    Science.gov (United States)

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  13. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating.

    Science.gov (United States)

    Lu, Xiaoman; Zheng, Guang; Miller, Colton; Alvarado, Ernesto

    2017-09-08

    Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% ( n = 35, p forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.

  14. Closed-loop system for growth of aquatic biomass and gasification thereof

    Science.gov (United States)

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  15. Chemical sensing underclothing system for testing PPE

    International Nuclear Information System (INIS)

    Slabotinsky, J.; Kralik, L.; Bradka, S.; Castulik, P.

    2009-01-01

    Personal protective equipment (PPE) when worn is subjected to pressure differentials across the garment due to ambient wind flow, by body movement and breathing creating the bellows effect, which may force hazardous chemicals vapor or aerosol through the closures, joints, outlet valves and/or clothing protective fabric. Thus the design, fit, size or improper donning of the protective garment will influence chemical-agent penetration. In order to determine penetration of chemical-protective garments by chemical vapor or aerosol, it is necessary to test the entire suit system, including seams, closures, outlet valves and areas of transition with other protective equipment, that is, at the ankles, waist, wrists, neck etc. In order to identify penetration of chemical vapor or aerosol through protective assembly, the Man-in-Simulant Test (MIST) with passive adsorptive devices (PADs) is used, when adsorbed challenging agent (simulant) is desorbed from the PAD and quantified. The current MIST method is failing in complexity of leak detection, due to limited number of passive collection points fixed on human body or a mannequin and very labor extensive work associated with allocation of 20-40 PADs and quantification of adsorbed agent. The Czech approach to detect and quantify penetration/permeation of chemical agent is based on chemical sensing underclothing enable to change the color when exposed with simulant or even with real CW agent. Color intensity and shape of stains on sensing fabric are processed with Laboratory Universal Computer Image Analysis (LUCIA) allowing determining the quantity and the allocation of the penetrating noxious agent(s). This method allows for example calculate individual doses of exposure, the breakthrough coefficient of protective garment as whole and uniquely precise allocation of penetration/permeation shortfalls. Presentation is providing detailed description of imaging system with nickname 'LUCY' in combination with testing mannequin

  16. Aboveground Biomass Monitoring over Siberian Boreal Forest Using Radar Remote Sensing Data

    Science.gov (United States)

    Stelmaszczuk-Gorska, M. A.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Aboveground biomass (AGB) plays an essential role in ecosystem research, global cycles, and is of vital importance in climate studies. AGB accumulated in the forests is of special monitoring interest as it contains the most of biomass comparing with other land biomes. The largest of the land biomes is boreal forest, which has a substantial carbon accumulation capability; carbon stock estimated to be 272 +/-23 Pg C (32%) [1]. Russian's forests are of particular concern, due to the largest source of uncertainty in global carbon stock calculations [1], and old inventory data that have not been updated in the last 25 years [2]. In this research new empirical models for AGB estimation are proposed. Using radar L-band data for AGB retrieval and optical data for an update of in situ data the processing scheme was developed. The approach was trained and validated in the Asian part of the boreal forest, in southern Russian Central Siberia; two Siberian Federal Districts: Krasnoyarsk Kray and Irkutsk Oblast. Together the training and testing forest territories cover an area of approximately 3,500 km2. ALOS PALSAR L-band single (HH - horizontal transmitted and received) and dual (HH and HV - horizontal transmitted, horizontal and vertical received) polarizations in Single Look Complex format (SLC) were used to calculate backscattering coefficient in gamma nought and coherence. In total more than 150 images acquired between 2006 and 2011 were available. The data were obtained through the ALOS Kyoto and Carbon Initiative Project (K&C). The data were used to calibrate a randomForest algorithm. Additionally, a simple linear and multiple-regression approach was used. The uncertainty of the AGB estimation at pixel and stand level were calculated approximately as 35% by validation against an independent dataset. The previous studies employing ALOS PALSAR data over boreal forests reported uncertainty of 39.4% using randomForest approach [2] or 42.8% using semi-empirical approach [3].

  17. Portable remote sensing image processing system; Kahangata remote sensing gazo shori system

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S; Uchida, K; Tanaka, S; Jingo, H [Dowa Engineering Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-10-22

    Recently, geological analysis using remote sensing data has been put into practice due to data with high spectral resolution and high spatial resolution. There has been a remarkable increase in both software and hardware of personal computer. Software is independent of hardware due to Windows. It has become easy to develop softwares. Under such situation, a portable remote sensing image processing system coping with Window 95 has been developed. Using this system, basic image processing can be conducted, and present location can be displayed on the image in real time by linking with GPS. Accordingly, it is not required to bring printed images for the field works of image processing. This system can be used instead of topographic maps for overseas surveys. Microsoft Visual C++ ver. 2.0 is used for the software. 1 fig.

  18. A microelectromechanically controlled cavity optomechanical sensing system

    International Nuclear Information System (INIS)

    Miao Houxun; Srinivasan, Kartik; Aksyuk, Vladimir

    2012-01-01

    Microelectromechanical systems (MEMS) have been applied to many measurement problems in physics, chemistry, biology and medicine. In parallel, cavity optomechanical systems have achieved quantum-limited displacement sensitivity and ground state cooling of nanoscale objects. By integrating a novel cavity optomechanical structure into an actuated MEMS sensing platform, we demonstrate a system with high-quality-factor interferometric readout, electrical tuning of the optomechanical coupling by two orders of magnitude and a mechanical transfer function adjustable via feedback. The platform separates optical and mechanical components, allowing flexible customization for specific scientific and commercial applications. We achieve a displacement sensitivity of 4.6 fm Hz -1/2 and a force sensitivity of 53 aN Hz -1/2 with only 250 nW optical power launched into the sensor. Cold-damping feedback is used to reduce the thermal mechanical vibration of the sensor by three orders of magnitude and to broaden the sensor bandwidth by approximately the same factor, to above twice the fundamental frequency of ≈40 kHz. The readout sensitivity approaching the standard quantum limit is combined with MEMS actuation in a fully integrated, compact, low-power, stable system compatible with Si batch fabrication and electronics integration. (paper)

  19. Combined methodology of optimization and life cycle inventory for a biomass gasification based BCHP system

    International Nuclear Information System (INIS)

    Wang, Jiang-Jiang; Yang, Kun; Xu, Zi-Long; Fu, Chao; Li, Li; Zhou, Zun-Kai

    2014-01-01

    Biomass gasification based building cooling, heating, and power (BCHP) system is an effective distributed energy system to improve the utilization of biomass resources. This paper proposes a combined methodology of optimization method and life cycle inventory (LCI) for the biomass gasification based BCHP system. The life cycle models including biomass planting, biomass collection-storage-transportation, BCHP plant construction and operation, and BCHP plant demolition and recycle, are constructed to obtain economic cost, energy consumption and CO 2 emission in the whole service-life. Then, the optimization model for the biomass BCHP system including variables, objective function and solution method are presented. Finally, a biomass BCHP case in Harbin, China, is optimized under different optimization objectives, the life-cycle performances including cost, energy and CO 2 emission are obtained and the grey incidence approach is employed to evaluate their comprehensive performances of the biomass BCHP schemes. The results indicate that the life-cycle cost, energy efficiency and CO 2 emission of the biomass BCHP system are about 41.9 $ MWh −1 , 41% and 59.60 kg MWh −1 respectively. The optimized biomass BCHP configuration to minimize the life-cycle cost is the best scheme to achieve comprehensive benefit including cost, energy consumption, renewable energy ratio, steel consumption, and CO 2 emission. - Highlights: • Propose the combined method of optimization and LCI for biomass BCHP system. • Optimize the biomass BCHP system to minimize the life-cycle cost, energy and emission. • Obtain the optimized life-cycle cost, energy efficiency and CO 2 emission. • Select the best biomass BCHP scheme using grey incidence approach

  20. Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions.

    Science.gov (United States)

    Knoblauch, Christoph; Watson, Conor; Berendonk, Clara; Becker, Rolf; Wrage-Mönnig, Nicole; Wichern, Florian

    2017-06-23

    The sustainable use of grasslands in intensive farming systems aims to optimize nitrogen (N) inputs to increase crop yields and decrease harmful losses to the environment at the same time. To achieve this, simple optical sensors may provide a non-destructive, time- and cost-effective tool for estimating plant biomass in the field, considering spatial and temporal variability. However, the plant growth and related N uptake is affected by the available N in the soil, and therefore, N mineralization and N losses. These soil N dynamics and N losses are affected by the N input and environmental conditions, and cannot easily be determined non-destructively. Therefore, the question arises: whether a relationship can be depicted between N fertilizer levels, plant biomass and N dynamics as indicated by nitrous oxide (N₂O) losses and inorganic N levels. We conducted a standardized greenhouse experiment to explore the potential of spectral measurements for analyzing yield response, N mineralization and N₂O emissions in a permanent grassland. Ryegrass was subjected to four mineral fertilizer input levels over 100 days (four harvests) under controlled environmental conditions. The soil temperature and moisture content were automatically monitored, and the emission rates of N₂O and carbon dioxide (CO₂) were detected frequently. Spectral measurements of the swards were performed directly before harvesting. The normalized difference vegetation index (NDVI) and simple ratio (SR) were moderately correlated with an increasing biomass as affected by fertilization level. Furthermore, we found a non-linear response of increasing N₂O emissions to elevated fertilizer levels. Moreover, inorganic N and extractable organic N levels at the end of the experiment tended to increase with the increasing N fertilizer addition. However, microbial biomass C and CO₂ efflux showed no significant differences among fertilizer treatments, reflecting no substantial changes in the soil

  1. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  2. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    Science.gov (United States)

    Hickey, S. M.; Callow, N. J.; Phinn, S.; Lovelock, C. E.; Duarte, C. M.

    2018-01-01

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling, while various forms of remote sensing has been used to map vegetation height and biomass. Here we combine both these approaches to investigate spatial patterns in living biomass of mangrove forests in a small area of mangrove in north-west Australia. This study used LiDAR data and Landsat 8 OLI (Operational Land Imager) with allometric equations to derive mangrove height, biomass, and C stock estimates. We estimated the study site, Mangrove Bay, a semi-arid site in north-western Australia, contained 70 Mg ha-1 biomass and 45 Mg C ha-1 organic C, with total stocks of 2417 Mg biomass and 778 Mg organic C. Using spatial statistics to identify the scale of clustering of mangrove pixels, we found that living biomass and C stock declined with increasing distance from hydrological features (creek entrance: 0-150 m; y = -0.00041x + 0.9613, R2 = 0.96; 150-770 m; y = -0.0008x + 1.6808, R2 = 0.73; lagoon: y = -0.0041x + 3.7943, R2 = 0.78). Our results illustrate a set pattern of living C distribution within the mangrove forest, and then highlight the role hydrologic features play in determining C stock distribution in the arid zone.

  3. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    Oakey, John; Simms, Nigel; Kilgallon, Paul

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  4. Opportunities for Small Biomass Power Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  5. Biomass based optimal cogeneration system for paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S.; Jayaraj, S. [National Inst. of Technology, Calicut (India)

    2008-07-01

    A mathematical model of a biomass supported steam turbine cogeneration system was presented. The multi-time interval non-linear model used genetic algorithms to determine optimal operating costs. The cogeneration system consisted of steam boilers; steam headers at different pressure levels; steam turbines operating at different capacities; and other auxiliary devices. System components were modelled separately to determine constraints and costs. Total costs were obtained by summing up costs corresponding to all equipment. Cost functions were fuel cost; grid electricity cost; grid electricity export revenues; start-up costs; and shut-down costs. The non-linear optimization model was formulated by considering equal intervals of 1-hour intervals. A case study of a typical paper industry plant system was considered using coal, black liquor, and groundnut shells. Results of the study showed that the use of groundnut shells as a fuel resulted in a savings of 11.1 per cent of the total monthly operating costs while delivering 48.6 MWh daily to the electricity grid after meeting the plant's total energy requirements. It was concluded that the model can be used to optimize cogeneration systems in paper plants. 14 refs., 3 tabs., 3 figs.

  6. Forest-Observation-System.net - towards a global in-situ data repository for biomass datasets validation

    Science.gov (United States)

    Shchepashchenko, D.; Chave, J.; Phillips, O. L.; Davies, S. J.; Lewis, S. L.; Perger, C.; Dresel, C.; Fritz, S.; Scipal, K.

    2017-12-01

    Forest monitoring is high on the scientific and political agenda. Global measurements of forest height, biomass and how they change with time are urgently needed as essential climate and ecosystem variables. The Forest Observation System - FOS (http://forest-observation-system.net/) is an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. FOS aims to link the Remote Sensing (RS) community with ecologists who measure forest biomass and estimating biodiversity in the field for a common benefit. The benefit of FOS for the RS community is the partnering of the most established teams and networks that manage permanent forest plots globally; to overcome data sharing issues and introduce a standard biomass data flow from tree level measurement to the plot level aggregation served in the most suitable form for the RS community. Ecologists benefit from the FOS with improved access to global biomass information, data standards, gap identification and potential improved funding opportunities to address the known gaps and deficiencies in the data. FOS closely collaborate with the Center for Tropical Forest Science -CTFS-ForestGEO, the ForestPlots.net (incl. RAINFOR, AfriTRON and T-FORCES), AusCover, Tropical managed Forests Observatory and the IIASA network. FOS is an open initiative with other networks and teams most welcome to join. The online database provides open access for both metadata (e.g. who conducted the measurements, where and which parameters) and actual data for a subset of plots where the authors have granted access. A minimum set of database values include: principal investigator and institution, plot coordinates, number of trees, forest type and tree species composition, wood density, canopy height and above ground biomass of trees. Plot size is 0.25 ha or large. The database will be essential for validating and calibrating

  7. Remote sensing of biomass burning in West Africa with NOAA-AVHRR

    International Nuclear Information System (INIS)

    Brustet, J.M.; Vickos, J.B.; Fontan, J.; Manissadjan, K.; Podaire, A.; Lavenu, F.

    1991-01-01

    Remote sensing measurements provide a valuable means of determining the extent of burning areas and estimating the overall distribution of the sources in time and space. The Advanced Very High Resolution Radiometer (NOAA-AVHRR) satellite is well adapted to a wide coverage of the large African savanna regions. It is necessary to watch the whole area even at times other then during the dry season, since two consecutive weeks without precipitation may be sufficient to allow the bushes to catch fire. The images examined in this chapter include the whole of West Africa - namely, within latitudes 5 degree and 14 degree N and 1 degree and 11 degree W. The study has been focused on a region that contains part of the Guinea territory, Mali, the Ivory Coast, and Burkina Faso

  8. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  9. Thermodynamic evaluation of biomass-to-biofuels production systems

    NARCIS (Netherlands)

    Piekarczyk, W.; Czarnowska, L.; Ptasinski, K.J.; Stanek, W.

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like

  10. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

    Science.gov (United States)

    Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances

  11. Mapping Carbon Storage in Urban Trees with Multi-source Remote Sensing Data: Relationships between Biomass, Land Use, and Demographics in Boston Neighborhoods

    Science.gov (United States)

    Raciti, S. M.; Hutyra, L.

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We develop a very high resolution map of urban tree biomass, assess the scale sensitivities in biomass estimation, compare our results with lower resolution estimates, and explore the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1 m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355 Gg (28.8 Mg C ha-1) for the City of Boston. Tree biomass was highest in forest patches (110.7 Mg C ha-1), but residential (32.8 Mg C ha-1) and developed open (23.5 Mg C ha-1) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R2=0.26, p=0.04) and correlated with Priority Planting Index values (R2=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in

  12. Energy from Biomass: technology assessment of small-medium scale biomass conversion systems

    OpenAIRE

    Cutz Ijchajchal, Luis Leonardo

    2016-01-01

    Mención Internacional en el título de doctor Bioenergy is a key resource to addressing challenges such as climate change (anthropogenic CO₂ emissions), pollution (suspended particles), energy security and human well-being. Currently, most of the biomass produced worldwide is consumed for cooking and space heating which has raised concerns among governments and policy-makers, especially due to threats to human health. The present thesis focuses on studying the technical and economic feasibi...

  13. Development of airborne remote sensing data assimilation system

    International Nuclear Information System (INIS)

    Gudu, B R; Bi, H Y; Wang, H Y; Qin, S X; Ma, J W

    2014-01-01

    In this paper, an airborne remote sensing data assimilation system for China Airborne Remote Sensing System is introduced. This data assimilation system is composed of a land surface model, data assimilation algorithms, observation data and fundamental parameters forcing the land surface model. In this data assimilation system, Variable Infiltration Capacity hydrologic model is selected as the land surface model, which also serves as the main framework of the system. Three-dimensional variation algorithm, four-dimensional variation algorithms, ensemble Kalman filter and Particle filter algorithms are integrated in this system. Observation data includes ground observations and remotely sensed data. The fundamental forcing parameters include soil parameters, vegetation parameters and the meteorological data

  14. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    Science.gov (United States)

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  15. ATRAN Terrain Sensing Guidance-The Grand-Daddy System

    Science.gov (United States)

    Koch, Richard F.; Evans, Donald C.

    1980-12-01

    ATRAN was the pioneer terrain sensing guidance system developed in the 1950 era and deployed in Europe on the Air Force's mobile, ground launched TM-76A MACE cruise missile in the late 1950's and early 1960's. The background, principles and technology are described for this system which was the forerunner of todays modern autonomous standoff terrain sensing guided weapons.

  16. A Ground Systems Template for Remote Sensing Systems

    Science.gov (United States)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  17. A ground systems template for remote sensing systems

    International Nuclear Information System (INIS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-01-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS

  18. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  19. Development of an integrated system for producing ethanol from biomass

    International Nuclear Information System (INIS)

    Foody, B.E.; Foody, K.J.

    1991-01-01

    Enzymatic hydrolysis is one of the leading approaches to producing ethanol from low cost biomass. Recent cost estimates suggest that ethanol produced from biomass could be competitive as a transportation fuel with gasoline at $20-25/BBL oil and less expensive than methanol. The process for making ethanol from biomass involves seven major steps: biomass production, pretreatment, enzyme production, enzymatic hydrolysis, fermentation, distillation, and by-product processing. Pretreatment makes the carbohydrate fraction of the biomass accessible to enzymatic attack. Cellulase enzymes are then used to hydrolyze the carbohydrates in biomass into fermentable sugar. The sugar is then fermented to ethanol and the ethanol purified by distillation. Three major cost estimates are available for making ethanol from biomass using a steam explosion pretreatment and enzymatic hydrolysis. These studies began with very different assumptions and as a result came to dramatically different conclusions about ethanol cost. When they are normalized to the same basis, however, their consensus is an expected ethanol cost of $1.64 ± 0.23/gal using technology implemented at Iogen's pilot plant in 1986. Since that time, technology advances have reduced the expected cost of ethanol to $0.77 ± 0.17/gal. Further technical improvements could reduce the cost by as much as $0.23/gal

  20. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  1. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  2. An application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in northeastern China.

    Science.gov (United States)

    Wang, Xinchuang; Shao, Guofan; Chen, Hua; Lewis, Bernard J; Qi, Guang; Yu, Dapao; Zhou, Li; Dai, Limin

    2013-09-01

    Monitoring the dynamics of forest biomass at various spatial scales is important for better understanding the terrestrial carbon cycle as well as improving the effectiveness of forest policies and forest management activities. In this article, field data and Landsat image data acquired in 1999 and 2007 were utilized to quantify spatiotemporal changes of forest biomass for Dongsheng Forestry Farm in Changbai Mountain region of northeastern China. We found that Landsat TM band 4 and Difference Vegetation Index with a 3 × 3 window size were the best predictors associated with forest biomass estimations in the study area. The inverse regression model with Landsat TM band 4 predictor was found to be the best model. The total forest biomass in the study area decreased slightly from 2.77 × 10(6) Mg in 1999 to 2.73 × 10(6) Mg in 2007, which agreed closely with field-based model estimates. The area of forested land increased from 17.9 × 10(3) ha in 1999 to 18.1 × 10(3) ha in 2007. The stabilization of forest biomass and the slight increase of forested land occurred in the period following implementations of national forest policies in China in 1999. The pattern of changes in both forest biomass and biomass density was altered due to different management regimes adopted in light of those policies. This study reveals the usefulness of the remote sensing-based approach for detecting and monitoring quantitative changes in forest biomass at a landscape scale.

  3. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  4. A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Sanjiangyuan Area

    International Nuclear Information System (INIS)

    Song, Weize; Jia, Haifeng; Liang, Shidong; Wang, Zheng; Liu, Shujie; Hao, Lizhuang; Chai, Shatuo

    2014-01-01

    Estimating forage biomass yield remotely from space is still challenging nowadays. Field experiments were conducted and ground measurements correlated to remote sensing data to estimate the forage biomass yield of Alpine-cold meadow grassland during the grass and grass-withering period in Sanjiangyuan area in Yushu county. Both Shapiro-Wilk and Kolmogorov-Smirnov two-tailed tests showed that the field training samples are normally distributed, the Spearman coefficient indicated that the parametric correlation analysis had significant differences. The optimal regression models were developed based on the Landsat Thematic Mapper Normalized Difference Vegetation Index (TM-NDVI) and the forage biomass field data during the grass and the grass-withering periods, respectively. Then an integration model was used to predict forage biomass yield of alpine-cold meadow in the grass-withering period. The model showed good prediction accuracy and reliability. It was found that this approach can not only estimate forage yield in large scale efficiently but also overcome the seasonal limitation of remote sensing inversion. This technique can provides valuable guidance to animal husbandry to resource more efficiently in winter

  5. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  6. Sustainability of biomass electricity systems. An estimate of costs, macro-economic and environmental impacts

    International Nuclear Information System (INIS)

    Van den Broek, R

    2001-01-01

    Since the 1990s there has been a renewal of interest in the possibility of sustainable generating energy from biomass, an interest driven in part by the climate issue. Other motives are the search for alternatives for parts of Western agriculture and progress in the technological feasibility of efficiently producing high-quality energy from biomass. World-wide this renewed interest has led to a clear increase in research, demonstration and commercial implementation of biomass energy systems. A recent thesis concludes that biomass can contribute to all aspects of sustainability. In the context of sustainable development (often viewed as a concept having economic, social and ecological dimensions), the central question asked by this Ph.D. research is: How do biomass electricity systems compare to fossil-fuel systems and to the land-use that they may replace, in terms of costs, macro-economic and environmental impacts. This article presents a number of conclusions

  7. Bridge SHM system based on fiber optical sensing technology

    Science.gov (United States)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  8. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  9. Biomass District Energy Trigeneration Systems: Emissions Reduction and Financial Impact

    International Nuclear Information System (INIS)

    Rentizelas, A.; Tolis, A.; Tatsiopoulos, I.

    2009-01-01

    Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances' value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases

  10. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    KAUST Repository

    Hickey, S.M.

    2017-11-10

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling, while various forms of remote sensing has been used to map vegetation height and biomass. Here we combine both these approaches to investigate spatial patterns in living biomass of mangrove forests in a small area of mangrove in north-west Australia. This study used LiDAR data and Landsat 8 OLI (Operational Land Imager) with allometric equations to derive mangrove height, biomass, and C stock estimates. We estimated the study site, Mangrove Bay, a semi-arid site in north-western Australia, contained 70 Mg ha−1 biomass and 45 Mg C ha−1 organic C, with total stocks of 2417 Mg biomass and 778 Mg organic C. Using spatial statistics to identify the scale of clustering of mangrove pixels, we found that living biomass and C stock declined with increasing distance from hydrological features (creek entrance: 0–150 m; y = −0.00041x + 0.9613, R2 = 0.96; 150–770 m; y = −0.0008x + 1.6808, R2 = 0.73; lagoon: y = −0.0041x + 3.7943, R2 = 0.78). Our results illustrate a set pattern of living C distribution within the mangrove forest, and then highlight the role hydrologic features play in determining C stock distribution in arid zone.

  11. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.

    Science.gov (United States)

    Kumar, Amit; Sokhansanj, Shahab; Flynn, Peter C

    2006-01-01

    This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8 x 10(6) dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/ stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4 x 10(6) dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.

  12. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  14. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density

  15. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  16. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  17. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  18. Robotic Tactile Sensing Technologies and System

    CERN Document Server

    Dahiya, Ravinder S

    2013-01-01

    Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. For this reason, the hardware, software and application related issues (and resulting trade-offs) that must be considered to make tactile sensing an effective component of robotic platforms are discussed in-depth.To this end, human touch sensing has also been explored. The design hints co...

  19. An applied methodology for assessment of the sustainability of biomass district heating systems

    Science.gov (United States)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2016-03-01

    In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.

  20. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  1. Resource Assessment for Microalgal/Emergent Aquatic Biomass Systems in the Arid Southwest: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, B. W.; Arthur, M. F.; Taft, L. G.; Wagner, C. K.; Lipinsky, E. S.; Litchfield, J. H.; McCandlish, C. D.; Clark, R.

    1982-12-23

    This research project has been designed to facilitate the eventual selection of biomass production systems using aquatic species (microalgal and emergent aquatic plant species (MEAP) which effectively exploit the potentially available resources of the Southwest.

  2. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lopez, P. Reche; Reyes, N. Ruiz; Gonzalez, M. Gomez; Jurado, F.

    2008-01-01

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  3. Analysing the past and exploring the future of sustainable biomass. Participatory stakeholder dialogue and technological innovation systems research

    NARCIS (Netherlands)

    Breukers, S.; Hisschemöller, M.; Cuppen, E.; Suurs, R.

    2014-01-01

    This paper explores the potential of combining technological innovation systems research with a participatory stakeholder dialogue, using empirical material from a dialogue on the options of sustainable biomass in the Netherlands and several historical studies into the emerging Dutch biomass

  4. Small-scale automated biomass energy heating systems: a viable option for remote Canadian communities?

    Energy Technology Data Exchange (ETDEWEB)

    McCallum, B. [Canadian Forest Service, Ottawa, ON (Canada). Industry, Economics and Programs Branch

    1997-12-31

    The potential benefits of wood energy (forest biomass) for space heating in Canada`s remote communities was discussed. Diesel fuel and heating oil must be transported into these communities to produce electricity and to heat large public buildings. Below the treeline, roundwood is often used to heat private homes. The move toward environmentally sustainable development has focussed much attention on renewable energy technologies such as biomass energy, (i.e. any form of energy derived from plant or animal materials). Wood is the most readily available biomass fuel in remote communities. Woodchips and sawmill waste can be burned in automated biomass heating systems which provide a convenient way to use low-grade wood to heat large buildings or groups of buildings which would not be feasible to heat with roundwood. It was shown that one cord of spruce can produce 1.5 tonnes of woodchips to ultimately displace 300 litres of heating oil. A description of a small-commercial and small-industrial biomass system was presented. The benefits of biomass were described as: (1) direct savings compared to high-cost oil heat, (2) increased circulation of energy dollars inside the community, and (3) employment opportunities in harvesting, processing and operating biomass systems. A steady supply of good quality woodchips to the heating plant must be ensured. 1 ref., 3 figs.

  5. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    Science.gov (United States)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.

    2015-07-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  6. Policy Impact on Economic Viability of Biomass Gasification Systems in Indonesia

    Directory of Open Access Journals (Sweden)

    Pranpreya Sriwannawit

    2016-03-01

    Full Text Available Indonesia is facing challenges on the lack of electricity access in rural areas and the management of agricultural waste. The utilization of waste-to-energy technology can help in mitigating these issues. The aim of this paper is to assess the economic viability of a biomass gasification system for rural electrification by investigating its competitiveness in relation to various government supports. Financial modelling is applied to calculate Net Present Value (NPV, Internal Rate of Return (IRR, and Levelized Cost of Electricity (LCOE. NPV and IRR results indicate that biomass gasification is an economically viable option when appropriate financial government supports exist. LCOE result indicates that biomass gasification system is already more economically competitive compared to diesel generator even without additional support but it is less competitive compared to the national electricity grid tariff. In conclusion, the biomass gasification system is an economically viable option for rural electrification in Indonesian context.

  7. Multi-source remote sensing data management system

    International Nuclear Information System (INIS)

    Qin Kai; Zhao Yingjun; Lu Donghua; Zhang Donghui; Wu Wenhuan

    2014-01-01

    In this thesis, the author explored multi-source management problems of remote sensing data. The main idea is to use the mosaic dataset model, and the ways of an integreted display of image and its interpretation. Based on ArcGIS and IMINT feature knowledge platform, the author used the C# and other programming tools for development work, so as to design and implement multi-source remote sensing data management system function module which is able to simply, conveniently and efficiently manage multi-source remote sensing data. (authors)

  8. Soft sensing of system parameters in membrane distillation

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-01-01

    Various examples of methods and systems are provided for soft sensing of system parameters in membrane distillation (MD). In one example, a system includes a MD module comprising a feed side and a permeate side separated by a membrane boundary layer

  9. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    Directory of Open Access Journals (Sweden)

    Antonio Rigueiro-Rodríguez

    2012-02-01

    Full Text Available Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener and beta (Jaccard and Magurran biodiversity for a period of four years in a P. radiata silvopastoral system. The experiment consisted of a randomized block design of two treatments (continuous and rotational grazing. Biomass, and species abundances were measured - biodiversity metrics were calculated based on these results for a two years of grazing and two years of post-grazing periods. Both continuous and rotational grazing systems were useful tools for reducing biomass and, therefore, fire risk. The rotational grazing system caused damage to the U. europaeus shrub, limiting its recovery once grazing was stopped. However, the more intensive grazing of U. europaeus plants under rotational had a positive effect on both alpha and beta biodiversity indexes due to the low capacity of food selection in the whole plot rather than continuous grazing systems. Biomass was not affected by the grazing system; however the rotational grazing system is more appropriate to reduce U. europaeus biomass and therefore forest fire risk at a long term and to enhance pasture biodiversity than the continuous grazing system.

  10. Explaining the failure of the Dutch innovation system for biomass digestion-A functional analysis

    International Nuclear Information System (INIS)

    Negro, Simona O.; Hekkert, Marko P.; Smits, Ruud E.

    2007-01-01

    Since the 1970s research on energy conversion technologies, such as biomass digestion, has been carried out in the Netherlands. However, after 30 years biomass digestion has not been implemented on large scale. The aim of this paper is to create insight into the underlying factors of this troublesome trajectory by applying the 'Functions of Innovation Systems' framework. This results in clear understanding of the (lack of) activities that took place in the innovation system of biomass digestion and the role of government policy in both inducing and blocking this development. The analysis provides several lessons to take into account when developing policies for the acceleration of the development and diffusion of biomass energy

  11. Performance of target detection algorithm in compressive sensing miniature ultraspectral imaging compressed sensing system

    Science.gov (United States)

    Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian

    2017-04-01

    Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.

  12. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Sosa, Amanda; McDonnell, Kevin; Devlin, Ger

    2016-01-01

    The energy sector is the major contributor to GHG (greenhouse gas emissions) in Ireland. Under EU Renewable energy targets, Ireland must achieve contributions of 40%, 12% and 10% from renewables to electricity, heat and transport respectively by 2020, in addition to a 20% reduction in GHG emissions. Life cycle assessment methodology was used to carry out a comprehensive, holistic evaluation of biomass-to-energy systems in 2020 based on indigenous biomass supply chains optimised to reduce production and transportation GHG emissions. Impact categories assessed include; global warming, acidification, eutrophication potentials, and energy demand. Two biomass energy conversion technologies are considered; co-firing with peat, and biomass CHP (combined heat and power) systems. Biomass is allocated to each plant according to a supply optimisation model which ensures minimal GHG emissions. The study shows that while CHP systems produce lower environmental impacts than co-firing systems in isolation, determining overall environmental impacts requires analysis of the reference energy systems which are displaced. In addition, if the aims of these systems are to increase renewable energy penetration in line with the renewable electricity and renewable heat targets, the optimal scenario may not be the one which achieves the greatest environmental impact reductions. - Highlights: • Life cycle assessment of biomass co-firing and CHP systems in Ireland is carried out. • GWP, acidification and eutrophication potentials, and energy demand are assessed. • Biomass supply is optimised based on minimising GHG emissions. • CHP systems cause lower environmental impacts than biomass co-firing with peat. • Displacing peat achieves higher GHG emission reductions than replacing fossil heat.

  13. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...

  14. Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock.

    Science.gov (United States)

    Senapati, P K; Behera, S

    2012-08-01

    Based on an entrained flow concept, a prototype atmospheric gasification system has been designed and developed in the laboratory for gasification of powdery biomass feedstock such as rice husks, coconut coir dust, saw dust etc. The reactor was developed by adopting L/D (height to diameter) ratio of 10, residence time of about 2s and a turn down ratio (TDR) of 1.5. The experimental investigation was carried out using coconut coir dust as biomass feedstock with a mean operating feed rate of 40 kg/h The effects of equivalence ratio in the range of 0.21-0.3, steam feed at a fixed flow rate of 12 kg/h, preheat on reactor temperature, product gas yield and tar content were investigated. The gasifier could able to attain high temperatures in the range of 976-1100 °C with gas lower heating value (LHV) and peak cold gas efficiency (CGE) of 7.86 MJ/Nm3 and 87.6% respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A software architecture for adaptive modular sensing systems.

    Science.gov (United States)

    Lyle, Andrew C; Naish, Michael D

    2010-01-01

    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  16. A Software Architecture for Adaptive Modular Sensing Systems

    Directory of Open Access Journals (Sweden)

    Andrew C. Lyle

    2010-08-01

    Full Text Available By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  17. Panorama 2010: Which biomass resources should be used to obtain a sustainable energy system?

    International Nuclear Information System (INIS)

    Lorne, D.

    2010-01-01

    Biomass is the leading renewable energy in the world today. Moreover, the introduction of biomass into energy systems presents certain advantages as far as reducing greenhouse gas emissions is concerned. However, its mobilization still presents many challenges relative to the competition between uses and the management of local natural resources (e.g. water, soil and biodiversity). Therefore, the technologies involved should be structured so that this resource can be developed to be truly sustainable. (author)

  18. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  19. Wireless sensing on surface hydrocarbon production systems

    International Nuclear Information System (INIS)

    Kane, D; McStay, D; Mulholland, J; Costello, L

    2009-01-01

    The use of wireless sensor networks for monitoring and optimising the performance of surface hydrocarbon production systems is reported. Wireless sensor networks are shown to be able to produce comprehensively instrumented XTs and other equipment that generate the data required by Intelligent Oilfield systems. The information produced by such systems information can be used for real-time operational control, production optimization and troubleshooting.

  20. Making sense of enterprise systems in institutions

    DEFF Research Database (Denmark)

    Svejvig, Per; Jensen, Tina Blegind

    2013-01-01

    Whereas previous research provides a number of accounts of failure prone enterprise system (ES) implementations, empirical evidence of the re-implementation of an accounting system in a Scandinavian high-tech company shows how the system became highly integrated, accepted by its users, and well......-aligned to the work processes. To learn from this case study, we investigate the interactive and dynamic relationships among the enterprise system, people and institutional properties. We investigate the institutional structures and the sensemaking processes at play to identify how the idea of an efficient accounting...... system travelled from a national to a local level, how the system moved from being highly customized to becoming a standard package and how the users’ enactment of the system reinforced existing institutional practices. Based on the findings, we frame our contributions into five lessons learned: (1...

  1. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  2. Making Sense of Alternative Assessment in a Qualitative Evaluation System

    Science.gov (United States)

    Rojas Serrano, Javier

    2017-01-01

    In a Colombian private English institution, a qualitative evaluation system has been incorporated. This type of evaluation poses challenges to students who have never been evaluated through a system that eliminates exams or quizzes and, as a consequence, these students have to start making sense of it. This study explores the way students face the…

  3. A Situated Cultural Festival Learning System Based on Motion Sensing

    Science.gov (United States)

    Chang, Yi-Hsing; Lin, Yu-Kai; Fang, Rong-Jyue; Lu, You-Te

    2017-01-01

    A situated Chinese cultural festival learning system based on motion sensing is developed in this study. The primary design principle is to create a highly interactive learning environment, allowing learners to interact with Kinect through natural gestures in the designed learning situation to achieve efficient learning. The system has the…

  4. Recommendation-Aware Smartphone Sensing System

    OpenAIRE

    Chen, Mu-Yen; Wu, Ming-Ni; Chen, Chia-Chen; Chen, Young-Long; Lin, Hsien-En

    2014-01-01

    The context-aware concept is to reduce the gap between users and information systems so that the information systems actively get to understand users’ context and demand and in return provide users with better experience. This study integrates the concept of context-aware with association algorithms to establish the context-aware recommendation systems (CARS). The CARS contains three modules and provides the product recommendations for users with their smartphone. First, the simple RSSI Indoo...

  5. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  6. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    Science.gov (United States)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients

  7. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  8. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  9. Biomass Combustion Control and Stabilization Using Low-Cost Sensors

    Directory of Open Access Journals (Sweden)

    Ján Piteľ

    2013-01-01

    Full Text Available The paper describes methods for biomass combustion process control and burning stabilization based on low-cost sensing of carbon monoxide emissions and oxygen concentration in the flue gas. The designed control system was tested on medium-scale biomass-fired boilers and some results are evaluated and presented in the paper.

  10. Unmanned aerial systems for photogrammetry and remote sensing: A review

    OpenAIRE

    Colomina, Ismael; Molina, Pere

    2014-01-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last...

  11. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  12. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  13. System applications CRC -Biomass + Coal; Aplicaciones Sistema CRC-Biomasa+Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Main object of Phase I of the project is to analyse the technical-economic feasibility of the combined use of biomass and coal for power generation in the Spanish region of Andalusia, by means of new medium-size independent power plants or using biomass as supplementary fuel in existing large coal power plants, including: -Analysis and classification of biomass and coal resources in the region -Technical-economic study of conventional alternatives using the steam cycle -Analysis of efficiency improvement provided by advanced Rankine-cycle technologies, like the SMR cycle -Analysis of alternatives based on parallel combined cycles using gas turbines, including advanced solutions, like the EAPI and CRC-EAPI systems. -Description and evaluation of different biomass drying systems. -Description and evaluation of the three main biomass gasification systems currently under development: atmospheric direct, atmospheric indirect and pressurized. Main objects of Phase II of the project are to analyse a specific application of the EAPI system to a real cogeneration plant project and to analyse the application of the CRC2 system to a commercial supercritical power plant, including technical-economic study of both applications. (Author)

  14. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  15. The use of remote sensing to estimate changes of seagrass extent and biomass in Cockburn Sound, Western Australia

    Science.gov (United States)

    Vidyan, S.

    2018-05-01

    The extent of seagrasses in Cockburn Sound was examined using Nearmap images of year 2010, 2012, 2014, and 2016 to be compared to the last assessment in 1999. It was identified that the seagrass coverage has increased by 231 Ha since 1999, with most of the growth occurred in the southern part. While the water quality in Cockburn Sound has improved, it is believed that there are other pressures affecting the slow growth rate of the seagrasses. Seagrass biomass was also evaluated using Landsat images of year 1994, 1999, 2010, 2012, 2014, and 2016 in addition to a field survey data of leaf biomass in 2016. Despite its increasing extent, seagrass in Cockburn Sound indicated a declining biomass since 1994, which is believed due to the changing nutrient content.

  16. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  17. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    International Nuclear Information System (INIS)

    Ren, Hongbo; Zhou, Weisheng; Nakagami, Ken'ichi; Gao, Weijun

    2010-01-01

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  18. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Meyer, Markus A; Seppelt, Ralf; Priess, Joerg A; Witing, Felix

    2016-01-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  19. BEMS systems give developer sixth sense.

    Science.gov (United States)

    Baillie, Jonathan

    2011-08-01

    Duty-bound under contracts with partner NHS PCTs, independent primary care contractors, and other community stakeholders who lease healthcare premises from it, to ensure that the buildings' energy systems and plant run efficiently and cost-effectively, Community Solutions, a leading investor in, and developer of, UK community-based health, social, and local authority services, is now standardising on Trend Controls' building energy management systems to ensure that such vital equipment runs within defined parameters, and that facilities without FM personnel on site day-to-day are kept both comfortable to work in, and fit-for-purpose.

  20. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm

  1. Material requirements for bio-inspired sensing systems

    Science.gov (United States)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  2. Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available Global interest in using biomass feedstock to produce heat and power is increasing. In this study, RETScreen modelling software was used to investigate the feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Weiss Kessel Multicratboiler system with 2 MW capacity using rice straw biomass as fuel and 10 units of RBI® CB0500 boilers with 144 kW capacity using natural gas as fuel were selected for the proposed biomass heating system. The total cost of the biomass heating project is US$ 786,390. The project has a pre-tax and after tax internal rate of return (IRR of 122.70%, simple payback period of 2.54 years, equity payback period of 0.83 year, a net present value of US$ 3,357,138.29, an annual lifecycle savings of US$ 262,617.91, a benefit-cost ratio of 21.83, an electricity cost of $0/kWh and a GHG reduction cost of −204.66 $/tCO₂. The annual GHG emission reduction is 1,283.2 tCO₂, which is equivalent to 118 hectares of forest absorbing carbon. The development and adoption of this renewable energy technology will save costs on buying conventional type of heating system and result in a large technical and economic potential for reducing greenhouse gas emissions which will satisfy the sustainable development goals.

  3. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  4. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs

    Directory of Open Access Journals (Sweden)

    Clement Atzberger

    2013-02-01

    Full Text Available Many remote sensing applications are devoted to the agricultural sector. Representative case studies are presented in the special issue “Advances in Remote Sensing of Agriculture”. To complement the examples published within the special issue, a few main applications with regional to global focus were selected for this review, where remote sensing contributions are traditionally strong. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. Five different applications have been selected, which are illustrated and described: (1 biomass and yield estimation, (2 vegetation vigor and drought stress monitoring, (3 assessment of crop phenological development, (4 crop acreage estimation and cropland mapping and (5 mapping of disturbances and land use/land cover (LULC changes. Many other applications exist, such as precision agriculture and irrigation management (see other special issues of this journal, but were not included to keep the paper concise. The paper starts with an overview of the main agricultural challenges. This section is followed by a brief overview of existing operational monitoring systems. Finally, in the main part of the paper, the mentioned applications are described and illustrated. The review concludes with some key recommendations.

  5. Parking Sensing and Information System: Sensors, Deployment, and Evaluation

    OpenAIRE

    Chen, Xiao; Zhen; Qian; Rajagopal, Ram; Stiers, Todd; Flores, Christopher; Kavaler, Robert; Williams III, Floyd

    2017-01-01

    This paper describes a smart parking sensing and information system that disseminates the parking availability information for public users in a cost-effective and efficient manner. The hardware framework of the system is built on advanced wireless sensor networks and cloud service over the Internet, and the system is highly scalable. The parking information provided to the users is set in the form of occupancy rates and expected cruising time. Both are obtained from our analytical algorithm ...

  6. Spatial partitioning of biomass and diversity in a lowland Bolivian forest: linking field and remote sensing measurements

    NARCIS (Netherlands)

    Broadbent, E.B.; Asner, G.P.; Peña-Claros, M.; Palace, M.; Soriano, M.

    2008-01-01

    Large-scale inventories of forest biomass and structure are necessary for both understanding carbon dynamics and conserving biodiversity. High-resolution satellite imagery is starting to enable structural analysis of tropical forests over large areas, but we lack an understanding of how tropical

  7. Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity using remote sensing in Savanna ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available and grass quantity, respectively. The objective of the study is to estimate and map leaf N and biomass as an indicator of rangeland quality and quantity using vegetation indices derived from one RapidEye image taken at peak productivity. The study...

  8. Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867...

  9. Optial sensing systems for microfluidic devices: a review

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Huskens, Jurriaan; Verboom, Willem

    2007-01-01

    This review deals with the application of optical sensing systems for microfluidic devices. In the “off-chip approach” macro-scale optical infrastructure is coupled, while the “on-chip approach” comprises the integration of micro-optical functions into microfluidic devices. The current progress of

  10. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  11. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    Science.gov (United States)

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Social sensing building reliable systems on unreliable data

    CERN Document Server

    Wang, Dong; Kaplan, Lance

    2015-01-01

    Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individu

  13. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  14. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  15. Intelligent Vision System for Door Sensing Mobile Robot

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-08-01

    Full Text Available Wheeled Mobile Robots find numerous applications in the Indoor man made structured environments. In order to operate effectively, the robots must be capable of sensing its surroundings. Computer Vision is one of the prime research areas directed towards achieving these sensing capabilities. In this paper, we present a Door Sensing Mobile Robot capable of navigating in the indoor environment. A robust and inexpensive approach for recognition and classification of the door, based on monocular vision system helps the mobile robot in decision making. To prove the efficacy of the algorithm we have designed and developed a ‘Differentially’ Driven Mobile Robot. A wall following behavior using Ultra Sonic range sensors is employed by the mobile robot for navigation in the corridors.  Field Programmable Gate Arrays (FPGA have been used for the implementation of PD Controller for wall following and PID Controller to control the speed of the Geared DC Motor.

  16. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  17. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  18. Sensory systems II senses other than vision

    CERN Document Server

    Wolfe, Jeremy M

    1988-01-01

    This series of books, "Readings from the Encyclopedia of Neuroscience." consists of collections of subject-clustered articles taken from the Encyclopedia of Neuroscience. The Encyclopedia of Neuroscience is a reference source and compendium of more than 700 articles written by world authorities and covering all of neuroscience. We define neuroscience broadly as including all those fields that have as a primary goal the under­ standing of how the brain and nervous system work to mediate/control behavior, including the mental behavior of humans. Those interested in specific aspects of the neurosciences, particular subject areas or specialties, can of course browse through the alphabetically arranged articles of the En­ cyclopedia or use its index to find the topics they wish to read. However. for those readers-students, specialists, or others-who will find it useful to have collections of subject-clustered articles from the Encyclopedia, we issue this series of "Readings" in paperback. Students in neuroscienc...

  19. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  20. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  1. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  2. Adaptive Sensing Based on Profiles for Sensor Systems

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-10-01

    Full Text Available This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission.

  3. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    Science.gov (United States)

    2014-05-21

    Computational devices can be chemically conjugated to different strands of DNA that are then self-assembled according to strict Watson − Crick binding rules... DNA -Enabled Integrated Molecular Systems for Computation and Sensing Craig LaBoda,† Heather Duschl,† and Chris L. Dwyer*,†,‡ †Department of...guided folding of DNA , inspired by nature, allows designs to manipulate molecular-scale processes unlike any other material system. Thus, DNA can be

  4. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  5. Biomass-fuelled PEMFC systems: Evaluation of two conversion paths relevant for different raw materials

    International Nuclear Information System (INIS)

    Guan, Tingting; Chutichai, Bhawasut; Alvfors, Per; Arpornwichanop, Amornchai

    2015-01-01

    Highlights: • Anaerobic digestion and gasification are viable biomass conversion technologies. • GF-PEMFC system yields a 20% electric efficiency and 57% thermal efficiency. • AD-PEMFC system has a 9% electric efficiency and 13% thermal efficiency. • AD-PEMFC system has an efficient land-use. • GF-PEMFC system has a high CO_2 emissions offset factor. - Abstract: Biomass-fuelled polymer electrolyte membrane fuel cells (PEMFCs) offer a solution for replacing fossil fuel with hydrogen production. This paper uses simulation methods for investigating biomass-fuelled PEMFCs for different raw materials and conversion paths. For liquid and solid biomass, anaerobic digestion (AD) and gasification (GF), respectively, are relatively viable and developed conversion technologies. Therefore, the AD-PEMFC system and the GF-PEMFC system are simulated for residential applications in order to evaluate the performance of the biomass-fuelled PEMFC systems. The results of the evaluation show that renewable hydrogen-rich gas from manure or forest residues is usable for the PEMFCs and makes the fuel cell stack work in a stable manner. For 100 kWe generation, the GF-PEMFC system yields an excellent technical performance with a 20% electric efficiency and 57% thermal efficiency, whereas the AD-PEMFC system only has an 9% electric efficiency and 13% thermal efficiency due to the low efficiency of the anaerobic digester (AD) and the high internal heat consumption of the AD and the steam reformer (SR). Additionally, in this study, the environmental performances of the AD-PEMFC and the GF-PEMFC in terms of CO_2 emission offset and land-use efficiency are discussed.

  6. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  7. Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system

    International Nuclear Information System (INIS)

    Wang, Chengshan; Liu, Yixin; Li, Xialin; Guo, Li; Qiao, Lei; Lu, Hai

    2016-01-01

    An energy management system for stand-alone microgrid composed of diesel generators, wind turbine generator, biomass generator and an ESS (energy storage system) is proposed in this paper. Different operation objectives are achieved by a hierarchical control structure with different time scales. Firstly, the optimal schedules of the diesel generators, wind turbine generator, biomass generator and ESS are determined fifteen minutes ahead according to the super short-term forecast of load and wind speed in the optimal scheduling layer. Comprehensive analysis which takes the uncertainty of load and wind speed into account is conducted in this layer to minimize the operation cost of the system and ensure a desirable range of the state of charge of the ESS. Secondly, the operation points of each unit are regulated dynamically to guarantee real-time power balance and safety range of diesel generation in the real-time control layer, based on which the response capability when suffering significant forecast deviation and other emergency issues, e.g. sudden load-up can be improved. Finally, the effectiveness of the proposed energy management strategy is verified on an RT-Lab based real-time simulation platform, and the economic performances with different types of ESS are analyzed as well. - Highlights: • A hierarchical control strategy is proposed for a stand-alone microgrid. • The uncertainties of load and wind speed have been considered. • Better economic performance and high reliability of the system can be achieved. • The influences of different energy storage systems have been analyzed.

  8. Carbon dioxide from integrated biomass energy systems - examples from case studies in USA

    International Nuclear Information System (INIS)

    Boman, U.

    1996-04-01

    This report is a result of a work by Vattenfall and Electric Power Research Institute (EPRI) to study a number of integrated biomass energy systems. The emphasis of this paper will be on the energy systems of the projects in Minnesota and New York. By introducing the dedicated feedstock supply system (DFSS), the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from the DFSS. External energy is required for the production of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing fossil fuels as external input fuels for production of biomass, we would get about 10-15 times more electric energy per unit fossil fuel, than we would get if the fossil fuel was utilized in a power directly. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly. But the reduction rate is related to the process and the whole integrated system. The reduction could possibly be increased further, by introducing more efficient methods in farming, transportation, and handling, and by selecting the best methods or technologies for conversion of biomass fuel to electricity. 25 refs, 8 figs, 8 tabs

  9. Scaling-up the biomass production of Cymbopogon citratus L. in temporary immersion system

    Directory of Open Access Journals (Sweden)

    Elisa Quiala

    2014-04-01

    Full Text Available Shoot-tips, collected from greenhouse-grown plants of Cymbopogon citratus L. (lemmon grass, were incubated on a semi-solid Murashige and Skoog (MS medium with 30% (w/v sucrose, and supplemented with 0.89 µM 6-benzyladenine (BA. After three weeks of culture shoots were individualized and then inoculated in 10 litres temporary immersion system (TIS containing 3 litres of the same basal MS liquid medium. The effects of three immersion frequency (immersion every 12, 6 and 4 hours on the production of biomass were studied. Three inoculum densities (forty, fifty and sixty shoots/TIS were also tested. The biomass growth was inûuenced by the immersion frequency. The highest proliferation rate (17.3 shoots/explants and the plant length (45.2 cm were obtained in plants immersed every 4 h. Also, the fresh and dry biomass weight (153.4 gFW and 24.8 gDW, respectively were higher in this treatment. The maximum biomass accumulation (185.2 gFW and 35.2 gDW was achieved after 30 days of culture when an inoculum density of 60 explants per TIS was used. For the first time, biomass of C. citratus has been produced in10 litres TIS. These results represent the first step in the scaling-up the biomass production of this medicinal plant in large temporary immersion bioreactors. Key words: automation, biomass growth, lemmon grass medicinal plant, tissue culture

  10. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  11. Unmanned aerial systems for photogrammetry and remote sensing: A review

    Science.gov (United States)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  12. Plantar Pressure Detection with Fiber Bragg Gratings Sensing System

    Directory of Open Access Journals (Sweden)

    Tsair-Chun Liang

    2016-10-01

    Full Text Available In this paper, a novel fiber-optic sensing system based on fiber Bragg gratings (FBGs to measure foot plantar pressure is proposed. This study first explores the Pedar-X insole foot pressure types of the adult-size chart and then defines six measurement areas to effectively identify four foot types: neutral foot, cavus foot, supinated foot and flat foot. The plantar pressure signals are detected by only six FBGs, which are embedded in silicone rubber. The performance of the fiber optic sensing is examined and compared with a digital pressure plate of i-Step P1000 with 1024 barometric sensors. In the experiment, there are 11 participants with different foot types to participate in the test. The Pearson correlation coefficient, which is determined from the measured results of the homemade fiber-optic plantar pressure system and i-Step P1000 plantar pressure plate, reaches up to 0.671 (p < 0.01. According to the measured results from the plantar pressure data, the proposed fiber optic sensing system can successfully identify the four different foot types. Measurements of this study have demonstrated the feasibility of the proposed system so that it can be an alternative for plantar pressure detection systems.

  13. Mechanics of localized slippage in tactile sensing and application to soft sensing systems

    CERN Document Server

    Ho, Anh-Van

    2014-01-01

    Localized slippage occurs during any relative sliding of soft contacts, ranging from human fingertips to robotic fingertips. Although this phenomenon is dominant for a very short time prior to gross slippage, localized slippage is a crucial factor for any to-be-developed soft sensing system to respond to slippage before it occurs. The content of this book addresses all aspects of localized slippage, including modeling and simulating it, as well as applying it to the construction of novel sensors with slip tactile perception.

  14. Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system

    International Nuclear Information System (INIS)

    Gómez-González, M.; López, A.; Jurado, F.

    2013-01-01

    Highlights: ► Method to determine the optimal location and size of biomass power plants. ► The proposed approach is a hybrid of PSO algorithm and optimal power flow. ► Comparison among the proposed algorithm and other methods. ► Computational costs are enough lower than that required for exhaustive search. - Abstract: This paper addresses generation of electricity in the specific aspect of finding the best location and sizing of biomass fueled gas micro-turbine power plants, taking into account the variables involved in the problem, such as the local distribution of biomass resources, biomass transportation and extraction costs, operation and maintenance costs, power losses costs, network operation costs, and technical constraints. In this paper a hybrid method is introduced employing discrete particle swarm optimization and optimal power flow. The approach can be applied to search the best sites and capacities to connect biomass fueled gas micro-turbine power systems in a distribution network among a large number of potential combinations and considering the technical constraints of the network. A fair comparison among the proposed algorithm and other methods is performed.

  15. Biomass boiler energy conversion system analysis with the aid of exergy-based methods

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Donaldson, Burl

    2015-01-01

    Highlights: • Conventional exergy analysis and advanced exergy analysis are performed. • The combustion process dominates the exergy destruction. • Increase excess air will decrease the overall boiler exergy efficiency. • Increase the SH temperatures will increase the overall boiler exergy efficiency. • The avoidable exergy destructions in the air heaters are very small. - Abstract: The objective of this paper is to establish a theoretical framework for the exergy analysis and advanced exergy analysis of a real biomass boiler. These analyses can be used for both the diagnosis and optimization of a biomass boiler as well as for the design of a new biomass boiler. Conventional exergy analysis is performed to recognize the source(s) of inefficiency and irreversibility and identify exergy destruction in different components of the biomass boiler. An advanced exergy analysis is performed to provide comprehensive information about the avoidable exergy destruction and real fuel-saving potential for each component, as well as the overall system. Sensitivity studies of several design parameters including the excess air, biomass moisture and steam parameters were evaluated. The results show that the maximum exergy destruction occurs in the combustion process, followed by the Water Walls (WW) & Radiant Superheater (RSH) and the Low Temperature Superheater (LTSH). The fuel-saving and exergy efficiency improvement strategies for different components are discussed in this paper

  16. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  17. Biomass energy systems program summary. Information current as of September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  18. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    Science.gov (United States)

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  19. A spatial model for the economic evaluation of biomass production systems

    International Nuclear Information System (INIS)

    Wei Liu; Phillips, V.D.; Singh, Devindar

    1992-01-01

    A system model for estimating short-rotation, intensive-culture woody biomass production costs, including establishment, maintenance, harvesting, and transport costs, was developed and applied to the island of Kauai. Using data from existing large-plot field trials, biomass yield of the tropical hardwood Eucalyptus saligna was predicted from site-specific factors such as local weather and soil conditions and management strategies. Possible harvesting systems were identified and associated harvesting costs were estimated. The distances from the plantation sites to a bio-conversion plant located at the Lihue sugar mill were calculated based on existing road networks. The delivered cost of biomass on a dollar per dry metric ton (Mg) basis was then calculated using a discounted cash flow method. A geographic information system was interfaced with the biomass system model to access a database and present results in map form. Under the most favorable management strategy modeled, approximately 330 x 10 3 dry Mg year -1 of Eucalyptus saligna could be produced from 12,000 ha at a delivered cost of $25-38 per dry Mg chips. (author)

  20. Controlled biomass removal - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems

    DEFF Research Database (Denmark)

    Morgenroth, E.

    1999-01-01

    the influence of the following processes on EBPR in biofilms was evaluated: (1) mass transfer limitation for oxygen (2) mass transfer limitation for organic substrate, (3) lack of controlled removal of biomass from the system. It was shown that mass transfer of soluble components (oxygen and organic substrate...

  1. Technoeconomic analysis of a biomass based district heating system. Paper no. IGEC-1-ID01

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    District energy systems (DES) that produce steam, hot water or chilled water at a central plant and then distribute that energy to buildings in the district for space heating, domestic hot water heating and air conditioning provide opportunities for increasing energy efficiency and reducing greenhouse gas (GHG) emissions. Use of biomass, such as wood, wood byproducts and wastes, fast-growing trees, agricultural crops and waste, in place of conventional fossil fuels to produce the thermal energy needed by a DES, presents further opportunities for reducing green house gas emissions as well as providing rural employment, and local solutions to rural and remote energy needs. In this paper, a technoeconomic analysis of a biomass based DES for a community center in Nova Scotia, Canada is presented. The methodology used to size and design the heating and ventilating system, as well as the biomass based DES is discussed. Annual energy requirement and biomass fuel consumption predictions are presented along with cost estimates. A comparative assessment of the economic feasibility of the system vis-a-vis a conventional oil fired system is conducted. While the results are specific to the particular application, the design and analysis methodology that is presented in the paper can be used for any similar application. (author)

  2. Biomass fuels in district heating systems. Final report. Biobrensel i fjernvarmesystem. Sluttrapport

    Energy Technology Data Exchange (ETDEWEB)

    Otterstad, B.

    1987-02-01

    The report deals with an energy conservation project on district heating. The project gives a cost comparison between a biomass fuelled system for the local water heating/electric power supply and the development of hydroelectric power. The computer program ESENTRAL is used in the simulation. 3 drawings.

  3. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    of the different operating conditions reveals an optimum for the chosen pressure ratio with respect to the resulting electrical efficiency. Furthermore, the SOFC operating temperature and fuel utilization should be maintained at a high level and the cathode temperature gradient maximized. Based on 1st and 2nd law...... based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP plants....... The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  4. Mixing height determination using remote sensing systems. General remarks

    Energy Technology Data Exchange (ETDEWEB)

    Beyrich, F. [BTU Cottbus, LS Umweltmeteorologie, Cottbus (Germany)

    1997-10-01

    Remote sensing systems can be considered today as a real alternative to classical soundings with respect to the MH (mixing height) determination. They have the basic advantage to allow continuous monitoring of the ABL (atmospheric boundary layer). Some technical issues which limit their operational use at present should be solved in the near future (frequency allocation, eye safety, costs). Taking into account specific operating conditions and the formulated-above requirements of a sounding system to be used for MH determination it becomes obvious that none of the available systems meets all of them, i.e., the `Mixing height-meter` does not exist. Therefore, reliable MH determination under a wide variety of conditions can be achieved only by integrating different instruments into a complex sounding system. The S-profiles provide a suitable data base for MH estimation from all types of remote sensing instruments. The criteria to deduce MH-values from these profiles should consider the structure type and the evolution stage of the ABL as well as the shape of the profiles. A certain kind of harmonization concerning these criteria should be achieved. MH values derived automatically from remote sensing data appear to be not yet reliable enough for direct operational use, they should be in any case critically examined by a trained analyst. Contemporary mathematical methods (wavelet transforms, fuzzy logics) are supposed to allow considerable progress in this field in the near future. (au) 19 refs.

  5. Large-scale production of Fischer-Tropsch diesel from biomass. Optimal gasification and gas cleaning systems

    International Nuclear Information System (INIS)

    Boerrigter, H.; Van der Drift, A.

    2004-12-01

    The paper is presented in the form of copies of overhead sheets. The contents concern definitions, an overview of Integrated biomass gasification and Fischer Tropsch (FT) systems (state-of-the-art, gas cleaning and biosyngas production, experimental demonstration and conclusions), some aspects of large-scale systems (motivation, biomass import) and an outlook

  6. Wearable Eating Habit Sensing System Using Internal Body Sound

    Science.gov (United States)

    Shuzo, Masaki; Komori, Shintaro; Takashima, Tomoko; Lopez, Guillaume; Tatsuta, Seiji; Yanagimoto, Shintaro; Warisawa, Shin'ichi; Delaunay, Jean-Jacques; Yamada, Ichiro

    Continuous monitoring of eating habits could be useful in preventing lifestyle diseases such as metabolic syndrome. Conventional methods consist of self-reporting and calculating mastication frequency based on the myoelectric potential of the masseter muscle. Both these methods are significant burdens for the user. We developed a non-invasive, wearable sensing system that can record eating habits over a long period of time in daily life. Our sensing system is composed of two bone conduction microphones placed in the ears that send internal body sound data to a portable IC recorder. Applying frequency spectrum analysis on the collected sound data, we could not only count the number of mastications during eating, but also accurately differentiate between eating, drinking, and speaking activities. This information can be used to evaluate the regularity of meals. Moreover, we were able to analyze sound features to classify the types of foods eaten by food texture.

  7. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  8. Current development of UAV sense and avoid system

    Science.gov (United States)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  9. Strain sensing systems tailored for tensile measurement of fragile wires

    Science.gov (United States)

    Nyilas, Arman

    2005-12-01

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system.

  10. Strain sensing systems tailored for tensile measurement of fragile wires

    International Nuclear Information System (INIS)

    Nyilas, Arman

    2005-01-01

    Fundamental stress versus strain measurements were completed on superconducting Nb 3 Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb 3 Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb 3 Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb 3 Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb 3 Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  11. A Privacy-Preserving Incentive Mechanism for Participatory Sensing Systems

    Directory of Open Access Journals (Sweden)

    Xiaoguang Niu

    2018-01-01

    Full Text Available The proliferation of mobile devices has facilitated the prevalence of participatory sensing applications in which participants collect and share information in their environments. The design of a participatory sensing application confronts two challenges: “privacy” and “incentive” which are two conflicting objectives and deserve deeper attention. Inspired by physical currency circulation system, this paper introduces the notion of E-cent, an exchangeable unit bearer currency. Participants can use the E-cent to take part in tasks anonymously. By employing E-cent, we propose an E-cent-based privacy-preserving incentive mechanism, called EPPI. As a dynamic balance regulatory mechanism, EPPI can not only protect the privacy of participant, but also adjust the whole system to the ideal situation, under which the rated tasks can be finished at minimal cost. To the best of our knowledge, EPPI is the first attempt to build an incentive mechanism while maintaining the desired privacy in participatory sensing systems. Extensive simulation and analysis results show that EPPI can achieve high anonymity level and remarkable incentive effects.

  12. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    Science.gov (United States)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  13. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    International Nuclear Information System (INIS)

    Dutta, Anindita; Ray, Manas Ranjan; Banerjee, Anirban

    2012-01-01

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM 10 and PM 2.5 , respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM 10 and PM 2.5 levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on cardiovascular health was

  14. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anindita, E-mail: anidu14@gmail.com [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  15. State-Of in Uav Remote Sensing Survey - First Insights Into Applications of Uav Sensing Systems

    Science.gov (United States)

    Aasen, H.

    2017-08-01

    UAVs are increasingly adapted as remote sensing platforms. Together with specialized sensors, they become powerful sensing systems for environmental monitoring and surveying. Spectral data has great capabilities to the gather information about biophysical and biochemical properties. Still, capturing meaningful spectral data in a reproducible way is not trivial. Since a couple of years small and lightweight spectral sensors, which can be carried on small flexible platforms, have become available. With their adaption in the community, the responsibility to ensure the quality of the data is increasingly shifted from specialized companies and agencies to individual researchers or research teams. Due to the complexity of the data acquisition of spectral data, this poses a challenge for the community and standardized protocols, metadata and best practice procedures are needed to make data intercomparable. In November 2016, the ESSEM COST action Innovative optical Tools for proximal sensing of ecophysiological processes (OPTIMISE; http://optimise.dcs.aber.ac.uk/) held a workshop on best practices for UAV spectral sampling. The objective of this meeting was to trace the way from particle to pixel and identify influences on the data quality / reliability, to figure out how well we are currently doing with spectral sampling from UAVs and how we can improve. Additionally, a survey was designed to be distributed within the community to get an overview over the current practices and raise awareness for the topic. This talk will introduce the approach of the OPTIMISE community towards best practises in UAV spectral sampling and present first results of the survey (http://optimise.dcs.aber.ac.uk/uav-survey/). This contribution briefly introduces the survey and gives some insights into the first results given by the interviewees.

  16. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system

    International Nuclear Information System (INIS)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2015-01-01

    Power generation from co-utilization of coal and biomass is very attractive since this technology can not only save the coal resource but make sufficient utilization of biomass. In addition, with this concept, net carbon discharge per unit electric power generation can also be sharply reduced. In this work, a coal/biomass co-hydrogasification based chemical looping power generation system is presented and analyzed with the assistance of Aspen Plus. The effects of different operating conditions including the biomass mass fraction, R_b, the hydrogen recycle ratio, R_h_r, the hydrogasification pressure, P_h_g, the iron to fuel mole ratio, R_i_f, the reducer temperature, T_r_e, the oxidizer temperature, T_o_x, and the fuel utilization factor, U_f of the SOFC (solid oxide fuel cell) on the system operation results including the energy efficiency, η_e, the total energy efficiency, η_t_e, the exergy efficiency, η_e_x, the total exergy efficiency, η_t_e_x and the carbon capture rate, η_c_c, are analyzed. The energy and exergy balances of the whole system are also calculated and the corresponding Sankey diagram and Grassmann diagram are drawn. Under the benchmark condition, exergy efficiencies of different units in the system are calculated. η_t_e, η_t_e_x and η_c_c of the system are also found to be 43.6%, 41.2% and 99.1%, respectively. - Highlights: • A coal/biomass co-hydrogasification based chemical looping power generation system is setup. • Sankey and Grassmann diagrams are presented based on the energy and exergy balance calculations. • Sensitivity analysis is done to understand the system operation characteristics. • Total energy and exergy efficiencies of this system can be 43.6% and 41.2%, respectively. • About 99.1% of the carbon contained in coal and biomass can be captured in this system.

  17. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  19. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  20. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  1. Dynamics of Technological Innovation Systems : The case of biomass energy

    NARCIS (Netherlands)

    Negro, S.O.

    2007-01-01

    The starting point is that the current energy system is largely dependant on fossil fuels. This phenomenon, which is labelled as carbon lock-in by Unruh (2000), makes the breakthrough of renewable energies long, slow, and tedious. The most suitable theoretical approach to analyse the development,

  2. Modal sensing and control of paraboloidal shell structronic system

    Science.gov (United States)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2018-02-01

    Paraboloidal shells of revolution are commonly used as important components in the field of advanced aerospace structures and aviation mechanical systems. This study is to investigate the modal sensing behavior and the modal vibration control effect of distributed PVDF patches laminated on the paraboloidal shell. A paraboloidal shell sensing and control testing platform is set up first. Frequencies of lower order modes of the shell are obtained with the PVDF sensor and compared with the previous testing results to prove its accuracy. Then sensor patches are laminated on different positions (or different sides) of the shell and tested to reveal the relation between the sensing behaviors and their locations. Finally, a mathematical model of the structronic system is built by parameter identifications and the transfer function is derived. Independent and coupled modal controllers are designed based on the pole placement method and modal vibration control experiments are performed. The amplitude suppression ratio of each mode controlled by the pole placement controller is calculated and compared with the results obtained by using a PPF controller. Advantages of both methods are concluded and suggestions are given on how to choose control algorithm for different purpose.

  3. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    OpenAIRE

    Ortwein Andreas

    2016-01-01

    Against the background of greenhouse gases causing climate change, combined heat and power (CHP) systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated) electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat), different techno...

  4. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R P [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  5. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  6. The Agri-Territorial Energy System: Energy from Biomass as a Tool in Local Development

    International Nuclear Information System (INIS)

    Tritz, Yvan

    2012-01-01

    Biomass is a high-potential energy source whose development has been one of the primary objectives of the debate over the environment in France. Among the projects emerging today, we highlight two types of logics: large-scale projects such as electrical power or biofuel production plants, and smaller, local initiatives launched in rural areas. This paper lays down and illustrates the bases for the Agri-Territorial Energy System (ATES). This was inspired by Local Productive Systems and Localized Agri-food Systems, and the concept was set up on the basis of analyses of local projects involving biomass energy production. The ATES option offers strong local rooting and an organizational innovation process linking multi-stake holders. The concept is illustrated by two case studies: the Miscanthus project in Ammerzwiller (Alsace), and the Bois Bocage energy project in Orne (Basse-Normandie). These examples bring up an important point, namely the multifunctional dimension of the ATES concept

  7. Zombie algorithms: a timesaving remote sensing systems engineering tool

    Science.gov (United States)

    Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen

    2008-08-01

    In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.

  8. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  9. Location Optimization for Biomass Trigeneration System with Pit Thermal Energy Storage: the Case of the City of Petrinja

    DEFF Research Database (Denmark)

    Ćosić, B.; Dominkovic, Dominik Franjo; Ban, M.

    2015-01-01

    The combined production of electricity, heat and cold in biomass trigeneration power plants integrated with seasonal pit thermal energy storage ensures maximum utilization of biomass resources and at the same time reduction of variable operation costs of the system. Beside optimal size of trigene...

  10. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  11. Small scale biomass heating systems: Standards, quality labelling and market driving factors - An EU outlook

    International Nuclear Information System (INIS)

    Verma, V.K.; De Ruyck, J.; Bram, S.

    2009-01-01

    In the present study a comparative evaluation of several existing quality labels and standards for small scale biomass heating systems (BHS) and the biomass fuels they use was performed. With the introduction of pellet fuels, biomass heating technology achieved enough maturity to successfully compete with oil/gas heating devices in terms of ease of use, utilization of energy and pollutant emissions. From indoor air quality and related health risks point of view, quality labelling of both BHS and fuel they use leads to stricter emissions, efficiency and safety requirements as compared to National and EU standards. Several measures supporting this green energy market in the active countries (Sweden, Nordic countries, Germany, France and Austria) were investigated. It was found that policies and financial incentives such as the Finance Law (2005-2009) in France and Market Incentives Programme (1999-2006) in Germany are the most successful. German regulations and quality label (Blue Angel) provide the stringent quality requirements for residential BHS. In Belgium, Wallonia is the most active region for biomass energy utilization (83.5 MW for residential heating in 2007). A quality label for small scale BHS however does not yet exist. An equivalent label (Optimaz) exists for oil fired residential boilers. Emphasis has been placed upon using Optimaz as a reference and to compare with other existing quality labels. As a result, an effort had been made to move ahead in the preliminary study for development of a quality label for Belgian. (author)

  12. Harmonic analysis in integrated energy system based on compressed sensing

    International Nuclear Information System (INIS)

    Yang, Ting; Pen, Haibo; Wang, Dan; Wang, Zhaoxia

    2016-01-01

    Highlights: • We propose a harmonic/inter-harmonic analysis scheme with compressed sensing theory. • Property of sparseness of harmonic signal in electrical power system is proved. • The ratio formula of fundamental and harmonic components sparsity is presented. • Spectral Projected Gradient-Fundamental Filter reconstruction algorithm is proposed. • SPG-FF enhances the precision of harmonic detection and signal reconstruction. - Abstract: The advent of Integrated Energy Systems enabled various distributed energy to access the system through different power electronic devices. The development of this has made the harmonic environment more complex. It needs low complexity and high precision of harmonic detection and analysis methods to improve power quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on compressed sensing theory. The proposed scheme enables the performance of the functions of compressive sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction precision. One of the actual microgrid systems is used as simulation example. The results of the experiment shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection with low computing complexity, and has good

  13. Kingfisher: a system for remote sensing image database management

    Science.gov (United States)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  14. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  15. Exergetic assessment of an integrated gasifier/boiler system for hydrogen production with different biomass types

    International Nuclear Information System (INIS)

    Kalinci, Y.; Hepbasli, A.; Dincer, I.

    2009-01-01

    In this study, we utilize some experimental data taken from the literature, especially on the air blown gasification characteristics of six different biomass fuels, namely almond shell (ASF), walnut pruning (WPF), rice straw (RSF), whole tree wood chips (WWF), sludge (SLF) and non-recyclable waste paper (NPF) for hydrogen production from an integrated gasifier-boiler power system. Then, we undertake an exergy analysis of this integrated system and assess its performance through energy and exergy efficiencies. The exergy content values calculated for the biomass fuels range from 15.89 to 22.07 MJ/kg. The stack gas is examined at cyclone out, and the hydrogen concentrations determined change between 7 and 18 (%v/v) for NPF and ASF. Furthermore, the system considered is studied in terms of irreversibility and improvement potential rates. These rate values change from 6.82 to 43.11 kW for irreversibility and 6.01 to 41.24 kW for improvement potential, respectively. The exergy efficiencies of the system are calculated as 4.33 to 11.89%. Finally, we consider N and NH 3 contents of the six biomass fuels and their stack gas compositions. (author)

  16. Examination of a microwave sensing system using superconducting devices

    International Nuclear Information System (INIS)

    Sekiya, N.; Mukaida, M.; Saito, A.; Hirano, S.; Oshima, S.

    2005-01-01

    We have designed and fabricated a microwave sensing system integrated with superconducting devices which can detect motion for crime prevention and security purposes. The system consists of a transmitting antenna, a receiving antenna, a power divider as a directional coupler, and a mixer. The antennas and the directional coupler were fabricated using 50-nm thick YBa 2 Cu 3 O 7-δ (YBCO) thin films. A superconducting antenna with a resonant frequency of 10.525 GHz and a superconducting directional coupler were designed and fabricated for the system. A Schottky barrier diode was used as a mixer. These devices were integrated and their operation as a sensor was examined. Comparisons of the output voltage of the IF signal amplifier showed that the superconducting integrated sensor system was superior to the normal conductor sensor

  17. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  18. A decision support system for planning biomass-based energy production

    Energy Technology Data Exchange (ETDEWEB)

    Frombo, Francesco; Robba, Michela [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy); Renewable Energy Laboratory, Modelling and Optimization, Via A. Magliotto 2, 17100 Savona (Italy); Minciardi, Riccardo; Sacile, Roberto [DIST, Department of Communication, Computer and System Sciences, University of Genoa, Via Opera Pia 13, 16145 Genova (Italy)

    2009-03-15

    Environmental decision support systems (EDSS) are recognized as valuable tools for environmental planning and management. In this paper, a geographic information system (GIS)-based EDSS for the optimal planning of forest biomass use for energy production is presented. A user-friendly interface allows the creation of Scenarios and the running of the developed decision and environmental models. In particular, the optimization model regards decisions over a long-term period (e.g. years) and includes decision variables related to plant locations, conversion processes (pyrolisis, gasification, combustion), harvested biomass. Moreover, different energy products and different definitions of the harvesting and pre-treatment operations are taken into account. The correct management of the forest is considered through specific constraints, security factors, and procedures for parcel selection. The EDSS features and capabilities are described in detail, with specific reference to a case study. Discussion and further research are reported. (author)

  19. Developing in situ non-destructive estimates of crop biomass to address issues of scale in remote sensing

    Science.gov (United States)

    Marshall, Michael T.; Thenkabail, Prasad S.

    2015-01-01

    Ground-based estimates of aboveground wet (fresh) biomass (AWB) are an important input for crop growth models. In this study, we developed empirical equations of AWB for rice, maize, cotton, and alfalfa, by combining several in situ non-spectral and spectral predictors. The non-spectral predictors included: crop height (H), fraction of absorbed photosynthetically active radiation (FAPAR), leaf area index (LAI), and fraction of vegetation cover (FVC). The spectral predictors included 196 hyperspectral narrowbands (HNBs) from 350 to 2500 nm. The models for rice, maize, cotton, and alfalfa included H and HNBs in the near infrared (NIR); H, FAPAR, and HNBs in the NIR; H and HNBs in the visible and NIR; and FVC and HNBs in the visible; respectively. In each case, the non-spectral predictors were the most important, while the HNBs explained additional and statistically significant predictors, but with lower variance. The final models selected for validation yielded an R2 of 0.84, 0.59, 0.91, and 0.86 for rice, maize, cotton, and alfalfa, which when compared to models using HNBs alone from a previous study using the same spectral data, explained an additional 12%, 29%, 14%, and 6% in AWB variance. These integrated models will be used in an up-coming study to extrapolate AWB over 60 × 60 m transects to evaluate spaceborne multispectral broad bands and hyperspectral narrowbands.

  20. Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing

    Directory of Open Access Journals (Sweden)

    Michael Marshall

    2015-01-01

    Full Text Available Ground-based estimates of aboveground wet (fresh biomass (AWB are an important input for crop growth models. In this study, we developed empirical equations of AWB for rice, maize, cotton, and alfalfa, by combining several in situ non-spectral and spectral predictors. The non-spectral predictors included: crop height (H, fraction of absorbed photosynthetically active radiation (FAPAR, leaf area index (LAI, and fraction of vegetation cover (FVC. The spectral predictors included 196 hyperspectral narrowbands (HNBs from 350 to 2500 nm. The models for rice, maize, cotton, and alfalfa included H and HNBs in the near infrared (NIR; H, FAPAR, and HNBs in the NIR; H and HNBs in the visible and NIR; and FVC and HNBs in the visible; respectively. In each case, the non-spectral predictors were the most important, while the HNBs explained additional and statistically significant predictors, but with lower variance. The final models selected for validation yielded an R2 of 0.84, 0.59, 0.91, and 0.86 for rice, maize, cotton, and alfalfa, which when compared to models using HNBs alone from a previous study using the same spectral data, explained an additional 12%, 29%, 14%, and 6% in AWB variance. These integrated models will be used in an up-coming study to extrapolate AWB over 60 × 60 m transects to evaluate spaceborne multispectral broad bands and hyperspectral narrowbands.

  1. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    2012-01-01

    In this study, energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle (ORC) are presented. Four cases are considered for analysis: electrical-power, cooling-cogeneration, heating-cogeneration and trigeneration cases. The results obtained reveal that the best performance of the trigeneration system considered can be obtained with the lowest ORC evaporator pinch temperature considered, T pp = 20 K, and the lowest ORC minimum temperature, T 9 = 345 K. In addition, this study reveals that there is a significant improvement when trigeneration is used as compared to only electrical power production. This study demonstrates that the fuel utilization efficiency increases, in average, from 12% for electrical power to 88% for trigeneration. Moreover, the maximum exergy efficiency of the ORC is 13% and, when trigeneration is used, it increases to 28%. Furthermore, this study reveals that the electrical to cooling ratio can be controlled through changing the ORC evaporator pinch point temperature and/or the pump inlet temperature. In addition, the study reveals that the biomass burner and the ORC evaporator are the main two sources of exergy destruction. The biomass burner contributes to 55% of the total destructed exergy whereas the ORC evaporator contributes to 38% of the total destructed exergy. -- Highlights: ► The best performance can be obtained with the lowest ORC evaporator pinch temperature and the lowest ORC minimum temperature. ► There is, on average, 75 % gain in energy efficiency for trigeneration compared to electrical system. ► There is, on average, 17% gain in exergy efficiency when trigeneration is used as compared to electrical system. ► The electrical to cooling ratio is sensitive to the variation of the pinch point temperature and pump inlet temperature. ► The two main sources of the exergy destruction are the biomass burner with 55% and the ORC evaporator with 38%.

  2. Solar-Biomass hybrid system for process heat supply in medium scale hotels in Sri Lanka

    OpenAIRE

    Abeywardana, Asela M.A.J.

    2016-01-01

    This study aimed at evaluating and demonstrating the feasibility of using Concentrated Solar Thermal technology combined with biomass energy technology as a hybrid renewable energy system to supply the process heat requirements in small scale industries in Sri Lanka. Particularly, the focus was to apply the concept to the expanding hotel industry, for covering the thermal energy demand of a medium scale hotel. Solar modules utilize the rooftop area of the building to a valuable application. L...

  3. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  4. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  5. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  6. Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Daud Jones Kachamba

    2017-06-01

    Full Text Available Applications of unmanned aircraft systems (UASs to assist in forest inventories have provided promising results in biomass estimation for different forest types. Recent studies demonstrating use of different types of remotely sensed data to assist in biomass estimation have shown that accuracy and precision of estimates are influenced by the size of field sample plots used to obtain reference values for biomass. The objective of this case study was to assess the influence of sample plot size on efficiency of UAS-assisted biomass estimates in the dry tropical miombo woodlands of Malawi. The results of a design-based field sample inventory assisted by three-dimensional point clouds obtained from aerial imagery acquired with a UAS showed that the root mean square errors as well as the standard error estimates of mean biomass decreased as sample plot sizes increased. Furthermore, relative efficiency values over different sample plot sizes were above 1.0 in a design-based and model-assisted inferential framework, indicating that UAS-assisted inventories were more efficient than purely field-based inventories. The results on relative costs for UAS-assisted and pure field-based sample plot inventories revealed that there is a trade-off between inventory costs and required precision. For example, in our study if a standard error of less than approximately 3 Mg ha−1 was targeted, then a UAS-assisted forest inventory should be applied to ensure more cost effective and precise estimates. Future studies should therefore focus on finding optimum plot sizes for particular applications, like for example in projects under the Reducing Emissions from Deforestation and Forest Degradation, plus forest conservation, sustainable management of forest and enhancement of carbon stocks (REDD+ mechanism with different geographical scales.

  7. Analysis of a feasible trigeneration system taking solar energy and biomass as co-feeds

    International Nuclear Information System (INIS)

    Zhang, Xiaofeng; Li, Hongqiang; Liu, Lifang; Zeng, Rong; Zhang, Guoqiang

    2016-01-01

    Highlights: • A feasible trigeneration system is proposed to generate power, heating and cooling. • The steam for biomass gasification process is provided by solar energy. • The thermodynamic properties of the proposed system are investigated. • Effects of ER and SBR on gasification process is presented. • The sensitivity of the economic performance of trigeneration system is evaluated. - Abstract: The trigeneration systems are widely used owing to high efficiency, low greenhouse gas emission and high reliability. Especially, those trigeneration systems taking renewable energy as primary input are paid more and more attention. This paper presents a feasible trigeneration system, which realizes biomass and solar energy integrating effective utilization according to energy cascade utilization and energy level upgrading of chemical reaction principle. In the proposed system, the solar energy with mid-and-low temperature converted to the chemical energy of bio-gas through gasification process, then the bio-gas will be taken as the fuel for internal combustion engine (ICE) to generate electricity. The jacket water as a byproduct generated from ICE is utilized in a liquid desiccant unit for providing desiccant capacity. The flue gas is transported into an absorption chiller and heat exchanger consequently, supplying chilled water and domestic hot water. The thermodynamic performance of the trigeneration system was investigated by the help of Aspen plus. The results indicate that the overall energy efficiency and the electrical efficiency of the proposed system in case study are 77.4% and 17.8%, respectively. The introduction of solar energy decreases the consumption of biomass, and the solar thermal energy input fraction is 8.6%. In addition, the primary energy saving ratio and annual total cost saving ratio compared with the separated generation system are 16.7% and 25.9%, respectively.

  8. Soft sensing of system parameters in membrane distillation

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-03-23

    Various examples of methods and systems are provided for soft sensing of system parameters in membrane distillation (MD). In one example, a system includes a MD module comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to estimate feed solution temperatures and permeate solution temperatures of the MD module using monitored outlet temperatures of the feed side and the permeate side. In another example, a method includes monitoring outlet temperatures of a feed side and a permeate side of a MD module to determine a current feed outlet temperature and a current permeate outlet temperature; and determining a plurality of estimated temperature states of a membrane boundary layer separating the feed side and the permeate side of the MD module using the current feed outlet temperature and the current permeate outlet temperature.

  9. Shilnikov sense chaos in a simple three-dimensional system

    International Nuclear Information System (INIS)

    Wei, Wang; Qi-Chang, Zhang; Rui-Lan, Tian

    2010-01-01

    The Shilnikov sense Smale horseshoe chaos in a simple 3D nonlinear system is studied. The proportional integral derivative (PID) controller is improved by introducing the quadratic and cubic nonlinearities into the governing equations. For the discussion of chaos, the bifurcate parameter value is selected in a reasonable regime at the requirement of the Shilnikov theorem. The analytic expression of the Shilnikov type homoclinic orbit is accomplished. It depends on the series form of the manifolds surrounding the saddle-focus equilibrium. Then the methodology is extended to research the dynamical behaviours of the simplified solar-wind-driven-magnetosphere-ionosphere system. As is illustrated, the Lyapunov characteristic exponent spectra of the two systems indicate the existence of chaotic attractor under some specific parameter conditions

  10. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Wang, Ying; Radosevich, Mark; Hayes, Douglas; Labbé, Nicole

    2011-05-01

    Ionic liquids (ILs) have been increasingly recognized as novel solvents for dissolution and pretreatment of cellulose. However, cellulases are inactivated in the presence of ILs, even when present at low concentrations. To more fully exploit the benefits of ILs it is critical to develop a compatible IL-cellulases system in which the IL is able to effectively solubilize and activate the lignocellulosic biomass, and the cellulases possess high stability and activity. In this study, we investigated the stability and activity of a commercially available cellulases mixture in the presence of different concentrations of 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). A mixture of cellulases and β-glucosidase (Celluclast1.5L, from Trichoderma reesei, and Novozyme188, from Aspergillus niger, respectively) retained 77% and 65% of its original activity after being pre-incubated in 15% and 20% (w/v) IL solutions, respectively, at 50°C for 3 h. The cellulases mixture also retained high activity in 15% [Emim][OAc] to hydrolyze Avicel, a model substrate for cellulose analysis, with conversion efficiency of approximately 91%. Notably, the presence of different amounts of yellow poplar lignin did not interfere significantly with the enzymatic hydrolysis of Avicel. Using this IL-cellulase system (15% [Emim][OAc]), the saccharification of yellow poplar biomass was also significantly improved (33%) compared to the untreated control (3%) during the first hour of enzymatic hydrolysis. Together, these findings provide compelling evidence that [Emim][OAc] was compatible with the cellulase mixture, and this compatible IL-cellulases system is promising for efficient activation and hydrolysis of native biomass to produce biofuels and co-products from the individual biomass components. Copyright © 2010 Wiley Periodicals, Inc.

  11. Biomass gasification in district heating systems - The effect of economic energy policies

    International Nuclear Information System (INIS)

    Wetterlund, Elisabeth; Soederstroem, Mats

    2010-01-01

    Biomass gasification is considered a key technology in reaching targets for renewable energy and CO 2 emissions reduction. This study evaluates policy instruments affecting the profitability of biomass gasification applications integrated in a Swedish district heating (DH) system for the medium-term future (around year 2025). Two polygeneration applications based on gasification technology are considered in this paper: (1) a biorefinery plant co-producing synthetic natural gas (SNG) and district heat; (2) a combined heat and power (CHP) plant using integrated gasification combined cycle technology. Using an optimisation model we identify the levels of policy support, here assumed to be in the form of tradable certificates, required to make biofuel production competitive to biomass based electricity generation under various energy market conditions. Similarly, the tradable green electricity certificate levels necessary to make gasification based electricity generation competitive to conventional steam cycle technology, are identified. The results show that in order for investment in the SNG biorefinery to be competitive to investment in electricity production in the DH system, biofuel certificates in the range of 24-42 EUR/MWh are needed. Electricity certificates are not a prerequisite for investment in gasification based CHP to be competitive to investment in conventional steam cycle CHP, given sufficiently high electricity prices. While the required biofuel policy support is relatively insensitive to variations in capital cost, the required electricity certificates show high sensitivity to variations in investment costs. It is concluded that the large capital commitment and strong dependency on policy instruments makes it necessary that DH suppliers believe in the long-sightedness of future support policies, in order for investments in large-scale biomass gasification in DH systems to be realised.

  12. An integrated risk sensing system for geo-structural safety

    Institute of Scientific and Technical Information of China (English)

    H.W. Huang; D.M. Zhang; B.M. Ayyub

    2017-01-01

    Over the last decades, geo-structures are experiencing a rapid development in China. The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project, i.e. the project of Shanghai Yangtze tunnel in 2002. Since then, risk assessment of geo-structures has been gradually developed from a qualitative manner to a quantitative manner. However, the current practices of risk management have been paid considerable attention to the assessment, but little on risk control. As a result, the responses to risks occurrences after a comprehensive assessment are basically too late. In this paper, a smart system for risk sensing incorporating the wireless sensor network (WSN) on-site visualization techniques and the resilience-based repair strategy was proposed. The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers. The sectional convergence, joint opening, and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems (MEMS) based sensors. The light emitting diode (LED) coupling with the above WSN system was used to indicate different risk levels on site. By sensing the risks and telling the risks in real time, the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree. Finally, a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system. The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.

  13. The potential role of waste biomass in the future urban electricity system

    OpenAIRE

    Jiang, Yu; Werf, van der, Edwin; Ierland, van, Ekko C.; Keesman, Karel J.

    2017-01-01

    The share of intermittent renewable electricity (IRE) in the future urban electricity system is expected to increase significantly. Sufficient back-up capacity is needed in the period when IRE output is low. Bioenergy is both dispatchable and carbon-neutral, and can hence be a promising option to back up IRE. The objective of this study is to explore the potential of urban waste biomass in backing up IRE in an urban electricity system. An urban electricity system model is developed to project...

  14. Unmanned Aerial System Aids Dry-season Stream Temperature Sensing

    Science.gov (United States)

    Chung, M.; Detweiler, C.; Higgins, J.; Ore, J. P.; Dralle, D.; Thompson, S. E.

    2016-12-01

    In freshwater ecosystems, temperature affects biogeochemistry and ecology, and is thus a primary physical determinant of habitat quality. Measuring temperatures in spatially heterogeneous water bodies poses a serious challenge to researchers due to constraints associated with currently available methods: in situ loggers record temporally continuous temperature measurements but are limited to discrete spatial locations, while distributed temperature and remote sensing provide fine-resolution spatial measurements that are restricted to only two-dimensions (i.e. streambed and surface, respectively). Using a commercially available quadcopter equipped with a 6m cable and temperature-pressure sensor system, we measured stream temperatures at two confluences at the South Fork Eel River, where cold water inputs from the tributary to the mainstem create thermal refugia for juvenile salmonids during the dry season. As a mobile sensing platform, unmanned aerial systems (UAS) can facilitate quick and repeated sampling with minimal disturbance to the ecosystem, and their datasets can be interpolated to create a three-dimensional thermal map of a water body. The UAS-derived data was compared to data from in situ data loggers to evaluate whether the UAS is better able to capture fine-scale temperature dynamics at each confluence. The UAS has inherent limitations defined by battery life and flight times, as well as operational constraints related to maneuverability under wind and streamflow conditions. However, the platform is able to serve as an additional field tool for researchers to capture complex thermal structures in water bodies.

  15. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Ebadian, Mahmood; Sowlati, Taraneh; Sokhansanj, Shahab; Townley-Smith, Lawrence; Stumborg, Mark

    2013-01-01

    Highlights: ► Studied the agricultural biomass supply chain for cellulosic ethanol production. ► Evaluated the impact of storage systems on different supply chain actors. ► Developed a combined simulation/optimization model to evaluate storage systems. ► Compared two satellite storage systems with roadside storage in terms of costs and emitted CO 2 . ► SS would lead to a more cost-efficient supply chain compared to roadside storage. -- Abstract: In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively

  16. Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System

    Directory of Open Access Journals (Sweden)

    Arnau González

    2015-09-01

    Full Text Available Hybrid renewable energy systems (HRES are a trendy alternative to enhance the renewable energy deployment worldwide. They effectively take advantage of scalability and flexibility of these energy sources, since combining two or more allows counteracting the weaknesses of a stochastic renewable energy source with the strengths of another or with the predictability of a non-renewable energy source. This work presents an optimization methodology for minimum life cycle cost of a HRES based on solar photovoltaic, wind and biomass power. Biomass power seeks to take advantage of locally available forest wood biomass in the form of wood chips to provide energy in periods when the PV and wind power generated are not enough to match the existing demand. The results show that a HRES combining the selected three sources of renewable energy could be installed in a rural township of about 1300 dwellings with an up-front investment of US $7.4 million, with a total life cycle cost of slightly more than US $30 million. Such a system would have benefits in terms of energy autonomy and environment quality improvement, as well as in term of job opportunity creation.

  17. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Scenario optimization modeling approach for design and management of biomass-to-biorefinery supply chain system.

    Science.gov (United States)

    Sharma, Bhavna; Ingalls, Ricki G; Jones, Carol L; Huhnke, Raymond L; Khanchi, Amit

    2013-12-01

    The aim of this study was to develop a scenario optimization model to address weather uncertainty in the Biomass Supply Chain (BSC). The modeling objective was to minimize the cost of biomass supply to biorefineries over a one-year planning period using monthly time intervals under different weather scenarios. The model is capable of making strategic, tactical and operational decisions related to BSC system. The performance of the model was demonstrated through a case study developed for Abengoa biorefinery in Kansas. Sensitivity analysis was done to demonstrate the effect of input uncertainty in yield, land rent and storage dry matter loss on the model outputs. The model results show that available harvest work hours influence major cost-related decisions in the BSC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage

    International Nuclear Information System (INIS)

    Dominković, D.F.; Ćosić, B.; Bačelić Medić, Z.; Duić, N.

    2015-01-01

    Highlights: • Hybrid optimization model of biomass trigeneration system with PTES is developed. • Influence of premium feed-in tariffs on trigeneration systems is assessed. • Influence of total system efficiency on biomass trigeneration system with PTES is assessed. • Influence of energy savings on project economy is assessed. - Abstract: This paper provides a solution for managing excess heat production in trigeneration and thus, increases the power plant yearly efficiency. An optimization model for combining biomass trigeneration energy system and pit thermal energy storage has been developed. Furthermore, double piping district heating and cooling network in the residential area without industry consumers was assumed, thus allowing simultaneous flow of the heating and cooling energy. As a consequence, the model is easy to adopt in different regions. Degree-hour method was used for calculation of hourly heating and cooling energy demand. The system covers all the yearly heating and cooling energy needs, while it is assumed that all the electricity can be transferred to the grid due to its renewable origin. The system was modeled in Matlab© on hourly basis and hybrid optimization model was used to maximize the net present value (NPV), which was the objective function of the optimization. Economic figures become favorable if the economy-of-scale of both power plant and pit thermal energy storage can be utilized. The results show that the pit thermal energy storage was an excellent option for storing energy and shaving peaks in energy demand. Finally, possible switch from feed-in tariffs to feed-in premiums was assessed and possible subsidy savings have been calculated. The savings are potentially large and can be used for supporting other renewable energy projects

  20. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Van Wijk, A.

    1995-05-01

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NO x formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  1. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  2. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Science.gov (United States)

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  3. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  4. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  5. Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy......, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates....

  6. Scalable Manufacturing of Solderable and Stretchable Physiologic Sensing Systems.

    Science.gov (United States)

    Kim, Yun-Soung; Lu, Jesse; Shih, Benjamin; Gharibans, Armen; Zou, Zhanan; Matsuno, Kristen; Aguilera, Roman; Han, Yoonjae; Meek, Ann; Xiao, Jianliang; Tolley, Michael T; Coleman, Todd P

    2017-10-01

    Methods for microfabrication of solderable and stretchable sensing systems (S4s) and a scaled production of adhesive-integrated active S4s for health monitoring are presented. S4s' excellent solderability is achieved by the sputter-deposited nickel-vanadium and gold pad metal layers and copper interconnection. The donor substrate, which is modified with "PI islands" to become selectively adhesive for the S4s, allows the heterogeneous devices to be integrated with large-area adhesives for packaging. The feasibility for S4-based health monitoring is demonstrated by developing an S4 integrated with a strain gauge and an onboard optical indication circuit. Owing to S4s' compatibility with the standard printed circuit board assembly processes, a variety of commercially available surface mount chip components, such as the wafer level chip scale packages, chip resistors, and light-emitting diodes, can be reflow-soldered onto S4s without modifications, demonstrating the versatile and modular nature of S4s. Tegaderm-integrated S4 respiration sensors are tested for robustness for cyclic deformation, maximum stretchability, durability, and biocompatibility for multiday wear time. The results of the tests and demonstration of the respiration sensing indicate that the adhesive-integrated S4s can provide end users a way for unobtrusive health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    Science.gov (United States)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were

  8. Remote sensing of vegetation fires and its contribution to a fire management information system

    Science.gov (United States)

    Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux

    2004-01-01

    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...

  9. RSComPro: An Open Communication Protocol for Remote Sensing Systems

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Trujillo, Juan-José

    The remote sensing protocol (RSComPro) is a communication protocol, which has been developed for controlling multiple remote sensing systems simultaneously through a UDP/IP and TPC/IP network. This protocol is meant to be open to the remote sensing community. The scope is the implementation of so...

  10. Vegetation Structure, Tree Volume and Biomass Estimation using Terrestrial Laser Scanning Remote Sensing: A Case Study of the Mangrove Forests in the Everglades National Park

    Science.gov (United States)

    Feliciano, E. A.; Wdowinski, S.; Potts, M. D.

    2012-12-01

    Mangrove forests are being threatened by accelerated climate change, sea level rise and coastal projects. Carbon/above ground biomass (AGB) losses due to natural or human intervention can affect global warming. Thus, it is important to monitor AGB fluctuations in mangrove forests similar to those inhabiting the Everglades National Park (ENP). Tree volume and tree wood specific density are two important measurements for the estimation of AGB (mass = volume * density). Wood specific density is acquired in the laboratory by analyzing stem cores acquired in the field. However, tree volume is a challenging task because trees resemble tapered surfaces. The majority of published studies estimate tree volume and biomass using allometric equations, which describe the size, shape, volume or AGB of a given population of trees. However, these equations can be extremely general and might not give a representative value of volume or AGB for a specific tree species. In order to have precise biomass estimations, other methodologies for tree volume estimation are needed. To overcome this problem, we use a state-of-the-art remote sensing tool known as ground-based LiDAR a.k.a Terrestrial Laser Scanner (TLS), which can be used to precisely measure vegetation structure and tree volume from its 3-D point cloud. We surveyed three mangrove communities: (Rhizophora mangle, Laguncuria racemosa and Avicennia germinans) in three different sites along Shark River Slough (SRS), which is the primary source of water to the ENP. Our sites included: small-, intermediate- and tall- size mangroves. Our ground measurements included both: traditional forestry surveys and TLS surveys for tree attributes (tree height and diameter at breast height (DBH)) comparison. These attributes are used as input to allometric equations for the estimation of tree volume and AGB. A total of 25 scans were collected in 2011 with a Leica ScanStation C10 TLS. The 3-D point cloud acquired from the TLS data revealed that

  11. Modeling and Assessment of a Biomass Gasification Integrated System for Multigeneration Purpose

    Directory of Open Access Journals (Sweden)

    Shoaib Khanmohammadi

    2016-01-01

    Full Text Available The use of biomass due to the reduction in greenhouse gas emissions and environmental impacts has attracted many researchers’ attention in the recent years. Access to an energy conversion system which is able to have the optimum performance for applying valuable low heating value fuels has been considered by many practitioners and scholars. This paper focuses on the accurate modeling of biomass gasification process and the optimal design of a multigeneration system (heating, cooling, electrical power, and hydrogen as energy carrier to take the advantage of this clean energy. In the process of gasification modeling, a thermodynamic equilibrium model based on Gibbs energy minimization is used. Also, in the present study, a detailed parametric analysis of multigeneration system for undersigning the behavior of objective functions with changing design parameters and obtaining the optimal design parameters of the system is done as well. The results show that with exergy efficiency as an objective function this parameter can increase from 19.6% in base case to 21.89% in the optimized case. Also, for the total cost rate of system as an objective function it can decrease from 154.4 $/h to 145.1 $/h.

  12. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Zheng, Huixiao; Kaliyan, Nalladurai; Morey, R. Vance

    2013-01-01

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm 3 y −1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  13. Combined heat and power system with advanced gasification technology for biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, S.; Abe, T.; Yasuda, T. [Nippon Furnace Kogyo Kaisha Ltd, Yokohama (Japan); Gupta, A.K. [Maryland Univ., College Park, MD (United States). Dept. of Mechnical Engineering

    2013-07-01

    The results obtained from an advanced gasification system utilizing high temperature steam are presented here. The results showed successful demonstration of clean syngas production having high calorific value fuel ({proportional_to}10 MJ/m{sup 3}N) using woody biomass wastes in a downdraft type gasifier. The gasification capacity of the plant on dry basis was 60 kg/h. The syngas produced can be utilized in an absorption type chiller for air conditioning. This advanced gasification technology allows one to transform wastes to clean energy at local production sites without any environmental impact and expensive waste transportation costs. The experience gained from the demonstration plant allows one to implement to other industrial applications for use as a decentralized unit and obtain clean syngas for local use. The demonstration conducted here shows that the system is favorable for onsite use of compatible combined heat and power (CHP) system including light oil supported diesel engine power generator. The biomass waste fuel from a lumber mill factory was used in this study. The factory handles a wide forests area of about 50 ha and produces about 2,500 m{sup 3}/year of wood chips from thin out trees and waste lumbers. This translates to a maximum 110 kg/h of wood chips that can be fed to a gasifier. The syngas produced was used for the combined heat and power system. Local use of biomass for fuel reforming reduces the cost of collection and transportation costs so that a sustainable business is demonstrated with profit from the generated electricity and thermal energy. The cost structure incorporates both the depreciation cost and operation cost of the system. Thermal energy from hot water can be used for drying lumbers and wood chips in a cascade manner. The drying process can be adopted for enhancing its productivity with increased variability on the quality of lumber. The results show that the combined heat and power system (CHP) offers good profitable

  14. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  15. Process systems engineering studies for catalytic production of bio-based platform molecules from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2017-01-01

    Highlights: • A process-systems engineering study for production of bio-based platform molecules to is presented. • Experimentally verified catalysis studies for biomass conversion are investigated. • New separations for effective recovery of bio-based platform molecules are developed. • Separations are integrated with catalytic biomass conversions. • Proposed process can compete economically with the current production approaches. - Abstract: This work presents a process-system engineering study of an integrated catalytic conversion strategy to produce bio-based platform molecules (levulinic acid (LA), furfural (FF), and propyl guaiacol (PG)) from hemicellulose (C_5), cellulose (C_6), and lignin fractions of lignocellulosic biomass. A commercial-scale process based on the strategy produces high numerical carbon yields (overall yields: 35.2%; C_6-to-LA: 20.4%, C_5-to-FF: 69.2%, and Lignin-to-PG: 13.3%) from a dilute concentration of solute (1.3–30.0 wt.% solids), but a high recovery of these molecules requires an efficient separation system with low energy requirement. A heat exchanger network significantly reduced the total energy requirements of the process. An economic analysis showed that the minimum selling price of LA as the highest value-added product (42.3 × 10"3 t of LA/y using 700 × 10"3 dry t/y of corn stover) is US$1707/t despite using negative economic parameters, and that this system can be cost-competitive with current production approaches.

  16. Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D. J.

    2001-09-01

    As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

  17. Patient sensing and indicating arrangement for a computed tomography system

    International Nuclear Information System (INIS)

    Barrett, D.M.

    1979-01-01

    An arrangement is provided for sensing and indicating if a cross section of a patient extends beyond an image reconstruction circle during examination. The arrangement is positioned within a generally vertical gantry having a generally cylindrical opening for receiving the patient. The arrangement includes a plurality of light emitting sources disposed within the gantry and which are closely adjacent the reconstruction circle. Each light emitting source projects a light beam along a line which is parallel with the plane of the reconstruction circle and tangent to a cylinder having a diameter and central axis in agreement with the reconstruction circle. The light beams extend substantially across the opening in the gantry and generally inscribe the reconstruction circle. A plurality of photodetectors are disposed within the gantry and aligned to receive each of the light beams. The photodetectors are interconnected to the system by means for indicating an interruption of any of the light beams between any of the sources and detectors

  18. Energy study of the energy supply systems for isolated communities in Cuba from the use of biomass gasifiers downdraft

    International Nuclear Information System (INIS)

    Pla Duparté, Manuel

    2015-01-01

    At work a comprehensive energy analysis of plants generating electricity from the gasification of various biomass that currently conceived by the management of the Electric Union for the electrification of isolated communities in the fields of Cuba is made. For this, based on the properties of the main biomass available, the calculations needed are performed to evaluate the efficiency of the gasifier and other components of energy transformation system. The power generation are taken into consideration and an assessment of the needs of biomass in each case is made. (full text)

  19. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Vargas Danilo

    2016-01-01

    Full Text Available A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1 and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  20. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  1. An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy

    International Nuclear Information System (INIS)

    Rajaseenivasan, T.; Srithar, K.

    2017-01-01

    Highlights: • A biomass based humidification dehumidification desalination system is tested. • System is analyzed with the direct and preheated air supply. • Highest distillate rate of 6.1 kg/h is collected with the preheated air supply. • The minimum fuel feed of 0.2 kg is needed to produce 1 kg of fresh water. - Abstract: This article describes a biomass powered bubble column humidification-dehumidification desalination system. This system mainly consists of a biomass stove, air heat exchanger, bubble column humidifier and dehumidifier. Saw dust briquettes are used as biomass fuel in the stove. First level of experiments are carried out in bubble column humidifier with ambient air supply to select the best water depth, bubble pipe hole diameter and water temperature. Experiments are conducted by integrating the humidifier with the dehumidifier. Air is sent to the humidifier with and without pre-heating. Preheating of air is carried out in the air heat exchanger by using the flue gas and flame from the combustion chamber. It is observed that the humidifier ability is augmented with the rise in water depth, water temperature, mass flow rate of air and cooling water flow rate, and reduction in bubble pipe hole diameter. It is found from Taguchi analysis that the water temperature dominates in controlling the humidifier performance compared to other parameters. Better specific humidity is recorded with a bubble pipe hole diameter of 1 mm, water depth of 170 mm and water temperature of 60 °C. Highest distillate of 6.1 kg/h and 3.5 kg/h is collected for the HDH desalination system with preheated air and direct air supply respectively. Recovery of waste heat using an air heat exchanger reduces the fuel consumption from 0.36 kg to 0.2 kg for producing 1 kg of distilled water. Lowest distilled water cost of 0.0133 US $/kg through preheated air supply and 0.0231 US $/kg through direct air supply is observed. A correlation is developed to estimate the mass transfer

  2. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H.; Papamichalis, A.; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1996-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  3. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H; Papamichalis, A; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1997-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  4. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  5. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2010-01-01

    The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53-60% hydro, 22-25% wind, 12-14% geothermal, 1% biomass and 0-12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

  6. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    Directory of Open Access Journals (Sweden)

    Ortwein Andreas

    2016-01-01

    Full Text Available Against the background of greenhouse gases causing climate change, combined heat and power (CHP systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat, different technologies are available for the final power conversion step. This includes steam cycles with steam turbines or engines and different working fluids (water, organic fluids, but also combustion based systems like gas turbines or gas engines. Further promising technologies include fuel cells with high electric efficiency. When integrating such CHP systems in buildings, there are different strategies, especially concerning electric power generation. While some concepts are focusing on base load production, others are regulated either by thermal or by electric power demand. The paper will give a systematic overview on the combination of thermo-chemical conversion of biomass and combined heat and power production technologies. The mentioned building integration strategies will be discussed, leading to conclusions for further research and development in that field.

  7. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  8. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  9. Techno-economic assessment of a solar PV, fuel cell, and biomass gasifier hybrid energy system

    Directory of Open Access Journals (Sweden)

    Anand Singh

    2016-11-01

    Full Text Available The interest of power is expanding step by step all through the world. Because of constrained measure of fossil fuel, it is vital to outline some new non-renewable energy frameworks that can diminish the reliance on ordinary energy asset. A hybrid off-grid renewable energy framework might be utilized to reduction reliance on the traditional energy assets. Advancement of crossover framework is a procedure to choose the best mix of part and there cost that can give shabby, solid and successful option energy resource. In this paper sun oriented photovoltaic, fuel cell, biomass gasifier generator set, battery backup and power conditioning unit have been simulated and optimized for educational institute, energy centre, Maulana Azad National Institute of Technology, Bhopal in the Indian state of Madhya Pradesh. The area of the study range on the guide situated of 23°12′N latitude and 77°24′E longitude. In this framework, the essential wellspring of power is sun based solar photovoltaic system and biomass gasifier generator set while fuel cell and batteries are utilized as reinforcement supply. HOMER simulator has been utilized to recreate off the grid and it checks the specialized and financial criteria of this hybrid energy system. The execution of every segment of this framework is dissected lastly delicate examination has been performing to enhance the mixture framework at various conditions. In view of the recreation result, it is found that the cost of energy (COE of a biomass gasifier generator set, solar PV and fuel cell crossover energy system has been found to be 15.064 Rs/kWh and complete net present cost Rs.51,89003. The abundance power in the proposed framework is observed to be 36 kWh/year with zero rates unmet electrical burden.

  10. Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies

    International Nuclear Information System (INIS)

    Koenig, Andreas

    2011-01-01

    The possible uses of biomass for energy provision are manifold. Gaseous, liquid and solid bioenergy carriers can be alternatively converted into heat, power or transport fuel. The contribution of the different utilisation pathways to environmental political targets for greenhouse gas (GHG) emission reduction and energy political targets for the future share of renewable energy vary accordingly to their techno-economic characteristics. The aim of the presented study is to assess the different biomass options against the background of energy and environmental political targets based on a system analytical approach for the future German energy sector. The results show that heat generation and to a lower extent combined heat and power (CHP) production from solid biomass like wood and straw are the most cost effective ways to contribute to the emission reduction targets. The use of energy crops in fermentation biogas plants (maize) and for production of 1st generation transportation fuels, like biodiesel from rapeseed and ethanol from grain or sugar beet, are less favourable. Optimisation potentials lie in a switch to the production of 2nd generation biofuels and the enhanced use of either biomass residues or low production intensive energy crops. - Research Highlights: → Heat generation and CHP generation from biomass can contribute cost efficiently to emission reduction targets. → Biofuel production represenst the least cost efficient option for emission reduction when using biomass energetically. → The energetical use of biomass shows a high potential to contribute to energy and envirnoment political targets.

  11. Navigation and Remote Sensing Payloads and Methods of the Sarvant Unmanned Aerial System

    Science.gov (United States)

    Molina, P.; Fortuny, P.; Colomina, I.; Remy, M.; Macedo, K. A. C.; Zúnigo, Y. R. C.; Vaz, E.; Luebeck, D.; Moreira, J.; Blázquez, M.

    2013-08-01

    In a large number of scenarios and missions, the technical, operational and economical advantages of UAS-based photogrammetry and remote sensing over traditional airborne and satellite platforms are apparent. Airborne Synthetic Aperture Radar (SAR) or combined optical/SAR operation in remote areas might be a case of a typical "dull, dirty, dangerous" mission suitable for unmanned operation - in harsh environments such as for example rain forest areas in Brazil, topographic mapping of small to medium sparsely inhabited remote areas with UAS-based photogrammetry and remote sensing seems to be a reasonable paradigm. An example of such a system is the SARVANT platform, a fixed-wing aerial vehicle with a six-meter wingspan and a maximumtake- of-weight of 140 kilograms, able to carry a fifty-kilogram payload. SARVANT includes a multi-band (X and P) interferometric SAR payload, as the P-band enables the topographic mapping of densely tree-covered areas, providing terrain profile information. Moreover, the combination of X- and P-band measurements can be used to extract biomass estimations. Finally, long-term plan entails to incorporate surveying capabilities also at optical bands and deliver real-time imagery to a control station. This paper focuses on the remote-sensing concept in SARVANT, composed by the aforementioned SAR sensor and envisioning a double optical camera configuration to cover the visible and the near-infrared spectrum. The flexibility on the optical payload election, ranging from professional, medium-format cameras to mass-market, small-format cameras, is discussed as a driver in the SARVANT development. The paper also focuses on the navigation and orientation payloads, including the sensors (IMU and GNSS), the measurement acquisition system and the proposed navigation and orientation methods. The latter includes the Fast AT procedure, which performs close to traditional Integrated Sensor Orientation (ISO) and better than Direct Sensor Orientation (Di

  12. Smart Sensing System for the Prognostic Monitoring of Bone Health

    KAUST Repository

    Afsarimanesh, Nasrin; Zia, Asif; Mukhopadhyay, Subhas; Kruger, Marlena; Yu, Pak-Lam; Kosel, Jü rgen; Kovacs, Zoltan

    2016-01-01

    The objective of this paper is to report a novel non-invasive, real-time, and label-free smart assay technique for the prognostic detection of bone loss by electrochemical impedance spectroscopy (EIS). The proposed system incorporated an antibody-antigen-based sensor functionalization to induce selectivity for the C-terminal telopeptide type one collagen (CTx-I) molecules—a bone loss biomarker. Streptavidin agarose was immobilized on the sensing area of a silicon substrate-based planar sensor, patterned with gold interdigital electrodes, to capture the antibody-antigen complex. Calibration experiments were conducted with various known CTx-I concentrations in a buffer solution to obtain a reference curve that was used to quantify the concentration of an analyte in the unknown serum samples. Multivariate chemometric analyses were done to determine the performance viability of the developed system. The analyses suggested that a frequency of 710 Hz is the most discriminating regarding the system sensitivity. A detection limit of 0.147 ng/mL was achieved for the proposed sensor and the corresponding reference curve was linear in the range of 0.147 ng/mL to 2.669 ng/mL. Two sheep blood samples were tested by the developed technique and the results were validated using enzyme-linked immunosorbent assay (ELISA). The results from the proposed technique match those from the ELISA.

  13. Smart Sensing System for the Prognostic Monitoring of Bone Health

    KAUST Repository

    Afsarimanesh, Nasrin

    2016-06-24

    The objective of this paper is to report a novel non-invasive, real-time, and label-free smart assay technique for the prognostic detection of bone loss by electrochemical impedance spectroscopy (EIS). The proposed system incorporated an antibody-antigen-based sensor functionalization to induce selectivity for the C-terminal telopeptide type one collagen (CTx-I) molecules—a bone loss biomarker. Streptavidin agarose was immobilized on the sensing area of a silicon substrate-based planar sensor, patterned with gold interdigital electrodes, to capture the antibody-antigen complex. Calibration experiments were conducted with various known CTx-I concentrations in a buffer solution to obtain a reference curve that was used to quantify the concentration of an analyte in the unknown serum samples. Multivariate chemometric analyses were done to determine the performance viability of the developed system. The analyses suggested that a frequency of 710 Hz is the most discriminating regarding the system sensitivity. A detection limit of 0.147 ng/mL was achieved for the proposed sensor and the corresponding reference curve was linear in the range of 0.147 ng/mL to 2.669 ng/mL. Two sheep blood samples were tested by the developed technique and the results were validated using enzyme-linked immunosorbent assay (ELISA). The results from the proposed technique match those from the ELISA.

  14. A modern trans-ionospheric propagation sensing system

    Science.gov (United States)

    Bishop, G. J.; Klobuchar, J. A.; Ronn, A. E.; Bedard, M. G.

    1989-09-01

    One of the most important potential problems with modern military systems which utilize spacecraft is the effect of the ionosphere on the radio signals which pass to and from the spacecraft. Such systems include active communications and navigation satellites as well as both ground-based and potential space-based ranging systems. The major effects the ionosphere can have on such systems are the additional time delay the electrons in the earth's ionosphere add to the free space path delay, the short term rate of change of this additional delay, amplitude scintillation or fading effects the signal encounters due to irregularities in the ionosphere, and Faraday rotation of linearly polarized radio waves transmitted through the ionosphere. While some of these effects were studied adequate models of these effects on military systems still do not exist. A modern trans-ionospheric sensing system, called TISS, is being procured which will consist of a number of stations located throughout the world, making real time measurements of the time delay of the ionosphere, and its rate of change, as well as amplitude scintillation, along several different viewing directions from each station. These trans-ionospheric measurements will be used to allow models, which currently provide only monthly propagation parameters. The real-time specifications of these parameters can then be used as decision aids in both the tactical and the strategic military environments. The TISS will include first order artificial intelligence design to aid in gathering the most appropriate sets of available real-time trans-ionospheric propagation data, and will communicate these data sets to the Air Weather Service Forecasting Center where they will be tailored to specific military customers.

  15. Techno-economic evaluation of hybrid systems for hydrogen production from biomass and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, N. [Royal Institute of Technology, Stockholm (Sweden). Dept. of Energy Processes

    2001-07-01

    Hydrogen (H{sub 2}) is an alternative energy carrier, which is expected to significantly contribute to globally sustainable energy systems. It is environmentally friendly with high-energy density that makes it an excellent integrating fuel in transportation and power generation systems. This paper presents an assessment of the techno-economic viability of H{sub 2} production technologies based on hybrid systems using gasified biomass and natural gas combined with high temperature electrochemical shift. Assessment of the well-established thermal processes, high-temperature steam electrolysis (HTEL), and the plasma catalytic reforming (PCR) of light hydrocarbons developed at MIT are included for comparison. The results show that the PCR and HTEL processes are as cost-effective as the thermal steam reforming for H{sub 2} production when deployed on a commercial scale. The natural gas steam reforming (NGSR) is still the most favorable choice in energy and financial terms, while gasified biomass (GB) provides the highest production costs due to the intensive capital cost investments. The cost of H{sub 2} storage in the form of compressed gas or liquefied H{sub 2} also contributes significantly to total cost per kg produced H{sub 2}. 9 refs., 7 figs., 2 tabs.

  16. Soil Properties and Plant Biomass Production in Natural Rangeland Management Systems

    Directory of Open Access Journals (Sweden)

    Romeu de Souza Werner

    Full Text Available ABSTRACT Improper management of rangelands can cause land degradation and reduce the economic efficiency of livestock activity. The aim of this study was to evaluate soil properties and quantify plant biomass production in four natural rangeland management systems in the Santa Catarina Plateau (Planalto Catarinense of Brazil. The treatments, which included mowed natural rangeland (NR, burned natural rangeland (BR, natural rangeland improved through the introduction of plant species after harrowing (IH, and natural rangeland improved through the introduction of plant species after chisel plowing (IC, were evaluated in a Nitossolo Bruno (Nitisol. In the improved treatments, soil acidity was corrected, phosphate fertilizer was applied, and intercropped annual ryegrass (Lolium multiflorum, velvet grass (Holcus lanatus, and white clover (Trifolium repens were sown. Management systems with harrowed or chisel plowed soil showed improved soil physical properties; however, the effect decreased over time and values approached those of burned and mowed natural rangelands. Natural rangeland systems in the establishment phase had little influence on soil organic C. The mowed natural rangeland and improved natural rangeland exhibited greater production of grazing material, while burning the field decreased production and increased the proportion of weeds. Improvement of the natural rangelands increased leguminous biomass for pasture.

  17. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    Science.gov (United States)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  18. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  19. Forest biomass observation: current state and prospective

    Directory of Open Access Journals (Sweden)

    D. G. Schepaschenko

    2017-08-01

    Full Text Available With this article, we provide an overview of the methods, instruments and initiatives for forest biomass observation at global scale. We focus on the freely available information, provided by both remote and in-situ observations. The advantages and limitation of various space borne methods, including optical, radar (C, L and P band and LiDAR, as well as respective instruments available on the orbit (MODIS, Proba-V, Landsat, Sentinel-1, Sentinel-2 , ALOS PALSAR, Envisat ASAR or expecting (BIOMASS, GEDI, NISAR, SAOCOM-CS are discussed. We emphasize the role of in-situ methods in the development of a biomass models, providing calibration and validation of remote sensing data. We focus on freely available forest biomass maps, databases and empirical models. We describe the functionality of Biomass.Geo-Wiki.org portal, which provides access to a collection of global and regional biomass maps in full resolution with unified legend and units overplayed with high-resolution imagery. The Forest-Observation-System.net is announced as an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. Prospects of unmanned aerial vehicles in the forest inventory are briefly discussed. The work was partly supported by ESA IFBN project (contract 4000114425/15/NL/FF/gp.

  20. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  1. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  2. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  3. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    Science.gov (United States)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  4. A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system.

    Science.gov (United States)

    Wang, Hangyao; Zhou, Qin; Zhang, Guangming; Yan, Guokai; Lu, Haifeng; Sun, Liyan

    A novel process coupling photosynthetic bacteria (PSB) with electrodeionization (EDI) treatment was proposed to treat high ammonia wastewater and recover bio-resources and nitrogen. The first stage (PSB treatment) was used to degrade organic pollutants and accumulate biomass, while the second stage (EDI) was for nitrogen removal and recovery. The first stage was the focus in this study. The results showed that using PSB to transform organic pollutants in wastewater into biomass was practical. PSB could acclimatize to wastewater with a chemical oxygen demand (COD) of 2,300 mg/L and an ammonia nitrogen (NH4(+)-N) concentration of 288-4,600 mg/L. The suitable pH was 6.0-9.0, the average COD removal reached 80%, and the biomass increased by an average of 9.16 times. The wastewater COD removal was independent of the NH4(+)-N concentration. Moreover, the PSB functioned effectively when the inoculum size was only 10 mg/L. The PSB-treated wastewater was then further handled in an EDI system. More than 90% of the NH4(+)-N was removed from the wastewater and condensed in the concentrate, which could be used to produce nitrogen fertilizer. In the whole system, the average NH4(+)-N removal was 94%, and the average NH4(+)-N condensing ratio was 10.0.

  5. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review.

    Science.gov (United States)

    Zou, Liang; Ge, Chang; Wang, Z Jane; Cretu, Edmond; Li, Xiaoou

    2017-11-17

    During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  6. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review

    Directory of Open Access Journals (Sweden)

    Liang Zou

    2017-11-01

    Full Text Available During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  7. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    International Nuclear Information System (INIS)

    Rentizelas, Athanasios A.; Tolis, Athanasios I.; Tatsiopoulos, Ilias P.

    2014-01-01

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  8. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  9. Biomass-powered Solid Oxide Fuel Cells : Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  10. Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems

    International Nuclear Information System (INIS)

    Colpan, C.O.; Hamdullahpur, F.; Dincer, I.; Yoo, Y.

    2009-01-01

    In this study, an integrated SOFC and biomass gasification system is modeled. For this purpose, energy and exergy analyses are applied to the control volumes enclosing the components of the system. However, SOFC is modeled using a transient heat transfer model developed by the authors in a previous study. Effect of gasification agent, i.e. air, enriched oxygen and steam, on the performance of the overall system is studied. The results show that steam gasification case yields the highest electrical efficiency, power-to-heat ratio and exergetic efficiency, but the lowest fuel utilization efficiency. For this case, it is found that electrical, fuel utilization and exergetic efficiencies are 41.8%, 50.8% and 39.1%, respectively, and the power-to-heat ratio is 4.649. (author)

  11. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    Directory of Open Access Journals (Sweden)

    Lantian Ren

    2015-06-01

    Full Text Available This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.

  12. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Gholamreza Salehi Jouzani

    2015-03-01

    Full Text Available Recently, lignocellulosic biomass as the most abundant renewable resource has been widely considered for bioalcohols production. However, the complex structure of lignocelluloses requires a multi-step process which is costly and time consuming. Although, several bioprocessing approaches have been developed for pretreatment, saccharification and fermentation, bioalcohols production from lignocelluloses is still limited because of the economic infeasibility of these technologies. This cost constraint could be overcome by designing and constructing robust cellulolytic and bioalcohols producing microbes and by using them in a consolidated bioprocessing (CBP system. This paper comprehensively reviews potentials, recent advances and challenges faced in CBP systems for efficient bioalcohols (ethanol and butanol production from lignocellulosic and starchy biomass. The CBP strategies include using native single strains with cellulytic and alcohol production activities, microbial co-cultures containing both cellulytic and ethanologenic microorganisms, and genetic engineering of cellulytic microorganisms to be alcohol-producing or alcohol producing microorganisms to be cellulytic. Moreover, high-throughput techniques, such as metagenomics, metatranscriptomics, next generation sequencing and synthetic biology developed to explore novel microorganisms and powerful enzymes with high activity, thermostability and pH stability are also discussed. Currently, the CBP technology is in its infant stage, and ideal microorganisms and/or conditions at industrial scale are yet to be introduced. So, it is essential to bring into attention all barriers faced and take advantage of all the experiences gained to achieve a high-yield and low-cost CBP process.

  13. Biomass in monospecific and mixed stands of eucalyptus and black wattle and corn in an agroforestry system

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2011-06-01

    Full Text Available This study aimed at quantifying the production and distribution of aboveground biomass from the plants in monospecific and mixed stands of eucalyptus (hybrid E. urophylla x E. grandis and black wattle (Acacia mearnsii and, of corn (Zea mays in agrosilvicultural systems. The biomass evaluation (leaf, branch, bark and wood from the forest species at 6 and 18 months of age were performed at the treatments: 100E (100% of eucalyptus + corn; - 100A (100% of black wattle + corn; - 50E:50A (50% of eucalyptus + 50% of black wattle + corn. The corn biomass evaluation (stem, leaves, straw, cob and grains was performed at treatments 100E; 100A; 50E:50A; 75E:25A (75% of eucalyptus + 25% of black wattle + corn; and - 25E:75A (25% of eucalyptus + 75% of black wattle + corn. The biomass production from eucalyptus and from the black wattle, in both monospecific and mixed planting, did not differ in any of the assessed ages but, when evaluated by plants compartments, it was verified an interspecific competitive interaction from the eucalyptus on the black wattle, reducing the formation of crown biomass. The total production of corn biomass in agrosilvicutural systems with eucalyptus and with black wattle in monospecific or mixed plantings did not differ in the studied treatments.

  14. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hori, Hiroaki; Deguchi, Shinguo; Yano, Junya; Sakai, Shinichi

    2010-01-01

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x10 6 t-wet/ yr (0.14x10 6 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  16. Remotely Sensed Land Imagery and Access Systems: USGS Updates

    Science.gov (United States)

    Lamb, R.; Pieschke, R.; Lemig, K.

    2017-12-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has implemented a number of updates to its suite of remotely sensed products and distribution systems. These changes will greatly expand the availability, accessibility, and usability of the image products from USGS. As of late 2017, several new datasets are available for public download at no charge from USGS/EROS Center. These products include Multispectral Instrument (MSI) Level-1C data from the Sentinel-2B satellite, which was launched in March 2017. Along with Sentinel-2A, the Sentinel-2B images are now being distributed through USGS systems as part of a collaborative effort with the European Space Agency (ESA). The Sentinel-2 imagery is highly complementary to multispectral data collected by the USGS Landsat 7 and 8 satellites. With these two missions operating together, the potential local revisit rate can be reduced to 2-4 days. Another product addition is Resourcesat-2 data acquired over the United States by the Indian Space Research Organisation (ISRO). The Resourcesat-2 products from USGS consist of Advanced Wide Field Sensor (AWiFS) and Linear Imaging Self-Scanning Sensor Three (LISS-3) images acquired August 2016 to present. In an effort to maximize future Landsat data interoperability, including time series analysis of the 45+ year archive, the reprocessing of Collection 1 for all historical Landsat Level 1 products is nearly complete. The USGS is now working on operational release of higher-level science products to support analysis of the Landsat archive at the pixel level. Major upgrades were also completed in 2017 for several USGS data discovery and access systems, including the LandsatLook Viewer (https://landsatlook.usgs.gov/) and GloVis Tool (https://glovis.usgs.gov/). Other options are now being developed to further enhance data access and overall user experience. These future options will be discussed and community feedback will be encouraged.

  17. Fluorescent sensing with Fresnel microlenses for optofluidic systems

    Science.gov (United States)

    Siudzińska, Anna; Miszczuk, Andrzej; Marczak, Jacek; Komorowska, Katarzyna

    2017-05-01

    The concept of fluorescent sensing in a microchannel equipped with focusing light Fresnel lenses has been demonstrated. The concept employs a line or array of Fresnel lenses generating a line or array of focused light spots within a microfluidic channel, to increase the sensitivity of fluorescent signal detection in the system. We have presented efficient methods of master mold fabrication based on the lithography method and focused ion beam milling. The flexible microchannel was fabricated by an imprint process with new thiolene-epoxy resin with a good ability to replicate even submicron-size features. For final imprinted lenses, the measured background to peak signal level shows more than nine times the increase in brightness at the center of the focal spot for the green part of the spectrum (532 nm). The effectiveness of the microlenses in fluorescent-marked Escherichia coli bacteria was confirmed in a basic fluoroscope experiment, showing the increase of the sensitivity of the detection by the order of magnitude.

  18. Industrial Raman gas sensing for real-time system control

    Science.gov (United States)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  19. Malicious Cognitive User Identification Algorithm in Centralized Spectrum Sensing System

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2017-11-01

    Full Text Available Collaborative spectral sensing can fuse the perceived results of multiple cognitive users, and thus will improve the accuracy of perceived results. However, the multi-source features of the perceived results result in security problems in the system. When there is a high probability of a malicious user attack, the traditional algorithm can correctly identify the malicious users. However, when the probability of attack by malicious users is reduced, it is almost impossible to use the traditional algorithm to correctly distinguish between honest users and malicious users, which greatly reduces the perceived performance. To address the problem above, based on the β function and the feedback iteration mathematical method, this paper proposes a malicious user identification algorithm under multi-channel cooperative conditions (β-MIAMC, which involves comprehensively assessing the cognitive user’s performance on multiple sub-channels to identify the malicious user. Simulation results show under the same attack probability, compared with the traditional algorithm, the β-MIAMC algorithm can more accurately identify the malicious users, reducing the false alarm probability of malicious users by more than 20%. When the attack probability is greater than 7%, the proposed algorithm can identify the malicious users with 100% certainty.

  20. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    Science.gov (United States)

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from remotely sensed data.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo

    2017-07-01

    Biomass burning is a large important source of greenhouse gases and atmospheric aerosols, and can contribute greatly to the temporal variations of CO 2 emissions at regional and global scales. In this study, we compared four globally gridded CO 2 emission inventories from biomass burning during the period of 2002-2011, highlighting the similarities and differences in seasonality and interannual variability of the CO 2 emissions both at regional and global scales. The four datasets included Global Fire Emissions Database 4s with small fires (GFED4s), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0), and Global Inventory for Chemistry-Climate studies-GFED4s (G-G). The results showed that in general, the four inventories presented consistent temporal trend but with large differences as well. Globally, CO 2 emissions of GFED4s, GFAS1.0, and G-G all peaked in August with the exception in FINN1.0, which recorded another peak in annual March. The interannual trend of all datasets displayed an overall decrease in CO 2 emissions during 2002-2011, except for the inconsistent FINN1.0, which showed a tendency to increase during the considered period. Meanwhile, GFED4s and GFAS1.0 noted consistent agreement from 2002 to 2011 at both global (R 2  > 0.8) and continental levels (R 2  > 0.7). FINN1.0 was found to have the poorest temporal correlations with the other three inventories globally (R 2  80%) but showed small variations through the years (<40%).

  2. Microbial biomass and soil fauna during the decomposition of cover crops in no-tillage system

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2011-08-01

    Full Text Available The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1 Black oat straw (Avena strigosa Schreb.; 2 Rye straw (Secale cereale L.; 3 Common vetch straw (Vicia sativa L.. The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

  3. Decision analysis for the determination of biomass in the territory Tuscia Romana by geographic information system and forest management plans

    Directory of Open Access Journals (Sweden)

    A. Colantoni

    2013-09-01

    Full Text Available The growing interest in the development of chains for the use of agroforestry biomass for energy demand, is due to the awareness they are a crucial element to mitigate the global climatic change effects. The true effort is to have a reliable estimation of biomass availability by some instruments like forest management plans, which allow to locate the forest supply and to know the forest biomass availability in a medium period. In this paper we carried out a decision analysis by geographic information system, in Tuscia Romana area comprising 11 municipalities for a total amount of 813 km2. An estimation was carried out taking into account the bibliographic data on the analyzed species, reporting the biomass in weight taken out by the forest cut utilization. A comparison was also performed in field on chestnut trees cut in a sampling area near Bracciano and in a close sawmill. The results show long, medium and short-term dynamics, but some critical points were found related to the process of estimation and to the real procurement of biomass in some years. The results suggest to be care in a possible project of a biomass plant.

  4. Authentication Sensing System Using Resonance Evaluation Spectroscopy (ASSURES)

    Science.gov (United States)

    Trolinger, James D.; Dioumaev, Andrei K.; Lal, Amit K.; Dimas, Dave

    2017-08-01

    This paper describes an ongoing instrument development project to distinguish genuine manufactured components from counterfeit components; we call the instrument ASSURES (Authentication Sensing System Using Resonance Evaluation Spectroscopy). The system combines Laser Doppler Vibrometry with acoustical resonance spectroscopy, augmented with finite element analysis. Vibrational properties of components, such as resonant modes, damping, and spectral frequency response to various forcing functions depend strongly upon the mechanical properties of the material, including its size, shape, internal hardness, tensile strength, alloy/composite compositions, flaws, defects, and other internal material properties. Although acoustic resonant spectroscopy has seen limited application, the information rich signals in the vibrational spectra of objects provide a pathway to many new applications. Components with the same shape but made of different materials, different fatigue histories, damage, tampering, or heat treatment, will respond differently to high frequency stimulation. Laser Doppler Vibrometry offers high sensitivity and frequency bandwidth to measure the component's frequency spectrum, and overcomes many issues that limit conventional acoustical resonance spectroscopy, since the sensor laser beam can be aimed anywhere along the part as well as to multiple locations on a part in a non-contact way. ASSURES is especially promising for use in additive manufacturing technology by providing signatures as digital codes that are unique to specific objects and even to specific locations on objects. We believe that such signatures can be employed to address many important issues in the manufacturing industry. These include insuring the part meets the often very rigid specifications of the customer and being able to detect non-visible internal manufacturing defects or non-visible damage that has occurred after manufacturing.

  5. A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass.

    Science.gov (United States)

    Zhang, Kejing; Si, Mengying; Liu, Dan; Zhuo, Shengnan; Liu, Mingren; Liu, Hui; Yan, Xu; Shi, Yan

    2018-01-01

    The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilensis B-8 (here after B-8) to pretreat the rice straw (RS) by mimicking the natural fungal invasion process. Here, we also elaborated the mechanism through conducting a systematic study of physicochemical changes before and after pretreatment. After synergistic Fenton and B-8 pretreatment, the reducing sugar yield was increased by 15.6-56.6% over Fenton pretreatment alone and 2.7-5.2 times over untreated RS (98 mg g -1 ). Morphological analysis revealed that pretreatment changed the surface morphology of the RS, and the increase in roughness and hydrophilic sites enhanced lignocellulose bioavailability. Chemical components analyses showed that B-8 removed part of the lignin and hemicellulose which caused the cellulose content to increase. In addition, the important chemical modifications also occurred in lignin, 2D NMR analysis of the lignin in residues indicated that the Fenton pretreatment caused partial depolymerization of lignin mainly by cleaving the β- O -4 linkages and by demethoxylation to remove the syringyl (S) and guaiacyl (G) units. B-8 could depolymerize amount of the G units by cleaving the β-5 linkages that interconnect the lignin subunits. A biomimetic system with a biochemical Fenton reaction and lignocellulose-degrading bacteria was confirmed to be able for the pretreatment of RS to enhance enzymatic hydrolysis under mild conditions. The high digestibility was attributed to the destruction of the lignin structure, partial hydrolysis of the hemicellulose and partial surface oxidation of the cellulose. The mechanism of synergistic Fenton and B-8 pretreatment was also explored to understand the change in the RS and the bacterial effects on

  6. Simulated biomass, environmental impacts and best management practices for long-term switchgrass systems in a semi-arid region

    International Nuclear Information System (INIS)

    Wang, Limei; Qian, Yaling; Brummer, Joe E.; Zheng, Jiyong; Wilhelm, Sarah; Parton, William J.

    2015-01-01

    Long-term information on switchgrass (Panicum virgatum L.) as a biomass energy crop grown on marginally saline soil and the associated impacts on soil carbon (C) and nitrogen (N) dynamics, greenhouse gas (GHG) emissions, and best management practices (BMPs) are limited. In this study, we employed the DAYCENT model, based on a 4-year switchgrass field experiment, to evaluate the long-term biomass yield potential and environmental impacts, and further to develop BMPs for switchgrass in a semi-arid region. The model showed that long-term (14-year) annual mean biomass yields were 9.6 and 5.2 Mg ha −1 for irrigated and rainfed switchgrass systems, respectively. The simulated biomass yields correlated well with field-measured biomass with r 2 values of 0.99 and 0.89 for irrigated and rainfed systems, respectively. Soil organic carbon (SOC) and soil total nitrogen (STN) accumulated rapidly after switchgrass establishment, with mean accrual rates of 0.99–1.13 Mg C ha −1  yr −1 and 0.04–0.08 Mg N ha −1  yr −1 , respectively. Based on the outputs of numerous long-term model simulations with variable irrigation water supplies and N rates, the irrigation regime and N rate with the highest yield to input ratio were chosen as BMPs. The DAYCENT model predicted-BMP was irrigating every 14 days at 70% potential evapotranspiration combined with an N rate of 67 kg ha −1  yr −1 . Switchgrass established and produced biomass reasonably well in this semi-arid region; however, appropriate irrigation and N fertilization were needed for optimal biomass yield. Switchgrass had a great potential to sequester C into soils with low N 2 O emissions while supplying significant quantities of biomass for biofuel synthesis. - Highlights: • The DAYCENT model reliably simulated the growth of switchgrass on marginal land. • Long-term biomass and environmental impacts were simulated using the DAYCENT model. • Switchgrass produced biomass well on marginal land, but

  7. PRINCIPLE OF VALIDATION OF MULTILEVEL RGB COLORIMETRIC SYSTEMS OF REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Lala Rustam Bekirova

    2013-12-01

    Full Text Available The possibility of development of two-level RGB colorimetric systems of remote sensing is analyzed. The principle of validation in multi-level RGB colorimetric systems taking into account the effect of metamerizm is formulated

  8. An economic and environmental analysis of biomass-solar hybrid system for the textile industry in India

    OpenAIRE

    MAHADEVAN, MAHALAKSHMI; SALAI, LATHA

    2015-01-01

    This paper focuses on the design and analysis of a hybrid biomass-solar photovoltaic system for the textile industry with the goal of minimizing the cost and greenhouse gas emissions. The feasibility analysis of the hybrid system is performed based on the resource availability and the power generation potential of the existing biomass power plant near the textile plant at T.Kallupatti in Tamil Nadu, India. The power plant located at the site (9.66$^{\\circ}$N, 77.79$^{\\circ}$E) has an averag...

  9. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems

    KAUST Repository

    Bucs, Szilard

    2014-12-01

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC).Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  10. Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract

    Directory of Open Access Journals (Sweden)

    Ghysel, F.

    2010-01-01

    Full Text Available Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin fractions (Ogier et al., 1999 that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007. However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008. This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007 that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and

  11. Advanced system demonstration for utilization of biomass as an energy source. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    McCollom, M.

    1979-01-01

    The conclusions and findings of extensive analyses undertaken to assess the environmental impacts and effects of the proposal to assist in an Advanced System Demonstration for Utilization of Biomass as an Energy Source by means of a wood-fueled power plant. Included are a description of the proposed project, a discussion of the existing environment that the project would affect, a summary of the project's impacts on the natural and human environments, a discussion of the project's relationships to other government policies and plans, and an extensive review of the alternatives which were considered in evaluating the proposed action. All findings of the research undertaken are discussed. More extensive presentations of the methods of analysis used to arrive at the various conclusions are available in ten topical technical appendices.

  12. Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural.

    Science.gov (United States)

    Zhang, Luxin; Xi, Guoyun; Zhang, Jiaxin; Yu, Hongbing; Wang, Xiaochang

    2017-01-01

    A feasible approach was developed for the co-production of 5-hydroxymethylfurfural (5-HMF) and furfural from corncob via a new porous polytriphenylamine-SO 3 H (SPTPA) solid acid catalyst in lactone solvents. XRD, SEM, XPS, N 2 adsorption-desorption, elemental analysis, TG-DTA, acid-base titration and FTIR spectroscopy techniques were used to characterize the catalyst. This study demonstrates and optimizes the catalytic performance of SPTPA and solvent selection. SPTPA was found to exhibit superior catalytic ability in γ-valerolactone (GVL). Under the optimum reaction conditions, simultaneously encouraging yields of furfural (73.9%) and 5-HMF (32.3%) were achieved at 448K. The main advantages of this process include reasonable yields of both 5-HMF and furfural in the same reaction system, practical simplicity for the raw biomass utilization, and the use of a safe and environmentally benign solvent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Intelligent Control Framework for the Feeding System in the Biomass Power Plant

    Directory of Open Access Journals (Sweden)

    Sun Jin

    2015-01-01

    Full Text Available This paper proposes an intelligent control framework for biomass drying process with flue gases based on FLC (fuzzy logic controller and CAN (Controller Area Network bus. In the operation of a biomass drying process, in order to get the biomass with the set-point low moisture content dried by waste high temperature flue gases, it is necessary to intelligent control for the biomass flow rate. Use of an experiment with varied materials at different initial moisture contents enables acquisition of the biomass flow rates as initial setting values. Set the error between actual straw moisture content and set-point, and rate of change of error as two inputs. the biomass flow rate can be acquired by the fuzzy logic computing as the output. Since the length of dryer is more than twenty meters, the integration by the CAN bus can ensure real-time reliable data acquisition and processing. The control framework for biomass drying process can be applied to a variety of biomass, such as, cotton stalk, corn stalk, rice straw, wheat straw, sugar cane. It has strong potential for practical applications because of its advantages on intelligent providing the set-point low moisture content of biomass feedstock for power generation equipment.

  14. The calcium-sensing receptor and the reproductive system

    Directory of Open Access Journals (Sweden)

    Isabella Ellinger

    2016-08-01

    Full Text Available Active placental transport of maternal serum calcium (Ca2+ to the offspring is pivotal for proper development of the fetal skeleton as well as various organ systems. Moreover, extracellular Ca2+ levels impact on distinct processes in mammalian reproduction. The calcium-sensing receptor (CaSR translates changes in extracellular Ca2+-concentrations into cellular reactions. This review summarizes current knowledge on the expression of CaSR and its putative functions in reproductive organs. CaSR was detected in placental cells mediating materno-fetal Ca2+-transport such as the the murine intraplacental yolk sac and the human syncytiotrophoblast. As shown in casr knock-out mice, ablation of CaSR downregulates transplacental Ca2+-transport. Receptor expression was reported in human and rat ovarian surface epithelial cells, where CaSR activation stimulates cell proliferation. In follicles of various species a role of CaSR activation in oocyte maturation was suggested. Based on studies in avian follicles, the activation of CaSR expressed in granulosa cells may support the survival of follicles after their selection. CaSR in rat and equine sperms was functionally linked to sperm motility and sperm capacitation. Implantation involves complex interactions between the blastocyst and the uterine epithelium. During early pregnancy, CaSR expression at the implantation site as well as in decidual cells indicates that CaSR is important for blastocyst implantation and decidualization in the rat uterus. Localization of CaSR in human extravillous cytotrophoblasts suggests a role of CaSR in placentation. Overall, evidence for functional involvement of CaSR in physiologic mammalian reproductive processes exists. Moreover, several studies reported altered expression of CaSR in cells of reproductive tissues under pathologic conditions. However, in many tissues we still lack knowledge on physiological ligands activating CaSR, CaSR-linked G-proteins, activated

  15. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach

    KAUST Repository

    Hickey, S.M.; Callow, N.J.; Phinn, S.; Lovelock, C.E.; Duarte, Carlos M.

    2017-01-01

    Mangroves are integral to ecosystem services provided by the coastal zone, in particular carbon (C) sequestration and storage. Allometric relationships linking mangrove height to estimated biomass and C stocks have been developed from field sampling

  16. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  17. Using Distributed Fiber-Optic Sensing Systems to Estimate Inflow and Reservoir Properties

    NARCIS (Netherlands)

    Farshbaf Zinati, F.

    2014-01-01

    Recent developments in the deployment of distributed fiber-optic sensing systems in horizontal wells carry the promise to lead to a new, cheap and reliable way of monitoring production and reservoir performance. Practical applicability of distributed pressure sensing for quantitative inflow

  18. Collaborative Educational Leadership: The Emergence of Human Interactional Sense-Making Process as a Complex System

    Science.gov (United States)

    Jäppinen, Aini-Kristiina

    2014-01-01

    The article aims at explicating the emergence of human interactional sense-making process within educational leadership as a complex system. The kind of leadership is understood as a holistic entity called collaborative leadership. There, sense-making emerges across interdependent domains, called attributes of collaborative leadership. The…

  19. Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System

    Science.gov (United States)

    Fiechtner, Kaitlyn Leann

    2010-01-01

    This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.

  20. Distributed illumination control with local sensing and actuation in networked lighting systems

    NARCIS (Netherlands)

    Caicedo Fernandez, D.R.; Pandharipande, A.

    2013-01-01

    We consider the problem of illumination control in a networked lighting system wherein luminaires have local sensing and actuation capabilities. Each luminaire (i) consists of a light emitting diode (LED) based light source dimmable by a local controller, (ii) is actuated based on sensing

  1. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-12-01

    Full Text Available To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola was an Ultisol (Typic Paleudult originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST (strip width 2 m, in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1 CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2 CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

  2. Atmospheric emissions modeling of energetic biomass alternatives using system dynamics approach

    International Nuclear Information System (INIS)

    Szarka, N.; University of Concepcion; Kakucs, O.; Wolfbauer, J.; Bezama, A.

    2008-01-01

    To simulate the quantitative effects of regional biomass alternatives for energetic purpose (BfE) on air pollutant emissions, a system dynamics model was developed and applied for the EuRegion Austrian-Hungarian cross-border area. The dynamic simulation program Vensim R was used to build an overall regional model with economic, social and environmental sectors. Within this model, the here-introduced regional air pollution sub-model (RegAir) includes the important human-made emissions of 10 pollutants resulting from all relevant source sectors within the region investigated. Emissions from activities related to biomass production, transport, conversion and final energy consumption were built in detail. After building and calibrating the RegAir model, seven quantitative test scenarios were defined and implemented into the world. Through the scenarios simulation, effects on air emissions were followed and compared over time. The results of these simulations show a significant reduction of CO 2 emission, especially in cases where fossil fuel displacement in heating devices is achieved on the largest scale. On the contrary, traditional air pollutants increase by most BfE options. The results of the RegAir model simulations of BfE alternatives over two decades provide useful quantifications of various air emissions and identify the less pollutant BfE alternatives in the dynamic context of the relevant air pollution sources of the region. After minor structural modification and appropriate calibration, RegAir can be applied to other regions as well. However, it is stated that, to finally decide on the overall most-appropriate options at a regional level, other environmental as well as economic and social effects must be taken into consideration, being the latter the goal of the mentioned overall regional model which serves as a model frame to the RegAir tool. (author)

  3. Support for Implications of Compressive Sensing Concepts to Imaging Systems

    Science.gov (United States)

    2015-08-02

    Justin Romberg Georgia Tech jrom@ece.gatech.edu Emil Sidky University of Chicago sidky@uchicago.edu Michael Stenner MITRE mstenner@mitre.org Lei Tian...assessment of image quality. Michael Stenner Michael has broad interests in optical imaging, sensing, and communications, and is published in such

  4. Sensing small changes in a wave chaotic scattering system

    International Nuclear Information System (INIS)

    Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward; Anlage, Steven M.

    2010-01-01

    Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acoustic resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.

  5. Affordable dual-sensing proximity sensor for touchless interactive systems

    KAUST Repository

    Nassar, Joanna M.; Diaz, Marlon C.; Hussain, Muhammad Mustafa

    2016-01-01

    We report an ultra-low cost flexible proximity sensor using only off-the-shelf recyclable materials such as aluminum foil, napkin and double-sided tape. Unlike previous reports, our device structure exhibits two sensing capabilities in one platform

  6. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  7. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  8. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    Science.gov (United States)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  9. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    Science.gov (United States)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  10. CYBERNETIC BASIS AND SYSTEM PRACTICE OF REMOTE SENSING AND SPATIAL INFORMATION SCIENCE

    Directory of Open Access Journals (Sweden)

    X. Tan

    2017-09-01

    Full Text Available Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  11. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    Science.gov (United States)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  12. A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS)

    Science.gov (United States)

    Sean P. Healey; Paul L. Patterson; Sassan S. Saatchi; Michael A. Lefsky; Andrew J. Lister; Elizabeth A. Freeman

    2012-01-01

    Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return data were collected globally in spatially discrete full waveform "shots," which have been shown to be strongly correlated with aboveground forest...

  13. A productivity and cost comparison of two systems for producing biomass fuel from roadside forest treatment residues

    Science.gov (United States)

    Nathaniel Anderson; Woodam Chung; Dan Loeffler; John Greg Jones

    2012-01-01

    Forest operations generate large quantities of forest biomass residues that can be used for production of bioenergy and bioproducts. However, a significant portion of recoverable residues are inaccessible to large chip vans, making use financially infeasible. New production systems must be developed to increase productivity and reduce costs to facilitate use of these...

  14. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  15. Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

    International Nuclear Information System (INIS)

    Gunarathne, Duleeka Sandamali; Mellin, Pelle; Yang, Weihong; Pettersson, Magnus; Ljunggren, Rolf

    2016-01-01

    Highlights: • Multi-stage biomass gasification is integrated with steel heat treatment furnace. • Fossil fuel derived CO_2 emission is eliminated by replacing natural gas with syngas. • The integrated system uses waste heat from the furnace for biomass gasification. • Up to 13% increment of the gasifier system energy efficiency is observed. • Fuel switching results in 10% lower flue gas loss and improved furnace efficiency. - Abstract: The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO_2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency. A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature. The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required. Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed

  16. Morphology and biomass variations in root system of young tomato plants (Solanum sp.)

    International Nuclear Information System (INIS)

    Álvarez Gil, Marta A.; Fernández, Ana Fita; Ruiz Sánchez, María del C.; Bolarín Jiménez, María del C.

    2016-01-01

    The scarce exploitation of genotypic variability present in plant roots is an attractive breeding choice with regard to abiotic stresses and supports the objective of this work, which is to identify genotypic variation in root system traits of tomato genotypes (Solanum sp.). Thus, five tomato genotypes were studied: the commercial hybrid cultivar Jaguar (S. lycopersicum), Pera, Volgogradiskij and PE-47 entry (S. pennellii), which were collected in Peru, and the interspecific hybrid PeraxPE-47. Plants were grown in hydroponics for 26 days since germination; their roots were extracted and images were digitalized on scanner to evaluate total length, average diameter, the projected area and root length, following the categories per diameter of the whole root system through software Win Rhizo Pro 2003. The dry mass of roots and aerial parts was also recorded. Results indicated that genotypes differed in morphology, length according to diameter, root system spatial configuration and biomass, mainly with respect to the wild salinity resistant species PE-47. The interspecific hybrid PxPE-47 could be used as a rootstock to increase salt tolerance of susceptible cultivars. (author)

  17. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  18. Advanced propagation systems for biomass species: a model system based on sweet potato

    Energy Technology Data Exchange (ETDEWEB)

    Cantliffe, D.J. (Florida Univ., Gainseville, FL (United States). Dept. of Horticultural Sciences)

    1993-01-01

    A method for somatic embryo production of sweet potato (Ipomoea batatas (L.) Lam.) has been developed. The first step of somatic embryogenesis was to obtain embryogenic callus from 0.2 mm apical domes with 1-2 leaf primordia on medium containing 10 M 2,4-dichlorophenoxyacetic acid (2,4-D). Selective proliferation of embryogenic callus has been obtained on solid media containing 10 [mu]M 2,4-D and 1 [mu]M benzylaminopurine (BAP) and in liquid media containing 5 [mu]M 2,4-D. The fraction of suspension cultures larger than 710 [mu]M was commonly used to produce embryos. Cultures were recultured every 2 weeks in liquid media and every 6 weeks on agar media. The formation of embryos was triggered by transferring embryogenic calli or cell aggregates from nutrient media containing 2,4-D to fresh media without 2,4-D. Late torpedo and cotyledonary stage embryos had the highest potential for plant formation. The automated production of synthetic seed in combination with fluid drilling technology could render economically feasible the production of sweet potato for biomass. (author)

  19. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  20. Affordable dual-sensing proximity sensor for touchless interactive systems

    KAUST Repository

    Nassar, Joanna M.

    2016-09-13

    We report an ultra-low cost flexible proximity sensor using only off-the-shelf recyclable materials such as aluminum foil, napkin and double-sided tape. Unlike previous reports, our device structure exhibits two sensing capabilities in one platform, with outstanding long detection range of 20 cm and pressure sensitivity of 0.05 kPa. This is the first ever demonstration of a low-cost, accessible, and batch manufacturing process for pressure and proximity sensing on a singular platform. The mechanical flexibility of the sensor makes it possible to mount on various irregular platforms, which is vital in many areas, such as robotics, machine automation, vehicular technology and inspection tools.

  1. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  2. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system.

    Science.gov (United States)

    Gao, Bei; Chi, Liang; Tu, Pengcheng; Bian, Xiaoming; Thomas, Jesse; Ru, Hongyu; Lu, Kun

    2018-02-01

    The gut microbiome has tremendous potential to impact health and disease. Various environmental toxicants, including insecticides, have been shown to alter gut microbiome community structures. However, the mechanism that compositionally and functionally regulates gut microbiota remains unclear. Quorum sensing is known to modulate intra- and interspecies gene expression and coordinate population responses. It is unknown whether quorum sensing is disrupted when environmental toxicants cause perturbations in the gut microbiome community structure. To reveal the response of the quorum-sensing system to environmental exposure, we use a combination of Illumina-based 16S rRNA gene amplicon and shotgun metagenome sequencing to examine the impacts of a widely used organophosphate insecticide, malathion, on the gut microbiome trajectory, quorum sensing system and behaviors related to quorum sensing, such as motility and pathogenicity. Our results demonstrated that malathion perturbed the gut microbiome development, quorum sensing and quorum sensing related behaviors. These findings may provide a novel mechanistic understanding of the role of quorum-sensing in the gut microbiome toxicity of malathion. Copyright © 2017. Published by Elsevier B.V.

  3. Remote Sensing of Shrubland Drying in the South-East Mediterranean, 1995–2010: Water-Use-Efficiency-Based Mapping of Biomass Change

    Directory of Open Access Journals (Sweden)

    Maxim Shoshany

    2015-02-01

    Full Text Available Recent climate studies of the South-Eastern Mediterranean indicate an increase in drought frequencies and decreasing water resources since the turn of the century. A four-phase methodology was developed for assessing above-ground biomass changes in shrublands caused by these recent trends. Firstly, we generalized the function SB = 0.008MAP1.54 describing the shrublands above-ground biomass (SB dependence on mean annual precipitation (MAP for areas of full shrub cover. Secondly, relationships between MAP and NDVI were formalized, allowing an estimation of precipitation levels from observed NDVI values (MAPNDVI. Thirdly, relative water-use efficiency (RWUE was defined as the ratio between MAPNDVI and MAP. Finally, the function SBRWUE = 0.008MAP0.54 + RWUE was formalized, utilizing RWUE in estimating shrublands biomass. This methodology was implemented using Landsat TM images (1994 to 2011 for an area between the Judean Mountains and the deserts bordering them to the east and south. More than 50% of the study area revealed low biomass change (±0.2 kg/m2, compared with 30% of the woodlands of the Jerusalem Mountains, where biomass increased between 0.2 and 1.4 kg/m2 and with 50% of the semi-arid shrublands, where it decreased between 0.2 and 1.4 kg/m2. These results suggest that aridity lines in southern Israel are migrating northwards.

  4. Zooplankton structure and vertical migration: Using acoustics and biomass to compare stratified and mixed fjord systems

    Science.gov (United States)

    Díaz-Astudillo, Macarena; Cáceres, Mario A.; Landaeta, Mauricio F.

    2017-09-01

    The patterns of abundance, composition, biomass and vertical migration of zooplankton in short-time scales (ADCP device mounted on the hull of a ship were used to obtain vertical profiles of current velocity data and intensity of the backscattered acoustic signal, which was used to study the migratory strategies and to relate the echo intensity with zooplankton biomass. Repeated vertical profiles of temperature, salinity and density were obtained with a CTD instrument to describe the density patterns during both experiments. Zooplankton were sampled every 3 h using a Bongo net to determine abundance, composition and biomass. Migrations were diel in the stratified station, semi-diel in the mixed station, and controlled by light in both locations, with large and significant differences in zooplankton abundance and biomass between day and night samples. No migration pattern associated with the effect of tides was found. The depth of maximum backscatter strength showed differences of approximately 30 m between stations and was deeper in the mixed station. The relation between mean volume backscattering strength (dB) computed from echo intensity and log10 of total dry weight (mg m-3) of zooplankton biomass was moderate but significant in both locations. Biomass estimated from biological samples was higher in the mixed station and determined by euphausiids. Copepods were the most abundant group in both stations. Acoustic methods were a useful technique to understand the detailed patterns of migratory strategies of zooplankton and to help estimate zooplankton biomass and abundance in the inner waters of southern Chile.

  5. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection

    Science.gov (United States)

    Han, Baoguo; Zhang, Kun; Burnham, Tom; Kwon, Eil; Yu, Xun

    2013-01-01

    In this paper, a self-sensing carbon nanotube (CNT) concrete pavement system for traffic detection is proposed and tested in a roadway. Pre-cast and cast-in-place self-sensing CNT concrete sensors were simultaneously integrated into a controlled pavement test section at the Minnesota Road Research Facility (MnROAD), USA. Road tests of the system were conducted by using an MnROAD five-axle semi-trailer tractor truck and a van, respectively, both in the winter and summer. Test results show that the proposed self-sensing pavement system can accurately detect the passing of different vehicles under different vehicular speeds and test environments. These findings indicate that the developed self-sensing CNT concrete pavement system can achieve real-time vehicle flow detection with a high detection rate and a low false-alarm rate.

  6. Applications of Remote Sensing and Geographic Information System (GIS) in Archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.

    The advancement of remote sensing technology and the analysing capability of Geographical Information System (GIS) can very well be used in the science of Archaeology. Though these subjects look apart, they can be studied in conjunction with each...

  7. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  8. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  9. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection

    International Nuclear Information System (INIS)

    Han, Baoguo; Zhang, Kun; Yu, Xun; Burnham, Tom; Kwon, Eil

    2013-01-01

    In this paper, a self-sensing carbon nanotube (CNT) concrete pavement system for traffic detection is proposed and tested in a roadway. Pre-cast and cast-in-place self-sensing CNT concrete sensors were simultaneously integrated into a controlled pavement test section at the Minnesota Road Research Facility (MnROAD), USA. Road tests of the system were conducted by using an MnROAD five-axle semi-trailer tractor truck and a van, respectively, both in the winter and summer. Test results show that the proposed self-sensing pavement system can accurately detect the passing of different vehicles under different vehicular speeds and test environments. These findings indicate that the developed self-sensing CNT concrete pavement system can achieve real-time vehicle flow detection with a high detection rate and a low false-alarm rate. (paper)

  10. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  11. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    Chutichai, Bhawasut; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2013-01-01

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  12. Evaluation of tritium transport in the biomass-fusion hybrid system and its environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Kyosuke [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Osaka (Japan)

    2015-10-15

    Highlights: • We assumed that tritium migrates from biomass hybrid fusion system to fuel cell vehicles. • We developed a seven-compartment model to describe the water flow and tritium in an urban area Osaka. • Tritium concentration of surface soil water run by 4 Bq/L level after 60 years later. • The tritium does not deserve health hazard but easily detectable in the environment. - Abstract: The behavior of tritium contained in the biofuel produced by the fusion energy is analyzed. Hydrogen product is contaminated with tritium from breeding blanket of fusion plant within the regulation limit and released to atmosphere when used for fuel cell vehicles. In the model city, Osaka, seven-compartment model describes the behavior of exhausted tritium by adapting the environment water flow and its migration was analyzed with STELLA system dynamics code. Tritium (HTO) with a concentration of 5000 Bq//m{sup 3} exhausted from the running vehicle increases decades and reaches steady state after about 50 years, at around 40 Bq/m{sup 3} in atmosphere and 4 Bq/L in surface soil water that does not deserve health hazard, however causes contamination of large populated area.

  13. Computer Aided Analysis and Prototype Testing of an Improved Biogas Reactor For Biomass System

    Directory of Open Access Journals (Sweden)

    Jeremy (Zheng Li

    2015-05-01

    Full Text Available The alternative fuel resources substituting for conventional fuels are required due to less availability of fuel resources than demand in the market. A large amount of crude oil and petroleum products are required to be imported in many countries over the world. Also the environmental pollution is another serious problem when use petroleum products. Biogas, with the composition of 54.5% CH4, 39.5% CO2, and 6% other elements (i.e., H2, N2, H2S, and O2, is a clear green fuel that can substitute the regular petroleum fuels to reduce the pollutant elements. Biogas can be produced by performing enriching, scrubbing, and bottling processes. The purification process can be further applied to take away the pollutants in biogas. The pure biogas process analyzed in this research is compressed to 2950 psi while being filled into gas cylinder. The daily produced biogas capacity is around 5480 ft3 and the processing efficacy is affected by surrounding environment and other factors. The design and development of this biogas system is assisted through mathematical analysis, 3D modeling, computational simulation, and prototype testing. Both computer aided analysis and prototype testing show close results which validate the feasibility of this biogas system in biomass applications.

  14. Topical report on sources and systems for aquatic plant biomass as an energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J.C.; Ryther, J.H.; Waaland, R.; Wilson, E.H.

    1977-10-21

    Background information is documented on the mass cultivation of aquatic plants and systems design that is available from the literature and through consultation with active research scientists and engineers. The biology of microalgae, macroalgae, and aquatic angiosperms is discussed in terms of morphology, life history, mode of existence, and ecological significance, as they relate to cultivation. The requirements for growth of these plants, which are outlined in the test, suggest that productivity rates are dependent primarily on the availability of light and nutrients. It is concluded that the systems should be run with an excess of nutrients and with light as the limiting factor. A historical review of the mass cultivation of aquatic plants describes the techniques used in commercial large-scale operations throughout the world and recent small-scale research efforts. This review presents information on the biomass yields that have been attained to date in various geographical locations with different plant species and culture conditions, emphasizing the contrast between high yields in small-scale operations and lower yields in large-scale operations.

  15. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Scripps Research Inst., La Jolla, CA (United States); Hazen, Samuel [Scripps Research Inst., San Diego, CA (United States); Mullet, John [Texas A & M Univ., College Station, TX (United States)

    2017-11-22

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield.

  16. Optimization of radial systems with biomass fueled gas engine from a metaheuristic and probabilistic point of view

    International Nuclear Information System (INIS)

    Ruiz-Rodriguez, F.J.; Gomez-Gonzalez, M.; Jurado, F.

    2013-01-01

    Highlights: ► Loads and distributed generation production are modeled as random variables. ► Distribution system with biomass fueled gas engines. ► Random nature of lower heat value of biomass and load. ► The Cornish–Fisher expansion is used for approximating quantiles of a random variable. ► Computational cost is low enough than that required for Monte Carlo simulation. - Abstract: This paper shows that the technical constraints must be considered in radial distribution networks, where the voltage regulation is one of the primary problems to be dealt in distributed generation systems based on biomass fueled engine. Loads and distributed generation production are modeled as random variables. Results prove that the proposed method can be applied for the keeping of voltages within desired limits at all load buses of a distribution system with biomass fueled gas engines. To evaluate the performance of this distribution system, this paper has developed a probabilistic model that takes into account the random nature of lower heat value of biomass and load. The Cornish–Fisher expansion is used for approximating quantiles of a random variable. This work introduces a hybrid method that utilizes a new optimization method based on swarm intelligence and probabilistic radial load flow. It is demonstrated the reduction in computation time achieved by the more efficient probabilistic load flow in comparison to Monte Carlo simulation. Acceptable solutions are reached in a smaller number of iterations. Therefore, convergence is more rapidly attained and computational cost is significantly lower than that required for Monte Carlo methods.

  17. Crop status sensing system by multi-spectral imaging sensor, 1: Image processing and paddy field sensing

    International Nuclear Information System (INIS)

    Ishii, K.; Sugiura, R.; Fukagawa, T.; Noguchi, N.; Shibata, Y.

    2006-01-01

    The objective of the study is to construct a sensing system for precision farming. A Multi-Spectral Imaging Sensor (MSIS), which can obtain three images (G. R and NIR) simultaneously, was used for detecting growth status of plants. The sensor was mounted on an unmanned helicopter. An image processing method for acquiring information of crop status with high accuracy was developed. Crop parameters that were measured include SPAD, leaf height, and stems number. Both direct seeding variety and transplant variety of paddy rice were adopted in the research. The result of a field test showed that crop status of both varieties could be detected with sufficient accuracy to apply to precision farming

  18. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system

    International Nuclear Information System (INIS)

    Singh, Shakti; Singh, Mukesh; Kaushik, Subhash Chandra

    2016-01-01

    Highlights: • A cost effective hybrid PV-wind-biomass energy system with storage is proposed. • Mathematical modeling and operational strategy of the proposed system is discussed. • Optimal sizing of components is evaluated using evolutionary algorithms. • Results obtained is compared with software tool HOMER. • The performance of the hybrid system in the critical case has been presented. - Abstract: Renewable energy systems are proving to be promising and environment friendly sources of electricity generation, particularly, in countries with inadequate fossil fuel resources. In recent years, wind, solar photovoltaic (PV) and biomass based systems have been drawing more attention to provide electricity to isolated or energy deficient regions. This paper presents a hybrid PV-wind generation system along with biomass and storage to fulfill the electrical load demand of a small area. For optimal sizing of components, a recently introduced swarm based artificial bee colony (ABC) algorithm is applied. To verify the strength of the proposed technique, the results are compared with the results obtained from the standard software tool, hybrid optimization model for electric renewable (HOMER) and particle swarm optimization (PSO) algorithm. It has been verified from the results that the ABC algorithm has good convergence property and ability to provide good quality results. Further, for critical case such as the failure of any source, the behavior of the proposed system has been observed. It is evident from the results that the proposed scheme is able to manage a smooth power flow with the same optimal configuration.

  19. Readout Distance Enhancement of the Passive Wireless Multi-Parameter Sensing System Using a Repeater Coil

    Directory of Open Access Journals (Sweden)

    Lifeng Wang

    2018-01-01

    Full Text Available A repeater coil is used to extend the detection distance of a passive wireless multi-parameter sensing system. The passive wireless sensing system has the ability of simultaneously monitoring three parameters by using backscatter modulation together with channel multiplexing. Two different repeater coils are designed and fabricated for readout distance enhancement of the sensing system: one is a PCB (printed circuit board repeater coil, and the other is a copper wire repeater coil. Under the conditions of fixed voltage and adjustable voltage, the maximum readout distance of the sensing system with and without a repeater coil is measured. Experimental results show that larger power supply voltage can help further increase the readout distance. The maximum readout distance of the sensing system with a PCB repeater coil has been extended 2.3 times, and the one with a copper wire repeater coil has been extended 3 times. Theoretical analysis and experimental results both indicate that the high Q factor repeater coil can extend the readout distance more. With the copper wire repeater coil as well as a higher power supply voltage, the passive wireless multi-parameter sensing system finally achieves a maximum readout distance of 13.5 cm.

  20. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    Science.gov (United States)

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  1. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    Science.gov (United States)

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  2. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    International Nuclear Information System (INIS)

    Bin Abas, Faizulsalihin; Takayama, Shigeru

    2015-01-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and ''Cloud'' System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster

  3. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    Science.gov (United States)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  4. Economic Development Through Biomass Systems Integration in Central Florida: Final Report; May 5, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, J. A.; Smith, W. H.

    2004-07-01

    Reclaimed phosphate mined land in central Florida has been identified as an area with potential for growing biomass crops. Approximately 73,000 acres of land could be available for production. Additional research is needed to define the possibilities.

  5. A review of biomass energy potential

    International Nuclear Information System (INIS)

    Hoi Why Kong.

    1995-01-01

    This article reviews some recent development in biomass utilisation systems in Malaysia. The technology reviewed are direct combustion of biomass , wood briquetting technology, pyrolysis of biomass and gasification of wood in Malaysia

  6. Development of a system for characterizing biomass quality of lignocellulosic feedstocks for biochemical conversion

    Science.gov (United States)

    Murphy, Patrick Thomas

    The purpose of this research was twofold: (i) to develop a system for screening lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to evaluate brown midrib corn stover as feedstock for ethanol production. In the first study (Chapter 2), we investigated the potential of corn stover from bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity compared to corn stover from the isogenic normal hybrid. Corn stover from hybrid W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by weight, and the resulting residues underwent simultaneous saccharification and cofermentation (SSCF) to ethanol. Dry matter (DM) digested by SSCF increased with increasing ammonium hydroxide concentration across all genotypes (P>0.0001) from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide pretreatment. The bm corn stover materials averaged 373 g kg-1 DM of DM digested by SSCF compared with 335 g kg-1 DM for the normal corn stover (Pdetergent fiber (NDF) as a cell-wall isolation procedure, and (iii) elimination of the fermentation organism in the SSCF procedures used to determine biochemically available carbohydrates. The original and the HTP assay methods were compared using corn cobs, hybrid poplar, kenaf, and switchgrass. Biochemically available carbohydrates increased with the HTP methods in the corn cobs, hybrid poplar, and switchgrass, but remained the same in the kenaf. Total available carbohydrates increased and unavailable carbohydrates decreased with the HTP methods in the corn cobs and switchgrass and remained the same in the hybrid poplar and kenaf. There were no differences in total carbohydrates (CT) between the two methods. The final study evaluated the variability of biomass quality parameters in a set of corn stover samples, and developed calibration equations for determining parameter values using near

  7. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  8. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  9. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    Science.gov (United States)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  10. Integrated Electrochemical Analysis System with Microfluidic and Sensing Functions

    Directory of Open Access Journals (Sweden)

    Hiroaki Suzuki

    2008-02-01

    Full Text Available An integrated device that carries out the timely transport of solutions andconducts electroanalysis was constructed. The transport of solutions was based oncapillary action in overall hydrophilic flow channels and control by valves that operateon the basis of electrowetting. Electrochemical sensors including glucose, lactate,glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT, pH,ammonia, urea, and creatinine were integrated. An air gap structure was used for theammonia, urea, and creatinine sensors to realize a rapid response. To enhance thetransport of ammonia that existed or was produced by the enzymatic reactions, the pHof the solution was elevated by mixing it with a NaOH solution using a valve based onelectrowetting. The sensors for GOT and GPT used a freeze-dried substrate matrix torealize rapid mixing. The sample solution was transported to required sensing sites atdesired times. The integrated sensors showed distinct responses when a sample solutionreached the respective sensing sites. Linear relationships were observed between theoutput signals and the concentration or the logarithm of the concentration of theanalytes. An interferent, L-ascorbic acid, could be eliminated electrochemically in thesample injection port.

  11. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  12. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  13. Institutional issues affecting the integration and use of remotely sensed data and geographic information systems

    Science.gov (United States)

    Lauer, D.T.; Estes, J.E.; Jensen, J.R.; Greenlee, D.D.

    1991-01-01

    The developers as well as the users of remotely sensed data and geographic information system (GIS) techniques are associated with nearly all types of institutions in government, industry, and academia. Individuals in these various institutions often find the barriers to accepting remote sensing and GIS are not necessarily technical in nature, but can be attributed to the institutions themselves. Several major institutional issues that affect the technologies of remote sensing and GIS are data availability, data marketing and costs, equipment availability and costs, standards and practices, education and training, and organizational infrastructures. Not only are problems associated with these issues identified, but needs and opportunities also are discussed. -from Authors

  14. VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)

    Science.gov (United States)

    We used a combination of data from USDA Forest Service inventories, intensivechronosequences, extensive sites, and satellite remote sensing, to estimate biomassand net primary production (NPP) for the forested region of western Oregon. Thestudy area was divided int...

  15. Study on algorithm of process neural network for soft sensing in sewage disposal system

    Science.gov (United States)

    Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying

    2006-11-01

    A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.

  16. An Energy Efficient Cognitive Radio System with Quantized Soft Sensing and Duration Analysis

    KAUST Repository

    Alabbasi, Abdulrahman

    2015-03-09

    In this paper, an energy efficient cognitive radio system is proposed. The proposed design optimizes the secondary user transmission power and the sensing duration combined with soft-sensing information to minimize the energy per goodbit. Due to the non-convex nature of the problem we prove its pseudo-convexity to guarantee the optimal solution. Furthermore, a quantization scheme, that discretize the softsensing information, is proposed and analyzed to reduce the overload of the continuously adapted power. Numerical results show that our proposed system outperforms the benchmark systems. The impact of the quantization levels and other system parameters is evaluated in the numerical results.

  17. Reaction Force/Torque Sensing in a Master-Slave Robot System without Mechanical Sensors

    Directory of Open Access Journals (Sweden)

    Kyoko Shibata

    2010-07-01

    Full Text Available In human-robot cooperative control systems, force feedback is often necessary in order to achieve high precision and high stability. Usually, traditional robot assistant systems implement force feedback using force/torque sensors. However, it is difficult to directly mount a mechanical force sensor on some working terminals, such as in applications of minimally invasive robotic surgery, micromanipulation, or in working environments exposed to radiation or high temperature. We propose a novel force sensing mechanism for implementing force feedback in a master-slave robot system with no mechanical sensors. The system consists of two identical electro-motors with the master motor powering the slave motor to interact with the environment. A bimanual coordinated training platform using the new force sensing mechanism was developed and the system was verified in experiments. Results confirm that the proposed mechanism is capable of achieving bilateral force sensing and mirror-image movements of two terminals in two reverse control directions.

  18. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    Science.gov (United States)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  19. Production of electricity through biomass gasification system downdraft and generator group with a capacity of 50 kVA

    Directory of Open Access Journals (Sweden)

    Fabrízio Luiz Figueiredo

    2012-11-01

    Full Text Available This paper presents the results of tests performed with an internal combustion engine adapted to MWM Otto cycle, coupled to an electricity generator with a capacity of 50 kVA, fed exclusively with synthesis gas from a biomass gasifier downdraft, using wood eucalyptus. Also featured are the characteristics and efficiency of the generator set, in order to assess the feasibility of applying the system in remote locations, where biomass is available and the system of conventional electric power transmission is hampered by distance. The synthesis gas generated showed the average composition of 16,9% H2, 20% CO, 10,9% CO2, CH4, 2% and 50,1% N2. The performance of the span was monitored by applying loads of 0, 7, 13, 20,1 and 26,4 kW, the generator, keeping the average voltage of 222 V and currents of 0, 18,5, 33, 51, 84 and 67 A.

  20. Increased combustion stability in modulating biomass boilers for district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hermansson, Roger (eds.) [Lulea Univ. of Technology (Sweden)

    2002-09-01

    One of the problems in small district heating systems is the large load variation that must be handled by the system. If the boiler is designed to cover the needs during the coldest day in winter time in northern Europe it would have to run at loads as low as 10% of full load during summer time, when heat is needed only for tap water production. Load variations in small networks are quite fast and earlier investigations have shown that existing biomass boilers give rise to large amounts of harmful emissions at fast load variations and at low loads. The problem has been addressed in different ways: Three new boiler concepts have been realized and tested: A prototype of a 500 kW boiler with partitioned primary combustion chamber and supplied with a water heat store. A 10 kW bench scale combustor and a 500 kW prototype boiler based on pulsating combustion. Bench scale boilers to test the influence from applied sound on emissions and a 150 kW prototype boiler with a two-stage secondary vortex combustion chamber. Development of control and regulating equipment: Glow Guard, a control system using infra-red sensors to detect glowing char on the grate, has been constructed and tested. A fast prediction model that can be used in control systems has been developed. Simulation of the combustion process: Code to simulate pyrolysis/gasification of fuel on the grate has been developed. Combustion of the gas phase inside the combustion chamber has been simulated. The two models have been combined to describe the combustion process inside the primary chamber of a prototype boiler. A fast simulation code based on statistical methods that can predict the environmental performance of boilers has been developed. One of the boiler concepts matches the desired load span from 10 to 100% of full load with emissions far below the set limits for CO and THC and close to the set limits for NO{sub x}. The other boilers had a bit more narrow load range, one with very low emissions except for NO

  1. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  2. A Three-Dimensional Microdisplacement Sensing System Based on MEMS Bulk-Silicon Technology

    Science.gov (United States)

    Wu, Junjie; Lei, Lihua; Chen, Xin; Cai, Xiaoyu; Li, Yuan; Han, Tao

    2014-01-01

    For the dimensional measurement and characterization of microsized and nanosized components, a three-dimensional microdisplacement sensing system was developed using the piezoresistive effect in silicon. The sensor was fabricated using microelectromechanical system bulk-silicon technology, and it was validated using the finite element method. A precise data acquisition circuit with an accuracy of 20 μV was designed to obtain weak voltage signals. By calibration, the sensing system was shown to have a sensitivity of 17.29 mV/μm and 4.59 mV/μm in the axial and lateral directions, respectively; the nonlinearity in these directions was 0.8% and 1.0% full scale, respectively. A full range of 4.6 μm was achieved in the axial direction. Results of a resolution test indicated that the sensing system had a resolution of 5 nm in the axial direction and 10 nm in the lateral direction. PMID:25360581

  3. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  4. On the Influence of Quorum Sensing in the Competition Between Bacteria and Immune System of Invertebrates

    Science.gov (United States)

    Fergola, Paolo; Zhang, Juan; Cerasuolo, Marianna; Ma, Zhien

    2008-07-01

    The competition between bacteria and innate immune system of invertebrate animals is described by means of ODEs. Two different systems are considered corresponding to the absence or the presence of Quorum Sensing (Q.S.) mechanism. Qualitative properties of the solutions of both systems as well as the stability of their meaningful equilibria are analyzed. By constructing suitable Lyapunov functions, global asymptotic stability results have been proved when the quorum sensing is absent. In order to better illustrate the dynamics of competition, some numerical simulations, obtained by means of MATHEMATICA (Wolfram Research, 1989) are presented.

  5. Advanced feed-through systems for in-well optical fibre sensing

    International Nuclear Information System (INIS)

    Shiach, G; Nolan, A; McAvoy, S; McStay, D; Prel, C; Smith, M

    2007-01-01

    A new optical fibre feed-through for use in subsea in-well optical fibre sensing systems is reported. The new feed-through is compatible for use with standard subsea Christmas Tree penetrators and allows multiple re-mating of the feed-through over the lifetime of the device. The system has been extensively tested under in-well conditions and found to conform to the performance requirements. The new feed-through is planned to be used in one of the first subsea optical fibre in-well sensing systems

  6. Geographic information systems and remote sensing techniques in environmental assessment

    International Nuclear Information System (INIS)

    Kenny, F.M.

    1996-01-01

    Digital map products and spatial inventories are becoming increasingly available from geological surveys, agricultural, natural resource, environmental, energy, transportation and forestry departments. As well there are now multitudes of specialized digital airborne and satellite image products available. This wide availability of geographically referenced data and the advances in spatial data analysis software are providing geoscientists with new tools and new ways of viewing traditionally used data. Through several examples, this paper will demonstrate how remote sensing and GIS technologies can contribute to environmental assessment of an urban fringe area. Nowhere is the need for spatial inventories and mapping greater than in such areas, where pre-existing information becomes rapidly outdated. A 260-km 2 site, north of Metropolitan Toronto was chosen as a study area. A spatial data base was constructed which included imagery from three different satellite sensors, a Digital Terrain Model (DTM), and digital drainage network, and a digital copy of the Ontario Geological Survey's Quaternary geological map. (author). 15 refs., 1 tab., 17 figs

  7. Application of ionic liquids in electrochemical sensing systems.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A mobile sensing system for structural health monitoring: design and validation

    International Nuclear Information System (INIS)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-01-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring

  9. A mobile sensing system for structural health monitoring: design and validation

    Science.gov (United States)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.

  10. Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations.

    Science.gov (United States)

    Carbone, Dora Allegra; Olivieri, Giuseppe; Pollio, Antonino; Gabriele; Melkonian, Michael

    2017-12-01

    Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m -2  s -1 or 1000 μmol photons m -2  s -1 ), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO 2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m -2 d -1 ) was observed at a light intensity of 600 μmol photons m -2  s -1 and 2% CO 2 . The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m -2  s -1 and an ambient CO 2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10-12 g m -2 d -1 , respectively. When compared to the performance of similar cultivation systems (15-30 g m -2 d -1 ), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  11. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  12. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steve [Auburn Univ., AL (United States); McDonald, Timothy [Auburn Univ., AL (United States); Fasina, Oladiran [Auburn Univ., AL (United States); Gallagher, Tom [Auburn Univ., AL (United States); Smidt, Mathew [Auburn Univ., AL (United States); Mitchell, Dana [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Klepac, John [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Thompson, Jason [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Sprinkle, Wes [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Carter, Emily [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Grace, Johnny [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Rummer, Robert [US Dept. of Agriculture (USDA) Forest Service, Washington, DC (United States); Corley, Frank [Corley Land Services, Chapman, AL (United States); Somerville, Grant [Tigercat, Brantford, ON (Canada)

    2014-09-01

    In this study, a high-tonnage harvesting system designed specifically to operate efficiently in the expected stand types of a bioenergy scenario was built, deployed, and evaluated in a production setting. Stands on which the system was evaluated exhibited the heavy stocking levels (> 600 stems per acre) and tree size distributions with significant volume in small stems (down to 2” DBH) that were expected in the modified energy plantation silvicultural approach. The harvest system also was designed to be functional in the traditional plantation stands dominating the commercial forestry landscape in the region. The Tigercat 845D feller buncher, which was a prototype machine designed for the high tonnage harvest system, used a boom-mounted prototype DT1802 shear felling head and incorporated a number of options intended to maximize its small-stem productivity, including: a high-speed shear severing system that was cheaper to operate than a saw; a large-pocket felling head that allowed larger accumulations of small stems to be built before expending the time to drop them for the skidder; efficient, low ground pressure, tracked carrier system to decrease the amount of maneuvering, saving time and minimizing soil disturbance; and various energy-saving devices to lower fuel costs and minimize air quality impacts. Overall, the feller buncher represented a quantum advance in small-stem harvesting technology. Extensive testing showed the machine’s production rate to be relatively insensitive to piece size, much less so than comparable traditional equipment. In plantation stands, the feller buncher was able to produce approximately 100 green tons of biomass per productive machine hour (PMH), and in natural stands, it produced nearly 120 green tons per PMH. The ability of the high tonnage feller buncher to maintain high productivity in stands with smaller diameter stems is something that has not been achieved in previous feller buncher designs. The Tigercat 845D feller

  13. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  14. Application of remote sensing and Geographic Information Systems to ecosystem-based urban natural resource management

    Science.gov (United States)

    Xiaohui Zhang; George Ball; Eve Halper

    2000-01-01

    This paper presents an integrated system to support urban natural resource management. With the application of remote sensing (RS) and geographic information systems (GIS), the paper emphasizes the methodology of integrating information technology and a scientific basis to support ecosystem-based management. First, a systematic integration framework is developed and...

  15. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  16. Development of a portable remote sensing system for measurement of diesel emissions from passing diesel trucks.

    Science.gov (United States)

    2011-04-08

    A wireless remote-sensing system has been developed for measurement of NOx and particulate matters (PM) emissions from passing diesel trucks. The NOx measurement system has a UV light source with quartz fiber optics that focused the light source into...

  17. 30 CFR 75.1101-16 - Dry powder chemical systems; sensing and fire-suppression devices.

    Science.gov (United States)

    2010-07-01

    ...-contained dry powder chemical system shall be equipped with sensing devices which shall be designed to activate the fire-control system, sound an alarm and stop the conveyor drive motor in the event of a rise... belt drive, each sensor shall be equipped with a standby power source which shall be capable of...

  18. Remote-sensing imperatives of the Global Ocean Observing System (GOOS)

    Digital Repository Service at National Institute of Oceanography (India)

    Summerhayes, C.; Desa, E.; Swamy, G.N.

    is crucial. The tasks are thus to advance the function of remote-sensing algorithms to encompass those variables which are presently monitored by in situ systems, leaving these systems to act more as sea-truth validators than as in situ data suppliers...

  19. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    Science.gov (United States)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  20. Linking climate change education through the integration of a kite-borne remote sensing system

    Directory of Open Access Journals (Sweden)

    Yichun Xie

    2014-09-01

    Full Text Available A majority of secondary science teachers are found to include the topic of climate change in their courses. However, teachers informally and sporadically discuss climate change and students rarely understand the underlying scientific concepts. The project team developed an innovative pedagogical approach, in which teachers and students learn climate change concepts by analyzing National Aeronautics and Space Administration (NASA global data collected through satellites and by imitating the NASA data collection process through NASA Airborne Earth Research Observation Kites And Tethered Systems (AEROKATS, a kite-borne remote sensing system. Besides AEROKATS, other major components of this system include a web-collection of NASA and remote sensing data and related educational resources, project-based learning for teacher professional development, teacher and student field trips, iOS devices, smart field data collector apps, portable weather stations, probeware, and a virtual teacher collaboratory supported with a GIS-enabled mapping portal. Three sets of research instruments, the NASA Long-Term Experience –Educator End of Event Survey, the Teacher End of Project Survey, and the pre-and-post-Investigating Climate Change and Remote Sensing (ICCARS project student exams, are adapted to study the pedagogical impacts of the NASA AEROKATS remote sensing system. These findings confirm that climate change education is more effective when both teachers and students actively participate in authentic scientific inquiry by collecting and analyzing remote sensing data, developing hypotheses, designing experiments, sharing findings, and discussing results.

  1. Electron transport system activity of microfouling material: Relationships with biomass parameters

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Tulaskar, A.; Wagh, A.B.

    (ETS). The ETS activity ranged from 720 to 1374 ~kg 0@d2@@ dm@u2@@ d@u-1@@. Microfouling biomass and ETS activity of microfouling material increased with the immersion period. ETS activity was significantly correlated with dry weight, organic carbon...

  2. Advanced system demonstration for utilization of biomass as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

  3. Tradeoffs around crop residue biomass in smallholder crop-livestock systems - What's next?

    NARCIS (Netherlands)

    Tittonell, P.A.; Gérard, B.; Erenstein, O.

    2015-01-01

    Much has been written on the tradeoffs that smallholder farmers face when having to allocate their biomass resources among competing objectives such as feed, fuel, mulch, compost or the market. This paper summarises yet a new body of evidence from 10 studies on tradeoffs in the allocation of cereal

  4. Critical success factors for biomass. Identification/specification of critical success factors in the development and market introduction of biomass conversion systems for the production of electricity and/or heat and/or gaseous/liquid secondary energy carriers

    International Nuclear Information System (INIS)

    Van Ree, R.; Dinkelbach, L.; Van Doorn, J.; Hemmes, K.; Gerlagh, T.; Groenendaal, B.

    2000-06-01

    The Dutch government has set the policy target that in 2020 10% of the total energy consumption has to be provided by means of renewable energy sources. Biomass is expected to play a major role (25-30%) in this future renewable energy based energy supply system. However, it is still unclear if this biomass-based target will be reached. Although studies showed that success or failure of innovations and projects depend on a multitude of scientific, technical, economic and societal variables, a number of questions still remained unanswered. This information often concentrated exclusively on the cost price aspects. This study is conducted to identify the internal and external barriers or constraints other than cost aspects, which are of vital importance to a successful penetration of biomass in the Dutch energy market. Barriers with a decreasing influence on the market introduction of bioenergy in the Netherlands are: short-term contractability of biomass (organic waste streams) for energy purposes, applicable emission and waste policies, and unfamiliarity of bioenergy by the public and government. Barriers that potentially could play an important role on the market introduction of bioenergy in the Netherlands in the near future are: long-term contractability of biomass (organic waste streams and energy crops) for energy purposes, the 'new' emission constraints and their potential negative influence on the implementation of small-scale biomass-based combined-cycle plants, the rivalry of bioenergy with other renewable energy based technologies in a liberalising energy market, the social acceptance of bioenergy, the future European agriculture policy (energy crops), and the current status and development perspectives of biomass-based energy conversion technologies. 66 refs

  5. Relationships between Fungal Biomass and Nitrous Oxide Emission in Upland Rice Soils under No Tillage and Cover Cropping Systems.

    Science.gov (United States)

    Zhaorigetu; Komatsuzaki, Masakazu; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    The relationships between soil microbial properties and nitrous oxide emission were examined in upland soil under different tillage systems [no tillage (NT), rotary and plow tillage] and cover crop systems (fallow, cereal rye, and hairy vetch) in 2004 and 2005. Microbiological analyses included the determination of soil ergosterol as an indicator of fungal biomass, bacterial plate counting, and MPN estimations of ammonia oxidizers and denitrifiers. The combined practice of NT with rye-cover crop treatment increased fungal biomass but not bacterial populations in 0-10 cm deep soils. Such increase in fungal biomass was not found in 10-20 cm and 20-30 cm deep cover-cropped NT soil. The combined practice of NT with rye-cover cropping resulted in higher in situ N(2)O emission rates compared with rotary- and plow-till treatments. N(2)O flux was positively correlated with soil ergosterol content but not with denitrifier MPN and other soil chemical properties. These results suggested a significant contribution of fungi to N(2)O emission in cover-cropped NT soils.

  6. Spacesuit Sensing Data Display and Management System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZIN Technologies, Inc will breadboard an integrated electronic system for space suit application to acquire images, biomedical sensor signals and suit health &...

  7. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  8. A Theoretical Study of Two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chung, J. N., E-mail: jnchung@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL (United States)

    2014-01-02

    Two concept systems that are based on the thermochemical process of high temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are (1) to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest, and municipal waste to clean energy (pure hydrogen fuel), and (2) to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming). The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO{sub 2} sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  9. Hard Decision Fusion based Cooperative Spectrum Sensing in Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    N. Armi N.M. Saad

    2013-09-01

    Full Text Available Cooperative spectrum sensing was proposed to combat fading, noise uncertainty, shadowing, and even hidden node problem due to primary users (PUs activity that is not spatially localized. It improves the probability of detection by collaborating to detect PUs signal in cognitive radio (CR system as well. This paper studies cooperative spectrum sensing and signal detection in CR system by implementing hard decision combining in data fusion centre. Through computer simulation, we evaluate the performances of cooperative spectrum sensing and signal detection by employing OR and AND rules as decision combining. Energy detector is used to observe the presence of primary user (PU signal. Those results are compared to non-cooperative signal detection for evaluation. They show that cooperative technique has better performance than non-cooperative. Moreover, signal to noise ratio (SNR with greater than or equal 10 dB and 15 collaborated users in CR system has optimal value for probability of detection.

  10. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  11. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proxima