WorldWideScience

Sample records for biomass producer gas

  1. CO Emissions from Gas Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, T. K.; Henriksen, Ulrik Birk;

    2004-01-01

    fuel passing unburned through the combustion. Measurements of the slip of the producer gas fuel components CO and CH4 showed that these are of similar order. When the environmental effect of the emissions is discussed, unburned hydrocarbons in the form of methane is a strong greenhouse gas (21 times......High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where...... higher than CO2) while CO only indirectly through photochemical reactions is involved in the production of the greenhouse gas ozone....

  2. Catalytic destruction of tar in biomass derived producer gas

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate catalytic destruction of tar formed during gasification of biomass, with the goal of improving the quality of the producer gas. This work focuses on nickel based catalysts treated with alkali in an effort to promote steam gasification of the coke that deposits on catalyst surfaces. A tar conversion system consisting of a guard bed and catalytic reactor was designed to treat the producer gas from an air blown, fluidized bed biomass gasifier. The guard bed used dolomite to crack the heavy tars. The catalytic reactor was used to evaluate three commercial steam reforming catalysts. These were the ICI46-1 catalyst from Imperial Chemical Industry and Z409 and RZ409 catalysts from Qilu Petrochemical Corp. in China. A 0.5-3 l/min slipstream from a 5 tpd biomass gasifier was used to test the tar conversion system. Gas and tar were sampled before and after the tar conversion system to evaluate the effectiveness of the system. Changes in gas composition as functions of catalytic bed temperature, space velocity and steam/TOC (total organic carbon) ratio are presented. Structural changes in the catalysts during the tests are also described

  3. REFINEMENT OF PRODUCER GAS GENERATED FROM BIOMASS GASIFIER

    Directory of Open Access Journals (Sweden)

    L. KUMARARAJA

    2016-01-01

    Full Text Available Producer gas (PG generated from biomass by thermo-chemical gasification process has been proved to be a reliable and renewable substitute for petroleum fuels to drive internal combustion engines. The gasification technology has been developed well and also commercialised. However, more technological advancements must happen in the refining of PG. Generally, the refinement is confined to the removal of tar and particulates from PG before supplying it to the engines. This paper proposes to remove additionally carbon dioxide and water vapour from PG so that its heating value can be increased and faster combustion can be attained in the engine cylinder. In this direction, the various CO2 removal technologies which are currently employed for combustion flue gas, natural gas and biogas have been first studied in detail. They are: physical absorption in solvents, chemical absorption by reagents, adsorption, membrane separation and refrigeration. In the present research, a batch of experiments has been conducted by washing PG with water to absorb CO2 physically and in a separate batch of experiments PG has been treated with aqueous ammonia to absorb CO2 chemically. For both experiments, the PG was generated by a downdraft biomass gasifier fed with wood pieces. The CO2 reduction obtained was 10.9% in physical absorption by water and 95% in chemical absorption by aqueous ammonia. Along with the reduction of CO2 and H2O from PG, the tar and particulates content of PG could also be reduced by absorption method.

  4. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist;

    2005-01-01

    heat from the exhaust gas is utilised for drying and pyrolysis of the biomass in the gasification system, and the engine directly controls the load of the gasifier. Two different control approaches have been applied and investigated: one where the flow rate of the producer gas is fixed and the engine...... conditions when compared to the current regulation for CO emissions. Measurements of the PAH showed that there were no detectable PAH in exhaust gas from the engine when it is operated on producer gas. The emissions of aldehydes were measured to be significantly lower for producer gas operation than for...

  5. Properties of synthetic gas produced by plasma gasification of biomass

    Czech Academy of Sciences Publication Activity Database

    Hlína, Michal; Hrabovský, Milan; Konrád, Miloš; Kopecký, Vladimír; Kavka, Tetyana; Lorcet, H.

    Greifswald: INP Greifswald, 2010, s. 452-455. ISBN 0-9539105-4-7. [International Conference on Gas Discharges and Their Applications (GD 2010)/18th./. Greifswald (DE), 05.09.2010-10.09.2010] R&D Projects: GA ČR GA202/08/1084; GA MŠk MEB020814 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma * Gerdien arc * gasification * biomass Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Wet scrubbing of biomass producer gas tars using vegetable oil

    Science.gov (United States)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  7. Development and Test of a new Concept for Biomass Producer Gas Engines

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Foged, Esben Vendelbo; Strand, Rune;

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kWe gen-set there would be a financial benefit of approximately...... this specific biomass producer gas. The results showed an increase in the electrical efficiency from 30% to 34% when the compression ratio was increased....

  8. Gas quality prediction in ligno-cellulosic biomass gasification in a co-current gas producer

    International Nuclear Information System (INIS)

    Our research covers the energetic valuation of the biomass for electricity production. As electrical energy production is the main drive behind a modern economy, we wanted to make our contribution to the debate by describing a tried technique, whose use on an industrial scale can still be perfected, failing control over the basic principles that support the gasification processes called upon in this industry. Our study describes gasification, which is a process to transform a solid combustible into a gas combustible. The resulting gas can be used as combustible in an internal combustion motor and produce electricity. Our work interprets the experimental results of gasification tests conducted on an available and functional experimental centre and the ENSPY's Decentralized Energy Production Lab. The work involved developing a tool to appreciate the results of the gasification of the ligneous biomass from the stoichiometric composition of the combustible to be gasified and the chemical and mathematical bases of the gasification process. It is an investigation with a view to elaborating a mathematical model based on the concept of compatibility. Its original lies in the quality prediction method for the gas obtained through the gasification of a biomass whose chemical composition is known. (authors)

  9. Development and Test of a new Concept for Biomass Producer Gas Engines

    OpenAIRE

    Ahrenfeldt, Jesper; Foged, Esben Vendelbo; Strand, Rune; Henriksen, Ulrik Birk

    2010-01-01

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kWe gen-set there would be a financial benefit of approximately 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small ...

  10. Development and test of a new concept for biomass producer gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Vendelbo Foged, E.; Strand, R.; Birk Henriksen, U.

    2010-02-15

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kW{sub e} gen-set there would be a financial benefit of approximately 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood. The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating on this specific biomass producer gas. The results showed an increase in the electrical efficiency from 30% to 34% when the compression ratio was increased. (author)

  11. Removal of ammonia from producer gas in biomass gasification: integration of gasification optimisation and hot catalytic gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hongrapipat, Janjira; Saw, Woei-Lean; Pang, Shusheng [University of Canterbury, Department of Chemical and Process Engineering, Christchurch (New Zealand)

    2012-12-15

    Ammonia (NH{sub 3}) is one of the main contaminants in the biomass gasification producer gas, which is undesirable in downstream applications, and thus must be removed. When the producer gas is used in integrated gasification combined cycle (IGCC) technology, NH{sub 3} is the main precursor of nitrogen oxides (NO{sub x}) formed in gas turbine, whereas in Fischer-Tropsch synthesis and in integrated gasification fuel cell (IGFC) technology, the NH{sub 3} gas poisons the catalysts employed. This paper presents a critical review on the recent development in the understanding of the NH{sub 3} formation in biomass gasification process and in the NH{sub 3} gas cleaning technologies. The NH{sub 3} gas concentration in the producer gas can firstly be reduced by the primary measures taken in the gasification process by operation optimisation and using in-bed catalytic materials. Further removal of the NH{sub 3} gas can be implemented by the secondary measures introduced in the post-gasification gas-cleaning process. Focus is given on the catalytic gas cleaning in the secondary measures and its advantages are analysed including energy efficiency, impacts on environment and recyclability of the catalyst. Based on the review, the most effective cleaning process is proposed with integration of both the primary and the secondary measures for application in a biomass gasification process. (orig.)

  12. Refining Bio-Gas Produced from Biomass: An Alternative to Cooking Gas

    OpenAIRE

    Abdulkareem, A.S.

    2005-01-01

    Our life is completely dependent on a reliable and adequate supply of energy. In other to reduce dependence on fossil fuels, the use of animal dung in producing a renewable alternative source of energy has been proved using cow dung. This work is aimed at produced and refined bio - gas from animal dung by reduces the H2S and CO2 content of bio - gas in other to improved the quality of the bio - gas to be used as an alternative to the petroleum based produces in use now. The sample of gas prod...

  13. Experimental Analysis of a Producer Gas Generated by a Chir Pine Needle (Leaf in a Downdraft Biomass Gasifier

    Directory of Open Access Journals (Sweden)

    Mr. Akhilesh Kumar

    2014-10-01

    Full Text Available Today’s Indian scenario is facing an unprecedented energy crisis as the conventional energy resources of India are consistently deteriorating with the limited stock of these natural minerals posing a staggering threat to the Indian economy. Among all the available resources biomass proves to be a satisfactory substitute for compensating the energy void due to these natural resources. Biomass is a renewable resource with almost zero net CO2 emission which is processed with the help of biomass gasifier which is concurrently used with a chir pine needle. The performance of the biomass gasifier system is evaluated in terms of equivalence ratio, producer gas composition, calorific value of the producer gas, gas production rate and cold gas efficiency. The experimental results are compared with those reported in the literature.

  14. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm3 y-1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  15. Efficient gasification of wet biomass residue to produce middle caloric gas

    Institute of Scientific and Technical Information of China (English)

    Guangwen Xu; Takahiro Murakami; Toshiyuki Suda; Hidehisa Tani; Yutaka Mito

    2008-01-01

    Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%.These materials are generally treated as waste or simply combusted directly to generate heat.Recently,we attempted to convert them into middle caloric gas to substitute for natural gas,as a chemical or a high-rank gaseous fuel for advanced combustion utilities.Such conversion is implemented through dual fluidized bed gasification (DFBG).Concerning the high water content of the fuels,DFBG was suggested to accomplish either with high-efficiency fuel drying in advance or direct decoupling of fuel drying/pyrolysis from char gasification and tar/hydrocarbon reforming.Along with fuel drying,calcium-based catalyst can be impregnated into the fuel,without much additional cost,to increase the fuel's gasification reactivity and to reduce tar formation.This article reports the Ca impregnation method and its resulting effects on gasification reactivity and tar suppression ability.Meanwhile,the principle of directly gasifying wet fuel with decoupled dual fluidized bed gasification (D-DFBG) is also highlighted.

  16. AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells. FINAL REPORT

    OpenAIRE

    Di Donato, Antonello; Puigjaner Corbella, Lluís; Velo García, Enrique; Nougués, José María; Pérez Fortes, María del Mar; Bojarski, Aarón David

    2010-01-01

    Informe Final del Projecte ECSC RFC-CR-04006: AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells

  17. Soybean biomass produced in Argentina

    DEFF Research Database (Denmark)

    Semino, Stella; Paul, Helena; Tomei, Julia;

    Soybean biomass for biodiesel, produced in Argentina amongst other places, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel. To ensure that the production of biofuels is ‘sustainable', EU institutions and national governments are...... been demonstrated in several studies, but the atmospheric impact of soybean cultivation has not been tested in situ. Some of the models for climate impact (N2O emissions etc) are based on in vitro studies, while field data are scarce. The situation, which is outside the control of the EU, has not been...... environmental sustainability. This is exemplified by soy, whose cultivation undermines the climate benefit claimed for soy-based biodiesel. This paper concludes that to certify soy monocultures as sustainable would exacerbate existing climatic and environmental problems....

  18. The mathematical description of the gasification process of woody biomass in installations with a plasma heat source for producing synthesis gas

    Science.gov (United States)

    Sadrtdinov, A. R.; Safin, R. G.; Gerasimov, M. K.; Petrov, V. I.; Gilfanov, K. K.

    2016-04-01

    The article presents the scheme of processing of plant biomass in the gasification installation with a plasma heat source to produce synthesis gas suitable for chemical industry. The analyzed physical picture of raw materials' recycling process underlies a mathematical description of the process set out in the form of the basic differential equations with boundary conditions. The received mathematical description allows calculating of the main parameters of equipment for biomass recycling and to determine the optimal modes of its operation.

  19. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  20. Energy Characterization and Gasification of Biomass Derived by Hazelnut Cultivation: Analysis of Produced Syngas by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    D. Monarca

    2012-01-01

    Full Text Available Modern agriculture is an extremely energy intensive process. However, high agricultural productivities and the growth of green revolution has been possible only by large amount of energy inputs, especially those coming from fossil fuels. These energy resources have not been able to provide an economically viable solution for agricultural applications. Biomass energy-based systems had been extensively used for transportation and on farm systems during World War II: the most common and reliable solution was wood or biomass gasification. The latter means incomplete combustion of biomass resulting in production of combustible gases which mostly consist of carbon monoxide (CO, hydrogen (H2 and traces of methane (CH4. This mixture is called syngas, which can be successfully used to run internal combustion engines (both compression and spark ignition or as substitute for furnace oil in direct heat applications. The aim of the present paper is to help the experimentation of innovative plants for electric power production using agro-forest biomass derived by hazelnut cultivations. An additional purpose is to point out a connection among the chemical and physical properties of the outgoing syngas by biomass characterization and gas-chromatography analysis.

  1. Biomass utilization for green environment: Co-combustion of diesel fuel and producer gas in thermal application

    International Nuclear Information System (INIS)

    Study of co-combustion of diesel oil and producer gas from a gasifier, individually as well as combined, in an experimental combustion chamber revealed that the producer gas can be co-combusted with liquid fuel. The process produced more CO, NO/sub x/, SO/sub 2/ and CO/sub 2/ as compared to the combustion of diesel oil alone; the exhaust temperature for the process was higher than the diesel combustion alone. (author)

  2. The impact of contaminated biomass for the formation of emission in the combustion process of producer gas in the cogeneration unit

    Science.gov (United States)

    Kočanová, Slávka; Lukáč, Ladislav; Széplaky, Dávid; Lazić, Ladislav

    2014-08-01

    The paper presents the measurement result to the equipment designed for utilization contaminated biomass with segregated waste. Presented technology gasification of segregated waste together with biomass shows the optimization process of converting solid fuel to gas and its energy utilization in the cogeneration unit.

  3. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  4. Energy Characterization and Gasification of Biomass Derived by Hazelnut Cultivation: Analysis of Produced Syngas by Gas Chromatography

    OpenAIRE

    D. Monarca; Colantoni, A; Cecchini, M.; Longo, L; L. Vecchione; Carlini, M.; Manzo, A

    2012-01-01

    Modern agriculture is an extremely energy intensive process. However, high agricultural productivities and the growth of green revolution has been possible only by large amount of energy inputs, especially those coming from fossil fuels. These energy resources have not been able to provide an economically viable solution for agricultural applications. Biomass energy-based systems had been extensively used for transportation and on farm systems during World War II: the most common and reliable...

  5. Novel Approach to Tar Removal from Biomass Producer Gas by Means of a Nickel-based Catalyst

    Czech Academy of Sciences Publication Activity Database

    Vosecký, Martin; Kameníková, Petra; Pohořelý, Michael; Skoblia, Sergej; Punčochář, Miroslav

    Beijing : Tsingua University Press, 2009 - (Yue, G.; Zhang, H.; Zhao, C.; Luo, Z.), s. 740-746 ISBN 978-7-302-20146-5. [International Conference on Fluidized Bed Combustion /20./. Xi’an (CN), 18.05.2009-21.05.2009] R&D Projects: GA ČR(CZ) GA104/07/0977; GA MŠk 2B08048 Institutional research plan: CEZ:AV0Z40720504 Keywords : catalytic tar removal * nickel catalyst * biomass gasification Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://ww.fbc2009.org

  6. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  7. Adding gas from biomass to the gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Martin; Polman, Erik [GASTEC NV (Netherlands); Jensen, Jan K.; Myken, Asger [Danish Gas Technology Center A/S, Hoersholm (Denmark); Joensson, Owe; Dahl, Anders [Swedish Gas Center AB, Malmoe (Sweden)

    2001-07-01

    The aim of this project carried out in the framework of the Altener programme is to provide an overview of technologies for cleaning and upgrading of biogas for remote use. A further aim is to determine to what extent gases produced from biomass (digestion or gasification)can be added to the gas grid and what additional safety regulations are necessary. Finally, existing European standards and national legislation have been studied in order to determine the possibility of conflicting and/or missing regulations with the intended approach.The information collected in this project can be used to select promising technologies and may serve as background information for developing harmonised standards. This report describes the various production and cleaning techniques and the present requirements for the use of biogas. The technology for adding gas from biomass to the gas grid on a larger scale can contribute to a higher share of biomass in the energy supply and will also allow a highly efficient use of the energy contained in the biomass.Moderate tax incentives will make the use of gas from biomass economically attractive for large groups of end-users.

  8. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  9. Soybean biomass produced in Argentina: Myths and realities

    Energy Technology Data Exchange (ETDEWEB)

    Semino, S; Jelsoee, E [Department of Environment, Social and Spatial Change, Roskilde University Universitetsvej 1, DK-4000, Roskilde (Denmark); Paul, H [ECONEXUS, PO Box 1455, Oxford OX4 9BS (United Kingdom); Tomei, J [UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0HY (United Kingdom); Joensen, L [Grupo de Reflexion Rural, Rondeau, 812 Marcos Paz, 1727, Provincia de Buenos Aires (Argentina); Monti, M, E-mail: semino@ruc.d, E-mail: stella.semino@mail.d [Direccion de Extension e Investigacion Agropecuaria, Ministerio de la Produccion, Provincia de Santa Fe, Pte Peron y Garay, 6100, Rufino, Provincia de Santa Fe (Argentina)

    2009-11-01

    Soybean biomass for biodiesel, produced in Argentina amongst other places, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel alternatives. To ensure that the production of biofuels is 'sustainable', EU institutions and national governments are designing certification schemes for the sustainable production of biomass. In this paper, we question the validity of these proposed environmental standards, using the production of Argentine soybean as a case study. We highlight the negative environmental and social impacts of intensive soybean production, and conclude that certification schemes are unlikely to be able to address the detrimental impacts of increased biofuel production and trade.

  10. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  11. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  12. Advanced biomass power generation: The biomass-integrated gasifier/gas turbine and beyond

    International Nuclear Information System (INIS)

    The most promising initial strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using advanced gas turbines fired by gasified biomass. The major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required with bioenergy systems. Beyond the turn of the century fuel cells operated on gasified biomass offer the promise of even higher performance levels. For the near term, electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy in a wide range of circumstances. It is reasonable to expect that biomass could be providing 25-35% of total global power generation in the second quarter of the next century, helping make it possible to substantially reduce CO2 emissions from the power sector relative to present levels in that time frame

  13. Energetic evaluation of low potential biomass gasifier coupled with a burner of the produced gas for generation of heat; Avaliacao energetica de um gaseificador de biomassa de baixa potencia, associado a um combustor do gas produzido, para geracao de calor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Samuel [Universidade de Brasilia (FAV/UNB), DF (Brazil). Fac. de Agronomia e Medicina Veterinaria], email: samuelmartin@unb.nr; Silva, Jadir Nogueira [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Machado, Cassio Silva; Zanatta, Fabio Luis; Galvarro, Svetlana F.S. [Universidade Federal de Vicosa (UFV), MG (Brazil)

    2011-07-01

    In the search of alternatives for sustainable socio-economic development, this study had the objective of evaluating the energetic performance of a concurrent flow biomass gasifier associated with a burner for the gas produced which was of low potential for air heating using a renewable energy source (substituting non-renewable). In this system 4 tests were performed using eucalyptus chips (tests 1 and 2) and logs (tests 3 and 4) as fuel, for the two fan motor frequencies of 60 and 50 hertz. Temperature in the combustion chamber was monitored, along with fuel consumption and other variables. In the tests, the average exhaust air temperature was maintained between 92.7 and 100.4 deg C, and the reduction in the motor frequency from 60 to 50 Hz caused an increase in the duration of the tests. The system presented the best energetic performance when utilizing a frequency of 60 Hz for both fuel types. However, the results of energy efficiency varied very little when comparing tests performed at the same fan frequency. Thus, the gasification process was little affected by variation in the physical characteristics of the tested fuels, and it was recommended that the equipment operate with a frequency of 60 Hz. (author)

  14. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  15. Biomass producer gas tar removal technology based on recovery idea%基于回收理念的生物质燃气焦油脱除研究进展

    Institute of Scientific and Technical Information of China (English)

    吴娟; 陈海军; 朱跃钊; 廖传华; 杨丽

    2013-01-01

    Biomass gasification is an interesting technology in the future development of a worldwide sustainable energy system,as an alternative to fossil fuels. Tar is one of the main barriers to biomass gasification technology in its commercial application as a source of renewable energy. To achieve better efficiency of the biomass producer gas applications,tar must be removed to lower than 20 mg/m3 before the gas is used for downstream internal combustion engines,gas turbines,and in particular for methanol synthesis. In this paper,tar fouling and blocking problems in downstream equipments using the biomass producer gas are presented. Tar definition and classification are described. Advantages of tar reduction based on recovery idea (secondary methods,or named as mechanical/physical method) are analyzed. The new technologies in term of biomass tar removal based on recovery idea are reviewed. The representative biomass gasification technologies,which have lately been successfully demonstrated or commercialized,using the water or oil scrubber recovery method to remove tar,are also discussed. In addition,the future main research areas and potential applications of the advanced multi-stage adsorption or membrane separation for tar deep removal,based on oil-based gas washer (OLGA),and integrating appropriate pore size corresponding to different tar molecules,are presented.%生物质气化是重要的可再生能源方式。焦油是生物质气化过程大规模工业化的主要障碍之一。为了提高生物质燃气用于内燃机和燃气轮机发电以及甲醇合成的效率,燃气中的焦油必须深度脱除至低于20 mg/m3。本文简述了焦油污染和堵塞燃气下游设备的危害,介绍了焦油的特征和分类,分析了基于回收过程的焦油脱除方法优势,评述了回收法焦油脱除的研究进展,阐述了水洗和油洗回收脱焦的典型应用实例。指出了以油洗回收法为基础,将焦油和微孔材料的孔径进

  16. 基于回收理念的生物质燃气焦油脱除研究进展%Biomass producer gas tar removal technology based on recovery idea

    Institute of Scientific and Technical Information of China (English)

    吴娟; 陈海军; 朱跃钊; 廖传华; 杨丽

    2013-01-01

    生物质气化是重要的可再生能源方式。焦油是生物质气化过程大规模工业化的主要障碍之一。为了提高生物质燃气用于内燃机和燃气轮机发电以及甲醇合成的效率,燃气中的焦油必须深度脱除至低于20 mg/m3。本文简述了焦油污染和堵塞燃气下游设备的危害,介绍了焦油的特征和分类,分析了基于回收过程的焦油脱除方法优势,评述了回收法焦油脱除的研究进展,阐述了水洗和油洗回收脱焦的典型应用实例。指出了以油洗回收法为基础,将焦油和微孔材料的孔径进行匹配,高集成度的吸附和膜分离多级耦合焦油深度脱除工艺,将成为脱除生物质燃气焦油的主要发展方向。%Biomass gasification is an interesting technology in the future development of a worldwide sustainable energy system,as an alternative to fossil fuels. Tar is one of the main barriers to biomass gasification technology in its commercial application as a source of renewable energy. To achieve better efficiency of the biomass producer gas applications,tar must be removed to lower than 20 mg/m3 before the gas is used for downstream internal combustion engines,gas turbines,and in particular for methanol synthesis. In this paper,tar fouling and blocking problems in downstream equipments using the biomass producer gas are presented. Tar definition and classification are described. Advantages of tar reduction based on recovery idea (secondary methods,or named as mechanical/physical method) are analyzed. The new technologies in term of biomass tar removal based on recovery idea are reviewed. The representative biomass gasification technologies,which have lately been successfully demonstrated or commercialized,using the water or oil scrubber recovery method to remove tar,are also discussed. In addition,the future main research areas and potential applications of the advanced multi-stage adsorption or membrane separation for tar

  17. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    Science.gov (United States)

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  18. Pyrolysis process for producing fuel gas

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  19. Indirect thermal liquefaction process for producing liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, J.L.

    1980-01-01

    A progress report on an indirect liquefaction process to convert biomass type materials to quality liquid hydrocarbon fuels by gasification followed by catalytic liquid fuels synthesis has been presented. A wide variety of feedstocks can be processed through the gasification system to a gas with a heating value of 500 + Btu/SCF. Some feedstocks are more attractive than others with regard to producing a high olefin content. This appears to be related to hydrocarbon content of the material. The H/sub 2//CO ratio can be manipulated over a wide range in the gasification system with steam addition. Some feedstocks require the aid of a water-gas shift catalyst while others appear to exhibit an auto-catalytic effect to achieve the conversion. H/sub 2/S content (beyond the gasification system wet scrubber) is negligible for the feedstocks surveyed. The water gas shift reaction appears to be enhanced with an increase in pyrolysis reactor temperature over the range of 1300 to 1700/sup 0/F. Reactor temperature in the Fischer-Tropsch step is a significant factor with regard to manipulating product composition analysis. The optimum temperature however will probably correspond to maximum conversion to liquid hydrocarbons in the C/sub 5/ - C/sub 17/ range. Continuing research includes integrated system performance assessment, alternative feedstock characterization (through gasification) and factor studies for gasification (e.g., catalyst usage, alternate heat transfer media, steam usage, recycle effects, residence time study) and liquefaction (e.g., improved catalysts, catalyst activity characterization).

  20. Biomass Gasification and High Temperature Gas Cleaning

    Czech Academy of Sciences Publication Activity Database

    Hejdová, Petra; Solich, M.; Vosecký, Martin; Malecha, J.; Koutský, B.; Punčochář, Miroslav; Skoblia, Sergej

    -: -, 2005, s. 221-224. ISBN 80-8073-382-1. [New Trends in Technology Systems Operation'05. Prešov (SK), 20.11.2005-21.11.2005] R&D Projects: GA ČR(CZ) GA104/04/0829 Institutional research plan: CEZ:AV0Z40720504 Keywords : biomass and waste * gasification * hot gas cleaning Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  1. The net greenhouse warming forcing of methanol produced from biomass

    International Nuclear Information System (INIS)

    Recent national and international actions regarding atmosphere warming mitigation, clean technology, and technology transfer have emphasized the need for a method for unambiguous greenhouse gas emissions analysis for comparing technologies, documentation of application of the method, and proof of applicability. We have developed and applied such an approach to production of methanol fuel from woody biomass. The system was defined, its emission for its entire lifetime delineated, and the atmospheric warming forcing calculated for that lifetime plus after effects. The results are presented with materials and energy balances including ancillary equipment, external energy subsidies and invested quantities. These extend the analysis considerably beyond those possible using the global warming potential (GWP). For wood input of 283 mg day-1, 70 mg of methanol are produced. System carbon dioxide emissions are 3.18 tonne/tonne methanol produced, with another 1.37 mg emitted when that tonne methanol is burned in a vehicle. System energy usage efficiency was 41.2%, and 41.1% with inclusion of energy to construct the system. In essence, more than two Joules of carbon must be produced in wood for every Joule burned in the vehicle. (author)

  2. The sustainability of producing BTX from biomass.

    OpenAIRE

    Meuwese, Anne

    2013-01-01

    Summary The dependence of humans on fossil resources is not limited to fuel needs. A significant amount of petroleum feedstock is also used to produce materials, from pharmaceuticals and plastics to asphalt for roads. But just like with fuels, the use of

  3. Income tax credits and incentives available for producing energy from biomass

    International Nuclear Information System (INIS)

    In the 1970's the US became interested in the development of energy from biomass and other alternative sources. While this interest was stimulated primarily by the oil embargoes of the 1970's, the need for environmentally friendly alternative fuels was also enhanced by the Clean Water Act and the Clean Air Act, two prominent pieces of environmental legislation. As a result, Congress created several tax benefits and subsidies for the production of energy for biomass. Congress enacted biomass energy incentives in 1978 with the creation of excise tax exemptions for alcohol fuels, in 1980 with the enactment of the IRC section 29 nonconventional fuel credit provisions and the IRC section 40 alcohol fuel credits, and recently with the addition of favorable biomass energy provisions as part of the Comprehensive National energy Policy Act of 1992. This article focuses on the following specific tax credits, tax benefits and subsidies for biomass energy: (1) IRC section 29 credit for producing gas from biomass, (2) IRC section 45 credit for producing electricity from biomass, (3) Incentive payments for electricity produced from biomass, (4) Excise tax exemptions for alcohol fuels, (5) IRC section 40 alcohol fuels credits, and (6) IRC section 179A special deduction for alcohol fuels property

  4. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  5. Energy Efficiency of Biogas Produced from Different Biomass Sources

    Science.gov (United States)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  6. Development of an integrated system for producing ethanol from biomass

    International Nuclear Information System (INIS)

    Enzymatic hydrolysis is one of the leading approaches to producing ethanol from low cost biomass. Recent cost estimates suggest that ethanol produced from biomass could be competitive as a transportation fuel with gasoline at $20-25/BBL oil and less expensive than methanol. The process for making ethanol from biomass involves seven major steps: biomass production, pretreatment, enzyme production, enzymatic hydrolysis, fermentation, distillation, and by-product processing. Pretreatment makes the carbohydrate fraction of the biomass accessible to enzymatic attack. Cellulase enzymes are then used to hydrolyze the carbohydrates in biomass into fermentable sugar. The sugar is then fermented to ethanol and the ethanol purified by distillation. Three major cost estimates are available for making ethanol from biomass using a steam explosion pretreatment and enzymatic hydrolysis. These studies began with very different assumptions and as a result came to dramatically different conclusions about ethanol cost. When they are normalized to the same basis, however, their consensus is an expected ethanol cost of $1.64 ± 0.23/gal using technology implemented at Iogen's pilot plant in 1986. Since that time, technology advances have reduced the expected cost of ethanol to $0.77 ± 0.17/gal. Further technical improvements could reduce the cost by as much as $0.23/gal

  7. Process for carbohydrates fermentation producing ethanol and biomass. Verfahren zur Fermentation von Kohlenhydraten unter Erzeugung von Aethanol und Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Moebus, O.; Teuber, M.; Reuter, H.

    1985-05-15

    Ethanol and biomass are to be produced with a little aqueous residue as possible. This is to be achieved by using a gas-fluidized bed whose particulate fraction consists of a moist mass of microorganisms (especially species of Saccharomyces). The fluidized particles are sprayed with a broth of fermentable carbohydrates, e.g. hydrolyzed starch and/or broths containing hydrolyzed cellulose. The fermentation conditions are controlled by the temperature and by the oxygen partial pressure of the gas flowing continuously into the fluidized bed. The ethanol/water mixture is separated from the gas released by the fluidized particles in cooling and fractionation modules and is processed further. The biomass and the residual, non-fermented substrate are removed from the fluidized bed in the form of moist granulate, and the granulate is dried to the desired residual moisture.

  8. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  9. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  10. Biomass Gas Cleanup Using a Therminator

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C; Kataria, Atish; Gupta, Rabhubir

    2012-03-06

    The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a Therminator to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very

  11. BIOMASS COMBUSTION IN GAS-TURBINE-BASED SYSTEMS

    Science.gov (United States)

    The paper gives results of a comparative evaluation of a range of biomass power generation systems. he objective was to identify systems most suitable for unique properties of biomass. he characteristics of biomass fuels were reviewed, and the performance of several gas-turbine-b...

  12. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy

    International Nuclear Information System (INIS)

    Highlights: • A thermo-economic analysis of natural gas/biomass fired microturbine is proposed. • Energy efficiency, capex, opex and electricity revenues trade-offs are assessed. • The optimal biomass energy input is 70% of total CHP consumption. • Industrial/tertiary heat demand and baseload/heat driven operation is assessed. • The main barriers of small scale CHP systems in Italy are overviewed. - Abstract: This paper proposes a thermo-economic assessment of small scale (100 kWe) combined heat and power (CHP) plants fired by natural gas and solid biomass. The focus is on dual fuel gas turbine cycle, where compressed air is heated in a high temperature heat exchanger (HTHE) using the hot gases produced in a biomass furnace, before entering the gas combustion chamber. The hot air expands in the turbine and then feeds the internal pre-heater recuperator, Various biomass/natural gas energy input ratios are modeled, ranging from 100% natural gas to 100% biomass. The research assesses the trade-offs between: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate and (ii) higher primary energy savings and revenues from bio-electricity feed-in tariff in case of high biomass input rate. The influence of fuel mix and biomass furnace temperature on energy conversion efficiencies, primary energy savings and profitability of investments is assessed. The scenarios of industrial vs. tertiary heat demand and baseload vs. heat driven plant operation are also compared. On the basis of the incentives available in Italy for biomass electricity and for high efficiency cogeneration (HEC), the maximum investment profitability is achieved for 70% input biomass percentage. The main barriers of these embedded cogeneration systems in Italy are also discussed

  13. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  14. Natural gas supply - a producer's perspective

    International Nuclear Information System (INIS)

    The supply of natural gas from the producers standpoint is discussed. The following factors in the marketing demand for natural gas are considered to be important: gas demand is growing, U.S. gas resource base is large, chronic gas bubble has shrunk, and North American supply is more resilient than expected

  15. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  16. Fuel characteristics and trace gases produced through biomass burning

    OpenAIRE

    BAMBANG HERO SAHARJO; SHIGETO SUDO; SEIICHIRO YONEMURA; HARUO TSURUTA

    2010-01-01

    Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010) Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of ...

  17. Engineering analysis of biomass gasifier product gas cleaning technology

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  18. Numerical Study on Combustion Features of Gasified Biomass Gas

    OpenAIRE

    Zhang, Xiaoxiang

    2015-01-01

    There is a great interest to develop biomass combustion systems for industrial and utility applications. Improved biomass energy conversion systems are designed to provide better combustion efficiencies and environmental friendly conditions, as well as the fuel flexibility options in various applications. The gas derived from the gasification process of biomass is considered as one of the potential candidates to substitute traditional fuels in a combustion process. However, the gascomposition...

  19. A Medium-Scale 50 MW fuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process

    OpenAIRE

    Ramiar Sadegh-Vaziri; Marko Amovic; Rolf Ljunggren; Klas Engvall

    2015-01-01

    Natural gas is becoming increasingly important as a primary energy source. A suitable replacement for fossil natural gas is bio-SNG, produced by biomass gasification, followed by methanation. A major challenge is efficient gas cleaning processes for removal of sulfur compounds and other impurities. The present study focuses on development of a gas cleaning step for a product gas produced in a 50 MW fuel gasification system. The developed gas cleaning washing process is basically a modificatio...

  20. A Medium-Scale 50 MWfuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process

    OpenAIRE

    Ramiar Sadegh-Vaziri; Marko Amovic; Rolf Ljunggren; Klas Engvall

    2015-01-01

    Natural gas is becoming increasingly important as a primary energy source. A suitable replacement for fossil natural gas is bio-SNG, produced by biomass gasification, followed by methanation. A major challenge is efficient gas cleaning processes for removal of sulfur compounds and other impurities. The present study focuses on development of a gas cleaning step for a product gas produced in a 50 MWfuel gasification system. The developed gas cleaning washing process is basically a modificatio...

  1. Kinetic study of wood biomass co-firing with gas

    International Nuclear Information System (INIS)

    The main aim of this study is to develop and optimise the wood biomass (wood granules) and gas (propane) co-firing technology, by replacing fossil fuel with a renewable energy source, enhancing and stabilising the wood biomass burnout, reducing at the same time carbon emissions from the combined combustion process. (authors)

  2. Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites.

    Science.gov (United States)

    Burkhardt, Andy; Gawde, Archana; Cantrell, Charles L; Baxter, Holly L; Joyce, Blake L; Stewart, C Neal; Zheljazkov, Valtcho D

    2015-11-01

    The Powder River Basin in Wyoming and Montana contains the United States' largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering its potential use as supplemental irrigation water. We hypothesized that coalbed natural gas water, because of its high salinity and sodicity, would affect plant secondary metabolism (essential oils) and biomass accumulation. A 2-yr field study was conducted in Wyoming to investigate the effects of produced water on two traditional bioenergy feedstocks-corn ( L.) and switchgrass ( L.)-and four novel biofuel feedstock species-spearmint ( L.), Japanese cornmint ( L.), lemongrass [ (Nees ex Steud.) J.F. Watson]), and common wormwood ( L.). The four nontraditional feedstock species were chosen because they contain high-value plant chemicals that can offset production costs. Essential oil content was significantly affected by coalbed natural gas water in lemongrass and spearmint. Oil content differences between two spearmint harvests in the same year indicated that there were significant changes between the growth stage of the plant and essential oil content; the first harvest averaged 0.42 g of oil per 100 g biomass while the second harvest (harvested before flowering) yielded only 0.19 g oil per 100 g dry biomass. Results indicated that produced water can be used for short-period (2 yr) irrigation of crops. However, prolonged use of untreated produced water for irrigation would likely have deleterious long-term effects on the soil and plants unless the water was treated or diluted (mixed) with good-quality water. PMID:26641346

  3. Gas, power and heat generation from biomass by allothermal gasification; Gas-, Strom- und Waermeerzeugung aus Biomasse durch allotherme Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Yaqub Chughtai, M. [H und C Engineering GmbH, Gummersbach (Germany); Muehlen, H.J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    The allothermal DMT gasification process for biomass is a newcomer. The process, its initial materials, the uses of the product gas, and advantages of the allothermal process are described here. (orig./SR) [Deutsch] Der Einsatz des allothermen DMT-Vergasungsverfahrens fuer Biomasse ist neu. Verfahren, Einsatzstoffe und Produktgasnutzung, sowie Vorteile des allothermen Verfahrens werden hier beschrieben. (orig./SR)

  4. Fuel characteristics and trace gases produced through biomass burning

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2010-01-01

    Full Text Available Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010 Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of the fire comes from estate crops and industrial forest plantation area belongs to the companies which using fire illegally for the land preparation. Because using fire is cheap, easy and quick and also support the companies purpose in achieving yearly planted area target. Forest management and land use practices in Sumatra and Kalimantan have evolved very rapidly over the past three decades. Poor logging practices resulted in large amounts of waste will left in the forest, greatly elevating fire hazard. Failure by the government and concessionaires to protect logged forests and close old logging roads led to and invasion of the forest by agricultural settlers whose land clearances practices increased the risk of fire. Several field experiments had been done in order to know the quality and the quantity of trace produced during biomass burning in peat grass, peat soil and alang-alang grassland located in South Sumatra, Indonesia. Result of research show that different characteristics of fuel burned will have the different level also in trace gasses produced. Peat grass with higher fuel load burned produce more trace gasses compared to alang-alang grassland and peat soil.

  5. Parametric Optimization of Biomass Steam-and-Gas Plant

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2014-09-01

    Full Text Available The paper contains a parametric analysis of the simplest scheme of a steam-and gas plant for the conditions required for biomass burning. It has been shown that application of gas-turbine and steam-and-gas plants can significantly exceed an efficiency of steam-power supply units which are used at the present moment. Optimum thermo-dynamical conditions for application of steam-and gas plants with the purpose to burn biomass require new technological solutions in the field of heat-exchange equipment designs.

  6. Biomass and Natural Gas Hybrid Combined Cycles

    OpenAIRE

    Petrov, Miroslav

    2003-01-01

    Biomass is one of the main natural resources in Sweden.Increased utilisation of biomass for energy purposes incombined heat and power (CHP) plants can help the country meetits nuclear phase-out commitment. The present low-CO2 emissioncharacteristics of the Swedish electricity production system(governed by hydropower and nuclear power) can be retained onlyby expansion of biofuels in the CHP sector. Domestic Swedishbiomass resources are vast and renewable, but not infinite.They should be utilis...

  7. Performance Analysis of Producer Gas Based Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. P. Yadav

    2013-02-01

    Full Text Available Producer gas is one out of the alternative fuels used in internal combustion engines. Conventionally, it is made by flowing air and steam through a thick coal or coke bed which ranges in temperature from red hot to low temperature. The oxygen in air burns the carbon to CO2. This CO2 gets reduced to CO by contacting with carbon above the combustion zone. The freed oxygen combines with carbon and steam gets dissociated which introduces hydrogen. Producer gas has a high percentage of nitrogen since air is used [1]. Thus, in the present work a gasifier is designed and developed which could gasify any form of biomass. In the present work waste wood chips, bagasse, rice husk, and eucalyptus, etc are used for gasification in a fabricated updraft gasifier to produce producer gas. The producer gas obtained from the developed gasifier is sent along with air into a diesel engine with diesel as the primary fuel and the performance characteristics ie brake thermal efficiency, exhaust gas temperature and brake specific energy consumption of the engine are studied along with economic analysis with and without aid of producer gas.

  8. Status of external firing of biomass in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bram, S.; De Ruyck, J.; Novak Zdravkovic, A.

    2005-02-15

    Dry biomass can be used as a fuel for gas turbines in different ways: it can be gasified or pyrolysed for internal combustion or it can be used as an external heat source. This heat source can be used to replace the combustor, to preheat the combustion air, or eventually to feed a primary reformer to yield hydrogen for the gas turbine. The present paper discusses the use of biomass as on external heat source from both a technical and an economic point of view. Past, present, and future projects are discussed. Possibilities range from cogeneration with microturbines where the biomass can cover a major part of the primary energy, to combined cycle plants where biomass can replace a small percentage of the natural gas. A microturbine EFGT project under construction is disclosed. (Author)

  9. Adaptive control system for gas producing wells

    International Nuclear Information System (INIS)

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation

  10. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  11. Gas marketing strategies for Ontario producers

    International Nuclear Information System (INIS)

    Activity in natural gas exploration and production in the province of Ontario has recently increased due to higher natural gas prices. This paper discussed the issue of how the gas from the new reserves should be marketed. A review of historical pricing and consumption patterns was also presented to better identify how prices of natural gas are determined in Ontario and to forecast the future demand for natural gas. The first trend of interest is the increased use of natural gas in generating electricity to meet cooling needs in the summer months. The second trend is the increase in gas consumption by the industrial sector resulting from increases in process load. Several marketing options are available to Ontario natural gas producers. They can market their gas to third parties at various trading points in the province or they can market it directly to Union Gas Limited, the local gas utility. This paper briefly described how a gas supply contract works with the union, how gas marketing agreement is conducted with a gas marketer, and how a gas marketing arrangement works with a consultant. Some of the pitfalls of marketing natural gas were also described and some recommended some strategies for selling natural gas in the future were presented. 7 figs

  12. CO and PAH emissions from engines operating on producer gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2005-01-01

    emission of UHC. When the environmental effect of the emissions is discussed, unburned hydrocarbons in the form of methane is a strong greenhouse gas (21 times higher than CO2) will CO only indirectly through photochemical reactions is involved in the production of the greenhouse gas ozone. The destruction...... low that no plant could uphold regulations without expensive equipment for after treatment of the emissions. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where the emissions exceed the regulated value significantly. The high CO emissions...

  13. Green gas. Gas of natural gas quality from biomass. Update of the 2004 study

    International Nuclear Information System (INIS)

    In 2004 a study was published on green gas. Green gas is defined as a gaseous energy carrier from renewable biomass with a similar quality as natural gas. As a result of new developments in the field of co-digestion/fermentation the Dutch Ministry of Economic Affairs asked it's agency SenterNovem to update the 2004 study. The aim of the update is (1) to gain insight into operational aspects of green gas projects, e.g. reliability, efficiency and maintenance aspects; (2) stimulate the production of green gas, taking into account the economics of green gas projects, calculation of the financial gap of green gas production, efficient use of biogas (conversion to electricity or directly input into the natural gas distribution systems, and aspects with regard to commercialization and the market; and (3) the potential of green gas

  14. Prospects for biogenic natural gas. Pt. I. Production from wet and dry biomass; Perspektiven fuer Bio-Erdgas. T. I.. Bereitstellung aus nasser und trockener Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Leible, Ludwig; Kaelber, Stefan; Kappler, Gunnar [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (DE). Inst. fuer Technikfolgenabschaetzung und Systemanalyse (ITAS); Eltrop, Ludger; Stenull, Maria [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Lansche, Jens [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Agrartechnik; Poboss, Norman [Stuttgart Univ. (DE). Inst. fuer Feuerungs- und Kraftwerkstechnik (IFK); Stuermer, Bernd; Kelm, Tobias [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany); Koeppel, Wolfgang [Deutsche Vereinigung des Gas- und Wasserfaches e.V. (DVGW), Forschungsstelle am Engler-Bunte-Institut (EBI), Karlsruhe (Germany)

    2012-07-01

    Biogenic natural gas offers as substitute for natural gas (SNG) various opportunities for different types of biomass for a more efficient handling and energy use in the power, heat and fuel sector. Part I of this publication deals with techno-economic aspects of SNG production based on biogas and thermo-chemically produced gas. Associated GHG emissions are discussed as well. Part II focuses on the utilization of biogenic natural gas for heat, power and fuel production. A comparison with fossil natural gas and the direct use of biogas or thermo-chemically produced gas is included. (orig.)

  15. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  16. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    John Oakey; Nigel Simms; Paul Kilgallon

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  17. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  18. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO2-eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O2-blown entrained flow, O2-blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO2-eq. 32 kg MWh−1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O2-blown entrained flow and O2-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO2-eq. 41 to 75 kg MWh−1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57–75 kg MWh−1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh−1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh−1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air–steam indirect gasification

  19. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    Directory of Open Access Journals (Sweden)

    Klement Tobias

    2012-04-01

    Full Text Available Abstract Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on

  20. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  1. Liquefied synthetic natural gas from woody biomass. Investigation of cryogenic technique for gas upgrading

    OpenAIRE

    Garcia Jarque, Sílvia; Birgen, Cansu

    2012-01-01

    Biomass-based liquefied natural gas (bio-LNG) is very valuable renewable fuel as it has high energy density and transportability. Bio-LNG requires liquefaction of the synthetic natural gas (bio-SNG). Cryogenic technology is a promising option for integration of the gas upgrading and liquefaction streams with the main biomass gasification and methane synthesis plant. This thesis investigates the feasibility of this technology for future commercial bio-SNG production plants based on indirect ga...

  2. The effect of assessment scale and metric selection on the greenhouse gas benefits of woody biomass

    International Nuclear Information System (INIS)

    Recent attention has focused on the net greenhouse gas (GHG) implications of using woody biomass to produce energy. In particular, a great deal of controversy has erupted over the appropriate manner and scale at which to evaluate these GHG effects. Here, we conduct a comparative assessment of six different assessment scales and four different metric calculation techniques against the backdrop of a common biomass demand scenario. We evaluate the net GHG balance of woody biomass co-firing in existing coal-fired facilities in the state of Virginia, finding that assessment scale and metric calculation technique do in fact strongly influence the net GHG balance yielded by this common scenario. Those assessment scales that do not include possible market effects attributable to increased biomass demand, including changes in forest area, forest management intensity, and traditional industry production, generally produce less-favorable GHG balances than those that do. Given the potential difficulty small operators may have generating or accessing information on the extent of these market effects, however, it is likely that stakeholders and policy makers will need to balance accuracy and comprehensiveness with reporting and administrative simplicity. -- Highlights: ► Greenhouse gas (GHG) effects of co-firing forest biomass with coal are assessed. ► GHG effect of replacing coal with forest biomass linked to scale, analytic approach. ► Not accounting for indirect market effects yields poorer relative GHG balances. ► Accounting systems must balance comprehensiveness with administrative simplicity.

  3. Alberta producers' gas export prices slip

    International Nuclear Information System (INIS)

    This paper reports that Alberta gas producers have approved a new contract with California buyers that includes slightly lower wellhead prices and more flexible pricing terms. The 1 year agreement, will apply a flexible price formula to gas sales. A basic volume of 212 MMcfd will receive $1.52 (U.S.)/Mcf. A and S also will buy 200 MMcfd at prices paid for other Alberta gas in the California market. It will have the right to buy added volumes at prices indexed to gas sold into California from the U.S. Southwest. Ballots cast by producers were to be verified by regulatory agencies in Alberta and British Columbia. The more flexible price terms in the new contract are seen as a positive development for negotiations in a dispute over long term contracts

  4. Middle East: major opportunities for gas producers

    International Nuclear Information System (INIS)

    This article addresses the increase in demand for natural gas in the face of the threat of global warming, and the opportunities that this presents for Middle East gas producers. The use of natural gas to reduce the consumption of petroleum, market opportunities in the European Community as demand outstrips supply, worldwide demand for LNG, and the need for foreign investment are discussed. A brief overview is given of the situations in Turkey, Iran, Iraq, Kuwait, Egypt, Jordan, Syria, Oman, Bahrain, Qatar, Saudia Arabia, United Arab Emirates, Abu Dhabi and Yemen. (UK)

  5. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  6. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy

    International Nuclear Information System (INIS)

    Highlights: ► Biomass with higher volatile matter content has a higher carbon conversion rate. ► Applying the suitable pretreatment techniques that will enhance the bioenergy yield. ► The ratio of H2O/fixed carbon is a critical factor for enhancing the energy conversion. -- Abstract: This study investigated the characteristics of 26 varieties of biomass produced from forestry, agriculture, municipality, and industry in Taiwan to test their applicability in thermal conversion technologies and evaluation of enhanced energy efficiency. Understanding the reactivity of the tested biomass, the cluster analysis was also used in this research to classify into characteristics groups of biomass. This research also evaluated the feasibility of energy application of tested biomass by comparing it to the physicochemical properties of various coals used in Taiwan’s power plants. The experimental results indicated that the volatile matter content of the all tested biomass was 60% and above. It can be concluded that the higher carbon conversion rate will occur in the thermal conversion process of all tested biomass. Based on the results of lower heating value (LHV) of MSW and non-hazardous industrial sludge, the LHV was lower than other tested biomass that was between 1000 and 1800 kcal/kg. This is due to the higher moisture content of MSW and sludge that resulted in the lower LHV. Besides, the LHV of other tested biomass and their derived fuels was similar to the tested coal. However, the energy densities of woody and agricultural waste were smaller than that of the coal because the bulky densities of woody and agricultural wastes were low. That is, the energy utilization efficiency of woody and agricultural waste was relatively low. To improve the energy density of tested biomass, appropriate pre-treatment technologies, such as shredding, pelletizing or torrefied technologies can be applied, that will enhance the energy utilization efficiency of all tested biomass.

  7. Catalytic cracking of tar in biomass pyrolysis gas in the presence of calcined dolomite

    International Nuclear Information System (INIS)

    The possibility of decreasing the tar content of the fuel gas obtained by biomass pyrolysis was studied. Pyrolysis of mixed hardwood chips was carried out in a laboratory-scale cracking reactor using a dolomite catalyst, which showed a high catalytic activity. The effects of reaction variables such as temperature, and amount of catalyst and steam, were studied. The overall effect of the dolomite is to increase the gas yield by decreasing the tar yield. The dolomite and the steam used seem to affect the amount of naphthalene produced. By adjusting both the amounts of catalyst and steam, the amounts of naphthalene (13 mg/kg of dry biomass) and tar (164 mg/kg) were decreased significantly. The yields of hydrogen, CO and CO2 depended on the steam to biomass weight ratio in the range of 0 to 0.6 kg/kg. 18 refs., 8 figs., 5 tabs

  8. Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim Abdul Mutalib

    2010-08-01

    Full Text Available Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.

  9. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  10. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...... sulfur chemistry important for the SO2/SO3 ratio under combustion conditions has been updated. The uncertainties of the important rate constants have been minimized. Modeling predictions with a revised reaction mechanism for SO2/SO3 chemistry are in a good agreement with a range of experimental data from...

  11. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  12. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  13. Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sterzinger, G J [Economics, Environment and Regulation, Washington, DC (United States)

    1994-05-01

    This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

  14. Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation

    International Nuclear Information System (INIS)

    This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility

  15. Assessment of mechanical properties of pellets produced from biomass

    Czech Academy of Sciences Publication Activity Database

    Závada, J.; Nadkanská, H.; Bouchal, T.; Šašek, Petr; Smatanová, N.

    Volume 1, Book 4. Sofie: International Multidisciplinary Scientific GeoConference & EXPO SGEM, 2014, s. 33-40. ISBN 978-619-7105-15-5. ISSN 1314-2704. [International Multidisciplinary Scientific GeoConference. Albena (BG), 20140619] R&D Projects: GA MŠk(CZ) LO1219 Keywords : pellets * biomass * biofuel * strength Subject RIV: DM - Solid Waste and Recycling http://www.sgem.org/sgemlib/spip.php?article4625&lang=en

  16. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

  17. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  18. Costs of Producing Biomass from Riparian Buffer Strips

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow, A.

    2000-09-01

    Nutrient runoff from poultry litter applied to agricultural fields in the Delmarva Peninsula contributes to high nutrient loadings in Chesapeake Bay. One potential means of ameliorating this problem is the use of riparian buffer strips. Riparian buffer strips intercept overland flows of water, sediments, nutrients, and pollutants; and ground water flows of nutrients and pollutants. Costs are estimated for three biomass systems grown on buffer strips: willow planted at a density of 15,300 trees/ha (6200 trees/acre); poplar planted at a density of 1345 trees/ha (545 trees/acre); and switchgrass. These costs are estimated for five different scenarios: (1) total economic costs, where everything is costed [cash costs, noncash costs (e.g., depreciation), land rent, labor]; (2) costs with Conservation Reserve Program (CRP) payments (which pays 50% of establishment costs and an annual land rent); (3) costs with enhanced CRP payments (which pays 95% of establishment costs and an annual payment of approximately 170% of land rent for trees and 150% of land rent for grasses); (4) costs when buffer strips are required, but harvest of biomass is not required [costs borne by biomass are for yield enhancing activities (e.g., fertilization), harvest, and transport]; and (5) costs when buffer strips are required. and harvest of biomass is required to remove nutrients (costs borne by biomass are for yield enhancing activities and transport). CRP regulations would have to change to allow harvest. Delivered costs of willow, poplar, and switchgrass [including transportation costs of $0.38/GJ ($0.40/million Btu) for switchgrass and $0.57/GJ ($0.60/million Btu) for willow and poplar] at 11.2 dry Mg/ha-year (5 dry tons/acre-year) for the five cost scenarios listed above are [$/GJ ($million BIN)]: (1) 3.30-5.45 (3.45-5.75); (2) 2.30-3.80 (2.45-4.00); (3) 1.70-2.45 (1.80-2.60); (4) l-85-3.80 (1.95-4.05); and (5) 0.80-1.50 (0.85-1.60). At yields of 15.7 to 17.9 GJ/ha-year (7 to 8 dry tons

  19. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is

  20. Synthesis gas from biomass for fuels and chemicals

    International Nuclear Information System (INIS)

    Making H2 and CO (syngas) from biomass is widely recognised as a necessary step in the production of various second generation biofuels. There are two major ways to produce a biosyngas: fluidised bed gasification with catalytic reformer or entrained flow gasification. The latter option requires extensive pre-treatment such as flash pyrolysis, slow pyrolysis, torrefaction, or fluidized bed gasification at a low temperature. Cleaned and conditioned biosyngas can be used to synthesize second generation biofuels such as Fischer-Tropsch fuels, methanol, DME, mixed alcohols, and even pure hydrogen. The report describes the different technical options to produce, clean and condition bio-syngas. Furthermore, issues related to scale and biomass transport are covered shortly

  1. Chemical comparisons of liquid fuel produced by thermochemical liquefaction of various biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.A.; Molton, P.M.; Landsman, S.D.

    1980-12-01

    Liquefaction of biomass in aqueous alkali at temperatures up to 350/sup 0/C is an effective way to convert solid wastes into liquid fuels. The liqefaction oils of several forms of biomass differing in proportions of cellulose, hemi-cellulose, lignin, protein, and minerals were studied and their chemical composition compared. It was that the proportions of chemical components varied considerably depending on the type of biomass liquefied. However, all the oils, even those produced from cellulose, had similar chemical characteristics due to the presence of significant quantities of phenols. These phenols are at least partially responsible for the corrosivity and viscosity commonly associated with biomass oils. The differences in chemical component distribution in the various biomass oils might successfully be exploited if the oil is to be used as a chemical feedstock. If the oil is to be used as a fuel, however, then reaction conditions will be a more important consideration than the source of biomass.

  2. Optical Absorption Spectroscopy for Gas Analysis in Biomass Gasification

    DEFF Research Database (Denmark)

    Grosch, Helge

    Biomass gasication as a source of heat, power and chemical feedstock needs monitoring of the gas species to improve the performance and gas quality, deepen the understanding of the process and to be able to control the emission of hazardous compounds. Major species, like H2, CO and CO2, can already...... be determined with sucient precision. However, minor species, like organic, aromatic, sulfur- and nitrogen-containing compounds, still cause problems in down-stream equipment and are harmful for health and environment. As a result, many different approaches for applications have been proposed to...... and aromatic compounds were determined in laboratory experiments. By means of the laboratory results and spectroscopic databases,the concentrations of the major gas species and the aromatic compounds phenol and naphthalene were determined in extraction and in-situ measurements....

  3. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  4. Thermal Plasma Gasification of Biomass for Fuel Gas Production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan; Hlína, Michal; Konrád, Miloš; Kopecký, Vladimír; Kavka, Tetyana; Chumak, Oleksiy; Mašláni, Alan

    2009-01-01

    Roč. 13, č. 3-4 (2009), s. 299-313. ISSN 1093-3611 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * plasma gasification * syngas * biomass Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.333, year: 2009 http://www.begellhouse.com/journals/57d172397126f956,5cbc272245f24168,0ac09d02537962cf.html

  5. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  6. Study of the biomass potential that can be used for producing biogas in Burkina Faso

    International Nuclear Information System (INIS)

    The introduction of biogas to Burkina Faso was done in 1976 through program of research and development. Agricultural and Animal waste is the principal substrates and the produced gas is useful principally to satisfy the domestic energy needs. The technological outputs go from 200 has 300 liters per m3 of tank whereas the biological outputs are of 100 has 300 liters per kilogram of dry matter. The cost of the installations vary from 12000 to 100000 Fcfa per m3 of tank according to the type of digester. In August 1998, only the installation of biogas of the School of Water and Drill of Dinderesso (Bobo-Dioulasso) produced biogas. According to the estimates, Burkina Faso respectively has an annual average potential of production theoretical and accessible about 4694 million and 2790 million m3 of biogas coming by order from importance from livestock wastes, farming, human and urban. By taking a coefficient of 60% to take account of the imperfections of technology and implementation, 1674 million m3 of biogas (accessible) could have been produced from the biomass over the period 1990-1996. For the same period, this quantity of biogas could have generated annually 2000 to 2344 GWh of electricity (cogeneration) against 218 GWh for the SONABEL

  7. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  8. The economics of biomass for power and greenhouse gas reduction

    Science.gov (United States)

    Cameron, Jay Brooker

    The power cost and optimum plant size for power plants using straw fuel in western Canada was determined. The optimum size for agricultural residues is 450 MW (the largest single biomass unit judged feasible in this study), and the power cost is 50.30 MWh-1. If a larger biomass boiler could be built, the optiμm project size for straw would be 628 MW. For a market power price of 40 MWh-1 the cost of the GHG credit generated by a straw-fired plant is 11 tonne-1 CO2. Straw was evaluated as a possible supplement to the primary coal fuel at the Genesee power station in order to reduce the greenhouse gas (GHG) emissions intensity. Cofiring straw at the Genesee power station does not compete favorably with other GHG abatement technologies, even the lowest cost option is estimated at 22 tonne-1 CO2. The cost of transporting wood chips by truck and by pipeline as a water slurry is determined. The pipeline would be economical at large capacity (>0.5 M dry tonnes per year for a one way pipeline, and >1.25 M dry tonnes per year for a two way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances (>75 km (one way) and >470 km (two way) at a capacity of 2 M dry tonnes per year). Pipelining was determined to be unsuitable for combustion applications. Pipeline transport of corn is evaluated against a range of truck transport costs. At 20% solids, pipeline transport of corn stover costs less than trucking at capacities in excess of 1.4 M dry tonnes/yr when compared to a mid range of truck transport. Pipelining of corn stover gives the opportunity to conduct simultaneous transport and saccharification (STS) but would require a source of waste heat at the pipeline inlet in order to be economical. Transport of corn stover in multiple pipelines offers the opportunity to develop a large ethanol fermentation plant, avoiding some of the diseconomies of scale that arise from smaller plants whose capacities are limited by issues of truck congestion

  9. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  10. Opportunities for Green Gas. Competition of Green Gas with other Biomass Options

    International Nuclear Information System (INIS)

    Green biogas seems to be an interesting option to make the Dutch economy, with a large share of gas in the energy system, more sustainable. Biomass that is used as feedstock for biogas can also be deployed for the production of Electricity, biodiesel, bio-ethanol, bio-plastics, bio-chemical products and even bio-steel. This memo compares the main characteristics of biomass uses for production of gas with alternative uses in other sectors. The comparison shows that wet biomass flows in particular (e.g. manure and KGW) are suitable for conversion in biogas. This leads to a potential of 1 to 1.5 billion Nm3 of gas in 2020. Gasification of dry biomass may also become interesting in the future. However, this fuel is subjected to fierce competition with the electricity sector, which can use solid biomass for combustion purposes. Moreover, the steel, chemical and transport sector may also be able to use the feedstock in time.

  11. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  12. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, I.; Doucha, J.; Livansky, K.; Umysova, D.; Zachleder, V.; Vitova, M. [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Laboratory of Cell Cycles of Algae; Machat, J. [Masaryk University, Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Novak, P. [Termizo Inc., Liberec (Czech Republic)

    2009-02-15

    A flue gas originating from a municipal waste incinerator was used as a source of CO{sub 2} for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO{sub 2} simultaneously. The utilization of the flue gas containing 10-13% ({nu}/{nu}) CO2 and 8-10% ({nu}/{nu}) O{sub 2} for the photobioreactor agitation and CO{sub 2} supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO{sub 2} and air (11% ({nu}/{nu}) CO{sub 2}). Correspondingly, the CO{sub 2} fixation rate was also higher when using the flue gas (4.4 g CO{sub 2} l{sup -1} 24 h{sup -1}) than using the control gas (3.0 g CO{sub 2} l{sup -1} 24 h{sup -1}). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements. (orig.)

  13. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass - UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: matti.reinikainen@vtt.fi; Suominen, T.P. (Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry and Reaction Engineering); Linnekoski, J.; Roenkkoenen, E. (Aalto University, School of Science and Technology, Espoo (Finland). Lab. of Industrial Chemistry.)

    2010-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprises experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project is steered by a wide industrial consortium and the research work is carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. (orig.)

  14. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    International Nuclear Information System (INIS)

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH4) and ethylene (C2H4) between 600 to 800 degree Celsius and enhanced production ethane (C2H6) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  15. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass (UCGFunda)

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Nasrullah, M.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2009-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international co-operation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. A lot of data on the reactivity and ash sintering properties of various kinds of biomasses has been obtained in the project and the information will now be formulated into a mathematical model. In addition to catalysis also thermal reactions play an important role in gas cleaning. Both experimental and modelling work on both of the reaction types is being carried out. Three techno-economic evaluations on alternative and competing technologies will be completed in the coming year. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. New analysis techniques developed in the project have proven very useful and for instance a fast on-line tar analysis method is now well established. (orig.)

  16. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  17. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N2O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  18. Development of biomass as an alternative fuel for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

    1991-04-01

    A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

  19. Emissions and Furnace Gas Temperature for Electricity Generation Via Co-Firing of Coal and Biomass

    OpenAIRE

    Shoaib Mehmood; Bale Reddy; Marc Rosen

    2015-01-01

    The emissions of carbon dioxide and nitrogen and sulphur oxides for electricity generation with coal and biomass co-firing are investigated and the furnace gas temperature assessed. The study uses simulation and considers fuel combinations based on two coals (bituminous coal, lignite) and four types of biomass (rice husk, sawdust, chicken litter, refused derived fuel). With increasing biomass, net CO2 emissions are seen to decline significantly for all types of selected biomass, while gross c...

  20. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized...... CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and...

  1. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass - UCGFUNDA

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: matti.reinikainen@vtt.fi

    2012-07-01

    The project was directed towards improved methods of producing transportation bio-fuels via the synthesis-gas route. The aim of the project was to broaden and deepen the knowledge base and, in particular, generate new fundamental information about the most critical process steps from the point of view of the realisation of the technology. The subtopics of the research project were: (1) Fuel characterisation and ash behaviour in the gasification step (2) Reaction mechanisms related to gas cleaning, in particular the reactions of hydrocarbons at gasification temperatures, during hot-gas filtration and on catalytic surfaces (3) Evaluations of alternative process configurations and applications (4) Monitoring of developments elsewhere in the world (5) New analysis techniques (6) Hydrogen from biomass via gasification.

  2. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock

    International Nuclear Information System (INIS)

    This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by burning char in a separate combustion section of the gasifier and subsequently the heat is transferred to the gasification section. The advantages of indirect gasification are no syngas dilution with nitrogen and no external heat source required. The production process involves several process units, including biomass gasification, syngas cooler, cleaning and compression, methanation reactors and SNG conditioning. The process is simulated with a computer model using the flow-sheeting program Aspen Plus. The exergy analysis is performed for various operating conditions such as gasifier pressure, methanation pressure and temperature. The largest internal exergy losses occur in the gasifier followed by methanation and SNG conditioning. It is shown that exergetic efficiency of biomass-to-SNG process for woody biomass is higher than that for waste biomass. The exergetic efficiency for all biomass feedstock increases with gasification pressure, whereas the effects of methanation pressure and temperature are opposite for treated wood and waste biomass.

  3. Biotechnology for producing fuels and chemicals from biomass. Volume 2: Fermentation chemicals from biomass

    Science.gov (United States)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing chemicals by fermentation is discussed: acetone; butanol; acetic acid; citric acid; 2,3-butanediol, and propionic acid. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5 percent to 7 percent/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. The feedstock cost is 15 to 20 percent of the overall cost of production. The anticipated 5 percent growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. The commercial fermentative production of propionic acid has not yet been developed.

  4. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R. (ed.)

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  5. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    International Nuclear Information System (INIS)

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus trademark to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product

  6. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall;

    2000-01-01

    Particles in the gas from a two-stage (separate pyrolysis and gasification) down-draft biomass gasifier were collected and characterized. Their concentration, geometries and chemical compositions were investigated. Special attention was given to features suspected to harm internal combustion (IC...

  7. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x106 t-wet/ yr (0.14x106 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  8. Energy production from marine biomass: Fuel cell power generation driven by methane produced from seaweed

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, S.; Imou, K. [Univ. of Tokyo (Japan). Dept. of Biological and Environmental Engineering; Jonouchi, K. [Yanmar Co. Ltd., Osaka (Japan). Dept. of Human Resources

    2008-07-01

    Global warming has become one of the most serious environmental problems. To cope with the problem, it is necessary to substitute renewable energy for nonrenewable fossil fuel. Biomass, which is one of the renewable energies, is considered to be carbon-neutral, meaning that the net CO{sub 2} concentration in the atmosphere remains unchanged provided the CO{sub 2} emitted by biomass combustion and that fixed by photosynthesis are balanced. Biomass is also unique because it is the only organic matter among renewable energies. In other words, fuels and chemicals can be produced from biomass in addition to electricity and heat. Marine biomass has attracted less attention than terrestrial biomass for energy utilization so far, but is work considering especially for a country like Japan which has long available coastlines. This paper discusses the utilization of marine biomass as an energy resource in Japan. A marine biomass energy system in Japan was proposed consisting of seaweed cultivation (Laminaria japonica) at offshore marine farms, biogas production via methane fermentation of the seaweeds, and fuel cell power generation driven by the generated biogas. The authors estimated energy output, energy supply potential, and CO{sub 2} mitigation in Japan on the basis of the proposed system. As a result, annual energy production was estimated to be 1.02 x 10{sup 9} kWh/yr at nine available sites. Total CO{sub 2} mitigation was estimated to be 1.04 x 10{sup 6} tonnes per annum at the nine sites. However, the CO{sub 2} emission for the construction of relevant facilities is not taken into account in this paper. The estimated CO{sub 2} mitigation is equivalent to about 0.9% of the required CO{sub 2} mitigation for Japan per annum under the Kyoto Protocol framework.

  9. Use of California biomass in the production of transportation-fuel oxygenates: Estimates for reduction in CO2 emissions and greenhouse gas potential on a life cycle basis

    International Nuclear Information System (INIS)

    A set of environmental flows associated with two disposal options for thee types of California biomass - forest biomass, rice straw, chaparral - over their life cycles were studied, the emphasis being on energy consumption and greenhouse gas emissions. The two options studied were: producing ethyl-tertiary-butyl ether (ETBE) from biomass and biomass burning, and producing methyl-tertiary-butyl ether (MTBE) from natural gas. Results showed a lower (by 40 to 50 per cent) greenhouse effect impact, lower net values for carbon dioxide and fossil fuel energy consumption, and higher net values for renewable energy consumption for the ETBE option. Based on these results, the deployment of the biomass-to-ethanol ETBE option is recommended as the one that contributes most to the reduction of GHG emissions. 12 refs., 2 tabs., 5 figs

  10. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  11. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-01

    The main constituents rendering the engine use of gas produced from biomass are the tar content of the gases (condensing hydrocarbons), which cause problems for pipings, nozzles, and control of combustion. Purification methods, based on catalytic cracking of tars are investigated in the research in order to eliminate these problems. The target of the project is to demonstrate the developed gasification/gas purification process with engine test using PDU-scale equipment. Impurities of biomasses and biomass wastes (alkalis, chlorine, heavy metals), and the ash melting properties restrict in many cases the combined utilisation of biomasses and coal in power plant boilers. The second main task of this research is to investigate the removal of the problematic gas and ash components from the product gas. The sufficient degree of purification should be achieved by as simple and as cheap purification methods as possible. The main tasks of the first year of the project were (a) determination of the dimensioning characteristics of ambient pressure PDU scale cell-catalyst reactor (tests with laboratory-scale equipment), designing and construction of the reactor, (b) to investigate the operation of a cell-catalyst in purification of pre-cracked down-draft gasification gas, (c) acquisition of dimensioning data for dolomite-cracker based on fluidized bed principle, and (d) gasification of the Dutch building demolition waste and Danish straw, and the purification tests with the gases

  12. Produce synthesis gas by steam reforming natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, H.D.; Herbort, H.J.

    1982-06-01

    For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

  13. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    Science.gov (United States)

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-09-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles.

  14. [Flue gas desulfurization by a novel biomass activated carbon].

    Science.gov (United States)

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%. PMID:23798152

  15. Emissions and Furnace Gas Temperature for Electricity Generation Via Co-Firing of Coal and Biomass

    Directory of Open Access Journals (Sweden)

    Shoaib Mehmood

    2015-12-01

    Full Text Available The emissions of carbon dioxide and nitrogen and sulphur oxides for electricity generation with coal and biomass co-firing are investigated and the furnace gas temperature assessed. The study uses simulation and considers fuel combinations based on two coals (bituminous coal, lignite and four types of biomass (rice husk, sawdust, chicken litter, refused derived fuel. With increasing biomass, net CO2 emissions are seen to decline significantly for all types of selected biomass, while gross carbon dioxide emissions increase for all blends except bituminous coal/refuse derived fuel, lignite/chicken litter and lignite/refuse derived fuel. The reductions in emissions of nitrogen and sulphur oxides are dependent on the contents of nitrogen and sulphur in the biomass. The results also show for all fuel combinations that increasing the biomass proportion decreases the furnace exit gas temperature.

  16. Evaluation of Various Solid Biomass Fuels Using Thermal Analysis and Gas Emission Tests

    Directory of Open Access Journals (Sweden)

    Hiroshi Koseki

    2011-04-01

    Full Text Available Various recently proposed biomass fuels are reviewed from the point of view of their safety. Many biomass materials are proposed for use as fuels, such as refuse derived fuel (RDF, wood chips, coal-wood mixtures, etc. However, these fuels have high energy potentials and can cause fires and explosions. We have experienced many such incidents. It is very difficult to extinguish fires in huge piles of biomass fuel or storage facilities. Here current studies on heat generation for these materials and proposed evaluation methods for these new developing materials in Japan are introduced, which are consistent with measurements using highly sensitive calorimeters such as C80, or TAM, and gas emission tests. The highly sensitive calorimeters can detect small heat generation between room temperature and 80 °C, due to fermentation or other causes. This heat generation sometimes initiates real fires, and also produces combustible gases which can explode if fuel is stored in silos or indoor storage facilities.

  17. Biomass steam gasification with in-situ CO{sub 2} capture for enriched hydrogen gas production: a reaction kinetics modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Abrar Inayat, A.; Ahmad, M. M.; Yusup, S.; Mutalib, M. I. A. [Department of Chemical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh (Malaysia)

    2010-08-15

    Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO{sub 2} adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H{sub 2} can be increased to 0.98 mole fraction with all CO{sub 2} present in the system adsorbed. (authors)

  18. Using GC-MS/combustion/IRMS to determine the 13C/12C ratios of individual hydrocarbons produced from the combustion of biomass materials - application to biomass burning

    International Nuclear Information System (INIS)

    Simultaneous mass spectral detection and stable carbon isotope analysis was performed on individual indigenous n-alkanes isolated from single C4 and C3 plant species and on a series of aliphatic and polycyclic aromatic hydrocarbons (PAH) produced from the combustion of these same biomass materials. The analysis technique used a combined gas chromatograph-mass spectrometer/combustion/isotope ratio mass spectrometer (GC-MS/C/IRMS). Precision (2σ) for replicate measurements of individual compounds in standard solutions using this novel configuration ranged between 0.2 and 0.50/parts per million for n-alkanes and 0.3 and 0.80/parts per million for PAH. Accuracy of the n-alkane measurements ranged between 0.1 and 0.40/parts per million and that of the PAH measurements ranged between 0.2 and 0.90''parts per million. Replicate GC-MS/C/IRMS measurements on the combustion-derived n-alkane/alkane pairs were performed to within a precision of between 0.1 and 1.10/parts per million and the precision for the combustion PAH was similar to the standard PAH solution. This study demonstrates that the isotopic composition of original plant biomass material is mainly preserved in the aliphatic hydrocarbons and PAH generated by its combustion. Consequently, analyses of these compounds in sediments impacted by fire occurrences may provide useful information about paleo-fire activity that may help elucidate the impact biomass burning may have had and could have on climate-biosphere interactions. (author)

  19. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Moses, C A; Bernstein, H [Southwest Research Inst., San Antonio, TX (United States)

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  20. Anaerobic Co-Digestion of Algal Biomass and a Supplemental Carbon Source Material to Produce Methane

    OpenAIRE

    Soboh, Yousef

    2015-01-01

    Algae that are grown in wastewater treatment lagoons could be an important substrate for biofuel production; however, the low C/N ratio of algae is not conducive to anaerobic digestion of algae with economically attractive methane production rates. Increasing the C/N ratio in anaerobic, laboratory scale, batch reactors by blending algal biomass with sodium acetate resulted i increased methane production rates as the C/N ratio increased. The highest amount of methane was produced when the C/N ...

  1. Financial instruments help producers hedge gas deals in volatile market

    International Nuclear Information System (INIS)

    The Natural Gas Policy Act (NGPA) of 1978 and more recently the U.S. Federal Energy Regulatory Commission's Order 636 have changed gas marketing from a totally regulated industry to one that responds to free-market forces. The stable but controlled market in which producers once sold gas has become highly competitive and more efficient. Consequently, prices have become more volatile; they respond more quickly than they did before to changes in supply of and demand for natural gas. Prior to deregulation of the natural gas industry, producers had fewer marketing options than they do today. Under a typical gas sales contract, producers sold gas to the nearest pipeline at regulated prices, which remained relatively stable along the interstate distribution chain. The system, however, failed to generate adequate supply of gas. In an effort to realign supply and demand, Congress initiated the deregulation of natural gas with NGPA, which phased out most wellhead price controls. A series of FERC actions culminating in Order 636 extended the process. Now, independent producers can sell gas directly to end users. Under Order 636, interstate pipelines no longer offer merchant services to gas customers. The paper discusses the change in risk profiles, price protection, futures and options, hedged exposure, setting price floors, off-exchange contracts, risk considerations, types of risks, business controls, back office controls, and credit monitoring

  2. Water management technologies used by Marcellus Shale Gas Producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  3. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  4. Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation.

    Science.gov (United States)

    Núñez-López, Roberto Aurelio; Meas, Yunny; Gama, Silvia Citlalli; Borges, Raúl Ortega; Olguín, Eugenia J

    2008-06-15

    Plant biomass harvested after heavy-metal phytoremediation must be considered as a hazardous waste that should be contained or treated appropriately before disposal or reuse. As a potential method to detoxify the biomass and to convert this material to a suitable fertilizer or mulch, leaching of lead (Pb) from Salvinia minima biomass was studied by testing water, several aqueous ammonium salts, and EDTA solution as lead extractants. The research was carried out in two phases: (i) a leaching study to determine the lead-extraction efficiency of the different leachants, and (ii) a thermodynamic analysis to identify the likely reactions and stable Pb(II) species formed in the leaching systems of the most efficient leachants. Experimentally, lead concentrations measured in leached biomass and in leachates were significantly different among the various leachants. It was determined that the extraction strength of the leachants followed the order: EDTA>ammonium oxalate>water approximately ammonium nitrate>ammonium acetate, achieving Pb extraction efficiencies of 99%, 70%, 7.2%, 6.9% and 1.3%, respectively, in single-stage extractions. The thermodynamic study indicated that the dominant species produced by the leaching process should be the soluble species PbEDTA2- for EDTA system, and the insoluble Pb(COO)2S precipitate for the oxalate system. PMID:18078711

  5. Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation

    International Nuclear Information System (INIS)

    Plant biomass harvested after heavy-metal phytoremediation must be considered as a hazardous waste that should be contained or treated appropriately before disposal or reuse. As a potential method to detoxify the biomass and to convert this material to a suitable fertilizer or mulch, leaching of lead (Pb) from Salvinia minima biomass was studied by testing water, several aqueous ammonium salts, and EDTA solution as lead extractants. The research was carried out in two phases: (i) a leaching study to determine the lead-extraction efficiency of the different leachants, and (ii) a thermodynamic analysis to identify the likely reactions and stable Pb(II) species formed in the leaching systems of the most efficient leachants. Experimentally, lead concentrations measured in leached biomass and in leachates were significantly different among the various leachants. It was determined that the extraction strength of the leachants followed the order: EDTA > ammonium oxalate > water ∼ ammonium nitrate > ammonium acetate, achieving Pb extraction efficiencies of 99%, 70%, 7.2%, 6.9% and 1.3%, respectively, in single-stage extractions. The thermodynamic study indicated that the dominant species produced by the leaching process should be the soluble species PbEDTA2- for EDTA system, and the insoluble Pb(COO)2S precipitate for the oxalate system

  6. Gas producers seek options as methanol falters

    International Nuclear Information System (INIS)

    Methanol producers have recently experienced a period of massive demand and price uncertainty. This has occurred despite the fact that methanol is needed in the production of unleaded gasoline, which is increasingly becoming mandatory in many countries to counter the emission of greenhouse gases. This article explores the reasons behind the uncertainty, including health and pollution concerns. The use of methanol to manufacture methyl tertiary butyl ether (MTBE), its benefits and problems are also explored. (UK)

  7. Auto-thermal reforming of biomass raw fuel gas to syngas in a novel reformer: Promotion of hot-electron

    International Nuclear Information System (INIS)

    Highlights: • A novel reformer with porous ceramic tube circled by electric wire was designed. • The temperature uniformities along diameter and axial direction were measured. • The auto-thermal reforming of model and real biomass fuel gas was performed. • The hot electron promoted biomass fuel gas elimination mechanism was proposed. - Abstract: A novel reformer with porous ceramic oxygen distribution tube circled by electric wire for inspiring hot electron was designed for auto-thermal reforming of biomass raw fuel gas to produce syngas (H2 + CO). The temperature of auto-thermal reformer was nearly uniform due to the excellent performance of partial oxygenation reaction in the reformer with porous ceramic tube for oxygen partitioning. The hot-electron inspired by electric wire promoted the cracking of biomass tar to form radical species, which were converted effectively to syngas over nickel based catalyst. The hot-electron also played an essential role in decreasing coke deposition on the surface of nickel based catalyst, which prolonged the lifetime of the reforming catalyst

  8. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region's net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region's energy and greenhouse gas mitigation strategies.

  9. Second Generation Gaseous Biofuels: from Biomass to Gas Grid

    International Nuclear Information System (INIS)

    Gaseous biofuels and biomethane production by thermochemical pathway has many assets and, already, it should be seen as an essential component of future French and European energy panorama by 2020. As a biomass gasification process is used, a very wide range of biomass is accessible, guaranteeing a significant development potential of the sector. Because of the inherent advantages of the methanation reaction, methanation processes have very high overall energy efficiency, today comparable to other technologies for energy recovery from biomass. Moreover, these can be further enhanced by a waste heat valorization. The existence of technology adapted to installations of medium size (20-80 MW biomethane) promotes strong integration in the local area and is exemplary in a framework of sustainable development. Most of the steps of the process of biomethane production from biomass are at present commercially available. However, the technical feasibility of the whole production line of biomethane was not demonstrated to an industrial scale yet. (authors)

  10. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    International Nuclear Information System (INIS)

    A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58.2% based on lower heating value (LHV). -- Highlights: → Combined two-stage gasification, solid oxide fuel cells and gas turbine technology. → Hybrid plant for efficient decentralized power and heat production from biomass. → Through modeling, energy and exergy analyses reveal inefficiencies. → Optimization efforts for increased plant efficiency. → Electrical efficiency reached 58% (LHV) producing 290 kW electricity.

  11. Pressurised combustion of biomass-derived, low calorific value, fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU-funded, international R + D project which is designed to aid European industry in addressing issues regarding pressurised combustion of biomass-derived, low calorific flue fuel gas. The objects of the project are: To design, manufacture and test a pressurised, high temperature gas turbine combustor for biomass derived LCV fuel gas; to develop a steady-state and dynamic model describing a combustor using biomass-derived, low calorific value fuel gases; to gather reliable experimental data on the steady-state and dynamic characteristics of the combustor; to study the steady-state and dynamic plant behaviour using a plant layout wich incorporates a model of a gas turbine suitable for operation on low calorific value fuel gas. (orig)

  12. The effect of variable fuel composition on a swirl-stabilised producer gas combustor

    International Nuclear Information System (INIS)

    Highlights: ► We perform combustion experiments on two similar burners on different scales. ► We monitor and model the variation in producer composition from a biomass gasifier. ► The effect that this variation has on combustion properties is assessed. ► Gas CV and AFR are steady, flame speed is shown to vary greatly. ► The potential to simulate the combustion of producer gas with diluted natural gas is investigated. - Abstract: Producer gas is a form of synthesis gas formed from the gasification of biomass. Its composition varies largely depending on the gasifier type, up-draft, down-draft and entrained flow to name a few, and oxidiser, typically air, steam or pure oxygen. The producer gas in question is derived from an air fed down-draft gasifier containing Grade-A wood waste, and as such has comparatively low calorific value and hydrogen content of around 6 MJ/N m3 and 11% respectively. The viability of producing thermal energy on an industrial scale was proved via the swirl-stabilised combustion of forementioned producer gas in a 1.5 MW rated swirl burner, directly attached to a proprietary gasification plant. A largely stable combustion was achieved; however, a few instances of flame extinction did occur which were attributed to varying fluctuations in gasifier throat temperature. A relationship between throat temperature and fuel composition is believed to be the cause of these extinctions. Although these fluctuations were shown to have little effect on the producer gases stoichiometric air-to-fuel ratio and calorific value, there was particular variance in hydrogen content. Simulation using CHEMKIN showed that this variable hydrogen content had a significant effect on flame speed, with an increase from 5% to 15% hydrogen increasing laminar flame speed from 8.01 cm/s to 17.70 cm/s. Industrial-scale data was also compared to that taken with a 100 kW laboratory-scale combustor in an attempt to establish whether burner optimisation could be effectively

  13. Aqueous extractive upgrading of bio-oils created by tail-gas reactive pyrolysis to produce pure hydrocarbons and phenols

    Science.gov (United States)

    Tail-gas reactive pyrolysis (TGRP) of biomass produces bio-oil that is lower in oxygen (~15 wt% total) and significantly more hydrocarbon-rich than traditional bio-oils or even catalytic fast pyrolysis. TGRP bio-oils lend themselves toward mild and inexpensive upgrading procedures. We isolated oxyge...

  14. Dependence of the boiler flue gas losses on humidity of wood biomass

    Directory of Open Access Journals (Sweden)

    Dzurenda Ladislav

    2015-12-01

    Full Text Available The paper analyzes the influence of humidity of combusted wood biomass on the flue gas losses. A mathematical relation between flue gas losses of the boiler on wood biomass humidity is presented as well as temperature of flue gas emitted from the boiler into the atmosphere. The limits of model application for the humidity of wood biomass falls into the interval 10–60% whereas the range of temperatures of flue gases emitted from the boiler to the atmosphere is 120–200 °C. The influence of the humidity of wood biomass has an adverse effect on increasing the extent of the boiler flue gas losses and thus inefficiency of the heat production. The increase of the wood biomass humidity from the value of 10% to 60% with the outlet temperature of flue gases from the boiler 120 °C causes an increase in flue gas loss of the boiler from the value 8.37% to 12.43%, similarly the increase of flue gas loss by 200 °C from 15.19% to 22.55%, or the increase of the flue gas loss by 7.36%.

  15. Dependence of the boiler flue gas losses on humidity of wood biomass

    Science.gov (United States)

    Dzurenda, Ladislav; Banski, Adrián

    2015-12-01

    The paper analyzes the influence of humidity of combusted wood biomass on the flue gas losses. A mathematical relation between flue gas losses of the boiler on wood biomass humidity is presented as well as temperature of flue gas emitted from the boiler into the atmosphere. The limits of model application for the humidity of wood biomass falls into the interval 10-60% whereas the range of temperatures of flue gases emitted from the boiler to the atmosphere is 120-200 °C. The influence of the humidity of wood biomass has an adverse effect on increasing the extent of the boiler flue gas losses and thus inefficiency of the heat production. The increase of the wood biomass humidity from the value of 10% to 60% with the outlet temperature of flue gases from the boiler 120 °C causes an increase in flue gas loss of the boiler from the value 8.37% to 12.43%, similarly the increase of flue gas loss by 200 °C from 15.19% to 22.55%, or the increase of the flue gas loss by 7.36%.

  16. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    Science.gov (United States)

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. PMID:24753476

  17. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Science.gov (United States)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  18. Device for producing synthetic gas. Vorrichtung zur Erzeugung von Synthesegas

    Energy Technology Data Exchange (ETDEWEB)

    Herbort, H.J.; Marsch, H.D.

    1987-03-12

    The invention concerns a device for producing synthetic gas at high pressure from hydrocarbons, particularly natural gas, naphtha and/or refinery gas in a catalytic, endothermal reforming part with a cylindrical pressure vessel and a large number of reformer pipes filled with catalyst and heated from the outside. These are firmly anchored in the bottom part and project with their free ends into a partial oxidation part which is made widened as a pressure vessel with a closed end. The reforming gas leaving the pipe and additional hydrocarbons and oxygen are mixed intensively by the method of introduction, forming the synthetic gas.

  19. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H.; Papamichalis, A.; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1996-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  20. Methanol production from steel-work off-gases and biomass based synthesis gas

    International Nuclear Information System (INIS)

    Highlights: • The integration of a methanol synthesis process in steel plants increases the gas utilization efficiency. • Methanol produced by off-gases from steelmaking combined with biomass show competitive production costs versus petrol. • The integration of a methanol synthesis process in steel plants may reduce the specific CO2-emissions of the plant. - Abstract: Off-gases generated during steelmaking are to a large extent used as fuels in process units within the plant. The surplus gases are commonly supplied to a plant for combined heat and power production. The main objective of this study has been to techno-economically investigate the feasibility of an innovative way of producing methanol from these off-gases, thereby upgrading the economic value of the gases. Cases analyzed have included both off-gases only and mixes with synthesis gas, based on 300 MWth of biomass. The SSAB steel plant in the town of Luleå, Sweden has been used as a basis. The studied biomass gasification technology is based on a fluidized-bed gasification technology, where the production capacity is determined from case to case coupled to the heat production required to satisfy the local district heating demand. Critical factors are the integration of the gases with availability to the synthesis unit, to balance the steam system of the biorefinery and to meet the district heat demand of Luleå. The annual production potential of methanol, the overall energy efficiency, the methanol production cost and the environmental effect have been assessed for each case. Depending on case, in the range of 102,000–287,000 ton of methanol can be produced per year at production costs in the range of 0.80–1.1 EUR per liter petrol equivalent at assumed conditions. The overall energy efficiency of the plant increases in all the cases, up to nearly 14%-units on an annual average, due to a more effective utilization of the off-gases. The main conclusion is that integrating methanol production

  1. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m3

  2. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass.

    Science.gov (United States)

    Klinke, H B; Thomsen, A B; Ahring, B K

    2004-11-01

    An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q(EtOH)) but not the ethanol yields (Y(EtOH)) in Saccharomyces cerevisiae. Within the same phenol functional group (aldehyde, ketone, and acid) the inhibition of volumetric ethanol productivity was found to depend on the amount of methoxyl substituents and hence hydrophobicity (log P). Many pentose-utilizing strains Escherichia coli, Pichia stipititis, and Zymomonas mobilis produce ethanol in concentrated hemicellulose liquors but detoxification by overliming is needed. Thermoanaerobacter mathranii A3M3 can grow on pentoses and produce ethanol in hydrolysate without any need for detoxification. PMID:15300416

  3. Effect of Flue Gas on Microalgae Population and Study the Heavy Metals Accumulation in Biomass from Power Plant System

    Directory of Open Access Journals (Sweden)

    Mahendraperumal Guruvaiah

    2014-06-01

    Full Text Available Microalgae have high photosynthetic efficiency that can fix CO2 from the flue gas directly without any upstream CO2 separation, and concomitantly produce biomass for biofuel applications. These gases, both untreated and treated into current discharge standards, contain CO2, N2, H2O, O2, NOx, SOx, CxHy, CO, particulate matter, halogen acids and heavy metals. Microalgae population studies were conducted in a batch mode experiments at Power plant site of Chamois, Missouri. The experiments were conducted in different period (June to December 2011 of time. This study evaluated the effect of several heavy metals that are present in flue gases on the algae, focusing on the growth and accumulation of lipids in the algae that can be converted to biodiesel. The genus Scenedesmus presented the greatest richness of species and number of counted individuals in the flue gas ponds compare than non flue gas treatment ponds. Among the diatomaceae the genus Navicula sp, Nitizchia sp and Synedra sp. presented the next subdominant richness in the ponds. The last results of counted green algae Ulothrix sp and Coelastrum sp were least number of cells reported in these ponds. The heavy metal-contaminated in flue gas and also enter into the microalgae biomass population. Comparative studies were carried out by flue gas and control system of open ponds. Control system of microalgae population was represented in less amount of heavy metals compare than flue gas ponds.

  4. Vegetable Seedling Breeding with Biochar Produced from Invasive Plant Biomass in South West of China

    Science.gov (United States)

    Li, Guitong; Tian, Yanfang; Liu, Cheng; Cao, Jianhua; Lin, Qimei; Zhao, Xiaorong

    2015-04-01

    Crofton Weed (Ageratina adenophora) is an invasive plant widely colonized in the southwest part of China, such as Yunnan, Guizhou, and Sichuan. It is estimated that the total biomass of this small shrub in China can be as much as 30 million tones. Many methods have been developed to control its malignant expansion, mostly by using its leaves as feed for livestock. Its stem is difficult to use, although it accounts for more than 90% of its total biomass. A biochar production system, using the stems of Crofton Weed as feedstock, was established at Xi-Yu Biological Science and Technology Company, Pan-Zhi-hua, Sichuan Province, China. The system is composed of feeder, hot-air dryer, pyrolyser, activator, steam producer, and biochar-based fertilizer producer. The energy for producing hot-air to pre-dry the feedstock and steam to activate the carbonized material comes from the re-use of the heat yielded from the pyrolysis process. The whole system is in a high level of automation and energy efficiency. With this system, local farmers can improve their income by collecting stems of Crofton Weed and selling them to the producer. It is a practical way to control this kind of invasive plant by offering economic value for the local people. The biochar can be used to produce new seedling substrate by replacing peat to protect wetland resource. The biochar seedling media was produced in a simple way and the effects on growth of vegetable seedlings was evaluated. Results showed that the response of vegetable seeds to the biochar seedling media was different, meaning more detailed studies need to done to find the reasons for some kinds of seeds failed to germinate in the tested biochar seedling media. This research was supported by the Ministry of Science and Technology of China under the Public Industry Science and Technology Project (201103027).

  5. Use of biomass for producing liquid fuel: Current state and innovations

    Science.gov (United States)

    Chernova, N. I.; Korobkova, T. P.; Kiseleva, S. V.

    2010-11-01

    Current matters relating to utilization of biomass for producing energy are discussed, including the most developed technologies of biopower engineering and innovative developments, as well as the possibilities of using nonfood raw materials as second-generation biofuel. It is shown that microalgae can be considered as prospective sources of different kinds of renewable biofuel, such as methane, biohydrogen, bioethanol, biobutanol, pyrolysis biofuel, biodiesel, and renewable diesel fuel, and can serve as an alternative to the traditional cultures used for power-generating purposes.

  6. Analysis of Indirectly Fired Gas Turbine for Wet Biomass Fuels Based on commercial micro gas turbine data

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2002-01-01

    The results of a study of a novel gas turbine configuration is being presented. In this power plant, an Indirectly Fired Gas Turbine (IFGT), is being fueled with very wet biomass. The exhaust gas is being used to dry the biomass, but instead of striving to recover as much as possible of the thermal...... turbines. The study shows that the novel configuration, in which an IFGT and a drying unit have been combined, has considerable merit, in that its performance exceeds that of the currently available methods converting wet biomass to electric power by a factor of five. The configuration also has clear...... energy, which has been the practice up to now, the low temperature exhaust gases after having served as drying agent, are lead out into the environment; a simple change of process integration that has a profound effect on the performance. Four different cycles have been studied. These are the Simple IFGT...

  7. Opportunities for Green Gas. Competition of Green Gas with other Biomass Options; Kansen voor Groen Gas. Concurrentie Groen Gas met andere biomassa opties

    Energy Technology Data Exchange (ETDEWEB)

    Bergsma, G.C.; Croezen, H.J.

    2011-04-15

    Green biogas seems to be an interesting option to make the Dutch economy, with a large share of gas in the energy system, more sustainable. Biomass that is used as feedstock for biogas can also be deployed for the production of Electricity, biodiesel, bio-ethanol, bio-plastics, bio-chemical products and even bio-steel. This memo compares the main characteristics of biomass uses for production of gas with alternative uses in other sectors. The comparison shows that wet biomass flows in particular (e.g. manure and KGW) are suitable for conversion in biogas. This leads to a potential of 1 to 1.5 billion Nm{sup 3} of gas in 2020. Gasification of dry biomass may also become interesting in the future. However, this fuel is subjected to fierce competition with the electricity sector, which can use solid biomass for combustion purposes. Moreover, the steel, chemical and transport sector may also be able to use the feedstock in time. [Dutch] Groen biogas lijkt een interessante optie om de Nederlandse economie met veel gas in de energievoorziening te verduurzamen. Biomassa dat als grondstof voor biogas dient kan echter ook ingezet worden voor productie van elektriciteit, biodiesel, bio-ethanol, bioplastics, biochemie en zelfs biostaal. In deze notitie zijn de kenmerken van biomassagebruiken voor het maken van gas vergeleken met de mogelijkheden in andere sectoren. Uit deze vergelijking blijkt dat met name natte biomassastromen (bijvoorbeeld mest en GFT) geschikt zijn voor conversie in biogas. Dat levert een potentieel op van 1 tot 1,5 miljard Nm{sup 3} gas in 2020. Het zou kunnen dat ook vergassing van droge biomassa op termijn interessant wordt. Voor deze grondstof is er echter een stevige competitie met de elektriciteitssector die vaste biomassa via verbranding kan gebruiken. Verder kunnen op termijn ook de staal-, chemie- en transportsector deze grondstof gebruiken.

  8. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    Science.gov (United States)

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first. PMID

  9. Marketing advisors and their role for junior gas producers

    International Nuclear Information System (INIS)

    The role of marketing advisors in the new deregulated natural gas industry was discussed. These producer-oriented marketing consultants are specialists in providing affordable marketing services to junior gas producers on an 'as-needed' basis. The most important service provided by marketing advisors is helping the client identify management problems, analyze such problems and recommend solutions. Accordingly, the marketing advisor should be independent and objective, with no conflict of interests. He/she should be prepared to invest a lot of time and effort in providing the junior producer with a customized diagnosis of its marketing problems. 5 refs., 3 figs

  10. Approaches to greenhouse gas accounting methods for biomass carbon

    International Nuclear Information System (INIS)

    This investigation examines different approaches for the GHG flux accounting of activities within a tight boundary of biomass C cycling, with scope limited to exclude all other aspects of the lifecycle. Alternative approaches are examined that a) account for all emissions including biogenic CO2 cycling – the biogenic method; b) account for the quantity of C that is moved to and maintained in the non-atmospheric pool – the stock method; and c) assume that the net balance of C taken up by biomass is neutral over the short-term and hence there is no requirement to include this C in the calculation – the simplified method. This investigation demonstrates the inaccuracies in both emissions forecasting and abatement calculations that result from the use of the simplified method, which is commonly accepted for use. It has been found that the stock method is the most accurate and appropriate approach for use in calculating GHG inventories, however short-comings of this approach emerge when applied to abatement projects, as it does not account for the increase in biogenic CO2 emissions that are generated when non-CO2 GHG emissions in the business-as-usual case are offset. Therefore the biogenic method or a modified version of the stock method should be used to accurately estimate GHG emissions abatement achieved by a project. This investigation uses both the derivation of methodology equations from first principles and worked examples to explore the fundamental differences in the alternative approaches. Examples are developed for three project scenarios including; landfill, combustion and slow-pyrolysis (biochar) of biomass. -- Highlights: • Different approaches can be taken to account for the GHG emissions from biomass. • Simplification of GHG accounting methods is useful, however, can lead to inaccuracies. • Approaches used currently are often inadequate for practises that store carbon. • Accounting methods for emissions forecasting can be inadequate for

  11. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 109 GJ in 2005 to 5.7 × 109 GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  12. Experimental Research on Heterogeneous N2O Decomposition with Ash and Biomass Gasification Gas

    Directory of Open Access Journals (Sweden)

    Wu Qin

    2011-11-01

    Full Text Available In this paper, the promoting effects of ash and biomass gas reburning on N2O decomposition were investigated based on a fluidized bed reactor, with the assessment of the influence of O2 on N2O decomposition with circulating ashes. Experimental results show that different metal oxides contained in ash play distinct roles in the process of N2O decomposition with biomass gas reburning. Compared with other components in ash, CaO is proven to be very active and has the greatest promoting impact on N2O decomposition. It is also found that O2, even in small amounts, can weaken the promoting effect of ash on N2O decomposition by using biomass gas reburning.

  13. A Medium-Scale 50 MWfuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process

    Directory of Open Access Journals (Sweden)

    Ramiar Sadegh-Vaziri

    2015-06-01

    Full Text Available Natural gas is becoming increasingly important as a primary energy source. A suitable replacement for fossil natural gas is bio-SNG, produced by biomass gasification, followed by methanation. A major challenge is efficient gas cleaning processes for removal of sulfur compounds and other impurities. The present study focuses on development of a gas cleaning step for a product gas produced in a 50 MWfuel gasification system. The developed gas cleaning washing process is basically a modification of the Rectisol process. Several different process configurations were evaluated using Aspen plus, including PC-SAFT for the thermodynamic modeling. The developed configuration takes advantage of only one methanol wash column, compared to two columns in a conventional Rectisol process. Results from modeling show the ability of the proposed configuration to remove impurities to a sufficiently low concentrations - almost zero concentration for H2S, CS2, HCl, NH3 and HCN, and approximately 0.01 mg/Nm3 for COS. These levels are acceptable for further upgrading of the gas in a methanation process. Simultaneously, up to 92% of the original CO2 is preserved in the final cleaned syngas stream. No process integration or economic consideration was performed within the scope of the present study, but will be investigated in future projects to improve the overall process.

  14. Experimental Research on Heterogeneous N2O Decomposition with Ash and Biomass Gasification Gas

    OpenAIRE

    Wu Qin; Qiang Lu; Changqing Dong; Xiaoying Hu; Yongping Yang; Junjiao Zhang

    2011-01-01

    In this paper, the promoting effects of ash and biomass gas reburning on N2O decomposition were investigated based on a fluidized bed reactor, with the assessment of the influence of O2 on N2O decomposition with circulating ashes. Experimental results show that different metal oxides contained in ash play distinct roles in the process of N2O decomposition with biomass gas reburning. Compared with other components in ash, CaO is proven to be very active and has the greatest promoting impact on...

  15. Experimental Research on Heterogeneous N 2 O Decomposition with Ash and Biomass Gasification Gas

    OpenAIRE

    Junjiao Zhang; Yongping Yang; Xiaoying Hu; Changqing Dong; Qiang Lu; Wu Qin

    2011-01-01

    In this paper, the promoting effects of ash and biomass gas reburning on N 2 O decomposition were investigated based on a fluidized bed reactor, with the assessment of the influence of O 2 on N 2 O decomposition with circulating ashes. Experimental results show that different metal oxides contained in ash play distinct roles in the process of N 2 O decomposition with biomass gas reburning. Compared with other components in ash, CaO is proven to be very active and has the greatest promoting im...

  16. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...... University of Denmark. The SOFC converts the syngas more efficiently than the MGT, which is reflected by the energetic electrical efficiency of the gasifier and MGT system in opposition to the gasifier and SOFC configuration – η_el = 28.1% versus η_el = 36.4%. By combining the SOFC and MGT, the unconverted...... syngas from the SOFC is utilised in the MGT to produce more power and the SOFC is pressurised, which improves the efficiency to as much as η_el = 50.3%. Variation of the different operating conditions reveals an optimum for the chosen pressure ratio with respect to the resulting electrical efficiency...

  17. Optical Absorption Spectroscopy for Gas Analysis in Biomass Gasification

    OpenAIRE

    Grosch, Helge; Fateev, Alexander; Clausen, Sønnik

    2014-01-01

    Forgasning af biomasse er en bæredygtigt kilde til produktion af varme, el og kemiske råstoffer. Forgasningsgassens hovedkomponenter, såsom H2, CO, CO2og CH4, kan måles med den fornødne præcision. Det kniber til gengæld med at måle sporgasserne, såsom organiske, aromatiske, svovl- og kvælstofholdigekomponenter, som dels kan volde problemer i de systemer der aftager forgasningsgassen og dels være skadelige for helbred og miljøet. I dette arbejde er der udviklet en optisk metode til direkte kon...

  18. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Miranda Maki, Kam Tin Leung, Wensheng Qin

    2009-01-01

    Full Text Available Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.

  19. Enhancing the production of biomethane : A comparison between GoBiGas process and new process of combining anaerobic digestion and biomass gasification

    OpenAIRE

    Mehmood, Daheem

    2016-01-01

    In recent years, there is a rapid growing interest in the use of biomethane for the transport sector. A new method of combining anaerobic digestion and biomass gasification is proposed.The feasibility study shows that more biomethane can be produced; resulting in an increase in the revenue compared to individual biogas plants. The GoBiGas project,which is initiated by Göteborg Energi, adopted another method based on gasification, water gas shift and methanation to enable biomethane production...

  20. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.

    Science.gov (United States)

    Lee, Yongwoon; Park, Jinje; Ryu, Changkook; Gang, Ki Seop; Yang, Won; Park, Young-Kwon; Jung, Jinho; Hyun, Seunghun

    2013-11-01

    Application of biochar from biomass pyrolysis to soil is gaining greater interest; this can ameliorate the soil quality, reduce fertilizer consumption, and sequestrate carbon. This study compares the characteristics of biochar produced by slow pyrolysis at 500°C for agricultural residues: sugarcane bagasse, cocopeat, paddy straw, palm kernel shell (PKS) and umbrella tree. In the biochar yield, the influence of the inert and lignin contents was significant. The wood stem, bagasse and paddy straw had biochar yields of 24-28 wt.% from the organic fraction while cocopeat had 46 wt.%. The carbon content of biochar ranged from 84 wt.% to 89 wt.%, which corresponded to 43-63% of carbon in the biomass. The biochar from wood stem and bagasse had well-developed pores of various sizes with large surface areas. Although the surface area was significant, PKS biochar had dense matrix with few large pores. The elemental composition and pH of biochars were also compared. PMID:24047681

  1. Verticillium dahliae Infects, Alters Plant Biomass, and Produces Inoculum on Rotation Crops.

    Science.gov (United States)

    Wheeler, D L; Johnson, D A

    2016-06-01

    Verticillium wilt, caused by Verticillium dahliae, reduces yields of potato and mint. Crop rotation is a potential management tactic for Verticillium wilt; however, the wide host range of V. dahliae may limit the effectiveness of this tactic. The hypothesis that rotation crops are infected by V. dahliae inoculum originating from potato and mint was tested by inoculation of mustards, grasses, and Austrian winter pea with eight isolates of V. dahliae. Inoculum density was estimated from plants and soil. Typical wilt symptoms were not observed in any rotation crop but plant biomass of some crops was reduced, not affected, or increased by infection of specific isolates. Each isolate was host-specific and infected a subset of the rotation crops tested but microsclerotia from at least one isolate were observed on each rotation crop. Some isolates were host-adapted and differentially altered plant biomass or produced differential amounts of inoculum on rotation crops like arugula and Austrian winter pea, which supported more inoculum of specific isolates than potato. Evidence of asymptomatic and symptomatic infection and differential inoculum formation of V. dahliae on rotation crops presented here will be useful in designing rotations for management of Verticillium wilt. PMID:26828231

  2. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Directory of Open Access Journals (Sweden)

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  3. DEVELOPMENT OF A NANO-Ni-La-Fe/Al2O3 CATALYST TO BE USED FOR SYN-GAS PRODUCTION AND TAR REMOVAL AFTER BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Jianfen Li

    2009-11-01

    Full Text Available The objective of this study was to develop a supported tri-metallic catalyst (nano-Ni-La-Fe/γ-Al2O3 for tar removal in biomass steam gasification, to significantly enhance the quality of the produced gas. For this purpose, the supported tri-metallic catalysts were prepared by a deposition-precipitation (DP method. Different analytical approaches were used to characterize the synthesized catalysts. The results showed that the prepared tri-metallic catalysts had an egg-shell structure with a specific surface area of 214.7 m2/g. The activity of the catalysts for gas production and tar removal in the process of biomass gasification was also investigated using a bench-scale combined fixed bed reactor. The experiments indicated that the tar yield after adding catalyst was reduced significantly and the efficiency of tar removal reached 99% for the biomass steam gasification at 800oC, while the gas yield after adding catalysts increased markedly and less coke was found over the catalyst. Meanwhile, the compositions of gas products before and after adding catalyst in the process also changed significantly; in particular, the content of hydrogen in catalytic steam gasification was improved by over 10 vol%. Therefore, using the prepared tri-metallic catalyst in biomass gasification can significantly improve the quality of the produced gas and efficiently eliminate the tar generation, preventing coke deposition on the catalyst surfaces, thus demonstrating a long lifetime of the catalyst.

  4. Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agro biomass; Liikenteen biopolttoaineiden ja peltoenergian kasvihuonekaasutaseet ja uudet liiketoimintakonseptit

    Energy Technology Data Exchange (ETDEWEB)

    Tuula Maekinen, T.; Soimakallio, S.; Paappanen, T. [VTT, Espoo (Finland); Pahkala, K. [MTT Agrifood Research Finland, Jokioinen (Finland); Mikkola, H. [MTT, Agrifood Research Finland, Vihti (Finland)

    2006-12-19

    The aim of the project was to assess greenhouse gas balances and greenhouse gas reduction costs for biomass-based fuels used in transportation and combined heat and power production (CHP). New business opportunities were identified, and business plans for commercialisation of the most cost-effective technologies through research, development and demonstration were presented. Both the commercial technologies and the technologies under development were assessed. The main options were barley-based ethanol, biodiesel (RME), forest residue and reed canary grass-derived synthetic fuels, and forestry residues and reed canary grass as a fuel for CHP production. The whole utilisation chain from the fuel production to the end se was evaluated. The results indicated that e.g. the production and use of barley- based ethanol or rape seed-based biodiesel does not necessarily reduce greenhouse gas emissions, but can on the contrary increase the greenhouse gas emissions compared to fossil-based reference fuels. However, absolute emissions can be reduced by optimising cultivation and production chains, e.g. by utilisation straw in energy production. The second generation biofuels produced using forestry residues or reed canary grass as a raw material seems to be significantly more favourable in reducing greenhouse gases cost- effectively. (orig.)

  5. Water management practices used by Fayetteville shale gas producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A. (Environmental Science Division)

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  6. Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case

    International Nuclear Information System (INIS)

    The knowledge of the potentially achievable reduction of greenhouse gas (GHG) emissions by biomass co-firing is a powerful tool in supporting decision makers when it comes to undertaking energy planning. The main goal of this work was to develop a methodology by which significant biomass co-firing potentials and subsequent reduced GHG emissions, could be obtained at large territories. This methodology has been applied to Spain. It has been found that agricultural and forestry residual biomass feedstocks, available within 100 km of coal-fired power plants (CPP), currently total up to 75.8 PJth/yr. If energy crop feedstocks are included, this quantity increases up to 91.1 PJth/yr. However, the utilisation of biomass in CPPs is constrained by technical limitations. Taking into account these restrictions, biomass could be co-fired to generate up to 7.7% of electricity produced in CPPs (42.1 PJth/yr of biomass). A life cycle assessment has been performed to all the processes involved. The results indicate that up to 87 tCO2eq can be reduced by utilising 1 TJth of biomass replacing coal. The combination of these figures points out that biomass co-firing could contribute to mitigating 3.4 MtCO2eq in Spain annually. This value equates to almost 1% of its total GHG emissions.

  7. New European context for gas producers/operators

    International Nuclear Information System (INIS)

    The development of the European Union towards more integration would enter a new phase if the draft Third Directive regarding the natural gas industry and the deregulation of gas markets would be validated as it stands. The stakes for gas producing/operating companies are very high: they must position themselves either as networks and installations companies or as production and trading companies - meaning regulation and recurring revenues or the opportunities and risks of production and trade. Changes such these, added to the globalisation of gas flows linked to the development of liquefied natural gas (LNG), require more investments than in the past. These additional investments and this technological progress nevertheless give hope that this transformation will not noticeably weaken the security of gas supplies within the European Union (EU) despite the greater volatility of the markets, which are increasingly dominated by the strategies of financial operators. The author reviews the history of the development of the gas distribution networks in Europe and discusses details of the new draft directive aiming at more competition on a market that has been dominated so far by vertical structures. Similarities and differences to the deregulation of the European electricity market are discussed. The divergent attitudes of the EU Member States and the negotiation strategy of the European Commission are discussed. Merges of gas and electricity utilities are on the agenda. The author then reviews the current situation of natural gas consumption and supplies and the transportation and distribution facilities. Political factors influencing the security of supply are discussed. Underground gas storage facilities are crucial in this context. Several projects for new main gas pipelines are discussed. Diversification of supply sources is considered as of strategic relevance. The article is richly illustrated and includes several maps and diagrams.

  8. Internal curing with lightweight aggregate produced from biomass-derived waste

    International Nuclear Information System (INIS)

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements

  9. Internal curing with lightweight aggregate produced from biomass-derived waste

    Energy Technology Data Exchange (ETDEWEB)

    Lura, Pietro, E-mail: pietro.lura@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Institute for Building Materials (IfB), ETH Zürich (Switzerland); Wyrzykowski, Mateusz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Department of Building Physics and Building Materials, Lodz University of Technology (Poland); Tang, Clarence [Siam Research and Innovation, SCG Cement–Building Materials, Saraburi (Thailand); Lehmann, Eberhard [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2014-05-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements.

  10. A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis

    International Nuclear Information System (INIS)

    The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm−3.Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators. - Highlights: • Hot air injection in dual fired reactor reduces the tar content to less than 100 mg Nm−3. • In clean gas the tar content is 35 mg Nm−3 and the dust content is nil. • The specific gasification rate is 2.8 Nm3 kg−1 of fuel wood and cold gas efficiency is 89.7%. • CV of the gas: 5.3 MJ Nm−3, SFC: 1.1 kg kWh−1 and wood to power efficiency: 21%. • Cold gas efficiency is improved by optimizing the reactor's design and recycling the waste heat from hot gas

  11. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  12. Basic petrochemicals from natural gas, coal and biomass: energy use and CO2 emissions

    NARCIS (Netherlands)

    Ren, T.; Patel, M.K.

    2009-01-01

    While high-value basic petrochemicals (HVCs) are mostly produced through conventional naphtha and ethane-based process routes, it is also possible to produce them through coal and biomass-based routes. In this paper, we compared these routes in terms of energy use and CO2 emissions per ton of HVCs.

  13. Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (CCGT) plants for natural gas

    International Nuclear Information System (INIS)

    Integration/co-firing with existing fossil fuel plants could give near term highly efficient and low cost power production from biomass. This paper presents a techno-economical analysis on options for integrating biomass thermal conversion (optimized for local resources ∝50 MWth) with existing CCGT (combined cycle gas turbine) power plants (800-1400 MWth). Options include hybrid combined cycles (HCC), indirect gasification of biomass and simple cycle biomass steam plants which are simulated using the software Ebsilon Professional and Aspen Plus. Levelized cost of electricity (LCoE) is calculated with cost functions derived from power plant data. Results show that the integrated HCC configurations (fully-fired) show a significantly higher efficiency (40-41%, LHV (lower heating value)) than a stand-alone steam plant (35.5%); roughly half of the efficiency (2.4% points) is due to more efficient fuel drying. Because of higher investment costs, HCC options have cost advantages over stand-alone options at high biomass fuel prices (>25 EUR/MWh) or low discount rates (<5%). Gasification options show even higher efficiency (46-50%), and the lowest LCoE for the options studied for fuel costs exceeding 10 EUR/MWh. It can be concluded that clear efficiency improvements and possible cost reductions can be reached by integration of biomass with CCGT power plants compared to stand-alone plants. (author)

  14. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  15. Properties of hybrid gas-water torch used for gasification of biomass

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Mašláni, Alan; Kopecký, Vladimír; Hrabovský, Milan

    Heilbronn: Institute of Space Propulsion, German Aerospace Center, 2010. s. 29-29. ISBN N. [International Workshop and Exhibition on Plasma Assisted Combustion/6th./. 13.09.2010-15.09.2010, Heilbronn] Institutional research plan: CEZ:AV0Z20430508 Keywords : DC arc plasma torch * gasification of biomass Subject RIV: BL - Plasma and Gas Discharge Physics

  16. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  17. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.

  18. Computational studies of the laminar burning velocity of a producer gas and air mixture under typical engine conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, G.; Paul, P.J.; Mukunda, H.S.

    2005-03-15

    This paper discusses computational results concerning the laminar burning velocity of a biomass-derived producer gas and air mixture at pressures and temperatures typical of the unburned mixture in a reciprocating engine. The computations are based on solving conservation equations describing laminar one-dimensional, multicomponent, chemically reacting, and ideal gas mixtures that have been formulated by earlier researchers. Based on a number of calculations at varying initial pressures and temperatures, and equivalence ratios, an expression for estimating the laminar burning velocity with the recycled gas mass fraction has been obtained. Also, the effect of varying amounts of recycled gas on the burning velocity has been determined. These data on laminar burning velocities will be useful in predicting the burn rate in a spark ignition (SI) engine fuelled with a producer gas and air mixture. (Author)

  19. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  20. Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract

    Directory of Open Access Journals (Sweden)

    Ghysel, F.

    2010-01-01

    Full Text Available Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin fractions (Ogier et al., 1999 that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007. However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008. This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007 that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and

  1. Synthetic Gas Production by Biomass/Oil Partial Oxidation

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Tukač, V.; Veselý, Václav; Kovač, D.

    Bratislava: AXIMA Graphics Design and Printing Services, 2012 - (Markoš, J.), s. 217 ISBN 978-80-89475-04-9. [International Conference of Slovak Society of Chemical Engineering /39./. Tatranské Matliare (SK), 21.05.2012-25.05.2012] R&D Projects: GA TA ČR TE01020080; GA MPO 2A-2TP1/024 Institutional support: RVO:67985858 Keywords : synthetic gas * bio mass * partialoxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  2. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  3. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  4. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  5. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  6. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  7. Formation of naphthalene at gasification of biomass and hot gas cleanup with dolomite

    International Nuclear Information System (INIS)

    Tar generated at gasification of biomass and municipal wastes is an unwanted byproduct. With dolomite as catalyst the tar content is reduced to such a level as to allow final cleaning of the fuel gas with water. It is still desirable to further reduce the naphthalene level in the fuel gas. The aim of the project is to determine the influence of process variables on cracking of naphthalene with dolomite in a small fluidized bed gasifier, and to determine the influence on the content of BTX in the gas from the same variables. 10 refs, 21 figs, 1 tab

  8. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  9. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    OpenAIRE

    Y. M’Sadak; Saad, I.

    2015-01-01

    The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL) to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the ...

  10. Common ground : bitumen and gas producers come together to find gas-over-bitumen solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2005-08-01

    The gas-over-bitumen issue has meant that hundreds of natural gas wells remain closed while regulatory hearings and research activities continue. The Alberta Energy and Utilities Board should soon reach a final decision on the status of gas wells considered to be a threat to thermal extraction of underlying oil sands. This article discussed collaborative efforts by oil and gas companies to resolve these issues, including the use of fluid injection technology, low pressure Steam-Assisted Gravity Drainage (SAGD) and artificial lift. The objective of the Gas Reinjection and Production Experiment (GRIPE) is to reinject gas to displace natural gas being produced. The pilot project, conducted by Paramount Resources Ltd., consists of 2 injector wells, 4 producers and 12 observation wells that measure gas pressure in the reservoir. The project also includes a 2 stage compressor modified to handle flue gas. According to reservoir simulations, Paramount should be able to recover between 50 to 60 per cent of the remaining gas in place. Results from the pilot suggest that the technique could result in more than half the currently shut-in pools being re-opened. It was suggested that gas-by-gas displacement may result in higher recovery rates because there is usually more remaining gas in place. It was noted that EnCana Corporation has also been repressurizing a depleted natural gas pool by injecting compressed air rather than flue gas. Various other projects were reviewed, including the use of electric submersible pumps, low pressure SAGD and new SAGD well pair configurations. It was concluded that the artificial lift and low pressure SAGD technical sub-committee have now filed 10 applications for funding under the Alberta Energy Department's Innovative Energy Technology Program.

  11. Assessing Radium Activity in Shale Gas Produced Brine

    Science.gov (United States)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a

  12. Gas Electron Multiplier produced with the plasma etching method

    CERN Document Server

    Inuzuka, M; Ozawa, K; Tamagawa, T; Isobe, T

    2004-01-01

    We have produced Gas Electron Multiplier (GEM) using the plasma etching method. The new GEM has holes with a cylindrical shape and can hold up to 520V in nitrogen. Amplification factor was measured as a function of the applied voltage. A gain of 10^4 was obtained in argon-mixture gases. The gain characteristics are very similar to those of the GEMs made at CERN.

  13. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  14. Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production

    International Nuclear Information System (INIS)

    Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.

  15. Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gassner, Martin; Marechal, Francois [Industrial Energy Systems Laboratory, Ecole Polytechnique Federale de Lausanne Station postale 9, CH-1015 Lausanne (Switzerland)

    2009-11-15

    A detailed thermo-economic model considering different technological alternatives for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass is presented. First, candidate technology for processes based on biomass gasification and subsequent methanation is discussed and assembled in a general superstructure. Both energetic and economic models for biomass drying with air or steam, thermal pretreatment by torrefaction or pyrolysis, indirectly and directly heated gasification, methane synthesis and carbon dioxide removal by physical absorption, pressure swing adsorption and polymeric membranes are then developed. Performance computations for the different process steps and some exemplary technology scenarios of integrated plants are carried out, and overall energy and exergy efficiencies in the range of 69-76% and 63-69%, respectively, are assessed. For these scenarios, the production cost of SNG including the investment depreciation is estimated to 76-107 EUR MWh{sup -1}{sub SNG} for a plant capacity of 20 MW{sub th,biomass}, whereas 59-97 EUR MWh{sup -1}{sub SNG} might be reached at scales of 150 MW{sub th,biomass} and above. Based on this work, a future thermo-economic optimisation will allow for determining the most promising options for the polygeneration of fuel, power and heat. (author)

  16. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Science.gov (United States)

    2010-07-01

    ..., 40 CFR part 32, or the Debarment, Suspension and Ineligibility provisions of the Federal Acquisition Regulations, 48 CFR, part 9, subpart 9.4, shall be deemed noncompliance with the requirements of this section... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section...

  17. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    Science.gov (United States)

    Hernández, D; Riaño, B; Coca, M; García-González, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. PMID:23069610

  18. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  19. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    International Nuclear Information System (INIS)

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  20. Feasibility analysis of co-fired combined-cycles using biomass-derived gas and natural gas

    International Nuclear Information System (INIS)

    This paper reports the feasibility analysis of co-fired combined cycles (biomass-derived gas + natural gas) based on the gasification of sugarcane residues (bagasse and trash). Performance results are based on simulation of co-fired combined cycles. Feasibility analysis is based on estimates of the capital costs and O and M costs for such cycles, taking into account current and middle term costs of BIG-CC technology (both considering scaling and learning effects). A deep reduction of the investments regarding the gasification island and auxiliaries is a key point to make BIG-CC competitive in the electricity market, and the required learning can be reached with co-fired BIG-CC systems. Besides alleviation of technical problems related to gas turbine operation with biomass-derived gas, co-fired BIG-CC units can operate with relative flexibility regarding the fuel mix. The construction of 10-15 short- to medium-size gasification islands would be enough to induce important cost reductions due to learning effects. As long as the investment on the gasification island is reduced, and depending on the price ratio of natural gas and biomass, pure BIG-CC plants could achieve a reasonable level of feasibility regarding other options of electricity production. In the short run there is no advantage for co-fired combined cycles regarding the costs of reduction of carbon dioxide emissions, but in the middle run both co-fired and pure BIG-CC power plants can be a better option than capture and storage of CO2

  1. Catalytic conversion of biomass-derived synthesis gas to liquid fuels

    OpenAIRE

    Suárez París, Rodrigo

    2016-01-01

    Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food co...

  2. Criteria for selection of dolomites and catalysts for tar elimination from biomass gasification gas. Kinetic constants

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Madrid Univ. (Spain). Dept. of Chem. Eng.

    1996-12-31

    Calcined dolomites and commercial steam reforming catalysts are used downstream biomass gasifiers for hot catalytic raw gas cleaning. To further compare these solids under a rigorous basis, a reaction network and a kinetic model are presented. The apparent kinetic constant for the tar reduction is here proposed as a basis of comparison. Tar sampling and analysis, and the units used for the space-time in the catalytic reactor affect the kinetic constants observed. (author) (2 refs.)

  3. Thermal plasma gasification of organic waste and biomass for fuel gas production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    Patras : University of Patras Plasma Technology Lab, 2008. s. 3-3. ISBN N. [Biennial European Plasma Conference HTTP-10/10th./. 07.07.2008-11.07.2008, Patras] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * biomass * gasification Subject RIV: BL - Plasma and Gas Discharge Physics

  4. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC

    OpenAIRE

    Kalina, Jacek

    2011-01-01

    Abstract The paper theoretically investigates the performance of a distributed generation plant made up of gasifier, Internal Combustion Engine (ICE) and Organic Rankine Cycle (ORC) machine as a bottoming unit. The system can be used for maximization of electricity production from biomass in the case where there is no heat demand for cogeneration plant. To analyze the performance of the gasifier a model based on the thermodynamic equilibrium approach is used. Performance of the gas...

  5. Thermal plasma gasification of organic waste and biomass for fuel gas production

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    Patras: University of Patras Plasma Technology Lab, 2008. s. 3-3. ISBN N. [Biennial European Plasma Conference HTTP-10/10th./. 07.07.2008-11.07.2008, Patras] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * biomass * gasification Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant

    International Nuclear Information System (INIS)

    Highlights: • A gas turbine combined cycle with gasified biomass external firing is analyzed. • Thermodynamic analysis considers first and second law analyses. • Thermal efficiency peaks at an optimum cycle pressure ratio (about 9). • Three sets of operating parameters are considered in a detailed case study. • One of three cases is more efficient from first or second law viewpoints. - Abstract: Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant, using energy and exergy approaches, are reported for a proposed configuration. Paper is taken to be the fuel and the thermodynamic performance and sizing of the plant is examined for various values of cycle pressure ratio (7–12), gas turbine inlet temperature (1200–1400 K) and heat exchanger cold-end temperature difference (245–275 K). Depending on the gas turbine inlet temperature and heat exchanger cold-end temperature difference, the system overall energy efficiency is observed to attain a maximum at a particular pressure ratio. For a given pressure ratio, the energy efficiency increases with gas turbine inlet temperature and decreases with heat exchanger cold-end temperature difference. An increase in pressure ratio results in a decrease of air flow rate and an increase of steam flow rates. These flow rates are attributable to the size of combined cycle plant. Raising the gas turbine inlet temperature reduces the air flow rate. The performance of a 1 MW plant is investigated with various operating parameters to obtain component ratings and biomass feed rates. Exergy efficiencies of cycle components are examined along with the major thermodynamic irreversibilities

  7. Large-scale production of Fischer-Tropsch diesel from biomass. Optimal gasification and gas cleaning systems

    International Nuclear Information System (INIS)

    The paper is presented in the form of copies of overhead sheets. The contents concern definitions, an overview of Integrated biomass gasification and Fischer Tropsch (FT) systems (state-of-the-art, gas cleaning and biosyngas production, experimental demonstration and conclusions), some aspects of large-scale systems (motivation, biomass import) and an outlook

  8. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-03-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  9. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-01-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  10. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  11. The influence of a Renewable Energy Feed in Tariff on the decision to produce biomass crops in Ireland

    International Nuclear Information System (INIS)

    A target of 30 per cent substitution of biomass for peat in the three peat fired power stations from 2015 has been set by the Irish Government. However, a knowledge gap exists on the extent to which Irish farmers would actually choose to grow these crops. An extension of the Renewable Energy Feed in Tariff (REFIT) scheme to include the co-firing of biomass with peat in electricity generation would enable the power stations to enter into Power Purchase Agreements (PPAs). These offer a fixed price to farmers for biomass feedstock. The decision to adopt biomass is represented as a constrained problem under certainty with the objective of profit maximisation. The results showed that the price offered under a PPA has a large effect on the economic returns from biomass crops. The price that the power stations previously estimated they would be able to pay, at €46 and €48 per tonne for willow and miscanthus, respectively, was used as a starting point. At this price the number of farmers who would choose to adopt biomass production is insufficient to achieve the national co-firing target. The target could be achieved at €70 and €65 per tonne for willow and miscanthus, respectively. - Highlights: ► We model the decision of Irish farmers to produce biomass crops. ► Current prices will lead to insufficient adoption to achieve policy targets. ► REFIT mechanism can succeed in meeting policy goals. ► Willow prices need to increase by approximately 27 per cent. ► Miscanthus prices need to increase by approximately 8 per cent.

  12. LCA METHODS TO COMPARE TREATMENT OPTIONS ON BIOMASS RESIDUES PRODUCED IN A PALM-OIL SYSTEM

    OpenAIRE

    Wiloso, Edi Iswanto; Bessou, Cécile; Heijungs, Reinout; De Snoo, Geert

    2014-01-01

    Palm oil systems generate large amounts of biomass residues. According to best agri-cultural practices, they are supposed to be returned back to plantation to maintain soil fertility. However, there are variations in practice. Differences in economic status and treatment options on biomass residues cause variations on the preference to perform LCA, leading to divergence in results that complicate interpretation. Difficulties found in comparing LCA results based on literature are not unusual. ...

  13. Modeling of a biomass high temperature steam gasifier integrated with assisted solar energy and a micro gas turbine

    International Nuclear Information System (INIS)

    Highlights: • A parametric study determines optimal system requirements for different feedstock. • The effect that biomass and moisture levels have on syngas composition is analyzed. • The novel system proposed optimizes heat recovery and water consumption. • Competitive solar efficiency is obtained at low steam to biomass ratios. • Overall CHP utilization factors range between 30% and 43%. - Abstract: A mathematical model that describes a trailer scale biomass steam gasification system coupled with a solar collector heat source and a micro gas turbine is reported in this paper. This combined heat and power system is set to a prescribed output of 20 kWe and several system conditions have been optimized in a parametric study to minimize resource consumption rates. Biomass feeding rates under optimal conditions were found to range between 23 and 63 kg/h depending on the types of feedstock and other parameters. Water consumption is reduced through a condensation and recirculation process that is part of a heat recovery unit. Also, solar energy requirements have been reduced by means of a recuperator that extracts heat out of the combustion products. The overall system performance has been evaluated by a utilization factor which was found to range between 30% and 43%. The system has been compared to a baseline case of an air breathing gasification system of a similar scale. It was found that steam gasification produces the syngas with heating values over twice as high as those obtained by air gasification. Steam gasification also led to a 25% and 50% reduction in emission rates of contaminants like CO2 and nitrogen oxides respectively relative to the baseline case

  14. Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongqiang [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China); College of Civil Engineering, Hunan University, Changsha 410082 (China); Hong, Hui; Jin, Hongguang; Cai, Ruixian [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China)

    2010-09-15

    Co-utilization of natural gas and biomass is a successful way to make efficient use of them for chemical production and power generation, for biomass is rich in carbon while natural gas is rich in hydrogen. The present paper therefore proposes a new polygeneration system taking biomass and natural gas as materials for methanol production and power generation. The new polygeneration system can achieve the optimal ratio of H{sub 2} to CO for methanol production by adjusting input ratio of natural gas to biomass without any energy penalty. Thus, the suggested system can eliminate CO to H{sub 2} shift process and CO{sub 2} remove process, which can avoid material and energy destruction; however, those processes are otherwise necessary in individual biomass to methanol plant. Moreover, the new system eliminates the CO{sub 2} addition process; however, the addition of CO{sub 2} is necessary in individual natural gas to methanol plant, which causes extra energy penalty. This system combined chemical production and power generation together, in order to achieve the cascaded utilization of chemical and physical energy of natural gas and biomass. In a further way, we investigated the key processes, to maximize the utilization of energy and improve system performance. A thermo-chemical process taking biomass and natural gas as co-feedstock is compared with the systems that only taking either biomass or natural gas as resource for methanol production and power generation. The evaluation and calculation of the systems are carried out by help of Aspen Plus process simulator. The evaluation results indicate that, the new polygeneration system can reduce materials input at least 9% compared with individual systems with same output. In a further way, the effect of natural gas to biomass feed ratio on system performance is also investigated. The research results show that, the proposed polygeneration system would be expected to realize efficient utilization of biomass and natural

  15. An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed

    International Nuclear Information System (INIS)

    Highlights: • Steam gasification via fluidized-bed is an interesting technology for hydrogen rich gas production. • The increase of steam/biomass ratio plays a major role on the hydrogen yield. • Hydrogen yield slightly increases as the biomass particle size decreases. • Tar yield strongly depends on reaction temperature. - Abstract: A research scale fluidized-bed reactor has been built and used to study the effect of steam/biomass ratio, time duration of experiments, reactor temperature, and biomass particle size on hydrogen yield and tar content in produced syngas during steam gasification of biomass. Batch experiments were performed with wood residue crushed into three different sizes of 0.5–1 mm (small), 1–2.5 mm (medium), and 2.5–5 mm (large), at reactor temperatures of 700, 800, and 900 °C. As the steam/biomass ratio increases, a decrease in formation of CO, accompanied by an increase in the hydrogen concentration, is observed. As expected, an increase in reactor temperature leads to a significant increase of H2 output and tar reforming. The obtained results show that hydrogen yield increases as time duration of the experiment is increased. It is also found that a reduction in particle diameter leads to a significant improvement in hydrogen yield

  16. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    OpenAIRE

    Sallevelt, Johan Leonard Hendrik Pieter

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to conventional fossil fuels. This can lead to various problems in case biofuels are directly used in existing installations. This thesis aims to provide better insight into the combustion of biomass-derived pyr...

  17. Method for online measurement of the CHON composition of raw gas from biomass gasifier

    International Nuclear Information System (INIS)

    Highlights: • Measuring the CHON composition of a raw gas by current methods is challenging. • An alternative method is to burn the raw gas before measuring the CHON composition. • The CHON contents of the raw gas can be accurately measured by the alternative method. • Measuring the CHON contents of the raw gas is now performed in a “one-step” analysis. • The new method is used to evaluate the operation of a dual fluidised bed gasifier. - Abstract: For unattended biomass gasification processes, rapid methods for monitoring the elemental composition (CHON) of the raw gas leaving the gasifier are needed. Conventional methods rely on time-consuming and costly laboratory procedures for analysing the condensable part of the raw gas. An alternative method, presented in this work, assesses the CHON composition of raw gas in a “one step” analysis without the need to previously characterise its chemical species composition. Our method is based on the quantitative conversion of a raw gas of complex chemical composition into CO2, H2O, and N2 in a small combustor. The levels of these simple species can be measured with high accuracy and good time resolution, and the CHON composition of the raw gas can be determined from the mass balance across the combustor. To evaluate this method, an online combustion facility was built and used to analyse the raw gas from the Chalmers 2-MWth dual fluidised bed steam gasifier. Test runs of the developed facility demonstrated complete combustion of the raw gas and the measurements were both fast and reliable. The new method used in combination with zero-dimensional reactor modelling provides valuable data for the operational monitoring of gasification processes, such as the degree of fuel conversion, composition of the char exiting the gasifier, oxygen transport by catalytic bed material, and amount of condensables in raw gas

  18. NEW STRAIN PRODUCERS OF BIOBUTANOL. III. METHODS OF INCREASED BUTANOL ACCUMULATION FROM BIOMASS OF SWITCHGRASS Panicum virgatum L.

    Directory of Open Access Journals (Sweden)

    Tigunova O. O.

    2015-08-01

    Full Text Available The aim of this work was to enlarge accumulation of butanol from switchgrass Panicum virgatum L. biomass using strains-producers obtained from grounds and silts of Kyiv lakes. The objects of the study were strains of C. acetobutylicum ІМВ B-7407 (IFBG C6H, Clostridium acetobutylicum IFBG C6H 5М and Clostridium tyrobutyricum IFBG C4B from the "Collections of microbial strains and lines of plants for food and agricultural biotechnology" of the Public Institution "Institute of Food Biotechnology and Genomics" of the National Academy of Sciences of Ukraine. Gas chromatography was used to determine the alcohol concentration at the stage of solvent synthesis. To determine the effect of butanol precursors during cultivation, butyric, lactic and acetic acids were used. Optimization of processing parameters, which was based on the needs of cultures, allowed us to increase the yield by 20 and 50% for the initial and mutant strain respectively. Using synthetic precursors (such as lactic, butyric and acetic acid during cultivation increased total concentration of butanol by 1.7 times. To optimize the process, a study was carried out using acetone- butyl grains. Using of acetone-butyl grains in concentrations up to 60% does not affect the synthesis of butanol by C. acetobutylicum IFBG C6H 5M. Increasing the concentration of grains led to decrease in accumulation of butanol. Almost double increase in accumulation of the target product (butanol was achieved using two-stage fermentation and/or precursors of synthesis. It was shown the possibility of using acetone-butyl grains in fermentation. As a result the mass fraction of the waste was reduced.

  19. Thermo-economic optimization of a Solid Oxide Fuel Cell – Gas turbine system fuelled with gasified lignocellulosic biomass

    International Nuclear Information System (INIS)

    Highlights: • Biomass gasification combined with SOFC–GT hybrid system was studied. • Syngas hot cleaning unit is used in order to improve the efficiency of the system. • Energy integration in order to recover the maximum heat available inside the process. • Multi-objective optimization maximizing the efficiency and minimizing the capital investment costs. - Abstract: Within the context of sustainable energy supply and CO2 emissions reduction a Solid Oxide Fuel Cell (SOFC) – gas turbine hybrid system, fuelled with gasified woody biomass is studied in detail for small and medium scale applications (100 kWth,BM and 8 MWth,BM of dry biomass input). The system consists of an air dryer unit, a gasifier, a hot cleaning section made of a particulate removal unit (cyclone and candle filter) and a two-stage tar removal unit, a SOFC and a gas turbine with optional CO2 capture. This modern technology has the advantage of using a renewable and CO2-neutral source and to be economically competitive at medium scales. The competitiveness of different process options is systematically compared by applying a coherent approach combining flowsheeting, energy integration and economic evaluation in a multi-objective optimization framework. This analysis reveals the importance of process integration maximizing the heat recovery and valorizing the waste heat, by cogeneration for example. The studied process options include direct and indirect circulating fluidized bed gasifier (using respectively oxygen or steam as gasification agent) and Viking gasifier, atmospheric or pressurized systems and optional pre-reforming in the hot gas cleaning. To close the thermal energy balance, a fraction of the produced syngas can be burnt. The energy integration results reveal that the steam production for the gasification and reforming are key parameters (S/B and S/C ratio) defining the process performance. A multi-objective optimization maximizing the efficiency and minimizing the capital

  20. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass-UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: matti.reinikainen@vtt.fi; Suominen, T. P. (Aabo Akademi, Turku (Finland), Teknisk Kemi och Reaktionsteknik), e-mail: timo.suominen@abo.fi; Linnekoski, J. (Aalto Univ., School of Science and Technology, Espoo (Finland), Lab. of Industrial Chemistry)

    2011-11-15

    The research was directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project were (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself financed also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprised experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project was steered by a wide industrial consortium and the research work was carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology was closely monitored in all subtopics as well as by participating in relevant IEA-tasks. More information on the project can be found on project webpage http://www.vtt.fi/proj/ucgfunda/ (orig.)

  1. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  2. Produced water discharges from gas/condensate platforms

    International Nuclear Information System (INIS)

    The Nederlandse Aardolie Maatschappij B.V. (NAM) is the largest gas producer in the Netherlands. The company operates a number of gas/condensate platforms on the Dutch continental shelf in the North Sea. From 8 of these platforms produced water is discharged directly into the sea. This paper reports on an extensive sampling, analysis and testing campaign that was carried out in 1989 to characterize physical, chemical and ecotoxicological properties of these streams. The total volume of water discharged from the NAM platforms was about 210,000 m3 in 1989. The average volume per platform was relatively small (about 70 m3 per day), certainly when compared to oil producing platforms. The total volume of oil discharged was about 160 x 103 kg, 50-70% thereof being present in the form of dispersed oil. The total volume of all organic substances, including polar compounds, was about 400 x 103 kg. The complex mixture of organic and inorganic components and their concentrations in the effluents indicate, with effluent EC/LC50 values between 1 and 420 ml/l, an acute toxic hazard to organisms directly exposed to the discharges. Acute toxic effects are, however, not expected beyond a distance of 50 m from the discharge point. A risk of sublethal effects cannot be excluded within distances of several hundred meters to a few kilometers from the discharge points. The dissolved organic components are most probably the prime cause of the acute toxicity, of which the volatile aromatic hydrocarbons are the most significant. These compounds were observed at concentrations of up to 480 mg/1. Relatively high concentrations of metals were observed in the effluents. However, these metals did not contribute significantly to the acute toxicity of the streams. This suggests that metals were not present in a bioavailable form

  3. Performance and emissions of a modified small engine operated on producer gas

    International Nuclear Information System (INIS)

    Highlights: • A small agricultural diesel engine was converted into a spark ignited engine. • The modified engine operated solely on producer gas at various loads and speeds. • It run successfully at high compression ratio, without knocking. • Improvement in efficiency and specific energy consumption at higher CR was evident. - Abstract: Existing agricultural biomass may be upgraded converted to a gaseous fuel via a downdraft gasifier for spark ignition engines. In this work, a 0.6 L, naturally aspirated single cylinder compression ignition engine was converted into a spark ignition engine and coupled to a 5 kW dynamometer. The conventional swirl combustion chamber was replaced by a cavity chamber. The effect of variable compression ratios between 9.7 and 17:1, and engine speeds between 1000 and 2000 rpm and loads between 20% and 100% of engine performance were investigated in terms of engine torque, power output, thermal efficiency, specific fuel consumption and emissions. It was found that the modified engine was able to operate well with producer gas at higher compression ratios than with gasoline. The brake thermal efficiency was lower than the original diesel engine at 11.3%. Maximum brake power was observed to be 3.17 kW, and the best BSFC of 0.74 kg/kWh was achieved. Maximum brake thermal efficiency of 23.9% was obtained. The smoke density of the engine was lower than the diesel engine, however, CO emission was higher with similar HC emission

  4. A stochastic analysis of the decision to produce biomass crops in Ireland

    International Nuclear Information System (INIS)

    There is increasing interest in biomass crops as an alternative farm activity. However farmer concerns about the production and financial risks associated with growing these crops may be impeding the actual rates of adoption. The uncertainty surrounding risky variables such as the costs of production, yield level, price per tonne and opportunity cost of land make it difficult to accurately calculate the returns to biomass crops. Their lengthy production lifespan may only serve to heighten the level of risk that affects key variables. A stochastic budgeting model is used to estimate distributions of returns from willow and miscanthus in Ireland. The opportunity cost of land is accounted for through the inclusion of the foregone returns from selected conventional agricultural activities. The impact on biomass returns of bioremediation is also examined. The Net Present Values (NPVs) of various biomass investment options are simulated to ascertain the full distribution of possible returns. The results of these simulations are then compared using their respective Cumulative Distribution Functions (CDFs) and the investments are ranked using Stochastic Efficiency with Respect to a Function (SERF). While the distributions of investment returns for miscanthus are wider than those of willow, implying greater risk, the distribution of willow returns is predominantly to the left of zero indicating that such an investment has an extremely high probability of generating a negative return. The results from the SERF analysis show that miscanthus generally has higher certainty equivalents (CEs), and therefore farmers would be more likely to invest in miscanthus rather than willow. -- Highlights: ► We develop a stochastic budgeting model to capture uncertainty in key variables. ► Farmers with higher levels of risk aversion would be unwilling to invest in biomass crops. ► Miscanthus has a greater probability of making a profit than willow. ► Bioremediation can help to offset

  5. Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris

    International Nuclear Information System (INIS)

    Cadmium uptake in Scots pine seedlings was mainly regulated by biomass production. - A factorial design was used to study direct effects of external biomass-producing factors such as light, temperature and photoperiod on cadmium (Cd) uptake and indirect effects, via change in biomass production in two ecotypes of Scots pine (Pinus silvestris). The aim was to find out if the external factors affect the Cd uptake directly or via change in biomass production, and if the effect differs between ecotypes. Seedlings were grown under 10 combinations of external factors, i.e. temperature (15 and 20 deg. C), light intensity (50 and 200 μmol photons m-2 s-1), photoperiod (18 h light/8 h darkness and continuous light) and external Cd concentration (totally 1.88 and 7.50 μmol). The treatment lasted for 18 days and Cd concentrations in roots and shoots were determined by AAS. The results showed that an increased biomass production increased the total Cd uptake but had a dilution effect on the Cd concentration, especially in the root tissues. The external factors tested did not have any direct effects on the Cd uptake, only in the case of Cd translocation to the shoot did the higher temperature show a direct increase, but only in the southern ecotype. The two ecotypes reacted differently in Cd uptake and translocation to the external factors studied. The relative Cd uptake increased with increasing photoperiod in the northern but not in the southern ecotype. The southern ecotype decreased the Cd concentration in the shoot with increased light intensity caused by a dilution effect due to extensive shoot growth of this ecotype. The conclusion is that the uptake in pine seedlings is mainly regulated via biomass production, and not directly by light and temperature and that resulting plant Cd contents to a certain extent depend on plant origin

  6. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  7. Biomass Gasification - Process analysis and dimensioning aspects for downdraft units and gas cleaning lines

    OpenAIRE

    Stoppiello, Giovanni

    2010-01-01

    In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipm...

  8. Energy and greenhouse gas balance of decentralized energy supply systems based on organic agricultural biomass

    OpenAIRE

    Kimming, Marie

    2011-01-01

    More and more farms apply organic production methods to reduce their environmental impact, but currently even organic farms are mainly using fossil fuels. Technologies available today or in the near future make it possible to produce heat, electricity and fuels from agricultural residues or woody biomass. The agricultural sector can thereby contribute to the fulfillment of climate goals and energy security without reducing the output of food products. The thesis describes and assesses possibl...

  9. Design and simulation of a small polygeneration plant cofiring biomass and natural gas in a dual combustion micro gas turbine (BIO_MGT)

    OpenAIRE

    Riccio, G.; Chiaramonti D.

    2009-01-01

    The operation and performances of an innovative small scale polygeneration system (BIO_MGT), which combines biomass and natural gas in a micro gas turbine, has been simulated in the present work by means of a thermodynamic matching analysis. The BIO_MGT unit matches an externally fired cycle with a commercial Micro Gas Turbine (MGT, 100 kWe). A significant share of the total energy input (w70%) is supplied by solid biomass: the remaining is provided by natural gas. The system i...

  10. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) and methane (CH4) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO2 emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors

  11. The Use of Aerosol Optical Depth in Estimating Trace Gas Emissions from Biomass Burning Plumes

    Science.gov (United States)

    Jones, N.; Paton-Walsh, C.; Wilson, S.; Meier, A.; Deutscher, N.; Griffith, D.; Murcray, F.

    2003-12-01

    We have observed significant correlations between aerosol optical depth (AOD) at 500 nm and column amounts of a number of biomass burning indicators (carbon monoxide, hydrogen cyanide, formaldehyde and ammonia) in bushfire smoke plumes over SE Australia during the 2001/2002 and 2002/2003 fire seasons from remote sensing measurements. The Department of Chemistry, University of Wollongong, operates a high resolution Fourier Transform Spectrometer (FTS), in the city of Wollongong, approximately 80 km south of Sydney. During the recent bushfires we collected over 1500 solar FTIR spectra directly through the smoke over Wollongong. The total column amounts of the biomass burning indicators were calculated using the profile retrieval software package SFIT2. Using the same solar beam, a small grating spectrometer equipped with a 2048 pixel CCD detector array, was used to calculate simultaneous aerosol optical depths. This dataset is therefore unique in its temporal sampling, location to active fires, and range of simultaneously measured constituents. There are several important applications of the AOD to gas column correlation. The estimation of global emissions from biomass burning currently has very large associated uncertainties. The use of visible radiances measured by satellites, and hence AOD, could significantly reduce these uncertainties by giving a direct estimate of global emissions of gases from biomass burning through application of the AOD to gas correlation. On a more local level, satellite-derived aerosol optical depth maps could be inverted to infer approximate concentration levels of smoke-related pollutants at the ground and in the lower troposphere, and thus can be used to determine the nature of any significant health impacts.

  12. The opportunities for woody biomass fuels in New Zealand produced in association with land disposal of effluent

    International Nuclear Information System (INIS)

    An assessment of the future New Zealand biomass resource has shown exotic forest arisings could supply 970 GWh/year by the year 2002; wood processing residues 280 GWh/year; and fuelwood plantations 2,060 GWh/year with potential to rise to 10,000 GWh/year by 2012. Currently annual electricity demand is around 30,000 GWh 70% of which is generated by hydro power. A further 25% stems from natural gas, a resource with estimated reserves of only approximately 14 years. This paper describes how part replacement of gas by biomass could be a feasible proposition for the future. Life cycle cost analyses showed electricity could be generated from arisings for 4.8--6 c/kWh; from residues for 2.4--4.8 c/kWh; and from plantations for 4.8--7.2 c/kWh. For comparison the current retail electricity price is around 4--5.5 c/kWh and estimates for wind power generation range from 5--10 c/kWh. Future hydro-power schemes will generate power between 4--9 c/kWh depending on site suitability. The link between land disposal of effluent and short rotation coppice production can reduce the biomass costs. A meatworks processing 1.6 million sheep annually has planted 90 ha in trees for flood irrigation of effluent and biomass fuel production for use on site. Similar schemes linking sewage disposal with wood-fired power generation are under evaluation

  13. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  14. Influence of carbon-bearing raw material on microfungus Blakeslea Trispora biomass producing

    Directory of Open Access Journals (Sweden)

    L. Myronenko

    2015-05-01

    Full Text Available Introduction. This paper investigates influence of hydrated fullerenes on degree of accumulation bioactive substances of microfungus Blakeslea trispora. Materials and methods. In this research effort detection of fatty-acid composition in amino acids, carotenoids and sterols biomass by means of using methods of high-performance liquid chromatography, adsorption and disjunctive chromatography in thin-layer sorbent and spectrophotometric; gravimetric method; method of direct spectrophotometration in benzene took place. Results and discussion. It has been induced that application of hydrated fullerenes in microfungus Blakeslea trispora nutrient medium promotes increasing accumulation in biomass quantity of carotene on 32,3 %; asparaginic, glutamic acids and leucine. Reproportion carbon to nitrogen by means of adding to microfungus Blakeslea trispora nutrient culture medium hydrated fullerenes did not influence on the biomass amino acid structure any. Obtained data of fatty-acid composition in microfungus Blakeslea trispora lipoid fraction indicate about significant predominance unsaturated fatty acids and, as a result of this, we have advance of use microfungus Blakeslea trispora biomass as a source of biologically active substances for establishing a new kind of prophylactic action goods.

  15. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  16. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    Science.gov (United States)

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  17. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M. H.

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  18. Thermal plasma generated in gas-water torch and its utilization for gasification of biomass

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Hrabovský, Milan; Konrád, Miloš; Mašláni, Alan

    Bratislava, Slovensko : Comenius University Press, 2007 - (Matúška, J.; Matejčík, Š.; Skalný, J.). s. 197-198 ISBN 978-80-89186-13-6. [Symposium on Application of Plasma Processes/16th./. 20.1.2007-25.1.2007, Podbanske] R&D Projects: GA ČR(CZ) 202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Source of funding: V - iné verejné zdroje Keywords : Thermal plasma jet * gasification * biomass Subject RIV: BL - Plasma and Gas Discharge Physics http:// neon .dpp.fmph.uniba.sk/sapp/

  19. Gazprom vs. other Russian gas producers: The evolution of the Russian gas sector

    International Nuclear Information System (INIS)

    The non-Gazprom gas producers (NGPs) doubled their share of the Russian domestic gas market between 2000 and 2010 and have continued growing since then. For several years especially Novatek expanded. More recently, Rosneft has emerged as a key player, not least through its purchase of TNK-BP. This article begins with an overview of the companies in the Russian gas sector, their resource bases and capacities, and subsequently examines whether differences in field development costs and export market access may make it rational for Gazprom to continue ceding market share to the NGPs. With rising costs of Gazprom's queue of greenfield developments, any delays in Gazprom's investment program may be compensated through increased NGP production. The article argues that the NGPs are ready to fill the gap, may be allowed to do so and are already increasing their market share in an increasingly competitive market. The stage may now be set for a continued gradual transformation of the Russian gas market, in which the interests of Gazprom and the NGPs may be complementary or may be pitted against each other, but those of the Russian Federation are in any case likely to be better fulfilled than in the past. - Highlights: • Other Russian gas producers, especially Novatek and Rosneft, are taking market shares from Gazprom. • Gazprom has a monopoly on exports and has had a de facto monopoly on the domestic pipeline grid through its control over trunk pipelines. • Gazprom's greenfield projects are more expensive than those of other producers. • Gazprom's loss of market shares to other producers in the domestic market may actually be in Gazprom's interest

  20. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, Johan Leonard Hendrik Pieter

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to conventiona

  1. Single-reactor process for producing liquid-phase organic compounds from biomass

    Science.gov (United States)

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  2. Single-reactor process for producing liquid-phase organic compounds from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  3. Interfacial Characterisation of Gas-Liquid Interfaces Related to Gas Flotation in Offshore Produced Water Treatment - Dynamic Adsorption of Heteroatoms

    OpenAIRE

    Johnsen, Anja

    2014-01-01

    Produced water is the largest waste stream produced in the recovery of oil and gas. The processing of produced water occurs in several stages including gas flotation. Gas flotation is separation by gravity and the effectiveness of gas flotation is dependant on the size of the gas bubble, the distribution of bubbles and the degree of dispersion. The concentration of oil and the chemical content of the produced water play a role, a long with the pH, viscosity and the interfacial properties betw...

  4. Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris.

    Science.gov (United States)

    Ekvall, Lars; Greger, Maria

    2003-01-01

    A factorial design was used to study direct effects of external biomass-producing factors such as light, temperature and photoperiod on cadmium (Cd) uptake and indirect effects, via change in biomass production in two ecotypes of Scots pine (Pinus silvestris). The aim was to find out if the external factors affect the Cd uptake directly or via change in biomass production, and if the effect differs between ecotypes. Seedlings were grown under 10 combinations of external factors, i.e. temperature (15 and 20 degrees C), light intensity (50 and 200 micromol photons m(-2) S(-1)), photoperiod (18 h light/8 h darkness and continuous light) and external Cd concentration (totally 1.88 and 7.50 micromol). The treatment lasted for 18 days and Cd concentrations in roots and shoots were determined by AAS. The results showed that an increased biomass production increased the total Cd uptake but had a dilution effect on the Cd concentration, especially in the root tissues. The external factors tested did not have any direct effects on the Cd untake, only in the case of Cd translocation to the shoot did the higher temperature show a direct increase, but only in the southern ecotype. The two ecotypes reacted differently in Cd uptake and translocation to the external factors studied. The relative Cd uptake creased with increasing photoperiod in the northern but not in the southern ecotype. The southern ecotype decreased the Cd concentration in the shoot with increased light intensity caused by a dilution effect due to extensive shoot growth of this ecotype. The conclusion is that the uptake in pine seedlings is mainly regulated via biomass production, and not directly by light and temperature and that resulting plant Cd contents to a certain extent depend on plant origin. PMID:12685768

  5. Algal wastewater treatment and biomass producing potential: nutrient removal efficiency and cell physiological responses

    OpenAIRE

    Samorì, Giulia

    2012-01-01

    Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomas...

  6. Microgeneration of electricity with producer gas in dual fuel mode operation; Microgeracao de eletricidade com gas de gaseificacao num motor gerador dual

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo J.; Souza, Samuel N.M. de; Souza, Abel A.; Secco, Deonir [Programa de Pos Graduacao em Energia na Agricultura - UNIOESTE, Cascavel, PR (Brazil)], e-mail: samuel.souza@unioeste.br; Ricieri, Reinaldo P. [Engenharia Agricola - UNIOESTE, Cascavel, PR (Brazil)

    2011-09-15

    Among the alternatives to meet the increasing of world demand for energy, the use of biomass as energy source is one of the most promising as it contributes to reducing emissions of carbon dioxide in the atmosphere. Gasification is a technological process of biomass energy production of a gaseous bio fuel. The fuel gas has a low calorific value that can be used in Diesel engine in dual mode for power generation in isolated communities. This study aimed to evaluate the reduction in the consumption of oil Diesel an engine generator, using gas from gasification of wood. The engine generator brand used was a BRANCO, with direct injection power of 7.36 k W (10 HP) coupled to an electric generator 5.5 k W. Diesel oil mixed with intake air was injected, as the oil was injected via an injector of the engine (dual mode). The fuel gas was produced in a down draft gasifier. The engine generator was put on load system from 0.5 k W to 3.5 k W through a set of electrical resistances. Diesel oil consumption was measured with a precision scale. It was concluded that the engine converted to dual mode when using the gas for the gasification of wood decreased Diesel consumption by up to 57%. (author)

  7. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.

    Science.gov (United States)

    Wang, Baixin; Rezenom, Yohannes H; Cho, Kun-Ching; Tran, Janessa L; Lee, Do Gyun; Russell, David H; Gill, Jason J; Young, Ryland; Chu, Kung-Hui

    2014-06-01

    Lignocellulosic biomass has been recognized as a promising feedstock for the fermentative production of biofuel. However, the pretreatment of lignocellulose generates a number of by-products, such as furfural, 5-hydroxylmethyl furfural (5-HMF), vanillin, vanillic acids and trans-p-coumaric acid (TPCA), which are known to inhibit microbial growth. This research explores the ability of Rhodococcus opacus PD630 to use lignocellulosic biomass for production of triacylglycerols (TAGs), a common lipid raw material for biodiesel production. This study reports that R. opacus PD630 can grow well in R2A broth in the presence of these model inhibitory compounds while accumulating TAGs. Furthermore, strain PD630 can use TPCA, vanillic acid, and vanillin as carbon sources, but can only use TPCA and vanillic acid for TAG accumulation. Strain PD630 can also grow rapidly on the hydrolysates of corn stover, sorghum, and grass to accumulate TAGs, suggesting that strain PD630 is well-suited for bacterial lipid production from lignocellulosic biomass. PMID:24698742

  8. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation.

    Science.gov (United States)

    Zhang, Yi; He, Meilin; Zou, Shanmei; Fei, Cong; Yan, Yongquan; Zheng, Shiyan; Rajper, Aftab Ahmed; Wang, Changhai

    2016-05-01

    To improve the biomass yield and lipid productivity, two desert microalgae, Desmodesmus sp. S81 and G41 were induced mutagenesis by Ethylmethane sulfonate (EMS), and obtained two potential mutants, Desmodesmus sp. S5 and G3 from the mutagenic clones for their greatly promoted biomass and lipid production. The results showed that the biomass yield, lipid content and lipid productivity of the mutant strains S5 and G3 were 778.10mg·L(-1), 48.41% and 19.83mg·L(-1)·d(-1), 739.52mg·L(-1), 46.01%, and 17.92mg·L(-1)·d(-1), respectively, which presented the increment of 45.50%, 8.00% and 74.24%, 20.67%, 10.35% and 55.77% than those of S81 and G41. Comparing with the wild strains, the mutants showed reduced PUFAs and glycol lipids, elevated MUFAs and neutral lipids contents, which were appropriate for biodiesel production. PMID:26894567

  9. Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal.

    Science.gov (United States)

    Kim, Hyun-Woo; Cheng, Jing; Rittmann, Bruce E

    2016-03-01

    An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery. PMID:26771923

  10. Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass

    NARCIS (Netherlands)

    de Wild, P. J.; den Uil, H.; Reith, J. H.; Kiel, J. H. A.; Heeres, H. J.

    2009-01-01

    Pyrolysis of lignocellulosic biomass leads to an array Of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose. ce

  11. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO2 eq/MJ, relative to 5654 L/ha at 52.3 g CO2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  12. Biomass for the non-food industry, produced by the Cooperative of Vomano (Abruzzo Region): effects on the environment, social and economic

    International Nuclear Information System (INIS)

    The Cooperative of Vomano, which is taking part in the Integrated Biomass project, has studied the possibility of producing agricultural/forestry biomass destined for industrial conversion. The social and economic impacts of this production, and the positive results are examined. (Author)

  13. Fuel gas from biomass for power and heat generation. Results of tests at the test gasification plant at Technical University Dresden; Brenngase aus Biomasse fuer die Strom- und Waermeerzeugung. Ergebnisse der Untersuchungen am Vergasungsversuchsstand der TU Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Boehning, D.; Beckmann, M. [Technische Universitaet Dresden (Germany). Institut fuer Energietechnik

    2009-07-01

    The gasification of biomass into smaller decentralized plants with a thermal output up to 500 kW has been a subject of variable intensity in research and development. The current development state of the process is however still insufficient regardless of the process, such that a reliable and economic operation of the plants can be guaranteed. For the use of the produced fuel in the gas-engine, high standards are necessary for its quality. The article focusses on the reduction of tar content in fuel gas via catalytic partial oxidation. It describes the theoretical analysis of fundamentals with results and presents experimental tests at the gasification plant and the obtained results. Tests have been realized at the 75 kW{sub th} fixed bed gasifier at the catalytic partial oxidation (1{sup st} Function unit) and at the cooling of gas (2{sup nd} Function unit). The construction and material of the catalyst are essential parameters as well as the apply amount of oxygen, the position of supplying and mixing. By the use of a gas cooling in a stationary fluidized bed is it possible to decrease the tar content in the fuel gas, via condensation on bed material (charcoal). The gas cooling is installed behind the catalyst. The outcome of the combination of both gas treatment-function-units is a further monovariant for optimization. The second unit can also be considered as a ''safety filter''. (orig.)

  14. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  15. Israel-New natural gas producer in the Mediterranean

    International Nuclear Information System (INIS)

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: → In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. → They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. → The gas discoveries have created an opportunity to fundamentally change the country's energy policies. → Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. → Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  16. Israel-New natural gas producer in the Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, Brenda, E-mail: bshaffer@univ.haifa.ac.il [School of Political Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel)

    2011-09-15

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: > In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. > They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. > The gas discoveries have created an opportunity to fundamentally change the country's energy policies. > Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. > Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  17. Green House Gas Control and Agricultural Biomass for Sustainable Animal Agriculture in Developing Countries

    Directory of Open Access Journals (Sweden)

    J Takahashi

    2010-06-01

    Full Text Available Important green house gases (GHG attributed to animal agriculture are methane (CH4 and nitrous oxide (N2O, though carbon dioxide (CO2 contributes almost half of total greenhouse effect. Rumen CH4 production in an enteric fermentation can be accounted as the biggest anthropogenic source. Some of prebiotics and probiotics have been innovated to mitigate rumen CH4 emission. The possible use of agricultural biomass consisted of non-edible parts of crop plants such as cellulose and hemi cellulose and animal wastes was proposed as a renewable energy and nitrogen sources. The ammonia stripping from digested slurry of animal manure in biogas plant applied three options of nitrogen recycling to mitigate nitrous oxide emission. In the first option of the ammonia stripping, the effect of ammonolysis on feed value of cellulose biomass was evaluated on digestibility, energy metabolism and protein utilization. Saccharification of the NH3 treated cellulose biomass was confirmed in strictly anaerobic incubation with rumen cellulolytic bacteria, Ruminoccous flavefaciens, to produce bio-ethanol as the second option of ammonia stripping. In an attempt of NH3 fuel cell, the reformed hydrogen from the NH3 stripped from 20 liter of digested slurry in thermophilic biogas plant could generate 0.12 W electricity with proton exchange membrane fuel cell (PEM as the third option.

  18. Overall process considerations for using dilute acid cellulose hydrolysis technology to produce ethanol from biomass

    International Nuclear Information System (INIS)

    Recent advances in reactors, designed for the dilute acid thermochemical treatment of biomass, have resulted in the development of process alternatives in which both cellulose and hemicellulose are hydrolyzed to soluble sugars in high yields. The optimal extent of cellulose hydrolysis will depend on both the performance and economics of the thermochemical treatment operation, and on subsequent unit operations in the bioethanol production process. Examples of subsequent unit operation interactions include the extent to which cellulase enzymes are used to hydrolyze any remaining cellulose, kinetics and conditions of a largely soluble mixed sugar cofermentation, and the extent to which removal of compounds that inhabit fermenting microorganisms is required. In addition, a number of process operation and economic considerations affect the ultimate economic viability of this type of biomass hydrolysis process. These considerations include reactor design issues to accommodate the kinetic parameters of the various hydrolysis and sugar degradation reactions, liquid volume requirements to achieve acceptable sugar yields, sugar concentrations that result from such a process and their impact on subsequent fermentation volumes and ethanol recovery operations, potential co-product opportunities that result from solubilized lignin, and process steam requirements. Several potential whole-process configurations are presented and key process and economic issues for each are discussed. (author)

  19. Biotechnology for producing fuels and chemicals from biomass: recommendations for R and D. Volume I. Synopsis and executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R

    1979-12-01

    Areas of research and development judged to be crucial for establishing a biotechnology of biomass processing are identified. Two general avenues are recommended for R and D: (1) in the near term, revival of the older fermentation technology and improvement of processing efficiencies; and (2) in the longer term, the development of novel biotechnological processes, such as for the conversion of lignocellulosic biomass to fuels and chemicals. Recommended R and D ranges from work in moleular genetics to biochemical engineering aspects of plant design. It is recommended that the R and D strategy be designed as an integration of three disciplines: biochemical engineering, microbial genetics, and biochemistry. Applcations of gene-transfer methodology and developments in continuous fermentation should be pursued. Currently, economic incentive for the use of biological conversion processes for producing fuels and chemical feedstocks from biomass is marginal. But as the imported fraction of US oil supply grows and hydrocarbon costs mount, the market is beginning to motivate a quest for substitutes. The commercial potential for biotechnology for establishing a renewable resources chemicals industry appears similar to the potential of the computer and microelectronics field several decades ago.

  20. Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers

    International Nuclear Information System (INIS)

    An active condensation system for the heat recovery of biomass boilers is evaluated. The active condensation system utilizes the flue gas enthalpy exiting the boiler by combining a quench and a compression heat pump. The system is modelled by mass and energy balances. This study evaluates the operating costs, primary energy efficiency and greenhouse gas emissions on an Austrian data basis for four test cases. Two pellet boilers (10 kW and 100 kW) and two wood chip boilers (100 kW and 10 MW) are considered. The economic analysis shows a decrease in operating costs between 2% and 13%. Meanwhile the primary energy efficiency is increased by 3–21%. The greenhouse gas emissions in CO2 equivalents are calculated to 15.3–27.9 kg MWh−1 based on an Austrian electricity mix. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2–12 years for the 10 MW wood chip test case. - Highlights: • A heat pump was studied to recover both sensible and latent heat of the flue gas. • The economic analysis shows a decrease in operating costs between 2% and 13%. • For a 10 MW wood chip boiler a payback time of 2–12 years was estimated

  1. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  2. Thermochemical gas production from biomass - pyrolysis and gasification. Papers of a seminar organized by the Energy Research Project Manager in cooperation with the German Society for Technical Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gehrmann, J. (ed.)

    1981-11-01

    A collection of papers are presented which were given on November 12 and 13, 1981 at the Juelich Nuclear Research Institute. The topics include pyrolysis and vaporization from biomass, gas fuel production from biomass, energy production from biomass, and various concepts on energy supply and systems. Papers are accompanied by diagrams and illustrations.

  3. Common carriage for natural gas: the producers' perspective

    International Nuclear Information System (INIS)

    The publication discusses the natural gas market of Western Europe. The aim of the publication is to present an analytic approach towards assessing the future gas supplies and prices as a consequence of the outcome of a battle for market shares between Norway, USSR and Algeria as the outside suppliers to the Continent. The battle is depicted here in game theoretical terms by means of a dynamic oligopoly model dubbed DYNOPOLY. Topics being discussed as a basis for the approach are as follow: Current trends in the expansion of the gas trade in Western Europe; the common carrier principle in European gas trade; EC energy policy after 1992; simulation of gas trade in a deregulated EC market; a dynamic oligopoly model; Norwegian development options and cost; Troll; Haltenbanken; transport projects and costs; other North Sea gas; Soviet development options and costs; Algerian development options and costs; demand; simulation results; carbon taxes; sensitivity tests. 13 refs., 6 figs., 15 tabs

  4. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    Science.gov (United States)

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production. PMID:27003793

  5. Economic evaluation of externally fired gas turbine cycles for small-scale biomass cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    In this conceptual study, externally fired gas turbine (EFGT) cycles in combination with a biomass-fueled, atmospheric circulating fluidized bed (CFB) furnace are investigated for small scale heat and power production ({approx} 8 MW fuel input). Three cycle configurations are considered: closed cycle, with nitrogen, helium, and a helium/carbon dioxide mixture as working fluids; open cycle operating in parallel to the CFB system; and open cycle with a series connection to the CFB system. Intercooling, postcooling, and recuperation are employed with the goal of maximizing efficiency. Aside from a thermodynamic performance analysis, the study includes an economic analysis of both the closed and open externally fired gas turbine configurations, and comparisons are made with existing and emerging alternatives for small-scale biomass cogeneration. Simulation results show that thermodynamic performance varies slightly between the different configurations and working fluids, with electrical efficiencies of 31-38% (LHV) and total efficiency of 85-106% (LHV). The economic evaluation shows that the turbomachinery and the CFB furnace dominate the total plant cost, with each contributing about 1/3 of the total installed equipment cost. The specific capital cost for installation in Sweden in 1998 currency is calculated as 26-31 kSEK/kW{sub e} which is equivalent to 3 200-3 900 USD/kW{sub e} or 2 700-3 300 EUR/kW{sub e} .The cost of electricity, COE, is estimated to 590-670 SEK/MWh{sub e} (equivalent to 73-84 USD/MWh{sub e} or 62-71 EUR/MWh{sub e}) for 4 000 full load hours per year in a cogeneration application. Comparing the economic results for the externally fired gas turbine cycles in a slightly larger scale (40-50 MW{sub f}) to the economics of conventional biomass fired steam turbine cycles shows that the cost of electricity for the two plant configurations are roughly the same with a COE of 300-350 SEK/MWh{sub e}. It is believed that the economic performance of the EFGT

  6. Particulate and trace gas emissions from large biomass fires in North America

    International Nuclear Information System (INIS)

    In this chapter the authors describe the results of airborne studies of smokes from 17 biomass fuel fires, including 14 prescribed fires and 3 wildfires, burned primarily in the temperature zone of North America between 34 degree and 49 degree N latitude. The prescribed fires were in forested lands and logging debris and varied in areas burned from 10 to 700 hectares (ha) (over a few hours). One of the wildfires ultimately consumed 20,000 h a and burned over a period of weeks. The larger fires produced towering columns of smoke and capping water clouds. As an indication of scale, the prescribed fires were visible only as small features in meteorological satellite imagery, but one of the wildfires studied produced a persistent, visible plume more than 1,000 kilometers (km) long. The studies have focused on factors that could impact global climate through alteration of the earth's radiation balance. These include emissions of trace gases and smoke particles from biomass burning, the optical properties of the smoke, and the interaction of the smoke particles with clouds

  7. Producer observations on the effects of sour gas in cattle

    International Nuclear Information System (INIS)

    The effects of poisonous substances emitted from uncontrolled sour gas wells on cattle are described, from the perspective of a farmer whose cattle were exposed to such emissions. Two events in the Drayton Valley area led to exposure of cattle to toxins: a sour gas well blowout in 1977 (Amoco 7-10 well) occurring 40 km from the farm, and the Lodgepole blowout (Amoco Dome Brazeau River) in 1982 that occurred 38 km from the farm. Cattle were exposed to raw sour gas and sour gas well exhaust for 67 days during the Lodgepole blowout. A marked effect on the weaning weight and feeding performance of calves in years after the blowout was observed. Exposure of replacement heifers to sour gas well blowout emissions greatly increased the cull rate of the animals. 5 figs., 3 tabs

  8. Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production

    International Nuclear Information System (INIS)

    Highlights: • Cold gas efficiency does not take system energy into account, another factor is proposed. • Recycled CO2 improves efficiency and CO2 per syngas production at some operating conditions. • Optimum CO2/C is around 0.1–0.2 for pressurized and low temperature gasification. - Abstract: Thermodynamic analysis of biomass gasification with recycled CO2 was investigated in this work to determine optimum operation mode and CO2/C ratio. Gasification System Efficiency (GSE), which takes into account the energy demand in the system, and CO2 emission per syngas production (CO2/Sg) were calculated to evaluate the performance of the gasification system. Considering the production of syngas at a H2/CO ratio of 1.5, it was revealed that indirect gasification using biomass as fuel is the most efficient and environmental-friendly operation mode. The recycled CO2 proves to increase syngas production. However, when considering the additional energy demand required for processing the CO2 recycle, it was demonstrated that there are only some ranges of operating conditions (high pressure and low temperature) which offer the benefit of the CO2 recycle. The optimum CO2/C was reported to be around 0.1–0.2 for pressurized and low temperature gasification

  9. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  10. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains...

  11. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  12. Exploring the Perspectives of Alternative Fuels Production. Towards alternative fuels with zero, or negative greenhouse gas emissions, considering coal, biomass and carbon capture and storage

    International Nuclear Information System (INIS)

    In this report it is shown that future improvements in the production process of Fischer-Tropsch fuels can reduce costs and produce CO2 neutral gasoline and diesel. Major benefits lie in the improvement of the overall temperature profile of the plant at higher temperatures and carbon capture and storage. Based on literature studies, it was found that future technologies can operate at higher temperatures, and thus a better integration of heating and cooling. It was found that the future model of a CBTL (Coal and Biomass To Liquids) plant can produce liquids at a break-even oil price (BEOP) of 58.60 USD/barrel at 100% coal, with similar greenhouse gas emissions compared to liquids produced by conventional means today. However, once biomass is introduced at a ratio of 33% - 67% biomass, a CBTL plant becomes neutral in terms of GHG emissions. The BEOP for this neutral scenario is 69.60 USD/barrel. Looking at the 100% biomass scenario, the BEOP becomes 82.77 USD/barrel. The greenhouse gas emissions at this point are negative, meaning that more CO2 is captured during the process than is needed to grow biomass. This in effect makes a CBTL plant a carbon sink. By introducing future technologies and improvements, such as membrane technology for CCS (Carbon dioxide Capture and Storage), higher FTS (Fischer-Tropsch Synthesis) catalyst selectivities and an overall better temperature profile, the BEOP for the 100% coal scenario drops from 58.60 to 45.27 USD/barrel. The BEOP for the neutral scenario drops from 69.60 to 57.99 USD/barrel. The BEOP for the 100% biomass scenario drops from 82.77 to 69.07 USD/barrel. For the neutral scenario, the BEOP drops from 69.60 to 57.99 USD/barrel. If one assumes that a BEOP of 60 USD/barrel is economically reasonable, one can calculate the level of a carbon tax, once a carbon tax regime is imposed. For SOTA (state-of-the-art) 100% coal, FS (Future Scenario) 100%, FS 50% coal and FS 33% coal, there is no need for a carbon tax to reach 60 USD

  13. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for both the 2015 SOT (Hartley et al., 2015; ANL, 2016; DOE, 2016) and the 2017 design case for feedstock logistics (INL, 2014) and for both the 2015 SOT (Tan et al., 2015a) and the 2022 target case for HOG production via IDL (Tan et al., 2015b). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. In the SCSA, the 2015 SOT case for the conversion process, as modeled in Tan et al. (2015b), uses the 2015 SOT feedstock blend of pulpwood, wood residue, and construction and demolition waste (C&D). Moreover, the 2022 design case for the conversion process, as described in Tan et al. (2015a), uses the 2017 design case blend of pulpwood, wood residue, switchgrass, and C&D. The performance characteristics of this blend are consistent with those of a single woody feedstock (e.g., pine or poplar). We also examined the influence of using a single feedstock type on SCSA results for the design case. These single feedstock scenarios could be viewed as bounding SCSA results given that the different components of the feedstock blend have varying energy and material demands for production and logistics.

  14. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J. [VTT Energy, Espoo (Finland). Energy Production Technologies] [and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  15. Central Africa Energy: Utilizing NASA Earth Observations to Explore Flared Gas as an Energy Source Alternative to Biomass in Central Africa

    Science.gov (United States)

    Jones, Amber; White, Charles; Castillo, Christopher; Hitimana, Emmanuel; Nguyen, Kenny; Mishra, Shikher; Clark, Walt

    2014-01-01

    Much of Central Africa's economy is centered on oil production. Oil deposits lie below vast amounts of compressed natural gas. The latter is often flared off during oil extraction due to a lack of the infrastructure needed to utilize it for productive energy generation. Though gas flaring is discouraged by many due to its contributions to greenhouse emissions, it represents a waste process and is rarely tracked or recorded in this region. In contrast to this energy waste, roughly 80% of Africa's population lacks access to electricity and in turn uses biomass such as wood for heat and light. In addition to the dangers incurred from collecting and using biomass, the practice commonly leads to ecological change through the acquisition of wood from forests surrounding urban areas. The objective of this project was to gain insight on domestic energy usage in Central Africa, specifically Angola, Gabon, and the Republic of Congo. This was done through an analysis of deforestation, an estimation of gas flared, and a suitability study for the infrastructure needed to realize the natural gas resources. The energy from potential natural gas production was compared to the energy equivalent of the biomass being harvested. A site suitability study for natural gas pipeline routes from flare sites to populous locations was conducted to assess the feasibility of utilizing natural gas for domestic energy needs. Analyses and results were shared with project partners, as well as this project's open source approach to assessing the energy sector. Ultimately, Africa's growth demands energy for its people, and natural gas is already being produced by the flourishing petroleum industry in numerous African countries. By utilizing this gas, Africa could reduce flaring, recuperate the financial and environmental loss that flaring accounts for, and unlock a plentiful domestic energy source for its people. II. Introduction Background Africa is home to numerous burgeoning economies; a

  16. Biomass shock pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  17. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  18. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  19. The use of flue gas for the growth of microalgal biomass

    International Nuclear Information System (INIS)

    Capture and utilization of carbon dioxide (CO2) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of ∼2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing COx mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process

  20. The use of flue gas for the growth of microalgal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-11-01

    Capture and utilization of carbon dioxide (CO{sub 2}) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of {similar_to}2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO{sub x} mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process.

  1. Composition of Secondary Organic Aerosols Produced by Photo-Oxidation of Biomass Burning Emissions in a Smog Chamber

    Science.gov (United States)

    Desyaterik, Y.; Sullivan, A.; Hennigan, C. J.; Robinson, A. L.; Collett, J. L.

    2009-12-01

    Knowledge of the chemical composition of atmospheric organic aerosols (OA) is essential for accurate representation of OA in air quality and climate models. Both the sources of OA and their properties and effects remain poorly understood. In particular, we still know relatively little about the atmospheric formation of secondary organic aerosols (SOA). There is growing interest in the impact of biomass burning emissions on air quality, human health, and radiative forcing. Through a series of experiments, we are working to quantify changes in the chemical composition of wood smoke particles as a result of photochemical aging under well-controlled laboratory conditions. One specific objective of this study is to identify markers for biomass burning SOA and test whether these markers can be used in atmospheric samples to quantify SOA formation from aging of biomass burning emissions. We analyzed SOA generated in a smog chamber by photooxidation of smoke produced by burning oak wood. In order to initiate photochemistry, the chamber was irradiated with UV light. Aqueous extracts of collected aerosol samples were analyzed with Electrospray Ionization Time-of-Flight Mass Spectrometry. The high mass accuracy of these measurements reduces ambiguity in the assignment of elemental compositions for observed ions. Analysis has shown that primary oak smoke aerosol includes products of the thermal decomposition of cellulose (levoglucosan, cyclotene etc.) and lignin (guaiacol and syringol derivatives, mostly aldehydes and alcohols). After 2 hours of aging at typical summertime hydroxyl radical concentrations, the aerosol mass increased 2.5 fold due to the production of secondary organic aerosol. Mass spectra of the secondary organic aerosol formed are dominated by organic nitrates (nitrophenol, nitrocresol, nitrocatechol, and nitroguaiacol) and aromatic acids (benzoic acid, mono and di-hydroxybenzoic acid). Both nitrates and acids most likely are formed due to oxidation of the

  2. Mechanical and Physical Properties Ofmedium Density Fiberboard Produce from Renewable Biomass of Agricultural Fiber

    Directory of Open Access Journals (Sweden)

    Yuliati Indrayani

    2013-01-01

    Full Text Available The development of Medium density fiberboard (MDF made from renewable biomass of pineapple (Ananas comosus leaf fiber and their suitability as a construction material has been investigated. Two different types of board with a target density of 0.8 gr/cm3 were manufactured. The board was prepared in three layers of about 1:1:1 weight ratio in unidirectional and cross-oriented board using low molecular weight (LM PF resin type PL-3725 and high molecular weight (HM PF resin type PL-2818 for impregnation and adhesive purposes. For comparison, boards with the same structure were prepared using high molecular weight PF resin only. The mechanical properties of the boards have been examined as well as their physical properties. The results shows that generally, mechanical properties, Modulus Of Elasticity (MOE, value was improved with mix PF resin as well as Modulus Of Rupture (MOR. Pineaplle leaf fiber resulted in significantly higher MOR, consistent with our observation during the test. This information is useful when a high MOR is required in application. Other mechanical properties such as internal bonding (IB and screw-holding capacities (SH improved as those of MOE and MOR. Fiber from agricultural residues such as pineapple leaf are longer than wood fiber. This might explain why screw-holding capacities increased since the failure in those tests is mainly due to tear force. Diffrences in the physical properties between the board types were caused by the presence of the low molecular weight PF resin for the impregnation of the fibers. As using of mix PF resin, thickness swelling (TS properties improved as well. No significant difference was found for both mechanical and physical properties. The effect of the PF resin for impregnation was noted; however, fiber orientation had no effect on both physical and mechanical properties of the specimens.

  3. Natural gas market assessment: producer's response to changing market conditions 1992-1996

    International Nuclear Information System (INIS)

    The producing sector of the natural gas industry was presented with several challenges during the period of 1992 to 1996. This report describes the impact of the 1985 deregulation agreement on natural gas producers in the Western Canada Sedimentary Basin (WCSB). The market changes since the 1985 deregulation agreement include conditions for a competitive natural gas market. A regional breakdown of the producing sector's response to the challenge is described. Trends in gas related activity levels for nine regions within the WCSB are reviewed, including trends in gas well connection and production. It was shown that the producing sector of the natural gas industry has evolved into an efficient and highly competitive component of the gas marketplace able to respond to changing market conditions. The sector has shown that it can ensure adequate supplies at fair market prices even during periods of rapidly increasing demands. 4 tabs., 27 figs

  4. Small gas-phase dianions produced by sputtering and gas flooding

    International Nuclear Information System (INIS)

    We have extended our previous experiment [Schauer et al., Phys. Rev. Lett. 65, 625 (1990)] where we had produced small gas-phase dianion clusters of Cn2-(n≥7) by means of sputtering a graphite surface by Cs+ ion bombardment. Our detection sensitivity for small Cn2- could now be increased by a factor of about 50 for odd n. Nevertheless, a search for the elusive pentamer dianion of C52- was not successful. As an upper limit, the sputtered flux of C52- must be at least a factor of 5000 lower than that of C72-, provided that the lifetime of C52- is sufficiently long to allow its detection by mass spectrometry. When oxygen gas (flooding with either O2 or with N2O) was supplied to the Cs+-bombarded graphite surface, small dianions of OCn2-(5≤n≤14) and O2C72- were observed in addition to Cn2-(n≥7). Similarly, Cs+ sputtering of graphite with simultaneous SF6 gas flooding produced SCn2-(6≤n≤18). Mixed nitrogen-carbon or fluorine-carbon dianion clusters could not be observed by these means. Attempts to detect mixed metal-fluoride dianions for SF6 gas flooding of various Cs+-bombarded metal surfaces were successful for the case of Zr, where metastable ZrF62- was observed. Cs+ bombardment of a silicon carbide (SiC) wafer produced SiCn2- (n=6,8,10). When oxygen gas was supplied to the Cs+-bombarded SiC surface, small dianions of SiOCn2- (n=4,6,8) and of SiO2Cn2- (n=4,6) as well as a heavier unidentified dianion (at m/z=98.5) were observed. For toluene (C7H8) vapor flooding of a Cs+-bombarded graphite surface, several hydrocarbon dianion clusters of CnHm2-(n≥7) were produced in addition to Cn2-(n≥7), while smaller CnHm2- with n≤6 could not be observed. BeCn2- (n=4,6,8,10), Be2C62-, as well as BeC8Hm2- (with m=2 and/or m=1) were observed for toluene vapor flooding of a Cs+-bombarded beryllium metal foil. The metastable pentamer 9Be12C42- at m/z=28.5 was the smallest and lightest dianion molecule that we could detect. The small dianion clusters of SCn2-, OCn2

  5. Colonies of Bumble Bees (Bombus impatiens Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure

    Directory of Open Access Journals (Sweden)

    Olivia M. Bernauer

    2015-06-01

    Full Text Available Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens. Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  6. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    Science.gov (United States)

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-01-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems. PMID:26463198

  7. Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae.

    Science.gov (United States)

    Tamburic, Bojan; Evenhuis, Christian R; Suggett, David J; Larkum, Anthony W D; Raven, John A; Ralph, Peter J

    2015-08-24

    This study presents the first in-depth analysis of CO2 limitation on the biomass productivity of the biofuel candidate marine microalga Nannochloropsis oculata. Net photosynthesis decreased by 60% from 125 to 50 μmol O2 L(-1)h(-1) over a 12 h light cycle as a direct result of carbon limitation. Continuous dissolved O2 and pH measurements were used to develop a detailed diurnal mechanism for the interaction between photosynthesis, gas exchange and carbonate chemistry in the photo-bioreactor. Gas exchange determined the degree of carbon limitation experienced by the algae. Carbon limitation was confirmed by delivering more CO2 , which increased net photosynthesis back to its steady-state maximum. This study highlights the importance of maintaining replete carbon concentrations in photo-bioreactors and other culturing facilities, either by constant pH operation or preferably by designing a feedback loop based on the dissolved O2 concentration. PMID:26212226

  8. At last, an affordable commercial boiler that burns wet biomass as cleanly as oil and gas

    International Nuclear Information System (INIS)

    Over the past 16 years, Northern Light Research and Development has built 11 highly efficient and clean burning biomass combustion systems. Official emissions testing, by Bonneville/EPA, of a residential-size prototype showed that green wood can be burned as cleanly as gas and oil. Particulate emissions were 0.228 grams per hour, 1/33rd of the 1990 EPA non-catalytic woodstove laboratory emissions standard (using well-seasoned lumber), 1/65th of the average state-of-the-art catalytic woodstove emissions in recent field studies, and 1/3 of the cleanest pellet burner yet tested. This particulate emissions level is 0.0076 grains/dry standard cubic foot, one quarter of Washington's stringent Best Available Control Technology standard, which is attainable with present systems only by installing expensive cyclone separators, bag-house filters, and electrostatic precipitators. The prototype described above was tested with no stack clean-up equipment, electric fans or controls. In the same test, carbon monoxide emissions over a two hour test period were four parts per million, which is 1/7500th of the Federal Auto Emissions standard, 1/100th of the gas industry's standard for 'CO-Free Combustion,' and 1/2 of the EPA's standard for acceptable 24 hours indoor air quality

  9. Materials produced from plant biomass: Part I: evaluation of thermal stability and pyrolysis of wood

    OpenAIRE

    Matheus Poletto; Juliane Dettenborn; Vinícios Pistor; Mara Zeni; Ademir José Zattera

    2010-01-01

    This paper compares the thermal stability of the sawdust of different wood species, an important factor in producing reinforced polymers. The compositions of two wood species, Pinus taeda and Eucalyptus grandis, were determined to evaluate the influence of the main wood components on the thermal stability of this material. The two species were submitted to thermogravimetric analysis at different heating rates to calculate the activation energy (Ea) using the Flynn-Wall-Ozawa (FWO) and Kissing...

  10. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall; Schramm, Jesper; Gratz, Linda

    2000-01-01

    30 um were present. 77% of the TPM was determined, by thermogravimetric analysis (TGA) to be carbon structures.The dichloromethane (DCM)-soluble fraction (11% of the TPM) was extracted, separated into fractions of varying polarities using adsorption column chromatography and analyzed using gas...

  11. Modelling the impact of biomass burning on atmospheric aerosol and greenhouse gas abundances

    International Nuclear Information System (INIS)

    Full text: Biomass burning (BB) emissions contribute significantly to the atmospheric composition in the domains of global green-house and reactive gases and frequently dominate aerosols and regional air quality. Due to its high variability on all time scales from hours to years, these emissions can often not be described with static inventories, but need to be derived from satellite-based fire observations of each individual situation. The global GEMS systems use several versions of the BB emission inventory GFEDv2 as baseline. In addition, a dedicated fire assimilation systems based on the Fire Radiative Power (FRP) from SEVIRI, which EUMETSAT is currently developing, has been implemented for the aerosol and greenhouse gas in the African and Southern European domain. By comparing different model and assimilation runs, we show that BB emission input is significant for both types of runs in the aerosol and greenhouse gas monitoring systems. A temporal resolution of the BB emissions of about a week appears sufficient for the greenhouse gas monitoring in GEMs, while the aerosol monitoring requires a temporal resolution of hours. The latter requirement can be generalized for reactive gases and regional air quality. A case study of the forest fires ravaging Greece in August 2008 demonstrates the capability of real-time monitoring and forecasting of large fire plumes in the future GMES atmospheric service. Complementary developments of fire assimilation systems based on observations by further fire observation from geostationary and polar orbiting platforms indicate a the development path to a truly global and real-time fire assimilation system. (author)

  12. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass.

    Science.gov (United States)

    Fierro-Coronado, Rosario Alicia; Quiroz-Figueroa, Francisco Roberto; García-Pérez, Luz María; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Maldonado-Mendoza, Ignacio Eduardo

    2014-10-01

    Rhizobacteria promote and have beneficial effects on plant growth, making them useful to agriculture. Nevertheless, the rhizosphere of the chickpea plant has not been extensively examined. The aim of the present study was to select indole-3-acetic acid (IAA) producing rhizobacteria from the rhizosphere of chickpea plants for their potential use as biofertilizers. After obtaining a collection of 864 bacterial isolates, we performed a screen using the Salkowski reaction for the presence of auxin compounds (such as IAA) in bacterial Luria-Bertani supernatant (BLBS). Our results demonstrate that the Salkowski reaction has a greater specificity for detecting IAA than other tested auxins. Ten bacterial isolates displaying a wide range of auxin accumulation were selected, producing IAA levels of 5 to 90 μmol/L (according to the Salkowski reaction). Bacterial isolates were identified on the basis of 16S rDNA partial sequences: 9 isolates belonged to Enterobacter, and 1 isolate was classified as Serratia. The effect of BLBS on root morphology was evaluated in Arabidopsis thaliana. IAA production by rhizobacteria was confirmed by means of a DR5::GFP construct that is responsive to IAA, and also by HPLC-GC/MS. Finally, we observed that IAA secreted by rhizobacteria (i) modified the root architecture of A. thaliana, (ii) caused an increase in chickpea root biomass, and (iii) activated the green fluorescent protein (GFP) reporter gene driven by the DR5 promoter. These findings provide evidence that these novel bacterial isolates may be considered as putative plant-growth-promoting rhizobacteria modifying root architecture and increasing root biomass. PMID:25231840

  13. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. PMID:26826954

  14. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  15. Low Temperature Particle Filtration of Producer Gas with Low Tar Content

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    This report describes the tests of different techniques for removing the particulates from producer gas from the 100 kW two-stage down-draft gasifier at DTU1 . The goal of the tests was to identify and implement methods to remove soot particles from producer gas with low tar content. During the...

  16. Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agrobiomass in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, T.; Soimakallio, S. (VTT Technical Research Centre of Finland, Espoo (Finland)); Paappanen, T. (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)); Pahkala, K. (MTT Agrifood Research Finland, Jokioinen (Finland)), email: katri.pahkala@mtt.fi; Mikkola, H. (MTT Agrifood Research Finland, Jokioinen (Finland))

    2009-07-01

    The aim of the project was to assess energy and greenhouse gas balances as well as greenhouse gas emission reduction costs for biomass-based fuels used in transportation and combined heat and power production (CHP) compared to selected reference fuels. New business opportunities were identified based on the results. Both commercial technologies and technologies under development were assessed. The most suitable large-scale technologies for Finnish conditions were selected for the evaluation. Technologies utilising field crops and forest biomass as raw materials were evaluated. The main options were barley-based ethanol, biodiesel (RME) from turnip rape, forest residue and reed canary grass-derived synthetic fuels. As a comparison, the use of forest residues and reed canary grass as a fuel for CHP production were considered. The whole utilisation chain from fuel production to end-use was evaluated. The overall energy input per output ratio was less than one for all assessed transportation biofuel chains, which means that more energy was produced than consumed. The auxiliary energy consumption per energy content of the fuels was, however, 3 to 5 fold compared to fossil fuel chains. Hence, the consumption of primary energy cannot be reduced by substituting fossil fuels by biofuels. Regardless, the consumption of petroleum based energy can be remarkably reduced as typically only a minor part of energy consumed in biofuel production is based on crude oil. The results indicated that the production and use of barley-based ethanol or biodiesel from turnip rape does not necessarily reduce greenhouse gas emissions, but can on the contrary increase the greenhouse gas emissions compared to fossil-based reference fuels, when the whole production and utilisation chain is considered. Use of fertilizers is significant compared to the energy content of the barley and turnip rape yield in Finland. Production and use of nitrogen fertilizers cause emissions of nitrous oxide, which may

  17. Materials produced from plant biomass: Part I: evaluation of thermal stability and pyrolysis of wood

    Directory of Open Access Journals (Sweden)

    Matheus Poletto

    2010-09-01

    Full Text Available This paper compares the thermal stability of the sawdust of different wood species, an important factor in producing reinforced polymers. The compositions of two wood species, Pinus taeda and Eucalyptus grandis, were determined to evaluate the influence of the main wood components on the thermal stability of this material. The two species were submitted to thermogravimetric analysis at different heating rates to calculate the activation energy (Ea using the Flynn-Wall-Ozawa (FWO and Kissinger methods. The results suggest that larger quantities of holocellulose and lignin associated with lower extractive contents give the wood greater thermal stability. The Ea values calculated for the two species were in the range of 146-165 kJ.mol-1. Evaluation of the activation energy values offers a simplified means to better understand the thermal decomposition of the sawdust of different wood species used in developing composites.

  18. Produce More Oil Gas via eBusiness Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  19. Producing Gas-Oil Ratio Performance of Conventional and Unconventional Reservoirs

    OpenAIRE

    Lei, Guowen

    2012-01-01

    This study presents a detailed analysis of producing gas-oil ratio performance characteristics from conventional reservoir to unconventional reservoir. Numerical simulations of various reservoir fluid systems are included for comparison. In a wide sense of the word, the term of unconventional reservoir is including tight gas sand, coal bed methane, gas hydrate deposits, heavy oil gas shale and etc. In this study we specify the unconventional reservoir to only mean the low and ultra low permea...

  20. Reducing produced water leaks and spills by improving industry compliance in British Columbia's natural gas sector

    OpenAIRE

    Notte, Chelsea Althea

    2014-01-01

    The International Energy Association asserts that natural gas is poised to enter a golden age. This is particularly true for British Columbia, which possesses world-class shale gas reserves. Produced water – the water emanating from fracturing shale - is the largest waste stream associated with oil and gas activities. Wastewater associated with natural gas extraction is highly toxic and has serious implications for environmental and human health if spilled or leaked. Because of the corrosive ...

  1. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  2. Compact conversion of natural gas and biomass to DME in microstructured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Myrstad, Rune

    2010-07-01

    Efficient production of easily distributable fuel from natural gas or biomass in the small-to-medium scale calls for a more compact and efficient process than using conventional technology. Microstructured reactors have improved heat and mass transfer properties which make them suitable for process intensified production of liquid fuel from synthesis gas and demonstration plants using such technology are announced. Dimethyl ether (DME) can be used as an intermediate in the production of several industrial chemicals and DME is also used as an aerosol propellant because of its environmentally benign properties. Since DME has high cetane number and is considered as an ultra-clean fuel with reduced NO{sub x}, SO{sub x}, and PM emissions, DME has emerged as a substitute for auto diesel fuel and bio-DME is one of the most promising second-generation biofuels. DME can be prepared in a one-step process from synthesis gas, which is thermodynamically and economically favourable to the two step process consisting of methanol synthesis followed by dehydration of methanol to DME. As the direct process is strongly exothermic, the reaction heat has to be effectively removed from the reaction system in order to maintain a safe and economic operational mode. Direct DME synthesis possesses a high volumetric heat production rate and hence the temperature control is a main challenge. Besides this, parameters such as syngas composition, pressure, contact time and catalytic system affect the conversion and yield. In this work direct DME synthesis from syngas in a microstructured packed bed reactor was demonstrated to operate at practically isothermal conditions. The performance of the catalyst was enhanced by elimination of the undesired phenomena related to the exothermic process, such as hot spot formation and side reactions. The influence of process parameters on methanol selectivity and DME productivity was studied. The highest CO conversion was achieved by a H{sub 2}-rich syngas at

  3. Greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production

    International Nuclear Information System (INIS)

    In this study, greenhouse gas emission and exergy assessments of an integrated organic Rankine cycle (ORC) with a biomass combustor for combined cooling, heating, and power production as a trigeneration system are conducted. This trigeneration system consists of a biomass combustor, an ORC, a single-effect absorption chiller, and a heat exchanger. Four special cases are considered in this comprehensive study, namely, electrical power, cooling-cogeneration, heating-cogeneration, and trigeneration cases. Various exergetic and environmental output performance parameters, namely, exergy efficiency, exergy destruction rate, and greenhouse gas emissions, are examined under varying ORC evaporator pinch point temperature, pump inlet temperature, and turbine inlet pressure. This study shows that using trigeneration considerably increases both energy and exergy efficiencies and decreases the greenhouse gas emissions as compared to the electrical power case. This study reveals that the heating-cogeneration and trigeneration cases are less sensitive to the considered temperature and pressure variations as compared with the electrical power and cooling-cogeneration cases. In addition, the results show that when the trigeneration case is used, the exergy efficiency increases significantly to 27% as compared with the exergy efficiency of the electrical power case, which is around 11%. It is also found that the main two sources of exergy destruction are the biomass combustor and ORC evaporator. Moreover, this study shows that the emissions of CO2 in kg/MWh are significantly high for the electrical power case while for the trigeneration case, the emissions per MWh of trigeneration drop significantly to relatively low level. Specifically, the emissions drop to around one seventh per MWh produced when trigeneration is used as compared with only electrical power production case.

  4. Exploring the assumed invariance of implied emission factors for forest biomass in greenhouse gas inventories

    International Nuclear Information System (INIS)

    Reviews of each nation's annual greenhouse gas inventory submissions including forestland are part of the ongoing reporting process of the United Nations Framework Convention on Climate Change. Goals of these reviews include improving quality and consistency within and among reports. One method of facilitating comparisons is the use of a standard index such as an implied emission factor (IEF), which for forest biomass indicates net rate of carbon emission or sequestration per area. Guidance on the use of IEFs in reviews is limited, but there is an expectation that values should be relatively constant both over time and across spatial scales. To address this hypothesis, we examine IEFs over time, derived from U.S. forests at plot-, state-, and national-levels. Results show that at increasingly aggregated levels, relative heterogeneity decreases but can still be substantial. A net increase in U.S. whole-forest IEFs over time is consistent with results from temperate forests of nations in the European Community. IEFs are better viewed as a distribution of values rather than one constant value principally because of sensitivities to productivity, disturbance, and land use change, which can all vary considerably across a nation's forest land.

  5. Producer gas cleaning in a dual fluidized bed reformer - a comparative study of performance with ilmenite and a manganese oxide as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berguerand, Nicolas; Lind, Fredrik; Seemann, Martin; Thunman, Henrik [Chalmers University of Technology, Department of Energy and Environment, Goeteborg (Sweden)

    2012-09-15

    Secondary catalytic gas conditioning is one strategy to eliminate tars formed in a producer gas during biomass gasification. However, most catalysts tend to lose their tar reforming activity after a short period of operation due to carbon formation. A novel technique for catalytic gas cleaning based on two interconnected fluidized beds has been investigated; this technique can be applied to all types of gasifiers. The idea is to reform the tar components into useful molecules - even at high tar contents - by means of a circulating catalyst. More precisely, the producer gas is cleaned with catalyst in one of the reactors, referred to as the fuel reactor, while the catalyst is continuously regenerated in another reactor, the air reactor (AR). The system described here is coupled with the Chalmers 2-4 MW{sub th} biomass gasifier while the AR is fed with nitrogen-diluted air. The effect of different catalysts on both the tar content and the gas composition was investigated. Some of the tested materials do not only reform tars, they also influence the H{sub 2}/CO ratio in a beneficial manner; in particular, ratios closer to 3 in the reformed gas are favorable if subsequent methanation is implemented. In this paper, comparative results based on testing with manganese- and iron-based catalysts are presented. The former is a manufactured catalyst while the latter is a natural ore. Results suggest that both show satisfying ability for regeneration from carbon deposits. Higher temperature enhances tar decomposition during the experiment with both catalysts. Moreover, the iron-based catalyst enhances the water-gas shift activity, which in turn impacts the total amount of produced gas. On the other hand, the manganese-based catalyst seems to display a higher propensity for tar conversion. (orig.)

  6. Effect of operating parameters on performance of an integrated biomass gasifier, solid oxide fuel cells and micro gas turbine system

    International Nuclear Information System (INIS)

    An integrated power system of biomass gasification with solid oxide fuel cells (SOFC) and micro gas turbine has been investigated by thermodynamic model. A zero-dimensional electrochemical model of SOFC and one-dimensional chemical kinetics model of downdraft biomass gasifier have been developed to analyze overall performance of the power system. Effects of various parameters such as moisture content in biomass, equivalence ratio and mass flow rate of dry biomass on the overall performance of system have been studied by energy analysis. It is found that char in the biomass tends to be converted with decreasing of moisture content and increasing of equivalence ratio due to higher temperature in reduction zone of gasifier. Electric and combined heat and power efficiencies of the power system increase with decreasing of moisture content and increasing of equivalence ratio, the electrical efficiency of this system could reach a level of approximately 56%.Regarding entire conversion of char in gasifier and acceptable electrical efficiency above 45%, operating condition in this study is suggested to be in the range of moisture content less than 0.2, equivalence ratio more than 0.46 and mass flow rate of biomass less than 20  kg h−1. - Highlights: • One-dimension chemical kinetics model of biomass gasifier has been developed. • Un-reacted char have been predicted along the height of the reduction zone of gasifier. • Effects of process parameters on char flow rate and efficiencies of BG, SOFC and GT system have been examined. • Regarding entire char conversion and acceptable system efficiency, the operating condition has been proposed

  7. Evaluation of Various Solid Biomass Fuels Using Thermal Analysis and Gas Emission Tests

    OpenAIRE

    Hiroshi Koseki

    2011-01-01

    Various recently proposed biomass fuels are reviewed from the point of view of their safety. Many biomass materials are proposed for use as fuels, such as refuse derived fuel (RDF), wood chips, coal-wood mixtures, etc . However, these fuels have high energy potentials and can cause fires and explosions. We have experienced many such incidents. It is very difficult to extinguish fires in huge piles of biomass fuel or storage facilities. Here current studies on heat generation for these materia...

  8. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation

    DEFF Research Database (Denmark)

    Qin, Ke; Jensen, Peter Arendt; Lin, Weigang;

    2012-01-01

    Biomass gasification and pyrolysis were studied in a laboratory-scale atmospheric pressure entrained flow reactor. Effects of operating parameters and biomass types on the syngas composition were investigated. In general, the carbon conversion during biomass gasification was higher than 90% at th...... increased both the H2 and CO yields. Wood, straw, and dried lignin had similar gasification behavior, except with regard to soot formation. The soot yield was lowest during straw gasification possibly because of its high potassium content....

  9. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2016-06-01

    Full Text Available Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS based complete diets for efficient microbial biomass production (EMBP using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of inc ubation. In vitro organic matter digestibility (IVOMD, metabolizable energy (ME, truly digestible organic matter (TDOM, partitioning factor (PF, and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01 in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01 higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  10. Study of gas product generation out of solid biomass under the effect of temperature and ionizing radiation

    International Nuclear Information System (INIS)

    Full text: Biomass is an efficient renewable energy source. There are different types of biomass almost in all regions of the world and in each of them their conversion into energy and fuel can be adjusted. Recently the interest to obtain liquid and gaseous products out of wood raw materials by the method of pyrolysis has risen. Hemicellulose is firstly exposed to thermal destruction in the temperature range of 170-260 C degree, then follows the decomposition of cellulose (240-350 C degree) and lignin (280-500 C degree). The given work is dedicated to radiation-thermochemical conversion of the components of solid biomass of hardwood (oak, beech) and softwood (pine). The radiolysis process of solid biomass is complicated and multiform. The radiation effect on the mechanism of solid biomass conversion has not been investigated sufficiently. All products generated during radiolysis process can be divided into three main groups: decomposition and destruction products; hydrocarbon molecules; internal conversion products in which hydrocarbon chain of the generated composition contains as many carbon atoms as the chain of the initial composition. The opportunity of generating gaseous hydrocarbons at different temperature and absorbed dose has been revealed and the degree of conversion of solid biomass has been determined. It has been established that the generation of H2, CO, CO2 gases and C1-C7 hydrocarbons is detected in the composition of the radiation decomposition products of solid biomass. It has been ascertained in the dose range of D≤10 kGy ( D=0.48 Gy/sec., τ=5 hours) the value of gas generation is increasing, furthermore the growth of dose D≥10 kGy results in saturation. Thermal and radiation-thermal dependence of the conversion degree of solid biomass has been simultaneously studied. Kinetic dependence shows that gas generation processes at the temperature of 300 and 350 is increasing. In accordance with these temperature ranges the conversion degree of

  11. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    OpenAIRE

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Rudolf, Andreas

    2008-01-01

    The potential offered by biomass for solving some of the world's energy problems is widely recognized. The energy contained in biomass can be utilized either directly as in combustion or by converting the biomass into a liquid fuel for transportation. The Catliq® (catalytic liquid conversion) process is a second generation process for the production of bio-oil from different biomass-based waste materials. The process is carried out at subcritical conditions (280-350 °C and 180-250 bar) and in...

  12. Modelling of a Biomass Gasification Plant Feeding a Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a solid oxide fuel cell (SOFC) and the other in a combined SOFC and micro gas turbine (MGT) arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory. The modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The MGT utilizes the unconverted...

  13. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process

    International Nuclear Information System (INIS)

    Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 oC with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 oC) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques. -- Highlights: → This study reports the results of experimental investing of conversion palm shell into bio-oil by using pyrolysis and to find the optimum condition to produce the highest yield of bio-oil. → Several parameters which have effect to the process such as temperature, N2 flow rate, reaction time and particle size is will be investigated in this study. → The outcome of this result will be important for abatement and control of increasingly waste palm shell storage problems any energy source to the world.

  14. Selection of high producing shrubs of the Western United States for energy biomass. Final report, April 1, 1978-October 31, 1981. [Saltbush, sagebrush, rabbitbrush, and greasewood

    Energy Technology Data Exchange (ETDEWEB)

    McKell, C.M.; Van Epps, G.A.; Barker, J.R.

    1981-01-01

    This project investigated the selection and preliminary study of the most productive native shrubs that are commonly found growing on millions of acres of arid and semiarid lands of the Western United States for their potential use as energy fuel from biomass. Many uncertainties exist in producing biomass for energy fuels. However, arid land shrub biomass production offers several advantages that may be more favorable than other biomass types. Shrubs could utilize available marginal croplands and rangelands; there would be little or no competition for scarce water resources, and within the wide diversity of native shrubs, a number of species have a potential for relatively large biomass production. Species chosen for study were fourwing saltbush (Atriplex canescens), big saltbush (A. lentiformis), big sagebrush (Artemisia tridentata), spreading rabbitbrush (Chrysothamnus linifolis), rubber rabbitbrush (C. nauseosus), and greasewood (Sarcobatus vermiculatus). The study was divided into three phases. Phase one dealt with the selection, measurement, and burning quality of large growing shrubs in native populations. The main objective of phase two was to measure the biomass production of the selected large growing shrubs at a dryland field research station for three years. In addition the influence of planting space was ascertained. In phase three the genetic differences of large and small sagebrush (A. tridentata) were evaluated. 15 figs., 24 tabs.

  15. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper;

    2003-01-01

    showed that guaiacol formed significant amount of deposits. The structure observed was a lacquer type of deposit. It was determined that there was no distinct deposit formation due to phenol. Experiments were conducted with a 0.48 litre one-cylinder high compression ratio SI engine fueled by synthetic...

  16. Optimization of radial systems with biomass fueled gas engine from a metaheuristic and probabilistic point of view

    International Nuclear Information System (INIS)

    Highlights: ► Loads and distributed generation production are modeled as random variables. ► Distribution system with biomass fueled gas engines. ► Random nature of lower heat value of biomass and load. ► The Cornish–Fisher expansion is used for approximating quantiles of a random variable. ► Computational cost is low enough than that required for Monte Carlo simulation. - Abstract: This paper shows that the technical constraints must be considered in radial distribution networks, where the voltage regulation is one of the primary problems to be dealt in distributed generation systems based on biomass fueled engine. Loads and distributed generation production are modeled as random variables. Results prove that the proposed method can be applied for the keeping of voltages within desired limits at all load buses of a distribution system with biomass fueled gas engines. To evaluate the performance of this distribution system, this paper has developed a probabilistic model that takes into account the random nature of lower heat value of biomass and load. The Cornish–Fisher expansion is used for approximating quantiles of a random variable. This work introduces a hybrid method that utilizes a new optimization method based on swarm intelligence and probabilistic radial load flow. It is demonstrated the reduction in computation time achieved by the more efficient probabilistic load flow in comparison to Monte Carlo simulation. Acceptable solutions are reached in a smaller number of iterations. Therefore, convergence is more rapidly attained and computational cost is significantly lower than that required for Monte Carlo methods.

  17. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh;

    The potential offered by biomass for solving some of the world's energy problems is widely recognized. The energy contained in biomass can be utilized either directly as in combustion or by converting the biomass into a liquid fuel for transportation. The Catliq® (catalytic liquid conversion...... work, catalytic conversion of DDGS was performed in a pilot plant with a capacity of 10-20 L/h of wet biomass. The oil obtained was characterized using FTIR and GC-MS for both qualitative and quantitative analysis of the product.......) process is a second generation process for the production of bio-oil from different biomass-based waste materials. The process is carried out at subcritical conditions (280-350 °C and 180-250 bar) and in the presence of homogeneous (KOH) and heterogeneous (ZrO2) catalysts. The great advantage with the Cat...

  18. Economics of Using Flared vs. Conventional Natural Gas to Produce Nitrogen Fertilizer: A Feasibility Analysis

    OpenAIRE

    Maung, Thein A.; Ripplinger, David G.; McKee, Gregory J.; Saxowsky, David M.

    2012-01-01

    The feasibility analysis begins by examining the economic potential of using flared natural gas as a feedstock to produce a low-cost, reliable, and sustainable supply of nitrogen fertilizer for North Dakota farmers. Specific objectives include • Determining the most profitable facility size, location, and configuration for a natural gas nitrogen fertilizer production facility in North Dakota. • Calculating the financial returns and capital requirements of gas-based nitrogen fertilizer product...

  19. Design and simulation of a small polygeneration plant cofiring biomass and natural gas in a dual combustion micro gas turbine (BIOMGT)

    International Nuclear Information System (INIS)

    The operation and performances of an innovative small scale polygeneration system (BIOMGT), which combines biomass and natural gas in a micro gas turbine, has been simulated in the present work by means of a thermodynamic matching analysis. The BIOMGT unit matches an externally fired cycle with a commercial Micro Gas Turbine (MGT, 100 kWe). A significant share of the total energy input (∼70%) is supplied by solid biomass: the remaining is provided by natural gas. The system is therefore characterised by a dual combustion system. The configuration of the plant has been conceived so to require only minor modifications to conventional MGTs and biomass furnaces available on the market. This paper describes the design of the proposed bioenergy plant as well as the structure and the application of the in-house developed simulation model AMOS which has been used as computer-aid design tool. The design activity compared various plant schemes available from literature or past research works. The thermodynamic matching analysis of the selected configuration was then carried out, with the aim to verify compressor and turbine working points and to compare these with those typical of the MGT working under standard natural gas conditions. The steady-state matching analysis was based on the performance maps (i.e. characteristic lines) of each component. The design specifications and operating range for main and sub-components were defined, and the BIOMGT performance maps were computed. Results showed that both the turbine as well as the compressor will work within the acceptable limits, and plant performances have also been calculated at part load conditions.

  20. Design and simulation of a small polygeneration plant cofiring biomass and natural gas in a dual combustion micro gas turbine (BIO{sub M}GT)

    Energy Technology Data Exchange (ETDEWEB)

    Riccio, G.; Chiaramonti, D. [Energetics Department ' ' S. Stecco' ' , Faculty of Mechanical Engineering, University of Florence, Via S. Marta 3, I-50139 Florence (Italy)

    2009-11-15

    The operation and performances of an innovative small scale polygeneration system (BIO{sub M}GT), which combines biomass and natural gas in a micro gas turbine, has been simulated in the present work by means of a thermodynamic matching analysis. The BIO{sub M}GT unit matches an externally fired cycle with a commercial Micro Gas Turbine (MGT, 100 kWe). A significant share of the total energy input ({proportional_to}70%) is supplied by solid biomass: the remaining is provided by natural gas. The system is therefore characterised by a dual combustion system. The configuration of the plant has been conceived so to require only minor modifications to conventional MGTs and biomass furnaces available on the market. This paper describes the design of the proposed bioenergy plant as well as the structure and the application of the in-house developed simulation model AMOS which has been used as computer-aid design tool. The design activity compared various plant schemes available from literature or past research works. The thermodynamic matching analysis of the selected configuration was then carried out, with the aim to verify compressor and turbine working points and to compare these with those typical of the MGT working under standard natural gas conditions. The steady-state matching analysis was based on the performance maps (i.e. characteristic lines) of each component. The design specifications and operating range for main and sub-components were defined, and the BIO{sub M}GT performance maps were computed. Results showed that both the turbine as well as the compressor will work within the acceptable limits, and plant performances have also been calculated at part load conditions. (author)

  1. Design and simulation of a small polygeneration plant cofiring biomass and natural gas in a dual combustion micro gas turbine (BIOMGT)

    International Nuclear Information System (INIS)

    The operation and performances of an innovative small scale polygeneration system (BIOMGT), which combines biomass and natural gas in a micro gas turbine, has been simulated in the present work by means of a thermodynamic matching analysis. The BIOMGT unit matches an externally fired cycle with a commercial Micro Gas Turbine (MGT, 100 kWe). A significant share of the total energy input (∝70%) is supplied by solid biomass: the remaining is provided by natural gas. The system is therefore characterised by a dual combustion system. The configuration of the plant has been conceived so to require only minor modifications to conventional MGTs and biomass furnaces available on the market. This paper describes the design of the proposed bioenergy plant as well as the structure and the application of the in-house developed simulation model AMOS which has been used as computer-aid design tool. The design activity compared various plant schemes available from literature or past research works. The thermodynamic matching analysis of the selected configuration was then carried out, with the aim to verify compressor and turbine working points and to compare these with those typical of the MGT working under standard natural gas conditions. The steady-state matching analysis was based on the performance maps (i.e. characteristic lines) of each component. The design specifications and operating range for main and sub-components were defined, and the BIOMGT performance maps were computed. Results showed that both the turbine as well as the compressor will work within the acceptable limits, and plant performances have also been calculated at part load conditions. (author)

  2. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  3. Soybean biomass produced in Argentina : myths and realities. Presented at Beyond Kyoto: Addressing the Challenges of Climate Change, Aarhus University, Danmark

    DEFF Research Database (Denmark)

    Semino, Stella Maris

    2009-01-01

    Soybean biomass for biodiesel, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel. To ensure that the production of biofuels is ‘sustainable', EU institutions and national governments are currently designing certification schemes....... This paper questions the validity of proposed environmental standards, using the production of Argentine soybean as a case study. The study concludes that to certify soy monocultures as sustainable would exacerbate existing climatic and environmental problems....

  4. Low Temperature Particle Filtration of Producer Gas with Low Tar Content

    OpenAIRE

    Hindsgaul, Claus

    2000-01-01

    This report describes the tests of different techniques for removing the particulates from producer gas from the 100 kW two-stage down-draft gasifier at DTU1 . The goal of the tests was to identify and implement methods to remove soot particles from producer gas with low tar content. During the five days of gasifier operation, cartridge filters, bag filters were tested. Attempts to test an electrostatic precipitator failed. Cold gas cleaning systems using fiber filters (bag filters and filter...

  5. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Fernanda Mandelli

    2012-03-01

    Full Text Available A fractional factorial design 2(5-1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch's trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS. The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 mg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity.

  6. Greenhouse gas and energy balances of biomass based transportation fuels in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, T.; Soimakallio, S.; Arasto, A. (VTT echnical Research Centre of Finland, Espoo (Finland))

    2007-07-01

    With increasing use of biofuels, sustainable production and utilisation of biofuels is becoming a key concern in the EU and is currently being considered as a possible requirement for the market access of biofuels or for subsidies. The growing production of biofuels may result in several negative impacts, such as environmental and socio economic impacts, changing land use patterns and even an increase of greenhouse gas (GHG) emissions. Energy and greenhouse gas balances of transportation biofuels suitable for a large scale production in Finland have been assessed by VTT Technical Research Centre of Finland and MTT Agrifood Research Finland. The overall auxiliary energy input per the energy content of fuel in biofuel production was 3 to 5 fold compared to that of fossil fuels. The results indicated that GHG emissions from production and use of barley based ethanol or biodiesel from turnip rape are very probably higher compared to emissions from fossil fuels they replace. Second generation biofuels produced from forestry residues or reed canary grass seem to be more favourable in reducing GHG emissions with the costs in the range of 30 100 euro/t CO{sub 2} eq. Significant uncertainties are involved in the results mainly due to the uncertainty in N{sub 2}0 emissions from fertilization, emissions from the production of the electricity consumed, as well as the price of raw material and reference fuels. (orig.)

  7. Biomass of clone of Eucalyptus grandis x urophylla for producing briquettes; Biomassa de clone de Eucalyptus grandis x Eucalyptus urophylla para producao de briquetes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eder Aparecido; Oguri, Guilherme [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], e-mail: os_garcias@fca.unesp.br; Lancas, Kleber Pereira [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Guerra, Saulo Philipe Sebastiao [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Gestao e Tecnologia Agroindustrial

    2011-07-01

    The aim of this work was conducted to address forest biomass energy for briquette producing. In an area of dystrophic soil, seedlings of clones of Eucalyptus grandis x E. urophylla were planted in 2008, considering factors spacing and fertilization. The first dosage of fertilizer was 70 g/plant of NPK 6-30-6 and total coverage of 110 g/plant of NPK 20-0-20 with B and Zn. The spacing was 2.8x0.5 m, 2.8x1.0 m, 2.8x1.5 m, 2.8x2.0 m and 2.8x2.5 m. At 18 months, tree samples were collected to evaluate the basic density of wood (BDW), dry biomass of stem, branches and leaves. An assessment of the economic viability of each treatment was based on the sale of briquettes. BDW spacing of 2.8x1.0 m was 0.464 kg/m{sup 3}. The largest biomass of the stem occurred in 2.8x0.5 m spacing, with dosage 3, but economically unviable. The dry biomass of branches was only affected by dosage, reaching 17.68 t/ha in the third dose. Only fertilization was significant for leaf biomass. The highest income in the spacing was 2.8 x1.5 m with dosage 2. (author)

  8. Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Velmurugan, Palanivel; Shim, Jaehong; You, Youngnam; Choi, Songho; Kamala-Kannan, Seralathan; Lee, Kui-Jae [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Kim, Hee Joung [Institute of Environmental Research, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of)

    2010-10-15

    Bioremediation is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using biomass from various microorganisms like algae, fungi and bacteria. In this study biosorption of zinc onto live, dead and dried biomass of Fusarium spp. was investigated as a function of initial zinc(II) concentration, pH, temperature, agitation and inoculum volume. It was observed that dried, dead and live biomass efficiently removed zinc at 60 min at an initial pH of 6.0 {+-} 0.3. Temperature of 40 deg. C was optimum at agitation speed of 150 or 200 rpm. The initial metal concentration (10-320 mg L{sup -1}) significantly influenced the biosorption of the fungi. Overall, biosorption was high with 30-60% by dried, live and dead biomass. In addition to this, the potential of Fusarium spp. to produce zinc nanocrystals was determined by transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and fourier transform infrared spectroscopy, which showed that dead biomass was not significantly involved in production of zinc nanocrystals.

  9. Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine

    International Nuclear Information System (INIS)

    The injected diesel fuel used in a diesel engine was partially replaced with biomass-derived gas through the intake port, and the effect on performance and pollutant emissions was studied. The experimental work was carried out in a supercharged, common-rail injection, single-cylinder diesel engine by replacing diesel fuel up to 20% (by energy), keeping constant the engine power. Three engine loads (60, 90, 105 Nm), three different EGR (exhaust gas recirculation) ratios (0, 7.5, 15%) and two intake temperatures (45, 60 °C) were tested. Finally, some of the tested conditions were selected to replace diesel injection fuel with biodiesel injection. Although the brake thermal efficiency was decreased and hydrocarbons and carbon monoxide emissions increased with increasing fuel replacement, particulate emissions decreased significantly and NOx emissions decreased slightly at all loads and EGR ratios. Thermodynamic diagnostic results showed higher premixed ratio and lower combustion duration for increasing diesel fuel replacement. High EGR ratios improved both engine performance and emissions, especially when intake temperature was increased, which suggest removing EGR cooling when diesel fuel is replaced. Finally, when biodiesel was used instead of diesel fuel, the gas replacement improved the efficiency and reduced the hydrocarbon, carbon monoxide and particulate emissions. - Highlights: • Replacing injected fuel with gas permits an efficient valorization of waste biomass. • Inlet gas was inefficiently burned after the end of liquid fuel injection. • Engine parameters were combined to simultaneously reduce particle and NOx emissions. • Hot EGR (exhaust gas recirculation) and biodiesel injection are proposed to improve efficiency and emissions

  10. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-10-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  11. Use of Methanation for Optimization of a Hybrid Plant Combining Two-Stage Biomass Gasification, SOFCs and a Micro Gas Turbine

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of the two-stage gasification concept, solid oxide fuel cells (SOFCs) and a micro gas turbine (MGT) was considered for optimization. The hybrid plant is a sustainable and efficient alternative to conventional decentralized...... component models in the simulation tool DNA. By introducing an adiabatic methanation reactor prior to the SOFCs, the excess air flow for SOFC cooling could be reduced due to additional endothermic reforming reactions internally in the SOFCs, thus lowering the air compressor work. Installing an adiabatic...... methanator reduced the mass flow of cathode air by 27% and increased the turbine inlet temperature by 17% resulting in an electrical efficiency gain from 48.6 to 50.4% based on lower heating value (LHV). Furthermore, the size of several components could be reduced due to the lower air flow. The study also...

  12. Estimating greenhouse gas abatement potential of biomass crops in Scotland under various management options

    International Nuclear Information System (INIS)

    Bioenergy crops are one of the renewable energy options available to decarbonise the energy sector in Scotland and help to achieve the overall planned target of 80% reduction in greenhouse gas (GHG) emissions by 2050. A process-based model for poplar and willow developed for simulating the effect of different environmental and management options on growth and biomass yield was used to estimate the GHG abatement potential (GHG-AP) under different crop management options in Scotland. The model results of annual wood yield did not show a strong relation with any of the environmental factors except that of initial soil organic carbon (SOC) content. Increasing plant density and decreasing harvest frequency increased GHG-AP. Application of N-fertilizers at a rate of 50–100 kg N ha−1 resulted in the buildup of carbon in soils with less than 180 Mg C ha−1. However, in soils with greater SOC contents, annual emissions resulting from N fertilizer application were greater than the carbon saving through marginal increases in wood yield and SOC changes. The best management scenario in terms of economic and environmental objectives depends on identifying an optimum plant density based on the site specific conditions with a fertilizer application of 20–100 kg ha−1 y−1 and a five year harvest interval. Even under the best economic scenarios, SRC willow and poplar have a GHG-AP ranging from 9.9 to 11.6 and 8.8–10.0 Mg CO2 eq. ha−1 y−1, respectively. Under the best environmental scenarios this range increases to 10.5- 13.2 and 9–11.1 Mg CO2 eq. ha−1 y−1 for willow and poplar, respectively. -- Highlights: ► A process model for willow and poplar was used to estimate the GHG-AP in Scotland. ► Increasing plant density and decreasing harvest frequency increased GHG-AP. ► The best crop management is to use 20–100 kg N ha−1 y−1 and 5 year harvest interval. ► GHG-AP range from 8.8 to 11.6 Mg CO2 eq. ha−1 y−1 under the best economic scenarios.

  13. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    Science.gov (United States)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  14. Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agrobiomass in Finland; Liikenteen biopolttoaineiden ja peltoenergian kasvihuonekaasutaseet ja uudet liiketoimintakonseptit

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, T.; Soimakallio, S.; Paappanen, T. [VTT Technical Research Centre of Finland, Espoo (Finland); Pahkala, K.; Mikkola, H. [Agrifood Research Finland, Jokioinen (Finland)

    2006-10-15

    The aim of the project was to assess energy and greenhouse gas balances as well as greenhouse gas emission reduction costs for biomass-based fuels used in transportation and combined heat and power production (CHP) compared to reference fuels. New business opportunities were identified based on the results. Both commercial technologies and technologies under development were assessed. The most suitable large-scale technologies for Finnish conditions were selected for the evaluation. Technologies utilising field crops and forest biomass as raw materials were evaluated. The main options were barley-based ethanol, biodiesel (RME) from turnip rape, forest residue and reed canary grass-derived synthetic fuels, and forest residues and reed canary grass as a fuel for CHP production. The whole utilisation chain from fuel production to end-use was evaluated. The overall energy input per output ratio was less than one for all assessed transportation biofuel chains, which means that more energy is produced than consumed. This energy consumption per energy content of the fuels was, however, 3 to 5 fold compared to fossil fuel chains. The results indicated that the production and use of barley-based ethanol or biodiesel from turnip rape does not necessarily reduce greenhouse gas emissions, but can on the contrary increase the greenhouse gas emissions compared to fossil-based reference fuels, when the whole production and utilisation chain is considered. The second generation biofuels produced using forestry residues or reed canary grass as raw materials seem to be significantly more favourable as regards to greenhouse gas emissions, which results mainly from significantly lower fertilization levels of particular raw materials expressed in terms of energy. Significant uncertainties are involved in the emission estimates. Production of transportation biofuels is currently 30.100% more expensive than production of fossil fuels. The emission reduction costs for the second

  15. Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst

    International Nuclear Information System (INIS)

    Cotton seed, as a biomass source, is pyrolysed in a tubular fixed-bed reactor under various sweeping gas (N2) flow rates at different pyrolysis temperatures. In the non-catalytic work, the maximum bio-oil yield was attained as 48.30% at 550 oC with a sweeping gas flow rate of 200 mL min-1. At the optimum conditions, catalytic pyrolysis of biomass samples was performed with various amounts of MgO catalyst (5, 10, 15, and 20 wt.% of raw material). Catalyst addition decreased the quantity of bio-oil yet increased the quality of bio-oil in terms of calorific value, hydrocarbon distribution and removal of oxygenated groups. It was observed that increasing the amount of catalyst used, decreased the oil yields while increased the gas and char yields. Bio-oils obtained at the optimum conditions were separated into aliphatic, aromatic and polar sub-fractions. After the application of column chromatography, bio-oils were subjected into elemental, FT-IR and 1H NMR analyses. Aliphatic sub-fractions of bio-oils were analyzed by GC-MS. It was deduced that the fuel obtained via catalytic pyrolysis mainly consisted of lower weight hydrocarbons in the diesel range. Finally, obtained results were compared with petroleum fractions and evaluated as a potential source for liquid fuels.

  16. SELECTION OF BIOMASS MATERIALS PRODUCING CHAR AND ANALYSIS OF CALORIC REQUIREMENT%生物质炭化原料选择及需热量分析

    Institute of Scientific and Technical Information of China (English)

    胡威; 胡建杭; 王华; 杨丽; 邓双辉; 李娟琴

    2012-01-01

    从生物质原料的工业分析结果和木质素含量两个角度出发,分析了二者对生物质炭化的影响.对生物质炭化原料进行选择,认为木材类生物质适合作为生物质炭化的原料,可加强对树木枝条、锯末及薪炭林的炭化;为实现生物质炭化的工业化,还应设计利用烟气余热等热源来热解生物质的换热器,这项设计需知道生物质热解需热量.运用热重-差示扫描(TG-DSC)同步热分析仪对选用的木屑进行热解实验并利用DSC曲线对木屑炭化需热量进行分析.结果表明,木屑炭化终温为500℃时(初始温度为40℃),需热量为491 kJ/kg.提出DSC曲线在工业用热解换热器传热设计和校核中的应用方法.%Biomass materials for producing char had been selected after analyzing the influences of the two aspects on biomass carbonization. The two aspects are respectively the results of proximate analysis and lignin content of biomass materials. Forest biomass is suitable for biomass carbonization. The use of forest branches, sawdust and fuel forest for carbonization should been strengthened. In order to realize industrialization of biomass carbonization, heat exchanges for biomass pyrolysis utilizing residual heat of the flue should been designed. It needs to know the caloric requirement of pyrolysis. TG-DSC simultaneous thermal analyzer was used for experiments of sawdust. The analysis of caloric requirement of biomass carbonization was made. When the carbonization temperature was 500 ℃(the initial temperature was 40 ℃), caloric requirement was 491 kJ/kg. This paper also pointed out a DSC curve's application method in heat transfer design and verification of heat exchange for biomass pyrolysis.

  17. Plasma Treatments and Biomass Gasification

    International Nuclear Information System (INIS)

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  18. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  19. Viability analysis of electric energy cogeneration in combined cycle with sugar-cane biomass gasification and natural gas; Analise de viabilidade da cogeracao de energia eletrica em ciclo combinado com gaseificacao de biomassa de cana-de-acucar e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Correa Neto, Vicente

    2001-03-15

    The objective of this thesis is evaluate the technical and economic viability of electric energy generation projects using as fuel the biomass produced in the sugar cane Brazilian industry, specifically the cane trash, the straw and the leaves of the plant, as complemental option to the expansion of the Brazilian electric system, hour in phase of deep modification in the institutional scenery, through the sale of electric energy for direct consumers or utilities, characterizing the business possibilities for the ethanol distilleries already integrated into the energy reality of the country. The analyzed technology is thermoelectric generation with combined cycle, operating in cogeneration, integrated to biomass gasification systems for the production of combustible gas, with and without addition of natural gas. The considered technology is known by the acronym BIG/GTCC, originated in Biomass Integrate Gasification Combined Cycle Gas Turbine. The economic analysis is made herself through a modeling and construction of economy project curves based on the prices of the electric energy, of the natural gas and in the costs of the retired biomass in an mechanized way.(author)

  20. The Relationships between Crude Oil Prices, Financial Performances and Share Prices of Oil and Gas Producers

    OpenAIRE

    Liu, Ying Gui

    2014-01-01

    The paper investigates the relationships between crude oil prices, financial performances and share prices of 233 studied oil and gas producers. Hamilton's (2003) study emphasized the significant correlation between increases in crude oil prices and US recessions. Hamilton (2010) also pointed out that almost all major economic downturns have been immediately preceded by a significant rise in oil prices. This study collects and uses all of the 233 worldwide listed oil and gas pr...

  1. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  2. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    International Nuclear Information System (INIS)

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  3. Economic assessment of solar and conventional biomass gasification technologies: Financial and policy implications under feedstock and product gas price uncertainty

    International Nuclear Information System (INIS)

    Four configurations of a novel solar-heated biomass gasification facility and one configuration of conventional biomass gasification are analyzed through financial and policy scenarios. The purpose of this study is to determine the potential financial position for varying configurations of a novel technology, as compared to the current state-of-the-art gasification technology. Through the use of project finance and policy scenario development, we assess the baseline breakeven syngas price (normalized against natural gas prices and based upon annual feedstock consumption), the sensitivity of major cost components for the novel facilities, and the implications of policy levers on the economic feasibility of the solar facilities. Findings show that certain solar configurations may compete with conventional facilities on a straightforward economic basis. However, with renewable energy policy levers in place the solar technologies become increasingly attractive options. - Highlights: • We model four solar and one conventional biomass gasification systems. • We assess economic feasibility of these systems with and without policy incentives. • Solar facilities compete with the conventional system in certain scenarios. • Feedstock costs are the largest contributor to system cost sensitivity. • Policy incentives create an economically favorable scenario for solar facilities

  4. Alternate method for gas measurement to offshore wells producing by plunger lift

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sergio Jose Goncalves e [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Mota, Francisco das Chagas [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The purpose of this paper is to describe an alternate method for gas measurement to wells producing by conventional plunger lift to a two phase separator in offshore production systems. The principle of the plunger lift is basically the use of a free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well's lifting efficiency. However, when the piston reaches the surface a liquid slug is produced through the flowline and it propagates into the separator where the phases are measured. Usually, orifice meter is widely used in separators to measure steady-state gas flow rate, but when intermittent flow is present, the gas causes the signal saturation of the differential pressure element ({delta}P), resulting in measurement distortion. The solution proposed in this work to estimate the gas flow rate during the liquid slug it was obtained through the mathematical modeling of the separator and with the use of System Identification Theory. Applying the ARX model it was possible to get the best fit to the collected data. So, with this model and its recursive variant (RARX) it was possible to prove that, with reasonable forecast degree, the signal of the gas flow rate can be recovered by starting from the signal of the pressure control valve of the separator. (author)

  5. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  6. Bubble Formation at a Submerged Orifice for Aluminum Foams Produced by Gas Injection Method

    Science.gov (United States)

    Fan, Xueliu; Chen, Xiang; Liu, Xingnan; Zhang, Huiming; Li, Yanxiang

    2013-02-01

    The bubble formation at a submerged orifice in the process of aluminum foams produced by gas injection method is investigated. The experimental results show that the increase of the gas flow rate and the orifice diameter can lead to increasing of the bubble size. The large orifice can make the frequency of bubble formation decrease by slowing down the increase of the gas chamber pressure when the gas flow rate increases. The effect of the gas chamber volume on the bubble size can be ignored in the experiment when it expands from 1 to 125 cm3. A theoretical model of bubble formation, expansion, and detachment under constant flow conditions is established to predict the bubble size. The theoretical predictions for air-aluminum melt systems are consistent with the experimental results.

  7. Study of the propagation of ultra-intense laser-produced fast electrons in gas jets

    Science.gov (United States)

    Batani, D.; Manclossi, M.; Piazza, D.; Baton, S. D.; Benuzzi-Mounaix, A.; Koenig, M.; Popescu, H.; Amiranoff, F.; Rabec Le Gloahec, M.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.

    2006-06-01

    We present the results of some recent experiments performed at the LULI laboratory using the 100 TW laser facility concerning the study of the propagation of fast electrons in gas targets. Novel diagnostics have been implemented including chirped shadowgraphy and proton radiography. Proton radiography images did show the presence of very strong fields in the gas probably produced by charge separation. In turn, these imply a slowing down of the fast electron cloud as it penetrates in the gas, and a strong inhibition of propagation. Indeed chirped shadowgraphy images show a strong reduction of the electron cloud velocity from the initial value close to a fraction of c.

  8. Study of the propagation of ultra-intense laser-produced fast electrons in gas jets

    Energy Technology Data Exchange (ETDEWEB)

    Batani, D.; Manclossi, M.; Piazza, D. [Milano-Bicocca Univ., Dipt. di Fisica G. Occhialin (Italy); Batani, D. [Ecole Polytechnique, LOA, Palaiseau (France); Baton, S.D.; Benuzzi-Mounaix, A.; Koenig, M.; Popescu, H.; Amiranoff, F.; Rabec Le Gloahec, M. [Ecole Polytechnique, LULI, Palaiseau (France); Rousseaux, C. [CEA Bruyeres-le-Chatel, 91 (France); Borghesi, M.; Cecchetti, C. [Belfast Univ. Queen' s (United Kingdom)

    2006-06-15

    We present the results of some recent experiments performed at the LULI laboratory using the 100 TW laser facility concerning the study of the propagation of fast electrons in gas targets. Novel diagnostics have been implemented including chirped shadowgraphy and proton radiography. Proton radiography images did show the presence of very strong fields in the gas probably produced by charge separation. In turn, these imply a slowing down of the fast electron cloud as it penetrates in the gas, and a strong inhibition of propagation. Indeed chirped shadowgraphy images show a strong reduction of the electron cloud velocity from the initial value close to a fraction of c. (authors)

  9. The effects of location, feedstock availability, and supply-chain logistics on the greenhouse gas emissions of forest-biomass energy utilization in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Jappinen, E,

    2013-11-01

    Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass's availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues

  10. CO2 removal from municipal waste incinerator flue gas and biomass production by microalgae

    Czech Academy of Sciences Publication Activity Database

    Doušková, Irena; Doucha, Jiří; Novák, P.; Umysová, Dáša; Vítová, Milada; Zachleder, Vilém

    České Budějovice: Scientific Pedagogical Publishing,, 2008, s. 35-37. ISBN 80-85645-58-0. [Biotechnology 2008. České Budějovice (CZ), 13.02.2008-14.02.2008] Institutional research plan: CEZ:AV0Z50200510 Keywords : microalgae * biomass * bioremediation Subject RIV: EE - Microbiology, Virology

  11. Thermodynamic Model of a Very High Efficiency Power Plant based on a Biomass Gasifier, SOFCs, and a Gas Turbine

    Directory of Open Access Journals (Sweden)

    P V Aravind

    2012-07-01

    Full Text Available Thermodynamic calculations with a power plant based on a biomass gasifier, SOFCs and a gas turbine are presented. The SOFC anode off-gas which mainly consists of steam and carbon dioxides used as a gasifying agent leading to an allothermal gasification process for which heat is required. Implementation of heat pipes between the SOFC and the gasifier using two SOFC stacks and intercooling the fuel and the cathode streams in between them has shown to be a solution on one hand to drive the allothermal gasification process and on the other hand to cool down the SOFC. It is seen that this helps to reduce the exergy losses in the system significantly. With such a system, electrical efficiency around 73% is shown as achievable.

  12. Radionuclides in produced water from Norwegian oil and gas installations - concentrations and bioavailability

    International Nuclear Information System (INIS)

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. This study reports results indicating that the presence of added chemicals such as scale inhibitors in produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bioavailability of radium (and barium) will be larger than anticipated. Also, the bioavailability of food-borne radium is shown to increase due to presence of such chemicals. (author)

  13. Process Integration and Optimization of a Solid Oxide Fuel Cell – Gas Turbine Hybrid Cycle fuelled with Hydrothermally Gasified Waste Biomass

    OpenAIRE

    Facchinetti, Emanuele; Gassner, Martin; D'Amelio, Matilde; Maréchal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio)fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673-773 K, whereas SOFC is characterized by ...

  14. Effect of Oxygen Content on the Sintering Behaviour of Silver Nanopowders Produced by Inert Gas Condensation

    OpenAIRE

    TÜRKER, Mehmet

    2002-01-01

    Polymer-based materials are made electrically conductive by combining with a particulate conductive material. Instead of using high aspect-ratio conventional fillers, such as fibres and flakes, highly porous silver nanopowders were produced for using in polymer matrix composites. Such powders were produced by inert gas condensation (IGC) in a helium atmosphere with or without additional oxygen. The effect of oxygen content on the size, morphology and specific surface area of the particle...

  15. Produced water from off-shore oil and gas production, a new challenge in marine pollution monitoring

    International Nuclear Information System (INIS)

    Produced water consists of water naturally present in the oil and gas reservoir (formation water), flood water previously injected into the formation, and/or, in the case of some gas production, condensed water. Produced water is part of the well stream together with oil and/or gas

  16. Preliminary Observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    Science.gov (United States)

    Lee, T.; Kreidenweis, S. M.; Collett, J. L.; Sullivan, A. P.; Carrico, C. M.; Jimenez, J. L.; Cubison, M.; Saarikoski, S.; Worsnop, D. R.; Onasch, T. B.; Fortner, E.; Malm, W. C.; Lincoln, E.; Wold, C. E.; Hao, W.

    2010-12-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion of wild land fuels, an experiment was conducted in 2009 at the U.S. Forest Service/United States Department of Agriculture (USFS/USDA) Fire Science Laboratory (FSL) located in Missoula, Montana, to measure volatility of open biomass burning emissions for a variety of fuel types. Both isothermal and temperature-dependent volatilization were studied, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with thermal denuder. Small quantities (200-800g) of various fuel types, primarily from the U.S., were burned in a large combustion chamber and diluted in two stages in continuous-flow residence chambers. The partitioning of particulate organic mass concentrations by the HR-ToF-AMS was evaluated for each fuel type using nominal dilution ratios characterized both by measuring flow rates in continuous-flow residence chambers and from the concentrations of several conserved tracers. The volatility of biomass burning smoke was found to vary across fuel types. Up to ~60% volatile loss of organic matter was observed as a result of dilution for some smoke samples (e.g., Lodgepole pine and Ponderosa pine). We will investigate relationships between volatility and several parameters such as the absolute mass concentration and chemical composition. We will also examine the behavior of biomass burning tracers, such as AMS m/z 60, under dilution conditions. Previous studies (e.g. Lee et al., AS&T 2010 and Aiken et al., ACP 2009) have observed a strong relationship between OA and AMS m/z 60 in fresh biomass burning smoke. We will examine whether this relationship is altered

  17. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY PROCEDURES GOVERNING DETERMINATIONS FOR TAX CREDIT PURPOSES DETERMINATION PROCEDURES Requirements...

  18. Ways of improving accounting for production costs of gas producing companies under conditions of budgeting

    OpenAIRE

    Вигівська, Ірина Миколаївна; Чухліб, О. А.

    2015-01-01

    Issues of effective organization of accounting for production costs of gas producing companies have been considered as well as the accounting model of forming production costs of such companies with the purpose of developing the appropriate methods of accounting for production costs and providing efficiency of the costing and budgeting process has been worked out.

  19. Iron and Cobalt-based magnetic fluids produced by inert gas condensation

    International Nuclear Information System (INIS)

    Iron and cobalt nanoparticle fluids have been prepared by inert-gas condensation into an oil/surfactant mixture. Superparamagnetic iron fluids (mean particle size=11.6±0.4 nm) and ferromagnetic cobalt fluids (mean particle size=51.6±3.4 nm) produced by this technique are promising candidates for magnetic targeting and hyperthermia applications

  20. Green House Gas Control and Agricultural Biomass for Sustainable Animal Agriculture in Developing Countries

    OpenAIRE

    Takahashi, J.

    2010-01-01

    Important green house gases (GHG) attributed to animal agriculture are methane (CH4) and nitrous oxide (N2O), though carbon dioxide (CO2) contributes almost half of total greenhouse effect. Rumen CH4 production in an enteric fermentation can be accounted as the biggest anthropogenic source. Some of prebiotics and probiotics have been innovated to mitigate rumen CH4 emission. The possible use of agricultural biomass consisted of non-edible parts of crop plants such as cellulose and hemi cellul...

  1. Hydrogen Production via Synthetic Gas by Biomass/Oil Partial Oxidation

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Tukač, V.; Veselý, Václav; Kováč, D.

    176-177, - (2011), s. 286-290. ISSN 1385-8947. [International Conference on Chemical Reactors CHEMREACTOR-19 /19./. Vienna, 05.09.2010-09.09.2010] R&D Projects: GA MPO 2A-2TP1/024 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen * biomass * partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.461, year: 2011

  2. Detection of hydrogen gas-producing anaerobes in refuse-derived fuel (RDF) pellets.

    Science.gov (United States)

    Sakka, Makiko; Kimura, Tetsuya; Ohmiya, Kunio; Sakka, Kazuo

    2005-11-01

    Recently, we reported that refuse-derived fuel (RDF) pellets contain a relatively high number of viable bacterial cells and that these bacteria generate heat and hydrogen gas during fermentation under wet conditions. In this study we analyzed bacterial cell numbers of RDF samples manufactured with different concentrations of calcium hydroxide, which is usually added to waste materials for the prevention of rotting of food wastes and the acceleration of drying of solid wastes, and determined the amount of hydrogen gas produced by them under wet conditions. Furthermore, we analyzed microflora of the RDF samples before and during fermentation by denaturing gradient gel electrophoresis of 16S rDNA followed by sequencing. We found that the RDF samples contained various kinds of clostridia capable of producing hydrogen gas. PMID:16306688

  3. Thermal tests of the 9FB gas turbine unit produced by general electric

    Science.gov (United States)

    Ol'khovskii, G. G.; Radin, Yu. A.; Mel'nikov, V. A.; Tuz, N. E.; Mironenko, A. V.

    2013-09-01

    In July 2011, a PGU-410 combined-cycle power plant was commissioned at the Srendeuralsk district power station owned by Enel OGK-5. The main equipment of this power plant includes an MS9001FB gas turbine unit (produced by GE Energy Power Plant Systems, the United States), a heat recovery boiler (produced by Nooter/Ericsen, the United States), and a >Skoda KT-140-13.3 two-cylinder condensing and cogeneration turbine with steam reheating. In 2011-2012, specialists of the All-Russia Thermal Engineering Institute carried out thermal tests of this power plant in a wide range of loads and under different external conditions. The results from thermal tests of the MS9001FB gas turbine unit are presented and analyzed. The actual indicators of the gas turbine unit and its elements are determined and their characteristics are constructed.

  4. Modeling of biomass gasification

    International Nuclear Information System (INIS)

    Full text: Optimal conversion of chemical energy of the biomass or other solid fuel into the desired gas depends on proper configuration, sizing, and choice of gasifier operating conditions. Optimum operating conditions are often derived through trials on the unit or by experiments on pilot plants. Simulation, or mathematical modeling, allows the designer or plant engineer to reasonably optimize the operation or the design of the plant. The good mathematical model can: find optimum operating conditions or a design for the gasifier, provide information on extreme operating conditions (high temperature, high pressure) where experiments are difficult to perform, provide information over a much wider range of conditions than one can obtain experimentally, better interpret experimental results and analyze abnormal behavior of a gasifier, if that occurs, assist scale-up of the gasifier from one successfully operating size to another, and from one feedstock to another. The equilibrium model is independent of the gasifier design which can make them more suitable for a system study of the most important process parameters. The use of an equilibrium model assumes that the residence time of the reactants in the gasifier is high enough to reach chemical equilibrium. For established biomass ultimate analysis, temperature of gasification air and temperature of produced gas, combining the mass balance equations with the equations for the equilibrium constants and equation of energy balance, the equivalence ratio (ER) and composition of produced gas can be obtained. A mathematical model for investigation of the influence of temperature of the produced gas and temperature of gasification air on the process parameters was developed. It can be used for estimation and design of gasification equipment. key words: biomass gasification, mathematical modeling, equilibrium model

  5. Use of grape pomaces to produce biomass of aKomagataella pastoris strain expressing a bovine chymosin activity

    OpenAIRE

    Kingston, Diego; Novelli, Guido F; Cerrutti, Patricia; Recupero, Matias N; Blasco, Martin; Galvagno, Miguel A

    2014-01-01

    The use of agroindustrial wastes not only decreases bioprocesses and disposal costs but also contributes to the upgrading of the residues. An active recombinant methanol-inducible bovine chymosin has been expressed in our laboratory in the yeastKomagataella pastoris, and grape pomace extracts (GRE) were proposed as a convenient C-energy source for the biomass production of the genetically engineered strain. Carbon and nitrogen sources, growth factors, and initial pH conditions were selected b...

  6. Transformation of solar radiation in Norway spruce stands into produced biomass – the effect of stand density

    Czech Academy of Sciences Publication Activity Database

    Marková, I.; Pokorný, Radek; Marek, Michal V.

    2011-01-01

    Roč. 57, č. 6 (2011), s. 233-241. ISSN 1212-4834 R&D Projects: GA MŽP(CZ) SP/2D1/70/08; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : biomass production * LAI * Norway Spruce * PAR absorption * solar energy conversion Subject RIV: EH - Ecology, Behaviour

  7. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    Science.gov (United States)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial

  8. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  9. Nitrogen fertilization of switchgrass increases biomass yield and improves net greenhouse gas balance in northern Michigan, U.S.A

    International Nuclear Information System (INIS)

    Nitrogen (N) fertilization can increase bioenergy crop production; however, fertilizer production and application can contribute to greenhouse gas (GHG) emissions, potentially undermining the GHG benefits of bioenergy crops. The objective of this study was to evaluate the effects of N fertilization on GHG emissions and biomass production of switchgrass bioenergy crop, in northern Michigan. Nitrogen fertilization treatments included 0 kg ha-1 (control), 56 kg ha-1 (low) and 112 kg ha-1 (high) of N applied as urea. Soil fluxes of CO2, N2O and CH4 were measured every two weeks using static chambers. Indirect GHG emissions associated with field activities, manufacturing and transport of fertilizer and pesticides were derived from the literature. Switchgrass aboveground biomass yield was evaluated at the end of the growing season. Nitrogen fertilization contributed little to soil GHG emissions; relative to the control, there were additional global warming potential of 0.7 Mg ha-1 y-1 and 1.5 Mg ha-1 y-1 as CO2 equivalents (CO2eq), calculated using the IPCC values, in the low and high N fertilization treatments, respectively. However, N fertilization greatly stimulated CO2 uptake by switchgrass, resulting in 1.5- and 2.5-fold increases in biomass yield in the low and high N fertilization treatments, respectively. Nitrogen amendments improved the net GHG benefits by 2.6 Mg ha-1 y-1 and 9.4 Mg ha-1 y-1 as CO2eq relative to the control. Results suggest that N fertilization of switchgrass in this region could reduce (15-50%) the land base needed for bioenergy production and decrease pressure on land for food and forage crop production. -- Highlights: → We examine the effects of N fertilization of switchgrass on GHG emissions. → Effects of N fertilization on biomass production of switchgrass bioenergy crop. → N fertilization contributed little to greenhouse gas emissions. → N fertilization greatly stimulated CO2 uptake by the switchgrass. → N fertilization of

  10. The closure of European nuclear power plants: a commercial opportunity for the gas-producing countries

    International Nuclear Information System (INIS)

    The planned closure of nuclear power plants in Sweden, Germany, Belgium, Spain and the Netherlands and their hypothetical closure in the United Kingdom and Switzerland - two countries where this question remains open - will require their replacement by other types of production capacity, mainly gas turbine combined-cycle power stations (GTCCs). The increase in efficiency of GTCCs and the lower carbon content of natural gas favour the use of gas for electricity generation over coal. However, carbon dioxide emissions are unavoidable and, in the context of the Kyoto Protocol, supplementary measures must be taken to compensate, where possible, for the resulting increases in emissions. The replacement of nuclear plants with a 35-40 year lifetime by up-to-date GTCCs will require some 62 billion cubic metres per year of natural gas, resulting in an emissions increase of about 130 million tonnes per year of CO2. The replacement of polluting coal-fired and oil-fired plants by GTCCs will reduce CO2 emissions, but will also require some extra 42 bcm/y of natural gas, at an (unrealistic) high cost. In short, gas-producing countries will benefit from the market breakthrough of their 'clean' fuel, thanks to the GTCCs, and gas demand will be reinforced by the abandonment of nuclear power. (author)

  11. Shale gas produced water treatment using innovative microbial capacitive desalination cell

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Zachary A. [New Mexico State University, Las Cruces, NM 88003 (United States); Forrestal, Casey [University of Colorado Boulder, Boulder, CO 80309 (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [University of Colorado Boulder, Boulder, CO 80309 (United States); Xu, Pei, E-mail: wxpei@hotmail.com [New Mexico State University, Las Cruces, NM 88003 (United States)

    2015-02-11

    Highlights: • Actual shale gas produced water was treated with no external energy input. • Biodegradation of organics generated stable voltages for desalination. • On average, 36 mg TDS per g activated carbon was removed in 1 h. • A maximum organic removal rate of 6.4 mg DOC per hour was achieved in the reactor. - Abstract: The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization—a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input.

  12. Best practices for the management of CBM/NGC shale gas produced water

    International Nuclear Information System (INIS)

    Water produced from conventional oil and gas wells is traditionally re-injected to the subsurface. This presentation discussed best practices for the disposal of water produced during shale gas and coalbed methane (CBM) production. Issues related to subsurface and surface disposal were evaluated. Provincial rules and regulations were reviewed. Issues related to proving disposal capacity were discussed. Water resource impacts from produced water withdrawal were reviewed. Formation water disposal practices included deep well injection; shallow injection; surface discharge; atomization; evaporation and infiltration; treatment; and irrigation. Water formation characteristics were reviewed for various plays in the Western Canadian Sedimentary Basin (WCSB). In Alberta, saline waters must be re-injected into the subsurface. Non-saline water must have a preliminary groundwater assessment in order to be disposed of above-ground. Technical reports must be prepared by groundwater specialists. Hydrogeological information required during subsurface disposal includes details of drilling programs, testing of aquifer parameters, produced water quality and gas characteristics; and monitoring to identify unexpected impacts of withdrawal. Injection well testing and observation well data is used to identify suitable disposal sites. Potential water resource impacts were identified from produced water withdrawal. Surface discharge is considered when salinity is less than 4000 mg per litre, and is non-toxic to aquatic life. Toxicity is assessment under laboratory conditions. Regulations and guidelines for surface disposal were provided for both Alberta and British Columbia. refs., tabs., figs

  13. Shale gas produced water treatment using innovative microbial capacitive desalination cell

    International Nuclear Information System (INIS)

    Highlights: • Actual shale gas produced water was treated with no external energy input. • Biodegradation of organics generated stable voltages for desalination. • On average, 36 mg TDS per g activated carbon was removed in 1 h. • A maximum organic removal rate of 6.4 mg DOC per hour was achieved in the reactor. - Abstract: The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization—a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input

  14. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2005-09-29

    This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of

  15. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    Science.gov (United States)

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites. PMID:25903403

  16. A growth inhibitory model with SO(x) influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere.

    Science.gov (United States)

    Ronda, Srinivasa Reddy; Kethineni, Chandrika; Parupudi, Lakshmi Chandrika Pavani; Thunuguntla, Venkata Bala Sai Chaitanya; Vemula, Sandeep; Settaluri, Vijaya Saradhi; Allu, Prasada Rao; Grande, Suresh Kumar; Sharma, Suraj; Kandala, Chari Venkatakrishna

    2014-01-01

    A theoretical model for the prediction of biomass concentration under rice husk flue gas emission has been developed. The growth inhibitory model (GIM) considers the CO2 mass transfer rate, the critical SOx concentration and its role in pH-based inter-conversion of bicarbonate. The calibration and subsequent validation of the growth profile of Nannochloropsis limnetica at 2% and 10% (v/v) CO2 showed that the predicted values were consistent with the measured values, with r(2) being 0.96 and 0.98, respectively, and pphoto-bioreactors treated with flue gas in the generation of biomass feed stock for biofuel production. PMID:24300846

  17. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  18. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  19. Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification

    OpenAIRE

    Hassan Athari; Saeed Soltani; Marc A. Rosen; Seyed Mohammad Seyed Mahmoudi; Tatiana Morosuk

    2015-01-01

    Biomass energy and especially biofuels produced by biomass gasification are clean and renewable options for power plants. Also, on hot days the performance of gas turbines decreases substantially, a problem that can be mitigated by fog cooling. In the present paper, a biomass-integrated fogging steam injected gas turbine cycle is analyzed with energy and exergy methods. It is observed that (1) increasing the compressor pressure ratio raises the air flow rate in the plant but reduces the bioma...

  20. CFD analysis of combustion of natural gas and syngas from biomass pyrolysis in the combustion chamber of a micro gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Laranci, Paolo; D' Alessandro, Bruno [University of Perugia (DII/UNIPG) (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, paolo.laranci@unipg.it, dalessandro@bio-net.it

    2009-07-01

    Micro gas turbines (MGT) can be profitably used for the production of distributed energy (DE), with the possibility to use gaseous fuels with low BTU derived from biomass or waste through the pyrolysis or gasification processes. These synthesis gases (SG) show significant differences with respect to natural gas (NG), in terms of composition, calorific value, content of hydrogen, tar and particulate matter content; such differences can be turn into problems of ignition, instability burning, difficulties in controlling the emissions and fouling. CFD analysis of the combustion process is an essential tool for identifying the main critical arising in using these gases, in order to modify existing geometries and to develop new generation of combustor for use with low BTU gases. This paper describes the activities of experimental and numerical analysis carried out to study the combustion process occurring inside an existing annular Rich-Quench-Lean (RQL) Combustion Chamber (CC) of a 80 kW MGT. In the paper some results of a CFD study of the combustion process performed with an original developed chemical models are reported in terms of temperature and velocity distributions inside the CC and in terms of compositions of turbine inlet gas and of its thermodynamic parameters (mass flow, temperature, pressure). An evaluation of pollutant emissions of CO, CO{sub 2} and NOx and a comparison with the available experimental data relating to the case of combustion of NG is also provided in the paper. Moreover, the carried out investigation concerns the case of operation with a SG fuel derived from biomass in an Integrated Pyrolysis Regenerated Plant (IPRP). (author)

  1. Economic scales for first-generation biomass-gasifier/gas turbine combined cycles fueled from energy plantations

    International Nuclear Information System (INIS)

    This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology is likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The optimum capacity (MWopt), defined as that which yields the minimum calculated cost of electricity (COEm), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MWopt is in the range of 230--320 MWe for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MWopt ranges from 110 to 142 MWe. When a lower fraction of the land around a plant is used for energy farming, values for MWopt are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MWopt

  2. Experience in producing LEU fuel elements for the RSG-GAS

    International Nuclear Information System (INIS)

    To achieve a self-reliance in the operation of the 30 MW Multipurpose Research Reactor at Serpong (the RSG-GAS), a fuel element production facility has been constructed nearby. The main task of the facility is to produce MTR type fuel and control elements containing U3O8-Al dispersion LEU fuel for the RSG-GAS. The hot commissioning activity has started in early 1988 after completion of the cold commissioning using depleted uranium in 1987, marking the beginning of the real production activity. This paper briefly describes the main features of the fuel production facility, the production experience gained so far, and its current production activity. (orig.)

  3. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε{sub Sr}{sup SW} = +13.8 to +41.6, where ε{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  4. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  5. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    Science.gov (United States)

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry. PMID:25783163

  6. Combining protein extraction and anaerobic digestion to produce feed, fuel and fertilizer from green biomass – An organic biorefinery concept

    DEFF Research Database (Denmark)

    Fernandez, Maria Santamaria; Salces, Beatriz Molinuevo; Lübeck, Mette;

    Organically grown green biomass (red clover, clover grass) was investigated as a resource for organic feed and organic fertilizer by combination of proteins extraction and anaerobic digestion of the residues. Extraction of proteins from both crops revealed very favourable amino acid composition f...... inhibition was detected but the adaptation of microorganisms in the case of the press cake and the substrate overload in the case of the brown juice played a major role for efficient conversion of both fractions during the anaerobic digestion process....

  7. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  8. Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion

    International Nuclear Information System (INIS)

    The aim of this consequential life cycle assessment (LCA) is to compare district heating based on waste incineration with combustion of biomass or natural gas. The study comprises two options for energy recovery (combined heat and power (CHP) or heat only), two alternatives for external, marginal electricity generation (fossil lean or intense), and two alternatives for the alternative waste management (landfill disposal or material recovery). A secondary objective was to test a combination of dynamic energy system modelling and LCA by combining the concept of complex marginal electricity production in a static, environmental systems analysis. Furthermore, we wanted to increase the methodological knowledge about how waste can be environmentally compared to other fuels in district-heat production. The results indicate that combustion of biofuel in a CHP is environmentally favourable and robust with respect to the avoided type of electricity and waste management. Waste incineration is often (but not always) the preferable choice when incineration substitutes landfill disposal of waste. It is however, never the best choice (and often the worst) when incineration substitutes recycling. A natural gas fired CHP is an alternative of interest if marginal electricity has a high fossil content. However, if the marginal electricity is mainly based on non-fossil sources, natural gas is in general worse than biofuels

  9. Evaluation of reduced kinetics in simulation of gasified biomass gas combustion

    OpenAIRE

    ZHANG, Xiaoxiang; Jayasuriya, Jeevan; Fakhraie, Reza; Fransson, Torsten

    2013-01-01

    It is essentially important to use appropriate chemical kinetic models in the simulation process of gas turbine combustion. To integrate the detailed kinetics into complex combustion simulations has proven to be a computationally expensive task with tens to thousands of elementary reaction steps. It has been suggested that an appropriate simplified kinetics which are computationally efficient could be used instead. Therefore reduced kinetics are often used in CFD simulation of gas turbine com...

  10. Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas

    International Nuclear Information System (INIS)

    The paper presents the results of the experimental study on the simulated application of HTR (High Temperature Reactor) excess heat in the process of allothermal co-gasification of coal and biomass. The laboratory scale installation with a fixed bed gasifier and auxiliary gasification agents pre-heating system, simulating the utilization of the HTR excess heat, were applied in the study. Steam and oxygen were the gasification media employed, and the process was focused on hydrogen-rich gas production. The results of the co-gasification of fuel blends of various biomass content at 800 °C and in various system configurations proved that the application of the simulated HTR excess heat in pre-heating of the gasification agents leads to the increase in the gaseous product yield. Furthermore, the HCA (Hierarchical Clustering Analysis) employed in the experimental data analysis revealed that the gasification of fuel blends of 20 and 40%w/w of biomass content results in higher volumes of the total gas, hydrogen, carbon monoxide and carbon dioxide than gasification of fuel blends of higher biomass content. - Highlights: • Simulated utilization of HTR excess heat in co-gasification of coal and biomass. • Assessment of three system configurations in terms of hydrogen production. • Application of the HCA in the experimental data set analysis. • Variation in gas components volume and content with fuel blend composition

  11. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershöfer

    2007-08-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa, respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.

  12. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier

    International Nuclear Information System (INIS)

    Highlights: ► Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. ► The effects of sewage sludge content on the gasification process were examined. ► Sewage sludge addition up to 30 wt.% reduces moderately the process performance. ► At high sewage sludge content slagging and clinker formation occurred. ► Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH3, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H2S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for

  13. Study of Plasma Treatment of Produced Water from Oil and Gas Exploration

    Science.gov (United States)

    Wright, Kamau

    Unconventional gas and hydraulic fracturing is helping to increase natural gas production, which is widely viewed in the U.S. as a key asset to bolstering a clean and energy-independent future. Safe and economical management and treatment of water produced during such processes remain of key importance. With the increase of hydrocarbon production and national shale gas production expected to increase threefold and account for nearly half of all natural gas produced by 2035, advanced water treatment and management processes must be investigated, to ensure water conservation and associated economic prudence. The state of the art of produced water treatment technologies is described including the efficacy of plasma to modulate the contents of such aqueous solutions, meeting target parameters and potentially enabling the operation of other treatment technologies. Among other effects, progress is presented on the enhancement of an arc-in-water system to remove bicarbonate ions and prevent the mineral fouling ability of water which causes formation of CaCO3 in heat exchangers and distillation units. Qualitative and quantitative treatment targets of produced water treatment are discussed. Experimental work is conducted to test theories and identify and reproduce favorable effects useful to treating wastewaters. Plasma arc-in-water systems demonstrated capability of producing bicarbonate-depleted wastewaters, with experiments with gas-field produced waters indicating that generation of H+ ions plays a greater role in bicarbonate ion removal than local heating. Tests showed abatement of bicarbonate ions from a range of 684--778 mg/L down to zero. Subsequent scaling/fouling tests with waters ranging from 0 to 500 mg/L bicarbonate ions, in the presence of high calcium ion concentrations, showed that scale thickness, as well as mass on a 1-kW heating element was an order of magnitude less for process water containing 100 mg/L bicarbonate ions compared to process water with 500

  14. Challenges of Membrane Filtration for Produced Water Treatment in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian;

    2016-01-01

    the Water Flooding Technology (WFT) is employed. The quality requirements for WFT and the increasing environmental concerns for produced water discharge lead to increased interest in zero-pollutant discharge. Traditional Produced Water Treatment (PWT) technologies(such as hydrocyclones) are already......Tremendous amount of produced water are discharged into the sea from offshore oil & gas installations. Along with every barrel of oil three barrels of water are produced and this is only worsen as the fields mature. Enhanced oil recovery (EOR) is employed to increase production, as a part of EOR...... is to guarantee that a relatively high permeability can be kept during filtration. Another crucial issue using membrane filtration technology is its huge energy consumption, for which there is little research has been done so far to systematically investigate and optimize the filtration system’s...

  15. Model performance of a biomass-fueled power station with variable furnace exit gas temperature to control fouling deposition

    Science.gov (United States)

    Yomogida, David Edwin

    A major problem associated with the utilization of any biomass fuel in direct-combustion energy production is fouling (ash deposition on boiler surfaces) and the related issue of slagging, resulting from transformations among the inorganic constituents of the fuel. These deposits reduce heat transfer from the fire- to water-side, reducing power plant efficiency and necessitating the design of more tolerant heat exchange equipment. Wood: currently serves as the major source of fuel in biomass conversion to energy because of its more general availability, and it suffers less from fouling and slagging than many other biomass fuels such as rice straw. To reduce fouling severity, furnace exit gas temperature (FEGT) may be decreased to solidify ash ahead of superheaters and other heat exchanger equipment. Thermal and economic computer models of a direct-combustion Rankine cycle power plant were developed to predict the impact of variable FEGT and overall heat transfer coefficient on power plant efficiency and economy. No attempt was made to model the fire-side processes leading to the formation of fouling deposits. A base case: operational and economic profile of a biomass power plant was established, and models, were executed using these parameters, approximating a power plant efficiency of 19.9% and a cost of electricity (COE) of 0.0636 kWh-1 (including capital costs). If no capital, costs are included, then COE is 0.0205 kWh-1. Sensitivity analyses were performed on power plant efficiency and COE. Changes in FEGT through variable excess air resulted in substantial sensitivity in power plant efficiency (plant efficiency of 21.4% for FEGT of 1030°C (5% excess air) and 18.7% for 924°C (55% excess air)). Plant efficiency was determined to be moderately sensitive to changes in overall heat transfer coefficient on the secondary superheater (18.7% for no heat transfer through secondary superheater and 19.9% for base case heat transfer). Fouling scenarios showed that FEGT

  16. QUALITY ENHANCEMENT OF PRODUCER GAS FROM CASSAVA RHIZOME USING HIGH TEMPERATURE AIR-STEAM DOWNDRAFT GASIFICATION

    Directory of Open Access Journals (Sweden)

    Worapot Ngamchompoo

    2013-01-01

    Full Text Available High Temperature Air-Steam Gasification (HTAG was performed on a bench-scale downdraft gasifier. A cassava rhizome was used as feedstock for the gasification. Air and steam were utilized as the gasifying agents. The objectives in this study were to study the potential of HTAG technology applied with a downdraft gasifier to improve producer gas quality in terms of Higher Heating Value (HHV and lower tar content. The results were compared with conventional air-steam gasification (without preheating. The results were that the HHV of the producer gas from the HTAG process at 900°C improved by as much as 5.1 MJ/Nm3 (at S/B ratio = 0.3, while the air-steam gasification, HTAG at 300°C and HTAG at 600°C couldonly obtain a HHV of 3.8 MJ/Nm3 (at S/B = 0.4, 4.2 MJ/Nm3 (at S/B = 0.1 and4.8 MJ/Nm3 (at S/B = 0.2, respectively. In addition, tar content in the producer gas of the HTAG process at 900°C had the lowest value (95 mg/m3 which could be used as fuel in an internal combustion engine. While the minimum tar content of the air-steam gasification was 320 mg/m3. In the HTAG process at 900°C, the maximum Cold Gas Efficiency (CGE was 65%, which was slightly lower than the CGE of air-steam gasification (69%. However, in the HTAG process at 300, 600 and 900°C the maximum Hot Gas Efficiency (HGE increased 33% (from 72 to 96%, 25 (from 72 to 90% and 7 (from 72 to 77%, respectively; when compared with air-steam gasification.

  17. Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass -- Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney; Erin M. Searcy

    2009-04-01

    This report, Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass, prepared by Idaho National Laboratory (INL), acknowledges the need and provides supportive designs for an evolutionary progression from present day conventional bale-based supply systems to a uniform-format, bulk solid supply system that transitions incrementally as the industry launches and matures. These designs couple to and build from current state of technology and address science and engineering constraints that have been identified by rigorous sensitivity analyses as having the greatest impact on feedstock supply system efficiencies and costs.

  18. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    OpenAIRE

    Aleksander Lisiecki

    2015-01-01

    A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers w...

  19. Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and Honge oil and its methyl ester (HOME) with and without carburetor

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Poona Bangalore Road, Hubli, Karnataka 580031 (India)

    2009-04-15

    In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Biomass is basically composed of carbon, hydrogen and oxygen. A proximate analysis of biomass indicates the volatile matter to be between 60-80% and 20-25% carbon and the rest, ash. The first part of sub-stoichiometric oxidation leads to the loss of volatiles from biomass and is exothermic; it results in peak temperatures of 1400-1500 K and generation of gaseous products like carbon monoxide, hydrogen in some proportions and carbon dioxide and water vapor, which in turn are reduced in part to carbon monoxide and hydrogen by the hot bed of charcoal generated during the process of gasification. Therefore, solid biomass can be converted into a mixture of combustible gases, and subsequently utilized for combustion in a CI engine. Producer gas, if used in dual fuel mode, is an excellent substitute for reducing the amount of diesel consumed by the CI engine. Downdraft moving bed gasifiers coupled with an IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engines. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engines has limited applications due to higher domestic requirement. In view of this, Honge oil (Pongamia Pinnata Linn) is selected and its viscosity is reduced by the transesterification process to obtain Honge oil methyl ester (HOME). Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted in order to improve their performance. A gas

  20. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  1. Oil and gas industry in the 1990s in the producer country of Nigeria

    International Nuclear Information System (INIS)

    Plans for the development of the petroleum industry in Nigeria are outlined. Oil dominates the economy, well over 80% of export earnings being derived from petroleum. The ideal would be for Nigeria to become a net exporter of processed gas and refined petroleum products and derivatives but not of crude oil thus reaping the maximum benefit of value added earnings. This goal is being pursued wherever possible. By 1996, Nigeria should possess all the major constituents of a modern oil industry state. The three modern refineries which have a total capacity of 445,000 barrels per day will have the necessary pipelines, depots and export terminals. Four petrochemical plants will produce a range of products. A gas condensate field will be in production for export and a number of plants will be producing liquefied natural gas, natural gas liquids, methanol and MTBE. To achieve these objectives for its petroleum industry, Nigeria has set up a structure for the management framework and has developed a national petroleum policy. The salient points of the policy are given. (UK)

  2. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H{sub 2}-rich gas production

    Energy Technology Data Exchange (ETDEWEB)

    Fermoso, J.; Arias, B.; Gil, M.V.; Plaza, M.G.; Pevida, C.; Pis, J.J.; Rubiera, F. [CSIC, Oviedo (Spain)

    2010-05-15

    Four coals of different rank were gasified, using a steam/oxygen mixture as gasifying agent, at atmospheric and elevated pressure in a fixed bed reactor fitted with a solids feeding system in continuous mode. Independently of coal rank, an increase in gasification pressure led to a decrease in H{sub 2} + CO production and carbon conversion. Gasification of the different rank Coals revealed that the higher the carbon content and reactivity, the greater the hydrogen production, co-gasification experiments of binary (coal-biomass) and ternary blends (coal-petcoke-biomass) were conducted at high pressure to study possible synergetic effects. Interactions between the blend components were found to modify the gas production. An improvement in hydrogen production and cold gas efficiency was achieved when the coal was gasified with biomass.

  3. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  4. Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge.

    Science.gov (United States)

    Fang, F; Kennedy, J; Futter, J; Hopf, T; Markwitz, A; Manikandan, E; Henshaw, G

    2011-08-19

    Several different synthetic methods have been developed to fabricate tungsten oxide (WO(3)) nanostructures, but most of them require exotic reagents or are unsuitable for mass production. In this paper, we present a systematic investigation demonstrating that arc discharge is a fast and inexpensive synthesis method which can be used to produce high quality tungsten oxide nanostructures for NO(2) gas sensing measurements. The as-synthesized WO(3) nanostructures are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), finger-print Raman spectroscopy and proton induced x-ray emission (PIXE). The analysis shows that spheroidal-shaped monoclinic WO(3) crystal nanostructures were produced with an average diameter of 30 nm (range 10-100 nm) at an arc discharge current of 110 A and 300 Torr oxygen partial pressure. It is found that the morphology is controlled by the arc discharge parameters of current and oxygen partial pressure, e.g. a high arc discharge current combined with a low oxygen partial pressure results in small WO(3) nanostructures with improved conductivity. Sensors produced from the WO(3) nanostructures show a strong response to NO(2) gas at 325 °C. The ability to tune the morphology of the WO(3) nanostructures makes this method ideal for the fabrication of gas sensing materials. PMID:21778569

  5. Size-controlled synthesis and gas sensing application of tungsten oxide nanostructures produced by arc discharge

    International Nuclear Information System (INIS)

    Several different synthetic methods have been developed to fabricate tungsten oxide (WO3) nanostructures, but most of them require exotic reagents or are unsuitable for mass production. In this paper, we present a systematic investigation demonstrating that arc discharge is a fast and inexpensive synthesis method which can be used to produce high quality tungsten oxide nanostructures for NO2 gas sensing measurements. The as-synthesized WO3 nanostructures are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), finger-print Raman spectroscopy and proton induced x-ray emission (PIXE). The analysis shows that spheroidal-shaped monoclinic WO3 crystal nanostructures were produced with an average diameter of 30 nm (range 10-100 nm) at an arc discharge current of 110 A and 300 Torr oxygen partial pressure. It is found that the morphology is controlled by the arc discharge parameters of current and oxygen partial pressure, e.g. a high arc discharge current combined with a low oxygen partial pressure results in small WO3 nanostructures with improved conductivity. Sensors produced from the WO3 nanostructures show a strong response to NO2 gas at 325 0C. The ability to tune the morphology of the WO3 nanostructures makes this method ideal for the fabrication of gas sensing materials.

  6. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    International Nuclear Information System (INIS)

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  7. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  8. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    Science.gov (United States)

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely. PMID:26851894

  9. An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass wastein a boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chun Yang; Kadir, Sharifah Aishah Syed Abdul; Lim, Ying Pei; Syed-Ariffin, Sharifah Nawirah; Zamzuri, Zurinawati [Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2008-07-15

    Ash derived from combustion of Malaysian oil palm biomass (empty fruit bunches consisting of fibers) was physically and chemically characterized in order to provide a comprehensive understanding of its specific properties in terms of toxicity, compositions and reusability. Principal analyses conducted include particle size distribution, scanning electron microscopy, elemental dispersive X-ray, elemental analysis, toxicity characteristic leaching procedure (TCLP) as well as thermogravimetric, X-ray diffractometry and Fourier-transform infrared analyses. TCLP result indicated that the oil palm ash (OPA) should not be classified as toxic wastes in terms of heavy metal leachability since leachable copper, cadmium, lead and nickel concentrations were detected below the stipulated leachability limits. It was determined that the OPA contained high amount of potassium as well as presence of silica which implied its suitability to be reused as crude fertilizer or cement replacement material. (author)

  10. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    Science.gov (United States)

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  11. Bridging gaps in bioenergy: Deploying system analysis to investigate potential biomass supply, demand and greenhouse gas mitigation scenarios from a national, European and global perspective

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.

    2014-01-01

    In transition towards a sustainable energy system with deep reductions in greenhouse gas (GHG) emissions and reduced consumption of fossil fuels, substitution of fossil energy carriers with biomass is considered one of the most important options. In the last decade, fossil energy and GHG mitigation

  12. Biomass-based gasifiers for internal combustion (IC) engines—A review

    Indian Academy of Sciences (India)

    Ashish Malik; S K Mohapatra

    2013-06-01

    The world is facing severe problems of energy crisis and environmental problem. This situation makes people to focus their attention on sustainable energy resources for their survival. Biomass is recognized to be the major potential source for energy production. There are ranges of biomass utilization technologies that produce useful energy from biomass. Gasification is one of the important techniques out of direct combustion, anaerobic digestion – Biogas, ethanol production. Gasification enables conversion of these materials into combustible gas (producer gas), mechanical and electrical power, synthetic fuels, and chemical. The gasification of biomass into useful fuel enhances its potential as a renewable energy resource. This paper gives a comprehensive review of the techniques used for utilizing biomass, experimental investigation on biomass fuels, characterization, merits, demerits and challenges faced by biomass fuels.

  13. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  14. Biomass energy in the making

    International Nuclear Information System (INIS)

    large volumes of organic waste, including waste from the paper and agro-food industries, household refuse, and biogas from the fermentation of treatment plant sludge. At the top of the list: the United States, which generated 56 TWh of bio-power in 2005, and Brazil, which favors bagasse from sugar cane and biogas from distillery effluents. The electrical efficiency of a small biomass plant is 30% at best (35% with the best available technologies), whereas coal-fired plants achieve about 45% efficiency and combined-cycle gas-fired plants hit the 55% mark. A problem is the varying composition of straw, wood or waste fueling the boiler, calling for robust, adaptable burners, grates and fluidized beds. Either that, or the fuel has to be converted to produce standardized fuel such as wood pellets or dried sludge, which only ups the price of the fuel even more. Converting forest waste into wood chips, for example, costs 40 to 50 euros per MWh of heat, whereas unprocessed sawmill residue costs 10 to 20 euros for the same MWh. Another obstacle to developing biomass for power generation is the problem of collecting the raw materials from far and wide. In addition to solid biomass, biogas can be used to recycle liquid or wet waste that is difficult to transport. Biogas is produced by the digestion of wet biomass in an oxygen-deprived environment. Biogas contains 40% to 70% methane. The methane can then be used to fuel a gas-fired plant. This is one of the best configurations there is, since the biomass comes directly from the final waste. It's a good illustration of the 'waste to wealth' concept, which consists of recycling waste to produce energy

  15. Shale gas produced water treatment using innovative microbial capacitive desalination cell.

    Science.gov (United States)

    Stoll, Zachary A; Forrestal, Casey; Ren, Zhiyong Jason; Xu, Pei

    2015-01-01

    The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input. PMID:25464328

  16. Toxicity associated with produced waters from inland and offshore oil and gas operations

    International Nuclear Information System (INIS)

    NPDES permits require that discharges from oil and gas operations meet standards for aquatic life. When these aquatic life standards are violated, it is necessary to determine the causes of toxicity and to implement treatment methodologies that will eliminate significant mortalities and/or chronic growth and reproduction effects to the test organisms. Over the last several years, monitoring has been conducted on produced waters from oil and gas operations at inland and offshore locations. This work has been done in the U.S. as well as in South America. The toxicity in these discharges has been shown to be variable and due to a broad range of causes. The objective of this paper is to review the chemistry and biology with regards to the causes of toxicity in these waters. Samples collected from the Rocky Mountain west have generally demonstrated toxicity due to high total dissolved solids, hydrogen sulfides, and non-polar organics. Toxicity has ranged from extremely toxic to non-toxic. The levels of sensitivity for fathead minnows and Ceriodaphnia dubia differ between the various produced water samples. Three samples are currently being investigated which show different sources of toxicity in spite of close proximity to one another. Preliminary studies indicate toxicity may be due to trace metals and polar organics associated with treatment products. Produced waters from offshore Gulf of Mexico platforms have been shown to produce high levels of toxicity in chronic and acute tests

  17. Effects of untreated and treated oilfield-produced water on seed germination, seedling development, and biomass production of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    da Costa Marques, Mônica Regina; de Souza, Paulo Sérgio Alves; Rigo, Michelle Machado; Cerqueira, Alexandre Andrade; de Paiva, Julieta L; Merçon, Fábio; Perez, Daniel Vidal

    2015-10-01

    This study aims to evaluate possible toxic effects of oil and other contaminants from oilfield-produced water from oil exploration and production, on seed germination, and seedling development of sunflower (Helianthus annuus L.). In comparison, as treated by electroflocculation, oilfield-produced water, with lower oil and organic matter content, was also used. Electroflocculation treatment of oilfield-produced water achieved significant removals of chemical oxygen demand (COD) (94 %), oil and grease (O&G) (96 %), color (97 %), and turbidity (99 %). Different O&G, COD, and salt levels of untreated and treated oilfield-produced water did not influence germination process and seedling biomass production. Normal seedlings percentage and vigor tended to decrease more intensely in O&G and COD levels, higher than 337.5 mg L(-1) and 1321 mg O2 L(-1), respectively, using untreated oilfield-produced water. These results indicate that this industrial effluent must be treated, in order to not affect adversely seedling development. This way, electroflocculation treatment appears as an interesting alternative to removing oil and soluble organic matter in excess from oilfield-produced water improving sunflower's seedling development and providing a friendly environmental destination for this wastewater, reducing its potential to harm water resources, soil, and biota. PMID:26059762

  18. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  19. Investigation of Controlling Factors Impacting Water Quality in Shale Gas Produced Brine

    Science.gov (United States)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2014-12-01

    The recent boom in production of natural gas from unconventional reservoirs has generated a substantial increase in the volume of produced brine that must be properly managed to prevent contamination of fresh water resources. Produced brine, which includes both flowback and formation water, is often highly saline and may contain elevated concentrations of naturally occurring radioactive material and other toxic elements. These characteristics present many challenges with regard to designing effective treatment and disposal strategies for shale gas produced brine. We will present results from a series of batch experiments where crushed samples from two shale formations in the Michigan Basin, the Antrim and Utica-Collingwood shales, were brought into contact with synthetic hydraulic fracturing fluids under in situ temperature and pressure conditions. The Antrim has been an active shale gas play for over three decades, while the Utica-Collingwood formation (a grouped reservoir consisting of the Utica shale and Collingwood limestone) is an emerging shale gas play. The goal of this study is to investigate the influence of water-rock interactions in controlling produced water quality. We evaluate toxic element leaching from shale samples in contact with model hydraulic fracturing fluids under system conditions corresponding to reservoir depths up to 1.5 km. Experimental results have begun to elucidate the relative importance of shale mineralogy, system conditions, and chemical additives in driving changes in produced water quality. Initial results indicate that hydraulic fracturing chemical additives have a strong influence on the extent of leaching of toxic elements from the shale. In particular, pH was a key factor in the release of uranium (U) and divalent metals, highlighting the importance of the mineral buffering capacity of the shale. Low pH values persisted in the Antrim and Utica shale experiments and resulted in higher U extraction efficiencies than that

  20. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-05-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14–32 cm-3 ppb-1 for most of the time, in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependant on the fire condition (combustion efficiency. Variability in the ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, indicating that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft. The correction, previously unpublished for tropical deforestation fires, suggested an EF about one and a half to twice as large for these species. Vertical transport of biomass-burning plumes from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non

  1. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  2. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  3. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.

  4. Greenhouse gas balances and mitigation costs of 70 modern Germany-focused and 4 traditional biomass pathways including land-use change effects

    International Nuclear Information System (INIS)

    With Germany as the point of energy end-use, 70 current and future modern pathways plus 4 traditional biomass pathways for heat, power and transport have been compiled and examined in one single greenhouse gas (GHG) balancing assessment. This is needed to broaden the narrow focus on biofuels for transport and identify the role of bioenergy in GHG mitigation. Sensitivity analysis for land-use changes and fossil reference systems are included. Co-firing of woody biomass and fermentation of waste biomass are the most cost-efficient and effective biomass applications for GHG emission reduction in modern pathways. Replacing traditional biomass with modern biomass applications offers an underestimated economic potential of GHG emission reduction. The range of maximum CO2 equivalent GHG reduction potential of bioenergy is identified in a range of 2.5–16 Gt a−1 in 2050 (5–33% of today’s global GHG emissions), and has an economic bioenergy potential of 150 EJ a−1.

  5. The Value of Hurricane Forecasts to Oil and Gas Producers in the Gulf of Mexico.

    Science.gov (United States)

    Considine, Timothy J.; Jablonowski, Christopher; Posner, Barry; Bishop, Craig H.

    2004-09-01

    The threat of hurricanes often forces producers of crude oil and natural gas in the Gulf of Mexico to evacuate offshore drilling rigs and temporarily to cease production. More accurate hurricane forecasts would result in fewer false alarms, thereby preventing these unnecessary evacuations and disruptions in production. This study estimates the value of both existing and more accurate hurricane forecast information. A probabilistic cost loss model is used to estimate the incremental value of hurricane forecast information for oil and gas leases in the Gulf of Mexico over the past two decades. Detailed computations of hurricane forecasting accuracy are performed using records from the National Hurricane Center and Marine Forecast/Advisory from 1980 to 2000. Evacuation costs and potential losses are estimated using data from the Minerals Management Service and oil company drilling records. Estimates indicate that the value of existing 48-h hurricane forecast information to oil and gas producers averaged roughly &;8 million per year during the 1990s, which substantially exceeds the operating budget of the National Hurricane Center. From an industry perspective, however, these values are a small fraction of drilling and production costs. Moreover, although recent hurricane forecast accuracy is improving, it has not been sufficient to create significant value to this industry. On the other hand, forecast value dramatically increases with improvements in accuracy, rising by more than &;15 million per year with a simulated 50% improvement in 48-h forecast accuracy.HR ALIGN="center" WIDTH="30%">

  6. Production of a gas rich in hydrogen from gasification of biomass

    International Nuclear Information System (INIS)

    The gasification consists in a thermal transformation of a strong fuel (coal, peat, wood...) in presence of a sparkling compound (O2, air, CO, steam of water...). The goal of this transformation is generally to convert the strong in view of the obtaining of a combustible sparkling mixture. She/it distinguishes herself/itself therefore of the pyrolysis, thermal operation taking place in the absence of gas reacting with the strong follows a partial oxidation of pyrolysis products in presence of oxygen or air to a temperature of 600 to 1.000 C. One gets a gas satisfying the CO, of the CO2, of the H2.... The generated gas is a fuel that can be used then in furnaces or purified and used in turbines to room of combustion and batteries to fuels. This transformation puts in game a set of thermochemical mechanisms, pyrolysis, oxidation and reduction, greatly coupled, that condition the working of a gasification process and whose optimization imposes the technological constraints of which some are only raised partially at this day. (authors)

  7. Use of grape pomaces to produce biomass of aKomagataella pastoris strain expressing a bovine chymosin activity.

    Science.gov (United States)

    Kingston, Diego; Novelli, Guido F; Cerrutti, Patricia; Recupero, Matias N; Blasco, Martin; Galvagno, Miguel A

    2014-11-01

    The use of agroindustrial wastes not only decreases bioprocesses and disposal costs but also contributes to the upgrading of the residues. An active recombinant methanol-inducible bovine chymosin has been expressed in our laboratory in the yeastKomagataella pastoris, and grape pomace extracts (GRE) were proposed as a convenient C-energy source for the biomass production of the genetically engineered strain. Carbon and nitrogen sources, growth factors, and initial pH conditions were selected by classical methodology; thereafter, growth conditions optimization was performed using statistical designed experiments (DoEs). In the presence of (in g·L(-1)) 67.0 monosaccharides (glucose and fructose) from GRE, 5.0 (NH4)2SO4, and 10.0 sugar cane molasses (CMz), a yield of 20.0 g·L(-1) cell dry weight (CDW) was obtained aerobically after 60 h incubation at 28°C and pH 4.0. Applying a fed-batch strategy with methanol:sorbitol as the enzyme inducers, a chymosin production of 8.53 International Milk Clotting Units (IMCU) per mg protein was obtained in the supernatant. The results presented show that through a statistical design, a simple, cheap, and easy to prepare culture medium could be developed using two agroindustrial derivatives (GRE and CMz) to obtain a higher value added product. PMID:25493192

  8. Particle Dynamics in Neutral-Gas Confined Laser-Produced Plasmas

    Science.gov (United States)

    Kim, Yong W.

    2001-10-01

    Laser-produced plasma from a metallic target can be confined to higher plasma densities by immersing the target in an inert gas medium at increasingly high density. The plasma becomes Rayleigh-Taylor unstable, however, when the mass density of the neutral gas exceeds the plasma mass density substantially.[1] A new plasma diagnostic method is developed to help examine the early time development of the gas-plasma interfacial structure. A preliminary study based on plasma polarization spectroscopy is presented, in which the dynamics of atoms and ions are visualized in the presence of electromagnetic fields due to charge separation. The ambient gas pressure of argon is varied as active control in the low-pressure regime. Time-resolved multi-directional projections of an aluminum plasma are obtained in line and continuum emissions, polarization and spectral broadening including Doppler shifts. The electrostatic potential of the target is also followed. The results indicate a bifurcation of the phase-space distribution function and structural segmentation of the plasma into a thermalized core and a crown with highly aligned, energetic atoms and ions. Reconstruction of the plasma structure appears possible by generalization of the two new algorithms we have developed.[1,2] 1. Y.W. Kim and J.-C. Oh, Rev. Sci. Inst. 72, 948 (2001). 2. Y.W. Kim and C.D. Lloyd-Knight, Rev. Sci. Inst. 72, 944 (2001).

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  10. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  11. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  12. Radioactivity in produced water from oil and gas installations - doses to biota and humans

    International Nuclear Information System (INIS)

    Substantial amounts of produced water containing elevated levels of 226Ra and 228Ra are discharged into the sea as a result of oil and gas production on the Norwegian continental shelf. The average concentration in the discharges is 3.3 and 2.8 Bq/L of 226Ra and 228Ra, respectively. The main objective of the project described in the paper is to establish radiological safe discharge limits for radium, lead and polonium in produced water produced by oil and gas installations on the Norwegian continental shelf. One of the objectives of the study is to provide information to enable risk assessment based on doses from ionizing radiation to marine biota and man. Reference organisms for the North Sea area have been chosen for calculation of absorbed dose to biota. The dose calculations rely on specific knowledge of activity concentration in the reference organism, activity concentration in seawater and sediments, dose conversion factors and time spent at different locations relative to the point of discharge. Based on the calculated doses to marine biota, 'potential no effect concentrations' are recommended. (author)

  13. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play.

    Science.gov (United States)

    Xiong, Boya; Zydney, Andrew L; Kumar, Manish

    2016-08-01

    There is growing interest in possible options for treatment or reuse of flowback and produced waters from natural gas processing. Here we investigated the fouling characteristics during microfiltration of different flowback and produced waters from hydraulic fracturing sites in the Marcellus shale. All samples caused severe and highly variable fouling, although there was no direct correlation between the fouling rate and total suspended solids, turbidity, or total organic carbon. Furthermore, the fouling of water after prefiltration through a 0.2 μm membrane was also highly variable. Low fouling seen with prefiltered water was mainly due to removal of submicron particles 0.4-0.8 μm during prefiltration. High fouling seen with prefiltered water was mainly caused by a combination of hydrophobic organics and colloidal particles transmission electron microscopy) that passed through the prefiltration membranes. The small colloidal particles were highly stable, likely due to the surfactants and other organics present in the fracking fluids. The colloid concentration was as high as 10(11) colloids/ml, which is more than 100 times greater than that in typical seawater. Furthermore, these colloids were only partially removed by MF, causing substantial fouling during a subsequent ultrafiltration. These results clearly show the importance of organics and colloidal material in membrane fouling caused by flowback and produced waters, which is of critical importance in the development of more sustainable treatment strategies in natural gas processing. PMID:27155988

  14. The effect of H2S on oxidation properties of ZrO2-based biomass gasification gas clean-up catalysts

    OpenAIRE

    Kauppi, Inkeri

    2015-01-01

    Biomass gasification gas contains impurities which have to be removed before the gas can be utilized in e.g. energy or liquid fuels production. ZrO2-based catalysts can be used to oxidize tar impurities when oxygen is added to the gas. These catalysts have proven activity even when H2S is present. Moreover, an improving effect of H2S on ZrO2 oxidation activity has been observed at temperatures of 600 and 700 °C. Therefore, the reactivities of unsulfided and sulfided ZrO2-based catalysts were ...

  15. Towards the selection of a produced water enrichment for biological gas hydrate inhibitors.

    Science.gov (United States)

    Wilson, Sandra L; Voordouw, Gerrit; Walker, Virginia K

    2014-09-01

    Economic concerns associated with the recovery of non-conventional hydrocarbon reserves include unexpected ice as well as ice-like gas hydrate formation. Antifreeze proteins (AFPs) inhibit ice growth, and experiments with fish, plant, and insect AFPs have shown promise of effective gas hydrate inhibition in lab-scale experiments. If produced on an industrial scale, AFPs could provide a more environmentally friendly alternative to kinetic inhibitors, but a large-scale production of these AFPs is not currently feasible. We believe that these difficulties could be surmounted by the production of microbial AFPs, but to date, only a few such proteins have been identified and purified, and none of these are associated with hydrocarbon reserves. Here, we have used ice-affinity and freeze-thaw stress to select microbes derived from oil and gas formation water, or produced water, as a source of anaerobic microbial communities. Ice-affinity successfully incorporated anaerobic bacteria under aerobic conditions, and the mixed culture had ice-associating properties. Under these conditions, ice-affinity selection does not result in cultivatable isolates, but similar, cultivable microbes were obtained following freeze-thaw selection under anaerobic conditions. Since these mixed cultures inhibited the growth of ice crystals, they also have the potential to inhibit hydrate growth. Overall, freeze-thaw selection provides a promising first step towards the isolation of microbes capable of the inhibition of ice and gas hydrate growth, for possible application for energy exploration and recovery at high-latitudes and in-deep, cold waters. PMID:24819435

  16. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  17. PARTIAL SUBSTITUTION OF DIESEL IN ENGINE-GENERATOR SETS WITH WOOD BASED PRODUCER GAS

    OpenAIRE

    R. SETHUMADHAVAN; L. KUMARARAJA

    2013-01-01

    Electrical power generation by Diesel engine + electrical Generator (DG) sets consumes precious fossil fuels. In the present work, performance of two different DG sets of 3 kW and 100 kW ratings are compared when they were additionally supplied with wood derived Producer Gas (PG) generated in a gasifier. The PG was cleaned and cooled before it was supplied to the DG sets. The salient feature of 3 kW system is that the PG does not come into direct contact with water during cleaning and cooling...

  18. Gas dynamic effects on formation of carbon dimers in laser-produced plasmas

    Science.gov (United States)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.

    2011-09-01

    We investigated the effect of helium and nitrogen pressures on the dynamics of molecular species formation during laser ablation of carbon. For producing plasmas, planar carbon targets were irradiated with 1064 nm, 6 ns pulses from an Nd:yttrium aluminum garnet laser. The emission from excited C2 and CN molecules was studied using space resolved optical time-of-flight emission spectroscopy and spectrally resolved fast imaging. The intensity oscillations in C2 and CN monochromatic fast imaging and their emission space-time contours suggest that recombination is the major mechanism of C2 formation within the laser ablation carbon plumes in the presence of ambient gas.

  19. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-01-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency. Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol

  20. Marine biomass power plant using methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Saito, H.; Amano, T.; Sugawara, H.; Seki, T.; Abe, T. [Technology Research Inst., Tokyo Gas Co. Ltd., Tokyo (Japan)

    2004-07-01

    This study presented an effective way to produce biogas from the large quantities of seaweed waste in Japan. A large-scale marine biomass pilot plant was built to produce biogas from marine biomass. Methane fermentation was the process used to produce biogas from Laminaria sp. The maximum treating capacity of the pilot plant is 1 ton of seaweed per day. The pilot plant includes a pretreatment facility, fermentation, biogas storage and power generation. The maximum methane yield from the biomass plant is 22 cubic ton-seaweed. The purified biogas has generated 10 kW of electricity and 23 kW of heat. The biogas was also mixed with natural gas for use in a gas engine generator. The engine operation remained stable despite changes in quantity and composition of the collected biogas caused by changes with the source of biomass and sea conditions. The thermal efficiency of the gas engine running on mixed biogas and natural gas was more than 10 per cent higher than an engine running on biogas fuel alone. 4 refs., 2 tabs., 3 figs.

  1. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  2. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-05-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

  3. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  4. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  6. BIOMETHANATION OF SUGARCANE WASTEWATER BY ULTRASONIC MEMBRANE ANAEROBIC SYSTEM (UMAS TO PRODUCE METHANE GAS

    Directory of Open Access Journals (Sweden)

    Abdurahman, H. Nour*

    2015-02-01

    Full Text Available The five largest countries that produce sugar from sugarcane in 2011 were Brazil, Thailand, India, European Union, and China. The demand for sugars nowadays is high, thus, the production of sugar is increasing nowadays, and the sugarcane wastewater increased and caused more pollutions. Therefore, wastewater sugarcane was treated to produce methane by using anaerobic digestion method. But, most of the problem occurs during the treatment process is membrane fouling. Membrane fouling can cause severe flux decline that can affect the quality of the water produced, and the cost to fixed membrane fouling is expensive. Thus, Ultrasonic Membrane Anaerobic System (UMAS is used as alternative overcome this problem. The sugarcane wastewater had to acclimatize for 5 days before running the reactor. The raw value of COD recorded was 9870 mg/L; BOD was 2480.35 mg/L, TSS 1.976 mg/L, and VSS 1.331 mg/L. The pH, pressure, and temperature were kept constant during this experiment with the value 6.5-7.5, 1.5-2.0 bar, and 32OC respectively. After 28 days of experiment, the COD removal efficiency obtained was 95%, BOD removal efficiency was 97% and the methane gas composition obtained was about 75%.The TSS and VSS removal efficiency also reached 99% of removal. Based on the results obtained after 28 days of experiment, UMAS not only can treat high strength wastewater, but also can treat low strength wastewater, avoid membrane fouling and produce methane gas from sugarcane wastewater. Nevertheless, further works are required to provide deeper understanding of the mechanisms involved to facilitate the development of an optimum system applicable to the industry.

  7. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  8. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershoefer

    2008-07-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g−1 and 9.3±0.3 m2 g−1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa, respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g−1 and 0.50±0.02 m2 g−1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60−0.010i (savanna grass and 1.56−0.010i (musasa (λ=0.55 μm. The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa fractions (8 to 15% obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.

  9. Canadian Association of Petroleum Producers presentation to the Propane Gas Association of Canada 'TransPosium 2001'

    International Nuclear Information System (INIS)

    This presentation included graphs and figures depicting Canada's crude oil and natural gas industry. Canada is the world's third largest natural gas producer and the thirteenth largest crude oil producer. Oil and gas trade surplus accounts for nearly 50 per cent of Canada's trade balance. In the year 2000, crude oil production was a record 2.2 million barrels per day and natural gas was a record 6.3 trillion cubic feet per year. Crude oil exports to the United States were 1.4 million barrels per day and natural gas exports to the United States were 3.5 trillion cubic feet per year. A total of 17,500 wells were drilled in Canada in 2000, with a capital investment of $25 billion. Canada makes up 94 per cent of total U.S. gas imports, and supplies 15 per cent of U.S. gas consumption. A graph depicting Canadian natural gas production forecasts suggests that production will grow steadily until 2010, as will the demand for North American natural gas. Graphs depicting ultimate potential of natural gas in British Columbia, Alberta, Saskatchewan, Grand Banks and Scotian Shelf and the Northwest Territories were also included. The price of North American natural gas was illustrated from 1998 to 2001 and was compared with actual wells drilled in North America by a wide range of natural gas companies. Supply and demand of Alberta propane was also illustrated. The ultimate potential and proposed gas pipeline routes of northern natural gas show the potential for a pipeline from Inuvik, Northwest Territories to Alberta or from Prudhoe Bay to markets in Alberta. The development of natural gas in eastern Canada is lead by the oil and gas fields offshore Newfoundland and Nova Scotia where there is significant untapped potential. The strong demand for natural gas is directly related to the increased demand for electric power generation. tabs., figs

  10. Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2000-04-12

    The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

  11. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  12. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  13. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts.

    Science.gov (United States)

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Shen, Dekui; Chen, Ran; Xiao, Guomin

    2013-06-01

    A novel reactor, named internally interconnected fluidized bed (IIFB), was specially designed for catalytic fast pyrolysis (CFP) of straw biomass. Catalytic characteristics of four types of catalysts (ZSM-5, LOSA-1, Gamma-Al2O3 and spent FCC catalysts) for producing aromatics and olefins were investigated in this reactor. The results show that IIFB reactor can realize CFP process. The maximum carbon yields of aromatics (12.8%) and C2-C4 olefins (10.5%) were obtained with ZSM-5. ZSM-5 shows the highest selectivity of naphthalene (12.1%), whereas spent FCC catalyst presents the highest selectivity of benzene (45.5%). The selectivity of ethylene and propylene are equal in the present of ZSM-5 and LOSA-1. Gamma-Al2O3 and spent FCC catalysts show a higher selectivity of ethylene than that of propylene. This paper provides a new reactor for CFP process and some suggestions for choosing catalyst. PMID:23587812

  14. Electrifying biomass

    International Nuclear Information System (INIS)

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  15. Benefits of Allothermal Biomass Gasification for Co-Firing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meijden, C.M.; Van der Drift, A.; Vreugdenhil, B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-04-15

    Many countries have set obligations to reduce the CO2 emissions from coal fired boilers. Co-firing of biomass in existing coal fired power plants is an attractive solution to reduce CO2 emissions. Co-firing can be done by direct mixing of biomass with coal (direct co-firing) or by converting the biomass into a gas or liquid which is fired in a separate burner (indirect co-firing). Direct co-firing is a rather simple solution, but requires a high quality and expensive biomass fuel (e.g. wood pellets). Indirect co-firing requires an additional installation that converts the solid biomass into a gas or liquid, but has the advantage that it can handle a wide range of cheap biomass fuels (e.g. demolition wood) and most of the biomass ash components are separated from the gas before it enters the boiler. Separation of biomass ash can prevent fouling issues in the boiler. Indirect co-firing, using biomass gasification technology, is already common practice. In Geertruidenberg (the Netherlands) a 80 MWth Lurgi CFB gasifier produces gas from demolition wood which is co-fired in the Amer PC boiler. In Ruien (Belgium) a 50 MWth Foster Wheeler fluidized bed gasifier is in operation. The Energy research Centre of the Netherlands (ECN) developed a 'second generation' allothermal gasifier called the MILENA gasifier. This gasifier has some major advantages over conventional fluidized bed gasifiers. The heating value of the produced gas is approximately 2.5 times higher than of gas produced by conventional bubbling / circulating fluidized bed gasifiers. This results in smaller adaptations to the membrane wall of the boiler for the gas injection, thus lower costs. A major disadvantage of most fluidized bed gasifiers is the incomplete conversion of the fuel. Typical fuel conversions vary between 90 and 95%. The remaining combustible material, also containing most of the biomass ash components, is blown out of the gasifier and removed from the gas stream by a cyclone to

  16. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve

  17. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    Science.gov (United States)

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. PMID:21292477

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  19. Small-scale power/heat production based on biomass

    International Nuclear Information System (INIS)

    Conventional energy production from biomass is most often used to produce steam, hot water or air heating. According to this conference paper, the maximum electric output is obtained in processes based on gasification of biomass in combined gas turbine/steam turbine systems. The efficiency increases with increasing plant size. Production cost decreases with increasing plant size. However, large plants producing 20 MW electric also produce 30 MW heat energy which must be utilized if the total efficiency is to be large. There is a potential for small systems (3 - 5 kw electric) for decentralized power/heat production. The paper surveys in brief various technologies for small-scale power/heat plants based on biomass: steam turbine, steam engine, gas turbine, Stirling engine, diesel engine/gas engine. 9 refs., 5 figs

  20. Investigation on the quality of bio-oil produced through fast pyrolysis of biomass-polymer waste mixture

    Science.gov (United States)

    Jourabchi, S. A.; Ng, H. K.; Gan, S.; Yap, Z. Y.

    2016-06-01

    A high-impact poly-styrene (HIPS) was mixed with dried and ground coconut shell (CS) at equal weight percentage. Fast pyrolysis was carried out on the mixture in a fixed bed reactor over a temperature range of 573 K to 1073 K, and a nitrogen (N2) linear velocity range of 7.8x10-5 m/s to 6.7x10-2 m/s to produce bio-oil. Heat transfer and fluid dynamics of the pyrolysis process inside the reactor was visualised by using Computational Fluid Dynamics (CFD). The CFD modelling was validated by experimental results and they both indicated that at temperature of 923 K and N2 linear velocity of 7.8x10-5 m/s, the maximum bio-oil yield of 52.02 wt% is achieved.

  1. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry - SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Siika-aho, M.; Kallioinen, A.; Pakula, T. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), email: matti.siika-aho@vtt.fi

    2009-10-15

    In SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as a raw material for production of sugars to be processed further to ethanol and other chemicals. These raw materials containing high proportion of carbohydrates have been analysed and pretreated for enzyme hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Birch and bagasse could easily be pretreated with steam explosion. Catalytic oxidation treatment of spruce produced material with superior hydrolysability to steam exploded material. Enzyme adsorption and desorption were studied aiming at recycling of enzymes in the hydrolysis process. Purified cellulase enzymes were found to have high tendency to adsorption on lignocellulosic substrate. Adsorption could be decreased by additives, e.g. urea and BSA. In addition, the hydrolytic system of Trichoderma reesei in the presence of different substrates has been studied. (orig.)

  2. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  3. Concentration of saline produced water from coalbed methane gas wells in multiple-effect evaporator using waste heat from the gas compressor and compressor drive engine

    International Nuclear Information System (INIS)

    The use of heat of compression from the gas compressor and waste heat from the diesel compressor drive engine in a triple-effect feed forward evaporator was studied as a means of concentrating saline produced water to facilitate its disposal. The saline water, trapped in deeply buried coal seams, must be continuously pumped from coalbed natural gas wells so that the gas can desorb from the coal and make its way to the wellbore. Unlike conventional natural gas which is associated with petroleum and usually reaches the wellhead at high pressure, coalbed natural gas reaches the wellhead at low pressure, usually around 101 kPa (1 atm), and must be compressed near the well site for injection into gas transmission pipelines. The water concentration process was simulated for a typical 3.93 m3/s (500 MCF/h), at standard conditions (101 kPa, 289K), at the gas production field in the Warrior Coal Basin of Alabama, but has application to the coalbed gas fields being brought into production throughout the world. It was demonstrated that this process can be considered for concentrating saline water produced with natural gas in cases where the gas must be compressed near the wellhead for transportation to market. 9 refs., 1 fig., 2 tabs

  4. Interim manual of instructions for producer compliance with provisions of the Nautral Gas Policy Act of 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-27

    On Nov. 9, 1978, President Carter signed into law the Natural Gas Policy Act of 1978 (NGPA). This manual was prepared to help gas producers understand the NGPA, what must be done to comply with it, and what is necessary in order to collect the prices to which they may be entitled. (DLC)

  5. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    Science.gov (United States)

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-01

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry. PMID:26449686

  6. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography/time-of-flight mass spectrometry

    OpenAIRE

    Hatch, L. E.; Luo, W.; Pankow, J. F.; Yokelson, R. J.; C. E. Stockwell; K. C. Barsanti

    2014-01-01

    The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4), with analysis by two-dimensional gas chromatography/time-of-flight mas...

  7. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    Directory of Open Access Journals (Sweden)

    Oggero Roberto

    2011-06-01

    Full Text Available Abstract Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76 log10 vs 3.90 (2.50-7.10 CFU/g of faeces (p = 0.015. The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method, also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms

  8. Combustion gas from biomass - innovative plant concepts on the basis of circulating fluidized bed gasification; Brenngas aus Biomasse - innovative Anlagenkonzepte auf Basis der Zirkulierenden Wirbelschichtvergasung

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany)

    1998-09-01

    The contribution describes the applications of the Lurgi-ZWS gas generator. There are three main fields of application: Direct feeding of combustion gas, e.g. into a rotary kiln, as a substitute for coal or oil, without either dust filtering or gas purification. - Feeding of the combustion gas into the steam generator of a coal power plant after dust filtering and, if necessar, filtering of NH{sub 3} or H{sub 2}S. - Combustion in a gas turbine or gas engine after gas purification according to specifications. The applications are described for several exemplary projects. (orig./SR) [Deutsch] Im folgenden wird ueber die Anwendung des Lurgi-ZWS-Gaserzeugers berichtet. Nach heutiger Sicht stehen drei Anwendungsgebiete im Vordergrund: - direkte Einspeisung des Brenngases in z.B. einen Zementdrehrohrofen zur Substitution von Kohle oder Oel, ohne Entstaubung und Gasreinigung. - Einspeisung des Brenngases nach Entstaubung und gegebenenfalls Entfernung weiterer Komponenten wie NH{sub 3} oder H{sub 2}S in den Dampferzeuger eines Kohlekraftwerkes - Einsatz des Brenngases in einer Gasturbine oder Gasmotor nach spezifikationsgerechter Gasreinigung. Die aufgefuehrten Einsatzmoeglichkeiten werden am Beispiel von Projekten beschrieben. (orig./SR)

  9. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    Science.gov (United States)

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  10. Effects of gas produced by degradation of Mg–Zn–Zr Alloy on cancellous bone tissue

    International Nuclear Information System (INIS)

    Mg–Zn–Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P < 0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg–Zn–Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. - Highlights: • The degradation of Mg alloy in cancellous bone causes cavitation around the alloy. • At first, the CT value of the cavities is similar to the gas value. • The area of the cavities enlarges gradually by 12 weeks. • The cavities are filled with bone tissue and soft tissue gradually

  11. IPR CURVE CALCULATING FOR A WELL PRODUCING BY INTERMITTENT GAS-LIFT METHOD

    Directory of Open Access Journals (Sweden)

    Zoran Mršić

    2009-12-01

    Full Text Available Master degree thesis (Mršić Z., 2009 shows the detailed procedure of calculating inflow performance curve for intermittent gas lift, based entirely on the data measured at surface. This article explains the detailed approach of the mentioned research and the essence of the results and observations acquired during the study. To evaluate the proposed method of calculating the average bottom hole flowing pressure (BHFP as the key parameter of inflow performance calculation, downhole pressure surveys have been conducted in three producing wells at Šandrovac and Bilogora oil fields: Šandrovac-75α, Bilogora-52 and Šandrovac-34. Absolute difference between measured and calculated values of average BHFP for first two wells was Δp=0,64 bar and Δp=0,06 bar while calculated relative error was εr=0,072 and εr=0,0038 respectively. Due to gas-lift valve malfunction in well Šandrovac-34, noticed during downhole pressure survey, value of calculated BHFP cannot be considered correct to compare with measured value. Based on the measured data the information have been revealed about actual values of a certain intermittent gas lift parameters that are usually assumed based on experience gained values or are calculated using empirical equations given in literature. The significant difference has been noticed for a parameter t2. The length of a minimum pressure period for which the measured values were in range of 10,74 min up to 16 min, while empirical equation gives values in the range of 1,23 min up to 1,75 min. Based on measured values of above mentioned parameter a new empirical equation has been established (the paper is published in Croatian.

  12. Effects of gas produced by degradation of Mg–Zn–Zr Alloy on cancellous bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo; Jiang, Hongfeng [Tianjin Hospital, 300211 Tianjin (China); Bi, Yanze; Sun, Jin e; Chen, Minfang; Liu, Debao [School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin (China)

    2015-10-01

    Mg–Zn–Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P < 0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg–Zn–Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. - Highlights: • The degradation of Mg alloy in cancellous bone causes cavitation around the alloy. • At first, the CT value of the cavities is similar to the gas value. • The area of the cavities enlarges gradually by 12 weeks. • The cavities are filled with bone tissue and soft tissue gradually.

  13. World wide biomass resources

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2012-01-01

    In a wide variety of scenarios, policy strategies, and studies that address the future world energy demand and the reduction of greenhouse gas emissions, biomass is considered to play a major role as renewable energy carrier. Over the past decades, the modern use of biomass has increased rapidly in

  14. EERC Center for Biomass Utilization 2005

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  15. Characterization of Tungsten Oxide Thin Films Produced by Spark Ablation for NO2 Gas Sensing.

    Science.gov (United States)

    Isaac, Nishchay A; Valenti, Marco; Schmidt-Ott, Andreas; Biskos, George

    2016-02-17

    Tungsten oxides (WOx) thin films are currently used in electro-chromic devices, solar-cells and gas sensors as a result of their versatile and unique characteristics. In this study, we produce nanoparticulate WOx films by spark ablation and focused inertial deposition, and demonstrate their application for NO2 sensing. The primary particles in the as-deposited film samples are amorphous with sizes ranging from 10 to 15 nm. To crystallize the samples, the as-deposited films are annealed at 500 °C in air. This also caused the primary particles to grow to 30-50 nm by sintering. The morphologies and crystal structures of the resulting materials are studied using scanning and transmission electron microscopy and X-ray diffraction, whereas information on composition and oxidation states are determined by X-ray photoemission spectroscopy. The observed sensitivity of the resistance of the annealed films is ∼100 when exposed to 1 ppm of NO2 in air at 200 °C, which provides a considerable margin for employing them in gas sensors for measuring even lower concentrations. The films show a stable and repeatable response pattern. Considering the numerous advantages of spark ablation for fabricating nanoparticulate thin films, the results reported here provide a promising first step toward the production of high sensitivity and high accuracy sensors. PMID:26796099

  16. Structural characterisation of Al-Ni powders produced by gas atomisation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, C.M.; Dahlborg, U. [GPM, UMR6634, University of Rouen, 76801 Saint-Etienne du Rouvray Cedex (France); Adkins, N. [CERAM, Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ (United Kingdom); Calvo-Dahlborg, M. [GPM, UMR6634, University of Rouen, 76801 Saint-Etienne du Rouvray Cedex (France)], E-mail: monique.calvo-dahlborg@univ-rouen.fr

    2009-07-29

    Aluminium-nickel powders of different compositions on the Al-rich side of the phase diagram have been produced by gas atomisation and sieved in different grain size ranges. The resulting families have been analysed by neutron and X-ray diffraction in order to investigate the structure and identify the existing phases at the surface and in the bulk of the grains. The weight fractions of the three main phases (Al{sub 3}Ni{sub 2}, Al{sub 3}Ni and Al) as determined from profile refinements with the FULLPROF computer codes are found to vary with grain size. There is no indication for the existence of the B2 AlNi phase in any of the investigated powders. One or several additional metastable phases were found to exist in an amount that increased with decreasing size in grains with diameters less than about 200 {mu}m. The combined X-ray and neutron diffraction results indicate that the cooling rates are too large for the peritectic reaction at 854 deg. C to proceed fully resulting in a deficit of the Al{sub 3}Ni phase in the gas-atomised powders especially at the surface.

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  18. Niobium films produced by magnetron sputtering using an Ar-He mixture as discharge gas

    CERN Document Server

    Schucan, G M; Calatroni, Sergio

    1995-01-01

    Superconducting RF accelerating cavities have been produced at CERN by sputter-coating, with a thin niobium layer, cavities made of copper. In the present work, the discharge behaviour and niobium film properties have been investigated when part of the argon sputtering gas is replaced with helium. Helium is chosen because of its low mass, which reduces the energy lost by the niobium atoms colliding with the sputter gas atoms. The higher niobium atom energy should lead to higher adatom mobility on the substrate and, hence, to a larger grain size, a feature which is highly desirable to reduce the cavity surface resistance. It has been found that helium addition effectively helps to maintain the discharge at considerably lower argon pressures, via metastable-neutral ionisation and high secondary electron yield. However, a large amount of helium is trapped in the film, amount which is proportional to the helium partial pressure during the discharge, resulting in a reduction of both Residual Resistivity Ratio and ...

  19. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Yaliwal, V.S. [Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad Karnataka (India); Kambalimath, Satish [Wipro Technologies (India); Basavarajappa, Y.H. [K.L.E. Society' s Polytechnic, Hubli (India)

    2009-07-15

    Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100-105) and calorific value (5-6 MJ/Nm{sup 3}). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures. Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased

  20. Development of standard tool for evaluating greenhouse gas balances and cost-effectiveness of biomass energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, J.; Faaij, A. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Utrecht (Netherlands); Daugherty, E.; Schlamadinger, B. [Institute of Energy Research at Joanneum Research, Graz (Austria); Gustavvson, L.; Vikman, P. [Department of Natural and Environmental Sciences, Mid Sweden University, Haernoesand (Sweden); Elsayed, M.A.; Horne, R.E.; Mortimer, N.D. [Resources Research Unit, Sheffield Hallam University, Sheffield (United Kingdom); Matthews, R. [Forest Research, Farnham, Surrey (United Kingdom); Soimakallio, F. [VTT Processes, Technical Research Centre, Helsinki (Finland)

    2004-07-01

    This paper describes the development of a user-friendly software tool that can be used to analyse GHG balances and cost-effectiveness of different biomass energy technologies. The tool has to be able to accommodate a diversity of biomass technologies. It has to be applicable for different user groups such as universities, policy-makers or companies involved in biomass technologies. As preparation for the development of the tool, a unified methodology is being developed to evaluate GHG-balances and cost-effectiveness of biomass energy technologies. Main characteristics of the software architecture of the tool are the flowchart design and the concept of working with different tiers of calculation and data input. This makes the tool applicable for a wide diversity of data availability and biomass technologies.