WorldWideScience

Sample records for biomass producer gas

  1. CO Emissions from Gas Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, T. K.; Henriksen, Ulrik Birk

    2004-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where...

  2. REFINEMENT OF PRODUCER GAS GENERATED FROM BIOMASS GASIFIER

    Directory of Open Access Journals (Sweden)

    L. KUMARARAJA

    2016-01-01

    Full Text Available Producer gas (PG generated from biomass by thermo-chemical gasification process has been proved to be a reliable and renewable substitute for petroleum fuels to drive internal combustion engines. The gasification technology has been developed well and also commercialised. However, more technological advancements must happen in the refining of PG. Generally, the refinement is confined to the removal of tar and particulates from PG before supplying it to the engines. This paper proposes to remove additionally carbon dioxide and water vapour from PG so that its heating value can be increased and faster combustion can be attained in the engine cylinder. In this direction, the various CO2 removal technologies which are currently employed for combustion flue gas, natural gas and biogas have been first studied in detail. They are: physical absorption in solvents, chemical absorption by reagents, adsorption, membrane separation and refrigeration. In the present research, a batch of experiments has been conducted by washing PG with water to absorb CO2 physically and in a separate batch of experiments PG has been treated with aqueous ammonia to absorb CO2 chemically. For both experiments, the PG was generated by a downdraft biomass gasifier fed with wood pieces. The CO2 reduction obtained was 10.9% in physical absorption by water and 95% in chemical absorption by aqueous ammonia. Along with the reduction of CO2 and H2O from PG, the tar and particulates content of PG could also be reduced by absorption method.

  3. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... heat from the exhaust gas is utilised for drying and pyrolysis of the biomass in the gasification system, and the engine directly controls the load of the gasifier. Two different control approaches have been applied and investigated: one where the flow rate of the producer gas is fixed and the engine...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  4. Wet scrubbing of biomass producer gas tars using vegetable oil

    Science.gov (United States)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  5. Comparison of an Internal Combustion Engine Derating Operated on Producer Gas from Coal and Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Muhammad Ade Andriansyah Efendi

    2016-06-01

    Full Text Available Gasification is an effective and clean way to convert coal and biomass into useful fuels and chemical feedstocks. Producer gas utilization for internal combustion engine has been studied, not only from biomass gasification but also from coal gasification. This paper compares the research that has done author using coal gasification with other research results using biomass gasification. Coal gasifier performance test conducted with capacity of 20 kg/h coal. The proximate and ultimate analysis of raw coal, ash product and producer gas was conducted and comparised. The result of analysis shows that the efficiency of the coal gasification was 61% while range of gasifier efficiency for biomass is between 50-80%. Meanwhile, the experimental results on the performance of internal combustion engines using gas producer shows that the derating for power generation using coal producer gas was 46% and biomass was 20-50% depend on compression ratio of engine and characteristic of producer gas

  6. CO and PAH Emissions from Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, Torben Kvist; Henriksen, Ulrik Birk

    2003-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. The standing regulations concerning CO emissions from producer gas engine based power plants in most EU countries...

  7. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier.

    Science.gov (United States)

    Sheth, Pratik N; Babu, B V

    2009-06-01

    A process of conversion of solid carbonaceous fuel into combustible gas by partial combustion is known as gasification. The resulting gas, known as producer gas, is more versatile in its use than the original solid biomass. In the present study, a downdraft biomass gasifier is used to carry out the gasification experiments with the waste generated while making furniture in the carpentry section of the institute's workshop. Dalbergia sisoo, generally known as sesame wood or rose wood is mainly used in the furniture and wastage of the same is used as a biomass material in the present gasification studies. The effects of air flow rate and moisture content on biomass consumption rate and quality of the producer gas generated are studied by performing experiments. The performance of the biomass gasifier system is evaluated in terms of equivalence ratio, producer gas composition, calorific value of the producer gas, gas production rate, zone temperatures and cold gas efficiency. Material balance is carried out to examine the reliability of the results generated. The experimental results are compared with those reported in the literature.

  8. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP......)demonstration and research plant,named “Viking” at the Technical University of Denmark. The plant and engine have been operated continuously and unmanned. Producer gas properties and contaminations have been investigated. No detectable tar content was observed in the gas that goes to the engine; this was confirmed by three...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  9. Development and Test of a new Concept for Biomass Producer Gas Engines

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Foged, Esben Vendelbo; Strand, Rune;

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kWe gen-set there would be a financial benefit of approximately...... 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small scale SI gas engine gen-sets operating on biomass producer gas from thermal gasification of wood....... The engines were operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1 (converted diesel engine). It was shown that high compression ratio SI engine operation was possible when operating...

  10. Development and Test of a new Concept for Biomass Producer Gas Engines

    OpenAIRE

    Ahrenfeldt, Jesper; Foged, Esben Vendelbo; Strand, Rune; Henriksen, Ulrik Birk

    2010-01-01

    The technical requirements and the economical assessment of converting commercial diesel engine gen-sets into high compression spark ignition operation on biomass producer gas have been investigated. Assessments showed that for a 200 kWe gen-set there would be a financial benefit of approximately 600.000 DKK corresponding to a reduction of 60% in investment costs compared to the price of a conventional gas engine gen-set. Experimental investigations have been conducted on two identical small ...

  11. Experimental Analysis of a Producer Gas Generated by a Chir Pine Needle (Leaf in a Downdraft Biomass Gasifier

    Directory of Open Access Journals (Sweden)

    Mr. Akhilesh Kumar

    2014-10-01

    Full Text Available Today’s Indian scenario is facing an unprecedented energy crisis as the conventional energy resources of India are consistently deteriorating with the limited stock of these natural minerals posing a staggering threat to the Indian economy. Among all the available resources biomass proves to be a satisfactory substitute for compensating the energy void due to these natural resources. Biomass is a renewable resource with almost zero net CO2 emission which is processed with the help of biomass gasifier which is concurrently used with a chir pine needle. The performance of the biomass gasifier system is evaluated in terms of equivalence ratio, producer gas composition, calorific value of the producer gas, gas production rate and cold gas efficiency. The experimental results are compared with those reported in the literature.

  12. Biomass Catalytic Pyrolysis with Ni Based Catalyst to Produce Hydrogen Rich Gas

    Institute of Scientific and Technical Information of China (English)

    WANG Mingfeng; LIU Min; XU Xiwei; LI Bosong; ZHANG Qiang; JIAN Enchen

    2010-01-01

    Hydrogen rich gas was produced using rice husk as biomass material on the continuous biomass pyrolysis apparatus which consisted of continuous pyrolysis reactor and secondary catalytic cracking reactor. Ni based catalysts of different Ni/Al mass ratio and calcined temperature were prepared by impregnating method. The catalysts were characterized by X-ray diffraction (XRD),scan electron microscope (SEM) and FT-IR Spectrometer (FT-IR). Ni based catalyst showed good selectivity for H2 production from biomass. Catalysts prepared under different conditions had little influence on the yields of three states products when used at the same cracking temperature. Ni/Al mass ratio played an important role in products selectivity. However, the content of NiO increased further when Ni/Al mass ratio values reached 0.7 : 10, and the yield of H2 slightly increased. Hydrogen yield was greatly impacted by calcined temperature. Catalyst calcined at 550"C performed best. When the catalyst was calcined at high temperature, NiO in the catalyst transformed into NiAl2O4, and the acid site also changed, which caused the deactivation of the catalyst. The hydrogen yield increased with the cracking temperature. The highest stable yield of hydrogen was about 30% without increasing with the cracking temperature.

  13. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  14. Efficient gasification of wet biomass residue to produce middle caloric gas

    Institute of Scientific and Technical Information of China (English)

    Guangwen Xu; Takahiro Murakami; Toshiyuki Suda; Hidehisa Tani; Yutaka Mito

    2008-01-01

    Various process residues represent a kind of biomass resource already concentrated but containing water as much as 60 wt.%.These materials are generally treated as waste or simply combusted directly to generate heat.Recently,we attempted to convert them into middle caloric gas to substitute for natural gas,as a chemical or a high-rank gaseous fuel for advanced combustion utilities.Such conversion is implemented through dual fluidized bed gasification (DFBG).Concerning the high water content of the fuels,DFBG was suggested to accomplish either with high-efficiency fuel drying in advance or direct decoupling of fuel drying/pyrolysis from char gasification and tar/hydrocarbon reforming.Along with fuel drying,calcium-based catalyst can be impregnated into the fuel,without much additional cost,to increase the fuel's gasification reactivity and to reduce tar formation.This article reports the Ca impregnation method and its resulting effects on gasification reactivity and tar suppression ability.Meanwhile,the principle of directly gasifying wet fuel with decoupled dual fluidized bed gasification (D-DFBG) is also highlighted.

  15. Novel Approach to Tar Removal from Biomass Producer Gas by Means of a Nickel-Based Catalyst

    Science.gov (United States)

    Vosecký, M.; Kameníková, P.; Pohořelý, M.; Skoblja, S.; Punčochář, M.

    The nickel-based catalyst was exposed to the raw gas from gasification of woody biomass with air in a fluidized-bed. After dust removal on a barrier filter and sulphur compounds capture, namely H2S, on an active sorbent made of CuO and ZnO, higher hydrocarbons as tar components were decomposed/reformed on aNi-catalyst. Steam reforming reactions led to decomposition of tar and all hydrocarbons higher than CH4 into mainly H2 and CO which further underwent reaction with steam via the water gas shift reaction to CO2. The reforming reactions caused approximately 10-20 % decrease in the lower heating values of the producer gas from the inlet values 5.0-6.5 MJ m-3. The gas yield increased fromvalues 2.4-2.6 m3 kg-1 to values 2.8-3.0 m3 kg-1 on dry biomass basis. The chosen tar removal concept based on combination of dolomite in the fluidized-bed with the secondary catalytic reactor was proved by 20 hours long experiment in which the finaltar content below 30 mg m-3 was attained corresponding to more than 97 % tar conversion. H2S content in producer gas was expected to be below 100 vol. ppm, bulk of which was captured on the sorbent. Only limited deactivation of thecatalyst by sulphur compounds was found in the front of the catalyst bed where sulphur content was determined as high as 173 wt. ppm compared to 22 wt. ppm in the fresh sample.

  16. Soybean biomass produced in Argentina

    DEFF Research Database (Denmark)

    Semino, Stella; Paul, Helena; Tomei, Julia

    Soybean biomass for biodiesel, produced in Argentina amongst other places, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel. To ensure that the production of biofuels is ‘sustainable', EU institutions and national governments...... are currently designing certification schemes for the sustainable production of biomass. This paper questions the validity of proposed environmental standards, using the production of Argentine soybean as a case study. The production of soybean production is associated with profound environmental impacts...... generates emissions of N2O. The large quantity of substances, sprayed by terrestrial and aerial means, has negative impacts on biodiversity, water, soil, and human and animal health. The intensive production of soybeans also leads to social impacts, including loss of livelihoods and food sovereignty...

  17. Design, Optimization and Energetic Efficiency of Producing Hydrogen-Rich Gas from Biomass Steam Gasification

    Directory of Open Access Journals (Sweden)

    Po-Chih Kuo

    2014-12-01

    Full Text Available In this article, the conceptual design of biomass steam gasification (BSG processes using raw oil palm (ROP and torrefied oil palm (TOP are examined in an Aspen Plus simulator. Through thermodynamic analysis, it is verified that the BSG process with torrefied feedstock can effectively enhance the hydrogen yield. When the heat recovery design is added into the BSG process, the system energetic efficiency (SEE is significantly improved. Finally, an optimization algorithm with respect to SEE and hydrogen yield is solved, and the optimum operating conditions are validated by simulations.

  18. Gas quality prediction in ligno-cellulosic biomass gasification in a co-current gas producer; Prediction de la qualite du gaz en gazeification de la biomasse ligno-cellulosique dans un gazogene a co-courant

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. [Universite Catholique de Louvain (UCL), Faculte des Sciences Appliquees, Dept. de Mecanique, Unite Thermodynamique et Turbomachines, Louvain-la-Neuve (Belgium); Nganhou, J. [Universite de Yaounde, Ecole National Superieur Polytechnique de Yaounde, Dept. de Genies Mecanique et Industriel (Cameroon); Amie Assouh, A. [Ecole National Superieur Polytechnique de Yaounde, Lab. d' Energetique (Cameroon)

    2008-03-15

    Our research covers the energetic valuation of the biomass for electricity production. As electrical energy production is the main drive behind a modern economy, we wanted to make our contribution to the debate by describing a tried technique, whose use on an industrial scale can still be perfected, failing control over the basic principles that support the gasification processes called upon in this industry. Our study describes gasification, which is a process to transform a solid combustible into a gas combustible. The resulting gas can be used as combustible in an internal combustion motor and produce electricity. Our work interprets the experimental results of gasification tests conducted on an available and functional experimental centre and the ENSPY's Decentralized Energy Production Lab. The work involved developing a tool to appreciate the results of the gasification of the ligneous biomass from the stoichiometric composition of the combustible to be gasified and the chemical and mathematical bases of the gasification process. It is an investigation with a view to elaborating a mathematical model based on the concept of compatibility. Its original lies in the quality prediction method for the gas obtained through the gasification of a biomass whose chemical composition is known. (authors)

  19. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  20. Energy Characterization and Gasification of Biomass Derived by Hazelnut Cultivation: Analysis of Produced Syngas by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    D. Monarca

    2012-01-01

    Full Text Available Modern agriculture is an extremely energy intensive process. However, high agricultural productivities and the growth of green revolution has been possible only by large amount of energy inputs, especially those coming from fossil fuels. These energy resources have not been able to provide an economically viable solution for agricultural applications. Biomass energy-based systems had been extensively used for transportation and on farm systems during World War II: the most common and reliable solution was wood or biomass gasification. The latter means incomplete combustion of biomass resulting in production of combustible gases which mostly consist of carbon monoxide (CO, hydrogen (H2 and traces of methane (CH4. This mixture is called syngas, which can be successfully used to run internal combustion engines (both compression and spark ignition or as substitute for furnace oil in direct heat applications. The aim of the present paper is to help the experimentation of innovative plants for electric power production using agro-forest biomass derived by hazelnut cultivations. An additional purpose is to point out a connection among the chemical and physical properties of the outgoing syngas by biomass characterization and gas-chromatography analysis.

  1. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  2. Producing liquid fuels from biomass

    Science.gov (United States)

    Solantausta, Yrjo; Gust, Steven

    The aim of this survey was to compare, on techno-economic criteria, alternatives of producing liquid fuels from indigenous raw materials in Finland. Another aim was to compare methods under development and prepare a proposal for steering research related to this field. Process concepts were prepared for a number of alternatives, as well as analogous balances and production and investment cost assessments for these balances. Carbon dioxide emissions of the alternatives and the price of CO2 reduction were also studied. All the alternatives for producing liquid fuels from indigenous raw materials are utmost unprofitable. There are great differences between the alternatives. While the production cost of ethanol is 6 to 9 times higher than the market value of the product, the equivalent ratio for substitute fuel oil produced from peat by pyrolysis is 3 to 4. However, it should be borne in mind that the technical uncertainties related to the alternatives are of different magnitude. Production of ethanol from barley is of commercial technology, while biomass pyrolysis is still under development. If the aim is to reach smaller carbon dioxide emissions by using liquid biofuels, the most favorable alternative is pyrolysis oil produced from wood. Fuels produced from cultivated biomass are more expensive ways of reducing CO2 emissions. Their potential of reducing CO2 emissions in Finland is insignificant. Integration of liquid fuel production to some other production line is more profitable.

  3. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  4. Adding gas from biomass to the gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Martin; Polman, Erik [GASTEC NV (Netherlands); Jensen, Jan K.; Myken, Asger [Danish Gas Technology Center A/S, Hoersholm (Denmark); Joensson, Owe; Dahl, Anders [Swedish Gas Center AB, Malmoe (Sweden)

    2001-07-01

    The aim of this project carried out in the framework of the Altener programme is to provide an overview of technologies for cleaning and upgrading of biogas for remote use. A further aim is to determine to what extent gases produced from biomass (digestion or gasification)can be added to the gas grid and what additional safety regulations are necessary. Finally, existing European standards and national legislation have been studied in order to determine the possibility of conflicting and/or missing regulations with the intended approach.The information collected in this project can be used to select promising technologies and may serve as background information for developing harmonised standards. This report describes the various production and cleaning techniques and the present requirements for the use of biogas. The technology for adding gas from biomass to the gas grid on a larger scale can contribute to a higher share of biomass in the energy supply and will also allow a highly efficient use of the energy contained in the biomass.Moderate tax incentives will make the use of gas from biomass economically attractive for large groups of end-users.

  5. Landfills as a biorefinery to produce biomass and capture biogas.

    Science.gov (United States)

    Bolan, N S; Thangarajan, R; Seshadri, B; Jena, U; Das, K C; Wang, H; Naidu, R

    2013-05-01

    While landfilling provides a simple and economic means of waste disposal, it causes environmental impacts including leachate generation and greenhouse gas (GHG) emissions. With the introduction of gas recovery systems, landfills provide a potential source of methane (CH4) as a fuel source. Increasingly revegetation is practiced on traditionally managed landfill sites to mitigate environmental degradation, which also provides a source of biomass for energy production. Combustion of landfill gas for energy production contributes to GHG emission reduction mainly by preventing the release of CH4 into the atmosphere. Biomass from landfill sites can be converted to bioenergy through various processes including pyrolysis, liquefaction and gasification. This review provides a comprehensive overview on the role of landfills as a biorefinery site by focusing on the potential volumes of CH4 and biomass produced from landfills, the various methods of biomass energy conversion, and the opportunities and limitations of energy capture from landfills.

  6. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  7. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Serdar E-mail: yamans@itu.edu.tr

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented.

  8. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Serdar Yaman [Istanbul Technical University (Turkey). Chemical Engineering Dept.

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented. (author)

  9. Soybean biomass produced in Argentina: Myths and realities

    Energy Technology Data Exchange (ETDEWEB)

    Semino, S; Jelsoee, E [Department of Environment, Social and Spatial Change, Roskilde University Universitetsvej 1, DK-4000, Roskilde (Denmark); Paul, H [ECONEXUS, PO Box 1455, Oxford OX4 9BS (United Kingdom); Tomei, J [UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0HY (United Kingdom); Joensen, L [Grupo de Reflexion Rural, Rondeau, 812 Marcos Paz, 1727, Provincia de Buenos Aires (Argentina); Monti, M, E-mail: semino@ruc.d, E-mail: stella.semino@mail.d [Direccion de Extension e Investigacion Agropecuaria, Ministerio de la Produccion, Provincia de Santa Fe, Pte Peron y Garay, 6100, Rufino, Provincia de Santa Fe (Argentina)

    2009-11-01

    Soybean biomass for biodiesel, produced in Argentina amongst other places, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel alternatives. To ensure that the production of biofuels is 'sustainable', EU institutions and national governments are designing certification schemes for the sustainable production of biomass. In this paper, we question the validity of these proposed environmental standards, using the production of Argentine soybean as a case study. We highlight the negative environmental and social impacts of intensive soybean production, and conclude that certification schemes are unlikely to be able to address the detrimental impacts of increased biofuel production and trade.

  10. Analysis on using biomass lean syngas in micro gas turbines

    Science.gov (United States)

    Mărculescu, C.; Cenuşă, V. E.; Alexe, F. N.

    2016-08-01

    The paper presents an analysis on small systems for converting biomass/wastes into power using Micro Gas Turbines (MGT) fed with gaseous bio-fuels produced by air- gasification. The MGT is designed for burning various fossil liquid and gas fuels, having catalogue data related to natural gas use. Fuel switch changes their performances. The present work is focused on adapting the MGT for burning alternative low quality gas fuel produced by biomass air gasification. The heating values of these gas fuels are 3 to 5 times lower than the methane ones, leading to different air demand for the stoichiometric burning. Validated numerical computation procedures were used to model the MGT thermodynamic process. Our purpose was to analyze the influence of fuel change on thermodynamic cycle performances.

  11. Energetic evaluation of low potential biomass gasifier coupled with a burner of the produced gas for generation of heat; Avaliacao energetica de um gaseificador de biomassa de baixa potencia, associado a um combustor do gas produzido, para geracao de calor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Samuel [Universidade de Brasilia (FAV/UNB), DF (Brazil). Fac. de Agronomia e Medicina Veterinaria], email: samuelmartin@unb.nr; Silva, Jadir Nogueira [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Machado, Cassio Silva; Zanatta, Fabio Luis; Galvarro, Svetlana F.S. [Universidade Federal de Vicosa (UFV), MG (Brazil)

    2011-07-01

    In the search of alternatives for sustainable socio-economic development, this study had the objective of evaluating the energetic performance of a concurrent flow biomass gasifier associated with a burner for the gas produced which was of low potential for air heating using a renewable energy source (substituting non-renewable). In this system 4 tests were performed using eucalyptus chips (tests 1 and 2) and logs (tests 3 and 4) as fuel, for the two fan motor frequencies of 60 and 50 hertz. Temperature in the combustion chamber was monitored, along with fuel consumption and other variables. In the tests, the average exhaust air temperature was maintained between 92.7 and 100.4 deg C, and the reduction in the motor frequency from 60 to 50 Hz caused an increase in the duration of the tests. The system presented the best energetic performance when utilizing a frequency of 60 Hz for both fuel types. However, the results of energy efficiency varied very little when comparing tests performed at the same fan frequency. Thus, the gasification process was little affected by variation in the physical characteristics of the tested fuels, and it was recommended that the equipment operate with a frequency of 60 Hz. (author)

  12. Production of Renewable Natural Gas from Waste Biomass

    Science.gov (United States)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  13. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  14. Granular bed filtration of high temperature biomass gasification gas.

    Science.gov (United States)

    Stanghelle, Daniel; Slungaard, Torbjørn; Sønju, Otto K

    2007-06-18

    High temperature cleaning of producer gas from biomass gasification has been investigated with a granular filter. Field tests were performed for several hours on a single filter element at about 550 degrees C. The results show cake filtration on the granular material and indicate good filtration of the biomass gasification producer gas. The relatively low pressure drop over the filter during filtration is comparable to those of bag filters. The granular filter can operate with high filtration velocities compared to bag filters and maintain high efficiency and a low residual pressure. This work is a part of the BioSOFC-up project that has a goal of utilizing the producer gas from the gasification plant in a solid oxide fuel cell (SOFC). The BioSOFC-up project will continue to the end of 2007.

  15. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    Science.gov (United States)

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  16. Biomass producer gas tar removal technology based on recovery idea%基于回收理念的生物质燃气焦油脱除研究进展

    Institute of Scientific and Technical Information of China (English)

    吴娟; 陈海军; 朱跃钊; 廖传华; 杨丽

    2013-01-01

    Biomass gasification is an interesting technology in the future development of a worldwide sustainable energy system,as an alternative to fossil fuels. Tar is one of the main barriers to biomass gasification technology in its commercial application as a source of renewable energy. To achieve better efficiency of the biomass producer gas applications,tar must be removed to lower than 20 mg/m3 before the gas is used for downstream internal combustion engines,gas turbines,and in particular for methanol synthesis. In this paper,tar fouling and blocking problems in downstream equipments using the biomass producer gas are presented. Tar definition and classification are described. Advantages of tar reduction based on recovery idea (secondary methods,or named as mechanical/physical method) are analyzed. The new technologies in term of biomass tar removal based on recovery idea are reviewed. The representative biomass gasification technologies,which have lately been successfully demonstrated or commercialized,using the water or oil scrubber recovery method to remove tar,are also discussed. In addition,the future main research areas and potential applications of the advanced multi-stage adsorption or membrane separation for tar deep removal,based on oil-based gas washer (OLGA),and integrating appropriate pore size corresponding to different tar molecules,are presented.%生物质气化是重要的可再生能源方式。焦油是生物质气化过程大规模工业化的主要障碍之一。为了提高生物质燃气用于内燃机和燃气轮机发电以及甲醇合成的效率,燃气中的焦油必须深度脱除至低于20 mg/m3。本文简述了焦油污染和堵塞燃气下游设备的危害,介绍了焦油的特征和分类,分析了基于回收过程的焦油脱除方法优势,评述了回收法焦油脱除的研究进展,阐述了水洗和油洗回收脱焦的典型应用实例。指出了以油洗回收法为基础,将焦油和微孔材料的孔径进

  17. High quality fuel gas from biomass pyrolysis with calcium oxide.

    Science.gov (United States)

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization.

  18. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).

    Science.gov (United States)

    Schildhauer, Tilman J; Biollaz, Serge M A

    2015-01-01

    Production of Synthetic Natural Gas (SNG) from biomass is an important step to decouple the use of bioenergy from the biomass production with respect to both time and place. While anaerobic digestion of wet biomass is a state-of-the art process, wood gasification to producer gas followed by gas cleaning and methanation has only just entered the demonstration scale. Power-to-Gas applications using biogas from biomass fermentation or producer gas from wood gasification as carbon oxide source are under development. Due to the importance of the (catalytic) methanation step in the production of SNG from dry biomass or within Power-to-Gas applications, the specific challenges of this step and the developed reactor types are discussed in this review.

  19. Pyrolysis process for producing fuel gas

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  20. Possibilities of CO and H2 Contents Change in the Syngas Produced by Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Jan JANŠA

    2015-06-01

    Full Text Available Thermal gasification is an advanced technology to convert purposefully grown or waste ligno-cellulosic biomass into calorific gas. Increasing the content of CO and H2 in the product gas is important for the further use of the gas in technologies for power generation. This article describes the process of gasification and specifies parameters that determine the content of CO and H2 in the produced gas.

  1. Fuel gas from biomass - utilisation concepts

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Vierrath, H. [Lurgi Envirotherm GmbH, Frankfurt am Main (Germany)

    2000-07-01

    This paper presents an overview on the Lurgi-Circulating Fluidized Bed technology (CFB). CFB units are state of the art and have proven their capability of converting biomass, waste of coal into power and/or steam. CFB reactors are in commercial operation for reduction processes and for combustion and gasification of solid fuels. In this paper reduction processes are not considered. The fact, that world-wide over 80 CFB combustion plants using Lurgi technology are commercially operating proves that this technology is well accepted. Lurgi's CFB gasification technology is at present applied in two industrial plants. It is the key process for our advanced biomass or waste utilisation plants. The subject paper will focus on CFB fuel gas production for combined cycle plants (IGCC) and for co-firing into existing boiler plants. (orig.)

  2. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  3. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  4. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    John Oakey

    2004-03-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  5. Biomass Gas Cleanup Using a Therminator

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C; Kataria, Atish; Gupta, Rabhubir

    2012-03-06

    The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a Therminator to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very

  6. Environmental and energy performance of the biomass to synthetic natural gas supply chain

    NARCIS (Netherlands)

    Miedema, Jan Hessels; Moll, Henri; Benders, Reinerus

    2016-01-01

    A quarter of the total primary energy demand in the European Union is met by natural gas. Synthetic natural gas produced through biomass gasification can contribute to a more sustainable energy supply system. A chain analysis of the energetic performance of synthetic natural gas where the upstream,

  7. Energy Efficiency of Biogas Produced from Different Biomass Sources

    Science.gov (United States)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  8. Investigating combustion as a method of processing inedible biomass produced in NASA's biomass production chamber

    Science.gov (United States)

    Dreschel, T. W.; Wheeler, R. M.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project at the John F. Kennedy Space Center is a research program to integrate and evaluate biological processes to provide air, water, and food for humans in closed environments for space habitation. This project focuses on the use of conventional crop plants as grown in the Biomass Production Chamber (BPC) for the production and recycling of oxygen, food, and water. The inedible portion of these crops has the potential to be converted to edible biomass or directly to the elemental constituents for direct recycling. Converting inedible biomass directly, by combustion, to carbon dioxide, water, and minerals could provide a baseline for estimating partitioning of the mass balance during recycling in a CELSS. Converting the inedible biomass to carbon dioxide and water requires the same amount of oxygen that was produced by photosynthesis. The oxygen produced during crop growth is just equal to the oxygen required to oxidize all the biomass produced during growth. Thus, the amount of oxygen produced that is available for human consumption is in proportion to the amount of biomass actually utilized by humans. The remaining oxygen must be available to oxidize the rest of the biomass back to carbon dioxide and water or the system will not be a regenerative one.

  9. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  10. Engineering analysis of biomass gasifier product gas cleaning technology

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  11. Parametric Optimization of Biomass Steam-and-Gas Plant

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2013-01-01

    Full Text Available The paper contains a parametric analysis of the simplest scheme of a steam-and gas plant for the conditions required for biomass burning. It has been shown that application of gas-turbine and steam-and-gas plants can significantly exceed an efficiency of steam-power supply units which are used at the present moment. Optimum thermo-dynamical conditions for application of steam-and gas plants with the purpose to burn biomass require new technological solutions in the field of heat-exchange equipment designs.

  12. Gas, power and heat generation from biomass by allothermal gasification; Gas-, Strom- und Waermeerzeugung aus Biomasse durch allotherme Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Yaqub Chughtai, M. [H und C Engineering GmbH, Gummersbach (Germany); Muehlen, H.J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    The allothermal DMT gasification process for biomass is a newcomer. The process, its initial materials, the uses of the product gas, and advantages of the allothermal process are described here. (orig./SR) [Deutsch] Der Einsatz des allothermen DMT-Vergasungsverfahrens fuer Biomasse ist neu. Verfahren, Einsatzstoffe und Produktgasnutzung, sowie Vorteile des allothermen Verfahrens werden hier beschrieben. (orig./SR)

  13. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  14. Performance Analysis of Producer Gas Based Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. P. Yadav

    2013-02-01

    Full Text Available Producer gas is one out of the alternative fuels used in internal combustion engines. Conventionally, it is made by flowing air and steam through a thick coal or coke bed which ranges in temperature from red hot to low temperature. The oxygen in air burns the carbon to CO2. This CO2 gets reduced to CO by contacting with carbon above the combustion zone. The freed oxygen combines with carbon and steam gets dissociated which introduces hydrogen. Producer gas has a high percentage of nitrogen since air is used [1]. Thus, in the present work a gasifier is designed and developed which could gasify any form of biomass. In the present work waste wood chips, bagasse, rice husk, and eucalyptus, etc are used for gasification in a fabricated updraft gasifier to produce producer gas. The producer gas obtained from the developed gasifier is sent along with air into a diesel engine with diesel as the primary fuel and the performance characteristics ie brake thermal efficiency, exhaust gas temperature and brake specific energy consumption of the engine are studied along with economic analysis with and without aid of producer gas.

  15. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  16. Production of substitute natural gas by biomass hydrogasification

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffarian, M.; Zwart, R.W.R. [ECN Biomass, Petten (Netherlands)

    2000-11-01

    Hydrogen, generated from renewable sources, is likely to play a major role in the future energy supply. The storage and transport of hydrogen can take place in its free form (H2), or chemically bound, e.g. as methane. However, the storage and transport of hydrogen in its free form are more complex, and probably would require more energy than the storage and transport of hydrogen in chemical form. An additional important advantage of the indirect use of hydrogen as energy carrier is, that in the future renewable energy supply, pads of the existing large-scale energy infra- structure could still be used. Production of Substitute Natural Gas (SNG) by biomass hydrogasification has been assessed as a process for chemical storage of hydrogen. Thermodynamic analysis has shown the feasibility of this process. The product gas of the process has a Wobbe-index, a mole percentage methane, and a calorific value quite comparable to the quality of the Dutch natural gas. With a hydrogen content below 10 mol%, the produced SNG can be transported through the existing gas net without any additional adjustment. The integrated system has an energetic efficiency of 81% (LHV). In the long term, the required hydrogen for this process can be produced by water electrolysis, with electricity from renewable sources. In the short term, hydrogen may be obtained from hydrogen-rich gases available as by-product from industrial processes. Results of thermodynamic analysis of the process and experimental work, application potentials of the process in the Netherlands, and plans for future development are presented. 21 refs.

  17. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  18. Fuel characteristics and trace gases produced through biomass burning

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2010-01-01

    Full Text Available Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010 Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of the fire comes from estate crops and industrial forest plantation area belongs to the companies which using fire illegally for the land preparation. Because using fire is cheap, easy and quick and also support the companies purpose in achieving yearly planted area target. Forest management and land use practices in Sumatra and Kalimantan have evolved very rapidly over the past three decades. Poor logging practices resulted in large amounts of waste will left in the forest, greatly elevating fire hazard. Failure by the government and concessionaires to protect logged forests and close old logging roads led to and invasion of the forest by agricultural settlers whose land clearances practices increased the risk of fire. Several field experiments had been done in order to know the quality and the quantity of trace produced during biomass burning in peat grass, peat soil and alang-alang grassland located in South Sumatra, Indonesia. Result of research show that different characteristics of fuel burned will have the different level also in trace gasses produced. Peat grass with higher fuel load burned produce more trace gasses compared to alang-alang grassland and peat soil.

  19. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  20. Algal biomass production and carbon fixation from flue gas

    Institute of Scientific and Technical Information of China (English)

    WANG Ling; ZHU Jing

    2016-01-01

    Algal biofuel has established as one of renewable energy. In this study, Nannochloropsis salina was cultured to test feasibility of biomass production and CO2 fixation from flue gas. Firstly, cultivation was conducted under different light intensity. Results showed that the highest dry biomass of 1.25±0.061 g/L was achieved at light intensity of 10klux, while the highest total lipids was 33.677±1.9% at light intensity of 15klux. The effect of mercury on algae growth was also investigated, the algae growth was serious limited at the presence of mercury, and there was no any difference at the range of 10-50 ug/m3. These results provide useful information for algal biomass production and CO2 fixation from flue gas.

  1. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  2. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    Directory of Open Access Journals (Sweden)

    Klement Tobias

    2012-04-01

    Full Text Available Abstract Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on

  3. 生物质焦油模拟物重整制取富氢气体实验研究%Experimental research on model compound reforming of biomass tar to produce H2-rich gas

    Institute of Scientific and Technical Information of China (English)

    谢玉荣; 沈来宏; 肖军; 王俊; 常连成

    2011-01-01

    The tar model compound (benzene) reforming to produce hydrogen-rich gas was investigated in a fluidized bed, where the steam acts as the gasification medium. The influences of operating parameters on producing hydrogen-rich gas were fully investigated by changing the reactor temperature, the ratio of steam mass to tars mass (S/T) and the bed height; in addition, the effects of various bed materials (catalysts) on the reforming reaction are also focused on in this paper. The reactor temperature was varied from 780 '℃to 900 ℃ , S/T from 3.0 to 6.0, and the bed height from 5.0 cm to 20.0 cm. The experimental results demonstrate that the optimum operating parameters for producing hydrogen-rich gas are the reactor temperature of 860 ℃ ~ 900 ℃, S/T of 5.0 and the bed height of 15. 0 cm -20.0 cm. Under the condition of optimum operation, the synthesized alkaline earth metal-based catalyst ( 20CaAl) displays a better catalysis than natural ores ( dolomite and limestone). And the modified catalyst SCaFeNiAl based on 20CaAl exhibits a higher catalytic activity with the activation energy of 58. 87 kJ/mol and pre-exponential factor of 1. 36xlO7 h-1. With SCaFeNiAl, the H2 content of 67.28% , the H2 yield of 303. 50 (g/kg-tar) , the tar conversion ratio of 95. 93% and the total gas yield of 5.05 (mVkg-tar) are obtained.%以流化床作为反应器,进行生物质焦油模拟物(苯)催化重整制取富氢气体的实验研究,主要探究实验温度(780℃~900℃)、水蒸气/焦油模拟物质量比S/T (3.0~6.0)、床高(5.0cm~20.0cm)和床料(催化剂)对焦油模拟物重整制取富氢气体过程的影响.实验结果表明,焦油模拟物重整制取富氢气体的理想操作工况分别是温度为860℃~900℃,S/T 值为5.0,床层高度为15.0cm~20.0cm;通过比较,在上述理想操作条件下,合成的碱土金属催化剂(20CaAl)具有较好的催化活性,而其改性后的SCaFeNiAl催化剂具有更好的活性.在SCaFeNiAl作用

  4. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  5. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  6. Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim Abdul Mutalib

    2010-08-01

    Full Text Available Due to energy and environmental issues, hydrogen has become a more attractive clean fuel. Furthermore, there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production, i.e. gasification, is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification, methanation, Boudouard, methane reforming, water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier, is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature, steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced, product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K, steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition, at sorbent/biomass ratio of 1.52, purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.

  7. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    OpenAIRE

    Thanmongkhon, Yoothana

    2014-01-01

    Renewable Natural Gas (RNG) has been identified as an important alternative fuel that can help to achieve a number of national goals related to the reduction of fossil fuels and to the reduction in carbon dioxide emission. RNG can be produced from various carbonaceous materials such as biomass and organic wastes via a gasification process. The CE-CERT steam hydrogasification technology combines hydrogen with steam under pressurized conditions to convert a wet feedstock to a methane enriched s...

  8. Guideline for sampling and analysis of 'tars' and particles in biomass producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Neeft, J.P.A. [ECN Biomass, Petten (Netherlands); Knoef, H.A.M. [Biomass Technology Group BTG, Enschede (Netherlands); Zielke, U. [DTI Danish Technological Institute, Aarhus (Denmark); Sjoestroem, K. [KTH Kungl Tekniska Hoegskolan, Stockholm (Sweden); Hasler, P. [Verenum, Zuerich (Switzerland); Simell, P.A.; Suomalainen, M. [VTT Technical Research Centre of Finland, Espoo (Finland); Dorrington, M.A. [CRE Group, Cheltenham (United Kingdom); Greil, C. [Lurgi Envirotherm, Frankfurt am Main (Germany)

    2000-07-01

    The further development of a Guideline (formerly Protocol) for sampling and analysis of 'tars' from biomass producer gases is reported. This Guideline is being developed as a project within the European Fifth Framework Programme with additional partners from Switzerland and North-America. In this paper an outline and the principle of the Guideline are given. The Guideline is based on isokinetic sampling of particles and 'tar' from the main producer gas duct, particle filtration at high temperature, gas cooling in a liquid quench, 'tar' absorption in a solvent at low temperatures, an optional backup adsorber, and flow measurement and control. The Guideline gives a definition for 'Gravimetric tar' which is the 'tar' number to be determined by the Guideline. Also, the Guideline gives procedures for compound analysis by gas chromatography - mass spectrometry (GC-MS) or gas chromatography - Flame Ionization Detector (GC-FID). Moreover, in this paper the major choices that were made to reach the first version of the Guideline are explained. Finally, at the end of the paper it is described how and on what time scale the development of the Guideline will be completed. The full text of the Guideline is available on the Internet at www.tarweb.net. 11 refs.

  9. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is

  10. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Onwudili, Jude A.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-07-15

    The role of sodium hydroxide as a promoter of hydrogen gas production during the hydrothermal gasification of glucose and other biomass samples has been investigated. Experiments were carried out in a batch reactor with glucose and also in the presence of the alkali from 200 C, 2 MPa to 450 C, 34 MPa at constant water loading. Without sodium hydroxide, glucose decomposed to produce mainly carbon dioxide, water, char and tar. Furfural, its derivatives and reaction products dominated the ethyl acetate extract of the water (organic fraction) at lower reaction conditions. This indicated that the dehydration of glucose to yield these products was unfavourable to hydrogen gas production. In the presence of sodium hydroxide however, glucose initially decomposed to form mostly alkylated and hydroxylated carbonyl compounds, whose further decomposition yielded hydrogen gas. It was observed that at 350 C, 21.5 MPa, half of the optimum hydrogen gas yield had formed and at 450 C, 34 MPa, more than 80 volume percent of the gaseous effluent was hydrogen gas, while the balance was hydrocarbon gases, mostly methane ({>=}10 volume percent). Other biomass samples were also comparably reacted at the optimum conditions observed for glucose. The rate of hydrogen production for the biomass samples was in the following order; glucose > cellulose, starch, rice straw > potato > rice husk. (author)

  11. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  12. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Reinikainen, M.; Moilanen, A.; Simell, P.; McKeough, P.; Hannula, I. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2008-07-01

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The project will both broaden and deepen the knowledge base and, in particular, will generate new fundamental information about the most critical process steps from the point of view of the realisation of the technology. The results will be exploited in the ongoing industrial-driven development and demonstration projects. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, in particular the reactions of hydrocarbons at gasification temperatures, during hot-gas filtration and on catalytic surfaces, (3) evaluations of alternative process configurations and applications and (4) monitoring of developments elsewhere in the world. In addition VTT itself finances two additions subtopics (5) new analysis techniques and (6) hydrogen from biomass via gasification. (orig.)

  13. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

  14. Scale study of direct synthesis of dimethyl ether from biomass synthesis gas.

    Science.gov (United States)

    Lv, Yongxing; Wang, Tiejun; Wu, Chuangzhi; Ma, Longlong; Zhou, Yi

    2009-01-01

    We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m(-3) h(-1) and 203.80 kg m(-3) h(-1) when gas hourly space velocities were 650 h(-1) and 1200 h(-1), respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H(2)/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO(2).

  15. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  16. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  17. The economics of biomass for power and greenhouse gas reduction

    Science.gov (United States)

    Cameron, Jay Brooker

    The power cost and optimum plant size for power plants using straw fuel in western Canada was determined. The optimum size for agricultural residues is 450 MW (the largest single biomass unit judged feasible in this study), and the power cost is 50.30 MWh-1. If a larger biomass boiler could be built, the optiμm project size for straw would be 628 MW. For a market power price of 40 MWh-1 the cost of the GHG credit generated by a straw-fired plant is 11 tonne-1 CO2. Straw was evaluated as a possible supplement to the primary coal fuel at the Genesee power station in order to reduce the greenhouse gas (GHG) emissions intensity. Cofiring straw at the Genesee power station does not compete favorably with other GHG abatement technologies, even the lowest cost option is estimated at 22 tonne-1 CO2. The cost of transporting wood chips by truck and by pipeline as a water slurry is determined. The pipeline would be economical at large capacity (>0.5 M dry tonnes per year for a one way pipeline, and >1.25 M dry tonnes per year for a two way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances (>75 km (one way) and >470 km (two way) at a capacity of 2 M dry tonnes per year). Pipelining was determined to be unsuitable for combustion applications. Pipeline transport of corn is evaluated against a range of truck transport costs. At 20% solids, pipeline transport of corn stover costs less than trucking at capacities in excess of 1.4 M dry tonnes/yr when compared to a mid range of truck transport. Pipelining of corn stover gives the opportunity to conduct simultaneous transport and saccharification (STS) but would require a source of waste heat at the pipeline inlet in order to be economical. Transport of corn stover in multiple pipelines offers the opportunity to develop a large ethanol fermentation plant, avoiding some of the diseconomies of scale that arise from smaller plants whose capacities are limited by issues of truck congestion

  18. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  19. Environmental and Energetic Performance of the Biomass to Synthetic Natural Gas Supply Chain

    Directory of Open Access Journals (Sweden)

    Jan H. Miedema

    2016-09-01

    Full Text Available A quarter of the total primary energy demand in the European Union is met by natural gas. Synthetic natural gas produced through biomass gasification can contribute to a more sustainable energy supply system. A chain analysis of the energetic performance of synthetic natural gas where the upstream, midstream and downstream part are included has not been found in literature. The energy performance of the possible large-scale application of synthetic natural gas is therefore unsure. A model was designed to analyse the performance of the biomass to synthetic natural gas chain and to estimate the effect of 1% synthetic natural gas in the energy system. A break-even distance is introduced to determine whether it is energetically feasible to apply pretreatment. Results show that torrefaction and pelleting are energetically unfeasible within the European Union. Emissions can be reduced with almost 70% compared to a fossil reference scenario. Over 1.2 Mha is required to fulfil 0.25% of the total primary energy demand in the European Union.

  20. Direct Numerical Simulation of biomass pyrolysis and combustion with gas phase reactions

    NARCIS (Netherlands)

    Aswasthi, A.; Kuerten, J.G.M.; Geurts, B.J.

    2016-01-01

    We present Direct Numerical Simulation of biomass pyrolysis and combustion in a turbulent channel flow. The model includes simplified models for biomass pyrolysis and char combustion along with a model for particle tracking. The gas phase is modelled as a mixture of reacting gas species. The gas-pa

  1. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass - UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: matti.reinikainen@vtt.fi; Suominen, T.P. (Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry and Reaction Engineering); Linnekoski, J.; Roenkkoenen, E. (Aalto University, School of Science and Technology, Espoo (Finland). Lab. of Industrial Chemistry.)

    2010-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprises experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project is steered by a wide industrial consortium and the research work is carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. (orig.)

  2. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, I.; Doucha, J.; Livansky, K.; Umysova, D.; Zachleder, V.; Vitova, M. [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Laboratory of Cell Cycles of Algae; Machat, J. [Masaryk University, Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Novak, P. [Termizo Inc., Liberec (Czech Republic)

    2009-02-15

    A flue gas originating from a municipal waste incinerator was used as a source of CO{sub 2} for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO{sub 2} simultaneously. The utilization of the flue gas containing 10-13% ({nu}/{nu}) CO2 and 8-10% ({nu}/{nu}) O{sub 2} for the photobioreactor agitation and CO{sub 2} supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO{sub 2} and air (11% ({nu}/{nu}) CO{sub 2}). Correspondingly, the CO{sub 2} fixation rate was also higher when using the flue gas (4.4 g CO{sub 2} l{sup -1} 24 h{sup -1}) than using the control gas (3.0 g CO{sub 2} l{sup -1} 24 h{sup -1}). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements. (orig.)

  3. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  4. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  5. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  6. Costs of Producing Biomass from Riparian Buffer Strips

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow, A.

    2000-09-01

    Nutrient runoff from poultry litter applied to agricultural fields in the Delmarva Peninsula contributes to high nutrient loadings in Chesapeake Bay. One potential means of ameliorating this problem is the use of riparian buffer strips. Riparian buffer strips intercept overland flows of water, sediments, nutrients, and pollutants; and ground water flows of nutrients and pollutants. Costs are estimated for three biomass systems grown on buffer strips: willow planted at a density of 15,300 trees/ha (6200 trees/acre); poplar planted at a density of 1345 trees/ha (545 trees/acre); and switchgrass. These costs are estimated for five different scenarios: (1) total economic costs, where everything is costed [cash costs, noncash costs (e.g., depreciation), land rent, labor]; (2) costs with Conservation Reserve Program (CRP) payments (which pays 50% of establishment costs and an annual land rent); (3) costs with enhanced CRP payments (which pays 95% of establishment costs and an annual payment of approximately 170% of land rent for trees and 150% of land rent for grasses); (4) costs when buffer strips are required, but harvest of biomass is not required [costs borne by biomass are for yield enhancing activities (e.g., fertilization), harvest, and transport]; and (5) costs when buffer strips are required. and harvest of biomass is required to remove nutrients (costs borne by biomass are for yield enhancing activities and transport). CRP regulations would have to change to allow harvest. Delivered costs of willow, poplar, and switchgrass [including transportation costs of $0.38/GJ ($0.40/million Btu) for switchgrass and $0.57/GJ ($0.60/million Btu) for willow and poplar] at 11.2 dry Mg/ha-year (5 dry tons/acre-year) for the five cost scenarios listed above are [$/GJ ($million BIN)]: (1) 3.30-5.45 (3.45-5.75); (2) 2.30-3.80 (2.45-4.00); (3) 1.70-2.45 (1.80-2.60); (4) l-85-3.80 (1.95-4.05); and (5) 0.80-1.50 (0.85-1.60). At yields of 15.7 to 17.9 GJ/ha-year (7 to 8 dry tons

  7. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass (UCGFunda)

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Nasrullah, M.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2009-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international co-operation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. A lot of data on the reactivity and ash sintering properties of various kinds of biomasses has been obtained in the project and the information will now be formulated into a mathematical model. In addition to catalysis also thermal reactions play an important role in gas cleaning. Both experimental and modelling work on both of the reaction types is being carried out. Three techno-economic evaluations on alternative and competing technologies will be completed in the coming year. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. New analysis techniques developed in the project have proven very useful and for instance a fast on-line tar analysis method is now well established. (orig.)

  8. Analysis of Indirectly Fired Gas Turbine for Wet Biomass Fuels Based on commercial micro gas turbine data

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Qvale, Einar Bjørn

    2002-01-01

    fueled by dry biomass assuming negligible pressure loss in the heat exchanger and the combustion chamber, the IFGT fueled with wet biomass (Wet IFGT) assuming no pressure losses, and finally both the Simple and the Wet IFGT incorporating typical data for pressure losses of commercially available micro......The results of a study of a novel gas turbine configuration is being presented. In this power plant, an Indirectly Fired Gas Turbine (IFGT), is being fueled with very wet biomass. The exhaust gas is being used to dry the biomass, but instead of striving to recover as much as possible of the thermal...

  9. Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing; Jin, Li' e [Institute of Chemical Engineering and Technology, Taiyuan University of Technology, 030024 China (China); Key Laboratory for Coal Science and Technology of Shanxi Province and Ministry of Education, Taiyuan University of Technology, 030024 China (China); Bao, Weiren; Lv, Yongkang [Key Laboratory for Coal Science and Technology of Shanxi Province and Ministry of Education, Taiyuan University of Technology, 030024 China (China)

    2009-03-15

    Co-pyrolysis of wood biomass and waste tire with such catalysts as SBA-15, MCM-41 and HZSM-5 was carried out in a fixed-bed reactor. The influences of the mixture composition on liquid yield and characteristics of the oil were investigated. The properties of the oil were determined by gel permeation chromatograph (GPC), elemental analyzer (EA), thermal analyzer (TA), densimeter, ubbelohde viscosimeter and compared with that of diesel oil 0. The contents of the polycyclic aromatic hydrocarbons (PAHs) in the oils were also determined by gas chromatograph (GC). The result shows that co-pyrolysis is in favor of inhibiting the formation of polycyclic aromatic hydrocarbons (PAHs) produced from tire. There exist a hydrogen transfer and a synthetic effect during co-pyrolysis of the biomass and tire. They improve the quality of the oil. SBA-15 as a catalyst is more significant than MCM-41 or HZSM-5 for reducing the density and viscosity of the oil and it can effectively decompose some large molecular compounds into small ones. (author)

  10. Molecular level insights to the interaction of toluene with ZrO2-based biomass gasification gas clean-up catalysts

    NARCIS (Netherlands)

    Viinikainen, T.; Kauppi, I.; Korhonen, S.; Lefferts, L.; Kanervo, J.; Lehtonen, J.

    2013-01-01

    Gasification of biomass, followed by ZrO2-catalyzed hot gas clean-up at 600–900 °C for the oxidation of impurities (such as tar), is an environmentally attractive way to produce heat and power or synthesis gas. The interaction of toluene (as a model compound for tar) with ZrO2-based gasification gas

  11. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... between K-containing species and radical pool under combustion conditions has been improved. The available K/O/H/Cl chemistry has been updated by using both experimental work and detailed kinetic modeling. The experimental work was done by introducing gaseous KCl to CO oxidation system under reducing...... conditions. The experiments were performed using a laboratory flow reactor at atmospheric pressure and temperatures in the range of 773-1373 K, varying the CO inlet concentration and the KCl level. The addition of KCl results in a strong inhibition of the CO oxidation. The inhibition increases with the KCl...

  12. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  13. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  14. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications.

    Science.gov (United States)

    Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann

    2017-03-11

    This work presents an experimental approach aiming the production of a gas mixture composed of H2 and CH4, which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H2 and 19% CH4 and with minor fractions of CO and CO2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m(-3) and a lower Wobbe index of about 43.4MJ·m(-3), which is similar to the typical Wobbe index of natural gas.

  15. Reduction of acetone to isopropanol using producer gas fermenting microbes.

    Science.gov (United States)

    Ramachandriya, Karthikeyan D; Wilkins, Mark R; Delorme, Marthah J M; Zhu, Xiaoguang; Kundiyana, Dimple K; Atiyeh, Hasan K; Huhnke, Raymond L

    2011-10-01

    Gasification-fermentation is an emerging technology for the conversion of lignocellulosic materials into biofuels and specialty chemicals. For effective utilization of producer gas by fermenting bacteria, tar compounds produced in the gasification process are often removed by wet scrubbing techniques using acetone. In a preliminary study using biomass generated producer gas scrubbed with acetone, an accumulation of acetone and subsequent isopropanol production was observed. The effect of 2 g/L acetone concentrations in the fermentation media on growth and product distributions was studied with "Clostridium ragsdalei," also known as Clostridium strain P11 or P11, and Clostridium carboxidivorans P7 or P7. The reduction of acetone to isopropanol was possible with "C. ragsdalei," but not with P7. In P11 this reaction occurred rapidly when acetone was added in the acidogenic phase, but was 2.5 times slower when added in the solventogenic phase. Acetone at concentrations of 2 g/L did not affect the growth of P7, but ethanol increased by 41% and acetic acid concentrations decreased by 79%. In the fermentations using P11, growth was unaffected and ethanol concentrations increased by 55% when acetone was added in the acidogenic phase. Acetic acid concentrations increased by 19% in both the treatments where acetone was added. Our observations indicate that P11 has a secondary alcohol dehydrogenase that enables it to reduce acetone to isopropanol, while P7 lacks this enzyme. P11 offers an opportunity for biological production of isopropanol from acetone reduction in the presence of gaseous substrates (CO, CO₂, and H₂).

  16. My Biomass, Your Biomass, Our Solution

    Science.gov (United States)

    The US is pursuing an array of renewable energy sources to reduce reliance on imported fossil fuels and reduce greenhouse gas emissions. Biomass energy and biomass ethanol are key components in the pursuit. The need for biomass feedstock to produce sufficient ethanol to meet any of the numerous stat...

  17. Efficient process for producing saccharides and ethanol from a biomass feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C.; Nanjundaswamy, Ananda K.

    2017-04-11

    Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.

  18. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall;

    2000-01-01

    Particles in the gas from a two-stage (separate pyrolysis and gasification) down-draft biomass gasifier were collected and characterized. Their concentration, geometries and chemical compositions were investigated. Special attention was given to features suspected to harm internal combustion (IC...

  19. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-01

    The main constituents rendering the engine use of gas produced from biomass are the tar content of the gases (condensing hydrocarbons), which cause problems for pipings, nozzles, and control of combustion. Purification methods, based on catalytic cracking of tars are investigated in the research in order to eliminate these problems. The target of the project is to demonstrate the developed gasification/gas purification process with engine test using PDU-scale equipment. Impurities of biomasses and biomass wastes (alkalis, chlorine, heavy metals), and the ash melting properties restrict in many cases the combined utilisation of biomasses and coal in power plant boilers. The second main task of this research is to investigate the removal of the problematic gas and ash components from the product gas. The sufficient degree of purification should be achieved by as simple and as cheap purification methods as possible. The main tasks of the first year of the project were (a) determination of the dimensioning characteristics of ambient pressure PDU scale cell-catalyst reactor (tests with laboratory-scale equipment), designing and construction of the reactor, (b) to investigate the operation of a cell-catalyst in purification of pre-cracked down-draft gasification gas, (c) acquisition of dimensioning data for dolomite-cracker based on fluidized bed principle, and (d) gasification of the Dutch building demolition waste and Danish straw, and the purification tests with the gases

  20. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  1. [Flue gas desulfurization by a novel biomass activated carbon].

    Science.gov (United States)

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%.

  2. Biotechnology for producing fuels and chemicals from biomass. Volume 2: Fermentation chemicals from biomass

    Science.gov (United States)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing chemicals by fermentation is discussed: acetone; butanol; acetic acid; citric acid; 2,3-butanediol, and propionic acid. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5 percent to 7 percent/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. The feedstock cost is 15 to 20 percent of the overall cost of production. The anticipated 5 percent growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. The commercial fermentative production of propionic acid has not yet been developed.

  3. Quantification of Tars, Particulates, and Higher Heating Values in Gases Produced from a Biomass Gasifier

    Directory of Open Access Journals (Sweden)

    Christopher O. Akudo

    2014-07-01

    Full Text Available Syngas from biomass gasifiers contains impurities such as tars and particulates, which can create difficulties for the downstream processes (e.g., internal combustion engines and the Fischer-Tropsch process. To design an efficient and effective gas cleaning system, it is important to accurately quantify the tars and particulates. The absence of an ASTM procedure for tars and particulates produced from a gasifier led to the development and testing of the protocol presented in this study. Syngas was generated from woodchips using a pilot-scale downdraft gasifier, which was designed and constructed in-house. The sampled impurities were analyzed using mass gravimetry, solvent evaporation, and weight differential methods. The higher heating value of the exiting gases was estimated from the syngas composition. The average tar and particulate concentrations of the sample runs were 1.8 to 3.1 g/m3 and 5.2 to 6.4 g/m3, respectively. The higher heating values of the syngas ranged between 4.38 and 4.55 MJ/m3.

  4. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas.

    Science.gov (United States)

    Kuo, Chiu-Mei; Jian, Jhong-Fu; Lin, Tsung-Hsien; Chang, Yu-Bin; Wan, Xin-Hua; Lai, Jinn-Tsyy; Chang, Jo-Shu; Lin, Chih-Sheng

    2016-12-01

    A microalgal strain, Chlorella sp. GD, cultivated in aquaculture wastewater (AW) aerated with boiler flue gas, was investigated. When AW from a grouper fish farm was supplemented with additional nutrients, the microalgal biomass productivity after 7days of culture was 0.794gL(-1)d(-1). CO2 fixation efficiencies of the microalgal strains aerated with 0.05, 0.1, 0.2, and 0.3vvm of boiler flue gas (containing approximately 8% CO2) were 53, 51, 38, and 30%, respectively. When the microalgal strain was cultured with boiler flue gas in nutrient-added AW, biomass productivity increased to 0.892gL(-1)d(-1). In semi-continuous cultures, average biomass productivities of the microalgal strain in 2-day, 3-day, and 4-day replacement cultures were 1.296, 0.985, and 0.944gL(-1)d(-1), respectively. These results demonstrate the potential of using Chlorella sp. GD cultivations in AW aerated with boiler flue gas for reusing water resources, reducing CO2 emission, and producing microalgal biomass.

  5. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R. (ed.)

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  6. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Moses, C A; Bernstein, H [Southwest Research Inst., San Antonio, TX (United States)

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  7. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  8. Water management technologies used by Marcellus Shale Gas Producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  9. Effects of produced water on soil characteristics, plant biomass, and secondary metabolites

    Science.gov (United States)

    The Powder River Basin in Wyoming and Montana contains the United States’ largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering...

  10. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation

    DEFF Research Database (Denmark)

    Qin, Ke; Jensen, Peter Arendt; Lin, Weigang

    2012-01-01

    % at the optimal conditions of 1400 °C with steam addition. The biomass carbon that was not converted to gas in the gasification process only appeared as soot particles in the syngas in all of the experiments, except for the two experiments performed at 1000 °C, where a very small amount of char was also left......Biomass gasification and pyrolysis were studied in a laboratory-scale atmospheric pressure entrained flow reactor. Effects of operating parameters and biomass types on the syngas composition were investigated. In general, the carbon conversion during biomass gasification was higher than 90...

  11. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region's net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region's energy and greenhouse gas mitigation strategies.

  12. Pressurised combustion of biomass-derived, low calorific value, fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU-funded, international R + D project which is designed to aid European industry in addressing issues regarding pressurised combustion of biomass-derived, low calorific flue fuel gas. The objects of the project are: To design, manufacture and test a pressurised, high temperature gas turbine combustor for biomass derived LCV fuel gas; to develop a steady-state and dynamic model describing a combustor using biomass-derived, low calorific value fuel gases; to gather reliable experimental data on the steady-state and dynamic characteristics of the combustor; to study the steady-state and dynamic plant behaviour using a plant layout wich incorporates a model of a gas turbine suitable for operation on low calorific value fuel gas. (orig)

  13. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    Science.gov (United States)

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-09-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles.

  14. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H.; Papamichalis, A.; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1996-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  15. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation.

    Science.gov (United States)

    Waghmare, Pankajkumar R; Kadam, Avinash A; Saratale, Ganesh D; Govindwar, Sanjay P

    2014-09-01

    Sugarcane bagasse (SCB) adsorbes 60% Reactive Blue172 (RB172). Providensia staurti EbtSPG able to decolorize SCB adsorbed RB172 up to 99% under solid state fermentation (SSF). The enzymatic saccharification efficiency of waste biomass after bioremediation of RB172 process (ddSCB) has been evaluated. The cellulolyitc crude enzyme produced by Phanerochaete chrysosporium used for enzymatic hydrolysis of native SCB and ddSCB which produces 0.08 and 0.3 g/L of reducing sugars respectively after 48 h of incubation. The production of hexose and pentose sugars during hydrolysis was confirmed by HPTLC. The effect of enzymatic hydrolysis on SCB and ddSCB has been evaluated by FTIR, XRD and SEM analysis. Thus, during dye biodegradation under SSF causes biological pretreatment of SCB which significantly enhanced its enzymatic saccharification. Adsorption of dye on SCB, its bioremediation under SSF produces wastes biomass and which further utilized for enzymatic saccharification for biofuel production.

  16. Direct Numerical Simulation of biomass pyrolysis and combustion with gas phase reactions

    Science.gov (United States)

    Awasthi, A.; Kuerten, J. G. M.; Geurts, B. J.

    2016-09-01

    We present Direct Numerical Simulation of biomass pyrolysis and combustion in a turbulent channel flow. The model includes simplified models for biomass pyrolysis and char combustion along with a model for particle tracking. The gas phase is modelled as a mixture of reacting gas species. The gas-particle interactions for mass, momentum, and energy exchange are included by two-way coupling terms. The effect of two-way coupling on the conversion time of biomass particles is found noticeable for particle volume fractions > 10-5. We also observe that at constant volume fraction the effect of two-way coupling increases as the particle size is reduced, due to the higher total heat exchange area in case of smaller particles. The inclusion of gas phase homogeneous reactions in the DNS model decreases the biomass pyrolysis time due to higher gas temperatures. In contrast, including gas phase reactions increases the combustion time of biomass due to the lower concentration of oxygen at the particle surface.

  17. Aqueous extractive upgrading of bio-oils created by tail-gas reactive pyrolysis to produce pure hydrocarbons and phenols

    Science.gov (United States)

    Tail-gas reactive pyrolysis (TGRP) of biomass produces bio-oil that is lower in oxygen (~15 wt% total) and significantly more hydrocarbon-rich than traditional bio-oils or even catalytic fast pyrolysis. TGRP bio-oils lend themselves toward mild and inexpensive upgrading procedures. We isolated oxyge...

  18. Optical Absorption Spectroscopy for Gas Analysis in Biomass Gasification

    DEFF Research Database (Denmark)

    Grosch, Helge

    the concentration of the mentioned compounds. However, continuous measurements of different species directly in the gas (in-situ) and at the same time are scarce. In this work, the basis of optical in-situ analysis with ultraviolet and infrared spectroscopy was build to determine the concentration of the most...... important gas species of the low-temperature circulating fluidized bed gasifier. At first, a special gas cell,the hot gas flow cell (HGC), was build up and veried. In this custom-made gas cell, the optical properties, the so-called absorption cross-sections, of the most important sulfur and aromatic...

  19. Effect of Flue Gas on Microalgae Population and Study the Heavy Metals Accumulation in Biomass from Power Plant System

    Directory of Open Access Journals (Sweden)

    Mahendraperumal Guruvaiah

    2014-06-01

    Full Text Available Microalgae have high photosynthetic efficiency that can fix CO2 from the flue gas directly without any upstream CO2 separation, and concomitantly produce biomass for biofuel applications. These gases, both untreated and treated into current discharge standards, contain CO2, N2, H2O, O2, NOx, SOx, CxHy, CO, particulate matter, halogen acids and heavy metals. Microalgae population studies were conducted in a batch mode experiments at Power plant site of Chamois, Missouri. The experiments were conducted in different period (June to December 2011 of time. This study evaluated the effect of several heavy metals that are present in flue gases on the algae, focusing on the growth and accumulation of lipids in the algae that can be converted to biodiesel. The genus Scenedesmus presented the greatest richness of species and number of counted individuals in the flue gas ponds compare than non flue gas treatment ponds. Among the diatomaceae the genus Navicula sp, Nitizchia sp and Synedra sp. presented the next subdominant richness in the ponds. The last results of counted green algae Ulothrix sp and Coelastrum sp were least number of cells reported in these ponds. The heavy metal-contaminated in flue gas and also enter into the microalgae biomass population. Comparative studies were carried out by flue gas and control system of open ponds. Control system of microalgae population was represented in less amount of heavy metals compare than flue gas ponds.

  20. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    Science.gov (United States)

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first.

  1. Experimental Research on Heterogeneous N2O Decomposition with Ash and Biomass Gasification Gas

    Directory of Open Access Journals (Sweden)

    Wu Qin

    2011-11-01

    Full Text Available In this paper, the promoting effects of ash and biomass gas reburning on N2O decomposition were investigated based on a fluidized bed reactor, with the assessment of the influence of O2 on N2O decomposition with circulating ashes. Experimental results show that different metal oxides contained in ash play distinct roles in the process of N2O decomposition with biomass gas reburning. Compared with other components in ash, CaO is proven to be very active and has the greatest promoting impact on N2O decomposition. It is also found that O2, even in small amounts, can weaken the promoting effect of ash on N2O decomposition by using biomass gas reburning.

  2. A Medium-Scale 50 MWfuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process

    Directory of Open Access Journals (Sweden)

    Ramiar Sadegh-Vaziri

    2015-06-01

    Full Text Available Natural gas is becoming increasingly important as a primary energy source. A suitable replacement for fossil natural gas is bio-SNG, produced by biomass gasification, followed by methanation. A major challenge is efficient gas cleaning processes for removal of sulfur compounds and other impurities. The present study focuses on development of a gas cleaning step for a product gas produced in a 50 MWfuel gasification system. The developed gas cleaning washing process is basically a modification of the Rectisol process. Several different process configurations were evaluated using Aspen plus, including PC-SAFT for the thermodynamic modeling. The developed configuration takes advantage of only one methanol wash column, compared to two columns in a conventional Rectisol process. Results from modeling show the ability of the proposed configuration to remove impurities to a sufficiently low concentrations - almost zero concentration for H2S, CS2, HCl, NH3 and HCN, and approximately 0.01 mg/Nm3 for COS. These levels are acceptable for further upgrading of the gas in a methanation process. Simultaneously, up to 92% of the original CO2 is preserved in the final cleaned syngas stream. No process integration or economic consideration was performed within the scope of the present study, but will be investigated in future projects to improve the overall process.

  3. Energy Recovery from Contaminated Biomass

    Directory of Open Access Journals (Sweden)

    Jiří Moskalík

    2012-01-01

    Full Text Available This study focuses on thermal gasification methods of contaminated biomass in an atmospheric fluidized bed, especially biomass contaminated by undesirable substances in its primary use. For the experiments, chipboard waste was chosen as a representative sample of contaminated biomass. In the experiments, samples of gas and tar were taken for a better description of the process of gasifying chipboard waste. Gas and tar samples also provide information about the properties of the gas that is produced.

  4. Use of Methanation for Optimization of a Hybrid Plant Combining Two-Stage Biomass Gasification, SOFCs and a Micro Gas Turbine

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of the two-stage gasification concept, solid oxide fuel cells (SOFCs) and a micro gas turbine (MGT) was considered for optimization. The hybrid plant is a sustainable and efficient alternative to conventional decentralized...

  5. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  6. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.

    Science.gov (United States)

    Okeke, Benedict C

    2014-10-01

    Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.

  7. New audit guidelines for oil- and gas-producing activities

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, T.R.; Blatz, R.E. Jr.

    1984-06-01

    During 1981, the Accounting Standards Executive Committee (AccSEC) declared the necessity of audit guidance for engagements involving oil and gas producing activities. The task of developing audit guidelines was assigned to the Oil and Gas Committee of AccSEC. After approximately two years of deliberations, a draft of a proposed audit guide on audits of oil and gas producing activities was discussed at the October 1983 meeting of AccSEC. Tentative plans call for an exposure draft of the audit guide to be released in March 1984, and a final audit guide to be issued in the fall of 1984. The objective of the proposed audit guide is to assist the independent auditor when examining financial statements of entities with oil and gas producing activities. Special emphasis in the proposed guide is placed on tax, internal control, and auditing considerations. This paper presents some preliminary insights through a summary and analysis of the proposed audit guide which should be of interest to all associated with audits of oil and gas producing entities.

  8. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  9. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system

    Science.gov (United States)

    Kaneko, T.; Brouwer, J.; Samuelsen, G. S.

    This paper addresses how the power and temperature are controlled in a biomass gas fueled solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system. A SOFC and MGT dynamic model are developed and used to simulate the hybrid system performance operating on biomass gas. The transient behavior of both the SOFC and MGT are discussed in detail. An unstable power output is observed when the system is fed biomass gas. This instability is due to the fluctuation of gas composition in the fuel. A specially designed fuel controller succeeded not only in allowing the hybrid system to follow a step change of power demand from 32 to 35 kW, but also stably maintained the system power output at 35 kW. In addition to power control, fuel cell temperature is controlled by introduction and use of a bypass valve around the recuperator. By releasing excess heat to the exhaust, the bypass valve provided the control means to avoid the self-exciting behavior of system temperature and stabilized the temperature of SOFC at 850 °C.

  10. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    Directory of Open Access Journals (Sweden)

    Long Nguyen

    2014-11-01

    Full Text Available To meet Energy Independence and Security Act (EISA cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-controlled biomass feedstocks at preprocessing “depots”. Preprocessing depots densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The logistics of biomass commodity supply chains could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG emissions of corn stover logistics within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. The first scenario sited four preprocessing depots evenly across the state of Kansas but within the vicinity of counties having high biomass supply density. The second scenario located five depots based on the shortest depot-to-biorefinery rail distance and biomass availability. The logistics supply chain consists of corn stover harvest, collection and storage, feedstock transport from field to biomass preprocessing depot, preprocessing depot operations, and commodity transport from the biomass preprocessing depot to the biorefinery. Monte Carlo simulation was used to estimate the spatial uncertainty in the feedstock logistics gate-to-gate sequence. Within the logistics supply chain GHG emissions are most sensitive to the

  11. DEVELOPMENT OF A NANO-Ni-La-Fe/Al2O3 CATALYST TO BE USED FOR SYN-GAS PRODUCTION AND TAR REMOVAL AFTER BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Jianfen Li

    2009-11-01

    Full Text Available The objective of this study was to develop a supported tri-metallic catalyst (nano-Ni-La-Fe/γ-Al2O3 for tar removal in biomass steam gasification, to significantly enhance the quality of the produced gas. For this purpose, the supported tri-metallic catalysts were prepared by a deposition-precipitation (DP method. Different analytical approaches were used to characterize the synthesized catalysts. The results showed that the prepared tri-metallic catalysts had an egg-shell structure with a specific surface area of 214.7 m2/g. The activity of the catalysts for gas production and tar removal in the process of biomass gasification was also investigated using a bench-scale combined fixed bed reactor. The experiments indicated that the tar yield after adding catalyst was reduced significantly and the efficiency of tar removal reached 99% for the biomass steam gasification at 800oC, while the gas yield after adding catalysts increased markedly and less coke was found over the catalyst. Meanwhile, the compositions of gas products before and after adding catalyst in the process also changed significantly; in particular, the content of hydrogen in catalytic steam gasification was improved by over 10 vol%. Therefore, using the prepared tri-metallic catalyst in biomass gasification can significantly improve the quality of the produced gas and efficiently eliminate the tar generation, preventing coke deposition on the catalyst surfaces, thus demonstrating a long lifetime of the catalyst.

  12. Natural gas adsorption on biomass derived activated carbons: A mini review

    Directory of Open Access Journals (Sweden)

    Hamza Usman D.

    2016-01-01

    Full Text Available Activated carbon materials are good candidates for natural gas storage due excellent textural properties that are easy to enhance and modify. Natural gas is much cleaner fuel than coal and other petroleum derivatives. Storage of natural gas on porous sorbents at lower pressure is safer and cheaper compared to compressed and liquefied natural gas. This article reviews some works conducted on natural gas storage on biomass based activated carbon materials. Methane storage capacities and deliveries of the various sorbents were given. The effect of factors such as surface area, pore characteristic, heat of adsorption, packing density on the natural gas storage capacity on the activated carbons are discussed. Challenges, improvements and future directions of natural gas storage on porous carbonaceous materials are highlighted.

  13. Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture.

    Science.gov (United States)

    Santos, C A; Caldeira, M L; Lopes da Silva, T; Novais, J M; Reis, A

    2013-06-01

    In order to produce single-cell oil for biodiesel, a yeast and a microalga were, for the first time, grown in two separate reactors connected by their gas-phases, taking advantage of their complementary nutritional metabolisms, i.e., respiration and photosynthesis. The yeast Rhodosporidium toruloides was used for lipid production, originating a carbon dioxide-enriched outlet gas stream which in turn was used to stimulate the autotrophic growth of Chlorella protothecoides in a vertical-alveolar-panel (VAP) photobioreactor. The microalgal biomass productivity was 0.015 gL(-1)h(-1), and its lipid productivity attained 2.2 mgL(-1)h(-1) when aerated with the outlet gas stream from the yeast fermenter. These values represent an increase of 94% and 87%, respectively, as compared to a control culture aerated with air. The CO2 bio-fixed by the microalgal biomass reached an estimated value of 29 mgL(-1)h(-1) in the VAP receiving the gas stream from the fermenter, a value 1.9 times higher than that measured in the control VAP.

  14. Vegetable Seedling Breeding with Biochar Produced from Invasive Plant Biomass in South West of China

    Science.gov (United States)

    Li, Guitong; Tian, Yanfang; Liu, Cheng; Cao, Jianhua; Lin, Qimei; Zhao, Xiaorong

    2015-04-01

    Crofton Weed (Ageratina adenophora) is an invasive plant widely colonized in the southwest part of China, such as Yunnan, Guizhou, and Sichuan. It is estimated that the total biomass of this small shrub in China can be as much as 30 million tones. Many methods have been developed to control its malignant expansion, mostly by using its leaves as feed for livestock. Its stem is difficult to use, although it accounts for more than 90% of its total biomass. A biochar production system, using the stems of Crofton Weed as feedstock, was established at Xi-Yu Biological Science and Technology Company, Pan-Zhi-hua, Sichuan Province, China. The system is composed of feeder, hot-air dryer, pyrolyser, activator, steam producer, and biochar-based fertilizer producer. The energy for producing hot-air to pre-dry the feedstock and steam to activate the carbonized material comes from the re-use of the heat yielded from the pyrolysis process. The whole system is in a high level of automation and energy efficiency. With this system, local farmers can improve their income by collecting stems of Crofton Weed and selling them to the producer. It is a practical way to control this kind of invasive plant by offering economic value for the local people. The biochar can be used to produce new seedling substrate by replacing peat to protect wetland resource. The biochar seedling media was produced in a simple way and the effects on growth of vegetable seedlings was evaluated. Results showed that the response of vegetable seeds to the biochar seedling media was different, meaning more detailed studies need to done to find the reasons for some kinds of seeds failed to germinate in the tested biochar seedling media. This research was supported by the Ministry of Science and Technology of China under the Public Industry Science and Technology Project (201103027).

  15. Chemical composition, pretreatments and saccharification of Senna siamea (Lam.) H.S. Irwin & Barneby: An efficient biomass producing tree legume.

    Science.gov (United States)

    Mund, Nitesh K; Dash, Debabrata; Barik, Chitta R; Goud, Vaibhav V; Sahoo, Lingaraj; Mishra, Prasannajit; Nayak, Nihar R

    2016-05-01

    Protocols were developed for efficient release of glucose from the biomass of Senna siamea, one of the highly efficient biomass producing tree legumes. Composition of mature, 1year and 2years coppice biomass were analysed. For the hydrolysis of the glucan, two pretreatments, cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) and alkali (sodium hydroxide) were used; COSLIF (85% phosphoric acid, 45min incubation at 50°C) pretreated mature biomass exhibited best result in which 88.90% glucose released after 72h of incubation with the use of 5 filter paper units (FPU) of cellulase and 10 international units (IU) of β-glucosidase per gram of glucan. Of the biomass of different particle sizes (40-200mesh) used for saccharification, 40-60mesh shown the maximum glucose release. COSLIF pretreated mature, 1year and 2years coppice biomass showed equivalent glucose release profiles.

  16. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.

  17. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  18. Manganese oxide as catalyst for tar cleaning of biomass-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Fredrik; Israelsson, Mikael; Seemann, Martin; Thunman, Henrik [Chalmers University of Technology, Division of Energy Technology, Department of Energy and Environment, Gothenburg (Sweden)

    2012-06-15

    The possibilities to upgrade raw gas with the use of a manganese oxide have been investigated in an application for secondary tar cleaning of biomass-derived gas. Experiments were conducted in a reactor system where a novel technique that combines tar cleaning with catalyst regeneration is applied. Raw gas from the Chalmers non-catalytic steam biomass gasifier - containing roughly 32 g{sub tar}/Nm{sub gas} {sup 3} - was fed to the tar cleaning reactor. The tar reforming qualities of the manganese oxide were evaluated in the reactor system using a mixture of 23 wt.% catalysts in silica sand at the temperatures 700 and 800 C. Experiments showed that the catalyst was continuously regenerated from carbon deposits and that the total amount of tars was decreased by as much as 44.5 % at a gas residence time of 0.4 s in the bed. The catalyst showed activity in water-gas shift reaction and the H{sub 2}/CO ratio increased from 0.6 in the raw gas to a peak value of 1 in the reformed gas at 800 C. Only a slight decrease in methane and acetylene content was observed for both operating temperatures. (orig.)

  19. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  20. Common ground : bitumen and gas producers come together to find gas-over-bitumen solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2005-08-01

    The gas-over-bitumen issue has meant that hundreds of natural gas wells remain closed while regulatory hearings and research activities continue. The Alberta Energy and Utilities Board should soon reach a final decision on the status of gas wells considered to be a threat to thermal extraction of underlying oil sands. This article discussed collaborative efforts by oil and gas companies to resolve these issues, including the use of fluid injection technology, low pressure Steam-Assisted Gravity Drainage (SAGD) and artificial lift. The objective of the Gas Reinjection and Production Experiment (GRIPE) is to reinject gas to displace natural gas being produced. The pilot project, conducted by Paramount Resources Ltd., consists of 2 injector wells, 4 producers and 12 observation wells that measure gas pressure in the reservoir. The project also includes a 2 stage compressor modified to handle flue gas. According to reservoir simulations, Paramount should be able to recover between 50 to 60 per cent of the remaining gas in place. Results from the pilot suggest that the technique could result in more than half the currently shut-in pools being re-opened. It was suggested that gas-by-gas displacement may result in higher recovery rates because there is usually more remaining gas in place. It was noted that EnCana Corporation has also been repressurizing a depleted natural gas pool by injecting compressed air rather than flue gas. Various other projects were reviewed, including the use of electric submersible pumps, low pressure SAGD and new SAGD well pair configurations. It was concluded that the artificial lift and low pressure SAGD technical sub-committee have now filed 10 applications for funding under the Alberta Energy Department's Innovative Energy Technology Program.

  1. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  2. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    Science.gov (United States)

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before.

  3. CO and PAH emissions from engines operating on producer gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2005-01-01

    from the start been that a high CO emission is a measure for incomplete combustion of hydrocarbons and thus an indicator for the presents of organic micro emissions such as polynuclear aromatic hydrocarbons (PAH). Measurements from two operating gasification plants show that there is no correlation...... between the high CO emissions and PAH emissions from engines operating on producer gas. The measured PAH emissions were more than 20 times lower than the recommended emission limit for gas engines. Since unburned CO and UHC are similar in origin the reasonable regulated limit for CO emissions from engines...

  4. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  5. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  6. Catalytic hydrotreating of biomass liquefaction products to produce hydrocarbon fuels: Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Baker, E.G.

    1986-03-01

    Research catalytic hydrotreatment of biomass liquefaction products to a gasoline has been technically demonstrated in a bench-scale continuous processing unit. This report describes the development of the chemistry needed for hydrotreatment of both high pressure and pyrolyzate biomass liquefaction products and outlines the important processing knowledge gained by the research. Catalyst identity is important in hydrotreatment of phenolics. Hydrogenation catalysts such as palladium, copper chromite, cobalt and nickel show activity with nickel being the most active. Major products include benzene, cyclohexane, and cyclohexanone. The hydrotreating catalysts cobalt-molybdenum, nickel-molybdenum and nickel-tungsten exhibit some activity when added to the reactor in the oxide form and show a great specificity for hydrodeoxygenation of phenol without saturation of the benzene product. The sulfide form of these catalysts is much more active than the oxide form and, in the case of the cobalt-molybdenum, much of the specificity for hydrodeoxygenation is retained. Substitution on the phenolic ring has only marginal effects on the hydrotreating reaction. However, the methoxy (OCH/sub 3/) substituent on the phenol ring is thermally unstable relative to other phenolics tested. The pyrolysis products dominate the product distribution when cobalt-molybdenum is used as the hydrotreating catalyst for methoxyphenol. The product from catalytic hydrotreatment of high-pressure biomass liquefaction products confirms the model compounds studies. Catalytic processing at 350 to 400/sup 0/C and 2000 psig with the sulfided cobalt-molybdenum or nickel-molybdenum catalyst produced a gasoline-like product composed of cyclic and aromatic compounds. Oxygen contents in products were in the range of 0 to 0.7 wt % and hydrogen to carbon atomic ratios ranged from 1.5 to 2.0. 46 refs., 10 figs., 21 tabs.

  7. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Miranda Maki, Kam Tin Leung, Wensheng Qin

    2009-01-01

    Full Text Available Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a 'greener' technology.

  8. Research on the Gas Reburning in a Circulating Fluidized Bed (CFB System Integrated with Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Changqing Dong

    2012-08-01

    Full Text Available N2O emissions from coal fired fluidized-bed combustion are approximately 30–360 mg/Nm3, much higher than that from pulverized coal combustion (less than 30 mg/Nm3. One approach to reduce the N2O is to reburn the biomass gasification gas in the coal-fired fluidized bed. In this paper, the effects of gasified biomass reburning on the integrated boiler system were investigated by both simulation and experimental methods. The simulation as well as experimental results revealed that the increase of the reburning ratio would decrease the theoretical air volume and boiler efficiency, while it would increase the fuel gas volume, combustion and exhuast gas temperature. The experimental results also indicated that the N2O removal could reach as high as 99% when the heat ratio of biomass gas to coal is 10.5%.

  9. Assessing Radium Activity in Shale Gas Produced Brine

    Science.gov (United States)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a

  10. Modelling of a Biomass Gasification Plant Feeding a Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a solid oxide fuel cell (SOFC) and the other in a combined SOFC and micro gas turbine (MGT) arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory. The modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The MGT utilizes the unconverted...... syngas from the SOFC to produce more power as well as pressurizing the SOFC bettering the electrical efficiency compared to operation with the SOFC alone - from η_el=36.4% to η_el=50.3%....

  11. Verticillium dahliae Infects, Alters Plant Biomass, and Produces Inoculum on Rotation Crops.

    Science.gov (United States)

    Wheeler, D L; Johnson, D A

    2016-06-01

    Verticillium wilt, caused by Verticillium dahliae, reduces yields of potato and mint. Crop rotation is a potential management tactic for Verticillium wilt; however, the wide host range of V. dahliae may limit the effectiveness of this tactic. The hypothesis that rotation crops are infected by V. dahliae inoculum originating from potato and mint was tested by inoculation of mustards, grasses, and Austrian winter pea with eight isolates of V. dahliae. Inoculum density was estimated from plants and soil. Typical wilt symptoms were not observed in any rotation crop but plant biomass of some crops was reduced, not affected, or increased by infection of specific isolates. Each isolate was host-specific and infected a subset of the rotation crops tested but microsclerotia from at least one isolate were observed on each rotation crop. Some isolates were host-adapted and differentially altered plant biomass or produced differential amounts of inoculum on rotation crops like arugula and Austrian winter pea, which supported more inoculum of specific isolates than potato. Evidence of asymptomatic and symptomatic infection and differential inoculum formation of V. dahliae on rotation crops presented here will be useful in designing rotations for management of Verticillium wilt.

  12. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Min, Min; Ding, Kuan; Xie, Qinglong; Ruan, Roger

    2015-01-01

    In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals.

  13. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels.

    Science.gov (United States)

    Yang, Y; Brammer, J G; Mahmood, A S N; Hornung, A

    2014-10-01

    This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%.

  14. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  15. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  16. Effect of biomass composition on the condensable gas yield from torrefaction of plant residues

    Directory of Open Access Journals (Sweden)

    Lucélia Alves Macedo

    2014-12-01

    Full Text Available This work assessed the effect of biomass composition (ash, volatile matter and fixed carbon content, carbon, hydrogen and nitrogen content, lignin, extractives and holocellulose content on the condensable gas yield from the torrefaction of rice husk (Oryza sativa L., jatropha seed husk (Jatropha curcas L., elephant grass (Pennisetum purpureum Schum. var. mineiro; sugarcane bagasse (Sacharum officinarum L. and bamboo (Bambusa vulgaris ex J.C. Wendl. var. vulgaris. Biomasses with a particle size between 0.5 mm and 1.0 mm were subjected to torrefaction process using a temperature gradient varying from 250 °C to 300 °C, for 15 min, with a heating rate of 20 °C min-1. Five trials were conducted for each biomass and solid, liquid and gas yields were obtained. The holocellulose and the volatile matter content of biomass showed a positive and significant correlation with condensable yield. The ash content showed a negative and significant correlation with condensable yield. There was no significant correlation between the elementary chemical composition and the condensable yield.

  17. Internal curing with lightweight aggregate produced from biomass-derived waste

    Energy Technology Data Exchange (ETDEWEB)

    Lura, Pietro, E-mail: pietro.lura@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Institute for Building Materials (IfB), ETH Zürich (Switzerland); Wyrzykowski, Mateusz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Department of Building Physics and Building Materials, Lodz University of Technology (Poland); Tang, Clarence [Siam Research and Innovation, SCG Cement–Building Materials, Saraburi (Thailand); Lehmann, Eberhard [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2014-05-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements.

  18. DETERMINATION OF ENZYMES PRODUCED BY CERIPORIOPSIS SUBVERMISPORA DURING PRETREATMENT OF DIFFERENT BIOMASS SOURCES

    Directory of Open Access Journals (Sweden)

    Miroslav Ondrejovič

    2012-02-01

    Full Text Available The aim of this paper was to study of lignocellulolytic enzymes producing by Ceriporiopsis subvermispora during its cultivation on three types of plant biomass differentiated by chemical composition and physical properties (wheat straw, pine and poplar wood. The activity of lignocellulolytic enzymes in cultivation medium was determined by catalytic transformation of their natural substrates to products which were detected by photometric methods. Cellulase activities were very low while xylanases predominated. Wheat straw was best substrate for production of cellulases (4.38 U/mL and xylanases (23.34 U/mL. The maximum activity of cellulase and xylanase was reached at 8th and 3rd day, respectively. Laccase activity reached the maximum after 16 days and then gradually decreased. The best substrate for production of laccases was poplar wood (1.67 U/mL.

  19. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  20. Criteria for selection of dolomites and catalysts for tar elimination from biomass gasification gas. Kinetic constants

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Madrid Univ. (Spain). Dept. of Chem. Eng.

    1996-12-31

    Calcined dolomites and commercial steam reforming catalysts are used downstream biomass gasifiers for hot catalytic raw gas cleaning. To further compare these solids under a rigorous basis, a reaction network and a kinetic model are presented. The apparent kinetic constant for the tar reduction is here proposed as a basis of comparison. Tar sampling and analysis, and the units used for the space-time in the catalytic reactor affect the kinetic constants observed. (author) (2 refs.)

  1. Catalytic conversion of biomass-derived synthesis gas to liquid fuels

    OpenAIRE

    2016-01-01

    Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food co...

  2. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...... system. An electrochemical model of the SOFC has been developed and calibrated against published data from Topsoe Fuel Cells A/S and the Risø National Laboratory. The modelled gasifier is based on an up scaled version (~500 kW_th) of the demonstrated low tar gasifier, Viking, situated at the Technical...

  3. Stable Carbon Isotopic Fractionation in Smoke and Char Produced During Biomass Burning

    Science.gov (United States)

    Wang, Y.; Hsieh, Y.

    2006-12-01

    Stable isotopic ratio of carbon has been used extensively as a tracer of carbon sources in the environment. It has been documented that burning of C4 grasses resulted in significant depletion of C13 in the charcoal while burning of wood and C3 grass did not. This study was initiated to investigate the stable carbon isotopic fractionation of the smoke and char produced during biomass burnings. Samples of Juncus romerianus (C3 salt marsh grass) and Spartina alterniflora (C4 salt marsh grass), Eremochloa ophiuroides (centipede, a C4 lawn grass) and woody debris of a pine forest were colleted and burned in open air fire place. The particulate matter with diameters less than 2.5 micron (PM2.5) emitted from the burning was collected using a PM sampler. The original biomass, PM2.5, black C in PM2.5 and char (ash) were analyzed for their C, N and S thermograms using a multi-elemental scanning thermal analyzer and their stable C isotopic ratios were measured using an EA-IRMS. The results indicate that burning of wood and C3 grass did not produce significant C isotopic fractionation in PM2.5, black C in PM2.5 and char with respect to the original material. However, there was a significant C13-depletion in PM2.5 (-6.2 per mil), black C in PM2.5 (-4.6 per mil) and chars (-4.6 per mil) produced by burning of the C4 centipede grass; whereas the C4 Spartina salt marsh grass produced a C13-depletion in PM2.5 (-2.3 per mil) and black C in PM2.5 (-3.6 per mil), and a slight C13-enrichment in char (0.5 per mil). The isotope fractionation associated with burning of C4 vegetation is probably dependent on species and burning conditions and warrant further study.

  4. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    Science.gov (United States)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  5. A Converter for Producing a Hydrogen-Containing Synthesis Gas

    Science.gov (United States)

    Malkov, Yu. P.; Molchanov, O. N.; Britov, B. K.; Fedorov, I. A.

    2016-11-01

    A computational thermodynamic and experimental investigation of the characteristics of a model of a converter for producing a hydrogen-containing synthesis gas from a hydrocarbon fuel (kerosene) with its separate delivery to thermal-oxidative and steam conversions has been carried out. It is shown that the optimum conditions of converter operation correspond to the oxidant excess coefficient in the converter's combustion chamber α > 0.5 at a temperature of the heat-transmitting wall (made from a heat-resistant KhN78T alloy (ÉI 435)) of 1200 K in the case of using a nickel corrugated tape catalyst. The content of hydrogen in the synthesis gas attains in this case 60 vol.%, and there is no release of carbon (soot) in the conversion products as well as no need for water cooling of the converter walls.

  6. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    Science.gov (United States)

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.

  7. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  8. Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract

    Directory of Open Access Journals (Sweden)

    Ghysel, F.

    2010-01-01

    Full Text Available Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin fractions (Ogier et al., 1999 that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007. However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008. This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007 that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and

  9. Psychrophilic Biomass Producers in the Trophic Chain of the Microbial Community of Lake Untersee, Antarctica

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    The study of photosynthetic microorganisms from the Lake Untersee samples showed dispersed distribution of phototrophs within 80 m water column. Lake Untersee represents a unique ecosystem that experienced complete isolation: sealed by the Anuchin Glacier for many millennia. Consequently, its biocenosis has evolved over a significant period of time without exchange or external interaction with species from other environments. The major producers of organic matter in Lake Untersee are represented by phototrophic and chemolithotrophic microorganisms. This is the traditional trophic scheme for lacustrine ecosystems on Earth. Among the phototrophs, diatoms were not found, which differentiates this lake from other known ecosystems. The dominant species among phototrophs was Chlamydomonas sp. with typical morphostructure: green chloroplasts, bright red round spot, and two polar flagella near the opening. As expected, the physiology of studied phototrophs was limited by low temperature, which defined them as obligate psychrophilic microorganisms. By the quantity estimation of methanogenesis in this lake, the litho-autotrophic production of organic matter is competitive with phototrophic production. However, pure cultures of methanogens have not yet been obtained. We discuss the primary producers of organic matter and the participation of our novel psychrophilic homoacetogen into the litho-autotrophic link of biomass production in Lake Untersee.

  10. Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (eisenia fetida) in vermicompost.

    Science.gov (United States)

    Hong, Sung Wook; Lee, Ju Sam; Chung, Kun Sub

    2011-05-01

    We analyzed the bacterial community structure of the intestines of earthworms and determined the effect of enzyme producing microorganisms on the biomass of earthworms in vermicompost. Fifty-seven bacterial 16S rDNA clones were identified in the intestines of earthworms by using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Entomoplasma somnilux and Bacillus licheniformis were the dominant microorganisms; other strains included Aeromonas, Bacillus, Clostridium, Ferrimonas, and uncultured bacteria. Among these strains, Photobacterium ganghwense, Aeromonas hydrophila, and Paenibacillus motobuensis were enzyme-producing microorganisms. In the mixtures that were inoculated with pure cultures of A. hydrophila WA40 and P. motobuensis WN9, the highest survival rate was 100% and the average number of earthworms, young earthworms, and cocoons were 10, 4.00-4.33, and 3.00-3.33, respectively. In addition, P. motobuensis WN9 increased the growth of earthworms and production of casts in the vermicompost. These results show that earthworms and microorganisms have a symbiotic relationship.

  11. Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass

    Directory of Open Access Journals (Sweden)

    Jaya Shankar Tumuluru

    2015-03-01

    Full Text Available Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off‑gas emissions during storage. Storage canisters with gas‑collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO emissions at both 20 and 40 °C (1600 and 13,000 ppmv, whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO2 emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO2, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO2 is highest for switchgrass and CH4 is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.

  12. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass-UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: matti.reinikainen@vtt.fi; Suominen, T. P. (Aabo Akademi, Turku (Finland), Teknisk Kemi och Reaktionsteknik), e-mail: timo.suominen@abo.fi; Linnekoski, J. (Aalto Univ., School of Science and Technology, Espoo (Finland), Lab. of Industrial Chemistry)

    2011-11-15

    The research was directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project were (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself financed also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprised experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project was steered by a wide industrial consortium and the research work was carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology was closely monitored in all subtopics as well as by participating in relevant IEA-tasks. More information on the project can be found on project webpage http://www.vtt.fi/proj/ucgfunda/ (orig.)

  13. Evaluation of storability of a sugar producing biomass crop. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Posler, G.L.; Hill, N.S.

    1983-02-15

    A study was conducted during 1981-1982 at Kansas State University to determine sugar conservation in sweet sorghum biomass stored as silage. Rio, a disaccharide cultivar, and Dale, a monosaccharide cultivar, were grown at the Agronomy Research Center, Manhattan, Kansas on a Kohola silt loam, a cumulic hapludoll, fine-silty, mixed, mesic soil. Based on soil tests, initial soil fertility levels were 86 kg/ha nitrogen, 470 kg/ha potassium, and 78 kg/ha phosphorus, with a pH of 5.6. It is possible to conserve 100% of the sugars in sweet sorghum silages when acrylic acid is applied at a rate of 0.5% of the wet weight prior to ensiling the chopped crop. The cost of such an addition (assuming acrylic acid costs $.51 per pound in bulk) when the wet crop is 10% sugar is approximately $.41 per gallon of ethanol produced. If only 74% of the sugars are conserved using .25% acrylic acid, the cost would be $.172 per gallon of ethanol produced. We emphasize that this is the cost of the acid only and does not include the cost of special equipment for application or storage structures. The present feedstock cost of sweet sorghum for ethanol production is $1.14 to $1.16 per gallon (DOE 1979). Therefore the cost of producing ethanol by using preserved silage would be $1.41 to $1.57 per gallon plus equipment costs. This does not appear to be feasible in the immediate future but if crop production costs decrease to a projected cost of $.83 to $.91 per gallon of ethanol (DOE 1979) or if liquid fuel costs continue to increase, conservation of sugars using silage additive techniques may be promising. 22 references, 7 tables.

  14. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    Science.gov (United States)

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  15. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  16. Power generation using coir-pith and wood derived producer gas in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673 601, Kerala State (India)

    2006-10-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the potential of coir-pith and wood chips as the feedstock for gasifier is analyzed. The performance of the gasifier-engine system is analyzed by running the engine for various producer gas-air flow ratios and at different load conditions. The system is experimentally optimized with respect to maximum diesel savings and lower emissions in the dual fuel mode operation while using coir-pith and wood chips separately. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine while using wood chips in the dual mode operation is higher than that of coir-pith. The CO emission is higher in the case of dual fuel mode of operation as compared to that of diesel mode. In the dual fuel mode of operation, the higher diesel savings is achieved while using wood chips as compared to that of coir-pith. The comparison of the performance and emission characteristics of the dual fuel engine with diesel engine is also described. (author)

  17. Use of lignocellulosic biomass to produce ethanol. Aprovechamiento de la biomasa lignocelulosica para la produccion de etanol

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, J.M.

    1993-01-01

    Gasohol is an automobile fuel with 10% ethanol and 90% gasoline used in USA. A 20/80% mixture is also used in Brasil. Lignocellulosic biomass can be a source to produce ethanol. It is a mixture of cellulose (30%), Memicellulose (32%), lignine (17%) and other (13%). The fundamentals of the ethanol production process are presented. (Author)

  18. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Science.gov (United States)

    2010-07-01

    ..., 40 CFR part 32, or the Debarment, Suspension and Ineligibility provisions of the Federal Acquisition Regulations, 48 CFR, part 9, subpart 9.4, shall be deemed noncompliance with the requirements of this section... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section...

  19. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M. H.

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  20. On the atomization and combustion of liquid biofuels in gas turbines: towards the application of biomass-derived pyrolysis oil

    NARCIS (Netherlands)

    Sallevelt, Johan Leonard Hendrik Pieter

    2015-01-01

    The combustion of liquid biofuels in gas turbines is an efficient way of generating heat and power from biomass. Gas turbines play a major role in the global energy supply and are suitable for a wide range of applications. However, biofuels generally have different properties compared to conventiona

  1. Gasification of Woody Biomass.

    Science.gov (United States)

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  2. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian...

  3. LCA METHODS TO COMPARE TREATMENT OPTIONS ON BIOMASS RESIDUES PRODUCED IN A PALM-OIL SYSTEM

    OpenAIRE

    Wiloso, Edi Iswanto; Bessou, Cécile; Heijungs, Reinout; de Snoo, Geert

    2014-01-01

    International audience; Palm oil systems generate large amounts of biomass residues. According to best agri-cultural practices, they are supposed to be returned back to plantation to maintain soil fertility. However, there are variations in practice. Differences in economic status and treatment options on biomass residues cause variations on the preference to perform LCA, leading to divergence in results that complicate interpretation. Difficulties found in comparing LCA results based on lite...

  4. NEW STRAIN PRODUCERS OF BIOBUTANOL. III. METHODS OF INCREASED BUTANOL ACCUMULATION FROM BIOMASS OF SWITCHGRASS Panicum virgatum L.

    Directory of Open Access Journals (Sweden)

    Tigunova O. O.

    2015-08-01

    Full Text Available The aim of this work was to enlarge accumulation of butanol from switchgrass Panicum virgatum L. biomass using strains-producers obtained from grounds and silts of Kyiv lakes. The objects of the study were strains of C. acetobutylicum ІМВ B-7407 (IFBG C6H, Clostridium acetobutylicum IFBG C6H 5М and Clostridium tyrobutyricum IFBG C4B from the "Collections of microbial strains and lines of plants for food and agricultural biotechnology" of the Public Institution "Institute of Food Biotechnology and Genomics" of the National Academy of Sciences of Ukraine. Gas chromatography was used to determine the alcohol concentration at the stage of solvent synthesis. To determine the effect of butanol precursors during cultivation, butyric, lactic and acetic acids were used. Optimization of processing parameters, which was based on the needs of cultures, allowed us to increase the yield by 20 and 50% for the initial and mutant strain respectively. Using synthetic precursors (such as lactic, butyric and acetic acid during cultivation increased total concentration of butanol by 1.7 times. To optimize the process, a study was carried out using acetone- butyl grains. Using of acetone-butyl grains in concentrations up to 60% does not affect the synthesis of butanol by C. acetobutylicum IFBG C6H 5M. Increasing the concentration of grains led to decrease in accumulation of butanol. Almost double increase in accumulation of the target product (butanol was achieved using two-stage fermentation and/or precursors of synthesis. It was shown the possibility of using acetone-butyl grains in fermentation. As a result the mass fraction of the waste was reduced.

  5. Use of biomass sorbents for oil removal from gas station runoff.

    Science.gov (United States)

    Khan, Eakalak; Virojnagud, Wanpen; Ratpukdi, Thunyalux

    2004-11-01

    The use of biomass sorbents, which are less expensive and more biodegradable than synthetic sorbents, for oil removal from gas station runoff was investigated. A bench-scale flume experiment was conducted to evaluate the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp., wood chip, rice husk, coconut husk, and bagasse. Polyester fiber, a commercial synthetic sorbent, was also experimented for comparison purpose. Oil sorption and desorption tests were performed at a water flow rate of 20 lmin-1. In the oil sorption tests, a 50 mgl(-1) of used engine oil-water mixture was synthesized to simulate the gas station runoff. The mass of oil sorbed for all sorbents, except coconut husk and bagasse, was greater than 70%. Cattail fiber and polyester fiber were the sorbents that provided the least average effluent oil concentrations. Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability. The used sorbents from the sorption tests were employed in the desorption tests. Results indicated that oil leached out of all the sorbents tested. Polyester fiber released the highest amount of oil, approximately 4% (mass basis) of the oil sorbed.

  6. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  7. Investigation of trace gas to aerosol relationships over biomass burning areas using daily satellite observations

    Science.gov (United States)

    Wagner, Thomas; Penning de Vries, Marloes; Zörner, Jan; Beirle, Steffen

    2014-05-01

    The quantification and characterization of aerosols from space is a great challenge. Especially in the presence of clouds and over land surfaces, it is often difficult to distinguish the signals of aerosol scattering from scattering by cloud particles or surface reflection. Instead of deriving aerosol properties directly, satellite observations of tropospheric trace gases, emitted by the same emission sources as the aerosols, can be used to derive additional information on the aerosols. Such observations have two potential advantages: First, from the composition of trace gases, information on the aerosol type can be derived. Second, such observations are possible in the presence of clouds (although usually with reduced sensitivity if the trace gases are located below the cloud). In this feasibility study we investigate the relationship between satellite observations of trace gases (CO, NO2, HCHO, CHOCHO) and AOD (measured from satellite or ground). We also include in our comparison satellite observations of the so called UV aerosol index (UVAI), which is an indicator of the aerosol absorption. Like the trace gas observations, also the UVAI can be retrieved in the presence of clouds. We investigate aerosol-trace gas relationships over biomass burning regions. Depending on their optical properties and altitude distribution such aerosols can have a strong impact on the atmospheric energy budget through direct and indirect effects. We perform correlation analyses for selected AERONET stations and also for larger biomass burning areas by also taking into account satellite observations of fire counts.

  8. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M. H.

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  9. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.

    Science.gov (United States)

    Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina

    2016-12-25

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.

  10. Greenhouse gas emissions from the treatment of household plastic containers and packaging: replacement with biomass-based materials.

    OpenAIRE

    Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun

    2014-01-01

    The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling metho...

  11. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  12. The impact of air-fuel mixture composition on SI engine performance during natural gas and producer gas combustion

    Science.gov (United States)

    Przybyła, G.; Postrzednik, S.; Żmudka, Z.

    2016-09-01

    The paper summarizers results of experimental tests of SI engine fuelled with gaseous fuels such as, natural gas and three mixtures of producer gas substitute that simulated real producer gas composition. The engine was operated under full open throttle and charged with different air-fuel mixture composition (changed value of air excess ratio). The spark timing was adjusted to obtain maximum brake torque (MBT) for each fuel and air-fuel mixture. This paper reports engine indicated performance based on in-cylinder, cycle resolved pressure measurements. The engine performance utilizing producer gas in terms of indicated efficiency is increased by about 2 percentage points when compared to fuelling with natural gas. The engine power de-rating when producer gas is utilized instead the natural gas, varies from 24% to 28,6% under stoichiometric combustion conditions. For lean burn (λ=1.5) the difference are lower and varies from 22% to 24.5%.

  13. Green House Gas Control and Agricultural Biomass for Sustainable Animal Agriculture in Developing Countries

    Directory of Open Access Journals (Sweden)

    J Takahashi

    2010-06-01

    Full Text Available Important green house gases (GHG attributed to animal agriculture are methane (CH4 and nitrous oxide (N2O, though carbon dioxide (CO2 contributes almost half of total greenhouse effect. Rumen CH4 production in an enteric fermentation can be accounted as the biggest anthropogenic source. Some of prebiotics and probiotics have been innovated to mitigate rumen CH4 emission. The possible use of agricultural biomass consisted of non-edible parts of crop plants such as cellulose and hemi cellulose and animal wastes was proposed as a renewable energy and nitrogen sources. The ammonia stripping from digested slurry of animal manure in biogas plant applied three options of nitrogen recycling to mitigate nitrous oxide emission. In the first option of the ammonia stripping, the effect of ammonolysis on feed value of cellulose biomass was evaluated on digestibility, energy metabolism and protein utilization. Saccharification of the NH3 treated cellulose biomass was confirmed in strictly anaerobic incubation with rumen cellulolytic bacteria, Ruminoccous flavefaciens, to produce bio-ethanol as the second option of ammonia stripping. In an attempt of NH3 fuel cell, the reformed hydrogen from the NH3 stripped from 20 liter of digested slurry in thermophilic biogas plant could generate 0.12 W electricity with proton exchange membrane fuel cell (PEM as the third option.

  14. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  15. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry

    OpenAIRE

    Soares, Eduardo V.; Soares, Helena Maria

    2013-01-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in th...

  16. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  17. Numerical prediction of the chemical composition of gas products at biomass combustion and co-combustion in a domestic boiler

    Directory of Open Access Journals (Sweden)

    Radomiak Henryk

    2017-01-01

    Full Text Available In recent years the numerical modelling of biomass combustion has been successfully applied to determine the combustion mechanism and predict its products. In this study the influence of the addition of waste glycerin in biomass wood pellets on the chemical composition of exhaust gases has been investigated. The pellets have been prepared from spruceand pine wood sawdust without and with addition of waste glycerin. The waste glycerol is a undesirable by-product of biodiesel transesterification at oil manufacturing. The produced pellets were being burned in the 10 kW domestic boiler adapted to wood pellets combustion. The possibilities of pollutants generation (CO2, CO, NOx SOx and compounds containing chlorine in the exhaust gases coming from the boiler were numerically calculated using the latest version of CHEMKIN-PRO software, introduced by the American company Reaction Design. The results of the calculations correspond to the data obtained on a real object, in particular: combustion temperature, gas pressure, residence time of fuel in the burner, air flow, fuel consumption, as well as elementary composition of fuel supplied into the boiler. The proposed method of predicting the chemical composition of exhaust gases allows proper control of the combustion process and can be considered as an important step in reducing the pollutants (lower emission of NOx, SOx and CO2 neutral and thus to contribute to the improvement of the environmental quality. In addition, knowledge of the amounts of Clbased compounds produced in combustion process (under given conditions, can serve as an important hint in terms of corrosion prevention of boiler- and chimney steels.

  18. Influence of carbon-bearing raw material on microfungus Blakeslea Trispora biomass producing

    Directory of Open Access Journals (Sweden)

    L. Myronenko

    2015-05-01

    Full Text Available Introduction. This paper investigates influence of hydrated fullerenes on degree of accumulation bioactive substances of microfungus Blakeslea trispora. Materials and methods. In this research effort detection of fatty-acid composition in amino acids, carotenoids and sterols biomass by means of using methods of high-performance liquid chromatography, adsorption and disjunctive chromatography in thin-layer sorbent and spectrophotometric; gravimetric method; method of direct spectrophotometration in benzene took place. Results and discussion. It has been induced that application of hydrated fullerenes in microfungus Blakeslea trispora nutrient medium promotes increasing accumulation in biomass quantity of carotene on 32,3 %; asparaginic, glutamic acids and leucine. Reproportion carbon to nitrogen by means of adding to microfungus Blakeslea trispora nutrient culture medium hydrated fullerenes did not influence on the biomass amino acid structure any. Obtained data of fatty-acid composition in microfungus Blakeslea trispora lipoid fraction indicate about significant predominance unsaturated fatty acids and, as a result of this, we have advance of use microfungus Blakeslea trispora biomass as a source of biologically active substances for establishing a new kind of prophylactic action goods.

  19. Single-reactor process for producing liquid-phase organic compounds from biomass

    Science.gov (United States)

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  20. Assessing land availability to produce biomass for energy: The case of Brazilian charcoal for steel making

    Energy Technology Data Exchange (ETDEWEB)

    Piketty, Marie-Gabrielle [CIRAD and Sao Paulo University (Economic Department and Environmental Science Program) (Brazil)]|[Universidade de Sao Paulo - FEA - Avenida Prof. Luciano Gualberto, 908 CEP: 05 508-900, Sao Paulo, SP (Brazil); Wichert, Marcos [Sao Paulo University, ESALQ, Forestry Science, Avenida Padua Dias, 11 CP 9 Piracicaba, SP, CEP 13418-900 (Brazil); Fallot, Abigail [CIRAD, 73 rue Jean-Francois Breton, TA B-42/16 (Bat. 16, Bur. 26), 34398 Montpellier Cedex 5 (France); Aimola, Luis [Sao Paulo University, Environmental Science Program, Brazil, PROCAM-USP Rua do Anfiteatro, 181 Colmeia, Favo 15, CEP 05508-900, Cidade Universitaria, SP (Brazil)

    2009-02-15

    The paper discusses the availability of biomass in Brazil to supply charcoal to the steel industry on the bases of an initial global assessment of land potentially available for plantations and of Brazilian data that allows refining the assessment and specifying the issue of practical availability. Technical potentials are first assessed through a series of simple rules against direct competition with agriculture, forests and protected areas, and of quantitative criteria, whether geo-climatic (rainfall), demographic (population density) or legal (reserves). Institutional, social and economic factors are then identified and discussed so as to account for the practical availability of Brazilian biomass through six criteria. The ranking of nine Brazilian States according to these criteria brings out the necessary trade-offs in the selection of land for plantations that would efficiently supply charcoal to the steel industry. (author)

  1. Effect of culture conditions on the growth of biomass Yarrowia lipolytica - producing protein feed

    Directory of Open Access Journals (Sweden)

    O. S. Korneeva

    2016-01-01

    Full Text Available Fodder yeast is highly valuable protein-vitamin products. Protein digestibility by yeast and amino acid content, superior proteins of animal origin. Fodder yeast protein digested in animals by 95 %. The biological value of yeast protein is determined by the presence of a significant amount of essential amino acids. Moreover, yeast cells contain many vitamins microelement and a significant amount of fat, in which the predominant unsaturated fatty acid. Currently, fodder yeast successfully used in livestock and poultry, so the demand for them is increasing every year. For the production of fodder yeast using a yeast having the necessary technological properties: the ability of rapid growth in aerobic conditions to form protein, amino acids and vitamins, resistant crop production, the development of resistance to foreign microorganisms. Intensive education yeast biomass contributes to a number of conditions, including pH, temperature and aeration of the culture occupy an important place. The main criterion for comparison and selection of a culture medium for this is the speed of its growth and ability to assimilate all of the nutrients with high economic factor. It depends on the performance of the enterprise, energy consumption and other technical - economic performance. The effect of pH of the medium on the biomass accumulation of yeast Yarrowia lipolytica. Found that at pH 5,2 - 5,5 observed maximum growth rate of the yeast cells. The effect of temperature on the accumulation of yeast biomass. The temperature of the culture medium determines the intensity of metabolism in cells. It was found that the optimal growth temperature of the culture Yarrowia lipolytica is 33 0C. The effect of aeration on the growth rate of yeast cells. Tro-established that the maximum increase of biomass was obtained with the aeration of 70 cm3 /cm3hrs.

  2. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation.

    Science.gov (United States)

    Zhang, Yi; He, Meilin; Zou, Shanmei; Fei, Cong; Yan, Yongquan; Zheng, Shiyan; Rajper, Aftab Ahmed; Wang, Changhai

    2016-05-01

    To improve the biomass yield and lipid productivity, two desert microalgae, Desmodesmus sp. S81 and G41 were induced mutagenesis by Ethylmethane sulfonate (EMS), and obtained two potential mutants, Desmodesmus sp. S5 and G3 from the mutagenic clones for their greatly promoted biomass and lipid production. The results showed that the biomass yield, lipid content and lipid productivity of the mutant strains S5 and G3 were 778.10mg·L(-1), 48.41% and 19.83mg·L(-1)·d(-1), 739.52mg·L(-1), 46.01%, and 17.92mg·L(-1)·d(-1), respectively, which presented the increment of 45.50%, 8.00% and 74.24%, 20.67%, 10.35% and 55.77% than those of S81 and G41. Comparing with the wild strains, the mutants showed reduced PUFAs and glycol lipids, elevated MUFAs and neutral lipids contents, which were appropriate for biodiesel production.

  3. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains...

  4. Gas Debris Disks: A New Way to Produce Dust Patterns

    Science.gov (United States)

    Kuchner, Marc J.

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to planets. But adding a bit of gas to our models of these disks--too little to detect-could alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. rll discuss these phenomena and whether or not we can still use dust patterns as indicators of hidden exoplanets.

  5. The use of flue gas for the growth of microalgal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-11-01

    Capture and utilization of carbon dioxide (CO{sub 2}) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of {similar_to}2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO{sub x} mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process.

  6. Greenhouse gas emissions from the treatment of household plastic containers and packaging: replacement with biomass-based materials.

    Science.gov (United States)

    Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun

    2014-04-01

    The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.

  7. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J. [VTT Energy, Espoo (Finland). Energy Production Technologies] [and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  8. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas.

    Science.gov (United States)

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Park, Ji-Yeon; Lee, Jin-Suk; Lee, Young-Chul; Oh, You-Kwan

    2014-11-01

    Industrial CO2-rich flue-gases, owing to their eco-toxicity, have yet to be practically exploited for microalgal biomass and lipid production. In this study, various autotrophic and mixotrophic culture modes for an oleaginous microalga, Chlorella sp. KR-1 were compared for the use in actual coal-fired flue-gas. Among the mixotrophic conditions tested, the fed-batch feedings of glucose and the supply of air in dark cycles showed the highest biomass (561 mg/L d) and fatty-acid methyl-ester (168 mg/L d) productivities. This growth condition also resulted in the maximal population of microalgae and the minimal population and types of KR-1-associated-bacterial species as confirmed by particle-volume-distribution and denaturing-gradient-gel-electrophoresis (DGGE) analyses. Furthermore, microalgal lipid produced was assessed, based on its fatty acid profile, to meet key biodiesel standards such as saponification, iodine, and cetane numbers.

  9. Central Africa Energy: Utilizing NASA Earth Observations to Explore Flared Gas as an Energy Source Alternative to Biomass in Central Africa

    Science.gov (United States)

    Jones, Amber; White, Charles; Castillo, Christopher; Hitimana, Emmanuel; Nguyen, Kenny; Mishra, Shikher; Clark, Walt

    2014-01-01

    Much of Central Africa's economy is centered on oil production. Oil deposits lie below vast amounts of compressed natural gas. The latter is often flared off during oil extraction due to a lack of the infrastructure needed to utilize it for productive energy generation. Though gas flaring is discouraged by many due to its contributions to greenhouse emissions, it represents a waste process and is rarely tracked or recorded in this region. In contrast to this energy waste, roughly 80% of Africa's population lacks access to electricity and in turn uses biomass such as wood for heat and light. In addition to the dangers incurred from collecting and using biomass, the practice commonly leads to ecological change through the acquisition of wood from forests surrounding urban areas. The objective of this project was to gain insight on domestic energy usage in Central Africa, specifically Angola, Gabon, and the Republic of Congo. This was done through an analysis of deforestation, an estimation of gas flared, and a suitability study for the infrastructure needed to realize the natural gas resources. The energy from potential natural gas production was compared to the energy equivalent of the biomass being harvested. A site suitability study for natural gas pipeline routes from flare sites to populous locations was conducted to assess the feasibility of utilizing natural gas for domestic energy needs. Analyses and results were shared with project partners, as well as this project's open source approach to assessing the energy sector. Ultimately, Africa's growth demands energy for its people, and natural gas is already being produced by the flourishing petroleum industry in numerous African countries. By utilizing this gas, Africa could reduce flaring, recuperate the financial and environmental loss that flaring accounts for, and unlock a plentiful domestic energy source for its people. II. Introduction Background Africa is home to numerous burgeoning economies; a

  10. Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass

    NARCIS (Netherlands)

    de Wild, P. J.; den Uil, H.; Reith, J. H.; Kiel, J. H. A.; Heeres, H. J.

    2009-01-01

    Pyrolysis of lignocellulosic biomass leads to an array Of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose. ce

  11. A comparison of cost-benefit analysis of biomass and natural gas CHP projects in Denmark and the Netherlands

    NARCIS (Netherlands)

    Groth, Tanja; Scholtens, Bert

    2016-01-01

    We investigate what drives differences in the project appraisal of biomass and natural gas combined heat and power (CHP) projects in two countries with very similar energy profiles. This is of importance as the European Commission is assessing the potential scope of harmonizing renewable electricity

  12. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  13. Gas mixing in a pilot scale (500 KW{sub th}) air blown circulating fluidised bed biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, S.R.A.; Moonen, R.H.W.; Oosting, T.P. [ECN Biomass, Petten (Netherlands); Prins, W.; Van Swaaij, W.P.M. [Faculty of Chemical Engineering, University of Twente, Enschede (Netherlands)

    2000-07-01

    To study the gas mixing capacity of circulating fluidised bed (CFB) biomass gasifiers, radial and axial gas concentration profiles have been measured and interpreted in both a hot pilot scale biomass gasifier (100 kg/hr fuel) and a cold-flow set-up. The presented data of the pilot scale gasifier are unique and provide new insight in the radial gas mixing capacity of circulating fluidised bed gasifiers. Gas mixing is an important process because the effectiveness of a CFB biomass gasifier, regarding conversion of carbon and tars in the product gas, depends among other things on the degree of reactant mixing. At five different axial positions, in the pilot plant, especially developed probes are installed to withdraw gases from the interior of the reactor. They can be moved freely over the reactor diameter, so full radial profiles can be obtained at each axial position. In the cold-flow set-up similar probes are used to determine radial dispersion coefficients as a function of process variables such as solids flux, gas velocity and additional internals. Considerable radial gas phase concentration gradients have been observed in the pilot plant gasifier, with a difference between wall and centre concentrations up to a factor 3. It must be concluded that the radial gas mixing is far from ideal. On basis of these pilot plant data and a suitable reactor model it can be concluded that the radial Peclet number of the dilute region is in the order of 1000. Such a value excludes the radial mixing of gases almost entirely. Simulations indicate that the occurrence of a parabolic gas velocity profile (also observed in earlier hydrodynamic studies) and a possibly non-uniform biomass distribution, are major causes for steep gradients in the radial gas concentration profiles. From the experiments in the cold-flow set-up it can be concluded that in the dilute region of the riser the radial mixing intensity decreases due to presence of solids. This can be ascribed to a reducing

  14. Feasibility of Technologies to Produce Coal-Based Fuels with Equal or Lower Greenhouse Gas Emissions than Petroleum Fuels

    Science.gov (United States)

    2014-12-22

    Figure 6. Costs of alternative liquid fuels produced from coal, biomass , or coal and biomass with zero carbon price [reproduced from [6...Terms bpd Barrels per day BTL Biomass -to-liquids CBTL Coal-and- Biomass -to-Liquids CCS Carbon capture and storage CCUS Carbon capture... carbon footprint”) of a CTL process— partially narrowing the gap in well (or mine)-to-tank GHG emissions between CTL fuels and petroleum fuels

  15. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  16. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  17. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-09-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  18. Biotechnology for producing fuels and chemicals from biomass: recommendations for R and D. Volume I. Synopsis and executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R

    1979-12-01

    Areas of research and development judged to be crucial for establishing a biotechnology of biomass processing are identified. Two general avenues are recommended for R and D: (1) in the near term, revival of the older fermentation technology and improvement of processing efficiencies; and (2) in the longer term, the development of novel biotechnological processes, such as for the conversion of lignocellulosic biomass to fuels and chemicals. Recommended R and D ranges from work in moleular genetics to biochemical engineering aspects of plant design. It is recommended that the R and D strategy be designed as an integration of three disciplines: biochemical engineering, microbial genetics, and biochemistry. Applcations of gene-transfer methodology and developments in continuous fermentation should be pursued. Currently, economic incentive for the use of biological conversion processes for producing fuels and chemical feedstocks from biomass is marginal. But as the imported fraction of US oil supply grows and hydrocarbon costs mount, the market is beginning to motivate a quest for substitutes. The commercial potential for biotechnology for establishing a renewable resources chemicals industry appears similar to the potential of the computer and microelectronics field several decades ago.

  19. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  20. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Di Marcello, Manuela; Matt, Muriel; Nacken, Manfred; Heidenreich, Steffen; Foscolo, Pier Ugo

    2010-09-01

    A bench-scale fluidized-bed biomass gasification plant, operating at atmospheric pressure and temperature within the range 800-820 degrees C, has been used to test an innovative gas cleaning device: a catalytic filter candle fitted into the bed freeboard. This housing of the gas conditioning system within the gasifier itself results in a very compact unit and greatly reduced thermal losses. Long term (22h) tests were performed on the gasifier both with and without the catalytic candle filter, under otherwise identical conditions. Analysis of the product gas for the two cases showed the catalytic filtration to give rise to notable improvements in both gas quality and gas yield: an increase in hydrogen yield of 130% and an overall increase in gas yield of 69% - with corresponding decreases in methane and tar content of 20% and 79%, respectively. HPLC/UV analysis was used to characterize the tar compounds.

  1. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    Science.gov (United States)

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production.

  2. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  3. Reactor for producing a carbon monoxide and hydrogen containing gas

    Energy Technology Data Exchange (ETDEWEB)

    Abraamov, E.; Achmatov, I.; Berger, F.

    1982-08-10

    The reactor for the production of CO and H/sub 2/ containing gases by means of a partial oxidation of powdery or liquid high ash fuels in a carburation fluid including free oxygen, at high temperatures and increased pressure, includes a pressure vessel enclosing a gas-tight housing whereby an interspace is formed between the inner wall of the vessel and the outer surface of the housing. Within the housing is arranged a cooling wall enclosing the reaction chamber proper. The cooling wall includes a coil of cooling pipes embedded in a mass of refractory material such as silicium carbide. The pipes are partially supported on web sections projecting from the inner surface of the housing into the refractory lining. The web sections prevent propagation of leaking hot gas from the reaction chamber along the inner surface of the housing.

  4. Selective removal of 226Ra2+ from gas-field-produced waters

    NARCIS (Netherlands)

    Leeuwen, van Fijs W.B.; Miermans, Cornelis J.H.; Beijleveld, Hans; Tomasberger, Tanja; Davis, Jeffery T.; Verboom, Willem; Reinhoudt, David N.

    2005-01-01

    The 226Ra2+ selectivity of both the self-assembled (iso)guanosine-based systems and ionizable thiacalix[4]crown dicarboxylic acids was determined in gas-field-produced water and a metal ion-containing model solution (simulant). Seven gas-field-produced water samples have been analyzed. From a sample

  5. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  6. Compact conversion of natural gas and biomass to DME in microstructured reactors

    Energy Technology Data Exchange (ETDEWEB)

    Myrstad, Rune

    2010-07-01

    Efficient production of easily distributable fuel from natural gas or biomass in the small-to-medium scale calls for a more compact and efficient process than using conventional technology. Microstructured reactors have improved heat and mass transfer properties which make them suitable for process intensified production of liquid fuel from synthesis gas and demonstration plants using such technology are announced. Dimethyl ether (DME) can be used as an intermediate in the production of several industrial chemicals and DME is also used as an aerosol propellant because of its environmentally benign properties. Since DME has high cetane number and is considered as an ultra-clean fuel with reduced NO{sub x}, SO{sub x}, and PM emissions, DME has emerged as a substitute for auto diesel fuel and bio-DME is one of the most promising second-generation biofuels. DME can be prepared in a one-step process from synthesis gas, which is thermodynamically and economically favourable to the two step process consisting of methanol synthesis followed by dehydration of methanol to DME. As the direct process is strongly exothermic, the reaction heat has to be effectively removed from the reaction system in order to maintain a safe and economic operational mode. Direct DME synthesis possesses a high volumetric heat production rate and hence the temperature control is a main challenge. Besides this, parameters such as syngas composition, pressure, contact time and catalytic system affect the conversion and yield. In this work direct DME synthesis from syngas in a microstructured packed bed reactor was demonstrated to operate at practically isothermal conditions. The performance of the catalyst was enhanced by elimination of the undesired phenomena related to the exothermic process, such as hot spot formation and side reactions. The influence of process parameters on methanol selectivity and DME productivity was studied. The highest CO conversion was achieved by a H{sub 2}-rich syngas at

  7. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  8. Biological reactor for anaerobic digestion of organic materials to produce methane gas by fermentation by enzymes. Bioreaktor fuer anaerobe Ausfaulung organischer Stoffe zur Methangaserzeugung mittels Fermentierung durch Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, R.W.

    1981-11-12

    In order to make undisturbed development of the methane bacteria possible, the biomass (organic waste of all kinds, e.g. sewage sludge, manure, organic industrial waste) is first pre-fermented by adding enzymes. The methane bacteria, which are used to inject the biomass in the fermentation reactor, are fermented separately in feeding solutions. The biological reactor is a system heated by a thermostatically controlled waterbath, with at least 12 individual digestion chambers, which are filled in sequence with biomass. Circulation and therefore destruction of the floating sludge layer is done with biogas produced under pressure in the system. By adding lime solution, a pH value of 7 is set in the chambers. The advantages of the invention consist of a shortened digestion time (6 days) and a reduced CO/sub 2/ consist at a gas yield of 80%.

  9. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor.

    Science.gov (United States)

    Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao

    2015-05-01

    A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900°C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production.

  10. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for both the 2015 SOT (Hartley et al., 2015; ANL, 2016; DOE, 2016) and the 2017 design case for feedstock logistics (INL, 2014) and for both the 2015 SOT (Tan et al., 2015a) and the 2022 target case for HOG production via IDL (Tan et al., 2015b). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. In the SCSA, the 2015 SOT case for the conversion process, as modeled in Tan et al. (2015b), uses the 2015 SOT feedstock blend of pulpwood, wood residue, and construction and demolition waste (C&D). Moreover, the 2022 design case for the conversion process, as described in Tan et al. (2015a), uses the 2017 design case blend of pulpwood, wood residue, switchgrass, and C&D. The performance characteristics of this blend are consistent with those of a single woody feedstock (e.g., pine or poplar). We also examined the influence of using a single feedstock type on SCSA results for the design case. These single feedstock scenarios could be viewed as bounding SCSA results given that the different components of the feedstock blend have varying energy and material demands for production and logistics.

  11. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh;

    Liq® process compared with combustion is that also wet material can be processed. In the process, the waste is transformed to bio-oil, combustible gases and water-soluble organic compounds. The raw material used in this study was DDGS (Dried Distilled Grain with Solubles), a residual product in 1st generation......) process is a second generation process for the production of bio-oil from different biomass-based waste materials. The process is carried out at subcritical conditions (280-350 °C and 180-250 bar) and in the presence of homogeneous (KOH) and heterogeneous (ZrO2) catalysts. The great advantage with the Cat...... ethanol production, available in huge quantities. DDGS is today used as animal feed but in a future with increasing production of DDGS, converting it into bio-oil may be an attractive alternative. The bio-oil can be used for green electricity production or it can be upgraded to bio-diesel. In the current...

  12. Experimental and numerical study on combustion of baled biomass in cigar burners and effects of flue gas re-circulation

    Directory of Open Access Journals (Sweden)

    Erić Aleksandar M.

    2016-01-01

    Full Text Available The paper presents results of experimental and numerical investigation addressing combustion of baled agricultural biomass in a 50 kW experimental furnace equipped with cigar burners. Experiments performed included measurements of all parameters deemed important for mass and energy balance, as well as parameters defining quality of the combustion process. Experimental results were compared with results of numerical simulations performed with previously developed CFD model. The model takes into account complex thermo mechanical combustion processes occurring in a porous layer of biomass bales and the surrounding fluid. The combustion process and the corresponding model were deemed stationary. Comparison of experimental and numerical results obtained through research presented in this paper showed satisfactory correspondence, leading to the conclusion that the model developed could be used for analysis of different effects associated with variations in process parameters and/or structural modifications in industrial biomass facilities. Mathematical model developed was also utilized to examine the impact of flue gas recirculation on maximum temperatures in the combustion chamber. Gas recirculation was found to have positive effect on the reduction of maximum temperature in the combustion chamber, as well as on the reduction of maximum temperature zone in the chamber. The conclusions made provided valuable inputs towards prevention of biomass ash sintering, which occurs at higher temperatures and negatively affects biomass combustion process. [Projekat Ministarstva nauke Republike Srbije, br. III 42011: Development and improvement of technologies for energy efficient and environmentally sound use of several types of agricultural and forest biomass and possible utilization for cogeneration i br. TR33042: Fluidized bed combustion facility improvements as a step forward in developing energy efficient and environmentally sound waste combustion

  13. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2016-06-01

    Full Text Available Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS based complete diets for efficient microbial biomass production (EMBP using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of inc ubation. In vitro organic matter digestibility (IVOMD, metabolizable energy (ME, truly digestible organic matter (TDOM, partitioning factor (PF, and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01 in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01 higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  15. Mechanical and Physical Properties Ofmedium Density Fiberboard Produce from Renewable Biomass of Agricultural Fiber

    Directory of Open Access Journals (Sweden)

    Yuliati Indrayani

    2013-01-01

    Full Text Available The development of Medium density fiberboard (MDF made from renewable biomass of pineapple (Ananas comosus leaf fiber and their suitability as a construction material has been investigated. Two different types of board with a target density of 0.8 gr/cm3 were manufactured. The board was prepared in three layers of about 1:1:1 weight ratio in unidirectional and cross-oriented board using low molecular weight (LM PF resin type PL-3725 and high molecular weight (HM PF resin type PL-2818 for impregnation and adhesive purposes. For comparison, boards with the same structure were prepared using high molecular weight PF resin only. The mechanical properties of the boards have been examined as well as their physical properties. The results shows that generally, mechanical properties, Modulus Of Elasticity (MOE, value was improved with mix PF resin as well as Modulus Of Rupture (MOR. Pineaplle leaf fiber resulted in significantly higher MOR, consistent with our observation during the test. This information is useful when a high MOR is required in application. Other mechanical properties such as internal bonding (IB and screw-holding capacities (SH improved as those of MOE and MOR. Fiber from agricultural residues such as pineapple leaf are longer than wood fiber. This might explain why screw-holding capacities increased since the failure in those tests is mainly due to tear force. Diffrences in the physical properties between the board types were caused by the presence of the low molecular weight PF resin for the impregnation of the fibers. As using of mix PF resin, thickness swelling (TS properties improved as well. No significant difference was found for both mechanical and physical properties. The effect of the PF resin for impregnation was noted; however, fiber orientation had no effect on both physical and mechanical properties of the specimens.

  16. Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas

    Science.gov (United States)

    2004-08-01

    indeterminant Lactones, esters Antifreeze and deicers Fuel oxygenates Green solvents Phthalate polyesters Plasticizers Polyacrylates Polyacrylamides Phenol...UsesIntermediatesBiomass Feedstocks Sugars Glucose Fructose Xylose Arabinose Lactose Sucrose Starch Starch Cellulose Lignin Oil Protein Hemicellulose...molecular families, 2) could be produced from both lignocellulosics and starch , 3) were C1-C6 monomers, 4) were not aromatics derived from lignin, and 5

  17. Optimization of biomass blends in the manufacture of molded packaging materials produced using fungal mycelium

    Science.gov (United States)

    Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...

  18. Producer gas cleaning in a dual fluidized bed reformer - a comparative study of performance with ilmenite and a manganese oxide as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berguerand, Nicolas; Lind, Fredrik; Seemann, Martin; Thunman, Henrik [Chalmers University of Technology, Department of Energy and Environment, Goeteborg (Sweden)

    2012-09-15

    Secondary catalytic gas conditioning is one strategy to eliminate tars formed in a producer gas during biomass gasification. However, most catalysts tend to lose their tar reforming activity after a short period of operation due to carbon formation. A novel technique for catalytic gas cleaning based on two interconnected fluidized beds has been investigated; this technique can be applied to all types of gasifiers. The idea is to reform the tar components into useful molecules - even at high tar contents - by means of a circulating catalyst. More precisely, the producer gas is cleaned with catalyst in one of the reactors, referred to as the fuel reactor, while the catalyst is continuously regenerated in another reactor, the air reactor (AR). The system described here is coupled with the Chalmers 2-4 MW{sub th} biomass gasifier while the AR is fed with nitrogen-diluted air. The effect of different catalysts on both the tar content and the gas composition was investigated. Some of the tested materials do not only reform tars, they also influence the H{sub 2}/CO ratio in a beneficial manner; in particular, ratios closer to 3 in the reformed gas are favorable if subsequent methanation is implemented. In this paper, comparative results based on testing with manganese- and iron-based catalysts are presented. The former is a manufactured catalyst while the latter is a natural ore. Results suggest that both show satisfying ability for regeneration from carbon deposits. Higher temperature enhances tar decomposition during the experiment with both catalysts. Moreover, the iron-based catalyst enhances the water-gas shift activity, which in turn impacts the total amount of produced gas. On the other hand, the manganese-based catalyst seems to display a higher propensity for tar conversion. (orig.)

  19. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    Energy Technology Data Exchange (ETDEWEB)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  20. Improvement of Sulphur Resistance of a Nickel-modified Catalytic Filter for Tar Removal from Biomass Gasification Gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Draelants, D.J.; Engelen, K.; Baron, G.V.

    2002-09-19

    This work focuses on the development of catalytic candle filters for the simultaneous removal of tars and particles from the biomass gasification gas at high temperature. An improvement of sulphur resistance of the nickel-activated catalytic filter was developed by the addition of CaO. The influences of preparation procedure of catalytic filter, the ratio of Ni/CaO and the loading of Ni and CaO on the performance of the catalytic filter were investigated.

  1. Colonies of Bumble Bees (Bombus impatiens Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure

    Directory of Open Access Journals (Sweden)

    Olivia M. Bernauer

    2015-06-01

    Full Text Available Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens. Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  2. Modelling of a Biomass Gasification Plant Feeding a Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2009-01-01

    A system level modelling study on two combined heat and power (CHP) systems both based on biomass gasification. One system converts the product gas in a solid oxide fuel cell (SOFC) and the other in a combined SOFC and micro gas turbine (MGT) arrangement. An electrochemical model of the SOFC has...... been developed and calibrated against published data from Topsoe Fuel Cells A/S (TOFC) and Risø National Laboratory. The modelled gasifier is based on an up scaled version of the demonstrated low tar gasifier, Viking, situated at the Technical University of Denmark. The MGT utilizes the unconverted...

  3. Influence of UV light exposure on mineral composition and biomass production of mycomeat produced from different agricultural substrates

    Directory of Open Access Journals (Sweden)

    Adejumo Isaac Oluseun

    2017-01-01

    Full Text Available The wild and mutant strain of Pleurotus sajor caju was cultured on different agricultural substrates. Treatment 1 contained agricultural substrates alone. Treatment 2 contained the mutant strain of the mushroom plus agricultural waste. Treatment 3 contained the wild strain of the mushroom plus agricultural waste. The mutant strain of Pleurotus sajor caju cultured on groundnut shell had the highest iron content while the mutant strain cultured on palm kernel meal had the highest biomass production, 10.5 g/L and 17.20 g/L after 7 and 14 days respectively. The proximate analyses of the feed variety (mycomeat revealed the rich nutritional content which may be explored for feed ingredients in livestock production. The findings do not only support the bioremediation of agricultural waste to produce high-value bio-products, but also provide evidence that improvement of microorganism strains represents a viable way to enhance the nutritional value of fermented products.

  4. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  5. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis.

  6. Piezo-tolerant natural gas-producing microbes under accumulating pCO2

    NARCIS (Netherlands)

    Lindeboom, Ralph E.F.; Shin, Seung Gu; Weijma, Jan; Lier, van Jules B.; Plugge, Caroline M.

    2016-01-01


    Background

    It is known that a part of natural gas is produced by biogenic degradation of organic matter, but the microbial pathways resulting in the formation of pressurized gas fields remain unknown. Autogeneration of biogas pressure of up to 20 bar has been shown to improve the quali

  7. Countrywide Forest Biomass Estimates from PALSAR L-Band Backscatter to Improve Greenhouse Gas Inventory in Estonia

    Science.gov (United States)

    Olesk, A.; Voormansik, K.; Luud, Aarne; Renne, M.; Zalite, K.; Noorma, M.; Reinart, A.

    2013-08-01

    Accurately estimated forest biomass and its distribution is a key parameter for forest inventories, vegetation modeling and understanding the global carbon cycle. It is also required by the United Nations and Intergovernmental Panel on Climate Change (IPCC) to provide a comprehensive analysis on estimates of terrestrial carbon fluxes for climate change reports. To improve the understanding of the carbon balance in Estonia, where forests cover over half of the land, a methodology has been worked out to map the changes in the forest biomass in yearly basis using satellite and forest inventory data. To assess the above-ground biomass in temperate deciduous, coniferous and mixed forest of Estonia, measurements and imagery from dual polarimetric L-band SAR (Synthetic Aperature Radar) and optical remote sensing satellites were used. A country-specific model allows easily regenerating the forest biomass estimations with the newest satellite data and producing up-to-date biomass maps that can be used to assist the national inventory reporting under the Intergovernmental Negotiating Committee for a Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol.

  8. Mortality and Greenhouse Gas Impacts of Biomass and Petroleum Energy Futures in Africa

    Science.gov (United States)

    Bailis, Robert; Ezzati, Majid; Kammen, Daniel M.

    2005-04-01

    We analyzed the mortality impacts and greenhouse gas (GHG) emissions produced by household energy use in Africa. Under a business-as-usual (BAU) scenario, household indoor air pollution will cause an estimated 9.8 million premature deaths by the year 2030. Gradual and rapid transitions to charcoal would delay 1.0 million and 2.8 million deaths, respectively; similar transitions to petroleum fuels would delay 1.3 million and 3.7 million deaths. Cumulative BAU GHG emissions will be 6.7 billion tons of carbon by 2050, which is 5.6% of Africa's total emissions. Large shifts to the use of fossil fuels would reduce GHG emissions by 1 to 10%. Charcoal-intensive future scenarios using current practices increase emissions by 140 to 190%; the increase can be reduced to 5 to 36% using currently available technologies for sustainable production or potentially reduced even more with investment in technological innovation.

  9. Catalytic decomposition of ammonia in fuel gas produced in pilot-scale pressurized fluidized-bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Ylitalo, M.; Maunula, T.; Abbasian, J. [Enviropower Inc., Tampere (Finland)

    1995-12-01

    Integrated Gasification Combined Cycle (IGCC) process, incorporating pressurized gasification of solid fuels (coal, peat, biomass) and hot gas cleanup, is being developed worldwide to generate power with high efficiency and in an environmentally acceptable manner. The gasifier product gas contains, among others, ammonia and to a lesser extent hydrogen cyanide (HCN) which are converted to oxides of nitrogen (NO{sub x}) when the gas is combusted in the gas turbine. Several nickel-based catalysts were developed and evaluated for decomposition of ammonia present in the gasifier product gas, at Enviropower`s 15 MW{sub th} pilot plant in coal- and biomass-gasification tests. Up to 75% of ammonia in the product gas was decomposed at 800-900{degree}C temperature range and 12-22 bar pressure. 11 refs., 12 figs., 4 tabs.

  10. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  11. Challenges of Membrane Filtration for Produced Water Treatment in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian

    2016-01-01

    Tremendous amount of produced water are discharged into the sea from offshore oil & gas installations. Along with every barrel of oil three barrels of water are produced and this is only worsen as the fields mature. Enhanced oil recovery (EOR) is employed to increase production, as a part of EOR...

  12. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-10-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  13. Synthesis and evaluation of novel biochar-based and metal oxide-based catalysts for removal of model tar (toluene), ammonia, and hydrogen sulfide from simulated producer gas

    Science.gov (United States)

    Bhandari, Pushpak

    Gasification is a thermochemical conversion process in which carbonaceous feedstock is gasified in a controlled atmosphere to generate producer gas. The producer gas is used for production of heat, power, fuels and chemicals. Various contaminants such as tars, NH3, and H2S in producer gas possess many problems due to their corrosive nature and their ability to clog and deactivate catalysts. In this study, several catalysts were synthesized, characterized, and tested for removal of three contaminants (toluene (model tar), NH3, and H2S) from the biomass-generated producer gas. Biochar, a catalyst, was generated from gasification of switchgrass. Activated carbon and acidic surface activated carbon were synthesized using ultrasonication method from biochar. Acidic surface was synthesized by coating activated carbon with dilute acid. Mixed metal oxide catalysts were synthesized from hydrotalcite precursors using novel synthesis technique using microwave and ultrasonication. Surface area of activated carbon (˜900 m2/g) was significantly higher than that of its precursor biochar (˜60 m2/g). Surface area of metal oxide catalyst was approximately 180 m2/g after calcination. Biochar, activated carbon, and acidic surface activated carbon showed toluene removal efficiencies of approximately 78, 88, and 88 %, respectively, when the catalysts were tested individually with toluene in the presence of producer gas at 800 °C. The toluene removal efficiencies increased to 86, 91, and 97 % using biochar, activated carbon and acidic surface activated carbon, respectively in the presence of NH3 and H2S in the producer gas. Increase in toluene removal efficiencies in presence of NH3 and H2S indicates that NH3 and H 2S play a role in toluene reforming reactions during simultaneous removal of contaminants. Toluene removal efficiency for mixed metal oxide was approximately 83%. Ammonia adsorption capacities were 0.008 g NH3/g catalyst for biochar and 0.03g NH3/g catalyst for activated

  14. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  15. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry.

    Science.gov (United States)

    Soares, Eduardo V; Soares, Helena M V M

    2013-08-01

    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.

  16. Bioethanol Production From Cellulose by Candida tropicalis, as An Alternative Microbial Agent to Produce Ethanol from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2016-04-01

    Full Text Available Abstract: Candida tropicalis isolated from Tuak is a potentially useful microorganism for the ethanol production from lignocellulosic biomass and it can be alterbative agent replacing Saccharomyces cerevisae for fermentation process. Although C.tropicalis could not convert all carbohydrates content of lignocellulosic into bioethanol, however it is able to grow on medium in the presence of either xylose or arabinose as carbon source. Our result showed that fermentation of 10 % (w/v cellulosic as sole carbon source produced 2.88% (v/v ethanol by C.tropicalis. This ethanol production was lower than usage of 10% (w/v dextrose as sole carbon source medium which producing 5.51% (v/v ethanol. Based upon our expreiment indicated that C.tropicalis is able to conduct two main process in converting of cellulosic material- to ethanol which is hydrolysis the degradation of cellulose into glucose, and fermentation the process the conversion glucose into bioethanol. Keywords : Candida tropicalis, bioethanol, fermentation, cellulosic Abstrak (Indonesian: Candida tropicalis yang diisiolasi dari Tuak adalah agen yang berpotensi dalam produksi etanol dari biomasa lignoselulosa dan dapat dijadikan agen alternatif menggantikan Saccharomyces cerevisiae pada proses fernentasi. Walaupun C.tropicalis tidak dapat mengkonversi semua kandungan karbohidrat lignoselulosamenjadi etanol, akan tetapi C.tropicalis mampu tumbuh pada media dengan xilosa atau arabinosa sebagaisumber karbon. Hasil kami menunjukkan bahwa dengan mengguankan C.tropicalis fermentasi 10% (w/v selulosa sebagai satu-satunya sumber karbon menghasilkan 2,88% (v/v etanol, Produksi etanol ini lebih rendah jika menggunakan 10% (w/v dekstrosa sebagai satu satunya sumber karbon yang menghasilkan 5,51% (v/v etanol. Berdasarkan percobaan menunjukkan bahwa C.tropicalis mampu melakukan dua proses utama dalam mengkonversi material selulosa menjadi etanol yaitu hidrolisis degradasi selulosa menjadi glukosa, dan

  17. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  18. Upgrading producer gas quality from rubber wood gasification in a radio frequency tar thermocatalytic treatment reactor.

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z A

    2013-12-01

    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.

  19. Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030–2050

    NARCIS (Netherlands)

    Ren, T.; Daniëls, B.; Patel, M.K.; Blok, K.

    2009-01-01

    Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 2030–20

  20. A Novel Biomass Supported Na2CO3 System for Flue Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The breakthrough and stoichiometric SO2 adsorption efficiencies of a biomass supported Na2CO3 system (80 wt %Na2CO3/straw) have reached 48.9 % and 80.6 % respectively at a desulfurization temperature of 80(C.

  1. Viability analysis of electric energy cogeneration in combined cycle with sugar-cane biomass gasification and natural gas; Analise de viabilidade da cogeracao de energia eletrica em ciclo combinado com gaseificacao de biomassa de cana-de-acucar e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Correa Neto, Vicente

    2001-03-15

    The objective of this thesis is evaluate the technical and economic viability of electric energy generation projects using as fuel the biomass produced in the sugar cane Brazilian industry, specifically the cane trash, the straw and the leaves of the plant, as complemental option to the expansion of the Brazilian electric system, hour in phase of deep modification in the institutional scenery, through the sale of electric energy for direct consumers or utilities, characterizing the business possibilities for the ethanol distilleries already integrated into the energy reality of the country. The analyzed technology is thermoelectric generation with combined cycle, operating in cogeneration, integrated to biomass gasification systems for the production of combustible gas, with and without addition of natural gas. The considered technology is known by the acronym BIG/GTCC, originated in Biomass Integrate Gasification Combined Cycle Gas Turbine. The economic analysis is made herself through a modeling and construction of economy project curves based on the prices of the electric energy, of the natural gas and in the costs of the retired biomass in an mechanized way.(author)

  2. Thermodynamic Model of a Very High Efficiency Power Plant based on a Biomass Gasifier, SOFCs, and a Gas Turbine

    Directory of Open Access Journals (Sweden)

    P V Aravind

    2012-07-01

    Full Text Available Thermodynamic calculations with a power plant based on a biomass gasifier, SOFCs and a gas turbine are presented. The SOFC anode off-gas which mainly consists of steam and carbon dioxides used as a gasifying agent leading to an allothermal gasification process for which heat is required. Implementation of heat pipes between the SOFC and the gasifier using two SOFC stacks and intercooling the fuel and the cathode streams in between them has shown to be a solution on one hand to drive the allothermal gasification process and on the other hand to cool down the SOFC. It is seen that this helps to reduce the exergy losses in the system significantly. With such a system, electrical efficiency around 73% is shown as achievable.

  3. Soybean biomass produced in Argentina : myths and realities. Presented at Beyond Kyoto: Addressing the Challenges of Climate Change, Aarhus University, Danmark

    DEFF Research Database (Denmark)

    Semino, Stella Maris

    2009-01-01

    Soybean biomass for biodiesel, is considered by some to reduce greenhouse gas emissions and mitigate climate change when compared with fossil fuel. To ensure that the production of biofuels is ‘sustainable', EU institutions and national governments are currently designing certification schemes. T....... This paper questions the validity of proposed environmental standards, using the production of Argentine soybean as a case study. The study concludes that to certify soy monocultures as sustainable would exacerbate existing climatic and environmental problems....

  4. Differentiation of lactate-fermenting, gas-producing Clostridium spp. isolated from milk.

    Science.gov (United States)

    Ingham, S C; Hassler, J R; Tsai, Y W; Ingham, B H

    1998-09-08

    Endospores of Clostridium spp. capable of producing gas in a lactate-containing medium were enumerated from 14 pasteurized milk samples from Wisconsin cheese plants. Concentrations of endospores of lactate-fermenting, gas-producing Clostridium spp. were between 5.0 x 10(-2) and 1.7 x 10(0) MPN ml(-1). Concentrations of presumptive C. tyrobutyricum endospores (defined by subterminal endospore position and lactate dehydrogenase activity) were lower, not exceeding 2.0 x 10(-2) MPN ml(-1). Based on subterminal endospore position, lactate dehydrogenase activity, and a carbohydrate fermentation profile identical to C. tyrobutyricum strain ATCC 25755, five isolates (Ct) were initially characterized as C. tyrobutyricum, a known cause of late-blowing in high-pH cheeses. Twenty-eight other isolates (Cx) produced gas from lactate, but differed from ATCC 25755 in either endospore position, lactate dehydrogenase activity or carbohydrate fermentation profile. When inoculated at high concentrations in Gouda cheese, strain ATCC 25755, two Ct isolates and 18 Cx isolates tested produced gas during ripening. Among the five Ct isolates obtained and two reference strains confirmed as C. tyrobutyricum, there were four qualitatively different volatile organic acid byproduct profiles. Each of the two confirmed C. tyrobutyricum reference strains and five Ct isolates had distinct quantitative cell membrane fatty acid (CMFA) profiles. The Cx isolates represented 14 different volatile organic acid byproduct profiles and each isolate had a unique CMFA profile. Pulsed field gel electrophoresis (PFGE) of DNA from the two confirmed reference C. tyrobutyricum strains, four Ct and three Cx isolates, showed a low degree of relatedness. The results of this study suggest that a heterogeneous group of lactate-fermenting, gas-producing Clostridium spp. may be found in milk. Gas chromatographic analysis of volatile organic acid byproducts or CMFA, and PFGE of DNA are highly discriminating methods for

  5. Shale gas produced water treatment using innovative microbial capacitive desalination cell.

    Science.gov (United States)

    Stoll, Zachary A; Forrestal, Casey; Ren, Zhiyong Jason; Xu, Pei

    2015-01-01

    The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input.

  6. 77 FR 72840 - CE FLNG, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Science.gov (United States)

    2012-12-06

    ..., LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced From Domestic... million tons per annum (mtpa) of domestically produced liquefied natural gas (LNG), the equivalent of... facilities to receive and liquefy domestic natural gas at the proposed Project. CE FLNG states that...

  7. Green House Gas Control and Agricultural Biomass for Sustainable Animal Agriculture in Developing Countries

    OpenAIRE

    Takahashi, J.

    2010-01-01

    Important green house gases (GHG) attributed to animal agriculture are methane (CH4) and nitrous oxide (N2O), though carbon dioxide (CO2) contributes almost half of total greenhouse effect. Rumen CH4 production in an enteric fermentation can be accounted as the biggest anthropogenic source. Some of prebiotics and probiotics have been innovated to mitigate rumen CH4 emission. The possible use of agricultural biomass consisted of non-edible parts of crop plants such as cellulose and hemi cellul...

  8. Contributions ECN biomass to 'Developments in thermochemical biomass conversion' conference. 17-22 September 2000, Tyrol, Austria

    Energy Technology Data Exchange (ETDEWEB)

    Boerrigter, H.; Daey Ouwens, C.; Van Doorn, J.; Van der Drift, A.; Hofmans, H.; Huijnen, H.; Kersten, S.R.A.; Kiel, J.H.A.; Moonen, R.H.W.; Mozaffarian, M.; Neeft, J.P.A.; Oosting, T.P.; Den Uil, H.; Visser, H.J.M.; Zwart, R.W.R. [ECN , Biomass, Petten (Netherlands)

    2000-07-01

    This report contains the contributions (7) of the business unit ECN Biomass of the Netherlands Energy Research Foundation (ECN) in Petten, Netherlands, to the title conference. Separate abstracts were prepared for each of the seven papers: (1) Effect of fuel size and process temperature on fuel gas quality from CFB gasification of biomass; (2) Gas mixing in a pilot scale (500 KW{sub th}) air blown circulating fluidised bed biomass gasifier; (3) Guideline for sampling and analysis of 'tars' and particles in biomass producer gases; (4) Biomass ash - bed material interactions leading to agglomeration in fluidised bed combustion and gasification; (5) Production of substitute natural gas by biomass hydrogasification; (6) CASST. A new and advanced process for biomass gasification; and (7) New developments in the field of tri-generation from biomass and waste. A survey.

  9. Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis

    Science.gov (United States)

    Singh, Devinder; Hernández-Pacheco, Eduardo; Hutton, Phillip N.; Patel, Nikhil; Mann, Michael D.

    This work presents a thermodynamic analysis of the carbon deposition in a solid oxide fuel cell (SOFC) fueled by a biomass gasifier. Integrated biomass-SOFC units offer considerable benefits in terms of efficiency and fewer emissions. SOFC-based power plants can achieve a system efficiency of 70-80% (including heat utilization) as compared to 30-37% for conventional systems. The fuel from the biomass gasifier can contain considerable amounts of tars depending on the type of gasifier used. These tars can lead to the deposition of carbon at the anode side of SOFCs and affect the performance of the fuel cells. This paper thermodynamically studies the risk of carbon deposition due to the tars present in the feed stream and the effect various parameters like current density, steam, and temperature have on carbon deposition. Since tar is a complex mixture of aromatics, it is represented by a mixture of toluene, naphthalene, phenol, and pyrene. A total of 32 species are considered for the thermodynamic analysis, which is done by the Gibbs energy minimization technique. The carbon deposition is shown to decrease with an increase in current density and becomes zero after a critical current density. Steam in the feed stream also decreases the amount of carbon deposition. With the increase in temperature the amount of carbon first decreases and then increases.

  10. Distribution and Properties of Aerosol and Gas Phase Constituents within Biomass Burning Regional Haze in Brazil, 2012, during the Sambba (South American Biomass Burning Analysis) Field Campaign

    Science.gov (United States)

    Darbyshire, E.; Morgan, W.; Allan, J. D.; Flynn, M.; Liu, D.; O'Shea, S.; Trembath, J.; Szpek, K.; Langridge, J.; Brooke, J.; Ferreira De Brito, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    haze BBA physiochemical properties are determined at source as a function of local burn conditions (combustion phase, fuel, etc.). This work presents a synthesis of the aerosol, gas phase and thermodynamic state of the Brazilian atmosphere under the influence of biomass burning regional haze and assesses regional climate implications.

  11. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis using fractional factorial design

    Directory of Open Access Journals (Sweden)

    Fernanda Mandelli

    2012-03-01

    Full Text Available A fractional factorial design 2(5-1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch's trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS. The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 mg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity.

  12. Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis Using fractional factorial design

    Science.gov (United States)

    Mandelli, Fernanda; Yamashita, Fábio; Pereira, José L.; Mercadante, Adriana Z.

    2012-01-01

    A fractional factorial design 25–1 was used to evaluate the effect of temperature, pH, and concentrations of yeast extract, tryptone and Nitsch’s trace elements on the biomass, total carotenoids and protection against singlet oxygen by carotenoid extracts of the bacterium Thermus filiformis. In addition, the carotenoid composition was determined by high-performance liquid chromatography connected to a diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). The production of biomass ranged from 0.113 to 0.658 g/L, the total carotenoid from 137.6 to 1,517.4 µg/g and the protection against singlet oxygen from 4.3 to 85.1 %. Results of the fractional factorial design showed that temperature had a negative effect on biomass production and a positive effect on carotenoid content and protection against singlet oxygen, besides, high levels of pH value, concentrations of yeast extract and tryptone had a positive effect on biomass production only at lower temperatures. The main carotenoids of T. filiformis were thermozeaxanthins. In the tested conditions, changes in the levels of the variables influenced the biomass, carotenoid production, and protection against singlet oxygen, although they did not influence the carotenoid profile. The results of this study provide a better understanding on the interactions among certain nutritional and cultivation conditions of a thermophile bacterium, Thermus filiformis, on biomass and carotenoid amounts, as well as on the antioxidant capacity. PMID:24031811

  13. On-line measurement of raw gas elemental composition in fluidized bed biomass steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Neves, D. [Dept. of Environment and Planning, Centre of Environmental and Marine Studies, Univ. of Aveiro, Campus Universitario de Santiago, Aveiro (Portugal); Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden); Thunman, H.; Larsson, A.; Seemann, M. [Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden); Tarelho, L.; Matos, A. [Dept. of Environment and Planning, Centre of Environmental and Marine Studies, Univ. of Aveiro, Campus Universitario de Santiago, Aveiro (Portugal)

    2012-11-01

    At the present stage of technology development pursuing to achieve unattended gasification processes, the available methods to determine the CHON composition of raw gas involve a great deal of laboratory tasks, making it unpractical, time-consuming and costly. For instance, there are available analyzers to measure the chemical composition of dry raw gas but offline methods are used to determine the liquids (organic compounds + water). An alternative that is investigated in this work is to convert the raw gas first into simple product species that are easily analyzed. The straightforward way to achieve this is to burn the gas with proper amount of oxygen to assure quantitative conversion into CO{sub 2}, H{sub 2}O and N{sub 2}. This method is demonstrated here by monitoring the CHON composition of raw gas with high temporal resolution from Chalmers 2MW{sub th} FB gasifier.

  14. Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent

    Science.gov (United States)

    Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...

  15. Pyrogasification of blended animal manures to produce combustable gas and biochar

    Science.gov (United States)

    The objective of this study is to evaluate the efficiency of a skid-mounted pyrogasificaiton system for producing combustible gas from from animal manures: chicken litter, swine solids, and swine solids blended with rye grass. The skid-mounted pyrolysis system by the US Innovation Group, Inc. (USIG,...

  16. Biomass of clone of Eucalyptus grandis x urophylla for producing briquettes; Biomassa de clone de Eucalyptus grandis x Eucalyptus urophylla para producao de briquetes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eder Aparecido; Oguri, Guilherme [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], e-mail: os_garcias@fca.unesp.br; Lancas, Kleber Pereira [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Guerra, Saulo Philipe Sebastiao [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Gestao e Tecnologia Agroindustrial

    2011-07-01

    The aim of this work was conducted to address forest biomass energy for briquette producing. In an area of dystrophic soil, seedlings of clones of Eucalyptus grandis x E. urophylla were planted in 2008, considering factors spacing and fertilization. The first dosage of fertilizer was 70 g/plant of NPK 6-30-6 and total coverage of 110 g/plant of NPK 20-0-20 with B and Zn. The spacing was 2.8x0.5 m, 2.8x1.0 m, 2.8x1.5 m, 2.8x2.0 m and 2.8x2.5 m. At 18 months, tree samples were collected to evaluate the basic density of wood (BDW), dry biomass of stem, branches and leaves. An assessment of the economic viability of each treatment was based on the sale of briquettes. BDW spacing of 2.8x1.0 m was 0.464 kg/m{sup 3}. The largest biomass of the stem occurred in 2.8x0.5 m spacing, with dosage 3, but economically unviable. The dry biomass of branches was only affected by dosage, reaching 17.68 t/ha in the third dose. Only fertilization was significant for leaf biomass. The highest income in the spacing was 2.8 x1.5 m with dosage 2. (author)

  17. Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Velmurugan, Palanivel; Shim, Jaehong; You, Youngnam; Choi, Songho; Kamala-Kannan, Seralathan; Lee, Kui-Jae [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Kim, Hee Joung [Institute of Environmental Research, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of)

    2010-10-15

    Bioremediation is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using biomass from various microorganisms like algae, fungi and bacteria. In this study biosorption of zinc onto live, dead and dried biomass of Fusarium spp. was investigated as a function of initial zinc(II) concentration, pH, temperature, agitation and inoculum volume. It was observed that dried, dead and live biomass efficiently removed zinc at 60 min at an initial pH of 6.0 {+-} 0.3. Temperature of 40 deg. C was optimum at agitation speed of 150 or 200 rpm. The initial metal concentration (10-320 mg L{sup -1}) significantly influenced the biosorption of the fungi. Overall, biosorption was high with 30-60% by dried, live and dead biomass. In addition to this, the potential of Fusarium spp. to produce zinc nanocrystals was determined by transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and fourier transform infrared spectroscopy, which showed that dead biomass was not significantly involved in production of zinc nanocrystals.

  18. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Report on Energy Tree Farm Workshop No. 2, Hilo, Hawaii, June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Troy, M. (ed.)

    1982-11-01

    Results of the workshop show that a eucalyptus tree plantation, including a small nursery to produce the seedlings not available from the Waimea State Tree Nursery, could be established on 12,000 acres of Puna Sugar Company land. At approximately six years of age, the trees could be harvested, chipped, and burned in the renovated Puna Sugar Company's bagasse boiler to generate electricity. The cost of a bone dry ton of chips would be $37 if a real money rate of 3% is assumed, and $50 at a real money rate of 8%. Electricity could be produced at 7.7 cents per kWh assuming a 3% real money rate, and at 9.8 cents per kWh at an 8% rate. This workshop included an evaluation of soils at the selected Keeau site. Tree crop requirements were matched with soil and other environmental characteristics such as rainfall, altitude, and temperature. Leucaena Leucocephala, L. diversifolia, Eucalyptus saligna, E. grandis, and E. robusta were among the primary species considered, and based upon known environmental requirements and previous experience, E. grandis was selected. A conservative yield estimate for E. grandis at the specified site is 10 bone dry tons (20 green tons)/acre/year of total biomass. The 12,000 acre area would be planted continuously over period of six years at an annual production rate of 2000 acres per year. Spacing would be 6x6, or 1210 trees per acre, which, including a 10% seedling discard rate, would bring the total number of seedlings required to 2.7 million/year. Harvesting operations would begin in the 7th year, and three coppice crops would be harvested before replanting became necessary again. For the production of 120,000 bone dry tons (240,000 green tons) per year, four separate harvesting systems would be needed. Each would consist of 1 mobile whole tree chipper, 2 tracked feller-bunchers, 3 rubber-tired and tracked grapple skidders, 2 truck trailers, 3 chip vans, and 1 D-4 dozer. 10 figures, 31 tables.

  19. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  20. CFD analysis of combustion of natural gas and syngas from biomass pyrolysis in the combustion chamber of a micro gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Laranci, Paolo; D' Alessandro, Bruno [University of Perugia (DII/UNIPG) (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, paolo.laranci@unipg.it, dalessandro@bio-net.it

    2009-07-01

    Micro gas turbines (MGT) can be profitably used for the production of distributed energy (DE), with the possibility to use gaseous fuels with low BTU derived from biomass or waste through the pyrolysis or gasification processes. These synthesis gases (SG) show significant differences with respect to natural gas (NG), in terms of composition, calorific value, content of hydrogen, tar and particulate matter content; such differences can be turn into problems of ignition, instability burning, difficulties in controlling the emissions and fouling. CFD analysis of the combustion process is an essential tool for identifying the main critical arising in using these gases, in order to modify existing geometries and to develop new generation of combustor for use with low BTU gases. This paper describes the activities of experimental and numerical analysis carried out to study the combustion process occurring inside an existing annular Rich-Quench-Lean (RQL) Combustion Chamber (CC) of a 80 kW MGT. In the paper some results of a CFD study of the combustion process performed with an original developed chemical models are reported in terms of temperature and velocity distributions inside the CC and in terms of compositions of turbine inlet gas and of its thermodynamic parameters (mass flow, temperature, pressure). An evaluation of pollutant emissions of CO, CO{sub 2} and NOx and a comparison with the available experimental data relating to the case of combustion of NG is also provided in the paper. Moreover, the carried out investigation concerns the case of operation with a SG fuel derived from biomass in an Integrated Pyrolysis Regenerated Plant (IPRP). (author)

  1. Shale gas produced water treatment using innovative microbial capacitive desalination cell

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Zachary A. [New Mexico State University, Las Cruces, NM 88003 (United States); Forrestal, Casey [University of Colorado Boulder, Boulder, CO 80309 (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [University of Colorado Boulder, Boulder, CO 80309 (United States); Xu, Pei, E-mail: wxpei@hotmail.com [New Mexico State University, Las Cruces, NM 88003 (United States)

    2015-02-11

    Highlights: • Actual shale gas produced water was treated with no external energy input. • Biodegradation of organics generated stable voltages for desalination. • On average, 36 mg TDS per g activated carbon was removed in 1 h. • A maximum organic removal rate of 6.4 mg DOC per hour was achieved in the reactor. - Abstract: The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization—a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input.

  2. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  3. Economic potential of biomass based fuels for greenhouse gas emission mitigation

    OpenAIRE

    U. Schneider; McCarl, Bruce A.

    2003-01-01

    Use of biofuels diminishes fossil fuel combustion, thereby also reducing net greenhouse gas emissions. However, subsidies are needed to make agricultural biofuel production economically feasible. To explore the economic potential of biofuels in a greenhouse gas mitigation market, the authors incorporate data on production and biofuel processing for the designated energy crops--switchgrass, hybrid poplar, and willow--in a U.S. Agricultural Sector Model, along with data on traditional crop-live...

  4. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.R.; Kaiser, W.R. (Univ. of Texas, Austin, TX (United States)); Ayers, W.B. Jr. (Taurus Exploration, Inc., Birmingham, AL (United States))

    1994-08-01

    The objectives of this paper are to (1) describe the types and the major components of coalbed gases, (2) evaluate the variability of Fruitland coalbed gas composition across the basin, (3) assess factors affecting coalbed gas origin and composition, (4) determine the timing and extent of gas migration and entrapment, and (5) suggest application of these results to coalbed gas producibility. Data from more than 750 Fruitland coalbed gas wells were used to make gas-composition maps and to evaluate factors controlling gas origin. The gas data were divided into overpressured, underpressured, and transitional categories based on regional pressure regime. Also, [delta][sup 13]C isotopic values from 41 methane, 7 ethane and propane, 13 carbon dioxide, and 10 formation-water bicarbonate samples were evaluated to interpret gas origin. The data suggests that only 25-50% of the gas produced in the high-productivity fairway was generated in situ during coalification. 82 refs., 14 figs., 3 tabs.

  5. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil.

    Science.gov (United States)

    Song, Geum-Ju; Seo, Yong-Chil; Pudasainee, Deepak; Kim, In-Tae

    2010-07-01

    An attempt has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35-40%), acetylene (13-20%), ethylene (3-4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg(-1) and the concentrations of toxic gases, such as NO(x), HCl and HF, were below the regulatory emissions limit. Gas chromatography-mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 microm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.

  6. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  7. SELECTION OF BIOMASS MATERIALS PRODUCING CHAR AND ANALYSIS OF CALORIC REQUIREMENT%生物质炭化原料选择及需热量分析

    Institute of Scientific and Technical Information of China (English)

    胡威; 胡建杭; 王华; 杨丽; 邓双辉; 李娟琴

    2012-01-01

    从生物质原料的工业分析结果和木质素含量两个角度出发,分析了二者对生物质炭化的影响.对生物质炭化原料进行选择,认为木材类生物质适合作为生物质炭化的原料,可加强对树木枝条、锯末及薪炭林的炭化;为实现生物质炭化的工业化,还应设计利用烟气余热等热源来热解生物质的换热器,这项设计需知道生物质热解需热量.运用热重-差示扫描(TG-DSC)同步热分析仪对选用的木屑进行热解实验并利用DSC曲线对木屑炭化需热量进行分析.结果表明,木屑炭化终温为500℃时(初始温度为40℃),需热量为491 kJ/kg.提出DSC曲线在工业用热解换热器传热设计和校核中的应用方法.%Biomass materials for producing char had been selected after analyzing the influences of the two aspects on biomass carbonization. The two aspects are respectively the results of proximate analysis and lignin content of biomass materials. Forest biomass is suitable for biomass carbonization. The use of forest branches, sawdust and fuel forest for carbonization should been strengthened. In order to realize industrialization of biomass carbonization, heat exchanges for biomass pyrolysis utilizing residual heat of the flue should been designed. It needs to know the caloric requirement of pyrolysis. TG-DSC simultaneous thermal analyzer was used for experiments of sawdust. The analysis of caloric requirement of biomass carbonization was made. When the carbonization temperature was 500 ℃(the initial temperature was 40 ℃), caloric requirement was 491 kJ/kg. This paper also pointed out a DSC curve's application method in heat transfer design and verification of heat exchange for biomass pyrolysis.

  8. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  9. Trace gas constraints on vertical transport in models: a case study of Indonesian biomass burning emissions in 2006

    Science.gov (United States)

    Field, R. D.; Luo, M.; Worden, J.; Kim, D.; Del Genio, A. D.; Voulgarakis, A.

    2014-12-01

    We investigate the use of joint Aura TES and MLS CO retrievals in constraining vertical transport in the NASA GISS ModelE2 composition-climate model. We examine September to November 2006 over the tropics. El Nino-induced dry conditions over western Indonesia led to extensive biomass burning and persistent CO greater than 200 ppb in the upper troposphere. This was one of the highest CO episodes over the MLS period since 2004. We show how improvements in the vertical resolution of trace gas retrievals can help to distinguish between errors in parameterized vertical transport and biases in bottom-up emissions estimates. We simulate the episode using the NASA GISS ModelE2 coupled composition-climate model with different subgrid physics for small ensembles of experiments with perturbed initial conditions. The starting point is the CMIP5 version of the model, in which there was a pronounced vertical CO dipole over the Maritime Continent, but with a CO peak 100 ppb higher than Aura CO in the upper troposphere. With modified cumulus and boundary layer parameterizations, but the same prescribed biomass burning emissions estimates, the upper tropospheric CO bias is significantly reduced. Concurrently, precipitation over the emissions source region is reduced relative to observational estimates, leading to better consistency with the dry conditions under which the burning occurred. We discuss the effects of the physics changes on the roles of convective frequency and depth in reducing the bias.

  10. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  11. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    Science.gov (United States)

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry.

  12. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  13. Corrosion in the Flue Gas Cleaning System of a Biomass-Fired Power Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Olesen, R. E.; Gensmann, P.

    2017-01-01

    After only a few years operation, corrosiondamage was observed in the flue gas cleaning system of abiomass power plant. The corrosion was on the lower partof the gas/gas heat exchanger fabricated from A242weathering steel, where UNS S31600 bolts were used toattach sealing strips to the rotor. Thick...... iron oxides (up to5 mm) had formed on the weathering steel, and theseoxides also contained chlorine and sulfur. In this area of theheat exchanger, weathering steel has not had the optimalwet/dry cycles required to achieve a protective oxide. Dueto the thick growing oxide on the rotor, the UNS S31600......bolts were under stress and this together with the presenceof accumulated chlorine between the sealing strips andbolts resulted in stress corrosion cracking and rupture. Inaddition, Zn-K-Cl deposits were agglomerated in the ductafter the DeNOx unit. Zn was also a constituent of corrosionproducts...

  14. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Xuewei; Zhang, Rui; Fu, Juan; Geng, Shu; Cheng, Jay Jiayang; Sun, Yuan

    2014-07-01

    To assess the energy potential of different microalgae, Chlorella sorokiniana and Monoraphidium were selected for studying the pyrolytic behavior at different heating rates with the analytical method of thermogravimetric analysis (TG), distributed activation energy model (DAEM) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Results presented that Monoraphidium 3s35 showed superiority for pyrolysis at low heating rate. Calculated by DAEM, during the conversion rate range from 0.1 to 0.7, the activation energies of C. sorokiniana 21 were much lower than that of Monoraphidium 3s35. Both C. sorokiniana 21 and Monoraphidium 3s35 can produce certain amount (up to 20.50%) of alkane compounds, with 9-Octadecyne (C18H34) as the primary compound. Short-chain alkanes (C7-C13) with unsaturated carbon can be released in the pyrolysis at 500°C for both microalgal biomass. It was also observed that the pyrolysis of C. sorokiniana 21 released more alcohol compounds, while Monoraphidium 3s35 produced more saccharides.

  15. Model performance of a biomass-fueled power station with variable furnace exit gas temperature to control fouling deposition

    Science.gov (United States)

    Yomogida, David Edwin

    A major problem associated with the utilization of any biomass fuel in direct-combustion energy production is fouling (ash deposition on boiler surfaces) and the related issue of slagging, resulting from transformations among the inorganic constituents of the fuel. These deposits reduce heat transfer from the fire- to water-side, reducing power plant efficiency and necessitating the design of more tolerant heat exchange equipment. Wood: currently serves as the major source of fuel in biomass conversion to energy because of its more general availability, and it suffers less from fouling and slagging than many other biomass fuels such as rice straw. To reduce fouling severity, furnace exit gas temperature (FEGT) may be decreased to solidify ash ahead of superheaters and other heat exchanger equipment. Thermal and economic computer models of a direct-combustion Rankine cycle power plant were developed to predict the impact of variable FEGT and overall heat transfer coefficient on power plant efficiency and economy. No attempt was made to model the fire-side processes leading to the formation of fouling deposits. A base case: operational and economic profile of a biomass power plant was established, and models, were executed using these parameters, approximating a power plant efficiency of 19.9% and a cost of electricity (COE) of 0.0636 kWh-1 (including capital costs). If no capital, costs are included, then COE is 0.0205 kWh-1. Sensitivity analyses were performed on power plant efficiency and COE. Changes in FEGT through variable excess air resulted in substantial sensitivity in power plant efficiency (plant efficiency of 21.4% for FEGT of 1030°C (5% excess air) and 18.7% for 924°C (55% excess air)). Plant efficiency was determined to be moderately sensitive to changes in overall heat transfer coefficient on the secondary superheater (18.7% for no heat transfer through secondary superheater and 19.9% for base case heat transfer). Fouling scenarios showed that FEGT

  16. Combining protein extraction and anaerobic digestion to produce feed, fuel and fertilizer from green biomass – An organic biorefinery concept

    DEFF Research Database (Denmark)

    Fernandez, Maria Santamaria; Salces, Beatriz Molinuevo; Lübeck, Mette

    Organically grown green biomass (red clover, clover grass) was investigated as a resource for organic feed and organic fertilizer by combination of proteins extraction and anaerobic digestion of the residues. Extraction of proteins from both crops revealed very favourable amino acid composition...

  17. Study of Plasma Treatment of Produced Water from Oil and Gas Exploration

    Science.gov (United States)

    Wright, Kamau

    Unconventional gas and hydraulic fracturing is helping to increase natural gas production, which is widely viewed in the U.S. as a key asset to bolstering a clean and energy-independent future. Safe and economical management and treatment of water produced during such processes remain of key importance. With the increase of hydrocarbon production and national shale gas production expected to increase threefold and account for nearly half of all natural gas produced by 2035, advanced water treatment and management processes must be investigated, to ensure water conservation and associated economic prudence. The state of the art of produced water treatment technologies is described including the efficacy of plasma to modulate the contents of such aqueous solutions, meeting target parameters and potentially enabling the operation of other treatment technologies. Among other effects, progress is presented on the enhancement of an arc-in-water system to remove bicarbonate ions and prevent the mineral fouling ability of water which causes formation of CaCO3 in heat exchangers and distillation units. Qualitative and quantitative treatment targets of produced water treatment are discussed. Experimental work is conducted to test theories and identify and reproduce favorable effects useful to treating wastewaters. Plasma arc-in-water systems demonstrated capability of producing bicarbonate-depleted wastewaters, with experiments with gas-field produced waters indicating that generation of H+ ions plays a greater role in bicarbonate ion removal than local heating. Tests showed abatement of bicarbonate ions from a range of 684--778 mg/L down to zero. Subsequent scaling/fouling tests with waters ranging from 0 to 500 mg/L bicarbonate ions, in the presence of high calcium ion concentrations, showed that scale thickness, as well as mass on a 1-kW heating element was an order of magnitude less for process water containing 100 mg/L bicarbonate ions compared to process water with 500

  18. Greenhouse gas emission analysis of an Egyptian rice straw biomass-to-energy chain

    NARCIS (Netherlands)

    Poppens, R.P.; Bakker, R.

    2012-01-01

    A common practice in Egypt has been the burning of rice straw, as a measure to prepare agricultural land for follow-up crops. This practice has caused significant greenhouse gas emissions, in addition to aerial pollution. By using straw residue for the production of pellets and shipping these pellet

  19. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

    2010-09-30

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

  20. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus.

    Science.gov (United States)

    Landi, G T; Romero, S A; Santos, A D

    2010-03-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  1. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Landi, G. T.; Romero, S. A.; Santos, A. D. [Departamento de Fisica dos Materiais e Mecanica, Laboratorio de Materiais Magneticos, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

    2010-03-15

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  2. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization

    Science.gov (United States)

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2•−), and extremely-short-lived (e.g., •OH). The concentration of plasma-produced •OHaq in the liquid phase region decreases with an increase in solution thickness (plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of •OHaq, resulting from the center-peaked distribution of •OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that •OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization. PMID:28163376

  3. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  4. Bridging gaps in bioenergy: Deploying system analysis to investigate potential biomass supply, demand and greenhouse gas mitigation scenarios from a national, European and global perspective

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.

    2014-01-01

    In transition towards a sustainable energy system with deep reductions in greenhouse gas (GHG) emissions and reduced consumption of fossil fuels, substitution of fossil energy carriers with biomass is considered one of the most important options. In the last decade, fossil energy and GHG mitigation

  5. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    Science.gov (United States)

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  6. Artificial Neural Networks for Thermochemical Conversion of Biomass

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles

    2015-01-01

    Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...... determine the producer gas composition and gas yield, using the biomass composition and only a few operating parameters in the input layer. Each model is composed of five ANNs with two neurons in the hidden layer. The backpropagation algorithm is used to train them with published experimental data from...... other authors. The obtained results show that the percentage composition of the main four gas species in producer gas (CO, CO2, H2, CH4) and producer gas yield for a biomass fluidized bed gasifier, can be successfully predicted by applying neural networks. The results obtained show high agreement...

  7. Effect of varying ratios of produced water and municipal water on soil characteristics, plant biomass, and secondary metabolites of Artemisia annua and Panicum virgatum

    Science.gov (United States)

    Coal-bed natural gas production in the U.S. in 2012 was 1,655 billion cubic feet (bcf). A by-product of this production is co-produced water, which is categorized as a waste product by the Environmental Protection Agency. The effects of varying concentrations of coal-bed methane (produced) water wer...

  8. Study on the associated removal of pollutants from coal-firing flue gas using biomass activated carbon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Yuan, Wanli [Qingdao Univ., Shandong (China). Electrical and Mechanical Engineering College; Qi, Haiying [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    A pilot-scale multi-layer system was developed for the adsorption of SO{sub 2}/NO{sub x}/Hg from flue gas (real flue gases of an heating boiler house) at various operating conditions, including operating temperature and activated carbon materials. Excellent SO{sub 2}/NO{sub x}/Hg removal efficiency was achieved with the multi-layer design with carbons pellets. The SO{sub 2} removal efficiency achieved with the first layer adsorption bed clearly decreased as the operating temperature was increased due to the decrease of physisorption performance. The NO{sub x} removal efficiency measured at the second layer adsorption bed was very higher when the particle carbon impregnated with NH{sub 3}. The higher amounts of Hg absorbed by cotton-seed-skin activated carbon (CSAC) were mainly contributed by chlorinated congeners content. The simultaneously removal of SO{sub 2}/NO{sub x}/Hg was optimization characterized with different carbon layer functions. Overall, The alkali function group and chloride content in CSAC impelled not only the outstanding physisorption but also better chemisorptions. The system for simultaneously removal of multi-pollutant-gas with biomass activated carbon pellets in multi-layer reactor was achieved and the removal results indicated was strongly depended on the activated carbon material and operating temperature.

  9. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  10. Effect of fuel size and process temperature on fuel gas quality from CFB gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A.; Van Doorn, J. [ECN Biomass, Petten (Netherlands)

    2000-07-01

    A bench-scale circulating fluidized bed (CFB) gasifier with a capacity of max. 500 kWh{sub th} has been used to study the effect of fuel size and process temperature. A higher process temperature (range tested: 750 to 910C) results in more air needed to maintain the desired temperature, a lower heating value of the product gas, a higher carbon conversion and a net increase of cold gas efficiency of the gasifier. A higher process temperature also results in less heavy tars. However, light tars (measured using the solid phase adsorbent (SPA) method) do show an odd behaviour. Some individual components within the group of light tars even increase in concentration when process temperature is raised. The main reason probably is that heavy tars decompose to these relatively stable light tar components. The particle size of the fuel does influence some product gas parameters considerably. The presence of small particles seems to increase the (heavy) tar concentration and decrease the conversion of fuel-nitrogen to ammonia. Small particles can also be responsible for large temperature gradients along the axis of the riser of a CFB-gasifier. This effect can be avoided by either mixing the fuel with larger particles or feed the small particles at the bottom of the reactor. 5 refs.

  11. 78 FR 75339 - Barca LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Science.gov (United States)

    2013-12-11

    ... LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced From..., by Barca LNG LLC (Barca), requesting long-term, multi- contract authorization to export LNG produced...) of natural gas, or 1.6 Bcf per day (Bcf/d). Barca seeks authorization to export the LNG for a...

  12. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  13. Estimating Depth and Producing Formations of Abandoned Oil and Gas Wells Using Geospatial Analysis

    Science.gov (United States)

    Christian, S.; Kang, M.; Celia, M. A.; Maloof, A. C.; Mauzerall, D. L.

    2015-12-01

    More than three million abandoned oil and gas wells exist in the U.S., and information on many of these wells are lost. Recent measurements of 93 abandoned wells in Pennsylvania show that they may be a significant source of methane emissions to the atmosphere. Data such as depth and producing formation of 98% of these measured wells are unavailable. Information on the likely depth of the well and the formation, from which the well likely produced from, is important when evaluating the wells' potential to emit methane and/or to contaminate overlying aquifers, and when developing mitigation strategies. We use geospatial analysis that combines available public databases from the Pennsylvania Department of Environmental Protection and historic documents to determine the likely depth and formation from which the measured abandoned wells produced. We develop a framework to systematically evaluate the nearest well, pool, and field attributes and assign depth and producing formation to the measured wells based on how well these attributes match. We then use this information to perform a cost analysis for plugging based on well depth for Pennsylvania. The geospatial analysis framework presented here for determining abandoned well properties can be valuable for future field measurement designs, upscaling methane emissions, and mitigating abandoned wells in Pennsylvania but also the many other states with a long history of oil and gas production.

  14. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  15. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  16. Exciton photoluminescence from ZnO layers produced by laser-induced gas breakdown processing

    Energy Technology Data Exchange (ETDEWEB)

    Kabashin, A.V.; Trudeau, A.; Meunier, M. [Laser Processing Laboratory, Ecole Polytechnique de Montreal, Departement de Genie Physique, Case Postale 6079, Montreal, Quebec (Canada); Marine, W. [CRMCN UPR CNRS 7251, Departement de Physique, Case 901, Faculte des Sciences de Luminy, Marseille Cedex 9 (France)

    2008-06-15

    The plasma of optically-excited gas breakdown has been used to treat a Zn target in atmospheric pressure gases (air, O{sub 2}, N{sub 2}, Ar). The breakdown is produced near the target by a pulsed CO{sub 2} laser radiation, yielding to a local erosion of the target under the irradiation spot and the formation of a porous nanostructured layer, consisting of ZnO nanoscale spheres. We show that the produced nanostructured layers exhibit an intense exciton emission band in the ultraviolet range (380-385 nm), while defect-related photoluminescent bands were weak and could be completely removed by varying the fabrication parameters. Properties of the produced layers were found to be very promising for the development of optoelectronic devices. (orig.)

  17. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.

  18. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.

    Science.gov (United States)

    Yang, Chao; Jia, Lishan; Su, Shuai; Tian, Zhongbiao; Song, Qianqian; Fang, Weiping; Chen, Changping; Liu, Guangfa

    2012-04-01

    Biomass char, by-product of Dunaliella salina pyrolysis at a final pyrolysis temperature of 500°C, was used as feedstock material in this study. The reactions of biomass char with CO(2) were performed in a fixed-bed reactor to evaluate the effect of temperature and steam on the CO(2) conversion, CO yield and gas composition. The CO(2) conversion and CO yield without steam and catalyst reached about 61.84% and 0.99mol/(mol CO(2)) at 800°C, respectively. Steam and high temperature led to high CO(2) conversion. A new approach for improving H(2) was carried out by using biomass char and Au/Al(2)O(3) catalyst, which combined steam gasification of biomass char and water gas shift reaction, and the H(2) concentration was 1.8 times higher than without catalyst. The process not only mitigated CO(2) emission and made use of residual biomass char, but also created renewable source.

  19. CH{sub 4} Production from Biomass-derived Synthesis Gas: Effect of the Feed Composition on the Activity of Ni-Based Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, F.; Seemann, M.; Biollaz, S.; Wambach, J.; Wokaun, A.

    2004-03-01

    The chemical and structural modifications of a commercial Ni/Al{sub 2}O{sub 3}-based catalyst during the production of methane from synthesis gas were investigated by post-reaction X-ray photoelectron spectroscopy (XPS). The effect of the composition of the synthesis gas on the structural properties of the catalyst surface and on its catalytic activity under methanation conditions was studied. The organic compounds present as contaminants in typical biomass-derived synthesis gas were found to promote strongly the reduction of Ni in the catalyst to the metallic state and the formation of elemental carbon on the catalyst surface. (author)

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  1. Inflow performance relationship for perforated wells producing from solution gas drive reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Sukarno, P. [Inst. Teknologi Bandung (Indonesia); Tobing, E.L.

    1995-10-01

    The IPR curve equations, which are available today, are developed for open hole wells. In the application of Nodal System Analysis in perforated wells, an accurate calculation of pressure loss in the perforation is very important. Nowadays, the equation which is widely used is Blount, Jones and Glaze equation, to estimate pressure loss across perforation. This equation is derived for single phase flow, either oil or gas, therefore it is not suitable for two-phase production wells. In this paper, an IPR curve equation for perforated wells, producing from solution gas drive reservoir, is introduced. The equation has been developed using two phase single well simulator combine to two phase flow in perforation equation, derived by Perez and Kelkar. A wide range of reservoir rock and fluid properties and perforation geometry are used to develop the equation statistically.

  2. Tin Oxide Nanoparticles Produced by Spark Ablation: Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Alexey Efimov

    2016-12-01

    Full Text Available The synthesis parameters and results of investigation of gas sensing properties of tin oxide nanoparticles produced by spark ablation are presented. The nanoparticles have sizes below 30 nm and their specific surface area is about 40 m2/g. In order to study the gas sensing properties, a special structure comprising heater, barrier layers and contact pads was utilized. The resistance of the sensor fabricated on the basis of this structure was measured at different concentrations of hydrogen in the air (100–500 ppm and different values of relative humidity (30–80%. At working temperature of 450°C, 100 ppm of hydrogen triggers more than 8-times decrease in the sensor resistance within the time interval of about 1 s. At the same time, the humidity variation does not have pronounced effect on the sensor resistance: less than 30% in the humidity range studied.

  3. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  4. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Science.gov (United States)

    Guyon, P.; Frank, G. P.; Welling, M.; Chand, D.; Artaxo, P.; Rizzo, L.; Nishioka, G.; Kolle, O.; Fritsch, H.; Silva Dias, M. A. F.; Gatti, L. V.; Cordova, A. M.; Andreae, M. O.

    2005-11-01

    As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency). Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2), which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF) for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC) fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL) to the cloud detrainment layer (CDL) and the free troposphere (FT) was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol particles

  5. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play.

    Science.gov (United States)

    Xiong, Boya; Zydney, Andrew L; Kumar, Manish

    2016-08-01

    There is growing interest in possible options for treatment or reuse of flowback and produced waters from natural gas processing. Here we investigated the fouling characteristics during microfiltration of different flowback and produced waters from hydraulic fracturing sites in the Marcellus shale. All samples caused severe and highly variable fouling, although there was no direct correlation between the fouling rate and total suspended solids, turbidity, or total organic carbon. Furthermore, the fouling of water after prefiltration through a 0.2 μm membrane was also highly variable. Low fouling seen with prefiltered water was mainly due to removal of submicron particles 0.4-0.8 μm during prefiltration. High fouling seen with prefiltered water was mainly caused by a combination of hydrophobic organics and colloidal particles membranes. The small colloidal particles were highly stable, likely due to the surfactants and other organics present in the fracking fluids. The colloid concentration was as high as 10(11) colloids/ml, which is more than 100 times greater than that in typical seawater. Furthermore, these colloids were only partially removed by MF, causing substantial fouling during a subsequent ultrafiltration. These results clearly show the importance of organics and colloidal material in membrane fouling caused by flowback and produced waters, which is of critical importance in the development of more sustainable treatment strategies in natural gas processing.

  6. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  7. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  8. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  9. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershöfer

    2007-08-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa, respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.

  10. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  11. Biomass-based gasifiers for internal combustion (IC) engines—A review

    Indian Academy of Sciences (India)

    Ashish Malik; S K Mohapatra

    2013-06-01

    The world is facing severe problems of energy crisis and environmental problem. This situation makes people to focus their attention on sustainable energy resources for their survival. Biomass is recognized to be the major potential source for energy production. There are ranges of biomass utilization technologies that produce useful energy from biomass. Gasification is one of the important techniques out of direct combustion, anaerobic digestion – Biogas, ethanol production. Gasification enables conversion of these materials into combustible gas (producer gas), mechanical and electrical power, synthetic fuels, and chemical. The gasification of biomass into useful fuel enhances its potential as a renewable energy resource. This paper gives a comprehensive review of the techniques used for utilizing biomass, experimental investigation on biomass fuels, characterization, merits, demerits and challenges faced by biomass fuels.

  12. Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass -- Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney; Erin M. Searcy

    2009-04-01

    This report, Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass, prepared by Idaho National Laboratory (INL), acknowledges the need and provides supportive designs for an evolutionary progression from present day conventional bale-based supply systems to a uniform-format, bulk solid supply system that transitions incrementally as the industry launches and matures. These designs couple to and build from current state of technology and address science and engineering constraints that have been identified by rigorous sensitivity analyses as having the greatest impact on feedstock supply system efficiencies and costs.

  13. Morphological Investigation of Foamed Aluminum Parts Produced by Melt Gas Injection

    Directory of Open Access Journals (Sweden)

    R. Surace

    2009-01-01

    Full Text Available Porous metal materials are a new class of materials with low densities, large specific surface, and novel physical and mechanical properties. Their applications are extremely varied: for light weight structural components, for filters and electrodes, and for shock or sound absorbing products. Recently, interesting foaming technology developments have proposed metallic foams as a valid commercial chance; foam manufacturing techniques include solid, liquid, or vapor state methods. The foams presented in this study are produced by Melt Gas Injection (MGI process starting from melt aluminum. The aim of this investigation is to obtain complex foamed aluminum parts in order to make the MGI more flexible. This new method, called MGI-mould process, makes possible to produce 3D-shaped parts with complicated shape or configuration using some moulds obtained by traditional investment casting process.

  14. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-05-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

  15. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  16. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  19. Determination of Optimized Parameters for the Flexible Operation of a Biomass-Fueled, Microscale Externally Fired Gas Turbine (EFGT

    Directory of Open Access Journals (Sweden)

    Mathhar Bdour

    2016-10-01

    Full Text Available Biomass as a source of renewable energy is a promising solution for current problems in energy supply. Olive waste is considered as an interesting option, especially for Mediterranean countries. Within this paper, a microscale externally fired gas turbine (EFGT technology is presented as a decentralized power plant, within the range of 15 kWth, based on olive residues. It was modeled by Aspen Plus 8.6 software to provide a sufficient technical study for such a plant. Optimized parameters for pressure ratio and turbine air-mass flow have been mapped for several loads to provide information for process control. For all cases, mechanical output, efficiency curves, and back-work ratio have been calculated. Using this information, typical plant sizes and an example of power production are discussed. Additionally, achievable energy production from olive waste is estimated on the basis of this data. The results of this study show that such a plant has an electrical efficiency of 5%–17%. This variation is due to the examination being performed under several combustion temperatures, actual load, heat exchanger temperatures, and heat transfer efficiency. A cost estimation of the discussed system showed an estimated capital cost of 33,800 to 65,300 € for a 15 kWth system.

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  1. Biomass yield and greenhouse gas emissions from a drained fen peatland cultivated with reed canary grass under different harvest and fertilizer regimes

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Elsgaard, Lars; Karki, Sandhya

    2013-01-01

    Reed canary grass (RCG, Phalaris arundinacea L.) is a suitable energy crop for cultivation in northern peatlands. However, the atmospheric impact of RCG cultivation as influenced by harvest frequency and fertilization is not clear. Here, we compared the biomass yield and greenhouse gas (GHG......) balance for RCG cultivation in peatlands affected by cutting frequency and fertilizer managements. The managements included one-cut (OC) and two-cut (TC) systems that were either fertilized (TC-F) or unfertilized (TC-U) after the first cut in summer. Biomass yield of OC, TC-F and TC-U were 12, 16 and 11...... Mg dry biomass per hectare per year, respectively. GHG fluxes of CO2, N2O and CH4 were measured with closed chamber techniques in the period between first and second (final) harvest of the TC managements, i.e. from 15 June to 23 September 2011. In the GHG monitoring period of 100 days, all systems...

  2. Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2000-04-12

    The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

  3. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    Science.gov (United States)

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely.

  4. An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass wastein a boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chun Yang; Kadir, Sharifah Aishah Syed Abdul; Lim, Ying Pei; Syed-Ariffin, Sharifah Nawirah; Zamzuri, Zurinawati [Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2008-07-15

    Ash derived from combustion of Malaysian oil palm biomass (empty fruit bunches consisting of fibers) was physically and chemically characterized in order to provide a comprehensive understanding of its specific properties in terms of toxicity, compositions and reusability. Principal analyses conducted include particle size distribution, scanning electron microscopy, elemental dispersive X-ray, elemental analysis, toxicity characteristic leaching procedure (TCLP) as well as thermogravimetric, X-ray diffractometry and Fourier-transform infrared analyses. TCLP result indicated that the oil palm ash (OPA) should not be classified as toxic wastes in terms of heavy metal leachability since leachable copper, cadmium, lead and nickel concentrations were detected below the stipulated leachability limits. It was determined that the OPA contained high amount of potassium as well as presence of silica which implied its suitability to be reused as crude fertilizer or cement replacement material. (author)

  5. Allothermal gasification of biomass using micron size biomass as external heat source.

    Science.gov (United States)

    Cheng, Gong; Li, Qian; Qi, Fangjie; Xiao, Bo; Liu, Shiming; Hu, Zhiquan; He, Piwen

    2012-03-01

    An allothermal biomass gasification system using biomass micron fuel (BMF) as external heat source was developed. In this system, heat supplied to gasifier was generated from combustion of BMF. Biomass feedstock was gasified with steam and then tar in the produced gas was decomposed in a catalytic bed with NiO/γ-Al(2)O(3) catalyst. Finally the production gas was employed as a substitute for civil fuel gas. An overall energy analysis of the system was also investigated. The results showed that the lower heating value of the product gas reached more than 12 MJ/Nm(3). The combusted BMF accounted for 26.8% of the total energy input. Allothermal gasification based on the substituted BMF for conventional energy was an efficient and economical technology to obtain bioenergy.

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-10-31

    In pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions, the Petroleum Technology Transfer Council (PTTC) functions as a cohesive national organization that implements industry's directives through active regional programs. The role of the national headquarters (HQ) organization includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. PTTC relies on 10 Regional Lead Organizations (RLOs) as its main program delivery mechanism to industry. Through its regions, PTTC connects with independent oil and gas producers--through technology workshops, resources centers, websites, newsletters, and other outreach efforts. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY98, and its strategy for achieving further growth in the future.

  7. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  8. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    Science.gov (United States)

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  9. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  10. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  11. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  12. Use of biomass fuels in the brick-making industries of Sudan: Implications for deforestation and greenhouse gas emission

    Energy Technology Data Exchange (ETDEWEB)

    Alam, S.A.

    2006-07-01

    The study focuses on the potential roles of the brick making industries in Sudan in deforestation and greenhouse gas emission due to the consumption of biofuels. The results were based on the observation of 25 brick making industries from three administrative regions in Sudan namely, Khartoum, Kassala and Gezira. The methodological approach followed the procedures outlined by the Intergovernmental Panel on Climate Change (IPCC). For predicting a serious deforestation scenario, it was also assumed that all of wood use for this particular purpose is from unsustainable sources. The study revealed that the total annual quantity of fuelwood consumed by the surveyed brick making industries (25) was 2,381 t dm. Accordingly, the observed total potential deforested wood was 10,624 m3, in which the total deforested round wood was 3,664 m3 and deforested branches was 6,961 m3. The study observed that a total of 2,990 t biomass fuels (fuelwood and dung cake) consumed annually by the surveyed brick making industries for brick burning. Consequently, estimated total annual emissions of greenhouse gases were 4,832 t CO{sub 2}, 21 t CH{sub 4}, 184 t CO, 0.15 t N{sub 2}0, 5 t NO{sub x} and 3.5 t NO while the total carbon released in the atmosphere was 1,318 t. Altogether, the total annual greenhouse gases emissions from biomass fuels burning was 5,046 t; of which 4,104 t from fuelwood and 943 t from dung cake burning. According to the results, due to the consumption of fuelwood in the brick making industries (3,450 units) of Sudan, the amount of wood lost from the total growing stock of wood in forests and trees in Sudan annually would be 1,466,000 m3 encompassing 505,000 m3 round wood and 961,000 m3 branches annually. By considering all categories of biofuels (fuelwood and dung cake), it was estimated that, the total emissions from all the brick making industries of Sudan would be 663,000 t CO{sub 2}, 2,900 t CH{sub 4}, 25,300 t CO, 20 t N{sub 2}O, 720 t NO{sub x} and 470 t NO per

  13. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve

  14. Effects of untreated and treated oilfield-produced water on seed germination, seedling development, and biomass production of sunflower (Helianthus annuus L.).

    Science.gov (United States)

    da Costa Marques, Mônica Regina; de Souza, Paulo Sérgio Alves; Rigo, Michelle Machado; Cerqueira, Alexandre Andrade; de Paiva, Julieta L; Merçon, Fábio; Perez, Daniel Vidal

    2015-10-01

    This study aims to evaluate possible toxic effects of oil and other contaminants from oilfield-produced water from oil exploration and production, on seed germination, and seedling development of sunflower (Helianthus annuus L.). In comparison, as treated by electroflocculation, oilfield-produced water, with lower oil and organic matter content, was also used. Electroflocculation treatment of oilfield-produced water achieved significant removals of chemical oxygen demand (COD) (94 %), oil and grease (O&G) (96 %), color (97 %), and turbidity (99 %). Different O&G, COD, and salt levels of untreated and treated oilfield-produced water did not influence germination process and seedling biomass production. Normal seedlings percentage and vigor tended to decrease more intensely in O&G and COD levels, higher than 337.5 mg L(-1) and 1321 mg O2 L(-1), respectively, using untreated oilfield-produced water. These results indicate that this industrial effluent must be treated, in order to not affect adversely seedling development. This way, electroflocculation treatment appears as an interesting alternative to removing oil and soluble organic matter in excess from oilfield-produced water improving sunflower's seedling development and providing a friendly environmental destination for this wastewater, reducing its potential to harm water resources, soil, and biota.

  15. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  16. Relation between the characteristics of the pitches produced on the basis of heavy gas-oil of catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, L.V.; Bulanova, V.V. [Rossiiskaya Akadeiya, Nauk (Russian Federation)

    1995-12-31

    Mesophase pitches are often used to produce carbon fibers. Results of microanalysis and fiber-forming ability of the pitches are described. The pitches were obtained by the catalytic cracking of heavy gas-oil.

  17. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation

    NARCIS (Netherlands)

    Xing, Lijuan; ten Brink, Gert H.; Chen, Bin; Schmidt, Franz P.; Haberfehlner, Georg; Hofer, Ferdinand; Kooi, Bart J.; Palasantzas, Georgios

    2016-01-01

    Core-shell structured Fe nanoparticles (NPs) produced by high pressure magnetron sputtering gas condensation were studied using transmission electron microscopy (TEM) techniques, electron diffraction, electron energy-loss spectroscopy (EELS), tomographic reconstruction, and Wulff shape construction

  18. Heterologous Acidothermus cellulolyticus 1,4-β-Endoglucanase E1 Produced Within the Corn Biomass Converts Corn Stover Into Glucose

    Science.gov (United States)

    Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam

    Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.

  19. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery.

    Science.gov (United States)

    Yu, Jian; Chen, Lilian X L

    2008-09-15

    Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.

  20. Combustion gas from biomass - innovative plant concepts on the basis of circulating fluidized bed gasification; Brenngas aus Biomasse - innovative Anlagenkonzepte auf Basis der Zirkulierenden Wirbelschichtvergasung

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C.; Hirschfelder, H. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany)

    1998-09-01

    The contribution describes the applications of the Lurgi-ZWS gas generator. There are three main fields of application: Direct feeding of combustion gas, e.g. into a rotary kiln, as a substitute for coal or oil, without either dust filtering or gas purification. - Feeding of the combustion gas into the steam generator of a coal power plant after dust filtering and, if necessar, filtering of NH{sub 3} or H{sub 2}S. - Combustion in a gas turbine or gas engine after gas purification according to specifications. The applications are described for several exemplary projects. (orig./SR) [Deutsch] Im folgenden wird ueber die Anwendung des Lurgi-ZWS-Gaserzeugers berichtet. Nach heutiger Sicht stehen drei Anwendungsgebiete im Vordergrund: - direkte Einspeisung des Brenngases in z.B. einen Zementdrehrohrofen zur Substitution von Kohle oder Oel, ohne Entstaubung und Gasreinigung. - Einspeisung des Brenngases nach Entstaubung und gegebenenfalls Entfernung weiterer Komponenten wie NH{sub 3} oder H{sub 2}S in den Dampferzeuger eines Kohlekraftwerkes - Einsatz des Brenngases in einer Gasturbine oder Gasmotor nach spezifikationsgerechter Gasreinigung. Die aufgefuehrten Einsatzmoeglichkeiten werden am Beispiel von Projekten beschrieben. (orig./SR)

  1. Impacts from oil and gas produced water discharges on the gulf of Mexico hypoxic zone.

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M. E.; Satterlee, K.; Veil, J. A.; Environmental Science Division; ExxonMobil Production Co.; Shell Offshore

    2006-01-01

    Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN [total Kjeldahl nitrogen]) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of

  2. Use of grape pomaces to produce biomass of aKomagataella pastoris strain expressing a bovine chymosin activity.

    Science.gov (United States)

    Kingston, Diego; Novelli, Guido F; Cerrutti, Patricia; Recupero, Matias N; Blasco, Martin; Galvagno, Miguel A

    2014-11-01

    The use of agroindustrial wastes not only decreases bioprocesses and disposal costs but also contributes to the upgrading of the residues. An active recombinant methanol-inducible bovine chymosin has been expressed in our laboratory in the yeastKomagataella pastoris, and grape pomace extracts (GRE) were proposed as a convenient C-energy source for the biomass production of the genetically engineered strain. Carbon and nitrogen sources, growth factors, and initial pH conditions were selected by classical methodology; thereafter, growth conditions optimization was performed using statistical designed experiments (DoEs). In the presence of (in g·L(-1)) 67.0 monosaccharides (glucose and fructose) from GRE, 5.0 (NH4)2SO4, and 10.0 sugar cane molasses (CMz), a yield of 20.0 g·L(-1) cell dry weight (CDW) was obtained aerobically after 60 h incubation at 28°C and pH 4.0. Applying a fed-batch strategy with methanol:sorbitol as the enzyme inducers, a chymosin production of 8.53 International Milk Clotting Units (IMCU) per mg protein was obtained in the supernatant. The results presented show that through a statistical design, a simple, cheap, and easy to prepare culture medium could be developed using two agroindustrial derivatives (GRE and CMz) to obtain a higher value added product.

  3. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock.

    Science.gov (United States)

    Saratale, Ganesh D; Oh, Min-Kyu

    2015-09-01

    Alkaline pretreatment using NaOH, KOH, or NaOCl has been applied to various types of waste biomass to enhance enzymatic digestibility. Pretreatment (2% NaOH, 121 °C, 30 min) of rice paddy straw (PS) resulted in a maximum yield of 703 mg of reducing sugar per gram of PS with 84.19% hydrolysis yield after a two-step enzymatic hydrolysis process. Ralstonia eutropha ATCC 17699 was tested for its ability to synthesize poly-3-hydroxybutyrate (PHB) using PS hydrolysates as its sole carbon source. It is noteworthy that dry cell weight, polyhydroxyalkanoate (PHA) accumulation and PHB yield with the use of laboratory-grade sugars were similar to those achieved with PS-derived sugars. Under optimized conditions, we observed maximal PHA accumulation (75.45%) and PHB production (11.42 g/L) within 48 h of fermentation. After PHB recovery, the physicochemical properties of PHB were determined by various analytical techniques, showed the results were consistent with the characteristics of a standard polymer of PHB. Thus, the PS hydrolysate proved to be an excellent cheap carbon substrate for PHB production.

  4. Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1-x catalyst.

    Science.gov (United States)

    Li, Chunshan; Hirabayashi, Daisuke; Suzuki, Kenzi

    2010-01-01

    Series nickel catalysts Ni/MgO(x)/CaO(1-)(x) (x=0.3, 0.5, 0.7, Ni: 5 wt%) were prepared and tested in fixed-bed reactor for biomass tar steam reforming, toluene as tar destruction model compound. Different ratios of MgO and CaO were mixed to simulate dolomite as Ni support. Two preparation methods: solid mixing with (SMW) and without water (SM) were used, the preparation methods and concentration of MgO had an important influence on toluene conversion and products. Catalysts prepared by SM method exhibited higher performance on toluene conversion, resulted in higher H(2) yield, and also, higher CO(2) and lower CO selectivity with higher temperature. For the same preparation method, higher concentration of MgO resulted in higher toluene conversion, and also influence on CO, CO(2) selectivity, but no obvious influence on the H(2) yield. Catalysts were characterized by BET, X-ray diffraction (XRD), SEM.

  5. Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants

    Directory of Open Access Journals (Sweden)

    Oggero Roberto

    2011-06-01

    Full Text Available Abstract Background Infantile colic is a common disturb within the first 3 months of life, nevertheless the pathogenesis is incompletely understood and treatment remains an open issue. Intestinal gas production is thought to be one of the causes of abdominal discomfort in infants suffering from colic. However, data about the role of the amount of gas produced by infants' colonic microbiota and the correlation with the onset of colic symptoms are scanty. The benefit of supplementation with lactobacilli been recently reported but the mechanisms by which they exert their effects have not yet been fully defined. This study was performed to evaluate the interaction between Lactobacillus spp. strains and gas-forming coliforms isolated from stools of colicky infants. Results Strains of coliforms were isolated from stools of 45 colicky and 42 control breastfed infants in McConkey Agar and identified using PCR with species-specific primers, and the BBL™ Enterotube™ II system for Enterobacteriaceae. Gas-forming capability of coliforms was assessed in liquid cultures containing lactose as sole carbon source. The average count of total coliforms in colicky infants was significantly higher than controls: 5.98 (2.00-8.76 log10 vs 3.90 (2.50-7.10 CFU/g of faeces (p = 0.015. The following strains were identified: Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter cloacae and Enterococcus faecalis. Then, 27 Lactobacillus strains were tested for their antagonistic effect against coliforms both by halo-forming method and in liquid co-cultures. Lactobacillus delbrueckii subsp.delbrueckii DSM 20074 and L. plantarum MB 456 were able to inhibit all coliforms strains (halo-forming method, also in liquid co-cultures, thus demonstrating an antagonistic activity. Conclusions This study shows that two out of 27 strains of Lactobacillus examined possess an antimicrobial effect against six species of gas-forming coliforms

  6. The regional environmental impact of biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.

    1994-09-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

  7. Sectoral Structure Change Modeling of European Oil and Gas Producing Country’S Economy

    Directory of Open Access Journals (Sweden)

    Perepelkin Viacheslav Alexandrovich

    2015-12-01

    Full Text Available In this paper, we consider identifying features of sectoral structuring within the national economy that has definite foreign trade product specialization. Examination of the sector-specific division methodology enabled identification of its strong association with certain sector dominance in the economy. It is against this background that we offer an explanation for the delay in transferring from the post-Soviet to the applicable international classification of economic structure elements in Russia and Belarus. We perform analysis of the three-component P-S-T model (primary, secondary, tertiary sector using statistical and econometric methods and define properties of the sectoral shares dynamics in national economies of oil and gas producing countries. Analysis of the Russian and Norwegian economies’ intersectoral changes suggests that it is necessary for the government to develop and implement selective structural policy to overcome the existing structural disproportions.

  8. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  9. Characterization of Tungsten Oxide Thin Films Produced by Spark Ablation for NO2 Gas Sensing.

    Science.gov (United States)

    Isaac, Nishchay A; Valenti, Marco; Schmidt-Ott, Andreas; Biskos, George

    2016-02-17

    Tungsten oxides (WOx) thin films are currently used in electro-chromic devices, solar-cells and gas sensors as a result of their versatile and unique characteristics. In this study, we produce nanoparticulate WOx films by spark ablation and focused inertial deposition, and demonstrate their application for NO2 sensing. The primary particles in the as-deposited film samples are amorphous with sizes ranging from 10 to 15 nm. To crystallize the samples, the as-deposited films are annealed at 500 °C in air. This also caused the primary particles to grow to 30-50 nm by sintering. The morphologies and crystal structures of the resulting materials are studied using scanning and transmission electron microscopy and X-ray diffraction, whereas information on composition and oxidation states are determined by X-ray photoemission spectroscopy. The observed sensitivity of the resistance of the annealed films is ∼100 when exposed to 1 ppm of NO2 in air at 200 °C, which provides a considerable margin for employing them in gas sensors for measuring even lower concentrations. The films show a stable and repeatable response pattern. Considering the numerous advantages of spark ablation for fabricating nanoparticulate thin films, the results reported here provide a promising first step toward the production of high sensitivity and high accuracy sensors.

  10. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  11. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  12. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Science.gov (United States)

    Hungershoefer, K.; Zeromskiene, K.; Iinuma, Y.; Helas, G.; Trentmann, J.; Trautmann, T.; Parmar, R. S.; Wiedensohler, A.; Andreae, M. O.; Schmid, O.

    2008-07-01

    A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU) project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g-1 and 9.3±0.3 m2 g-1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa), respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g-1 and 0.50±0.02 m2 g-1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60-0.010i (savanna grass) and 1.56-0.010i (musasa) (λ=0.55 μm). The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa) fractions (8 to 15%) obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.

  13. Reference price of natural gas produced in Bacia dos Solimoes; Preco de referencia do gas natural produzido na Bacia do Solimoes

    Energy Technology Data Exchange (ETDEWEB)

    Valim, Leandro S.; Ferreira, Leticia P.; Correia, Irina S.; Guimaraes, Maria Jose de O.C.; Seidl, Peter R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Bispo, Luiz Henrique de Oliveira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Oil and natural gas are exhaustible resources. Thus, exploitation of these energy sources can lead to shortages and even the absence for future generations. In this context, royalties are included as a way to financially compensate future generations through a monthly payment made by the explorer. In Brazil, the control of the royalties and their distribution is charge of the National Agency of Petroleum, Natural Gas and Biofuels (ANP). Its function is to establish reference prices used for the payment of royalties on oil and natural gas. In this study, three methods were used to calculate royalties, using data from Leste do Urucu field, located in Solimoes Basin. The first one is imposed by Resolution ANP No. 40/2009 that uses the calculation of the reference price of natural gas produced in Brazil. The second one is an alternative method of calculating royalties produced by Bispo, 2011, considering the different compositions of the gas produced and injected. And finally, the Resolution ANP RD No. 983/2011 that uses the calculation of the price of gas injected, considering this as the price of gas processed. When performing the calculation of royalties through the proposed methodologies by Bispo, 2011, and the ANP (Resolution No. 40/2009 and RD 983/2011), the results were similar to each other, and the methodology proposed by Resolution No. 40/2009 was the most different from the others. (author)

  14. The price of the natural gas in the producing states: Espirito Santo case; O preco do gas natural nos estados produtores: caso Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Cometi, Darcy Lannes

    2008-07-01

    The State of the Espirito Santo will become until the end of 2008, one of the main producers and natural gas exporters of Brazil, where, according to PETROBRAS, the State will produce about 20 million /day m{sup 3}, what it will go to contribute significantly for reduction of the dependence of the Bolivian gas, and still to give support to the natural gas sector in Brazil. The Intention of this work, is to identify proposals so that it has left of the gas produced in the State of the Espirito Santo, has a differentiated price. It does not make sensible the State to pay for the gas that is removed in its proper territory the same price that paid Sao Paulo for the gas that consumes imported of national Bolivia. With the markdown of the gas the State will be able to attract investments of great transport, to generate job and income and to advance in the question of the regional development that is of great importance for the developed cities less. Important to stand out that this study it will present proposals to try to sensitize PETROBRAS, initiating a quarrel on the subject. (author)

  15. Drought induced changes in growth, leaf gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings.

    Science.gov (United States)

    Saraswathi, S Gnaana; Paliwal, Kailash

    2011-03-01

    Diurnal trends in net photosynthesis rate (P(N)), stomatal conductance (g(s)), water use efficiency (WUE) and biomass were compared in six-month-old seedlings of Albizia lebbeck and Cassia siamea, under different levels of drought stress. The potted plants were subjected to four varying drought treatment by withholding watering for 7 (D1), 14(D2) and 25 (D3) days. The fourth group (C) was watered daily and treated as unstressed (control). Species differed significantly (p < 0.001) in their physiological performance under varying stress conditions. Higher P(N) of 11.6 +/- 0.05 in control followed by 4.35 +/- 0.4 in D1 and 2.83 +/- 0.18 micromol m(-2) s(-1) in D2 was observed in A. lebbeck. A significant (p < 0.001) reduction in P(N) was observed in C. siamea (C 7.65 +/- 0.5 micromol m(-2) s(-1), D1, 2.56 +/- 0.33 micromol m(-2) s(-1) and D2, 1.4 +/- 0.01 micromol m(-2) s(-1)) at 9 hr. A positive correlation was seen between P(N) and g(s) (A. lebbeck, r2 = 0.84; C. siamea, r2 = 0.82). Higher WUE was observed in C. siamea (D2, 7.1 +/- 0.18 micromol m(-2) s(-1); D3, 8.39 +/- 0.11 micromol m(-2) s(-1)) than A. lebbeck, (control, 7.58 +/- 0.3 micromol m(-2) s(-1) and D3, 8.12 +/- 0.15 micromol m(-2) s(-1)). The chlorophyll and relative water content (RWC) was more in A. lebbeck than C. siamea. Maximum biomass was produced by A. lebbeckthan C. siamea. From the study, one could conclude that A. lebbeckis better than C. siamea in adopting suitable resource management strategy and be best suited for the plantation programs in the semi-arid dry lands.

  16. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Yaliwal, V.S. [Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad Karnataka (India); Kambalimath, Satish [Wipro Technologies (India); Basavarajappa, Y.H. [K.L.E. Society' s Polytechnic, Hubli (India)

    2009-07-15

    Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100-105) and calorific value (5-6 MJ/Nm{sup 3}). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures. Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased

  17. Theoretical study on composition of gas produced by coal gasification; Sekitan gas ka de seiseisuru gas no sosei ni kansuru kosatsu (HYCOL data no doteki kaiseki)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiho, M.; Yasuda, H.; Kobayashi, M.; Yamada, O.; Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In relation to considerations on composition of gas produced by coal gasification, the HYCOL hydrogen generation process data were analyzed. From the fact that CO concentration (Y) decreases linearly with CO2 concentration (X), element balance of gasification of reacted coal was used to introduce a reaction analysis equation. The equation includes a term of oxygen excess {Delta}(amount of oxygen consumed for combustion of CO and H2 in excess of the theoretical amount), derived by subtracting the stoichiometric oxygen amount used to gasify coal into CO and H2 from the consumed oxygen amount. The {Delta} can be used as a reference to oxygen utilization efficiency. An equation for the {Delta} was introduced. Also introduced was a term for steam decomposition amount derived by subtracting the generated steam from the supplied steam. These terms may be used as a clue to permeate into the gasifying reaction process. This suggestion was discussed by applying the terms to gas composition value during operation. According to the HYCOL analysis, when a gasification furnace is operated at higher than the reference oxygen amount, coal supply variation is directly reflected to the combustion reaction, making the {Delta} distribution larger. In an inverse case, unreacted carbon remains in the furnace due to oxygen shortage, and shift reaction may occur more easily even if oxygen/coal supply ratio varies. 6 figs., 1 ref.

  18. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use

    Science.gov (United States)

    Wang, Michael; Han, Jeongwoo; Dunn, Jennifer B.; Cai, Hao; Elgowainy, Amgad

    2012-12-01

    Globally, bioethanol is the largest volume biofuel used in the transportation sector, with corn-based ethanol production occurring mostly in the US and sugarcane-based ethanol production occurring mostly in Brazil. Advances in technology and the resulting improved productivity in corn and sugarcane farming and ethanol conversion, together with biofuel policies, have contributed to the significant expansion of ethanol production in the past 20 years. These improvements have increased the energy and greenhouse gas (GHG) benefits of using bioethanol as opposed to using petroleum gasoline. This article presents results from our most recently updated simulations of energy use and GHG emissions that result from using bioethanol made from several feedstocks. The results were generated with the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model. In particular, based on a consistent and systematic model platform, we estimate life-cycle energy consumption and GHG emissions from using ethanol produced from five feedstocks: corn, sugarcane, corn stover, switchgrass and miscanthus. We quantitatively address the impacts of a few critical factors that affect life-cycle GHG emissions from bioethanol. Even when the highly debated land use change GHG emissions are included, changing from corn to sugarcane and then to cellulosic biomass helps to significantly increase the reductions in energy use and GHG emissions from using bioethanol. Relative to petroleum gasoline, ethanol from corn, sugarcane, corn stover, switchgrass and miscanthus can reduce life-cycle GHG emissions by 19-48%, 40-62%, 90-103%, 77-97% and 101-115%, respectively. Similar trends have been found with regard to fossil energy benefits for the five bioethanol pathways.

  19. Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

    Directory of Open Access Journals (Sweden)

    K. Hungershoefer

    2008-07-01

    Full Text Available A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g−1 and 9.3±0.3 m2 g−1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa, respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g−1 and 0.50±0.02 m2 g−1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60−0.010i (savanna grass and 1.56−0.010i (musasa (λ=0.55 μm. The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa fractions (8 to 15% obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.

  20. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate

    Science.gov (United States)

    Farag, Aida M.; Harper, David D.; Skaar, Don

    2014-01-01

    Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO3 rise to more than 1500 mg/L (also expressed as >1245 mg HCO3 (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.

  1. Development of the utilization of combustible gas produced in existing sanitary landfills: Investigation of effects of air inclusion

    Science.gov (United States)

    1983-01-01

    The effects of nitrogen and oxygen on landfill gas operations are discussed. A combustible gas mixture composed of methane and carbon dioxide is generated in municipal solid waste landfills. A consequence of the collection of this fuel gas is the inclusion of some air in the collected product. The effects include increased collected and purification costs, reduction in the quality of the fuel gas produced, corrosion, explosion hazards, and interference with odorant systems. The scope of such effects was determined by using landfill data of a gas recovery site as a basis. Useful supplemental fuel gas may be recovered despite the inclusion of air. Recommendations are made for establishing limits for nitrogen and oxygen content and minimizing the costs associated with their presence.

  2. Comparison of thermal conversion methods of different biomass types into gaseous fuel

    Science.gov (United States)

    Larina, O. M.; Sinelshchikov, V. A.; Sytchev, G. A.

    2016-11-01

    Thermal conversion methods of different biomass types into gaseous fuel are considered. The comparison of the gas mixtures characteristics (volume yield, composition and calorific value) that can be produced from the main biomass types by gasification and pyrolysis is presented. The merits and demerits of these methods are discussed. It is shown that the two-stage pyrolysis technology, which consists of the biomass pyrolysis and the consequent high-temperature conversion of pyrolysis gases and vapors into synthesis gas by filtration through a porous carbon medium, allows to achieve both a high degree of biomass conversion into gaseous fuel and a high energy efficiency.

  3. Biomass-Ash-Induced Agglomeration in a Fluidized Bed. Part 1: Experimental Study on the Effects of a Gas Atmosphere

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    Fluidized beds have been widely applied to gasification and combustion of biomass. During gasification, a high temperature is preferable to increase the carbon conversion and to reduce the undesirable tar. However, the high temperature may lead to a severe agglomeration problem in a fluidized bed....... Understanding of the agglomeration in various atmospheres is crucial to optimize the design and operation conditions. This study focuses on the effects of gases on agglomeration tendency with different types of biomass, including corn straw, rice straw, and wheat straw. The biomass ash samples are mixed...

  4. Integrating geophysics and geochemistry to evaluate coalbed natural gas produced water disposal, Powder River Basin, Wyoming

    Science.gov (United States)

    Lipinski, Brian Andrew

    Production of methane from thick, extensive coalbeds in the Powder River Basin of Wyoming has created water management issues. More than 4.1 billion barrels of water have been produced with coalbed natural gas (CBNG) since 1997. Infiltration impoundments, which are the principal method used to dispose CBNG water, contribute to the recharge of underlying aquifers. Airborne electromagnetic surveys of an alluvial aquifer that has been receiving CBNG water effluent through infiltration impoundments since 2001 reveal produced water plumes within these aquifers and also provide insight into geomorphologic controls on resultant salinity levels. Geochemical data from the same aquifer reveal that CBNG water enriched in sodium and bicarbonate infiltrates and mixes with sodium-calcium-sulfate type alluvial groundwater, which subsequently may have migrated into the Powder River. The highly sodic produced water undergoes cation exchange reactions with native alluvial sediments as it infiltrates, exchanging sodium from solution for calcium and magnesium on montmorillonite clays. The reaction may ultimately reduce sediment permeability by clay dispersion. Strontium isotope data from CBNG wells discharging water into these impoundments indicate that the Anderson coalbed of the Fort Union Formation is dewatered due to production. Geophysical methods provide a broad-scale tool to monitor CBNG water disposal especially in areas where field based investigations are logistically prohibitive, but geochemical data are needed to reveal subsurface processes undetectable by geophysical techniques. The results of this research show that: (1) CBNG impoundments should not be located near streams because they can alter the surrounding hydraulic potential field forcing saline alluvial groundwater and eventually CBNG water into the stream, (2) point bars are poor impoundment locations because they are essentially in direct hydraulic communication with the associated stream and because plants

  5. Improving methane production efficiency from biomass product gas via pressurized fluidized bed system%适宜增压流化床操作参数提高生物质热气化气合成甲烷效率

    Institute of Scientific and Technical Information of China (English)

    冯飞; 沈来宏; 肖军; 吕潇

    2015-01-01

    Natural gas is one of the clean primary energy sources and high-quality chemical raw materials. Technology of methane production from biomass thermo-chemical gasification (biomass-to-SNG) is one of the most important pathways to produce synthetic natural gas (SNG) to substitute diminishing natural gas. In the biomass-to-SNG process, the biomass is first converted into product gas through biomass gasification. Then, the product gas full of CO and H2is synthesized into methane through the methanation processes after some proper cleaning and conditioning processes. Finally, the crude synthetic natural gas is upgraded with CO2 removal and gas dehydration. In the whole biomass-to-SNG process, the methanation process of product gas is a key step. A pressurized fluidized bed methanation reactor system was designed and constructed, which is mainly composed of a main reactor and auxiliary equipments. An experimental study of methane production from product gas was carried out on this methantion reactor system with the commercial methanation catalyst as bed material. The Energy Dispersive Spectrometer analysis indicates that the methanation catalyst contains high nickel content and was squashed into small particles for the study. Then, the effects of methanation temperature, pressure, space velocity, and ratio of H2 to CO on the performance indexes (i.e. methane formation rate and CO conversion rate) were investigated. The results show that methane is efficiently produced on this pressurized fluidized bed methanation reactor system and the typical methane formation rate is higher than 3.2 mol/(L·h) while the CO conversion rate is more than 80%. Higher methanation temperature is favored to the methanation process and the methane formation rate and CO conversion rate achieve the maximum values at the methanation temperature about 350℃. However, when the methanation temperature is higher than 350℃, the methane formation rate and CO conversion rate decline slowly since the

  6. Biomass gasification: the understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    NARCIS (Netherlands)

    Meng, X.

    2012-01-01

    As one of the currently available thermo-chemical conversion technologies, biomass gasification has received considerable interest since it increases options for combining with various power generation systems. The product gas or syngas produced from biomass gasification is environmental friendly al

  7. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  8. How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively.

    Science.gov (United States)

    Heiniger, Erin K; Oda, Yasuhiro; Samanta, Sudip K; Harwood, Caroline S

    2012-02-01

    Nitrogenase catalyzes the conversion of dinitrogen gas (N(2)) and protons to ammonia and hydrogen gas (H(2)). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H(2) when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated P(II) protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H(2) production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H(2) production by ammonium-grown NifA* cells.

  9. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    Energy Technology Data Exchange (ETDEWEB)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  10. Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K.; Oztekin, Rukiye [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2008-11-15

    Powdered wheat solution was fermented batchwise for bio-hydrogen production using heat-treated anaerobic-acidogenic sludge as the inoculum at initial pH of 7.0 and temperature of 37 C. In order to determine the most suitable wheat powder (WP) and cell concentrations yielding the highest hydrogen formation, initial WP concentration was varied between 5 and 30 g L{sup -1} at a constant initial biomass concentration (2.6 g L{sup -1}). The initial biomass concentration was varied between 0.5 and 5.0 g L{sup -1} at constant WP concentration of 20 g L{sup -1} in another set of experiments. Cumulative bio-hydrogen formation, hydrogen yield and the formation rate were maximum at the WP concentration of 20 g L{sup -1}. Higher WP concentrations resulted in lower fermentation performance probably due to substrate and product (VFA) inhibition. Similarly, hydrogen formation rate and the yield were maximum with a biomass concentration of 2.5 g L{sup -1}. Higher biomass concentrations resulted in lower hydrogen yield and formation rates due to product inhibition. The optimum initial biomass/substrate ratio maximizing the hydrogen yield and formation rate was found to be 0.125 g biomass g{sup -1} WP. A kinetic model was developed for bio-hydrogen formation from powdered wheat starch and the constants were determined by regression analysis. (author)

  11. Conversion of producer gas using NiO/SBA-15 obtained with different synthesis methods

    Institute of Scientific and Technical Information of China (English)

    Baowang Lu; Yiwen Ju; Katsuya Kawamoto

    2014-01-01

    In this study, NiO/SBA-15 was prepared by both direct and post synthesis methods. TEM images revealed that NiO particles aggregated in NiO/SBA-15 obtained with post synthesis method, regardless of NiO loading. However, NiO particles were monodispersed in NiO/SBA-15 with a NiO loading of less than 15 wt% by using the direct synthesis method. In this case, NiO particles aggregated when NiO loading was over 20 wt%. TPR analysis verified that with direct synthesis method the location boundary of NiO particles on outer and pore surface could be observed clearly, whereas that could not observed in the case of post synthesis method. This indicates that the type of synthesis method displays significant effect on the location of NiO particles dispersed into the SBA-15. Producer gas conversion was carried out using NiO/SBA-15 as catalysts, which were synthesized with different synthesis methods. The gas conversion including methanation occurred at low temperature (i.e., 300–400 ?C) and the reverse water gas shift (RWGS) reaction at high temperature (i.e., 400–900 ?C). High temperatures facilitated CO2 conversion to CO with CO selectivity close to 100%, regardless of the synthesis method of the used catalyst. At low temperatures the dispersion type of NiO particles affected the CO2 conversion reaction, i.e., monodispersed NiO particles gave a CO selectivity of close to 100%, similar to that obtained at high temperature. The aggregated NiO particles resulted in a CO selectivity of less than 100%owing to CH4 formation, regardless of synthesis method of catalyst. Therefore, NiO/SBA-15 obtained with direct synthesis method favored RWGS reaction because of high CO selectivity. NiO/SBA-15 obtained with post synthesis method is suited for methanation because of high CH4 selectivity, and the conversion of CO2 to CH4 through methanation increased with increasing NiO loading.

  12. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed.

  13. World wide biomass resources

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2012-01-01

    In a wide variety of scenarios, policy strategies, and studies that address the future world energy demand and the reduction of greenhouse gas emissions, biomass is considered to play a major role as renewable energy carrier. Over the past decades, the modern use of biomass has increased rapidly in

  14. Investigation on the quality of bio-oil produced through fast pyrolysis of biomass-polymer waste mixture

    Science.gov (United States)

    Jourabchi, S. A.; Ng, H. K.; Gan, S.; Yap, Z. Y.

    2016-06-01

    A high-impact poly-styrene (HIPS) was mixed with dried and ground coconut shell (CS) at equal weight percentage. Fast pyrolysis was carried out on the mixture in a fixed bed reactor over a temperature range of 573 K to 1073 K, and a nitrogen (N2) linear velocity range of 7.8x10-5 m/s to 6.7x10-2 m/s to produce bio-oil. Heat transfer and fluid dynamics of the pyrolysis process inside the reactor was visualised by using Computational Fluid Dynamics (CFD). The CFD modelling was validated by experimental results and they both indicated that at temperature of 923 K and N2 linear velocity of 7.8x10-5 m/s, the maximum bio-oil yield of 52.02 wt% is achieved.

  15. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  16. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, December 11-12, 1978, Denver, Colorado. Second Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-01-05

    The tenth quarterly coordination meeting of the methane production group of the Fuels from Biomass Systems Branch, US Department of Energy was held at Denver, Colorado, December 11-12, 1978. Progress reports were presented by the contractors and a site visit was made to the Solar Energy Research Institute, Golden, Colorado. A meeting agenda, a list of attendees, and progress are presented. Report titles are: pipeline fuel gas from an environmental feedlot; operation of a 50,000 gallon anaerobic digester at the Monroe State Dairy Farm near Monroe, Washington; anaerobic fermentation of livestock and crop residues; anaerobic fermentation of agricultural residues - potential for improvement and implementation; heat treatment of organics for increasing anaerobic biodegradability; and biological conversion of biomass to methane. (DC)

  17. An Investigation on Gas Lift Performance Curve in an Oil-Producing Well

    Directory of Open Access Journals (Sweden)

    Deni Saepudin

    2007-01-01

    Full Text Available The main objective in oil production system using gas lift technique is to obtain the optimum gas injection rate which yields the maximum oil production rate. Relationship between gas injection rate and oil production rate is described by a continuous gas lift performance curve (GLPC. Obtaining the optimum gas injection rate is important because excessive gas injection will reduce production rate, and also increase the operation cost. In this paper, we discuss a mathematical model for gas lift technique and the characteristics of the GLPC for a production well, for which one phase (liquid is flowing in the reservoir, and two phases (liquid and gas in the tubing. It is shown that in certain physical condition the GLPC exists and is unique. Numerical computations indicate unimodal properties of the GLPC. It is also constructed here a numerical scheme based on genetic algorithm to compute the optimum oil production.

  18. Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Juan Carlos; Coronas, Alberto

    2012-01-01

    This paper presents a mathematical model for biomass gasification processes developed in the equation solver program Engineering Equation Solver (EES) with an implemented user-friendly interface. It is based on thermodynamic equilibrium calculations and includes some modifications to be adapted......, and oxygen enrichment] on producer gas. The model predicts the behavior of different kinds of biomass and becomes a useful tool to simulate the biomass gasification process by allowing its integration in complete energy supply systems, such as co-generation plants....

  19. Spatially-explicit estimates of greenhouse-gas payback times for perennial cellulosic biomass production on open lands in the Lake States

    Science.gov (United States)

    Sahajpal, R.

    2015-12-01

    The development of renewable energy sources is an integral step towards mitigating the carbon dioxide induced component of climate change. One important renewable source is plant biomass, comprising both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). Due to their market acceptability and excellent energy balance, cellulosic feedstocks represent an abundant and if managed properly, a carbon-neutral and environmentally beneficial resource. We evaluate how site variability impacts the greenhouse-gas (GHG) benefits of SRWC plantations on lands potentially suited for bioenergy feedstock production in the Lake States (Minnesota, Wisconsin, Michigan). We combine high-resolution, spatially-explicit estimates of biomass, soil organic carbon and nitrous oxide emissions for SRWC plantations from the Environmental Policy Integrated Climate (EPIC) model along with life cycle analysis results from the GREET model to determine the greenhouse-gas payback time (GPBT) or the time needed before the GHG savings due to displacement of fossil fuels exceeds the initial losses from plantation establishment. We calibrate our models using unique yield and N2O emission data from sites across the Lake states that have been converted from pasture and hayfields to SRWC plantations. Our results show a reduction of 800,000 ha in non-agricultural open land availability for biomass production, a loss of nearly 37% (see attached figure). Overall, GPBTs range between 1 and 38 years, with the longest GPBTs occurring in the northern Lake states. Initial soil nitrate levels and site drainage potential explain more than half of the variation in GPBTs. Our results indicate a rapidly closing window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States.

  20. Possible incorporation of petroleum-based carbons in biochemicals produced by bioprocess--biomass carbon ratio measured by accelerator mass spectrometry.

    Science.gov (United States)

    Kunioka, Masao

    2010-06-01

    The biomass carbon ratios of biochemicals related to biomass have been reviewed. Commercial products from biomass were explained. The biomass carbon ratios of biochemical compounds were measured by accelerator mass spectrometry (AMS) based on the (14)C concentration of carbons in the compounds. This measuring method uses the mechanism that biomass carbons include a very low level of (14)C and petroleum carbons do not include (14)C similar to the carbon dating measuring method. It was confirmed that there were some biochemicals synthesized from petroleum-based carbons. This AMS method has a high accuracy with a small standard deviation and can be applied to plastic products.

  1. EERC Center for Biomass Utilization 2005

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  2. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry - SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Haekkinen, M.; Pakula, T. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anne.kallioinen@vtt.fi

    2010-10-15

    In SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as a raw material for production of sugars to be processed further to ethanol and other chemicals. These raw materials containing high proportion of carbohydrates have been analysed and pretreated for enzyme hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Birch and bagasse could easily be pretreated with steam explosion. Catalytic and alkaline oxidation treatment of spruce produced material with superior hydrolysability to steam exploded material. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could be detected only with catalytically oxidised spruce. In addition, the hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  3. Biomass gasification and energy production

    Energy Technology Data Exchange (ETDEWEB)

    Mahinpey, N.; Nikoo, M.B. [Regina Univ., SK (Canada). Faculty of Engineering

    2007-07-01

    The ASPEN PLUS simulation program was used to model an atmospheric fluidized bed biomass gasifier. The aim of the study was develop a simulation capable of accurately predicting steady state performance of the gasifier in relation to hydrodynamics and reaction kinetics. The influences of feed decomposition, volatile reactions, gas gasification and gas-solid separation were considered through modularized ASPEN PLUS models. The ASPEN PLUS yield reactor was used to simulate biomass feed decomposition. A separation column model was used to separate volatile materials and solids. Experimental data from a pine biomass gasification experiment conducted in a laboratory-scale fluidized bed gasifier was used to validate the simulation results. Good agreement was shown for gas composition, although carbon dioxide (CO{sub 2}) rates were slightly underestimated. The study also demonstrated that higher temperatures improved the gasification process and carbon conversion. The optimized gasification process produced more carbon monoxide (CO) and less CO{sub 2}. The introduction of lower temperature steam to the gasification process increased tar output. It was concluded that the conversion efficiency increased when the equivalence ratio was increased. 7 refs., 1 tab., 12 figs.

  4. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    Science.gov (United States)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  5. Model Research of Gas Emissions From Lignite and Biomass Co-Combustion in a Large Scale CFB Boiler

    Directory of Open Access Journals (Sweden)

    Krzywański Jarosław

    2014-06-01

    Full Text Available The paper is focused on the idea of a combustion modelling of a large-scale circulating fluidised bed boiler (CFB during coal and biomass co-combustion. Numerical computation results for three solid biomass fuels co-combustion with lignite are presented in the paper. The results of the calculation showed that in previously established kinetics equations for coal combustion, some reactions had to be modified as the combustion conditions changed with the fuel blend composition. Obtained CO2, CO, SO2 and NOx emissions are located in borders of ± 20% in the relationship to the experimental data. Experimental data was obtained for forest biomass, sunflower husk, willow and lignite cocombustion tests carried out on the atmospheric 261 MWe COMPACT CFB boiler operated in PGE Turow Power Station in Poland. The energy fraction of biomass in fuel blend was: 7%wt, 10%wt and 15%wt. The measured emissions of CO, SO2 and NOx (i.e. NO + NO2 were also shown in the paper. For all types of biomass added to the fuel blends the emission of the gaseous pollutants was lower than that for coal combustion.

  6. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed

  7. Catalytic gasification of biomass

    Science.gov (United States)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  8. Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada.

    Science.gov (United States)

    Zhang, Yimin; McKechnie, Jon; Cormier, Denis; Lyng, Robert; Mabee, Warren; Ogino, Akifumi; Maclean, Heather L

    2010-01-01

    The use of coal is responsible for (1)/(5) of global greenhouse gas (GHG) emissions. Substitution of coal with biomass fuels is one of a limited set of near-term options to significantly reduce these emissions. We investigate, on a life cycle basis, 100% wood pellet firing and cofiring with coal in two coal generating stations (GS) in Ontario, Canada. GHG and criteria air pollutant emissions are compared with current coal and hypothetical natural gas combined cycle (NGCC) facilities. 100% pellet utilization provides the greatest GHG benefit on a kilowatt-hour basis, reducing emissions by 91% and 78% relative to coal and NGCC systems, respectively. Compared to coal, using 100% pellets reduces NO(x) emissions by 40-47% and SO(x) emissions by 76-81%. At $160/metric ton of pellets and $7/GJ natural gas, either cofiring or NGCC provides the most cost-effective GHG mitigation ($70 and $47/metric ton of CO2 equivalent, respectively). The differences in coal price, electricity generation cost, and emissions at the two GS are responsible for the different options being preferred. A sensitivity analysis on fuel costs reveals considerable overlap in results for all options. A lower pellet price ($100/metric ton) results in a mitigation cost of $34/metric ton of CO2 equivalent for 10% cofiring at one of the GS. The study results suggest that biomass utilization in coal GS should be considered for its potential to cost-effectively mitigate GHGs from coal-based electricity in the near term.

  9. Technologies applied to wells producing gas in Bolivia; Tecnologias aplicadas aos pocos produtores de gas em Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Fernando R.B. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Carrillo, Marco A.; Barrerro, Dennys A. [PETROBRAS Bolivia S.A., La Paz (Bolivia)

    2012-07-01

    The This paper seeks to highlight the engineering, lessons learned and topics for improvement of the technologies used in gas wells drilled between November 2008 and October 2011 in an environment of Bolivian' subandino. Among technologies employed and commented hereunder has the drilling gas reservoirs in near balance using a dual phase fluid, with nitrogen; carrying out multilateral wells equipped with intelligent completion in such environment; as well as other technologies presented herein. This document was prepared on drilling operations performed in SAL-15, SAL-17, SBLSBL- 7 and SBL-8, comprising the period from November 2008 to October 2011. (author)

  10. Analysis on produce mechanism and influence factor of CO gas on the coal exploitation working face

    Institute of Scientific and Technical Information of China (English)

    DENG Jun; JIANG Zhi-gang; XIAO Lei

    2008-01-01

    Summarized the four main sources of CO gas on the working face based oninvestigation and local observation: firstly, it analyzed the mechanism that CO gas wasproduced by spontaneous combustion and oxygenation of gob residual coal; next, it illus-trated the theory that special coal seam deposits natural CO gas, and provided correlativeexperiment data; and then, it illustrated the reason of the CO gas in working face in-creased relatively in the course of coal cutter's shearing, according to the translation be-tween mechanism energy and inner energy and the rupture of carbon molecule side chainduring coal exploitation; lastly, illustrated the reason of CO gas appearance and the rela-tively release quantity during coal mine blasting underground. We find out the source ofCO gas on the working face accurately, and provide advantages for appropriate preventionand practical management measures.

  11. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  12. The chronic toxicity of sodium bicarbonate, a major component of coal bed natural gas produced waters

    Science.gov (United States)

    Farag, Aida M.; Harper, David D.

    2014-01-01

    Sodium bicarbonate (NaHCO3) is the principal salt in coal bed natural gas produced water from the Powder River Structural Basin, Wyoming, USA, and concentrations of up to 3000 mg NaHCO3/L have been documented at some locations. No adequate studies have been performed to assess the chronic effects of NaHCO3 exposure. The present study was initiated to investigate the chronic toxicity and define sublethal effects at the individual organism level to explain the mechanisms of NaHCO3 toxicity. Three chronic experiments were completed with fathead minnows (Pimephales promelas), 1 with white suckers (Catostomus commersoni), 1 with Ceriodaphnia dubia, and 1 with a freshwater mussel, (Lampsilis siliquoidea). The data demonstrated that approximately 500 mg NaHCO3/L to 1000 mg NaHCO3/L affected all species of experimental aquatic animals in chronic exposure conditions. Freshwater mussels were the least sensitive to NaHCO3 exposure, with a 10-d inhibition concentration that affects 20% of the sample population (IC20) of 952 mg NaHCO3/L. The IC20 for C. dubia was the smallest, at 359 mg NaHCO3/L. A significant decrease in sodium–potassium adenosine triphosphatase (Na+/K+ ATPase) together with the lack of growth effects suggests that Na+/K+ ATPase activity was shut down before the onset of death. Several histological anomalies, including increased incidence of necrotic cells, suggested that fish were adversely affected as a result of exposure to >450 mg NaHCO3/L.

  13. Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production

    NARCIS (Netherlands)

    Hoang, T.M.C.; Eck, van E.R.H.; Bula, W.P.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2015-01-01

    Lignocellulosic biomass is addressed as potential sustainable feedstock for green fuels and chemicals. (Hemi)cellulose is the largest constituent of the material. Conversion of these polysaccharides to bio-based platform chemicals is important in green chemical/fuel production and biorefinery. Hydro

  14. Biomass gasification: the understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    OpenAIRE

    Meng, X.(Institute of High Energy Physics, Beijing, China)

    2012-01-01

    As one of the currently available thermo-chemical conversion technologies, biomass gasification has received considerable interest since it increases options for combining with various power generation systems. The product gas or syngas produced from biomass gasification is environmental friendly alternatives to conventional petrochemical fuels for the production of electricity, hydrogen, synthetic transportation biofuels and other chemicals. The product gas normally contains the major compon...

  15. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    phosphoric acids) and organic acids (formic and acetic acids) followed by analytical pyrolysis on a micropyrolyzer/GC/MS/FID system. It was found that sulfuric and phosphoric acids are very effective in passivating the AAEM thereby increasing the yield of anhydrosugars. An excellent correlation was discovered between the amount of acid required to obtain the maximum yield of anhydrosugars and the amount of AAEM contained in the biomass feedstock. In the micro-scale studies, up to 56% of the cellulose contained in the biomass was converted into anhydrosugars which is close to the 57% conversion obtained from pure cellulose pyrolysis. It is known that LG polymerization and subsequent charring occur at temperatures above 275°C depending on the vapor pressure of LG in the gas stream. A study of pyrolysis of acid-infused biomass feedstocks at various temperatures revealed that LG recovery is best at lower temperatures than the conventional pyrolysis temperature range of 450-500°C. Pyrolysis of acid-infused biomass failed in a continuous fluidized bed reactor due to clogging of the bed. The feedstock formed vitreous material along with the fluidizing sand that was formed from poor pyrolysis of lignin. However, more investigation of this phenomenon is a subject for future work. Pyrolysis experiments on an auger type reactor were successful in producing bio-oils with unprecedented amounts of sugars. Though there was increase in charring when compared to the control feedstock, pyrolysis of red oak infused with 0.4 wt% of sulfuric acid produced bio-oil with 18wt% of sugars. One of the four fractions of bio-oil collected contained most of the sugars, which shows significant potential for separating the sugars from bio-oil using simple means. This work points towards a new pathway for making advanced biofuels viz. upgrading pyrolytic sugars from biomass that could compete with enzymatic sugars from biomass.

  16. Saline gas-produced waters treatment with macrophytes in a hydroponic system. Final report, July 1, 1991-December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, W.J.; Albright, L.D.; Cummings, R.J.; Hicks, E.E.; Nock, T.D.

    1993-06-01

    A review of potential pollution problems of natural gas produced waters emphasized that present regulations do not adversely affect gas production, but future changes may be a concern (Fillo et al.). Also, the economics of the present treatment and disposal practices are becoming unacceptably high. Thus, new and more effective methods of treating and disposing of produced waters should be sought. A hydroponic system has been developed at Cornell University and piloted on domestic sewage partly with support from the Gas Research Institute, the U.S. Department of Energy (SERI), USEPA and New York State Energy Research and Development Authority (Jewell et al.). The hydroponic plant system is referred to as the 'Nutrient Film Technique' (NFT). The general goal of the project is to conduct a preliminary study to determine the feasibility of developing a biological treatment system capable of removing organic and inorganic pollutants from highly saline waters while minimizing the effluent volume by enhanced evapotranspiration.

  17. 78 FR 75337 - Eos LNG LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas Produced...

    Science.gov (United States)

    2013-12-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Eos LNG... Eos LNG LLC (Eos), requesting long-term, multi- contract authorization to export LNG produced from... natural gas, or 1.6 Bcf per day (Bcf/d). Eos seeks authorization to export the LNG for a 25-year term...

  18. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  19. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  20. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E.; Vílchez, J. M. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Amorín, R. [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Ascasibar, Y. [Universidad Autonoma de Madrid, Madrid (Spain); Papaderos, P., E-mail: jos@iac.es [Centro de Astrofísica da Universidade do Porto, Porto (Portugal)

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  1. Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Hassan Athari

    2015-01-01

    Full Text Available Biomass energy and especially biofuels produced by biomass gasification are clean and renewable options for power plants. Also, on hot days the performance of gas turbines decreases substantially, a problem that can be mitigated by fog cooling. In the present paper, a biomass-integrated fogging steam injected gas turbine cycle is analyzed with energy and exergy methods. It is observed that (1 increasing the compressor pressure ratio raises the air flow rate in the plant but reduces the biomass flow rate; (2 increasing the gas turbine inlet temperature decreases the air and biomass flow rates; (3 increasing the compressor pressure ratio raises the energy and exergy efficiencies, especially at lower pressure ratios; (4 increasing the gas turbine inlet temperature raises both efficiencies; and (5 overspray increases the energy efficiency and net cycle power slightly. The gas turbine exhibits the highest exergy efficiency of the cycle components and the combustor the lowest. A comparison of the cycle with similar cycles fired by natural gas and differently configured cycles fueled by biomass shows that the cycle with natural gas firing has an energy efficiency 18 percentage points above the biomass fired cycle, and that steam injection increases the energy efficiency about five percentage points relative to the cycle without steam injection. Also, the influence of steam injection on energy efficiency is more significant than fog cooling.

  2. Sewage sludge based producer gas of rich H{sub 2} content as a fuel for an IC engine

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, Stanislaw; Cupial, Karol [Czestochowa Univ. of Technology (Poland)

    2010-07-01

    The manuscript presents investigation on hydrogen rich gas combustion in an internal combustion (IC) engine. The gas is obtained from gasification process of sewage sludge which is by-product of waste water treatment in a municipal sewage treatment plant. Recently introduced EU regulations of environmental protection do not allow to use such sludge as a soil fertilizer or substance for landfilling the ground due to its biological toxicity. On another hand, this sludge contains organic content of approximately 45-55% and from this point of view the sludge looks as an attractive material for fuel production through its gasification. This technology, primarily applied for wood gasification, has been also successfully implemented for gasification of sludge. It was found that the producer gas obtained in this way is rich of hydrogen content even up to 25%. This is because of high water content in the sludge that provides favorable conditions for steam reforming resulting in increase of hydrogen in the products of gasification. The high hydrogen content in the producer gas can lead to improper combustion particularly when the combustion takes place in the internal combustion engine. That improper combustion might appear as combustion knock and it is the main problem for the engine in which hydrogen is used as a fuel [1]. Onset of the knock during combustion contributes to rapid increase in heat transfer to the piston crown causing the piston to be quickly overheated that leads to surface erosion and damages. Additionally, engine body vibration coming from the knock significantly shortens engine durability. Conclusions from this investigation provide good premises for combusting the sludge producer gas in the IC engine without any improper combustion anomalies, thus considers this gas as worthy fuel for a stationary engine driven a power generator. The presentation shows results of producer gas combustion in both the spark-ignited and the compression ignition engine with

  3. The safety assessment of Pythium irregulare as a producer of biomass and eicosapentaenoic acid for use in dietary supplements and food ingredients.

    Science.gov (United States)

    Wu, Lei; Roe, Charles L; Wen, Zhiyou

    2013-09-01

    Polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3), and arachidonic acid (ARA, 20:4 n-6), have multiple beneficial effects on human health and can be used as an important ingredient in dietary supplements, food, feed and pharmaceuticals. A variety of microorganisms has been used for commercial production of these fatty acids. The microorganisms in the Pythium family, particularly Pythium irregulare, are potential EPA producers. The aim of this work is to provide a safety assessment of P. irregulare so that the EPA derived from this species can be potentially used in various commercial applications. The genus Pythium has been widely recognized as a plant pathogen by infecting roots and colonizing the vascular tissues of various plants such as soybeans, corn and various vegetables. However, the majority of the Pythium species (including P. irregulare) have not been reported to infect mammals including humans. The only species among the Pythium family that infects mammals is P. insidiosum. There also have been no reports showing P. irregulare to contain mycotoxins or cause potentially allergenic responses in humans. Based on the safety assessment, we conclude that P. irregulare can be considered a safe source of biomass and EPA-containing oil for use as ingredients in dietary supplements, food, feed and pharmaceuticals.

  4. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    Science.gov (United States)

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.

  5. First measurements of Dα spectrum produced by anisotropic fast ions in the gas dynamic trap

    Science.gov (United States)

    Lizunov, A.; Anikeev, A.

    2014-11-01

    Angled injection of eight deuterium beams in gas dynamic trap (GDT) plasmas builds up the population of fast ions with the distribution function, which conserves a high degree of initial anisotropy in space, energy, and pitch angle. Unlike the Maxwellian distribution case, the fast ion plasma component in GDT cannot be exhaustively characterized by the temperature and density. The instrumentation complex to study of fast ions is comprised of motional Stark effect diagnostic, analyzers of charge exchange atoms, and others. The set of numerical codes using for equilibrium modeling is also an important tool of analysis. In the recent campaign of summer 2014, we recorded first signals from the new fast ion D-alpha diagnostic on GDT. This paper presents the diagnostic description and results of pilot measurements. The diagnostic has four lines of sight, distributed across the radius of an axially symmetric plasma column in GDT. In the present setup, a line-integrated optical signal is measured in each channel. In the transverse direction, the spatial resolution is 18 mm. Collected light comes to the grating spectrometer with the low-noise detector based on a charge-coupled device matrix. In the regime of four spectra stacked vertically on the sensor, the effective spectral resolution of measurements is approximately 0.015 nm. Exposure timing is provided by the fast optical ferroelectric crystal shutter, allowing frames of duration down to 70 μs. This number represents the time resolution of measurements. A large dynamic range of the camera permits for a measurement of relatively small light signals produced by fast ions on top of the bright background emission from the bulk plasma. The fast ion emission has a non-Gaussian spectrum featuring the characteristic width of approximately 4 nm, which can be separated from relatively narrow Gaussian lines of D-alpha and H-alpha coming from the plasma periphery, and diagnostic beam emission. The signal to noise ratio varies

  6. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  7. Energetic approach of biomass hydrolysis in supercritical water.

    Science.gov (United States)

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams.

  8. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  9. Chemochromic Detector for Sensing Gas Leakage and Process for Producing the Same

    Science.gov (United States)

    Roberson, Luke B. (Inventor); Captain, Janine E. (Inventor); Williams, Martha K. (Inventor); Tate, LaNetra Clayton (Inventor)

    2015-01-01

    A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment and a textile polymer. The textile material includes a chemochromic pigment operably responsive to a combustible gas. The combustible gas sensing textile material can be made by melt spinning, solution spinning, or other similar techniques. In a preferred embodiment carbon nanotubes are used with the textile material which will increase the material strength and alter the thermal and/or electrical properties. These textiles woven into fabrics can provide garments not only with hydrogen sensing capabilities but the carbon nanotubes will allow for a range of sensing capabilities to be embedded (i.e. gas, health, and electronic monitors) within the garments.

  10. Localized starbursts in dwarf galaxies produced by impact of low metallicity cosmic gas clouds

    CERN Document Server

    Almeida, J Sanchez; Munoz-Tunon, C; Elmegreen, D M; Perez-Montero, E; Amorin, R; Filho, M E; Ascasibar, Y; Papaderos, P; Vilchez, J M

    2015-01-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter haloes. Although these predictions are unambiguous, the observational support has been indirect so far. Here we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local Universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias (GTC) optical spectra of ten XMPs show that the galaxy hosts have metallicities around 60 % solar on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6 % solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possib...

  11. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  12. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  13. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Qijin, E-mail: ijin.cheng@xmu.edu.cn; Zhang, Fengyan [School of Energy Research, Xiamen University, Xiamen City, Fujian Province 361005 (China); Yan, Wei [School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052 (Australia); Plasma Nanoscience Laboratories, CSIRO Materials Science and Engineering, Lindfield, New South Wales 2070 (Australia); Randeniya, Lakshman [Plasma Nanoscience Laboratories, CSIRO Materials Science and Engineering, Lindfield, New South Wales 2070 (Australia); Ostrikov, Kostya [Plasma Nanoscience Laboratories, CSIRO Materials Science and Engineering, Lindfield, New South Wales 2070 (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-03-28

    Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu{sub 2}O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 10{sup 11}–10{sup 13} cm{sup −3}) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu{sub 2}O nanowires feature fast response and recovery for the low-temperature (∼140 °C) detection of methane gas in comparison with polycrystalline Cu{sub 2}O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu{sub 2}O nanowire-based gas sensors are 125 and 147 s, respectively. The Cu{sub 2}O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

  14. Low NOx emissions from fuel-bound nitrogen in gas turbine combustors

    NARCIS (Netherlands)

    Adouane, B.

    2006-01-01

    Biomass-derived LCV (Low Calorific Value) gas represents one of the best alternatives for fossil fuels. It is very attractive, because it is CO2 neutral as biomass consumes an amount of CO2 when growing and releases almost the same amount when combusted. However, the raw gasifier producer gas contai

  15. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  16. Biomass gasification in ABFB : Tar mitigation

    OpenAIRE

    Vera, Nemanova

    2014-01-01

    Biomass gasification may be an attractive alternative for meeting future energy demand. Although gasification is a mature technology, it has yet to be fully commercialised due to tar formation. This study focuses on the tar mitigation in gas produced in an atmospheric bubbling fluidised bed (ABFB) gasification system. Previous studies indicated significant tar variability along the system. In this work the experimental procedure has been improved for reliable results and better understanding ...

  17. A rapid synthesis/growth process producing massive ZnO nanowires for humidity and gas sensing

    Science.gov (United States)

    Hsu, Nai-Feng; Chung, Tien-Kan

    2014-09-01

    We report a rapid and simple process to massively synthesize/grow ZnO nanowires capable of manufacturing massive humidity/gas sensors. The process utilizing a chemical solution deposition with an annealing process (heating in vacuum without gas) is capable of producing ZnO nanowires within an hour. Through depositing the ZnO nanowires on the top of a Pt-interdigitated-electrode/SiO2/Si-Wafer, a humidity/gas-hybrid sensor is fabricated. The humidity sensitivity (i.e., ratio of the electrical resistance of the sensor at 11-95 % relative humidity level) is approximately 104. The response and recovery time with the humidity changing from 11 to 95 % directly and reversely is 6 and 10 s, respectively. The gas sensitivity (i.e., ratio of electrical resistance of the sensor under the air to vaporized ethanol) is increased from 2 to 56 when the concentration of the ethanol is increased from 40 to 600 ppm. Both the response and recovery times are less than 15 s for the gas sensor. These results show the sensor utilizing the nanowires exhibits excellent humidity and gas sensing.

  18. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.

    Science.gov (United States)

    Yan, Feng; Luo, Si-yi; Hu, Zhi-quan; Xiao, Bo; Cheng, Gong

    2010-07-01

    Steam gasification experiments of biomass char were carried out in a fixed-bed reactor. The experiments were completed at bed temperature of 600-850 degrees C, a steam flow rate of 0-0.357 g/min/g of biomass char, and a reaction time of 15min. The aim of this study is to determine the effects of bed temperature and steam flow rate on syngas yield and its compositions. The results showed that both high gasification temperature and introduction of proper steam led to higher yield of dry gas and higher carbon conversion efficiency. However, excessive steam reduced gas yield and carbon conversion efficiency. The maximum dry gas yield was obtained at the gasification temperature of 850 degrees C and steam flow rate of 0.165 g/min/g biomass char.

  19. A cost-benefit analysis of produced water management opportunities in selected unconventional oil and gas plays

    Science.gov (United States)

    Marsters, P.; Macknick, J.; Bazilian, M.; Newmark, R. L.

    2013-12-01

    Unconventional oil and gas production in North America has grown enormously over the past decade. The combination of horizontal drilling and hydraulic fracturing has made production from shale and other unconventional resources economically attractive for oil and gas operators, but has also resulted in concerns over potential water use and pollution issues. Hydraulic fracturing operations must manage large volumes of water on both the front end as well as the back end of operations, as significant amounts of water are coproduced with hydrocarbons. This water--often called flowback or produced water--can contain chemicals from the hydraulic fracturing fluid, salts dissolved from the source rock, various minerals, volatile organic chemicals, and radioactive constituents, all of which pose potential management, safety, and public health issues. While the long-term effects of hydraulic fracturing on aquifers, drinking water supplies, and surface water resources are still being assessed, the immediate impacts of produced water on local infrastructure and water supplies are readily evident. Produced water management options are often limited to underground injection, disposal at centralized treatment facilities, or recycling for future hydraulic fracturing operations. The costs of treatment, transport, and recycling are heavily dependent on local regulations, existing infrastructure, and technologies utilized. Produced water treatment costs also change over time during energy production as the quality of the produced water often changes. To date there is no publicly available model that evaluates the cost tradeoffs associated with different produced water management techniques in different regions. This study addresses that gap by characterizing the volume, qualities, and temporal dynamics of produced water in several unconventional oil and gas plays; evaluating potential produced water management options, including reuse and recycling; and assessing how hydraulic

  20. Fast pyrolysis of biomass thermally pretreated by torrefaction

    Science.gov (United States)

    Torrefied biomass samples were produced from hardwood and switchgrass pellets using the biochar experimenter’s kit (BEK) reactor and analyzed for their utility as pretreated feedstock for biofuels production via fast pyrolysis. The energy efficiency for the BEK torrefaction process with propane gas ...

  1. Review: Assessing the climate mitigation potential of biomass

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2016-12-01

    Full Text Available For many millennia, humans have used biomass for three broad purposes: food for humans and fodder for farm animals; energy; and materials. Food has always been exclusively produced from biomass, and in the year 1800, biomass still accounted for about 95% of all energy. Biomass has also been a major source of materials for construction, implements, clothing, bedding and other uses, but some researchers think that total human uses of biomass will soon reach limits of sustainability. It is thus important to select those biomass uses that will maximise global climate change benefits. With a ‘food first’ policy, it is increasingly recognised that projections of food needs are important for estimating future global bioenergy potential, and that non-food uses of biomass can be increased by both food crop yield improvements and dietary changes. However, few researchers have explicitly included future biomaterials production as a factor in bioenergy potential. Although biomaterials’ share of the materials market has roughly halved over the past quarter-century, we show that per tonne of biomass, biomaterials will usually allow greater greenhouse gas reductions than directly using biomass for bioenergy. particularly since in many cases, biomaterials can be later burnt for energy after their useful life.

  2. USE OF GAS BURNERS TYPE "DAVA" OPERATING UNDER VARIABLE LOAD TO PRODUCE HEAT AND HOT WATER

    Directory of Open Access Journals (Sweden)

    Daud V.

    2014-12-01

    Full Text Available The article brings additional information referred to upgraded gas burners type "DAVA", which are characterized by high performance at variable load. Adaptation of burner operation is carried out automatically. There are presented design features that allow increase of the efficiency and the reliability of these burners at variable load, and reducing natural gas consumption. The range of variation of the coefficient of excess air affects the efficiency of the burner. The experimental results of the tests of gas burners of different power had confirmed the economic effect of the upgraded burners at heat production. It is proved that economic effect increases with increasing of burner output and of operation time during the season.

  3. Oxidative stability and sensory quality of meat from broiler chickens fed a bacterial meal produced on natural gas.

    Science.gov (United States)

    Øverland, M; Borge, G I; Vogt, G; Schøyen, H F; Skrede, A

    2011-01-01

    Bacterial meal (BPM) produced from bacteria grown on natural gas is a feed source containing approximately 70% CP and 10% lipids with predominantly C16:0 and C16:1 fatty acids. The effect of increasing dietary levels (0, 40, 80, or 120 g/kg) of BPM on fatty acid composition, the profile of volatiles by dynamic headspace gas chromatography-mass spectrometry, and sensory quality of frozen-stored broiler chicken thigh meat was examined. Increasing levels of BPM increased (linear, P Dynamic headspace gas chromatography-mass spectrometry was a more sensitive method in detecting early lipid oxidation compared with TBA reactive substances and sensory quality analyses in broiler thigh meat.

  4. Dual Fluidized Bed Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  5. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder-Metallurgy-Produced Titanium Alloys

    Science.gov (United States)

    Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.

    2013-05-01

    An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  6. Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Soprani, Stefano; Søgaard, Martin

    2013-01-01

    Oxygen–steam biomass gasification produces a high quality syngas with a high H2/CO ratio that is suitable for upgrading to liquid fuels. Such a gas is also well suited for use in conjunction with solid oxide fuel cells giving rise to a system yielding high electrical efficiency based on biomass....... The two configurations demonstrating the highest efficiency are then thermally integrated into an oxygen– steam biomass gasification plant. The energy demand for oxygen production and the membrane area required for a 6 MWth biomass plant are calculated for different operating conditions. Increasing...

  7. The Innate Immune DNA Sensor cGAS Produces a Noncanonical Cyclic Dinucleotide that Activates Human STING

    Directory of Open Access Journals (Sweden)

    Elie J. Diner

    2013-05-01

    Full Text Available The presence of foreign DNA in the cytosol of mammalian cells elicits a potent antiviral interferon response. Recently, cytosolic DNA was proposed to induce the synthesis of cyclic GMP-AMP (cGAMP upon binding to an enzyme called cGAMP synthase (cGAS. cGAMP activates an interferon response by binding to a downstream receptor called STING. Here, we identify natural variants of human STING (hSTING that are poorly responsive to cGAMP yet, unexpectedly, are normally responsive to DNA and cGAS signaling. We explain this paradox by demonstrating that the cGAS product is actually a noncanonical cyclic dinucleotide, cyclic [G(2′-5′pA(3′-5′p], which contains a single 2′-5′ phosphodiester bond. Cyclic [G(2′-5′pA(3′-5′p] potently activates diverse hSTING receptors and, therefore, may be a useful adjuvant or immunotherapeutic. Our results indicate that hSTING variants have evolved to distinguish conventional (3′-5′ cyclic dinucleotides, known to be produced mainly by bacteria, from the noncanonical cyclic dinucleotide produced by mammalian cGAS.

  8. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    of different fuels on syngas products was investigated at 1400 °C with steam addition. The yields of residual particulates (char and/or soot) decreased with increasing straw fraction during straw/wood co-gasification and with increasing biomass fraction (straw or wood) during biomass/coal co......, char-gas and soot-gas reactions, detailed gas-phase reactions, and mass and heat transfer. The model could reasonable predict the yields of syngas products obtained in the biomass gasification experiments. Moreover, the simulation results suggest that the soot can be completely converted and thereby......The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented...

  9. Application of gas separation to recover biohydrogen produced by Thiocapsa roseopersicina

    NARCIS (Netherlands)

    Horvath, R.; Orosz, T.; Balint, B.; Wessling, M.; Koops, G.H.; Kapantaidakis, G.C.; Belafi-Bako, K.

    2004-01-01

    Biological production of hydrogen -one of the most promising alternative energy fuels- was planned torealize in an integrated system, where hydrogen is separated by a membrane technique. In this project poly-ethersulfone-polyimide hollow fiber membrane was applied in a specially constructed gas sepa

  10. Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.

    1995-08-01

    Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

  11. Spectrum of the sound produced by a jet impinging on the gas-water interface of a supercavity

    Science.gov (United States)

    Foley, A. W.; Howe, M. S.; Brungart, T. A.

    2010-02-01

    An analysis is made of the sound generated by the impingement of an air jet on the gas-water interface of a supercavity. The water is in uniform low Mach number motion over the interface. The interface is rippled by the jet, which produces an unsteady surface force on the water that behaves as a dipole or monopole acoustic source, respectively, at high and low frequencies. In a first approximation the very large difference in the gas density and that of water implies that the surface force is similar to that occurring when a jet impinges on a rigid wall. Data from recent measurements by Foley (2009, Ph.D. Dissertation, Department of Mechanical Engineering, Boston University) of the frequency spectrum of the surface force produced by the impact of a turbulent jet on a wall are used to formulate an analytical representation of the spectrum and thence to predict the sound produced in water when the same jet impinges on the cavity interface. The prediction is used to estimate the characteristics of gas jet impingement noise for an experimental supercavitating vehicle in use at the Applied Research Laboratory of Penn State University.

  12. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  13. Are bioenergy production systems carbon neutral? An overview of the work of IEA Bioenergy Task 38 on greenhouse gas balances of biomass and bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Cowie, A.; George, B. [Univ. of New England, Armidale, NSW (Australia)

    2010-07-01

    The bioenergy industry is growing rapidly in response to concerns over climate change and high oil prices. However, there are serious concerns about the sustainability of the industry, as well as about the environmental impacts of off-site activities. The International Energy Agency's (IEA) Task 38 was established to develop a method of calculating the net greenhouse gas (GHG) mitigation benefit of bioenergy and sequestration projects. Task 38 focuses on the methods used to assess the GHG benefits of bioenergy systems when compared with fossil fuel systems. A full life cycle approach was used to assess the GHG emissions associated with the production and handling of biomass, as well as the nitrous oxide (N{sub 2}O) emissions emitted from fertilized soils, and emissions resulting from the production of fertilizer, herbicide, and the manufacture and construction of power stations. Methods for including indirect land use change where biomass production is displacing food production are also being discussed as part of the task. To date, the study has indicated that materials substitution or co-firing applications have greater mitigation benefits than other bioenergy systems.

  14. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  15. Generalized Representation of the Oil and Gas Producing Areas from the Miocene in Southern Louisiana

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — For each of the four Miocene sequences, polygons representing producing areas within fields were created by constructing a grid of ¼ sq. mi. cells and proximal...

  16. Radioactivity in produced water from Norwegian oil and gas installations - concentrations, bioavailability and doses to marine biota

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, R.; Eriksen, D. Oe.; Straalberg, E.; Iden, K. I.; Rye, H.; Hylland, K.; Ruus, A.; Roeyset, O.; Berntssen, M. H. G.

    2006-03-15

    Substantial amounts of produced water, containing elevated levels of radionuclides (mainly 226Ra and 228Ra) are discharged to the sea as a result of oil and gas production on the Norwegian Continental Shelf. So far no study has assessed the potential radiological effects on marine biota in connection with radionuclide discharges to the North Sea. The main objective of the project is to establish radiological safe discharge limits for radium, lead and polonium associated with other components in produced water from oil and gas installations on the Norwegian continental shelf. Preliminary results indicate that presence of added chemicals such as scale inhibitors in the produced water has a marked influence on the formation of radium and barium sulphates when produced water is mixed with sea water. Thus, the mobility and bio-availability of radium (and barium) may be larger than anticipated. Also, the bio-availability of radium may be increased due to presence of such chemicals, and this is presently being studied. (author) (tk)

  17. 生物质流态化炭气联产初步研究%A Preliminary Study of Biochar-gas Cogeneration from Biomass Fluidized Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    陈红健; 范晓旭; 韩中合; 张会亮

    2015-01-01

    生物质流态化炭气联产技术是在流态化反应过程中获得生物炭和燃气,其目标是在保证燃气能够稳定燃烧情况下,尽量提高生物炭的品质和产率。为此,以木屑为原料在流化床实验台上进行了生物质在流化床中的停留时间对生物炭特性和燃气特性影响的研究;并在此基础上借助 Aspen Plus 过程模拟平台进行了扩展预测模拟计算。结果显示:停留时间对生物炭特性和燃气特性有较大影响。在本实验范围内随着停留时间,增加生物炭产率降低,生物炭中固定碳含量升高,固定碳最高含量为72%时生物炭的产率为14%;燃气中 CO、H2的含量也会随停留时间的增加而升高,燃气热值最高可达到4216 kJ/( Nm3)。%Fluidized biochar-gas cogeneration from biomass is a technology to obtain biochar and gas in the fluidized re-action process .The goal of this technology is to improve the quality and yield of biochar under the premise of stable com -bustion of gas .Sawdust was used as material in this paper to research the effect of residence time on characteristics of bio -char and gas .Simulations were conducted with Aspen plus to make an extended forecasts .The results showed that resi-dence time have a significant influence on characteristics of biochar and gas .With the lengthen of residence time , yield of biochar decreased to 14%while fixed carbon content increased to 72%in this experimental range;content of CO , H2 in gas also increased with the residence time increases , the maximum calorific value of gas could reach 4216kJ/Nm3 .

  18. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico.

    Science.gov (United States)

    Holmes, Heather A; Pardyjak, Eric R

    2014-07-01

    This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor

  19. 生物质热解气部分氧化的数值模拟%Numerical Simulation of Biomass Pyrolysis Gas Reaction Under Partial Oxidation Environment

    Institute of Scientific and Technical Information of China (English)

    苏毅; 罗永浩; 陈祎; 吴文广; 陈亮; 王芸; 赵善辉

    2011-01-01

    为研究生物质热解气在部分氧化条件下的反应特性,更好地预测气相产物的反应行为,建立一个管流反应区内的热解气部分氧化反应模型.选用苯酚,甲苯,苯,萘4种物质作为焦油模型化合物,小分子气体由CO、CO2、CH4、H2、N2和O2组成.搭建一个连续性实验台用以验证模型.结果显示,模型对于小分子气体的变化趋势能够较准确地预测,但定量预测仍存在一定的误差:对于焦油总最及变化趋势方面较为准确.与实验结果相比,该模型能够定性地反映生物质热解气部分氧化条件下的反应规律.%A numerical model was built to investigate the reaction property of biomass pyrolysis gas under partial oxidation environment. Phenol, toluene, benzene and naphthalene were selected as tar model compound. It is assumed that biomass pyrolysis gas consists of CO, CO2, CH4, H2, N2, O2 and model tar compounds. A continuous test rig was built in order to verify the model. Results show that, for small molecular gases, model could accurately predict their variation tendency, but the quantity is not accurate. For tar compounds, the prediction of trends and quantity are more accurate. Therefore, the proposed model could qualitatively reflect the partial oxidation of biomass pyrolysis reaction, and its quantitative agreement is also reasonable.

  20. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    Science.gov (United States)

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  1. Produce More Oil and Gas via eBusiness Data Sharing

    Energy Technology Data Exchange (ETDEWEB)

    Paul Jehn; Mike Stettner; Ben Grunewald

    2005-07-22

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  2. Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Hiroyuki, E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Katayama, Kazunari [Department of Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-koen, Kasuga 8168580 (Japan); Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan)

    2015-10-15

    Highlights: • Tritium production by a high-temperature gas-cooled reactor was studied. • The loading method considering tritium outflow suppression was estimated. • A reactor with 600 MWt produced 400–600 g of tritium for 180 days. • A possibility that tritium outflow can be sufficiently suppressed was shown. - Abstract: Tritium production using high-temperature gas-cooled reactors and its outflow from the region loading Li compound into the helium coolant are estimated when considering the suppression of tritium outflow. A Li rod containing a cylindrical Li compound placed in an Al{sub 2}O{sub 3} cladding tube is assumed as a method for loading Li compound. A gas turbine high-temperature reactor of 300 MW electrical nominal capacity (GTHTR300) with 600 MW thermal output power is considered and modeled using the continuous-energy Monte Carlo transport code MVP-BURN, where burn-up simulations are carried out. Tritium outflow is estimated from equilibrium solution for the tritium diffusion equation in the cladding tube. A GTHTR300 can produce 400–600 g of tritium over a 180-day operation using the chosen method of loading the Li compound while minimizing tritium outflow from the cladding tube. Optimizing tritium production while suppressing tritium outflow is discussed.

  3. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro.

    Science.gov (United States)

    Timm, Derek A; Stewart, Maria L; Hospattankar, Ashok; Slavin, Joanne L

    2010-08-01

    Dietary fiber fermentation decreases luminal pH by the production of short-chain fatty acids (SCFAs). Additional proposed physiological benefits of fiber fermentation include decreased growth of pathogenic bacteria, increased mineral absorption, and serving as an energy source for the colon epithelium. This study examined three common fiber supplements--wheat dextrin (WD) (Benefiber, Novartis Consumer Health Inc., Parsippany, NJ, USA), psyllium (PS) (Metamucil, Procter & Gamble, Cincinnati, OH, USA), and inulin (Fiber Sure, Procter & Gamble)--for pH, SCFAs, and gas production. An established in vitro fermentation model was used to simulate colonic fermentation at 0, 4, 8, 12, and 24 hours. At 24 hours, WD and inulin significantly decreased pH compared to PS. Inulin produced significantly more hydrogen and total gas. All treatments produced similar total SCFA concentrations at 24 hours; however, the rate of production was different. PS had a declining rate of SCFA production from 12 to 24 hours, whereas WD and inulin had a higher rate during that period. Fast-fermenting substrates may not provide as much SCFAs to the distal colon as slow-fermenting substrates. Differences in fermentation rate, gas production, and SCFA production observed for WD, PS, and inulin may affect their gastrointestinal tolerance and require further study.

  4. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianwei; Zhang, Hailong; Zhang, Yang; Che, Zifan; Wang, Xitao, E-mail: xtwang@ustb.edu.cn

    2015-10-25

    As an attractive thermal management material, diamond particles reinforced Cu matrix (Cu/diamond) composites generally exhibit thermal conductivities lower than expected. To exploit the potential of heat conduction, a combination of Ti coating on diamond particles and gas pressure infiltration was used to prepare Cu/diamond(Ti) composites. A high thermal conductivity of 716 W/mK and a low coefficient of thermal expansion of 5.8 ppm/K at 323 K were obtained in the composites. Auger electron spectroscopy (AES) characterization shows that a TiC layer was formed between Cu matrix and diamond reinforcement, which is responsible for the enhancement of thermal conductivity. The results suggest that Ti coating can significantly promote interface bonding between Cu and diamond and gas pressure infiltration is an effective method to produce Cu/diamond composites. - Highlights: • The Cu/diamond(Ti) composites are produced by gas pressure infiltration. • A TiC layer is formed between Cu matrix and diamond reinforcement. • A thermal conductivity of 716 W/mK is obtained for the composites. • A coefficient of thermal expansion of 5.8 ppm/K at 323 K was obtained.

  5. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China

    Directory of Open Access Journals (Sweden)

    Cui Yueju

    2010-12-01

    Full Text Available Abstract The spatio-temporal variations of soil gas in the seismic fault zone produced by the 12 May 2008 Wenchuan Ms 8.0 earthquake were investigated based on the field measurements of soil gas concentrations after the main shock. Concentrations of He, H2, CO2, CH4, O2, N2, Rn, and Hg in soil gas were measured in the field at eight short profiles across the seismic rupture zone in June and December 2008 and July 2009. Soil-gas concentrations of more than 800 sampling sites were obtained. The data showed that the magnitudes of the He and H2 anomalies of three surveys declined significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H2 (40 and 279.4 ppm, respectively were found in three replicates at the south part of the rupture zone close to the epicenter. The spatio-temporal variations of CO2, Rn, and Hg concentrations differed obviously between the north and south parts of the fault zone. The maximum He and H2 concentrations in Jun 2008 occurred near the parts of the rupture zone where vertical displacements were larger. The anomalies of He, H2, CO2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activity.

  6. Challenges of Membrane Filtration for Produced Water Treatment in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Jepsen, Kasper Lund; Hansen, Leif; Mai, Christian;

    2016-01-01

    the Water Flooding Technology (WFT) is employed. The quality requirements for WFT and the increasing environmental concerns for produced water discharge lead to increased interest in zero-pollutant discharge. Traditional Produced Water Treatment (PWT) technologies(such as hydrocyclones) are already...... struggling to their fundamental limit, therefore the membrane filtration technology turns to be a potential candidate for zero pollutant discharge. Membrane filtration technology suffers from the notorious fouling problem, where many methods for fouling prevention and removal are explored, the general idea...

  7. 生物质快速热解气相成分析出规律%STUDY ON RELEASE BEHAVIOR OF GAS COMPONENTS OF BIOMASS IN FAST PYROLYSIS

    Institute of Scientific and Technical Information of China (English)

    吴少华; 栾积毅; 孙锐; 姚娜

    2009-01-01

    利用恒温沉降炉对秸秆、稻壳、木屑及一种烟煤煤粉在900、1000、1100℃ 3个温度进行了快速热解试验,对4种燃料在快速热解过程中气相成分析出的规律进行了研究.生物质成分中高的挥发分、氧、H/C决定了其快速热解会取得比煤粉高的气相产率,木屑的气相产物产量最多,秸秆次之,稻壳最低.4种燃料热解气相产物中的主要成分是CO、H_2、CO_2、CH_4,少量的G_2H_4、C_2H_6、NO、HCN、COS,生物质和煤粉在快速热解及短的停留时间内,其析出的氮前驱物为HCN.快速热解析出的气相成分产量及组分分布与燃料种类、热解温度、热解停留时间相关.几种物料共同的规律是随停留时间的延长,气相产物的量不断地增加,当气相产物的产量趋于平稳时,相应的气相产物的各组分趋于恒定,这一停留时间标志着热解过程的结束,相同温度条件下煤粉的热解速率要慢于3种生物质.%The release behavior of gas components of straw、rice husk、sawdust and bituminous coal was investigated in a drop tube deposition furnace at fast pyrolysis temperature of 900、1000、1100℃ . The volatile, oxygen and H/C of biomass components was higher than that of bituminous coal, which determins a higher gas yield in the fast pyrolysis. The gas yield of sawdust is the greatest, that of straw is the second and that of rice husk is minimum. The main components of pyrolysis gas is CO, H_2, CO_2 and CH_4, while other components, such as C_2H_4、NO、HCN、COS are relatively less. HCN is the nitrogen precursors in short residence time for fast pyrolysis. The gas yield and compsition in the fast pyrolysis are related to the fuel types, pyrolysis temperature and residence time. The common law for several fuel are as follows: when the residence time increased and the gas yield stabilized, the corresponding components of gas product tend to be constant. This time can be considered as the end of

  8. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2.

    Science.gov (United States)

    Chen, Weixian; Zhang, Shanshan; Rong, Junfeng; Li, Xiang; Chen, Hui; He, Chenliu; Wang, Qiang

    2016-02-01

    Nitrogen oxides (NOx) are the components of fossil flue gas that result in the most serious environmental concerns. We previously showed that the biological removal of NOx by microalgae appears superior to traditional treatments. This study optimizes the strategy for the microalgal-based DeNOx of flue gas by fed-batch mixotrophic cultivation. By using actual flue gas fixed salts (FGFS) as the nitrogen supply, the mixotrophical cultivation of the green alga Chlorella sp. C2 with high NOx absorption efficiency was optimized in a stepwise manner in a 5 L bioreactor and resulted in a maximum biomass productivity of 9.87 g L(-1) d(-1). The optimized strategy was further scaled up to 50 L, and a biomass productivity of 7.93 g L(-1) d(-1) was achieved, with an overall DeNOx efficiency of 96%, along with an average nitrogen CR of 0.45 g L(-1) d(-1) and lipid productivity of 1.83 g L(-1) d(-1). With an optimized mixotrophical cultivation, this study further proved the feasibility of using Chlorella for the combination of efficient biological DeNOx of flue gas and microalgae-based products production. Thus, this study shows a promising industrial strategy for flue gas biotreatment in plants with limited land area.

  9. Can Producing Oil Store Carbon? Greenhouse Gas Footprint of CO2EOR, Offshore North Sea.

    Science.gov (United States)

    Stewart, R Jamie; Haszeldine, R Stuart

    2015-05-05

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields while permanently storing large tonnages of injected CO2. Although this technology has been used successfully onshore in North America and Europe, there are currently no CO2EOR projects in the United Kingdom. Here, we examine whether offshore CO2EOR can store more CO2 than onshore projects traditionally have and whether CO2 storage can offset additional emissions produced through offshore operations and incremental oil production. Using a high-level Life Cycle system approach, we find that the largest contribution to offshore emissions is from flaring or venting of reproduced CH4 and CO2. These can already be greatly reduced by regulation. If CO2 injection is continued after oil production has been optimized, then offshore CO2EOR has the potential to be carbon negative--even when emissions from refining, transport, and combustion of produced crude oil are included. The carbon intensity of oil produced can be just 0.056-0.062 tCO2e/bbl if flaring/venting is reduced by regulation. This compares against conventional Saudi oil 0.040 tCO2e/bbl or mined shale oil >0.300 tCO2e/bbl.

  10. Gasification of blended animal manures to produce synthesis gas and activated charcoal

    Science.gov (United States)

    Blended swine solids, chicken litter, and hardwood are renewable and expensive sources to produce combined heat and power (CHP), fuels and related chemicals. The therrmochemical pathway to gasify manure has the added advantage of destroying harmful pathogens and pharmaceutically active compounds dur...

  11. Off-odor compounds produced in cork by isolated bacteria and fungi: a gas chromatography-mass spectrometry and gas chromatography-olfactometry study.

    Science.gov (United States)

    Prat, Chantal; Trias, Rosalia; Culleré, Laura; Escudero, Ana; Anticó, Enriqueta; Bañeras, Lluís

    2009-08-26

    The risk of development of specific olfactory profiles in cork was evaluated after inoculation of cork granules and agglomerated and natural cork stoppers with isolated bacteria and fungi. The highest incidence of off-odor development was found in assays when fungi were inoculated. Cork granules with musty-earthy, musty-earthy-TCA, and vegetative deviations were inspected by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). Sixteen odor zones were clearly recognized in the GC-O analyses. Among these, octanal, 2-methoxy-3,5-dimethylpyrazine (MDMP), Z-2-nonenal, 2-methylisoborneol, 2,4,6-trichloroanisole (TCA), geosmin, and guaiacol were the most significant odorants and helped in the discrimination of sensory deviations. Only TCA and guaiacol were detected above their respective detection limits by HS-SPME-GC-MS. The fungi Cryptococcus sp. isolate F020, Rhodotorula sp. isolate F025, Penicillium glabrum isolate F001, and Pennicillium variabile F003A and the bacterium Pseudomonas jessenii isolate A1 were found to produce TCA to a greater extent. Additionally, 13 of 38 isolated microorganisms (2 bacteria and 11 fungi) proved able to produce unpleasant musty-earthy or vegetative odors that were not related to a significant TCA accumulation.

  12. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  13. Dating of seals produced with stamp-pad ink using gas chromatography method.

    Science.gov (United States)

    Li, Biao

    2014-09-01

    Seals are often placed on important documents, and determining the date when a seal was affixed can be important to assess the authenticity of a document. In this study, thirty-seven different brands of stamp-pad inks and three different types of paper were used to make diachronic samples of the seals. The volatile components of stamp-pad ink were determined, and the stamp-pad ink was classified by gas chromatography with a flame ionization detector. Calibration curves were created to show the relationship between the content of volatile stamp-pad ink components and the age of stamp-pad ink entries stored under natural aging, UV-induced aging, and heating aging conditions. The experimental results showed that GC was useful in the analysis of stamp-pad ink and applicable for determining the relative age of stamp-pad ink entries in some cases where the seal was placed on the document within 3 months.

  14. NORM in the East Midlands' oil and gas producing region of the UK.

    Science.gov (United States)

    Garner, Joel; Cairns, James; Read, David

    2015-12-01

    Naturally occurring radioactive material (NORM) is a common feature in North Sea oil and gas production offshore but, to date, has been reported from only one production site onshore in the United Kingdom. The latter, Wytch Farm on the Dorset coast, revealed high activity concentrations of (210)Pb in metallic form but little evidence of radium accumulation. NORM has now been discovered at two further onshore sites in the East Midlands region of the UK. The material has been characterized in terms of its mineralogy, bulk composition and disequilibrium in the natural uranium and thorium series decay chains. In contrast to Wytch Farm, scale and sludge samples from the East Midlands were found to contain elevated levels of radium and radioactive progeny associated with crystalline strontiobarite. The highest (226)Ra and (228)Ra activity concentrations found in scale samples were 132 and 60 Bq/g, with mean values of 86 and 40 Bq/g respectively; somewhat higher than the mean for the North Sea and well above national exemption levels for landfill disposal. The two East Midlands sites exhibited similar levels of radioactivity. Scanning electron microscope imaging shows the presence of tabular, idiomorphic and acicular strontiobarite crystals with elemental mapping confirming that barium and strontium are co-located throughout the scale. Bulk compositional data show a corresponding correlation between barium-strontium concentrations and radium activity. Scales and sludge were dated using the (226)Ra/(210)Pb method giving mean ages of 2.2 and 3.7 years, respectively. The results demonstrate clearly that these NORM deposits, with significant radium activity, can form over a very short period of time. Although the production sites studied here are involved in conventional oil recovery, the findings have direct relevance should hydraulic fracturing for shale gas be pursued in the East Midlands oilfield.

  15. Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars.

    Science.gov (United States)

    Zheng, Yanhai; Cheng, Da; Simmons, Matthew

    2014-11-15

    A sand-culture experiment was conducted in four Open-Top-Chambers to assess the effects of O3 on salinity-treated winter wheat. Two winter wheat cultivars, salt-tolerant Dekang961 and salt-sensitive Lumai15, were grown under saline (100 mM NaCl) and/or O3 (80±5 nmol mol(-1)) conditions for 35 days. Significant (Pgrowth and biomass yield in the no-salinity treatment. Significant (Psalinity treatment. Soluble sugar and proline contents significantly increased in both cultivars in combined salinity and O3 exposure. O3-induced down-regulation in the gradients of A-C(i) and A-PPFD response curves were much larger in Dekang961 than in Lumai15 under saline conditions. Significant (Psalinity×cultivars and salinity×O3 stresses. The results clearly demonstrated that O3 injuries were closely correlated with plant stomatal conductance (g(s)); the salt-tolerant wheat cultivar might be damaged more severely than the salt-sensitive cultivar by O3 due to its higher g(s) in saline conditions.

  16. Biomass energy in the making; La biomasse: une energie en devenir

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    countries that produce large volumes of organic waste, including waste from the paper and agro-food industries, household refuse, and biogas from the fermentation of treatment plant sludge. At the top of the list: the United States, which generated 56 TWh of bio-power in 2005, and Brazil, which favors bagasse from sugar cane and biogas from distillery effluents. The electrical efficiency of a small biomass plant is 30% at best (35% with the best available technologies), whereas coal-fired plants achieve about 45% efficiency and combined-cycle gas-fired plants hit the 55% mark. A problem is the varying composition of straw, wood or waste fueling the boiler, calling for robust, adaptable burners, grates and fluidized beds. Either that, or the fuel has to be converted to produce standardized fuel such as wood pellets or dried sludge, which only ups the price of the fuel even more. Converting forest waste into wood chips, for example, costs 40 to 50 euros per MWh of heat, whereas unprocessed sawmill residue costs 10 to 20 euros for the same MWh. Another obstacle to developing biomass for power generation is the problem of collecting the raw materials from far and wide. In addition to solid biomass, biogas can be used to recycle liquid or wet waste that is difficult to transport. Biogas is produced by the digestion of wet biomass in an oxygen-deprived environment. Biogas contains 40% to 70% methane. The methane can then be used to fuel a gas-fired plant. This is one of the best configurations there is, since the biomass comes directly from the final waste. It's a good illustration of the 'waste to wealth' concept, which consists of recycling waste to produce energy.

  17. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  18. Evaluation of the conversion efficiency of the 180Nm3/h Johansson Biomass Gasifier™

    Directory of Open Access Journals (Sweden)

    Ntshengedzeni S. Mamphweli, Edson L. Meyer

    2010-01-01

    Full Text Available Biomass gasification is the thermochemical conversion of biomass materials into a producer gas, which is a mixture of carbon monoxide, carbon dioxide, methane, hydrogen, nitrogen and water vapour. The 180Nm3/h System Johansson Biomass Gasifier (SJBG at Eskom research and Innovation Centre is used for research and development initiatives, and also for demonstration purposes. The aim of this research was to investigate the efficiency of the gasifier and. This is done through an analysis of the gas profiles at the gasifier using a custom-built gas and temperature measurement system. Non-Dispersive Infrared gas detection technique is applied to monitor the volume and quality of producer gas. Palladium/Nickel gas sensing is applied to monitor the hydrogen content in the gas stream. Temperature in the gasifier is monitored through the use of type K thermocouples. The gas and temperature sensors are connected to the data logger interfaced to a computer. The heating value of the producer gas was determined from the percentage composition of the combustible gases. Evaluation of the efficiency of this gasifier was done before the installation of a 300Nm3/h at a rural village. The gasifier achieved an efficiency of 75% with an average gas heating value of 6MJ/Nm3.

  19. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  20. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    concentration, larger feeder gas flow, and longer residence time. Wood, straw, and lignin had similar gasification behavior except with regard to soot formation. The soot yield was lowest during straw gasification possibly because of its high potassium content. The equilibrium product compositions under...... from straw gasification had quite low content of soot while high contents of volatilizable KCl and K2SO4, and thereby appeared as irregular crystals (> 100 nm). During lignin gasification, the filter sample mainly consisted of soot and nonvolatilizable inorganic matter. The parent wood particles...... the wood soot with respect to both oxidation and CO2 gasification. Besides, the wood soot produced at higher temperature was more reactive than the soot produced at lower temperature. Biomass and coal co-gasification experiments were performed in the same entrained flow reactor. The effect of mixing ratio...

  1. Potential of Greenhouse Gas Reduction Producing and Using Biodiesel from Fatty Waste

    Directory of Open Access Journals (Sweden)

    Kristina MONTRIMAITĖ

    2011-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Resolution of climate change, economy and energy decentralization problems is related to development of biofuel use and production. An increase in biofuel use and production is to ensure the reduction in greenhouse gas emissions. Following a life cycle method comparative analysis of rape methyl ester and diesel before their use in diesel engines has indicated that in production of rape methyl ester the growing of rape seeds consumes 56% of energy whose expenditure is directly dependent on rape productivity. In order to decrease energy expenditures the use of fatty waste is expedient. It is determined that production of biodiesel from frying fats yields 1.37 MJ and 98.15 g CO2eq. economy for one MJ of product compared to diesel. Potential of used fats methyl ester greenhouse gas reduction in the life cycle reaches 0.87 and is 27% greater that that of rape methyl ester. Used fats methyl ester meets balance criteria therefore in our country the waste collection system from food industry and catering enterprises is to be established.

  2. Environmental assessment of biomass based materials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel

    non-standard impacts from land use and land use change (LULUC) Some of the impacts associated with LULUC for biomass production, which are often not addressed in LCAs have been addressed through a theoretic case study in this PhD project. These impacts are changes in surface albedo, biogenic carbon...... with temporary carbon storage in biomaterials, in a way that quantifies the potential climate change benefit in relation to avoiding crossing near-term climatic targets. The geographical scope in this PhD project is global, as the focus is on methodology development and assessment of biomaterials at a global...... materials. Background The society today is highly dependent on fossil oil and gas for producing fuels, chemicals and materials, however many of those can alternatively be produced from biomass. The potential of biomaterials to substitute fossil based materials receives increased attention, and their global...

  3. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed

  4. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    , enzymatic hydrolysis, and product fermentation options. Biomass Recalcitrance is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology. This book examines the connection between biomass...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  5. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology.

    Science.gov (United States)

    Fernández, A; Noriega, E; Thompson, A

    2013-02-01

    Cold atmospheric gas plasma treatment (CAP) is an alternative approach for the decontamination of fresh and minimally processed food. In this study, the effects of growth phase, growth temperature and chemical treatment regime on the inactivation of Salmonella enterica serovar Typhimurium (S. Typhimurium) by Nitrogen CAP were examined. Furthermore, the efficacy of CAP treatment for decontaminating lettuce and strawberry surfaces and potato tissue inoculated with S. Typhimurium was evaluated. It was found that the rate of inactivation of S. Typhimurium was independent of the growth phase, growth temperature and chemical treatment regime. Under optimal conditions, a 2 min treatment resulted in a 2.71 log-reduction of S. Typhimurium viability on membrane filters whereas a 15 min treatment was necessary to achieve 2.72, 1.76 and 0.94 log-reductions of viability on lettuce, strawberry and potato, respectively. We suggest that the differing efficiency of CAP treatment on the inactivation of S. Typhimurium on these different types of fresh foods is a consequence of their surface features. Scanning electron microscopy of the surface structures of contaminated samples of lettuce, strawberry and potato revealed topographical features whereby S. Typhimurium cells could be protected from the active species generated by plasma.

  6. Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface.

    Science.gov (United States)

    Matsuoka, Ryota; Sakamoto, Ryota; Hoshiko, Ken; Sasaki, Sono; Masunaga, Hiroyasu; Nagashio, Kosuke; Nishihara, Hiroshi

    2017-02-15

    Synthetic two-dimensional polymers, or bottom-up nanosheets, are ultrathin polymeric frameworks with in-plane periodicity. They can be synthesized in a direct, bottom-up fashion using atomic, ionic, or molecular components. However, few are based on carbon-carbon bond formation, which means that there is a potential new field of investigation into these fundamentally important chemical bonds. Here, we describe the bottom-up synthesis of all-carbon, π-conjugated graphdiyne nanosheets. A liquid/liquid interfacial protocol involves layering a dichloromethane solution of hexaethynylbenzene on an aqueous layer containing a copper catalyst at room temperature. A multilayer graphdiyne (thickness, 24 nm; domain size, >25 μm) emerges through a successive alkyne-alkyne homocoupling reaction at the interface. A gas/liquid interfacial synthesis is more successful. Sprinkling a very small amount of hexaethynylbenzene in a mixture of dichloromethane and toluene onto the surface of the aqueous phase at room temperature generated single-crystalline graphdiyne nanosheets, which feature regular hexagonal domains, a lower degree of oxygenation, and uniform thickness (3.0 nm) and lateral size (1.5 μm).

  7. Diagnostics of Fast Axial Ions Produced in Deuterium Gas-Puff Z-Pinch

    Science.gov (United States)

    Rezac, K.; Klir, D.; Cikhardt, J.; Kubes, P.; Sila, O.; Kravarik, J.; Shishlov, A. V.; Labetsky, A. Yu.; Cherdizov, R. K.; Ratakhin, N. A.; Orcikova, H.; Turek, K.; Dudkin, N.; Padalko, V. N.; GIT-12 Team

    2016-10-01

    An unexpected advantage of some Z-pinch configurations is a possibility of an acceleration of ions to high energies. One of these configurations is a deuterium gas-puff with outer plasma shell, where hydrogen ions with energies up to 40 MeV has been observed during Z-pinch experiments on the GIT-12 generator since 2013. During the recent campaign in 2016, the source of high energetic ions and also parameters of ion pulses have been studied by various in-chamber diagnostics in 24 experimental shots on the current level below 3 MA. Principal aims were (i) to find a spatial distribution of ion sources, (ii) localization of ion sources on the z-axis and (iii) determine the ion energy spectra by an unfold technique. All of these has been done with the help of a new diagnostic setup consists of an ion pinhole camera, an ion 3-pinhole camera, a multi-pinhole camera and a detector of spatial ion beam profile. The ion diagnostics contained stacks with various absorbers, CR-39 track detectors, HD-V2 and EBT-3 radio-chromic films. One more aim, (iv) the study of a difference in production time of axial ion pulses with off-axis pulses, were accomplished by LiF samples and nTOF signals. This work was supported by the projects GACR 16-07036S, MSMT LD14089, CTU. SGS16/223/OHK3/3T/13, IAEA RC17088.

  8. Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil.

    Science.gov (United States)

    Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hashim, Mohd Ali; Sen Gupta, Bhaskar

    2015-01-01

    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.

  9. Structure and properties of the radiation-induced intermediates produced from HCN in noble gas matrices

    Science.gov (United States)

    Kameneva, Svetlana V.; Tyurin, Daniil A.; Feldman, Vladimir I.

    2016-07-01

    In this work we report the results of systematic studies on the radiation-induced transformations in HCN/Ng systems (Ng=Ne, Ar, Kr or Xe) at 7 K using a combination of FTIR and EPR spectroscopy. It was shown that HCN underwent efficient decomposition producing H atoms, CN radicals and HNC isomer. The thermally induced reactions of H atoms in different matrices result in the formation of two isomeric radicals, H2CN and trans-HCNH, the former being predominated. The temperature dependent dynamics of CN and H2CN radicals in a krypton matrix was observed by EPR spectroscopy in solid krypton. The vibrational frequencies, IR intensities and magnetic resonance parameters of H2CN and trans-HCNH radicals calculated at the CCSD(T) level are in reasonable agreement with the experimental results. It was found that HCNH radical could be effectively bleached with visible light. The comparison of experimental and computational data made it possible to assign a new vibrational band at 918 cm-1 in an Ar matrix (and the corresponding bands in Kr and Xe) to trans-HCNH radical. In addition, HKrCN was found in the case of krypton, whereas HXeCN and HXeNC were produced in solid xenon. The reaction mechanisms and contribution of different channels are discussed.

  10. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  11. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58...

  12. A self-consistent model for the evolution of the gas produced in the debris disc of $\\beta$ Pictoris

    CERN Document Server

    Kral, Quentin; Carswell, Robert; Pringle, Jim; Matra, Luca; Juhasz, Attila

    2016-01-01

    This paper presents a self-consistent model for the evolution of gas produced in the debris disc of $\\beta$ Pictoris. Our model proposes that atomic carbon and oxygen are created from the photodissociation of CO, which is itself released from volatile-rich bodies in the debris disc due to grain-grain collisions or photodesorption. While the CO lasts less than one orbit, the atomic gas evolves by viscous spreading resulting in an accretion disc inside the parent belt and a decretion disc outside. The temperature, ionisation fraction and population levels of carbon and oxygen are followed with the photodissociation region model Cloudy, which is coupled to a dynamical viscous $\\alpha$ model. We present new gas observations of $\\beta$ Pic, of C I observed with APEX and O I observed with Herschel, and show that these along with published C II and CO observations can all be explained with this new model. Our model requires a viscosity $\\alpha$ > 0.1, similar to that found in sufficiently ionised discs of other astr...

  13. A self-consistent model for the evolution of the gas produced in the debris disc of β Pictoris

    Science.gov (United States)

    Kral, Q.; Wyatt, M.; Carswell, R. F.; Pringle, J. E.; Matrà, L.; Juhász, A.

    2016-09-01

    This paper presents a self-consistent model for the evolution of gas produced in the debris disc of β Pictoris. Our model proposes that atomic carbon and oxygen are created from the photodissociation of CO, which is itself released from volatile-rich bodies in the debris disc due to grain-grain collisions or photodesorption. While the CO lasts less than one orbit, the atomic gas evolves by viscous spreading resulting in an accretion disc inside the parent belt and a decretion disc outside. The temperature, ionization fraction and population levels of carbon and oxygen are followed with the photodissociation region model CLOUDY, which is coupled to a dynamical viscous α model. We present new gas observations of β Pic, of C I observed with Atacama Pathfinder EXperiment and O I observed with Herschel, and show that these along with published C II and CO observations can all be explained with this new model. Our model requires a viscosity α > 0.1, similar to that found in sufficiently ionized discs of other astronomical objects; we propose that the magnetorotational instability is at play in this highly ionized and dilute medium. This new model can be tested from its predictions for high-resolution ALMA observations of C I. We also constrain the water content of the planetesimals in β Pic. The scenario proposed here might be at play in all debris discs and this model could be used more generally on all discs with C, O or CO detections.

  14. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    Science.gov (United States)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fire