WorldWideScience

Sample records for biomass power program

  1. Northeast Regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  2. Northeast Regional Biomass Program

    International Nuclear Information System (INIS)

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ''Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory

  3. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  4. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  5. Biomass Supply Planning for Combined Heat and Power Plants using Stochastic Programming

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    method using stochastic optimization to support the biomass supply planning for combined heat and power plants. Our two-phase approach combines mid-term decisions about biomass supply contracts with the short-term decisions regarding the optimal market participation of the producer to ensure......During the last years, the consumption of biomass to produce power and heat has increased due to the new carbon neutral policies. Nowadays, many district heating systems operate their combined heat and power (CHP) plants using different types of biomass instead of fossil fuel, especially to produce......, and heat demand and electricity prices vary drastically during the planning period. Furthermore, the optimal operation of combined heat and power plants has to consider the existing synergies between the power and heating systems while always fulfilling the heat demand of the system. We propose a solution...

  6. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  7. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  8. Northeast Regional Biomass Program. Final progress report, July--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    O`Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ``Characterization of Emissions from Burning Woodwaste``. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  9. Tactical supply chain planning for a forest biomass power plant under supply uncertainty

    International Nuclear Information System (INIS)

    Shabani, Nazanin; Sowlati, Taraneh; Ouhimmou, Mustapha; Rönnqvist, Mikael

    2014-01-01

    Uncertainty in biomass supply is a critical issue that needs to be considered in the production planning of bioenergy plants. Incorporating uncertainty in supply chain planning models provides improved and stable solutions. In this paper, we first reformulate a previously developed non-linear programming model for optimization of a forest biomass power plant supply chain into a linear programming model. The developed model is a multi-period tactical-level production planning problem and considers the supply and storage of forest biomass as well as the production of electricity. It has a one-year planning horizon with monthly time steps. Next, in order to incorporate uncertainty in monthly available biomass into the planning, we develop a two-stage stochastic programming model. Finally, to balance the risk and profit, we propose a bi-objective model. The results show that uncertainty in availability of biomass has an additional cost of $0.4 million for the power plant. Using the proposed stochastic optimization model could reduce this cost by half. - Highlights: • Developed a two-stage stochastic optimization model to consider supply uncertainty. • Maximized the profit of a forest biomass power plant value chain. • Minimized two risk measures, variability index and downside risk, to manage risks. • Stochastic optimization model provided feasible solution for all scenarios. • Results showed a trade-off between profit and risk management

  10. Power from biomass: the power utility perspective

    International Nuclear Information System (INIS)

    Serafimova, K.; Angele, H.-C.

    2008-01-01

    This article takes a look at possible strategies that electricity utilities in Switzerland could follow in order to be able to make use of biomass as a source of energy. Increasing interest in damp biomass as a relatively cheap, renewable and climate-friendly source of energy is commented on. Strategic choices that energy utilities have to make when they decide to enter into the biomass market are examined. The potentials involved are examined, including biogenic materials from domestic wastes and from agriculture. Figures on potential waste tonnage are quoted. Questions on subsidies and the free market are examined. The setting up of 'virtual power stations' - networks of installations using photovoltaic, wind and biomass - is discussed, as are various strategies that utilities can follow in this area. Examples of such 'virtual power stations' are listed.

  11. Economics of power generation from imported biomass

    International Nuclear Information System (INIS)

    Lako, P.; Van Rooijen, S.N.M.

    1998-02-01

    Attention is paid to the economics of import of biomass to the Netherlands, and subsequent utilisation for power generation, as a means to reduce dependence on (imported) fossil fuels and to reduce CO2 emission. Import of wood to the extent of 40 PJ or more from Baltic and South American states seems to be readily achievable. Import of biomass has various advantages, not only for the European Union (reduced CO2 emissions) but also for the countries of origin (employment creation). However, possible disadvantages or risks should be taken into account. With that in mind, import of biomass from Baltic states seems very interesting, although it should be noted that in some of those countries the alternative of fuel-switching to biomass seems to be more cost-effective than import of biomass from those countries. Given the expected increase in inland biomass consumption in the Baltic countries and the potential substantial future demand for biomass in other Western European countries it is expected that the biomass supply from Baltic countries will not be sufficient to fulfill the demand. An early focus on import from other countries seems advisable. Several power generation options are available with short to medium term potential and long term potential. The margin between costs of biomass-fuelled power and of coal fired power will be smaller, due to substantial improvements in power generating efficiency and reductions of investment costs of options for power generation from biomass, notably Biomass Gasification Combined Cycle. 18 refs

  12. Independent System Operators and Biomass Power

    International Nuclear Information System (INIS)

    Porter, Kevin L.

    1999-01-01

    Since the Federal Energy Regulatory Commission issued its landmark open access transmission rule in 1996, the idea of creating and establishing independent system operators (ISOs) has gained momentum. ISOs may help combine individual utility transmission systems into more regional transmission networks, which ultimately will allow biomass companies to transmit power over longer distances while paying a single transmission rate. To the extent that ISOs are combined or operated with power exchanges, however, biomass companies will likely face even more competitive market pressures. Few operators have experience with ISOs and power exchanges, but preliminary results show that short-term electricity market prices are probably too low for most biomass companies to compete against. Without policy measures, biomass companies may have to pursue strategic opportunities with short-term, spot-market sales; direct bilateral sales to customers; alternative power exchanges; and perhaps a ''green'' power market and sales to ancillary service markets. In addition, prices will likely be more volatile in a restructured market so biomass generators should be selling during those times

  13. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  14. Biomass Supply and Trade Opportunities of Preprocessed Biomass for Power Generation

    NARCIS (Netherlands)

    Batidzirai, B.; Junginger, M.; Klemm, M.; Schipfer, F.; Thrän, D.

    2016-01-01

    International trade of solid biomass is expected to increase significantly given the global distribution of biomass resources and anticipated expansion of bioenergy deployment in key global power markets. Given the unique characteristics of biomass, its long-distance trade requires optimized

  15. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  16. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  17. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  18. The development situation of biomass gasification power generation in China

    International Nuclear Information System (INIS)

    Zhou, Zhaoqiu; Yin, Xiuli; Xu, Jie; Ma, Longlong

    2012-01-01

    This work presents the development situation of biomass gasification power generation technology in China and analyzes the difficulty and challenge in the development process. For China, a large agricultural country with abundant biomass resources, the utilization of biomass gasification power generation technology is of special importance, because it can contribute to the electricity structure diversification under the present coal-dominant electricity structure, ameliorate the environmental impact, provide energy to electricity-scarce regions and solve the problems facing agriculture. Up to now, China has developed biomass gasification power generation plants of different types and scales, including simple gas engine-based power generation systems with capacity from several kW to 3 MW and integrated gasification combined cycle systems with capacity of more than 5 MW. In recent years, due to the rising cost of biomass material, transportation, manpower, etc., the final cost of biomass power generation has increased greatly, resulting in a serious challenge in the Chinese electricity market even under present preferential policy for biomass power price. However, biomass gasification power generation technology is generally in accord with the characteristics of biomass resources in China, has relatively good adaptability and viability, and so has good prospect in China in the future. - Highlights: ► Biomass gasification power generation of 2 kW–2 MW has wide utilization in China. ► 5.5 MW biomass IGCC demonstration plant has maximum power efficiency of up to 30%. ► Biomass power generation is facing a serious challenge due to biomass cost increase.

  19. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  20. Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant

    Directory of Open Access Journals (Sweden)

    Anas Zyadin

    2015-04-01

    Full Text Available The main objectives of this socio-technical study are to investigate the Indian farmers’ biomass production capacities and their perceptions and willingness to supply their surplus biomass to fuel an envisioned biomass-based power plant in three selected Indian states: Maharashtra, Madhya Pradesh and Tamil Nadu. For doing so, 471 farmers (about one-third from each state have been interviewed in the field with info-sheet filled in by the field investigators. The farmers from all of the states appeared very much willing to sell their surplus biomass directly to a power plant. The farmers seem to depreciate the involvement of a middleman in the biomass procurement process. The farmers, however, appeared to highly appreciate a community-based association to regulate the biomass prices, with varying perceptions regarding government intervention. The majority of the farmers perceived the establishment of a biomass-based power plant in their region with positive economic outcomes. The farmers identified several barriers to supply biomass to a power plant where transportation logistics appeared to be the main barrier. The study recommends considering biomass collection, storage and transportation logistics as a fundamental segment of any envisioned investment in a biomass-based power plant. Biomass processing, such as pelletization or briquetting is recommended for efficient transportation of biomass at longer distances to reduce the transportation costs. The study further encourages the establishment of a farmers’ association aimed at collecting and selling biomass in agriculture areas predominant for small land holdings.

  1. Lessons learned from existing biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  2. Biomass Program 2007 Accomplishments - Full Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  3. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  4. Biomass power: Exploring the diffusion challenges in Spain

    NARCIS (Netherlands)

    Dinica, V.

    2009-01-01

    The use of biomass resources for power generation offers numerous benefits of interest for political decision-makers: fuel security, rural and industrial development, ecological benefits. In Spain, policy instruments have been used since 1980 to stimulate biomass power generation. However, the

  5. Biomass Program 2007 Accomplishments - Report Introduction

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides the introduction to the 2007 Program Accomplishments Report.

  6. Biomass utilization at Northern States Power Company

    International Nuclear Information System (INIS)

    Ellis, R.P.

    1994-01-01

    Northern States Power Company (open-quotes NSPclose quotes) generates, transmits and distributes electricity and distributes natural gas to customers in Minnesota, Wisconsin, North Dakota, South Dakota and Michigan. An important and growing component of the fuel needed to generate steam for electrical production is biomass. This paper describes NSP's historical use of biomass, current biomass resources and an overview of how NSP plans to expand its use of biomass in the future

  7. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Science.gov (United States)

    2011-12-15

    ... Service Oglethorpe Power Corporation; Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA... related to possible financial assistance to Oglethorpe Power Corporation's (Oglethorpe) for the... online at the following Web site: http://www.rurdev.usda.gov/UWP-OglethorpePower.html and at the: Warren...

  8. Biomass power. Exploring the diffusion challenges in Spain

    International Nuclear Information System (INIS)

    Dinica, Valentina

    2009-01-01

    The use of biomass resources for power generation offers numerous benefits of interest for political decision-makers: fuel security, rural and industrial development, ecological benefits. In Spain, policy instruments have been used since 1980 to stimulate biomass power generation. However, the diffusion outcome by 2007 was very disappointing: only 525 MW. This paper argues that two factors lie at the core of this: the conceptualization of biomass resources by political decision-makers in the instruments used, and the desire that policy instruments be in line with market liberalization principles. These generated a persistent economic obstacle for biomass power generation, and impeded the development of markets for the supply of biomass resources. The policy learning regarding the heterogeneity of biomass resources, and the investors' expectations on risks, profitability and resource markets was very slow among political decision-makers. The paper contributes to the understanding of diffusion outcomes by proposing to analyse diffusion by means of five indicators: types of resources, technologies, developers, motivations to invest and project sizes. Besides, the paper shows the usefulness of investigating policy instruments in terms of their risk and profitability characteristics. This enables a better understanding of the diffusion patterns and outcomes. (author)

  9. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft... financial assistance to Oglethorpe Power Corporation (Oglethorpe) for the construction of a 100 megawatt (MW...

  10. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  11. Biomass Power Generation Industry Efficiency Evaluation in China

    Directory of Open Access Journals (Sweden)

    Qingyou Yan

    2014-12-01

    Full Text Available In this paper, we compare the properties of the traditional additive-based data envelopment analysis (hereafter, referred to as DEA models and propose two generalized DEA models, i.e., the big M additive-based DEA (hereafter, referred to as BMA model and the big M additive-based super-efficiency DEA (hereafter, referred to as BMAS model, to evaluate the performance of the biomass power plants in China in 2012. The virtues of the new models are two-fold: one is that they inherited the properties of the traditional additive-based DEA models and derived more new additive-based DEA forms; the other is that they can rank the efficient decision making units (hereafter, referred to as DMUs. Therefore, the new models have great potential to be applied in sustainable energy project evaluation. Then, we applied the two new DEA models to evaluate the performance of the biomass power plants in China and find that the efficiency of biomass power plants in the northern part of China is higher than that in the southern part of China. The only three efficient biomass power plants are all in the northern part of China. Furthermore, based on the results of the Wilcoxon-Mann-Whitney rank-sum test and the Kolmogorov-Smirnov test, there is a great technology gap between the biomass power plants in the northern part of China and those in the southern part of China.

  12. SERI Biomass Program. FY 1983 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.; McIntosh, R.P.

    1984-02-01

    This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1983. The SERI Biomass Program consists of three elements: Aquatic Species, Anaerobic Digestion, and Photo/Biological Hydrogen. Each element has been indexed separately. 2 references, 44 figures, 22 tables.

  13. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  14. Opportunities for Small Biomass Power Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  15. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  16. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  17. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  18. Status of Biomass Power Generation in California, July 31, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2003-12-01

    This report describes the development of the biomass power industry in California over the past quarter century, and examines its future outlook. The development of a state biomass policy, which has been under discussion in California for the better part of the past decade, has never gotten off the ground, but a number of smaller initiatives have helped to keep the biomass power industry afloat and have promoted the use of some targeted types of residues. In this report we analyze the prospects for policy development and the application of new biomass technologies in California.

  19. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  20. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  1. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  2. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  3. Biomass Thermochemical Conversion Program. 1984 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  4. 75 FR 6263 - Biomass Crop Assistance Program

    Science.gov (United States)

    2010-02-08

    ... guidelines followed for any harvesting, collecting, storing or transporting of such material from such... for the purposes of transport and delivery to eligible biomass conversion facilities. As specified in... or proposes to convert renewable biomass into heat, power, biobased products, advanced biodiesel, or...

  5. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site ₋ Biomass Power Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  6. Appendix B - GPRA06 biomass program documentation

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    This appendix discusses the assumptions and methods employed in the biomass benefits analysis that is part of the fiscal year 2006 GPRA benefits analysis for all of the Department of Energy’s Energy Efficiency and Renewable Energy (EERE) research and deployment programs. The biomass benefits analysis focuses on the benefits of future achievements by the program and excludes retrospective benefits and benefits resulting from industry’s own initiative and funding.

  7. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lopez, P. Reche; Reyes, N. Ruiz; Gonzalez, M. Gomez; Jurado, F.

    2008-01-01

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  8. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  9. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  10. SERI biomass program annual technical report: 1982

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.W.; Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  11. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  12. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...

  13. Biomass as a fuel and a profitable investment: the Euro-ASEAN COGEN program

    International Nuclear Information System (INIS)

    Menu, J.-F.; Schenkel, Y.; Guillaume, M.

    1997-01-01

    The COGEN Program (''Cogen'') is an economic cooperation program between the European Commission and ASEAN (Association of Southeast Asian Nations). A pioneering initiative in the field of biomass energy. Cogen is coordinated by and from AIT (Asian Institute of Technology, Bangkok, Thailand). Its main objective is to accelerate the implementation of proven technologies generating heat and/or power from wood and agro-residues through partnerships between European and ASEAN companies. ASEAN now offers the biggest potential for energy solutions, including waste-based fuels. Within Cogen, a number of demonstration projects have been implemented in different ASEAN industries. These projects have generated over 100 million US dollars in direct investment and represent showcases of proven technology in biomass energy equipment around the region. Some biomass energy projects have been highly profitable. The success of Cogen can also be explained by an emphasis on market intelligence, i.e., information sources, channels and business opportunities rarely achieved in public-private initiatives. (author)

  14. Present situation, problems and solutions of China's biomass power generation industry

    International Nuclear Information System (INIS)

    Liu, Jicheng; Wang, Sijia; Wei, Qiushuang; Yan, Suli

    2014-01-01

    With the reduction of global oil reserves, developing renewable energy has become an important issue for each country. Biomass power is an important kind of clean energy, as it has abundant resource and is environmental friendly. In the past few years, China biomass power industry has developed rapidly accompanied with some problems. This paper analyzes the current situation of China biomass power generation from several aspects such as power structure, resource distribution, investment strength, and policy environment, etc. We focus on the problems existed in practical operation and analyze the outstanding problems. At last, this paper offers several suggestions for future development on the relevant fields, such as cost, strategic planning and policy. - Highlights: • Review and analyze the internal and external environment of biomass power in China. • Summarize and classify policies of China biomass power according to time sequence. • Describe the distribution of biomass resources in China accurately on the map. • Use data to draw a picture for grasping current situation. • Provide valuable suggestions for practitioners to improve their business strategies

  15. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  16. Biomass as a fuel: Advantages, limitations and possibilities

    International Nuclear Information System (INIS)

    McBurney, B.

    1997-01-01

    This presentation briefly outlines major issues related to the use of biomass fuels. Advantages and disadvantages of biomass fuels are identified, as well as major factors that may facilitate greater use of biomass fuels. Highlights of the US DOE Biomass Power Program, program activities, and demonstration projects are presented. Some statistical and economic data are provided, including biomass fueled electric capacity, biomass energy consumption by sector, and fuel cost savings and greenhouse gas emissions reductions for four biomass co-fired units

  17. Biomass power as a strategic business investment

    International Nuclear Information System (INIS)

    Turnbull, J.H.

    1996-01-01

    During 1994 and 1995 the Electric Power Research Institute collaborated with the US Department of Energy's National Renewable Energy Laboratory in support of seven feasibility studies of integrated biomass systems. The goal of the studies was to assess the economic viability and environmental implications of each system. The products were comprehensive business plans for implementation of the proposed systems. One general conclusion from these studies is that the feasibility of any biomass power system is determined by the costs and unique characteristics intrinsic to the specific system. Because of the limited need for new electric capacity in most of the US, and the relatively low capital investment required for implementation, cofiring currently holds more appeal than any of the more advanced conversion options. Cofiring savings accrue from offsets of coal, along with SO x allowances and any available NO x or carbon credits. The closed loop tax credit authorized by the Energy Policy Act of 1992 serves to make energy crops more nearly cost-competitive with coal and natural gas. Biomass gasification combined-cycle units give promise of economic viability after the turn of the century, and as energy crops become more cost-competitive with waste feedstocks, agricultural constituencies will become more integrally involved in the establishment of biomass energy systems. At present, corollary benefits are critical if a system is to be economically feasible. A valid no-regrets policy for global climate-change mitigation that includes near-term investments in biomass technologies should result in large payoffs over the next several decades

  18. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  19. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  20. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  1. Energy from biomass and wastes 15

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    This proceedings is contains 63 papers on the utilization of biomass as an energy source and as a source for materials. The specific topics discussed include: environmental issues, biomass production, biomass pretreatment and processing, chemicals and other products from biomass, fuel ethanol, thermal liquefaction, thermal gasification, combustion and power generation, and national programs. Individual papers are indexed separately

  2. Biomass energy research program 2008 - 2011; Energieforschungsprogramm Biomasse fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Hermle, S.; Binggeli, D.; Guggisberg, B.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on energy from biomass for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper describes the concept for the biomass area. Research into modern technological concepts and ways of transforming biomass into energy are discussed and main areas of research to be addressed are discussed. Three main technological areas are defined: combustion, gasification and anaerobic fermentation. Important themes to be examined include system optimisation and integration, quality assurance and the promotion of new technologies. National and international networking between research and practice is commented on, as are the possibilities for the funding of the work.

  3. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  4. Process evaluation of the Regional Biomass Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  5. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  6. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  7. Hybridization of concentrated solar power with biomass gasification in Brazil’s semiarid region

    International Nuclear Information System (INIS)

    Milani, Rodrigo; Szklo, Alexandre; Hoffmann, Bettina Susanne

    2017-01-01

    Highlights: • Assessment of three hybridization concepts between CSP and biomass gasification. • Modelling of a benchmark power plant for each of the hybridization concepts. • The method relies on using Aspentech Hysys and SAM for thermodynamic analysis. • Technical and economic performance of the three benchmark power plants as result. - Abstract: This study aims to propose and analyze different options for hybridizing Concentrated Solar Power (CSP) with biomass, through gasification for power generation. A hybrid CSP-biomass power plant through gasification is an innovative concept which allows the integration of combined cycle for power generation, sun-biomass hybridization and syngas storage. Therefore, this study addressed the proposition of the hybridization concept and the simulation of benchmark power plants for a suitable Brazilian site (high direct normal irradiation and low-cost biomass availability). Three power plant concepts are proposed and simulated in Aspentech Hysys and System Advisor Model (SAM): (i) Series design; (ii) Parallel design, and (iii) Steam Extraction design. For the same gasifier, the Series design holds the highest levelized cost, while the Parallel design presents the highest installed capacity, but the lowest capacity factor. Finally, the Steam Extraction design is placed between the other two proposed plants regarding the capacity factor and the annual energy generation.

  8. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1993-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels can not compete effectively in the current market without tax credits, subsidies, and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions that favor and create market pull for biomass and waste fuel energy. Using the interim results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires, and tire-derived fuel, scrap tires, and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, and wood gasification/combined cycle power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. In order to increase future use of biomass and waste fuels, a joint initiative, involving government, industry, and fuel suppliers, transporters, and users, is needed to develop low-cost and efficient energy crop production and power technology

  9. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy......, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates....

  11. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  12. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  13. Back to nature: Power from biomass; Zurueck zur Natur: Energie aus Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Beerbaum, S. [Hohenheim Univ. (Germany). Inst. fuer Agrarpolitik und landwirtschaftliche Marktlehre; Kappelmann, K.H. [Fachhochschule Nuertingen (Germany); Haerdtlein, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung; Kaltschmitt, M. [Technische Univ. Muenchen-Weihenstephan (Germany); Ising, M. [Fraunhofer Inst. fuer Umwelt-, Sicherheits-, und Energietechnik, Oberhausen (Germany); Meier, D.; Faix, O. [Institut fuer Holzchemie und chemische Technologie des Holzes, Hamburg (Germany); Gerdes, C. [Hamburg Univ. (Germany). Inst. fuer Makromolekulare und Technische Chemie

    2000-05-01

    Excepting nuclear power, there are just two strategies to reduce global warming, i.e. either by saving energy or by using renewables, supported by public funding and guaranteed rates. The options of solar, wind, and hydroelectric power are limited in our climate and their potential is nearly completely exploited in some regions already. Biomass is an interesting option. Its introduction should be speeded up as it takes about 50 - 60 years for a new technology to be fully accepted. [German] Soll der Treibhauseffekt eingedaemmt werden, ohne in grossem Umfang auf Kernenergie zurueckzugreifen, bleiben nur zwei Moeglichkeiten: Energiesparen und verstaerkter Einsatz regenerativer Energiequellen. Finanzielle Foerderung aus oeffentlichen Mitteln und Garantiepreise bei der Stromerzeugung sollen den Weg gangbar machen. Sonne, Wind und Wasser eignen sich leider hierzulande nur begrenzt, teilweise ist ihr Potenzial schon weitgehend ausgeschoepft. Eine wichtige Ergaenzung des Angebots duerfte deshalb die Biomasse sein. Letztlich ist sie eine Speicherform von Sonnenenergie: Durch Photosynthese erzeugen Pflanzen aus Kohlendioxid und Wasser ihre eigenen Energietraeger, die Kohlenhydrate. Weil beim Verbrennen nur das aufgenommene Kohlendioxid wieder frei wird, zeigt die energetische Nutzung von Biomasse eine weitgehend ausgeglichene Klimabilanz. Doch Eile ist geboten. Die Nutzung von Kohle und Erdoel benoetigte 50 bis 60 Jahre, um sich zu etablieren; Experten halten das fuer einen typischen Zeitraum (den auch die Kernenergie noch nicht durchschritten hat). Sich erneuernde Energiequellen stehen noch am Anfang dieser Einfuehrungsphase. (orig.)

  14. Marine biomass power plant using methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Saito, H.; Amano, T.; Sugawara, H.; Seki, T.; Abe, T. [Technology Research Inst., Tokyo Gas Co. Ltd., Tokyo (Japan)

    2004-07-01

    This study presented an effective way to produce biogas from the large quantities of seaweed waste in Japan. A large-scale marine biomass pilot plant was built to produce biogas from marine biomass. Methane fermentation was the process used to produce biogas from Laminaria sp. The maximum treating capacity of the pilot plant is 1 ton of seaweed per day. The pilot plant includes a pretreatment facility, fermentation, biogas storage and power generation. The maximum methane yield from the biomass plant is 22 cubic ton-seaweed. The purified biogas has generated 10 kW of electricity and 23 kW of heat. The biogas was also mixed with natural gas for use in a gas engine generator. The engine operation remained stable despite changes in quantity and composition of the collected biogas caused by changes with the source of biomass and sea conditions. The thermal efficiency of the gas engine running on mixed biogas and natural gas was more than 10 per cent higher than an engine running on biogas fuel alone. 4 refs., 2 tabs., 3 figs.

  15. The determination of mercury content in the biomass untended for industrial power plant

    Directory of Open Access Journals (Sweden)

    Wiktor Magdalena

    2017-01-01

    Full Text Available Biomass is one of the oldest and most widely used renewable energy sources. The biomass is the whole organic matter of vegetable or animal origin which is biodegradable. Biomass includes leftovers from agricultural production, forestry residues, and industrial and municipal waste. The use of biomass in the power industry has become a standard and takes place in Poland and other European countries. This paper discusses the correlation of mercury content in different biomass types used in the power industry and in products of biomass combustion. Different biomass types, which are currently burned in a commercial power plant in Poland, were discussed. A photographic documentation of different biomass types, such as straw briquettes, wood briquettes, pellets from energy crops (sunflower husk and wood husk, wood pellets, wood chips, and agro-biomass (seeds was carried out. The presented paper discusses the results obtained for 15 biomass samples. Five selected biomass samples were burned in controlled conditions in the laboratory at the University of Silesia. The ash resulting from the combustion of five biomass samples was tested for mercury content. A total of twenty biomass samples and its combustion products were tested. Based on the obtained results, it was found that any supply of biomass, regardless of its type, is characterized by variable mercury content in dry matter. In the case of e.g. wood chips, the spread of results reaches 235.1 μm/kg (in dry matter. Meanwhile, the highest mercury content, 472.4 μm/kg (in dry matter was recorded in the biomass of straw, wood pellets, and pellets from energy crops (sunflower husk. In the case of combustion products of five selected biomass types, a three or four fold increase in the mercury content has been observed.

  16. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  17. District heating and combined heat and power generation from biomass

    International Nuclear Information System (INIS)

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  18. Pilot scale testing of biomass feedstocks for use in gasification/gas turbine based power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Najewicz, D.J.; Furman, A.H. [General Electric Corporate Research and Development Center, Schenectady, NY (United States)

    1993-12-31

    A biomass gasification pilot program was performed at the GE Corporate Research and Development Center using two types of biomass feedstock. The object of the testing was to determine the properties of biomass product gas and its` suitability as a fuel for gas turbine based power generation cycles. The test program was sponsored by the State of Vermont, the US Environmental Protection Agency, the US Department of Energy and Winrock International/US Agency for International Development. Gasification of bagasse and wood chip feedstock was performed at a feed rate of approximately one ton per hour, using the Ge pressurized fixed bed gasifier and a single stage of cyclone particulate removal, operating at a temperature of 1,000 F. Both biomass feedstocks were found to gasify easily, and gasification capacity was limited by volumetric capacity of the fuel feed equipment. The biomass product gas was analyzed for chemical composition, particulate loading, fuel bound nitrogen levels, sulfur and alkali metal content. The results of the testing indicated the combustion characteristics of the biomass product gas are compatible with gas turbine combustor requirements. However, the particulate removal performance of the pilot facility single stage cyclone was found to be inadequate to meet turbine particulate contamination specifications. In addition, alkali metals found in biomass based fuels, which are known to cause corrosion of high temperature gas turbine components, were found to exceed allowable levels in the fuel gas. These alkali metal compounds are found in the particulate matter (at 1000 F) carried over from the gasifier, thus improved particulate removal technology, designed specifically for biomass particulate characteristics could meet the turbine requirements for both particulate and alkali loading. The paper will present the results of the biomass gasification testing and discuss the development needs in the area of gas clean-up and turbine combustion.

  19. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  20. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1996-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels cannot compete effectively in the current market without tax credits, subsidies and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions which favor and create market pull for biomass and waste fuel energy. Using the final results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, direct combustion in dedicated mass burn, stoker and fluidized bed boilers, and wood gasification/combined cycle-power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this approach is economically feasible only when the fuel is delivered at a deep discount relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. (author)

  1. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Science.gov (United States)

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  2. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    Directory of Open Access Journals (Sweden)

    Annette C. Rohr

    2015-07-01

    Full Text Available Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  3. Permitting a biomass-fired power plant in California -- A case study

    International Nuclear Information System (INIS)

    Reisman, J.I.; Needham, G.A.

    1995-01-01

    This paper describes the process of preparing an air permit application for a proposed biomass-fired power plant. The plant is designed to produce a net electric power output of 16 megawatts (MW) for sale to Pacific Gas and Electric Company. The biomass fuel will consist of urban wood waste, construction wood waste, and waste from agricultural products, such as tree prunings and fruit pits. The site is located in an industrial park in Soledad, California

  4. Northeast Regional Biomass Program: Mission, accomplishments, prospects, 1991

    International Nuclear Information System (INIS)

    1991-03-01

    This 1991 Report contains an update on the mission, goals and accomplishments of the Northeast Regional Biomass Program (NRBP). It describes the activities conducted during the past two years and incorporates the information contained in the 1989 publication of the NRBP Five Year Report. It describes the biomass projects conducted by the individual states of the Northeast Region, and summarizes the results from the Program's technical studies. Publications from both the state and regional projects are listed as well. An appendix lists the biomass-fired electricity generating stations planned or in operation in the region. The NRBP began in 1983 by developing a five year plan to guide its work. Within that time frame, the NRBP undertook over 20 applied research and technology transfer projects, and supported and guided the work of its eleven member states. During and since that period, the NRBP has brought together public and private sector organizations to promote the use in the Northeast of biomass and municipal waste energy resources and technologies. The NRBP's long-range plan was updated in 1990. In light of the accomplishments of the NRBP and the remaining challenges, this Report considers directions for future efforts. The Northeast has abundant biomass resources and markets for their use as energy. Meeting this potential will contribute to reducing the atmospheric greenhouse effect and dependence on imported oil. 49 refs

  5. Development of biomass power plant technologies in Malaysia: niche development and the formation of innovative capabilities

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer

    The objective of this thesis is to contribute to advance further the emerging research agenda on the transfer and diffusion of low-carbon technologies in developing countries by adopting a study of the development of biomass power plant technologies in Malaysia. The main research question addresses...... successive periods of fieldwork in Malaysia. The thesis conceptualises the diffusion of biomass technologies in Malaysia as a niche development process and finds that the development of a palm oil biomass waste-to-energy niche in Malaysia has only made limited progress despite a period of twenty years...... of niche formation. The thesis identifies the reluctance to implement an efficient energy policy as the main limiting factor for niche development in this case. Although a number of donor programs have advocated the introduction of a stronger enabling framework for niche development, they have generally...

  6. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  7. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  8. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  9. Biomass-powered Solid Oxide Fuel Cells : Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  10. A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass- An Indian perspective

    International Nuclear Information System (INIS)

    Singh, Jaswinder

    2016-01-01

    The utilization of agricultural biomass for production of electric power can help to reduce the environmental emissions while achieving energy security and sustainable development. This paper presents a methodology for estimating the power production potential of agricultural biomass in a country. Further, the methodology has been applied to develop a roadmap for producing reliable power in India. The present study reveals that about 650 Mt/year of agricultural biomass is generated in India, while about one-third of this has been found to be surplus for energy applications. The cereal crops have major contribution (64.60%) in production of surplus biomass followed by sugarcane (24.60%) and cotton (10.68%). The energy potential of these resources is of the order of 3.72 EJ, which represents a significant proportion of the primary energy consumption in the country. These biomass resources can produce electric power of 23–35 GW depending upon the efficiency of thermal conversion. The delivery of biomass to the plants and selection of appropriate technology have been found as the major issues that need to be resolved carefully. In the end, the study summarizes various technological options for biomass collection and utilization that can be used for producing clean and consistent power supply. - Highlights: •The production of bioelectricity in India is imperative and inevitable. •About one-third of the agricultural biomass is available for power generation. •The power potential of these resources is of the order of 23–31 GW. •The delivery of biomass to plants and technology selection are the key issues. •India should exploit these resources for producing clean and reliable power.

  11. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants

    International Nuclear Information System (INIS)

    Drescher, Ulli; Brueggemann, Dieter

    2007-01-01

    In small solid biomass power and heat plants, the ORC is used for cogeneration. This application shows constraints different from other ORC. These constraints are described and an adapted power plant design is presented. The new design influences the selection criteria of working fluids. A software has been developed to find thermodynamic suitable fluids for ORC in biomass power and heat plants. Highest efficiencies are found within the family of alkylbenzenes

  12. An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak

    Directory of Open Access Journals (Sweden)

    Nasrin Aghamohammadi

    2016-04-01

    Full Text Available Sarawak is the largest state in Malaysia, with 22% of the nation's oil palm plantation area, making it the second largest contributor to palm biomass production. Despite the enormous amount of palm biomass in the state, the use of biomass as fuel for power generation remains low. This study is designed to investigate the sustainability of power generation from palm biomass specifically in Sarawak by conducting a survey among the palm oil mill developers. To conduct this investigation, several key sustainability factors were identified: the security of the biomass supply, the efficiency of conversion technology, the existing network system, challenges and future prospects for power generation from palm biomass. These factors were assessed through a set of questionnaires. The returned questionnaires were then analysed using statistical tools. The results of this study demonstrate that Sarawak has biomass in abundance, and that it is ready to be exploited for large scale power generation. The key challenge to achieving the renewable energy target is the inadequate grid infrastructure that inhibits palm oil developers from benefiting from the Feed-in-Tariff payment scheme. One way forward, a strategic partnership between government and industrial players, offers a promising outcome, depending on an economic feasibility study. The decentralization of electricity generation to support rural electrification is another feasible alternative for renewable energy development in the state.

  13. Energy values and estimation of power generation potentials of some non-woody biomass species

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Patel, S K [National Institute of Technology, Rourkela (India)

    2008-07-01

    In view of high energy potentials in non-woody biomass species and an increasing interest in their utilization for power generation, an attempt has been made in this study to assess the proximate analysis and energy content of different components of Ocimum canum and Tridax procumbens biomass species (both non-woody), and their impact on power generation and land requirement for energy plantations. The net energy content in Ocimum canum was found to be slightly higher than that in Tridax procumbens. In spite of having higher ash contents, the barks from both the plant species exhibited higher calorific values. The results have shown that approximately 650 and 1,270 hectares of land are required to generate 20,000 kWh/day electricity from Ocimum canum and Tridax procumbens biomass species. Coal samples, obtained from six different local mines, were also examined for their qualities, and the results were compared with those of studied biomass materials. This comparison reveals much higher power output with negligible emission of suspended particulate matters (SPM) from biomass materials.

  14. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  15. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  16. The economics of biomass energy: a case study from Hawaii

    International Nuclear Information System (INIS)

    Gopalakrishnan, Chennat; Gadepalli, K.S.; Cox, L.J.; Pingsun Leung

    1993-01-01

    The thesis that the cost-effective conversion of Hawaii's biomass sources to electricity can be best accomplished by a central power plant is developed and empirically tested using a multiperiod linear programming model. The results also suggest that it is cheaper to produce electric power from a biomass-fueld plant than from a fuel oil-based facility. (author)

  17. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  18. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  19. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  20. GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Huang, An-Lei; Wen, Tzai-Hung

    2013-01-01

    Rice straw, a rich agricultural byproduct in Taiwan, can be used as biomass feedstock for cofiring systems. In this study, we analyzed the penetration of rice straw cofiring systems in the Taiwanese power market. In the power generation system, rice straw is cofired with fossil fuel in existing electricity plants. The benefits of cofiring systems include increasing the use of renewable energy, decreasing the fuel cost, and lowering greenhouse gas emissions. We established a linear complementarity model to simulate the power market equilibrium with cofiring systems in Taiwan. GIS-based analysis was then used to analyze the geospatial relationships between paddy rice farms and power plants to assess potential biomass for straw-power generation. Additionally, a sensitivity analysis of the biomass feedstock supply system was conducted for various cofiring scenarios. The spatial maps and equilibrium results of rice straw cofiring in Taiwanese power market are presented in the paper. - Highlights: ► The penetration of straw cofiring systems in the power market is analyzed. ► GIS-based analysis assesses potential straw-power generation. ► The spatial maps and equilibrium results of rice straw cofiring are presented

  1. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  2. Biomass power for rural development. Quarterly report, July 3--December 4, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.T.

    1998-03-01

    This paper describes progress in several projects related to biomass power. These include switchgrass conversion development; switchgrass gasification development; production activities including soil studies, carbon studies, switchgrass production economics, watershed impacts, and prairie lands bio-products; information and education; and geographical information system. Attachments describe switchgrass co-firing test; switchgrass production in Iowa; cooperative agreements with ISU; Rathbun Lake watershed project; newspaper articles and information publications; Secretary of Agriculture Glickman`s visit; integration of technical aspects of switchgrass production in Iowa; and evaluation of an integrated biomass gasification/fuel cell power plant.

  3. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  4. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  5. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  6. Alternative Renewable Biomass Tracking Program Document under the Renewable Fuel Standard Program

    Science.gov (United States)

    The approval letters that EPA approves a company's biomass tracking program meeting all the requirements outlined in 40 CFR part 80.1454, including elements determined necessary to achieve the level of quality assurance required under the regulation list.

  7. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2015-02-01

    Full Text Available In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much higher than that of a biomass power plant, 0.00012 US$/kWh. The external cost of coal-fired power generation is as much as 90% of the current price of electricity generated by coal, while the external cost of a biomass power plant is 1/1000 of the current price of electricity generated by biomass. In addition, for a biomass power plant, the external cost associated with SO2, NOX, and PM2.5 are particularly lower than those of a coal-fired power plant. The prospect of establishing precise estimations for external cost mechanisms and sustainable energy policies is discussed to show a possible direction for future energy schemes in China. The paper has significant value for supporting the biomass power industry and taxing or regulating coal-fired power industry to optimize the energy structure in China.

  8. Biomass Program 2007 Program Peer Review - Biochemical and Products Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biochemical and Products Platform Review held on August 7-9, 2007 in Denver, Colorado.

  9. Northeast regional biomass program. Second & third quarterly reports, October 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut. Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market.

  10. Evaluating the impact of three incentive programs on the economics of cofiring willow biomass with coal in New York State

    International Nuclear Information System (INIS)

    Tharakan, P.J.; Volk, T.A.; Lindsey, C.A.; Abrahamson, L.P.; White, E.H.

    2005-01-01

    Plantations of fast-growing willow shrubs are being promoted as a source quality biomass feedstock for bioenergy and bioproducts in New York State (NY). In the near-term, cofiring of the feedstock--in combination with other woody biomass--with coal in existing utility power boilers is considered to be the most promising conversion method for energy generation. Despite the clear technological viability and associated environmental benefits, cofiring of willow has not been widely adopted. The relatively high production cost of the willow feedstock, which is over twice that of coal, is the primary reason for this lack of interest. Taxes that account for some of the social costs of using coal and/or incentives that appropriate value for some of the social benefits of using willow are essential for eliminating most or the entire current price differential. This paper presents an integrated analysis of the economics of power generation from cofiring willow biomass feedstock with coal, from the perspective of the grower, aggregator and the power plant. Emphasis is placed on analyzing the relative impact of a green premium price, a closed-loop biomass tax credit, and payments to growers under the proposed Conservation Reserve Program (CRP) harvesting exemption policy. The CRP payments reduced the delivered cost of willow by 36-35%, to $1.90 GJ -1 and $1.70 GJ -1 , under current and increased yield conditions, respectively. These prices are still high, relative to coal. Other incentives are required to ensure commercial viability. The required levels of green premium price (0.4-1.0 cents kWh -1 ) and biomass tax credit (0.75-2.4 cents kWh -1 ) vary depending on whether the incentives were being applied by themselves or in combination, and whether current yield or potential increased yields were being considered. In the near term, cofiring willow biomass and coal can be an economically viable option for power generation in NY if the expected overall beneficial effects

  11. Exergy analysis of biomass organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  12. Biomass Program 2007 Program Peer Review - Biodiesel and Other Technologies Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-28

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biodiesel and Other Technologies, held on August 14th and 15th in Golden, Colorado.

  13. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  14. Biomass Energy Data Book: Edition 4

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  15. Biomass Energy Data Book: Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  16. Biomass Energy Data Book: Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  17. Biomass Energy Data Book: Edition 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  18. Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System

    Directory of Open Access Journals (Sweden)

    Arnau González

    2015-09-01

    Full Text Available Hybrid renewable energy systems (HRES are a trendy alternative to enhance the renewable energy deployment worldwide. They effectively take advantage of scalability and flexibility of these energy sources, since combining two or more allows counteracting the weaknesses of a stochastic renewable energy source with the strengths of another or with the predictability of a non-renewable energy source. This work presents an optimization methodology for minimum life cycle cost of a HRES based on solar photovoltaic, wind and biomass power. Biomass power seeks to take advantage of locally available forest wood biomass in the form of wood chips to provide energy in periods when the PV and wind power generated are not enough to match the existing demand. The results show that a HRES combining the selected three sources of renewable energy could be installed in a rural township of about 1300 dwellings with an up-front investment of US $7.4 million, with a total life cycle cost of slightly more than US $30 million. Such a system would have benefits in terms of energy autonomy and environment quality improvement, as well as in term of job opportunity creation.

  19. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    Science.gov (United States)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  20. Intelligent Control Framework for the Feeding System in the Biomass Power Plant

    Directory of Open Access Journals (Sweden)

    Sun Jin

    2015-01-01

    Full Text Available This paper proposes an intelligent control framework for biomass drying process with flue gases based on FLC (fuzzy logic controller and CAN (Controller Area Network bus. In the operation of a biomass drying process, in order to get the biomass with the set-point low moisture content dried by waste high temperature flue gases, it is necessary to intelligent control for the biomass flow rate. Use of an experiment with varied materials at different initial moisture contents enables acquisition of the biomass flow rates as initial setting values. Set the error between actual straw moisture content and set-point, and rate of change of error as two inputs. the biomass flow rate can be acquired by the fuzzy logic computing as the output. Since the length of dryer is more than twenty meters, the integration by the CAN bus can ensure real-time reliable data acquisition and processing. The control framework for biomass drying process can be applied to a variety of biomass, such as, cotton stalk, corn stalk, rice straw, wheat straw, sugar cane. It has strong potential for practical applications because of its advantages on intelligent providing the set-point low moisture content of biomass feedstock for power generation equipment.

  1. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  2. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  3. Biomass gasification for electric power generation. Biomassa vergassing voor elektriciteitsopwekking

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H J

    1992-10-01

    Attention is paid to power generation by means of the use of synthesis gas, produced by biomass gasification, in internal combustion engines and gas turbines. Descriptions are given of the biomass gasification process and several types of gasifiers: cocurrent or downcraft gasifiers, countercurrent gasifiers, crosscurrent gasifiers and fluidized bed gasifiers. The first aim of this report is to assess which gasifier is the most appropriate gasifier to be used in combination with an internal combustion engine or a gas turbine. The second aim is to determine the quality of the biomass fuel, which must be gasified in a particular gasifier. In chapter two the notion biomass is discussed, and in chapter three attention is paid to the gasification process. An overview of the characteristics of available gasifiers is presented in chapter four (performance, quality of the synthesis gas and the biomass fuel, investment costs, and state of the art). In chapter five and six the internal combustion engine and the gas turbine are dealt with, as well as the experiences with and the consequences of the use of synthesis gas. Also the economic feasibility of the application of combined gasifier/engine systems and gasifier/gas turbine systems is discussed. 39 figs., 20 tabs., 43 refs.

  4. Incentive policies for promoting wind power production in Brazil: Scenarios for the Alternative Energy Sources Incentive Program (PROINFA) under the New Brazilian electric power sector regulation

    International Nuclear Information System (INIS)

    Dutra, Ricardo Marques; Szklo, Alexandre Salem

    2008-01-01

    The Alternative Energy Sources Incentive Program (PROINFA) was designed in 2002 to stimulate the electricity generation from three energy sources (wind, biomass and small-scale hydro) in Brazil. The Program was divided into two phases. The first one uses feed-in tariffs for promoting the development of 3300 MW. The second one that was originally based on feed-in tariffs was modified in 2003, in order to be based on biddings for renewables. These biddings are capped to limit their impact on the final electricity tariff. Due to this bound, the highest-cost power option promoted by PROINFA (wind power generation) might have development problems. Simulating different scenarios for the biddings, it was verified that the only way to reach the original goal set by PROINFA (10% of the annual electricity consumption provided by alternative sources up to 2020) and, simultaneously, not overcome the bidding bound is to promote biomass-fired power generation alone, during the Program's second phase. However, this action contradicts one of the targets of the Program, which is to diversify the energy matrix. An alternative option could be biddings for renewables according to specific criteria (complementarities, industrial and technological development and cost), based not only on their cost-effectiveness. (author)

  5. Development of low cost systems for co-utilisation of biomass in large power plant. Mid term review report

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.

    2003-07-01

    Interest in the cofiring of biomass materials with coal in large coal-fired power stations in the UK has increased significantly in recent years in response to the potential additional income from Renewables Obligation Certificates (ROCs). It is anticipated that most coal-fired power stations in the UK will have the capability to cofire biomass materials by the end of 2003. This mid-term review report examines the various stages in the route to fully commercial operation of biomass cofiring at coal-fired power stations, the availability of suitable biomass materials in the UK and the technical options for cofiring. The factors affecting the economics of biomass cofiring in large coal-fired boilers are discussed including the delivered price of biofuels, the future value of ROCs, the development costs of cofiring projects, the 25% ceiling on cofiring imposed by the Renewables Obligation Order 2002 and the use of preblending. An overview of the current status of cofiring in the UK is presented, which includes a summary of the results of trials already carried out by operators of coal-fired power stations and a discussion of the future prospects for biomass cofiring in the UK.

  6. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  8. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  9. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  10. Economic feasibility of biomass gasification for power generation in three selected communities of northwestern Ontario, Canada

    International Nuclear Information System (INIS)

    Upadhyay, Thakur Prasad; Shahi, Chander; Leitch, Mathew; Pulkki, Reino

    2012-01-01

    Biomass gasification is expected to be an attractive option among other competitive applications of biomass conversion for bio-energy. This study analyzes economic feasibility of biomass gasification power generating plants in three selected communities (Ignace, Nipigon and Kenora) of northwestern Ontario. The major variables considered in the model are harvesting and handling costs, logistic costs for biomass feedstock delivery and storage, capital costs of power plant by scales, operation and maintenance costs, labor costs, capital financing costs and other regulatory costs. GIS analysis was undertaken to estimate the distance class matrix to apportion the biomass feedstock supply side from different forest management units. Total cost per MW h power production at a 50 MW scale ranges from CAD 61.89 to CAD 63.79. Total cost per unit of electricity production decreases significantly as plant capacity increases due to economy of scale in the production system. Further, the locations of plants explained the cost variability. - Highlights: ► We model feasibility of gasification power plants in three rural communities. ► The variables considered in the model are logistics, operational and capital costs. ► Mean distance from each community to different forest units are estimated with GIS. ► Total cost per MWh at a 50 MW scale ranges from CAD 61.89 to CAD 63.79. ► Total cost decreases with increase in plant capacity.

  11. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system

    International Nuclear Information System (INIS)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2015-01-01

    Power generation from co-utilization of coal and biomass is very attractive since this technology can not only save the coal resource but make sufficient utilization of biomass. In addition, with this concept, net carbon discharge per unit electric power generation can also be sharply reduced. In this work, a coal/biomass co-hydrogasification based chemical looping power generation system is presented and analyzed with the assistance of Aspen Plus. The effects of different operating conditions including the biomass mass fraction, R_b, the hydrogen recycle ratio, R_h_r, the hydrogasification pressure, P_h_g, the iron to fuel mole ratio, R_i_f, the reducer temperature, T_r_e, the oxidizer temperature, T_o_x, and the fuel utilization factor, U_f of the SOFC (solid oxide fuel cell) on the system operation results including the energy efficiency, η_e, the total energy efficiency, η_t_e, the exergy efficiency, η_e_x, the total exergy efficiency, η_t_e_x and the carbon capture rate, η_c_c, are analyzed. The energy and exergy balances of the whole system are also calculated and the corresponding Sankey diagram and Grassmann diagram are drawn. Under the benchmark condition, exergy efficiencies of different units in the system are calculated. η_t_e, η_t_e_x and η_c_c of the system are also found to be 43.6%, 41.2% and 99.1%, respectively. - Highlights: • A coal/biomass co-hydrogasification based chemical looping power generation system is setup. • Sankey and Grassmann diagrams are presented based on the energy and exergy balance calculations. • Sensitivity analysis is done to understand the system operation characteristics. • Total energy and exergy efficiencies of this system can be 43.6% and 41.2%, respectively. • About 99.1% of the carbon contained in coal and biomass can be captured in this system.

  12. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    . This is not very well explained by apply-ing conventional thermal ignition theory. An experimental study at lab scale, using pinewood as an example fuel, was conducted to examine self-heating and self-ignition. Supplemental experiments were performed with bituminous coal. Instead of characterizing ignition......Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...... temperature in terms of sample volume, mass-scaling seems more physically correct for the self-ignition of solids. Findings also suggest that the transition between self-heating and self-ignition is controlled both by the availability of reactive material and temperature. Comparison of experiments at 20...

  13. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  14. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  15. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  16. Biomass power industry: Assessment of key players and approaches for DOE and industry interaction

    International Nuclear Information System (INIS)

    1993-01-01

    This report reviews the status of the US biomass power industry. The topics of the report include current fuels and the problems associated with procuring, transporting, preparing and burning them, competition from natural gas projects because of the current depressed natural gas prices, need for incentives for biomass fueled projects, economics, market potential and expansion of US firms overseas

  17. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  18. Technical Manual for the SAM Biomass Power Generation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  19. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    Directory of Open Access Journals (Sweden)

    Amirabedin Ehsan

    2014-12-01

    Full Text Available Trigeneration or Combined Cooling, Heat and Power (CCHP which is based upon combined heat and power (CHP systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  20. The potential impact of externalities considerations on the market for biomass power technologies

    International Nuclear Information System (INIS)

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1995-01-01

    Of all the renewable energy sources used for power generation, biomass energy has experienced the greatest growth over the last decade. Spurred by requirements established in the Public Utility Regulatory Policies Act of 1978 (PURPA), as well as various tax incentives, biomass-based power generation now provides more than 50 billion kWh of electric energy from 10,000 MW of installed capacity. The overwhelming majority of this capacity, primarily wood-based, has been developed by the nonutility sector. However, the biomass industry is currently facing more difficult market conditions due to a reduction in federal incentives and changes in the generation market, such as lower utility avoided costs, slower demand growth, and greater competition among both generators and fuel sources. States are increasingly contemplating the inclusion of market externalities costs and benefits associated with different generation options in electricity resource planning and procurement decisions. Market externalities, as they relate to generation resources and technologies, represent impacts that are not wholly reflected in the market price of electricity derived from these sources. These impacts, which can be either positive or negative, can encompass environmental, economic and other social factors, but state considerations have focused predominantly on environmental externalities costs, especially air emissions. The explicit quantification of externalities could measurably affect the competitive standing of various energy resources and technologies in future generation resource acquisitions. This paper summarizes work undertaken to assess the status the externalities considerations in state and utility electricity resource planning processes and to determine how externalities considerations might help or hinder future development of biomass power plants. (author)

  1. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  2. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO2

    International Nuclear Information System (INIS)

    Adamkiewicz, A.; Zenczak, W.

    2014-01-01

    One from the activities taken in Poland in aim of limitation of CO 2 , emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO 2 , emission. The paper presents results of comparative analysis of CO 2 , emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  3. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  4. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  5. The feasibility of co-firing biomass for electricity in Missouri

    International Nuclear Information System (INIS)

    Liu, Zuoming; Altman, Ira; Johnson, Thomas G.

    2014-01-01

    Bioenergy is one of the most significant energy resources with potential to serve as a partial replacement for fossil. As an agricultural state, Missouri has great potential to use biomass for energy production. In 2008, Missouri adopted a renewable portfolio standard (RPS) yet about 80% of its power supply still comes from coal. This paper describes a feasibility study of co-firing biomass in existing coal-powered plants in Missouri. Specifically, this study developed a linear programming model and simulated six scenarios to assess the economic feasibility and greenhouse gas impacts of co-firing biomass in existing qualified coal power plants in Missouri. The results of this study indicate that although co-firing can reduce the emissions of GHG and environmental pollutants, it is still not an economically feasible option for power generation without additional economic or policy incentives or regulations which could take environmental costs into account. Based on these results, strategies and policies to promote the utilization of biomass and to increase its competitiveness with fossil fuels are identified and discussed. - Highlights: • This paper reports on a study of the economic feasibility and environmental effects of co-firing biomass for electricity. • The feasibility of co-firing biomass varies by location depending on local availability of biomass and size of facility. • We apply a linear optimization model that generates economic and environmental indicators for each of several locations. • This paper will appeal to power generators, academic researchers and consultants interested in the feasibility of biopower

  6. Biomass Program 2007 Peer Review - Integrated Biorefinery Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Integrated Biorefinery Platform Review held on August 13-15, 2007 in Golden, Colorado.

  7. The biomass valorization / the electric power in processes: innovation and challenges; valorisation de la biomasse / l'electricite dans les procedes: innovation et defis

    Energy Technology Data Exchange (ETDEWEB)

    Dahy, M [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Leclercq, M [Ministere de l' Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres; Gosse, G [Institut National de Recherches Agronomiques (INRA), 75 - Paris (France); Lacour, P A [AFOCEL, 34 - St Clement de Riviere (France); Ballerini, D; Duplan, J L; Monot, F [Institut Francais du Petrole (IFP), 69 - Lyon (France); Seiler, J M [CEA Grenoble, 38 (France); Ancelme, A [Syndicat National des Producteurs d' Alcools Agricoles (SNPAA), 92 - Neuilly (France); Vermeersch, G [Sofiproteol, 75 - Paris (France); Hervouet, V [Total, La Defense, 92 - Courbevoie (France); Rouveirolles, P [Renault, 92 6 Boulogne Billancourt (France); Bellot, M [Electricite de France (EDF), 75 - Paris (France); Pascual, C [ELYO Cylergie, 69 - Ecully (France); Girard, M [PRONOVIAL, 51 - Reims (France); Bernard, D [ARKEMA, 69 - Lyon (France); Dussaud, J; Vrevin, L [Ahlstrom Research and Services, Edinburgh, Midlothian (United Kingdom); Mentink, L [Roquette Freres (Italy)

    2005-07-01

    In a context of an insufficient offer on processes/technology, this day is devoted to the processes adapted to the biomass conversion in energy, fuels and other products. It provides presentations on the biomass economy and regulations, the different channels, the thermochemical processes to produce synthetic fuels and hydrogen, the ethanol production, refiners, automotive industry, an electric power, producer point of view, the byproducts. (A.L.B.)

  8. Biomass power production in Amazonia: Environmentally sound, economically productive

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, D.B. [National Rural Electric Cooperative Association, Washington, DC (United States); Hollomon, J.B. [Winrock International Institute for Agricultural Development, Arlington, VA (United States)

    1993-12-31

    With the support of the US Agency for International Development, the National Rural Electric Cooperative Association (NRECA) is assisting their utility counterparts in Bolivia to improve electric service in the country`s rural population. In remote areas, the cost of extending transmission lines to small communities is prohibitive, and diesel generators represent an expensive alternative, especially for baseload power. This has led to serious consideration of electric generating systems using locally available renewable resources, including biomass, hydro, wind, and solar energy. A project has recently been initiated in Riberalta, in the Amazonian region of Bolivia, to convert waste Brazil nut shells and sawmill residues to electricity. Working in tandem with diesel generators, the biomass-fired plant will produce base-load power in an integrated system that will be able to provide reliable and affordable electricity to the city. The project will allow the local rural electric cooperative to lower the price of electricity by nearly forty percent, enable the local Brazil nut industry to increase its level of mechanization, and reduce the environmental impacts of dumping waste shells around the city and in an adjacent river. The project is representative of others that will be funded in the future by NRECA/AID.

  9. Higher efficiency, lower bonuses. Financial incentives for power from biomass according to EEG 2012; Mehr Effizienz, weniger Boni. Die Foerderung von Strom aus Biomasse nach dem EEG 2012

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dominik [Ecologic Institute, Berlin (Germany)

    2012-07-01

    The German parliament passed a total of eight new laws for the intended energy turnaround. Apart from changes in atomic law, the focus was on a complete amendment of the Renewables Act (EEG). The contribution outlines the new regulations for power generation from biomass from 2012. It indicates the changes from former regulations and describes the structural changes required for sustainable power supply from biomass, among others.

  10. Purchase of power by State Electricity Boards from biomass gasifier systems: formulating a long term national policy

    International Nuclear Information System (INIS)

    Jain, B.C.

    1992-01-01

    Current policy for purchase of power from renewable sources of energy by State Electricity Boards in India is examined and certain changes in that policy are suggested. State Electricity Boards are reluctant to buy power from renewables as such a purchase is seen by the Boards as being of against their economic interests. But if socio-environmental and climatological costs of power of thermal plants are taken into consideration, it becomes imperative that a long term policy for power purchase from renewables by electricity boards will have to be followed. Such a policy is outlined. After giving formulae for unit cost of generation from thermal power plants, diesel generation (DG) sets and biomass gasification, it is recommended that basis for the purchase price for power generated through biomass gas should be the cost of generation through DG sets or cost of generation through biomass gasification whichever is lower. A clause for automatic price escalation should also be a part of such policy. Some measures to compensate electricity boards for purchase of power from renewables are suggested. They include levying of a special surcharge by boards on their electricity sales and funding by the Central Government. (M.G.B.)

  11. Biomass Co-Firing in Suspension-Fired Power Plants

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Hvid, Søren Lovmand; Baxter, Larry

    , in the future it is expected to become relevant to cofire in more advanced plants as the trend in the power plant structure is towards older plants having fewer operating hours or being decommissioned. A major product of this project is an experimentally validated computational fluid dynamics (CFD) based...... modelling tool adapted to accommodate biomass cofiring combustion features. The CFD tool will be able to predict deposit accumulation, particle conversion, fly ash composition, temperatures, velocities, and composition of furnace gases, etc. The computer model will primarily be used in the development...

  12. Stochastic Programming for Fuel Supply Planning of Combined Heat and Power Plants

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    The consumption of biomass to produce power and heat has increased due to the carbon neutral policies. Combined heat and power (CHP) plants often combine biomass with other fuels, e.g., natural gas. The negotiation process for supply contracts involves many uncertainties due to the long planning...... horizon. The demand for biomass is uncertain, and heat demand and electricity prices vary during the planning period. We propose a method using stochastic optimization to support the biomass and natural gas supply planning for CHP plants including short-term decisions for optimal market participation....

  13. Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Buragohain, Buljit; Mahanta, Pinakeswar; Moholkar, Vijayanand S.

    2010-01-01

    In recent years, biomass gasification has emerged as a viable option for decentralized power generation, especially in developing countries. Another potential use of producer gas from biomass gasification is in terms of feedstock for Fischer-Tropsch (FT) synthesis - a process for manufacture of synthetic gasoline and diesel. This paper reports optimization of biomass gasification process for these two applications. Using the non-stoichometric equilibrium model (SOLGASMIX), we have assessed the outcome of gasification process for different combinations of operating conditions. Four key parameters have been used for optimization, viz. biomass type (saw dust, rice husk, bamboo dust), air or equivalence ratio (AR = 0, 0.2, 0.4, 0.6, 0.8 and 1), temperature of gasification (T = 400, 500, 600, 700, 800, 900 and 1000 o C), and gasification medium (air, air-steam 10% mole/mole mixture, air-steam 30%mole/mole mixture). Performance of the gasification process has been assessed with four measures, viz. molar content of H 2 and CO in the producer gas, H 2 /CO molar ratio, LHV of producer gas and overall efficiency of gasifier. The optimum sets of operating conditions for gasifier for FT synthesis are: AR = 0.2-0.4, Temp = 800-1000 o C, and gasification medium as air. The optimum sets of operating conditions for decentralized power generation are: AR = 0.3-0.4, Temp = 700-800 o C with gasification medium being air. The thermodynamic model and methodology presented in this work also presents a general framework, which could be extended for optimization of biomass gasification for any other application.

  14. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China. PMID:25383383

  15. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  16. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  17. Power generation prior food safety? Biomass in the conflict area of energy security and hunger crisis; Energieerzeugung vor Ernaehrungssicherung? Biomasse im Spannungsfeld von Energiesicherung und Hungerkrise

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika C.M. (ed.)

    2011-07-01

    Within the international meeting of the Evangelische Akademie Loccum (Rehburg-Loccum, Federal Republic of Germany) at 13rd to 15th May, 2009 the following lectures were held: (1) Biomass - Energy of the future (Daniela Thraen); (2) Bio energy and cultivation of energy crops in Lower Saxony. State of the art and perspectives (Gerd Carsten Hoeher); (3) Bioenergy and food security project in FAO (Mirella Salvatore); (4) Appetite for hunger and competition in land use (Elmar Altvater); (5) Biodiesel poles in Northeast Brasilia. Efficiencies and experiences of a project for the integration of small farmers into the national Biodiesel program (Stefan Goertz); (6) Bioenergy in Africa: Chance to overcome energy poverty or driver of hunger (Hamimu Hongo); (7) Cultivation of Jatropha for direct utilization of oil: Win-Win situation for small farmers and companies? (Lorenz Kirchner); (8) Energy security by means of sufficient power generation. Energy and fuels from biomass result in renaissance of the agriculture and offer chances for fight against poverty and for avoidance of hunger to developing countries (Nasir El Bassam).

  18. Combined heat and power system with advanced gasification technology for biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, S.; Abe, T.; Yasuda, T. [Nippon Furnace Kogyo Kaisha Ltd, Yokohama (Japan); Gupta, A.K. [Maryland Univ., College Park, MD (United States). Dept. of Mechnical Engineering

    2013-07-01

    The results obtained from an advanced gasification system utilizing high temperature steam are presented here. The results showed successful demonstration of clean syngas production having high calorific value fuel ({proportional_to}10 MJ/m{sup 3}N) using woody biomass wastes in a downdraft type gasifier. The gasification capacity of the plant on dry basis was 60 kg/h. The syngas produced can be utilized in an absorption type chiller for air conditioning. This advanced gasification technology allows one to transform wastes to clean energy at local production sites without any environmental impact and expensive waste transportation costs. The experience gained from the demonstration plant allows one to implement to other industrial applications for use as a decentralized unit and obtain clean syngas for local use. The demonstration conducted here shows that the system is favorable for onsite use of compatible combined heat and power (CHP) system including light oil supported diesel engine power generator. The biomass waste fuel from a lumber mill factory was used in this study. The factory handles a wide forests area of about 50 ha and produces about 2,500 m{sup 3}/year of wood chips from thin out trees and waste lumbers. This translates to a maximum 110 kg/h of wood chips that can be fed to a gasifier. The syngas produced was used for the combined heat and power system. Local use of biomass for fuel reforming reduces the cost of collection and transportation costs so that a sustainable business is demonstrated with profit from the generated electricity and thermal energy. The cost structure incorporates both the depreciation cost and operation cost of the system. Thermal energy from hot water can be used for drying lumbers and wood chips in a cascade manner. The drying process can be adopted for enhancing its productivity with increased variability on the quality of lumber. The results show that the combined heat and power system (CHP) offers good profitable

  19. A financial evaluation of biomass-gasifier-based power generation in India

    International Nuclear Information System (INIS)

    Tripathi, A.K.; Iyer, P.V.R.; Kandpal, T.C.

    1997-01-01

    A preliminary financial evaluation of biomass-gasifier-based power generation in India was undertaken. Simple cost functions were developed and used for this purpose. The unit cost of electricity has been estimated for a variety of scenarios taking into account some of the uncertainties associated with this emerging technology in India. (author)

  20. The biomass valorization / the electric power in processes: innovation and challenges; valorisation de la biomasse / l'electricite dans les procedes: innovation et defis

    Energy Technology Data Exchange (ETDEWEB)

    Dahy, M. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Leclercq, M. [Ministere de l' Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75 - Paris (France). Direction Generale de L' Energie et des Matieres Premieres; Gosse, G. [Institut National de Recherches Agronomiques (INRA), 75 - Paris (France); Lacour, P.A. [AFOCEL, 34 - St Clement de Riviere (France); Ballerini, D.; Duplan, J.L.; Monot, F. [Institut Francais du Petrole (IFP), 69 - Lyon (France); Seiler, J.M. [CEA Grenoble, 38 (France); Ancelme, A. [Syndicat National des Producteurs d' Alcools Agricoles (SNPAA), 92 - Neuilly (France); Vermeersch, G. [Sofiproteol, 75 - Paris (France); Hervouet, V. [Total, La Defense, 92 - Courbevoie (France); Rouveirolles, P. [Renault, 92 6 Boulogne Billancourt (France); Bellot, M. [Electricite de France (EDF), 75 - Paris (France); Pascual, C. [ELYO Cylergie, 69 - Ecully (France); Girard, M. [PRONOVIAL, 51 - Reims (France); Bernard, D. [ARKEMA, 69 - Lyon (France); Dussaud, J.; Vrevin, L. [Ahlstrom Research and Services, Edinburgh, Midlothian (United Kingdom); Mentink, L. [Roquette Freres (Italy)

    2005-07-01

    In a context of an insufficient offer on processes/technology, this day is devoted to the processes adapted to the biomass conversion in energy, fuels and other products. It provides presentations on the biomass economy and regulations, the different channels, the thermochemical processes to produce synthetic fuels and hydrogen, the ethanol production, refiners, automotive industry, an electric power, producer point of view, the byproducts. (A.L.B.)

  1. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    NARCIS (Netherlands)

    Palit, D.; Malhotra, R.; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability

  2. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  3. Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil

    International Nuclear Information System (INIS)

    Soria, Rafael; Portugal-Pereira, Joana; Szklo, Alexandre; Milani, Rodrigo; Schaeffer, Roberto

    2015-01-01

    The production of electricity using concentrated solar power (CSP) technology is not yet possible in Brazil due to the technology’s high capital costs and the lack of a local industry. However, this study introduces a low-cost approach to CSP in Brazil by describing and simulating the operation of hybrid CSP plants that use sustainably managed biomass in Brazil’s semiarid northeast. Biomass hybridisation of a CSP plant with a solar multiple (SM) of 1.2 and a biomass fill fraction (BFF) of 30% can generate electricity at 110 USD/MWh. The high direct normal irradiation (DNI) and the availability of local low-cost biomass in Brazil’s semiarid northeast suggest the possibility of developing a CSP industry capable of supplying low-cost components under a national program framework, with the co-benefits of local job and income generation. For example, the deployment of 10 CSP plants of 30 MWe each would generate 760 direct and indirect jobs during the 24 months of plant construction and approximately 2100 annual jobs associated with the operation and maintenance (O&M) of the generating units. These 10 new units would generate additional local income on the order of USD 57 million. - Highlights: • CSP plant with supplementary biomass hybridisation is a strategic option for Brazil. • DNI and biomass availability in Brazil's semiarid can foster local CSP industry. • LCOE of CSP would cost 11 cent USD/kWh becoming competitive at solar auctions. • Co-benefits of local job and income generation due to CSP in Brazil are high.

  4. Scenarios for power production with biomass in the Finnish forest industry

    International Nuclear Information System (INIS)

    Nousiainen, I.K.; Malinen, H.O.; Villa, A.O.

    1997-01-01

    This study presents three scenarios for power production with biomass in Finnish pulp and paper mills. The basic scenario assumes that the production capacity in the forest industry increases as in the past. The green energy scenario assumes that there is a strong demand from the market for sustainable green energy production. The maximum scenario assumes that the production capacity of chemical pulp increases significantly and the use of wood raw material extends to the maximum level. According to the basic scenario the use of biofuels in the pulp and paper mills will increase from starting level, 3.24 Mtoe in 1992, to 5.07 Mtoe by the year 2010. The utilization potential of biofuels will increase to 5.45 Mtoe in green energy and to 6.43 Mtoe in the maximum biofuels scenario. The power production with biomass will increase from the starting level, 572 MW in 1992, to 930 MW in the basic, to 1 100 MW in the green energy and to 1 670 MW in the maximum biofuels scenario by the year 2010. (author)

  5. Distributed renewable power from biomass and other waste fuels

    Science.gov (United States)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  6. The UNDP/World Bank monitoring program on small scale biomass gasifiers (BTG's experience on tar measurements)

    Energy Technology Data Exchange (ETDEWEB)

    Knoef, H.A.M. [Biomass Technology Group BTG, Enschede (Netherlands)

    2000-07-01

    By the time that small-scale biomass gasifiers were 'rediscovered' and promoted for use in developing countries (1970s), UNDP and the World Bank were well aware of the pitfalls of previous attempts to diffuse decentralized energy technologies. Therefore they decided to initiate a technology assessment programme before endorsing and/or stimulating a widespread gasifier introduction programme in developing countries. On July 1, 1983, the UNDP/WB worldwide Small-scale biomass gasifier monitoring was initiated, which was to {sup c}ollect uniform data on the actual field performance, economics, safety and public acceptability of biomass gasifiers currently operating in developing countries{sup .} For the UNDP/WB program BTG developed a tar measuring protocol which was used at twenty gasifiers worldwide (Indonesia, Philippines, Brazil, Mali, Seychelles, Vanuatu and Burundi). Other parameters monitored include pressure and temperatures at various spots, gasflow, fuel consumption, lubrication oil analyses, gas-composition analyses, emission measurements. The seven year programme showed that most of donor funded projects failed, mainly because there was not sufficient commitment from involved parties. National programs on the utilization of loca available biomass resources mostly failed because the fuel did not suit the requirements of gasifier reactor. In case of proper project design/set-up most of the small scale biomass gasifiers operated without major problems. Examples of such projects are the ones in Balong and Majalengka (Indonesia) Onesua (Vanuatu), Espara Feliz (Brazil) and Dogofiry (Mali). A motivated team of technicians, operators, managers is one the most important items within this respect. Most of the heat gasifiers are installed commercially and are much more successful compared to the subsidized power gasifiers. Local manufactured gasifiers are generally constructed of low quality materials causing frequent technical problems. However, locally

  7. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  8. Biomass power generation in competitive markets - The impact of instruments and regulations

    International Nuclear Information System (INIS)

    Ackermann, Thomas; Soeder, Lennart

    1999-01-01

    This paper presents and briefly evaluates the most important existing market instruments and market schemes which support the development of renewable energy generation as well as the impact of market regulations on the development of biomass power generation. The evaluation of the existing instruments focuses on the incentives provided by the various instruments to reduce production costs. The instruments and schemes are: Feed-in Tariffs, Net Metering, Bidding Process, Fixed Quotas, Green Certificate Trading, Green Power Exchange, Green Pricing. Feed-in tariffs and net metering are important instruments to get the different technologies 'off the ground', however, they can only be considered an interim solution as they do not necessarily lead to cost reduction. A bidding process is one way to achieve these cost reductions, but high transaction costs will support the development of large renewable energy projects, which is not always the desired effect. Fixed quotas combined with green certificate trading or a power exchange in combination with Green Pricing seem to lead to similar costs reduction, however, so far there is only limited experience with such instruments. The analysis of the impact of market regulations focuses on international electricity markets with a power exchange. Such markets exist, for example, in Scandinavia, England and Wales, Australia, New Zealand and California. The analysis showed that new distributed generation, for example based on biomass, faces significant market barriers. Furthermore, distributed generation is not treated equally within the market regulations compared to large-scale power generation

  9. Optimization of Preparation Program for Biomass Based Porous Active Carbon by Response Surface Methodology Based on Adsorptive Property

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-06-01

    Full Text Available With waste walnut shell as raw material, biomass based porous active carbon was made by microwave oven method. The effects of microwave power, activation time and mass fraction of phosphoric acid on adsorptive property of biomass based porous active carbon in the process of physical activation of active carbon precursor were studied by response surface method and numerical simulation method, the preparation plan of biomass based porous active carbon was optimized, and the optimal biomass based porous active carbon property was characterized. The results show that three factors affect the adsorptive property of biomass based porous active carbon, but the effect of microwave power is obviously more significant than that of mass fraction of phosphoric acid, and the effect of mass fraction of phosphoric acid is more significant than that of activation time. The optimized preparation conditions are:microwave power is 746W, activation time is 11.2min and mass fraction of phosphoric acid is 85.9% in the process of physical activation of activated carbon precursor by microwave heating method. For the optimal biomass based porous active carbon, the adsorption value of iodine is 1074.57mg/g, adsorption value of methylene blue is 294.4mL/g and gain rate is 52.1%.

  10. Occupational exposure at a contemplated Belarussian power plant fired with contaminated biomass

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Fogh, C.L.; Roed, Jørn

    1999-01-01

    To meet the current demand in Belarus for remediation of the vast forest areas that were contaminated by the Chernobyl accident and at the same time establish a much needed energy production, applying contaminated forest biomass as fuel in special power plants is being considered. This paper......-called 'big bags' filled with fly ash waste. Inhalation doses were estimated to be low. External doses received while working at the power plant do not appear to be highly significant compared with the doses from environmental contamination in the area where the power plant is expected to be constructed....

  11. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  12. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  13. Environmental and socioeconomic aspects in the strategic analysis of a biomass power plant integration

    International Nuclear Information System (INIS)

    Varela, M.; Lechon, Y.; Saez, R.

    1999-01-01

    The aim of the work was to assess the potential weaknesses and threats of the integration of a biomass power plant proposed in a depressed area of Spain as well as to analyse the inherent strengths and opportunities that such a project could have in economic, technical or environmental terms. For this purpose an analysis of site, biomass resources, problems associated to fuel mix combustion, electricity production and connection were assessed. The socioeconomic (employment, GDP effects or tax revenue impact) and environmental (human health, soil erosion, fertiliser application) outcomes associated with the proposed biomass scheme have been evaluated. Finally, a list of actions to take into account for successful implementation of this proposed project has been defined. (author)

  14. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material

    Directory of Open Access Journals (Sweden)

    Juan Camilo Solarte-Toro

    2018-05-01

    Full Text Available The use of nonrenewable energy sources to provide the worldwide energy needs has caused different problems such as global warming, water pollution, and smog production. In this sense, lignocellulosic biomass has been postulated as a renewable energy source able to produce energy carriers that can cover this energy demand. Biogas and syngas are two energy vectors that have been suggested to generate heat and power through their use in cogeneration systems. Therefore, the aim of this review is to develop a comparison between these energy vectors considering their main features based on literature reports. In addition, a techno-economic and energy assessment of the heat and power generation using these vectors as energy sources is performed. If lignocellulosic biomass is used as raw material, biogas is more commonly used for cogeneration purposes than syngas. However, syngas from biomass gasification has a great potential to be employed as a chemical platform in the production of value-added products. Moreover, the investment costs to generate heat and power from lignocellulosic materials using the anaerobic digestion technology are higher than those using the gasification technology. As a conclusion, it was evidenced that upgraded biogas has a higher potential to produce heat and power than syngas. Nevertheless, the implementation of both energy vectors into the energy market is important to cover the increasing worldwide energy demand.How to cite: Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018:33. https://doi.org/10.1016/j.ejbt.2018.03.005 Keywords: Anaerobic digestion, Biogas power generation, Biomass gasification, Biomethane, Energy sources, Energy vectors, Heat generation, Lignocellulosic energy production, Power generation, Renewable energy, Syngas production

  15. 2009 Biomass Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s 2009 peer review meeting, held on July 14–15, 2009, in Arlington, Virginia. The document also includes summary information from the six separate platform reviews conducted between March and April 2009 in the Washington, D.C., and Denver, Colorado, areas. The platform reviews provide evaluations of the program‘s projects in applied research, development, and demonstration as well as analysis and deployment activities. The July program peer review was an evaluation of the program‘s overall strategic planning, management approach, priorities across research areas, and resource allocation.

  16. Biomass fuels in district heating systems. Final report. Biobrensel i fjernvarmesystem. Sluttrapport

    Energy Technology Data Exchange (ETDEWEB)

    Otterstad, B.

    1987-02-01

    The report deals with an energy conservation project on district heating. The project gives a cost comparison between a biomass fuelled system for the local water heating/electric power supply and the development of hydroelectric power. The computer program ESENTRAL is used in the simulation. 3 drawings.

  17. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology

    International Nuclear Information System (INIS)

    Sebastian, F.; Royo, J.; Gomez, M.

    2011-01-01

    One way of producing nearly CO 2 free electricity is by using biomass as a combustible. In many cases, removal of CO 2 in biomass grown is almost the same as the emissions for the bioelectricity production at the power plant. For this reason, bioelectricity is generally considered CO 2 neutral. For large-scale biomass electricity generation two alternatives can be considered: biomass-only fired power plants, or cofiring in an existing coal power plant. Among other factors, two important aspects should be analyzed in order to choose between the two options. Firstly, which is the most appealing alternative if their Greenhouse Gases (GHG) Emissions savings are taken into account. Secondly, which biomass resource is the best, if the highest impact reduction is sought. In order to quantify all the GHG emissions related to each system, a Life Cycle Assessment (LCA) methodology has been performed and all the processes involved in each alternative have been assessed in a cradle-to-grave manner. Sensitivity analyses of the most dominant parameters affecting GHG emissions, and comparisons between the obtained results, have also been carried out.

  18. The California biomass industry prepares itself for a world of competition

    International Nuclear Information System (INIS)

    Morris, G.

    1997-01-01

    Responding to burgeoning environmental concerns and a pair of oil crises during the 1970s, California developed a strong program to promote the development of its renewable energy sources. By the early 1990s California led the world in the production of power using a variety of renewable resources, including biomass. However, world energy markets had also undergone radical change, and California was awash in cheap natural gas. With deregulation of the California electricity industry looming on the horizon, the future commercial viability of renewable energy production in general, and biomass production in particular, are in doubt. Renewable energy generators provide important benefits to the state's power system that are not reflected in the market price for wholesale electricity. These benefits include environmental advantages, rural employment and economic development, and resource diversity. In order to preserve these benefits, the biomass industry has proposed initiatives including the renewable portfolio standard and cost shifting strategies. Cost shifting transfers some of the costs of biomass power production away from the electric ratepayer and onto the beneficiaries of the services it provides. (author)

  19. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  20. Renewable energy policies and competition for biomass: Implications for land use, food prices, and processing industry

    International Nuclear Information System (INIS)

    Chen, Xiaoguang; Önal, Hayri

    2016-01-01

    We use a mathematical programming model to examine the impacts of simultaneous implementation of two US biofuel and bioenergy policies on commodity markets and spatial distribution of future cellulosic biorefineries. The key findings based on our numerical simulation are: (1) the number and average annual production capacity of cellulosic biofuel refineries depend on the total renewable fuels mandate; (2) the mix of cellulosic biomass feedstock depends on the assumptions about the production costs of energy crops and the amount of cropland that can be used for energy crops, but regardless of the assumptions crop residues are the primary biomass source to meet the demand for biomass for biofuel production and electricity generation; and (3) the biomass production areas would surround either future cellulosic biorefineries or the existing coal-based power plants to reduce the costs of biomass transportation. These findings have important implications for biorefinery investors and provide valuable policy insights for the selection of Biomass Crop Assistance Program project areas. - Highlights: •Impacts of US biofuel and bioenergy policies are analyzed. •The number and production capacity of biorefineries depend on the biofuel policies. •Crop residues are the primary biomass source for bioenergy production. •Biomass production areas will surround cellulosic biorefineries or power plants.

  1. Nuclear Power Infrastructure Development Program: Korean Education Program

    International Nuclear Information System (INIS)

    Choi, Sung Yeol; Hwang, Il Soon; Kim, Si Hwan

    2009-01-01

    Many countries have decided nuclear power for next energy resources as one of the long-term energy supply options. IAEA projected nuclear power expansion up to 2030 reaching between 447 GWe and 691 GWe compared to 370 GWe and 2660 TWh at the end of 2006. Both low and high projection is accompanied with new nuclear power plant constructions respectively 178 and 357, about 11 units per year, and most new construction is in North America, the Far East, Eastern Europe, the Middle East, and Southeast Asia. During the last forty years, thirty three countries have established commercial nuclear power programs but only some of them have developed comprehensive and large scale peaceful nuclear power infrastructure. Although various cooperation and guidance program of nuclear power infrastructure, developing appropriate environment and infrastructure of nuclear power plant is still challenging problems for developing countries launching nuclear power program. With increasing the demand of safety and safeguard from international society, creating appropriate infrastructure becomes essential requirements in national nuclear power program. In the viewpoint of developing countries, without sufficient explanation and proper guidance, infrastructure could be seen only as another barrier in its nuclear power program. The importance of infrastructure development would be obscured by ostensible business and infrastructure program can result in increasing entering barriers to peaceful nuclear power application field without benefits to developing countries and international community. To avoid this situation by providing enough explanation and realistic case example and cooperate with the countries wanting to establish comprehensive nuclear power infrastructure in the peaceful applications, we are creating the education program of infrastructure development with basic guidelines of the IAEA infrastructure series and Korean experiences from least developed country to advanced country

  2. Biomass Gasification for Power Generation Internal Combustion Engines. Process Efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia-Faure, Luis; Oliva-Ruiz, Luis; Pajarín-Rodríguez, Juan; Revilla-Suarez, Dennis

    2016-01-01

    Biomass is a renewable energy sources worldwide greater prospects for its potential and its lower environmental impact compared to fossil fuels. By different processes and energy conversion technologies is possible to obtain solid, liquid and gaseous fuels from any biomass.In this paper the evaluation of thermal and overall efficiency of the gasification of Integral Forestry Company Santiago de Cuba is presented, designed to electricity generation from waste forest industry. The gasifier is a downdraft reactor, COMBO-80 model of Indian manufacturing and motor (diesel) model Leyland modified to work with producer gas. The evaluation was conducted at different loads (electric power generated) of the motor from experimental measurements of flow and composition of gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25 %. (author)

  3. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  4. Thermodynamic simulation of a multi-step externally fired gas turbine powered by biomass

    International Nuclear Information System (INIS)

    Durante, A.; Pena-Vergara, G.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A.

    2017-01-01

    Highlights: • A realistic model for an EFGT fueled with solid biomass is presented. • Detailed submodels for the HTHE and the chemical reactions are incorporated. • An arbitrary number of compression and expansion stages is considered. • Model validation leads to good agreement with experimental results. • A layout with two-stage compression leads to good efficiencies and power output. - Abstract: A thermodynamic model for a realistic Brayton cycle, working as an externally fired gas turbine fueled with biomass is presented. The use of an external combustion chamber, allows to burn dirty fuels to preheat pure air, which is the working fluid for the turbine. It also avoids direct contact of ashes with the turbine blades, resulting in a higher life cycle for the turbine. The model incorporates a high temperature heat exchanger and an arbitrary number of turbines and compressors, with the corresponding number of intercoolers and reheaters. It considers irreversibilities such as non-isentropic compressions and expansions, and pressure losses in heat input and release. The composition and temperature of the combustion gases, as well as the variable flow rate of air and combustion gases, are calculated for specific biomasses. The numerical model for a single stage configuration has been validated by comparing its predictions with the data sheets of two commercial turbines. Results are in good agreement. Curves on the dependence of thermal efficiency and power output with the overall pressure ratio will be shown for several plant configurations with variable number of compression/expansion stages. Also the influence of different types of biomasses and their moisture will be analyzed on parameters such as fuel consumption and exhaust gases temperature. For a single step plant layout fueled with eucalyptus wood an efficiency of 23% is predicted, whereas for a configuration with two compressors and one turbine efficiency increases up to 25%. But it is remarkable

  5. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    International Nuclear Information System (INIS)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S.; Jurado, F.

    2009-01-01

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with.

  6. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S. [Telecommunication Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain); Jurado, F. [Electrical Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain)

    2009-08-15

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with. (author)

  7. Decentralised power generation using solid biomass - Know-how on combined heat and power generation for investors; Dezentrale Stromerzeugung mit Feststoffbiomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Gaegauf, Ch.; Sattler, M.

    2007-01-15

    This comprehensive report made by the Centre of Appropriate Technology and Social Ecology in Langenbruck, Switzerland presents a summary of know-how for investors on combined heat and power generation using solid biomass in installations with an electrical rating of up to one megawatt. Topics covered include a review of the reasons for using biomass to generate electricity - with the results of an analysis of potential in Switzerland and the European Union - and of economic assessment methods for the choice of technology and manufacturers. A SWOT (strengths, weaknesses, opportunities and threats) analysis of technologies is presented and existing biomass-fired installations in Switzerland are listed. A comparison with centrally-refined combustibles is presented and examples of cost and profitability calculations are given. Finally technological background information is presented, including information on 'forgotten' technologies.

  8. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  9. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Solantausta, Y; Wilen, C

    1996-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  10. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  11. Co-combustion of wood biomass in coal power plants, a contribution to energy turnaround and climate protection?; Die Mitverbrennung holzartiger Biomasse in Kohlekraftwerken. Ein Beitrag zur Energiewende und zum Klimaschutz?

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Claudia; Herr, Michael; Edel, Matthias; Seidl, Hannes

    2011-08-15

    Co-combustion of wood biomass in coal power plants is feasible at short notice and can is a low-cost option for climate protection. While other EU states have already provided funding mechanism, Germany has not followed this lead so far. Domestic wood resources are limited and unevenly distributed among the German regions, so that wood materials will have to be imported. During the past few years, the basic requirements for imports of wood were provided with the initiation of a global pellets market. Sustainability criteria for wood consumption were defined, and international certification systems were developed. The sustainability criteria should be extended to cover also wood-like materials and other biomass for power generation. The German EEG (Renewables Act) is a first step in this direction. Further, investments must be made in logistics capacities. The available logistics of coal power plants can be used with some minor modifications. In all, successful and sustainable international biomass markets may soon be available.

  12. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    Directory of Open Access Journals (Sweden)

    Ortwein Andreas

    2016-01-01

    Full Text Available Against the background of greenhouse gases causing climate change, combined heat and power (CHP systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat, different technologies are available for the final power conversion step. This includes steam cycles with steam turbines or engines and different working fluids (water, organic fluids, but also combustion based systems like gas turbines or gas engines. Further promising technologies include fuel cells with high electric efficiency. When integrating such CHP systems in buildings, there are different strategies, especially concerning electric power generation. While some concepts are focusing on base load production, others are regulated either by thermal or by electric power demand. The paper will give a systematic overview on the combination of thermo-chemical conversion of biomass and combined heat and power production technologies. The mentioned building integration strategies will be discussed, leading to conclusions for further research and development in that field.

  13. Commercialization analysis for fuels from Pinyon-Juniper biomass

    International Nuclear Information System (INIS)

    Morris, G.P.

    1993-01-01

    Pinyon-Juniper (P-J) is a predominant forest type in the Southwestern US, and in many areas it is considered a hinderance to optimal land use management. There is only limited commercial demand for the traditional products that are produced from PJ biomass, like Christmas trees, fence poles, and firewood, and their production does not always promote overall land-management goals. This research effort, which is supported by the DOE through the Western Regional Biomass Energy Program, identifies commercially feasible energy markets to promote sustainable land clearing operations for alternative land uses of P-J woodlands in Eastern Nevada. All of the woodlands under consideration are federal lands managed by the U.S. Bureau of Land Management, which is supportive of our concept. Three possible markets are available or could reasonably be developed to use fuels derived from PJ biomass in Nevada: (1) The existing market for biomass power-plant fuels in California. (2) The emerging market for fuels for residential pellet-burning stoves. (3) The development of a biomass-fired power plant in the Eastern Nevada Area. The study analyzes the cost of harvesting, processing, transporting, and delivering fuels derived from P-J biomass, and identifies commercialization strategies for bringing these fuels to market. The best opportunity for near term commercial conversion of P-J biomass to fuel lies in the area of entering the pellet-stove fuel market, establishing a 10,000 ton per year pelletizing facility in Lincoln County. Such a facility would have excellent access to markets in Las Vegas, Phoenix, Denver, and Salt Lake City

  14. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO{sub 2}; Beurteilung der Befoerderungsweise der Biomasse in das Kohlenkraftwerk im Blick auf die Beschraenkung der Emission von CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adamkiewicz, A. [Maritime Univ. of Szczecin (Poland). Faculty of Mechanical Engineering; Zenczak, W. [West Pomeranian Univ. of Technology, Szczecin (Poland). Fakultaet fuer Meerestechnik und Transport

    2014-07-01

    One from the activities taken in Poland in aim of limitation of CO{sub 2}, emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO{sub 2}, emission. The paper presents results of comparative analysis of CO{sub 2}, emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  15. Biomass co-firing for Delta Electricity

    International Nuclear Information System (INIS)

    Anon

    2014-01-01

    Electricity generator Delta Electricity has implemented a biomass co-firing program at its Vales Point power station on the Central Coast to reduce its reliance on coal and emissions of CO 2 . The program comprises two parts: direct co-firing with coal of up to 5% biomass; and development of Continuous Biomass Converter (CBC) technology with the Crucible Group to remove technology constraints and enable much higher rates of biomass co-firing. It is talking industrial scale tests. Delta increased biomass co-firing in 2013/14 to 32,000 tonnes, up from just 3,000 tonnes the previous year, and conducted biochar co-firing trials at a rate equivalent to 400,000 tonnes per annum to demonstrate the potential of CBC technology. It reduced CO 2 emissions in 2013/14 by more than 32,000 tonnes. 'Legislation and regulations define biomass as renewable,' said Delta Electricity sustainability manager Justin Flood. 'By preferring biomass over coal, the carbon in the coal is not burnt and remains locked up.' One biomass source is wood waste that would normally go to landfill, but the primary driver of Delta's recent increase in co-firing is sawmill residues. 'Previously there was a higher value market for the residues for paper pulp. However, when that market evaporated the timber industry was left with a sizable problem in terms of what to do with its residues and the loss of revenue,' said Flood. The way greenhouse gas accounting is conducted in Australia, with carbon emissions based on site activities, makes it difficult to undertake a life cycle assessment of the program. 'However, some of the international studies looking at this issue have concluded that the net carbon emissions of the biomass system are significantly lower than the coal system because of the uptake of carbon during biomass growth,' said Flood. Delta identified two challenges, sourcing the feedstock and that biomass conversion to electricity is slightly less

  16. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Korhonen, M [eds.; VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  17. Power production from biomass II with special emphasis on gasification and pyrolysis R and DD

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The Seminar on Power Production from Biomass II with special emphasis on gasification and pyrolysis R and DD, was organized by VTT Energy on 27 - 28 March 1995 in Espoo, Finland. All seminar speakers were invited in order to give a high-level overview of the achievements of biomass combustion, gasification and flash pyrolysis technologies. The sessions included presentations by all key industrial entrepreneurs in the field. The poster session was open to all groups interested. Globally bioenergy covers about 3 % of the primary energy consumption. Locally it has a significant role in many countries like in Finland, where bioenergy covers almost 15 % and peat 5 % of primary energy consumption. Today`s cost-effective heat and power production is based on industrial wood residues and spent cooking liquors in relatively large industrial units or municipal heating and power stations. Agricultural residues like straw and especially energy crops are becoming more interesting in co-utilization with other biomasses or fossil fuels. The seminar successfully displayed the status of present technologies as well as development targets for new gasification and flash pyrolysis technologies in the coming years. The many industrial participants showed that there are growing business possibilities in many countries all over the world. The proceedings include the most oral presentations given at the Seminar and also abstracts of poster presentations. (orig.)

  18. Combined hydraulic and biomass power - an answer to economic and ecological adaptation pressure on the energy supply system

    International Nuclear Information System (INIS)

    Pistauer, M.

    1991-01-01

    On the large scale, there will be an economic pressure in the European Communities on coal and oil from the CO 2 taxes. The economic and ecological advantages of a combination of hydraulic and biomass power in Austria are emphasized. In particular a biomass remote heating pilot project is announced. (Quittner)

  19. Biomass, a 750 billion euros bet

    International Nuclear Information System (INIS)

    Remoue, A.

    2010-01-01

    Despite the check of its previous attempts to develop power generation from biomass fuels, the French government has announced the financing of 32 new projects of biomass fueled power plants representing 266 MW of additional power. Today's production represents 700 MW and the goal is to raise this production to 1230 MW by 2012 and 3530 MW by 2020. The development of biomass projects requires more important shareholders equity than wind power or solar energy projects and a good organization of the supply chain. (J.S.)

  20. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Van Wijk, A.

    1995-05-01

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NO x formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  1. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  2. Torrefied biomass for use in power station sector; Torrefizierte Biomasse zum Einsatz im Kraftwerkssektor

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Schaubach, Kay [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Kiel, Jaap; Carbo, Michiel [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands); Wojcik, Magdalena [OFI Austrian Research Institute for Chemistry and Technology, Vienna (Austria)

    2013-10-01

    In the torrefaction process biomass is heated up in the absence of oxygen to a temperature of at least 250 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage. Torrefaction also creates superior properties for biomass in many major end-use applications. The process has the potential to provide a significant contribution to an enlarged raw material portfolio for sustainable biomass fuel production inside Europe by including both agricultural and forestry biomass (residues). The article will briefly introduce the concept and objectives of the project and the different torrefaction technologies involved and then focus on the results obtained within the first project phase of the EU-project SECTOR. This comprises production of torrefied biomass batches, subsequent densification (pelletisation and briquetting), characterisation and Round Robin testing of characterisation methods, initial logistics and end-use performance testing, material safety data sheet preparation and sustainability assessment along the value chain. (orig.)

  3. Successful experience with limestone and other sorbents for combustion of biomass in fluid bed power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Coe, D.R. [LG& E Power Systems, Inc., Irvine, CA (United States)

    1993-12-31

    This paper presents the theoretical and practical advantages of utilizing limestone and other sorbents during the combustion of various biomass fuels for the reduction of corrosion and erosion of boiler fireside tubing and refractory. Successful experiences using a small amount of limestone, dolomite, kaolin, or custom blends of aluminum and magnesium compounds in fluid bed boilers fired with biomass fuels will be discussed. Electric power boiler firing experience includes bubbling bed boilers as well as circulating fluid bed boilers in commercial service on biomass fuels. Forest sources of biomass fuels fired include wood chips, brush chips, sawmill waste wood, bark, and hog fuel. Agricultural sources of biomass fuels fired include grape vine prunings, bean straw, almond tree chips, walnut tree chips, and a variety of other agricultural waste fuels. Additionally, some urban sources of wood fuels have been commercially burned with the addition of limestone. Data presented includes qualitative and quantitative analyses of fuel, sorbent, and ash.

  4. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    NARCIS (Netherlands)

    Miedema, Jan H.; Benders, Rene M. J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain

  5. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  6. Waste-based biomass to power plants with high portions

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Taipale, R. (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)); Hupa, M.; Yrjas, P. (Aabo Akademi, Turku (Finland)); Jokiniemi, J.; Sippula, O. (Univ. of Kuopio (Finland))

    2009-07-01

    Recycling of chemicals back to processes as effectively as possible is sustainable development. Landfilling and agricultural use of sewage sludge (SWS) produces methane which is a strong greenhouse gas. Our earlier project 'Corraway' funded by Tekes ClimBus programme and Finnish industry indicated that iron and aluminium sulphates can destroy effectively alkali chlorides at furnace conditions preventing Cl deposition to heat transfer surfaces. Cl in the deposits is the main reason to superheater corrosion with biomass- containing feedstocks. These sulphates have been used as process chemicals in wastewater treatment, and therefore they are present in SWS. SWS-originated combustion products will pass the whole furnace when SWS is mixed to the main fuel. The furnace includes oxidising and reducing zones. Therefore it is not clear if the SWS-originated sulphur remains in an effective form in the point view of alkali chlorides destruction. The project work included thorough fuel analysis, pilot-scale combustion tests with blends of risky biomass and SWS and research of sampling techniques to detect alkali compounds. The combustion experiments proved the power of SWS originated sulphur to destroy alkali chlorides in the furnace and suggest strongly to continue this research. The order of power of the two SWS tested was different than expected indicating need to produce more thorough results. SWS may contain much minerals which lowers its value as a fuel. It can be possible to increase sulphur content and to decrease ash content in the sludge during SWS processing and dry and pelletise the sludge to strengthen further its value as a protective and as a fuel. (orig.)

  7. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K; Keraenen, H [Enviropower Inc., Espoo (Finland)

    1997-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  9. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  10. Danish Experiences with Deposit Probe Measurements in Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2012-01-01

    Several measuring campaigns with focus on deposition behavior have been conducted at full-scale power plants firing biomass in Denmark. These campaigns have been reviewed in this work. The focus is the obtained experiences on deposit formation, shedding and chemistry. When comparing results from...

  11. Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.

    1999-01-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

  12. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  15. Reduction of CO2 emission by INCAM model in Malaysia biomass power plants during the year 2016.

    Science.gov (United States)

    Amin, Nor Aishah Saidina; Talebian-Kiakalaieh, Amin

    2018-03-01

    As the world's second largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than that of fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO 2 emissions from two biomass thermal power plants. The CO 2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME), as alternative fuels for powering steam and gas turbines, were determined using the INCAM model. Each section emitting CO 2 in the power plant, known as the carbon accounting center (CAC), was measured for its carbon profile (CP) and carbon index (CI). The carbon performance indicator (CPI) included electricity, fuel and water consumption, solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile (CEP), based on the total monthly carbon production, were determined across the CPI. Various innovative strategies resulted in a 20%-90% reduction of CO 2 emissions. The implementation of reduction strategies significantly reduced the CO 2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce the CO 2 emissions and increase the potential for waste to energy initiatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Feasibility study : identifying economic opportunities for bugwood and other biomass resources in Alberta and BC

    International Nuclear Information System (INIS)

    2008-04-01

    This feasibility study discussed energy technologies for biomass feedstocks including mill residues, roadside residues, and non-merchantable tree stands in Alberta and British Columbia (BC). The study demonstrated that the lack of mill residue resources means that targeted government support may be needed to help the energy industry to use more costly resources such as roadside residue or bugwood. Government policies are also needed to support the long-term availability of biomass supplies in order to lower the supply risks related to the use of biomass resources in the energy industry. Lower prices for power in both provinces make the use of biomass unfavourable for small-scale technologies under 10 MW. However, cogeneration projects using biomass showed higher returns when power conversion efficiency was low. Higher revenues were generated from heat sales displacing natural gas than from electricity sales at current tariffs. Large-scale biomass power plants were viable when lower-cost feedstocks were available. Bio-oils were suitable as supplements for heat generation in cogeneration processes. Pellet production was also viable using less expensive feedstocks.The co-firing of biomass at coal plants required little capital investment. The study demonstrated that Alberta's power production incentive of $60 per MWh was sufficient to improve the economics of small-scale projects. It was recommended that the program be continued and paid out over a period of 10 years. It was concluded that specific electricity tariffs and incentives are needed to accelerate regrowth and create a viable biomass industry for the future. 33 refs., 45 tabs., 17 figs

  17. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  18. IMPROVING SPECIFIC POWER CONSUMPTION FOR MECHANICAL MIXING OF THE FEEDSTOCK IN A BIOGAS FERMENTER BY MECHANICAL DISINTEGRATION OF LIGNOCELLULOSE BIOMASS

    Directory of Open Access Journals (Sweden)

    Lukas Kratky

    2014-10-01

    Full Text Available Lignocellulosic biomass particles in biogas fermenter batch either sediment towards vessel bottom or rise towards batch surface, where they float and form a compact thick scum. These processes have primarily the negative influence on batch homogeneity, on evenness of batch temperature field, on removal of produced biogas bubbles out of liquid batch and also on mass transfer among microorganisms. These facts result in non-effective usage of biomass energy-potential that entails in low biogas yields. Therefore, good mixing of bioreactor batch is very important in order to stabilize anaerobic digestion process. The aims of the present study were to evaluate the impact of wheat straw disintegration and its hydration on hydrodynamic behaviour and on specific power consumption for mechanical mixing of wheat straw-water suspension. Based on experimental results, it was concluded that both hydration and mechanical disintegration of lignocellulosic biomass significantly improve homogeneity and pump-ability of biomass-water batches. Wheat straw hydration itself decreases specific power consumption for batch mixing by 60 % towards untreated straw. Moreover, mechanical disintegration itself decreases specific power consumption by 50 % at least towards untreated hydrated straw.

  19. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  20. Development and delivery of a workshop methodology: planning for biomass power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Gray, A.J.; Delbridge, P.; Trevorrow, E.; Pile, C.

    2001-07-01

    This report gives details of the approach used to develop a workshop methodology to help planners and stakeholders address key issues that may arise when submitting a planning application for a biomass power plant in the light of the UK government's energy and climate change targets. The results of interviews with stakeholders (central government, regulatory authorities, developers, planners, non-governmental organisations, local community, resident groups) are summarised, and the NIMBY (not in my back yard) syndrome, the lack of trust in the developer, and lack of awareness of the use of biomass are discussed. Details are given of the design and testing of the workshop methodology and the resulting workshop methodology and workbook guide aimed at understanding the stakeholder issues and concerns through stakeholder discussions.

  1. Green Power Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Patrick Barry [Univ. of Iowa, Iowa City, IA (United States)

    2013-01-28

    National energy policy supports the gathering of more detailed and authoritative data on the introduction of renewable bio-based fuels into new and existing district energy systems via the application of biomass gasification. The University of Iowa developed a biomass-fueled, university-scale steam generation system based on biomass gasification technologies. The system serves as a state-of-the-art research and educational facility in the emerging application of gasification in steam generation. The facility, which includes a smaller down-draft gasifier and a larger multi-stage biomass boiler, was designed to operate primarily on wood-based fuels, but has provisions for testing other biomass fuel sources produced within a 100-mile radius, providing enough flexibility to meet the fluctuating local supply of biomass from industry and Midwest agriculture. The equipment was installed in an existing, staffed facility. The down-draft gasifier unit is operated by College of Engineering staff and students, under the direct technical supervision of qualified Utilities plant staff. The Green Power Initiative also includes a substantial, innovative educational component. In addition to an onsite, graduate-level research program in biomass fuels, the investigators have integrated undergraduate and graduate level teaching – through classroom studies and experiential learning – and applied research into a biomass-based, university-scale, functioning power plant. University of Iowa is unique in that it currently has multiple renewable energy technologies deployed, including significant biomass combustion (oat hulls) at its Main Power Plant and a new reciprocating engine based renewable district energy system. This project complements and supports the national energy policy and State of Iowa initiatives in ethanol and biodiesel. Byproducts of ethanol and biodiesel processes (distiller grains) as well as industry residues (oat hulls, wood chips, construction and demolition

  2. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  3. Power/heat production from biomass in Finland - Two modern Finnish examples

    International Nuclear Information System (INIS)

    Aeijaelae, M.

    1997-01-01

    According to this conference paper, Finland is a leading country in the utilization of biomass fuels for power and heat production. One reason is that peat and wood are the only indigenous fuels available in Finland. Other reasons are the strong forest industry and the widely adopted combined heat and power (CHP) production. CHP production is typical of process industry and municipal district heating. The most common boiler type in modern CHP plants is the fluidized bed type. District heating is the cheapest heating in municipalities with a few thousand inhabitants. Electric heating dominates in sparsely populated regions. CHP becomes attractive for populations of more than ten thousand. Two examples are described: (1) Rauhalahti Power Plant produces 140 MW of district heat, 65 MW of industrial steam and 87 MW of electricity. (2) Kuusamo Power Plant produces 6.1 MW electric energy and 17.6 MW district heat; its unique feature is the utilization of the bed mixing dryer for drying of the fuel prior to combustion, this dryer being the first of its kind in the world. 1 figure

  4. Green power programs in Canada : 2002 : Overview of Government green power policies, utility green power development programs, green power and certificate marketing initiatives, and their benefits

    International Nuclear Information System (INIS)

    Bramley, M.; Boustie, S.; Vadgama, J.; Wieler, C.; Pape-Salmon, A.; Holmes, R.

    2003-11-01

    Green power is generally defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. Green power offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities associated with these four categories in 2002 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities in the report, such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Each category was presented in detail. The information included in the report was based on surveys sent to each program proponent. Follow-up communications and other publicly available information was also included. New programs operating in 2003 or currently under development were listed. refs., 8 tabs

  5. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.

    Science.gov (United States)

    Zhu, Baohua; Sun, Faqiang; Yang, Miao; Lu, Lin; Yang, Guanpin; Pan, Kehou

    2014-12-01

    The potential use of microalgal biomass as a biofuel source has raised broad interest. Highly effective and economically feasible biomass generating techniques are essential to realize such potential. Flue gas from coal-fired power plants may serve as an inexpensive carbon source for microalgal culture, and it may also facilitate improvement of the environment once the gas is fixed in biomass. In this study, three strains of the genus Nannochloropsis (4-38, KA2 and 75B1) survived this type of culture and bloomed using flue gas from coal-fired power plants in 8000-L open raceway ponds. Lower temperatures and solar irradiation reduced the biomass yield and lipid productivities of these strains. Strain 4-38 performed better than the other two as it contained higher amounts of triacylglycerols and fatty acids, which are used for biodiesel production. Further optimization of the application of flue gas to microalgal culture should be undertaken. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Life cycle assessment of fossil and biomass power generation chains. An analysis carried out for ALSTOM Power Services

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ch.

    2008-12-15

    This final report issued by the Technology Assessment Department of the Paul Scherrer Institute (PSI) reports on the results of an analysis carried out on behalf of the Alstom Power Services company. Fossil and biomass chains as well as co-combustion power plants are assessed. The general objective of this analysis is an evaluation of specific as well as overall environmental burdens resulting from these different options for electricity production. The results obtained for fuel chains including hard coal, lignite, wood, natural gas and synthetic natural gas are discussed. An overall comparison is made and the conclusions drawn from the results of the analysis are presented.

  7. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  8. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  9. Alkali deposits found in biomass power plants: A preliminary investigation of their extent and nature. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1995-04-15

    Alkali in the ash of annual crop biomass fuels creates serious fouling and slagging in conventional boilers. Even with the use of sorbents and other additives, power plants can only fire limited amounts of these fuels in combination with wood. The National Renewable Energy Laboratory (NREL), US Department of Energy, and the biomass power industry carried out eight full-scale firing tests and several laboratory experiments to study the nature and occurrence of deposits with the goal of increasing the quantities of these biofuels that can be used. This report describes the results of the laboratory and power plant tests that included: tracking and analyzing fuels and deposits by various methods; recording operating conditions; and extensive laboratory testing. The paper describes the occurrence of deposits, fuel and deposit analyses, boiler design and operation, fouling and slagging indicators, and recommendations. 37 refs., 41 figs., 17 tabs.

  10. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  11. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  12. Proceedings of the SERI Biomass Program Principal Investigators' Review Meeting: Aquatic Species Program Reports; 23-25 June 1982, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    The Aquatic Species Program (ASP) is concerned with how plant biomass that naturally occurs in wetland or submerged areas is utilized. Processes are being developed in this program to make use of those aquatic species, capitalizing on their inherent capacity for rapid growth as well as on their extraordinary chemical compositions.

  13. High Temperature Corrosion of Superheater Materials for Power Production through Biomass

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Nielsen, Karsten agersted

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures on selected materials in well-defined corrosive gas environments. An experimental...... facility has been established wherein the planned exposures are completed. Specimens were exposed in combined synthetic flue gas at temperatures up to 900C. The specimens could be cooled to 300C below the gas temperature. Gas flow and gas mixture can be varied according to the conditions found in a power......) on the corrosion progress has been investigated.In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525C, 600C and 700C. The ashes utilised are from a straw-fired power plant and a synthetic ash composed...

  14. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    Science.gov (United States)

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Virginia Power's capacity acquisition program

    International Nuclear Information System (INIS)

    Carney, R.W.

    1991-01-01

    Virginia Power is a utility with a growing demand for electricity. To meet that growth it has embarked on an aggressive program to encourage the construction of privately-owned generating plants. In 1988 it conducted the largest competitive acquisition program by any utility to date. Virginia Power has retained the option to build plants if the bids it receives are too costly or do not meet the needs of its customers. This paper describes the situation at Virginia Power, the program it has implemented, and the capacity additions which are scheduled between 1989 and 1995

  16. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  17. Thermal gasification of biomass technology development in the U.S.A

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S P [Inst. of Gas Technology, Des Plaines, IL (United States); Bain, R L; Craig, K R [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  18. Thermal gasification of biomass technology development in the U.S.A

    International Nuclear Information System (INIS)

    Babu, S.P.; Bain, R.L.; Craig, K.R.

    1996-01-01

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  19. Thermal gasification of biomass technology development in the U.S.A

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.P. [Inst. of Gas Technology, Des Plaines, IL (United States); Bain, R.L.; Craig, K.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration

  20. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related...... to thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... of these activities has been fruitful. The two- stage gasifier was developed for gasification aiming at decentralised cogeneration of heat and power. The development ranged from lap-top scale equipment to a fully automatic plant with more than 2000 hours of operation. Compared to most other gasification processes...

  1. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  2. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  3. Biomass energy systems program summary. Information current as of September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  4. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  5. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    OpenAIRE

    Ortwein Andreas

    2016-01-01

    Against the background of greenhouse gases causing climate change, combined heat and power (CHP) systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated) electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat), different techno...

  6. Feasibility study for biomass power plants in Thailand. Volume 1. Main report. Export trade information

    International Nuclear Information System (INIS)

    1997-01-01

    This study, conducted by Black and Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachoengsao, Suphan Buri, and Pichit in Thailand. The Main Report is divided into the following sections: (1.0) Executive Study; (2.0) Project Objectives; (3.0) Review of Combustion Technology for Biomass Fueled Steam Generator Units; (4.0) Conceptual Design; (5.0) Plant Descriptions; (6.0) Plant Operations Staffing; (7.0) Project Schedule; (8.0) Project Cost Estimate; (9.0) Financial Analysis; Appendix - Financial Analysis

  7. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    International Nuclear Information System (INIS)

    Faaij, A.; Meuleman, B.

    1997-12-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated by means of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from other studies. In addition, external costs are estimated for nitrogen leaching and for the use of agrochemicals for energy crop production. The average private costs for biomass and coal based power generation are projected to be 68 and 38 mECU/kWh respectively in the year 2005. It is assumed that biomass production takes place on fallow land. Coal mining is excluded from the analysis. If the quantified external damages and benefits are included the cost range for bio-electricity is 53-70 mECU/kWh and 45-72 mECU/kWh for coal. Indirect economic effects (increment of Gross Domestic Product) and the difference in CO2 emissions are the most important distinguishing factors between coal and biomass in economic terms. Damage costs of other emissions to air (NOx, SO2, dust and CO) are of the same order of magnitude for both coal and biomass (coal mining excluded). In this analysis environmental impacts of energy farming are compared mainly to fallow land focused on the use of fertilizers and agrochemicals. The related damage costs appear to be low but should be considered as a preliminary estimate only. The quantitative outcomes should not be considered as the external costs of the two fuel cycles studied. Many impacts have not been valued and large uncertainties persist e.g. with respect to the costs of climate change and numerous dose response relations. More detailed analysis is required with respect to macro-economic impacts. The results serve as a first indication, but the outcomes plead for the support of bio-electricity production and/or taxation of coal based power generation. 88 refs

  8. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  9. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  10. Biomass energy technologies for rural infrastructure and village power - opportunities and challenges in the context of global climate change concerns

    International Nuclear Information System (INIS)

    Kishore, V.V.N.; Bhandari, P.M.; Gupta, P.

    2004-01-01

    The potential and role of biomass resources in developing countries for addressing global climate change concerns are highlighted using India as a case study. Promotion of technologies, which use biomass more efficiently, is seen as a key strategy to integrate the concerns of both developing countries and developed countries. The role of various biomass technologies for improving rural infrastructure and village power is discussed in detail. A vision of establishing and running a chain of rural energy service companies, operating with a basket of devices and technologies, under the general provisions of CDM, is examined for commercialization and mainstreaming of biomass technologies which have achieved reasonable levels of maturity. (author)

  11. The Use of Fire Radiative Power to Estimate the Biomass Consumption Coefficient for Temperate Grasslands in the Atlantic Forest Biome

    Directory of Open Access Journals (Sweden)

    Bibiana Salvador Cabral da Costa

    Full Text Available Abstract Every year, many active fire spots are identified in the satellite images of the southern Brazilian grasslands in the Atlantic Forest biome and Pampa biome. Fire Radiative Power (FRP is a technique that uses remotely sensed data to quantify burned biomass. FRP measures the radiant energy released per time unit by burning vegetation. This study aims to use satellite and field data to estimate the biomass consumption rate and the biomass consumption coefficient for the southern Brazilian grasslands. Three fire points were identified in satellite FRP products. These data were combined with field data, collected through literature review, to calculate the biomass consumption coefficient. The type of vegetation is an important variable in the estimation of the biomass consumption coefficient. The biomass consumption rate was estimated to be 2.237 kg s-1 for the southern Brazilian grasslands in Atlantic Forest biome, and the biomass consumption coefficient was estimated to be 0.242 kg MJ-1.

  12. Integrated firewood production, ensures fuel security for self sustaining Biomass Power Plants reduces agricultural cost and provides livestock production

    International Nuclear Information System (INIS)

    Lim, Andre

    2010-01-01

    Growing concerns on the impact of climate change, constraints on fossil fuel electricity generation and the likelihood of oil depletion is driving unprecedented growth and investment in renewable energy across the world. The consistency of biomass power plants makes them capable of replacing coal and nuclear for base-load. However experience had shown otherwise, climate change reduces yields, uncontrolled approvals for biomass boilers increased demands and at times motivated by greedy farmers have raised price of otherwise a problematic agricultural waste to high secondary income stream forcing disruption to fuel supply to power plants and even their shutting down. The solution is to established secured fuel sources, fortunately in Asia there are several species of trees that are fast growing and have sufficient yields to make their harvesting economically viable for power production. (author)

  13. International and Domestic Market Opportunities for Biomass Power: Volumes I and II

    Energy Technology Data Exchange (ETDEWEB)

    1998-09-01

    This report examines the domestic and international markets for biopower. Domestic and foreign markets present fundamentally different challenges to private power developers. Volume I focuses on the domestic market for biopower. The domestic challenge lies in finding economically viable opportunities for biopower. Vol. I outlines the current state of the U.S. biomass industry, discusses policies affecting biomass development, describes some demonstration projects currently underway, and discusses the future direction of the industry. Volume II focuses on the international market for biopower. Recent literature states that the electricity investment and policy climate in foreign markets are the key elements in successful private project development. Vol. II discusses the financing issues, policy climate, and business incentives and barriers to biopower development. As India and China are the largest future markets for biopower, they are the focus of this volume. Three other top markets- -Brazil, Indonesia, and the Philippines--are also discussed. Potential financial resources wrap up the discussion.

  14. Biomass low-temperature gasification in a rotary reactor prior to cofiring of syngas in power boilers

    International Nuclear Information System (INIS)

    Ostrowski, Piotr; Maj, Izabella; Kalisz, Sylwester; Polok, Michał

    2017-01-01

    Highlights: • An innovative method of gasification with use of flue gas was investigated. • Gasification temperature ranging from 350 °C was considered. • Discussed gasification unit is connected to a power boiler. • Syngas with combustible components is recirculated to the boiler. • Wide range of biomass and waste fuels can be used as a feedstock. - Abstract: The paper presents results of the investigation of an innovative biomass and alternative fuel low-temperature gasification method before co-firing in industrial or power plant boilers. Before running industrial-size installation, laboratory tests were carried out to determine usability of alternative fuels to low-temperature gasification process. Tests were conducted in a laboratory reactor designed and constructed specifically for this purpose. The experimental stand enables recording of the weight loss of a sample and syngas composition. The process occurs for a fuel sample of a constant weight and known granulation and with a flue gas of known composition used as a gasifying agent. The aim of the laboratory research was to determine the usability of selected biomass fuel for indirect co-firing in power boilers and to build a knowledge base for industrial-size process by defining the process kinetics (time for fuel to remain in the reactor), recommended fuel granulation and process temperature. Presented industrial-size gasification unit has been successfully built in Marcel power plant in Radlin town, Poland. It consist an innovative rotary gasification reactor. Gasification process takes place with use of flue gas from coal and coke-oven fired boiler as a gasifying agent with recirculation of resulting gas (syngas) with combustible components: CO, H 2 , CH 4 . C n H m to the boiler’s combustion chamber. The construction of the reactor allows the use of a wide range of fuels (biomass, industrial waste and municipal waste). This paper presents the results of the reactor tests using coniferous

  15. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  16. Proposal and analysis of a polygeneration system for power and methanol based on natural gas and biomass as co-feed

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Q.; Hong, H.; Jin, H.G.; Cai, R.X. [Chinese Academy of Sciences, Beijing (China). Inst. of Engineering Thermophysics

    2008-07-01

    Biomass is getting increasing attention as a potential source of renewable energy as a result of global issues such as sustainable energy and reduction of greenhouse gases. Biomass is an abundant feedstock containing mainly carbon, oxygen, hydrogen, and volatile matter. The purpose of this paper was to propose a new biomass-natural gas based polygeneration system, with partial recycling unreacted syngas and without the shift process for methanol production and power generation. The paper identified the features of the proposed system and that determine the exergy ratio of chemical production and thermodynamic performance of the system. The paper provided an introduction to individual systems such as the natural gas to methanol system and biomass to methanol system. The paper also presented the suggested polygeneration system based on biomass and natural gas as co-feed. Processes that were described included syngas preparation; distillation process; and power generation. System evaluation criteria and performance were identified. It was concluded that bio-energy made the best utilization and overcame the disadvantages of the polygeneration system, partly taking the place of natural gas which is non-renewable. Bio-energy could reduce carbon dioxide emission for it is carbon neutrality. 18 refs., 3 tabs., 9 figs.

  17. Biomass energy utilisation in Malaysia - prospects and problems

    International Nuclear Information System (INIS)

    Kong, Hoi Why

    1999-01-01

    An assessment of the contribution of biomass fuels in the rubber, palm oil, cocoa, brick and charcoal industries is given with biomass accounting for about 16% of the total power demand; equivalent to about 2.48 MTOE. The use of biomass in Malaysia is by the direct combustion of wood for heat and power and by gasification with power production via a diesel engine. Challenges facing Malaysia include a rapid increase in demand for power, the need for development funding, environmental issues, and increases in the price of rubber wood, the main fuel source. (uk)

  18. Economic analysis of biomass power generation schemes under renewable energy initiative with Renewable Portfolio Standards (RPS) in Korea.

    Science.gov (United States)

    Moon, Ji-Hong; Lee, Jeung-Woo; Lee, Uen-Do

    2011-10-01

    An economic analysis of biomass power generation was conducted. Two key technologies--direct combustion with a steam turbine and gasification with a syngas engine--were mainly examined. In view of the present domestic biomass infrastructure of Korea, a small and distributed power generation system ranging from 0.5 to 5 MW(e) was considered. It was found that gasification with a syngas engine becomes more economically feasible as the plant size decreases. Changes in the economic feasibilities with and without RPS or heat sales were also investigated. A sensitivity analysis of each system was conducted for representative parameters. Regarding the cost of electricity generation, electrical efficiency and fuel cost significantly affect both direct combustion and gasification systems. Regarding the internal rate of return (IRR), the heat sales price becomes important for obtaining a higher IRR, followed by power generation capacity and electrical efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Transport and supply logistics of biomass fuels: Vol. 1. Supply chain options for biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Browne, M; Palmer, H; Hunter, A; Boyd, J

    1996-10-01

    The study which forms part of a wider project funded by the Department of Trade and Industry, looks at the feasibility of generating electricity from biomass-fuelled power stations. Emphasis is placed on supply availabilty and transport consideration for biomass fuels such as wood wastes from forestry, short rotation coppice products, straw, miscanthus (an energy crop) and farm animal slurries. The study details the elements of the supply chain for each fuel from harvesting to delivery at the power station. The delivered cost of each fuel, the environmental impact of the biomass fuel supply and other relevant non-technical issues are addressed. (UK)

  20. The NASA CSTI High Capacity Power Program

    International Nuclear Information System (INIS)

    Winter, J.M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed

  1. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com [Department of Mechanical Engineering, NIT, Agarpara, Kolkata – 700109, West Bengal (India); Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com [Department of Mechanical Engineering, IIEST, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio

  2. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  3. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  4. Novel Role of Rural Official Organization in the Biomass-Based Power Supply Chain in China: A Combined Game Theory and Agent-Based Simulation Approach

    Directory of Open Access Journals (Sweden)

    Kaiyan Luo

    2016-08-01

    Full Text Available Developing biomass-based power generation is helpful for China to reduce the dependence on fossil fuels and to release the targets of carbon emission peak. The decentralized farming method leads to Chinese farmers’ weak willingness to collect and sell crop residues to biomass-based power plants. The purpose of this paper is to solve the issue by proposing a novel biomass feedstock supply model with China’s rural official organization—villagers’ committee, which has great influence on villagers’ decision making. Introducing it into the biomass-based power supply chain is beneficial to motivating farmers’ supplying enthusiasm. A combined game theory and agent-based simulation approach is applied to study the effectiveness of this new supply model. Multiple simulation scenarios are built to study impacts of different simulation parameters, and results show that farmers tend to supply more biomass material for electricity production in the proposed villagers’ committee model, compared with the two conventional supply models, direct-deal and broker models. The supply model incorporating the rural official organization can ensure the feedstock sufficiency for plants. A proper model design depends on the feed-in tariff subsidy for biomass-based electricity, feedstock shipping distance, performance appraisal system of the villagers’ committee, as well as farmers’ utility weights on net income and public service improvement.

  5. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  6. Assessing the role of federal community assistance programs to develop biomass utilization capacity in the Western United States

    Science.gov (United States)

    Dennis R. Becker; Mark Nechodom; Adam Barnett; Tad Mason; Eini C. Lowell; John Shelly; Dean Graham

    2008-01-01

    As forest biomass utilization becomes cost effective to harvest, more areas at risk of catastrophic wildfire can be thinned of dense brush and small-diameter trees. In an effort to increase biomass utilization, the USDA Forest Service granted more than $36 million in National Fire Plan-Economic Action Program funds in the Western United States during fiscal years 2001...

  7. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  8. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  9. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  10. Biomass power for rural development. Quarterly report, September 23, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.T.

    1997-02-01

    Goals for the biomass power for rural development include: expanded feedstock research and demonstration activities to provide soil-specific production costs and yield data, as well as better methods for harvest and transport; four thousand acres of feedstock available for fueling a commercial venture; comparison of the feasibility of gasification and cocombustion; designs for on-site switchgrass handling and feeding system; a detailed assessment of utilizing switchgrass for gasification and cocombustion to generate electricity using turbines and fuel cells.

  11. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    sustainable carbon sink will be developed. Clean energy production from biomass (such as ethanol, biodiesel, producer gas, bio-methane) could be viable option to reduce fossil fuel consumption. Electricity generation from biomass is increasing throughout the world. Co-firing of biomass with coal and biomass combustion in power plant and CHP would be a viable option for clean energy development. Biomass can produce less emission in the range of 14% to 90% compared to emission from fossil for electricity generation. Therefore, biomass could play a vital role for generation of clean energy by reducing fossil energy to reduce greenhouse gas emissions. The main barriers to expansion of power generation from biomass are cost, low conversion efficiency and availability of feedstock. Internationalization of external cost in power generation and effective policies to improve energy security and carbon dioxide reduction is important to boost up the bio-power. In the long run, bio-power will depend on technological development and on competition for feedstock with food production and arable land use.

  12. Techno-economic Assessment of Biomass Pellets for Power Generation in India

    OpenAIRE

    Purohit, P.; Chaturvedi, V.

    2016-01-01

    Biomass pellet production has increased considerably in recent years, mainly due to the demand created by policies and bioenergy-use targets in the European Union (EU). Global biomass pellet production was 24.1 million tonne (Mt) in 2014. In this study, a preliminary attempt has been made to assess the techno-economic feasibility of biomass pellets for electricity generation in India produced from biomass surplus available from agriculture and forestry/wasteland. Biomass surplus availability ...

  13. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  14. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  15. New bern biomass to energy project Phase I: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Parson, F.; Bain, R.

    1995-10-01

    Weyerhaeuser, together with Amoco and Carolina Power & Light, performed a detailed evaluation of biomass gasification and enzymatic processing of biomass to ethanol. This evaluation assesses the potential of these technologies for commercial application to determine which technology offers the best opportunity at this time to increase economic productivity of forest resources in an environmentally sustainable manner. The work performed included preparation of site-specific plant designs that integrate with the Weyerhaeuser New Bern, North Carolina pulp mill to meet overall plant energy requirements, cost estimates, resource and product market assessments, and technology evaluations. The Weyerhaeuser team was assisted by Stone & Webster Engineering Corporation and technology vendors in developing the necessary data, designs, and cost information used in this comparative study. Based on the information developed in this study and parallel evaluations performed by Weyerhaeuser and others, biomass gasification for use in power production appears to be technically and economically viable. Options exist at the New Bern mill which would allow commercial scale demonstration of the technology in a manner that would serve the practical energy requirements of the mill. A staged project development plan has been prepared for review. The plan would provide for a low-risk and cost demonstration of a biomass gasifier as an element of a boiler modification program and then allow for timely expansion of power production by the addition of a combined cycle cogeneration plant. Although ethanol technology is at an earlier stage of development, there appears to be a set of realizable site and market conditions which could provide for an economically attractive woody-biomass-based ethanol facility. The market price of ethanol and the cost of both feedstock and enzyme have a dramatic impact on the projected profitability of such a plant.

  16. Pellets for Power: sustainable biomass import from Ukraine : public final report

    NARCIS (Netherlands)

    Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P.; Sluis, van der T.; Galytska, M.; Kulyk, M.; Jamblinne, de P.; Kraisvitnii, P.; Rii, O.; Hoekstra, T.

    2013-01-01

    This project responds to the mismatch between on the one hand a growing demand for biomass on the Dutch and EU energy markets with a limited biomass potential and on the other hand large amounts of biomass and biomass potential currently underutilised in Ukraine. Ukraine itself is seen as a very

  17. Green power production by co-gasification of biomass in coal-fired oxygen-blown entrained-flow based IGCC processes

    Energy Technology Data Exchange (ETDEWEB)

    Van Ree, R; Korbee, R; De Smidt, R P; Jansen, D [ECN Fuels Conversion and Environment, Petten (Netherlands); Baumann, H R; Ullrich, N [Krupp Uhde, Dortmund (Germany); Haupt, G; Zimmerman, [Siemens, Erlangen (Germany)

    1998-11-01

    The use of coal for large scale power production meets a growing environmental concern. In spite of the fact that clean coal conversion technologies integrated with high-efficiency power production facilities, such as IGCC, are developed, the aim for sustainable development strives for a power production system based on renewable energy sources. One of the most promising renewable energy sources that can be used in the Netherlands is biomass, i.e. organic waste materials and/or energy crops. To accelerate the introduction of this material, in a technical and economically acceptable way, co-gasification with fossil fuels, in particular coal, in large scale IGCC processes is considered. In this paper the technical feasibility, economic profitability, and environmental acceptability of co-gasification of biomass in coal-fired oxygen-blown entrained-flow based IGM is discussed. Both a base-case coal-fired oxygen-blown entrained-flow based IGCC process - showing strong resemblance to the Puertollano IGCC plant in Spain - and three co-gasification concepts, viz.: (1) a concept with separate dry coal and biomass feeding systems, (2) a concept with a combined dry coal/biomass-derived pyrolysis char feeding system, and (3) a concept with parallel biomass pre-treatment/gasification and combined fuel gas clean-up/power production, were defined for further consideration. The base-case system and the co-gasification concepts as well are modelled in the flowsheet simulation package ASPEN{sup +}. Steady-state integral system calculations resulted in an overall net electrical plant efficiency for the base-case system of 50. 1 %LHV (48.3 %HHV). Replacing about 10 % of the total thermal plant input (coal) by biomass (willow) resulted in a decrease of the overall net electrical plant efficiency of 1.4 to 2.1 %-points LHV, avoided specific CO2 emissions of 40-49 g/kWh{sub e}, and total avoided CO2 emissions of about 129 to 159 kt/a, all depending on the co-gasification concept

  18. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  19. 76 FR 66284 - Wind and Water Power Program

    Science.gov (United States)

    2011-10-26

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2011 Wind and Water Power Program, Water Power Peer Review Meeting will review the Program's... 2011 Water Power Peer Review Meeting will be held November 1 through November 3, 2011 in Alexandria, VA...

  20. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  1. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  2. Autothermal upgrading of biomass and wastes for clean and efficient production of power

    Energy Technology Data Exchange (ETDEWEB)

    Rafal Kobylecki; Zbigniew Bis; Wojciech Nowak [Czestochowa University of Technology (Poland)

    2005-07-01

    In this paper it is demonstrated that the main barrier of large scale heat and electricity production from biomass may be significantly reduced or eliminated by fuel upgrading and thermal treatment in a specially-designed pilot plant autothermal reactor. The process does not require significant amount of additional energy, since the whole process is run autothermal. The process final products are hot flue gases and a solid residue called a 'biocarbon' of LHV of roughly 28 MJ/kg. The properties of the biocarbon were similar, regardless of the input raw fuel type (biomass, waste, sewage sludge, energy crops, etc.). The use of the biocarbon for direct co-combustion with coal does not require installation of any additional feeding or fuel treatment systems at the power plants. Apart from its possible direct combustion, the biocarbon can be also efficiently used as a promising solid energy carrier for other processes (e.g. fuel cells). 6 refs., 6 figs.

  3. Biomass Program 2007 Program Peer Review - Program Summary Section

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.

  4. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  5. Lessons learned -- NREL Village Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.

    1998-07-01

    In 1993, a workshop was convened at the National Renewable Energy Laboratory (NREL) to discuss the issues of applying renewable energy in a sustainable manner to international rural development. One of the summary recommendations was that NREL could assist in the renewable energy for rural electrification effort by developing and supplying six related activities: resource assessment, comparative analysis and modeling, performance monitoring and analysis, pilot project development, internet-based project data, communications, and training. In response to this recommendation, NREL launched its Village Power Program consisting of these activities that cut across NREL technologies and disciplines. Currently NREL is active in 20 countries, with pilot projects in 12 of those countries. At this time the technologies include photovoltaics, wind, biomass, and hybrids. The rural applications include home lighting and communications, water pumping, schools and health posts, battery charging stations, ecotourism, and village systems. These pilot projects are central to the renewable energy village power development through the demonstration of three aspects critical to replication and implementation of the projects on a significant scale. The three aspects are technical functionality, economic competitiveness, and institutional sustainability. It is important to note that the pilot projects from which NREL's experience has been gained were funded and, in many cases, developed by other organizations and agencies. NREL's role has been one of technical assistance or project management or both. The purpose of this paper is to describe the lessons NREL staff has gleaned from their participation in the various pilot projects. The author hopes that these lessons will help the Renewable Energy-Based Rural Electrification (RERE) community in implementing sustainable projects that lead to replication.

  6. Green power programs in Canada : 2003 : overview of Government green power policies, utility green power implementation initiatives, green power and certificate marketing programs, and their benefits

    International Nuclear Information System (INIS)

    Whitmore, J.; Bramley, M.; Holmes, R.

    2004-09-01

    Green power is defined as electricity produced from renewable sources, and whose production has low adverse impacts on the environment, human health and communities. Green power has near-zero greenhouse gas (GHG) emissions and includes sources such as wind, hydro, and solar power. It offers several environmental benefits, as well as the enhancement of energy security, regional development, economic diversification and the creation of skilled jobs. There are four categories of programs related to green power development in Canada: government green power policies, utility green power development programs, green power marketing initiatives, and green power certificate marketing initiatives. Most of the activities in Canada associated with these four categories in 2003 were discussed in this report. However, difficulties with quantification prevented the inclusion of some green power activities such as (1) the generation of green power not certified or identified by the generator as green power, (2) industry or residential self-generation, (3) net metering, and (4) small government programs. Green power generation facilities in 2003 totaled 775 MW of capacity compared to 539 MW in 2002. Hydro capacity represented 41 per cent, followed by wind capacity at 40 per cent and wood waste at 17 per cent. Most of the green power generation facilities in 2003 were located in Alberta, followed by British Columbia, Ontario and Quebec. 230 refs., 8 tabs., 1 fig

  7. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    Chutichai, Bhawasut; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2013-01-01

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  8. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  9. Assessment of Biomass Resources in Afghanistan

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  10. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  11. Potential for Coal Power Plants to Co-Fire with Woody Biomass in the U. S. North, 2010-2030: A Technical Document Supporting the Northern Forest Futures Project

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth E. Skog

    2015-01-01

    Future use of woody biomass to produce electric power in the U.S. North can have an important influence on timber production, carbon storage in forests, and net carbon emissions from producing electric power. The Northern Forest Futures Project (NFFP) has provided regional- and state-level projections of standing forest biomass, land-use change, and timber harvest,...

  12. Geographical distributions of biomass and potential sites of rubber wood fired power plants in Southern Thailand

    International Nuclear Information System (INIS)

    Krukanont, P.; Prasertsan, S.

    2004-01-01

    Biomass residues from rubber trees in rubber producing countries have immense potential for power production. This paper presents the case of the south peninsular of Thailand, where the rubber industry is intense. Mathematical models were developed to determine the maximum affordable fuel cost and optimum capacity of the power plant for a given location of known area-based fuel availability density. GIS data of rubber growing was used to locate the appropriate sites and sizes of the power plants. Along 700 km of the highway network in the region, it was found that 8 power plants are financially feasible. The total capacity is 186.5 MW e . The fuel procurement area is in the range of less than 35 km. (Author)

  13. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  14. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  15. Energy biomass and environment. The French programme

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The main themes of the french program for energy from biomass are presented: agriculture and forest products (short rotation plantations, waste products, etc.), enhancement of the biomass production, mobilization of biomass resources, biomass processing technics (biofuels, combustion processes, biotechnologies); vulgarization for diffusion of technics from laboratories to industry or domestic sectors.

  16. 77 FR 38277 - Wind and Water Power Program

    Science.gov (United States)

    2012-06-27

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... public meeting. SUMMARY: The Department of Energy (DOE) Wind and Water Power Program is planning a... in Washington, DC on June 13, 2012. Mark Higgins, Wind and Water Power Acting Program Manager, Office...

  17. Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant

    International Nuclear Information System (INIS)

    Miedema, Jan H.; Benders, René M.J.; Moll, Henri C.; Pierie, Frank

    2017-01-01

    Highlights: • Coal mining is more energy and CO_2 efficient than biomass production. • Co-combustion of 60% biomass with coal doubles mass transport compared to 100% coal. • Low co-combustion levels reduce GHG emissions, but the margins are small. • Total supply chain efficiency is the highest for the coal reference at 41.2%. - Abstract: Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain scenario, for a Dutch situation. The 60% biomass co-combustion supply chain scenarios show possibilities to reduce emissions up to 48%. The low co-combustion levels are effective to reduce GHG emissions, but the margins are small. Currently co-combustion of pellets is the norm. Co-combustion of combined torrefaction and pelleting (TOP) shows the best results, but is also the most speculative. The indicators from the renewable energy directive cannot be aligned. When biomass is regarded as scarce, co-combustion of small shares or no co-combustion is the best option from an energy perspective. When biomass is regarded as abundant, co-combustion of large shares is the best option from a GHG reduction perspective.

  18. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  19. GIS Application to Define Biomass Collection Points as Sources for Linear Programming of Delivery Networks

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2009-01-01

    Much bio-energy can be obtained from wood pruning operations in forests and fruit orchards. Several spatial studies have been carried out for biomass surveys, and many linear programming models have been developed to model the logistics of bio-energy chains. These models can assist in determining

  20. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  1. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    Kaliyan, Nalladurai; Morey, R. Vance; Tiffany, Douglas G.

    2011-01-01

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm 3 y -1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO 2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  2. The power professorship program at Washington State University

    International Nuclear Information System (INIS)

    Mosher, C.C.; Shamash, Y.

    1993-01-01

    As with most electric power programs, Washington State University's has existed since the beginning of the engineering program 100 years ago. It has grown and developed largely through the efforts of a few dedicated individuals. The Power Professorship Program has existed since 1972. The Power Professor has been Dr. Clifford C. Mosher until his recent semi-retirement. The Power Professorship was conceived of as an avenue for joint university-industry interaction. Considerable time and ingenuity by visionary engineers and others have resulted in development of a financial base for the Power Professorship Program. The program has been funded equally by public and investor-utility sectors. Following financial difficulties stemming from the Washington Public Power Supply System financial default on public utility bonds for several nuclear projects, funding for the program from the public sector was canceled. After several lean years, public-sector support was again restored by WSU's electrical engineering department offering a contract for services to the utilities in exchange for funding. This contract has been renewed annually, with costs and benefits firmly established through careful analysis and consultation. Problems facing the power industry in the early 1970s with regard to establishing a pipeline of future human resources, were almost identical with those of the present time: indifferent feelings about the industry in general, students being attracted to more glamorous disciplines, and a decline in educational opportunities available in the power area. A 1985 article in the IEEE Power Engineering Review describing today's declining enrollment in power engineering applies equally well to previous periods. A major driving force for initiating utility-industry participation in the Power Professorship Program was the concern for maintaining a source of entry-level engineers with a background in power engineering

  3. Biomass gasification in electric power production; Gaseificacao de biomassa na producao de eletricidade

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio P. de; Ennes, Sergio A.W. [Companhia Energetica de Sao Paulo, SP (Brazil); Corsetti, Marilena

    1992-12-31

    The main objective of this work is to evaluate the technical and economical viability of thermoelectric power generation based on biomass. The technology of gasification of sugar cane bagasse in fluidized bed and its influences in the generation or co-generation process in gas turbines is analysed. The potential of such kind of generation as well as the costs are indicated. Such potential are compared to those of the conventional technologies of co-generation using fuel oil and natural gas in the industry 10 refs., 2 figs., 4 tabs.

  4. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  5. Market dynamics of biomass fuel in California

    International Nuclear Information System (INIS)

    Delaney, W.F.; Zane, G.A.

    1991-01-01

    The California market for biomass fuel purchased by independent power producers has grown substantially since 1980. The PURPA legislation that based power purchase rates upon the 'avoided cost' of public utilities resulted in construction of nearly 900 Megawatts of capacity coming online by 1991. Until 1987, most powerplants were co-sited at sawmills and burned sawmill residue. By 1990 the installed capacity of stand-alone powerplants exceeded the capacity co-sited at wood products industry facilities. The 1991 demand for biomass fuel is estimated as 6,400,000 BDT. The 1991 market value of most biomass fuel delivered to powerplants is from $34 to $47 per BDT. Biomass fuel is now obtained from forest chips, agriculture residue and urban wood waste. The proportion of biomass fuel from the wood products industry is expected to decline and non-traditional fuels are expected to increase in availability

  6. Biomass programme: Overview of the 2006 Swiss research programme; Programm Biomasse. Ueberblicksbericht zum Forschungsprogramm 2006

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE) reviews work done within the framework of the Swiss biomass research programme in 2006. The programme concentrates on the efficient conversion of biomass into heat, electrical power and motor fuels. Projects concerned with the optimisation of processes are reported on, including low-particle-emission systems, control systems for bivalent heating installations, use of demanding biomass fuels, combined pellets and solar heating systems and the elimination of ammonia emissions. In the material flow area, measurement campaigns, organic pollutants in compost, the effects of fermented wastes in agriculture and methane losses in biogas conditioning are reported on. New conversion technologies are reviewed, including hydro-thermal gasification, plant-oil fuelled combined heat and power units, flameless burners and catalytic direct liquefaction. In the area of basics, studies and concepts, eco-balances and life-cycle analyses are reported on; the production of synthetic natural gas and the influence of combustion particles are discussed and decentralised power generation from solid biomass is reported on. National and international co-operation is reviewed. The report is concluded with a review of eight pilot and demonstration projects, a review of work to be done in 2007 and a list of research and demonstration projects.

  7. Demonstration of a 1 MWe biomass power plant at USMC Base Camp Lejeune

    International Nuclear Information System (INIS)

    Cleland, J.; Purvis, C.R.

    1997-01-01

    A biomass energy conversion project is being sponsored by the U.S. Environmental Protection Agency (EPA) to demonstrate an environmentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Under a cooperative agreement with EPA, Research Triangle Institute is initiating operation of the Camp Lejeune Energy from Wood (CLEW) biomass plant. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple, economical operation for units less than 10 MW, and (3) the option of a clean, cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving bed gasifier utilizing hogged waste wood from the Marine Corps Base at Camp Lejeune, NC. A moving bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are briefly described relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined. (author)

  8. Structural optimization of static power control programs of nuclear power plants with WWER-1000

    International Nuclear Information System (INIS)

    Kokol, E.O.

    2015-01-01

    The question of possibility the power control programs switching for WWER-1000 is considered. The aim of this research is to determine the best program for the power control of nuclear reactor under cyclic diurnal behavior of electrical generation, as well as the switching implementation. The considered problem of finding the best control program refers to the multicriteria optimization class of problems. Operation of the nuclear power generation system simulated using the following power control programs: with constant average temperature of transfer fluid, with constant pressure in the reactor secondary circuit, with constant temperature in input of the nuclear reactor. The target function was proposed. It consists of three normalized criteria: the burn up fraction, the damage level of fuel rod array shells, as well as changes in the power values. When simulation of the nuclear power generation system operation within the life was done, the values of the selected criteria were obtained and inserted in the target function. The minimum of three values of the target function depending on the control program at current time defined the criterion of switching of considered static power control programs for nuclear power generation system

  9. Development Strategies for Deployment of Biomass Resources in the Production of Biomass Power: November 6, 2001--February 28, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, J.

    2004-01-01

    The study analyzes strategies for deployment of biomass resources for biopower generation. It compares biomass supply databases and the projected biopower market penetration for several alternative incentive scenarios. It analyzes the availability of biomass to meet the projected market demands and recommends future research.

  10. Three biomass power plants in New England first five years of challenges and solutions

    International Nuclear Information System (INIS)

    LeBlanc, J.D.

    1993-01-01

    Generating electricity from biomass fuels, through stand-alone power plants, represents a renewal of a half-century old plus, renewable technology. New England has generated its electricity sequentially, and still in parallel, from hydro, coal, oil, and nuclear sources during this period, and most recently during the 1980's, from a mixture of various alternate technologies including wood waste fuels and domestic waste fuels. Three plants located in New Hampshire and Maine, of identical power-island design, were constructed in eighteen months, and began operation in the period December, 1987 through March, 1988. These plants almost from the start have experienced an outstanding record of operation, dependability, and reliability. This paper will describe how each plant has fit into its respective location and environment, the personnel, technical and administrative support required, the biomass wood waste production and supply infra-structure which has developed around these facilities; and the technical problems and challenges which arose and were resolved in the process of handling a cantankerous, bulk fuel and turning it into a reliable supply of electricity. These plants are designed around a zero discharge concept. The author will discuss the design features built in, and operating practices which have evolved, to effectively use waste water internally, minimize air emissions, and recycle 100% of its solid waste as an effective fertilizer and soil conditioner

  11. A review on torrefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tapasvi, Dhruv; Tran, Khanh-Quang

    2010-07-01

    Full text: Torrefaction is a mild-pyrolysis (200-300 deg.C.) process which can be employed as pre-treatment to improve fuel properties of plant biomass materials. The treatment results in not only improved energy density, but also enhanced grindability and better storage characteristics for biomass fuels. Because of these advantages and the high level of viability, the technique has attracted increasing interests during the last decades. Several studies on torrefaction of biomass for heat and power applications have been documented. Substantial amounts of data on the technique are available in the literature, which need to be reviewed and analyzed for further actions in the area. This is the primary objective of the present study. This review is consisted of three parts, of which the first focuses on the mechanism of biomass torrefaction for heat and power applications, and the process as a whole. It is then followed by a critical review on experimental methods in laboratory, and effects of operating parameters on fuel properties of torrefied biomass. Finally, opportunities and challenges for the process are discussed. (Author)

  12. Biomass Program 2007 Program Peer Review - Full Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.

  13. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2013-05-08

    ... Decision. SUMMARY: The Rural Utilities Service (RUS) has issued a Record of Decision (ROD) for the.... Accordingly, comments submitted in the EIS process also informed RUS's decision making in the Section 106... Oglethorpe for RUS financing to construct the 100 megawatt (MW) biomass plant and related facilities...

  14. Rural electrification: Waste biomass Russian northern territories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adamian, S. [ECOTRADE, Inc., Glendale, CA (United States)

    1998-02-01

    The primary objective of this pre-feasibility evaluation is to examine the economic and technical feasibility of replacing distillate fuel with local waste biomass in the village of Verkhni-Ozerski, Arkhangelsk Region, Russia. This village is evaluated as a pilot location representing the off-grid villages in the Russian Northern Territories. The U.S. Department of Energy (DOE) has agreed to provide technical assistance to the Ministry of Fuel and Energy (MFE). MFE has identified the Northern Territories as a priority area requiring NREL`s assistance. The program initially affects about 900 off-grid villages. Biomass and wind energy, and to a lesser extent small hydro (depending on resource availability) are expected to play the dominant role in the program, Geothermal energy may also have a role in the Russian Far East. The Arkhangelsk, Kariela, and Krasnoyarsk Regions, all in the Russian Northern Territories, have abundant forest resources and forest products industries, making them strong candidates for implementation of small-scale waste biomass-to-energy projects. The 900 or so villages included in the renewable energy program span nine administrative regions and autonomous republics. The regional authorities in the Northern Territories proposed these villages to MFE for consideration in the renewable energy program according to the following selection criteria: (a) Remote off-grid location, (b) high cost of transporting fuel, old age of existing power generation equipment, and (d) preliminary determination as to availability of alternative energy resources. Inclusion of indigenous minorities in the program was also heavily emphasized. The prefeasibility study demonstrates that the project merits continuation and a full feasibility analysis. The demonstrated rate of return and net positive cash flow, the willingness of Onegales and local/regional authorities to cooperate, and the immense social benefits are all good reasons to continue the project.

  15. 77 FR 31839 - Wind and Water Power Program

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology... portfolio. The 2012 Wind Power Peer Review Meeting will be held June 19 through June 21, 2012, in Alexandria...

  16. Biomass District Heat System for Interior Rural Alaska Villages

    Energy Technology Data Exchange (ETDEWEB)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  17. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  18. Biomass gasification in Europe - status and perspectives; Vergasung von Biomasse in Europa - Stand und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, L; Kaltschmitt, M [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1997-12-31

    Gasification of biomass is a promising option, especially in the fields of waste management and power generation, but there are considerable economic and technical problems that must be solved first. A critical analysis of biomass gasification in Europe today shows that this technology is not marketable today and cannot contribute to environmentally acceptable power supply on a short-term basis. (orig) [Deutsch] Von allen Moeglichkeiten einer energetischen Nutzung von Biomasse stellt die Technik der Vergasung insbesondere in den Bereichen Abfallentsorgung und Stromerzeugung eine vielversprechende Option dar. Einer weiteren Verbreitung dieser Technik stehen allerdings erhebliche wirtschaftliche und technische Probleme entgegen. Die kritische Analyse der derzeitigen Gegebenheiten der Biomassevergasung in Europa fuehrt zu dem Schluss, dass diese Technik noch nicht unmittelbar vor der Mrkteinfuehrung steht und somit kurzfristig keinen merklichen Beitrag zu einer umwelt- und klimavertraeglicheren Energieversorgung in Europa leisten kann. (orig)

  19. Biomass gasification in Europe - status and perspectives; Vergasung von Biomasse in Europa - Stand und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dinkelbach, L.; Kaltschmitt, M. [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    1996-12-31

    Gasification of biomass is a promising option, especially in the fields of waste management and power generation, but there are considerable economic and technical problems that must be solved first. A critical analysis of biomass gasification in Europe today shows that this technology is not marketable today and cannot contribute to environmentally acceptable power supply on a short-term basis. (orig) [Deutsch] Von allen Moeglichkeiten einer energetischen Nutzung von Biomasse stellt die Technik der Vergasung insbesondere in den Bereichen Abfallentsorgung und Stromerzeugung eine vielversprechende Option dar. Einer weiteren Verbreitung dieser Technik stehen allerdings erhebliche wirtschaftliche und technische Probleme entgegen. Die kritische Analyse der derzeitigen Gegebenheiten der Biomassevergasung in Europa fuehrt zu dem Schluss, dass diese Technik noch nicht unmittelbar vor der Mrkteinfuehrung steht und somit kurzfristig keinen merklichen Beitrag zu einer umwelt- und klimavertraeglicheren Energieversorgung in Europa leisten kann. (orig)

  20. Biomass as a modern fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.

    1994-01-01

    Case studies are presented for several developed and developing countries. Constraints involved in modernising biomass energy and the potential for turning them into entrepreneurial opportunities are discussed. It is concluded that the long term impacts of biomass programmes and projects depend mainly on ensuring sustainability, flexibility and replicability while taking account of local conditions and providing multiple benefits. Implementation of biomass projects requires governmental policy initiatives that will internalise the external economic, social and environmental costs of conventional fuel sources so that biomass fuels can become competitive on a ''level playing field''. Policies are also required to encourage R and D and commercialisation of biomass energy programs in close co-ordination with the private sector. (author)

  1. Biomass Support for the China Renewable Energy Law: Final Report, December 2005

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

  2. Cofiring biomass with coal: Opportunities for Malaysia

    International Nuclear Information System (INIS)

    Rahman, A A; Shamsuddin, A H

    2013-01-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  3. Cofiring biomass with coal: Opportunities for Malaysia

    Science.gov (United States)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  4. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  5. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  6. KiloPower Program

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-04

    These are the slides for a phone interview with Aerospace America magazine of the AIAA. It goes over the KiloPower Program at Los Alamos National Laboratory (LANL), and covers the following: 1 kWe Kilopower, 10 kWe Kilopower, Kilopower Reactor Using Stirling Technology (KRUSTY) Integration Test (DAF), Reactor Configuration, and Platen Positions.

  7. HUD PowerSaver Pilot Loan Program

    Energy Technology Data Exchange (ETDEWEB)

    Zimring, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoffman, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2010-12-10

    The U.S. Department of Housing and Urban Development (HUD) recently announced the creation of a pilot loan program for home energy improvements. The PowerSaver loan program is a new, energy-focused variant of the Title I Property Improvement Loan Insurance Program (Title I Program) and is planned for introduction in early 2011. The PowerSaver pilot will provide lender insurance for secured and unsecured loans up to $25,000 to single family homeowners. These loans will specifically target residential energy efficiency and renewable energy improvements. HUD estimates the two-year pilot will fund approximately 24,000 loans worth up to $300 million; the program is not capped. The Federal Housing Administration (FHA), HUD's mortgage insurance unit, will provide up to $25 million in grants as incentives to participating lenders. FHA is seeking lenders in communities with existing programs for promoting residential energy upgrades.

  8. Electricity from biomass in the European Union - with or without biomass import

    DEFF Research Database (Denmark)

    Skytte, K.; Meibom, P.; Henriksen, T.C.

    2006-01-01

    The European Union has set up indicative targets for its 15 Member States to supply 22.1% of their total electricity consumption using renewable energy resources by 2010. This paper compares two ways to achieve target compliance-either with import of biomass from countries outside the EU or without...... is that increased imports of low-cost biomass will significantly reduce the cost of target compliance, but would hamper the use of energy crops and further development of wind power within the EU. Despite this, increased importation of biomass can be the cost-reducing factor making the target realisable, which...... would justify promotion of such trade. (c) 2005 Elsevier Ltd. All rights reserved....

  9. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-02-01

    The Topical Report presented establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of the report

  10. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-06-01

    This topical report establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of this report

  11. Comparative analysis of large biomass & coal co-utilization units

    NARCIS (Netherlands)

    Liszka, M.; Nowak, G.; Ptasinski, K.J.; Favrat, D.; Marechal, F.

    2010-01-01

    The co-utilization of coal and biomass in large power units is considered in many countries (e.g. Poland) as fast and effective way of increasing renewable energy share in the fuel mix. Such a method of biomass use is especially suitable for power systems where solid fuels (hard coal, lignite) are

  12. EPRI-USDOE COOPERATIVE AGREEMENT: COFIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    David A. Tillman

    2001-09-01

    The entire Electric Power Research Institute (EPRI) cofiring program has been in existence of some 9 years. This report presents a summary of the major elements of that program, focusing upon the following questions: (1) In pursuit of increased use of renewable energy in the US economy, why was electricity generation considered the most promising target, and why was cofiring pursued as the most effective near-term technology to use in broadening the use of biomass within the electricity generating arena? (2) What were the unique accomplishments of EPRI before the development of the Cooperative Agreement, which made developing the partnership with EPRI a highly cost-effective approach for USDOE? (3) What were the key accomplishments of the Cooperative Agreement in the development and execution of test and demonstration programs-accomplishments which significantly furthered the process of commercializing cofiring?

  13. The Potential for Biomass District Energy Production in Port Graham, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  14. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  15. Biomass Pyrolysis in DNS of Turbulent Particle-Laden Flow

    NARCIS (Netherlands)

    Russo, E; Fröhlich, Jochen; Kuerten, Johannes G.M.; Geurts, Bernardus J.; Armenio, Vincenzo

    2015-01-01

    Biomass is important for co-firing in coal power plants thereby reducing CO2 emissions. Modeling the combustion of biomass involves various physical and chemical processes, which take place successively and even simultaneously [1, 2]. An important step in biomass combustion is pyrolysis, in which

  16. 2014 Water Power Program Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-18

    The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of 96 projects of the Water Power Program, as well as the productivity and management effectiveness of the Water Power Program itself.

  17. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M [IVO International Ltd, Vantaa (Finland)

    1997-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  18. Small scale power production

    Energy Technology Data Exchange (ETDEWEB)

    Muoniovaara, M. [IVO International Ltd, Vantaa (Finland)

    1996-12-31

    IVO International is a major constructor of biomass power plants in Finland and abroad. As a subsidiary of Imatran Voima Oy, the largest power utility in Finland, it has designed and constructed ten power plants owned by IVO Group or others capable of burning biomasses. Sizes of the plants vary from the world`s largest condensing peat-fired power plant of 155 MWe to a 6 MWe combined heat and power producing unit. This article describes the biomass power plants designed and constructed by IVO Group 3 refs.

  19. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  20. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  1. Safety - a Neglected Issue When Introducing Solid Biomass Fuel in Thermal Power Plants? Some Evidence of an Emerging Risk

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess; Astad, John

    2013-01-01

    The paper examines recent evidence from Denmark and abroad with climate change projects that aim to reduce global carbon dioxide emissions by converting coal fired thermal power plants to solid biomass fuel. The paper argues that projects appear to be pursued narrow-mindedly with insufficient att...

  2. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Lauer, M.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness

  3. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness. (author)

  4. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  5. Waste-based biomass to power plants with high portions; Jaeteperaeistae biomassaa voimaloihin suurilla osuuksilla

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M. [VTT Technical Research Centre of Finland, Jyvaeskylae (Finland); Hupa, M. [Aabo Akademi, Process Chemistry, Turku (Finland); Jokiniemi, J. [Kuopio Univ. (Finland)

    2007-07-01

    The results of this project will strengthen significantly utilisation of demanding waste-originated biomass in combined heat and power production. The idea is to produce a combustible fuel by mixing different bio-waste in a way which maximises the synergic effects. 'Dilution' of the blend with a traditional and less risky biomass (for example bark) will also be included to this problem solution concept. Simultaneously, the disposal problems of different waste types can be solved in a reasonable way. The protective elements in the sludge-type biomass under investigation play a key role in the reactions protecting the critical parts of the furnace against the corrosive attach of alkali chlorides. In addition, sampling of critical compounds in view of operational risks at furnace conditions will be developed and the understanding what happens during the sampling will be deepened. VTT co-ordinates this research and conducts sets of experiments with an electrically stabilised FB reactor. Aabo Academi University will conduct thorough fuel and deposits analysis and develops modelling of deposit formation and control of harmful deposition. University of Kuopio will develop sampling of alkali chlorides and improves understanding on the behaviour of these compounds during furnace sampling and impactor sharing. In addition the project includes international co-operation between VTT and Tsinghua University, China, where a visiting researcher will model VTT's BFB reactor and addition of protective chemical to that reactor. (orig.)

  6. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  7. LCA from Biomass Powerplants: from Soil to Electricity

    OpenAIRE

    François , Jessica; Fortin , Mathieu; Patisson , Fabrice; Mauviel , Guillain; Feidt , Michel; Rogaume , Caroline; Rogaume , Yann; Mirgaux , Olivier; Dufour , Anthony

    2013-01-01

    International audience; Biomass is one of the most promising renewable energy. The sustainability of biomass to energy chains needs to be assessed from the soil, including forest management, to the biomass valorization process. A strategy is presented to model the whole life cycle inventory of power production from biomass (beech). The forest growth, management and the wood valorization chain (including pulp, timber, etc., and energy) are modeled by a dedicated platform (called "CAPSIS"). It ...

  8. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    Science.gov (United States)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental

  9. A review on biomass classification and composition, cofiring issues and pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  10. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  11. System applications CRC -Biomass + Coal; Aplicaciones Sistema CRC-Biomasa+Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Main object of Phase I of the project is to analyse the technical-economic feasibility of the combined use of biomass and coal for power generation in the Spanish region of Andalusia, by means of new medium-size independent power plants or using biomass as supplementary fuel in existing large coal power plants, including: -Analysis and classification of biomass and coal resources in the region -Technical-economic study of conventional alternatives using the steam cycle -Analysis of efficiency improvement provided by advanced Rankine-cycle technologies, like the SMR cycle -Analysis of alternatives based on parallel combined cycles using gas turbines, including advanced solutions, like the EAPI and CRC-EAPI systems. -Description and evaluation of different biomass drying systems. -Description and evaluation of the three main biomass gasification systems currently under development: atmospheric direct, atmospheric indirect and pressurized. Main objects of Phase II of the project are to analyse a specific application of the EAPI system to a real cogeneration plant project and to analyse the application of the CRC2 system to a commercial supercritical power plant, including technical-economic study of both applications. (Author)

  12. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest and Alaska Bioenergy Program (U.S.)

    1991-02-01

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  13. Renewable energies: the choice of invitation to tender candidates for the electric power plants supplied by biomass or biogas

    International Nuclear Information System (INIS)

    2005-01-01

    To contribute to the french objectives of renewable energies development, the Ministry of Industry proposed an invitation to tender for the realization at the first of january 2007 of electric power plants (more than 12 MW) from biomass and biogas. This document presents the selected projects. (A.L.B.)

  14. Green Power Partnership Related Programs & Organizations

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page provides a brief program overview, including vision and accomplishments.

  15. Biomass Power Generation Investment in China: A Real Options Evaluation

    Directory of Open Access Journals (Sweden)

    Mingming Zhang

    2016-06-01

    Full Text Available This paper proposes a real options model for evaluating the biomass power generation investment in China. The uncertainties in the market price of electricity, CO2 price and straw price are considered. Meanwhile the dynamic relationship between installed capacity and fuel cost, as well as the long-term reduction of subsidy are described. Two scenarios, i.e., with the carbon emission trading scheme existent and non-existent, respectively, is built to empirically analyze the investment of a 25-MW straw-based power generation project. The results show that investors should undertake the investment in 2030 under two scenarios. Investment values are 14,869,254.8 and 37,608,727 Chinese Yuan (RMB, respectively. The implementation of the carbon emission trading scheme theoretically helps improve investment value and advance the most likely optimal investment time. However, the current CO2 price is not sufficient to advance the most likely optimal investment time. The impacts of several factors, including subsidy policy, CO2 price, straw price, installed capacity, correlation structure and the validity period of investment, on the optimal investment strategy are also examined. It is suggested that governments take some measures, including increasing subsidy, setting the growth pattern of subsidy and establishing and perfecting a nationwide carbon trading market, to improve the investment environment and attract more investments.

  16. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  17. 2011 Biomass Program Platform Peer Review. Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Eng, Alison Goss [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Sustainability Platform Review meeting.

  18. 2011 Biomass Program Platform Peer Review. Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Lindauer, Alicia [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Infrastructure Platform Review meeting.

  19. 2011 Biomass Program Platform Peer Review: Algae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joyce [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  20. 2011 Biomass Program Platform Peer Review: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haq, Zia [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Analysis Platform Review meeting.

  1. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    Science.gov (United States)

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. India's power program and its concern over environmental safety

    International Nuclear Information System (INIS)

    Prasad, G.E.; Mittra, J.

    2001-01-01

    India's need of electrical power is enormous and per capita consumption of power is to be increased at least by ten times to reach the level of world average. Thermal Power generation faces two fold problems. First, there is scarcity of good quality fuel and second, increasing environmental pollution. India's self reliant, three stage, 'closed-fuel-cycle' nuclear power program is promising better solution to the above problems. To ensure Radiation Protection and Safety of Radiation Sources, Indian Nuclear Power program emphasizes upon design and engineering safety by incorporating necessary safety features in the design, operational safety through structured training program and typically through software packages to handle rare unsafe events and regulation by complying safety directives. A health survey among the radiation workers indicates that there is no extra threat to the public from nuclear power program. Based on latest technology, as available in case of nuclear power option, it is quite possible to meet high energy requirement with least impact on the environment.. (authors)

  3. Program for analyzing power boost tests

    International Nuclear Information System (INIS)

    Wills, C.A.

    1982-03-01

    A rapid increase of power in a reactor produces a failure in the fuel. Experiments to study the conditions in the NRU reactor after such failures have been planned and carried out. Given the concentrations of specified isotopes at a number of times over the length of an experiment as produced for example, from the program SARGS and the power history of the reactor, this program calculates the release rates, escape rate coefficients, and fractional releases for the isotopes. These values may be optionally printed and plotted. Decay schemes for a limited number of mass numbers are implemented. The program is written in FORTRAN and runs on the CDC 6600 - CYBER 170 system

  4. Rural electrification for isolated consumers: Sustainable management model based on residue biomass

    International Nuclear Information System (INIS)

    Pinheiro, Giorgiana; Rendeiro, Goncalo; Pinho, Joao; Macedo, Emanuel

    2011-01-01

    This paper presents a case study of the electrification of a riparian community in the State of Para, Brazil, within the scope of the Program for Electric Power Service Universalization in Brazil. The community is located in a remote area; approximately 100 km from the municipal district, there is no regular transport to access the community, and adequate communication service. The community is provided with electrification facilities through a small biomass-based power plant, directly firing residues produced by the local economic activity. The objective of the paper is to propose a sustainable management model that is suitable for community's isolation conditions, considering the high costs with operation and maintenance related to the supply of isolated consumers in small locations. A simulation is conducted for the operation of the small biomass-based power plant, the generation costs are determined, the legal aspects are analyzed, and a suggestion for the management model is presented. - Highlights: → Electrification of isolated consumers is a great challenge for utilities. → Using local labor and resources allows lower energy costs for electrification. → Creation of a specific legislation for utilities is required. → Should also be implemented social activities together with electrification.

  5. Biomass energy development in California: Accomplishments and challenges

    International Nuclear Information System (INIS)

    Miller, W.G.

    1994-01-01

    The recent and rapid growth of biomass power development in California has created the largest contiguous biomass fueled electrical generating capacity in U.S. This growth has been fostered by resource availability, federal (PURPA) incentives, and the entrepeneurial response of independent power producers. California's environment has benefited from reduced air emissions, wildfire suppression, landfill reduction and the sequestering of carbon. The state has benefited economically through capital investment, employment for several thousand, and the generation of over $100 million in state and local tax revenues. Along with the benefits have come serious challenges brought about largely due to changes in the utility and regulatory environment. These changes threaten the continued existence and economic viability of the developed biomass power industry in California and threatens to establish national precedents. Specific issues are identified and recommended actions are presented

  6. Assessment of Biomass Resources in Liberia

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  7. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  8. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  9. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  10. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  11. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.

    1998-05-01

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.

  12. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  13. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  14. EPRI-USDOE COOPERATIVE AGREEMENT: COFIRING BIOMASS WITH COAL; FINAL

    International Nuclear Information System (INIS)

    David A. Tillman

    2001-01-01

    The entire Electric Power Research Institute (EPRI) cofiring program has been in existence of some 9 years. This report presents a summary of the major elements of that program, focusing upon the following questions: (1) In pursuit of increased use of renewable energy in the US economy, why was electricity generation considered the most promising target, and why was cofiring pursued as the most effective near-term technology to use in broadening the use of biomass within the electricity generating arena? (2) What were the unique accomplishments of EPRI before the development of the Cooperative Agreement, which made developing the partnership with EPRI a highly cost-effective approach for USDOE? (3) What were the key accomplishments of the Cooperative Agreement in the development and execution of test and demonstration programs-accomplishments which significantly furthered the process of commercializing cofiring?

  15. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  16. Feasibility study for biomass power plants in Thailand. Volume 2. appendix: Detailed financial analysis results. Export trade information

    International Nuclear Information System (INIS)

    1997-01-01

    This study, conducted by Black and Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachgoengsao, Suphan Buri, and Pichit in Thailand. Volume 2 of the study contains the following appendix: Detailed Financial Analysis Results

  17. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M; Hoelder, D; Backhaus, C; Althaus, W [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    1998-09-01

    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  18. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H; Papamichalis, A; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1997-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  19. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, H.; Papamichalis, A.; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1996-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  20. Genesis of the Brazilian nuclear power plants program

    International Nuclear Information System (INIS)

    Syllus, G.; Lepecki, W.

    1996-01-01

    The genesis of the Brazilian Nuclear Power Program is described by the authors - who participated in the events - from the beginning of the sixties, until the definition and the start of the implementation in 1975 of the Reference Nuclear Power Program. A description is made of the main events, studies and decisions that contributed to the evolution of the Program: the GTRP (Nuclear Power Plant Working Group); the Thorium Group; the Lane Group; the decision about Angra 1; CNEN's analyses about the reactor line and, finally, the creation of CBTN (Nuclear Technology Brazilian Company), which elaborated the studies that resulted in the final definition of the Program and led to the Brazilian German Agreement and the establishment of NUCLEBRAS. (author)

  1. India's power programs and its concern over environmental safety

    International Nuclear Information System (INIS)

    Prasad, G.E.; Mittra, J.; Sarma, M.S.R.

    2000-01-01

    India's need for electrical power is enormous and per capita consumption of power is to be increased at least by 10 times to reach the level of the world average. Thermal power generation faces two-fold problems. First, there is scarcity of good quality fuel and second, increasing environmental pollution. India 's self reliant, . three stage, 'closed-fuel-cycle' nuclear power program is promising a better solution to the above problems. To ensure Radiation Protection and Safety of Radiation Sources, the Indian Nuclear Power program emphasizes upon design and engineering safety by incorporating' necessary safety features in the design, operational safety through a structured training program and typically through software packages to handle rare unsafe events and regulation by complying safety directives. A health survey among the radiation workers indicates that there is no extra threat to the public from the nuclear power program. Based on the latest technology, as available in case of the nuclear power option, it is quite possible to meet high energy requirements with least impact on the environment. (authors)

  2. Optimal placement of biomass fuelled gas turbines for reduced losses

    International Nuclear Information System (INIS)

    Jurado, Francisco; Cano, Antonio

    2006-01-01

    This paper presents a method for the optimal location and sizing of biomass fuelled gas turbine power plants. Both profitability in using biomass and power loss are considered in the cost function. The first step is to assess the plant size that maximizes the profitability of the project. The second step is to determine the optimal location of the gas turbines in the electric system to minimize the power loss of the system

  3. Experience with a biomass-fuelled power plant in Peru. Peru kokunai no biomass nenryoka no hatsuden plant no keiken

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This paper describes the result of operating a 25-kW biomass-fuelled power plant for 500 hours installed for people in a small village in jungle along the Amazon basin in Peru. The gasifier plant consists of two invert type gas combustors combined with series cyclone dryer filters. Filtration used activated carbons and cotton cloths. The fuel for the plant is wood chips containing water at 5.5% to 11% with calorific power of 20 mJ/kg, consumed at 2.0 kg of lumber per kWh (25 kWh). A gas analysis showed values of CO2 at 13%, CO at 14%, H2 at 18%, CH4 at 3%, and N2 at 52%. Because the fuel of wood chips may cause problems if the size is too large, a size of about 10[times]20[times]30 mm was selected finally. Pressure drop in the gas purifying system was measured using a manometer, which verified that a textile filtering material can be used. The gasoline engine rotation was fixed at 2700 rpm upon discussions. The gasoline engine had no need of modification except at a pipe to the carburetor. This system can be installed at any small village. 1 ref., 1 fig.

  4. Feasibility of biomass as a fuel for electric power generation in the Netherlands. Haalbaarheid van biomassa als brandstof voor elektriciteitsproduktie in Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Bestebroer, S I [KEMA Milieu Services, Arnhem (Netherlands)

    1993-01-01

    Based on data from a study of the Netherlands Agency for Energy and the Environment (NOVEM) on the feasibility of biomass for the Dutch energy economy and on data from a literature study, a sensitivity analysis was carried out to determine the dependency of the energetic efficiency and the cost price on the starting points of the NOVEM study.Conclusions are drawn regarding the maximal capacity on the basis of biomass. Also attention is paid to the height of the carbon levy on the use of fossil fuels, by which the price of bio-electricity can be made competitive. It appears that electric power generation from biomass by means of an integrated biomass gasification combined cycle (IBGCC) is energetic efficient for the considered energy crops. However, the carbon levy on the use of fossil fuels must be 100% to make bio-energy competitive. It also must be taken into consideration that, next to the favourable characteristic of renewability, bio-energy bears a number of potential environmental loads

  5. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  6. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Science.gov (United States)

    Tuorto, Steven J; Brown, Chris M; Bidle, Kay D; McGuinness, Lora R; Kerkhof, Lee J

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  7. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Directory of Open Access Journals (Sweden)

    Steven J Tuorto

    Full Text Available This report describes BioDry (patent pending, a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc., freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  8. Upgrading to lead firm position via international acquisition: learning from the global biomass power plant industry

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Fold, Niels; Hansen, Teis

    2016-01-01

    This article examines the case of a Chinese firm that has upgraded to lead firm position in the global biomass power plant industry mainly through acquisitions of technological frontier firms in Denmark. Sustaining the lead firm position was, however, challenged by difficulties in developing...... innovative capability. Drawing on the literature on (i) firm-level technological capability and (ii) knowledge transfer in international acquisitions, we explain the reasons for insufficient innovative capability building. Based on these empirical findings, we suggest maintaining the existing upgrading...

  9. Biomass energy: its important and future trends

    International Nuclear Information System (INIS)

    Rao, P.S.

    1997-01-01

    The development of photo-biological energy conversion systems has long-term implication from the energy, wood fibre and chemical points etc. Power generation through biomass combustion and gasification has proved to be very successful venture. The energy needs of the people in the remote, rural and even urban areas of the country can be met economically by the energy from the renewable source such as biomass. The biomass energy is full of opportunities, and future trends are emerging towards renewable energy

  10. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    International Nuclear Information System (INIS)

    Palit, Debajit; Malhotra, Ramit; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability from both project implementing agency (PIA) and the end-users need to be ensured. The minimum required prices of electricity from both PIA and end-user perspective have been estimated. While for PIA the cost recovery is the key for viability, the affordability to pay the electricity cost is crucial for the end users. Analysis carried out in this paper on the basis of data obtained from operational projects implemented in India reveal that it is essential to operate the system at a higher capacity utilization factor. While this can be achieved though creating convergence with locally relevant economic activity, it is also observed that micro-enterprises cannot pay beyond a certain price of electricity to keep it sustainable. This paper sets forth a case for developing a regulatory mechanism to extend the tariff fixation for the projects and providing cross-subsidies to ensure long term sustainability of off-grid project. - Highlights: → We design sustainable financial model for viability of biomass gasifier projects. → Analysis based on field data obtained from operational projects in India. Estimated electricity pricing from both implementing agency and end-users perspective. → A regulatory mechanism for tariff fixation and cross subsidization is recommended.

  11. Alkali and chlorine in biomass - a problem in connection with power generation. Alkali och klor i biomassa - ett problem vid elgenerering

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, S

    1991-06-04

    The literature survey gives a summary of the macronutrients and the variations in different biomass. Especially alkali is discussed. The work gives an account of difficult biomass fuels which will rather be used in hot water boilers than in gas turbines of power generation. The amount of alkali and chlorine increases from hardwood < softwood < salix < straw from Phalaris arundineral (harvested during summer). The range of variation was 10-25 between the assortments. The fraction division is the most important factor for the variation. Alkaline content also depend on age, soil fertility and storage methods. Seasonal aspects and local depositions are less important. However, great care should be taken with fuel from coastal areas because of chlorine depositions. Gasification of biomass to produce gas for combined cycle operation poses special problems. The alkali content of logging residues have to be cleaned up to approximately 99 % in the example. When the process gas is originated from straw or salix the separation have to be even more efficient. The method used for the separation could be based on wet or dry technic hotgas cleanup has not yet been tested in large scale but seems to be a promising method to attain high degree of separation and power efficiency. Difficulties of power generation make straw fuels less interesting. The content of alkali and chlorine can be considerably decreased by changing the way of fertilization and cultivation period. If everything turns out well, this would give a complementary for gasification or steam generation. To the greates part this fuels will however be used in pure heat production. (author).

  12. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  13. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  14. Technical challenges and opportunities in cogasification of coal and biomass

    Science.gov (United States)

    Jagpinder Singh Brar; Kaushlendra Singh; John Zondlo

    2013-01-01

    Biomass gasification manufacturers are beginning to market 5 to 100 kW capacity gasifiers (e.g., Community Power Corporation (CPC), Littleton, CO and gasifier experimenters kit (GEK), AllPower Labs, Berkeley, CA) for producing electricity and synthetic gas (syngas). These gasifiers operate at 900 to 1000 °C, consuming 1.3 kg of biomass per hour for every kW...

  15. Gasification technologies for heat and power from biomass

    NARCIS (Netherlands)

    Beenackers, AACM; Maniatis, K; Kaltschmitt, M; Bridgwater, AV

    1997-01-01

    A critical review is presented of biomass gasifier systems presently commercially available or under development. Advantages and possible problem areas are discussed in relation to particular applications. Both large and small scale technologies are reviewed. Catalysed by the EC JOULE and AIR

  16. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  17. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  18. Input of biomass in stand-alone small-scale installations for power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Beekes, M.; Cleijne, J.W.

    2005-09-01

    A number of new initiatives in which bio-oil is used in stand-alone plants for power generation has been reviewed. The question to be answered is whether the reference case for stand alone biomass projects based on burning of wood chips can still be considered representative for the costs and benefits in this category. ECN, in cooperation with KEMA, have determined the financial gap between the costs and benefits of projects in which bio-oil is used in stand alone plants for power generation. The ranges and reference case for bio-oil in stand alone applications show that these projects have a substantially lower financial gap than the current reference case based on wood chips [nl

  19. Biomass and waste management. Chances, risks, perspectives; Biomasse und Abfallwirtschaft. Chancen, Risiken, Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K; Burth, M; Wallmann, R [eds.

    2002-07-01

    The meeting ''Biomass and waste management'' dealt with the following topics: Biodegradable wastes, their collection and sorting, cooperation with agriculture, waste processing, fermentation, biogas, thermal treatments,power generation, use as fertilizers, economics, ecology, fees, national and international waste market. (uke)

  20. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    While fluid bed and grate fired boilers initially was the choice of boilers used for power production from both wood and herbaceous biomass, in recent years suspension fired boilers have been increasingly used for biomass based power production. In Denmark several large pulverized fuel boilers have...... been converted from coal to biomass combustion in the last 15 years. This have included co-firing of coal and straw, up to 100% firing of wood or straw andthe use of coal ash as an additive to remedy problems with wood firing. In parallel to the commercialization of the pulverized biomass firing...... technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation...

  1. Biomass analysis at palm oil factory as an electric power plant

    Science.gov (United States)

    Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris

    2018-04-01

    Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.

  2. The Bonneville Power Administration's geothermal program

    International Nuclear Information System (INIS)

    Darr, G.D.

    1990-01-01

    Despite being a power source with many desirable characteristics, geothermal has not been developed in the Pacific Northwest because of high costs, high risks, and the lack of a market for power. The region will require new power sources in the 1990s, and will need to know to what extent it can rely on geothermal. The Bonneville Power Administration has developed a geothermal RD and D program which includes a proposal to award power contracts to three pilot projects in the Northwest. Public outreach efforts, environmental base line studies, and economic and land use impact studies will also be undertaken. In this paper two projects already under way are discussed

  3. A Honey Bee Foraging approach for optimal location of a biomass power plant

    Energy Technology Data Exchange (ETDEWEB)

    Vera, David; Jurado, Francisco [Dept. of Electrical Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain); Carabias, Julio; Ruiz-Reyes, Nicolas [Dept. of Telecommunication Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain)

    2010-07-15

    Over eight million hectares of olive trees are cultivated worldwide, especially in Mediterranean countries, where more than 97% of the world's olive oil is produced. The three major olive oil producers worldwide are Spain, Italy, and Greece. Olive tree pruning residues are an autochthonous and important renewable source that, in most of cases, farmers burn through an uncontrolled manner. Besides, industrial uses have not yet been developed. The aim of this paper consists of a new calculation tool based on particles swarm (Binary Honey Bee Foraging, BHBF). Effectively, this approach will make possible to determine the optimal location, biomass supply area and power plant size that offer the best profitability for investor. Moreover, it prevents the accurate method (not feasible from computational viewpoint). In this work, Profitability Index (PI) is set as the fitness function for the BHBF approach. Results are compared with other evolutionary optimization algorithms such as Binary Particle Swarm Optimization (BPSO), and Genetic Algorithms (GA). All the experiments have shown that the optimal plant size is 2 MW, PI = 3.3122, the best location corresponds to coordinate: X = 49, Y = 97 and biomass supply area is 161.33 km{sup 2}. The simulation times have been reduced to the ninth of time than the greedy (accurate) solution. Matlab registered is used to run all simulations. (author)

  4. Use of biomass for clean and efficient production of heat and power. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Frandsen, J.B.F.; Johnsson, J.E.; Jensen, A.; Kiil, S.; Dam-Johansen, K.

    2001-03-01

    The present EFP98 project is the second phase of a long-term, strategic research project, the aim of which is to facilitate the use of significant amounts of biomass in the production of power and heat. The project deals with combustion and emission issues related to the use of biomass, specifically combustion of straw on a grate and wet flue gas desulphurization. A mathematical model for combustion of straw on a grate is developed as a tool to improve the understanding of this process. The model includes heat transfer to and in the bed as well as pyrolysis and char oxidation. To verify the model and to obtain a better understanding of fixed-bed straw combustion, a number of bench-scale laboratory experiments have been conducted at TNO in Holland. Predicted combustion rates and bed temperatures were in fairly good agreement with experimental fixed-bed data. A parameter analysis has identified the sensitivity of modeling predictions towards important parameters in the model. Measuring programs on straw firing have been conducted at Enstedvaerket and Masnedoe. Measuring results include gas temperature and gas composition (O{sub 2}, CO{sub 2}, CO. SO{sub 2}, NO) from different positions in the boiler. Data from Masnedoe include also results from co-firing of straw with other biomass fuels (25-35%). The results indicate that co-firing in the quantities does not significantly affect emissions. Nitrogen oxides emissions from Masnedoevaerket were found to be significantly higher than those of Ensted. The work on wet flue gas desulphurization on aimed to provide the information necessary to optimize and further develop the process. The main focus was fuel and sorbent flexibility, use of the waste product from the semi-dry FGD process as a sorbent in wet FGD, and ways of optimizing the Wet FGD process with respect to a high degree of desulphurization, a low content of residual limestone in the gypsum and a continuous steady state operation of the FGD plant. Laboratory

  5. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  6. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    International Nuclear Information System (INIS)

    Downing, M.; Graham, R.L.

    1993-01-01

    Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields

  7. Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system

    International Nuclear Information System (INIS)

    Gómez-González, M.; López, A.; Jurado, F.

    2013-01-01

    Highlights: ► Method to determine the optimal location and size of biomass power plants. ► The proposed approach is a hybrid of PSO algorithm and optimal power flow. ► Comparison among the proposed algorithm and other methods. ► Computational costs are enough lower than that required for exhaustive search. - Abstract: This paper addresses generation of electricity in the specific aspect of finding the best location and sizing of biomass fueled gas micro-turbine power plants, taking into account the variables involved in the problem, such as the local distribution of biomass resources, biomass transportation and extraction costs, operation and maintenance costs, power losses costs, network operation costs, and technical constraints. In this paper a hybrid method is introduced employing discrete particle swarm optimization and optimal power flow. The approach can be applied to search the best sites and capacities to connect biomass fueled gas micro-turbine power systems in a distribution network among a large number of potential combinations and considering the technical constraints of the network. A fair comparison among the proposed algorithm and other methods is performed.

  8. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  9. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  10. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low...... temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings...

  11. Biomass Cofiring in Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  12. Gas, power and heat generation from biomass by allothermal gasification; Gas-, Strom- und Waermeerzeugung aus Biomasse durch allotherme Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Yaqub Chughtai, M [H und C Engineering GmbH, Gummersbach (Germany); Muehlen, H J [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    The allothermal DMT gasification process for biomass is a newcomer. The process, its initial materials, the uses of the product gas, and advantages of the allothermal process are described here. (orig./SR) [Deutsch] Der Einsatz des allothermen DMT-Vergasungsverfahrens fuer Biomasse ist neu. Verfahren, Einsatzstoffe und Produktgasnutzung, sowie Vorteile des allothermen Verfahrens werden hier beschrieben. (orig./SR)

  13. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    International Nuclear Information System (INIS)

    Ren, Hongbo; Zhou, Weisheng; Nakagami, Ken'ichi; Gao, Weijun

    2010-01-01

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  14. The road from photon to biomass. Van foton tot biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Schaafsma, T J [Landbouwuniversiteit Wageningen (Netherlands)

    1989-10-01

    The photosynthesis of biomass is outlined. Concentration of the lowpower density of sunlight by means of biomass production makes biomasscomparable to fossil fuels with respect to power density. Efficiency ofthe photosynthesis process and use of biomass conversion processestogether with their costs are discussed. Possible future utilization ofbiological solar cells is mentioned. 5 figs., 8 refs., 3 tabs.

  15. Preliminary life-cycle assessment of biomass-derived refinery feedstocks for reducing CO2 emissions

    International Nuclear Information System (INIS)

    Marano, J.J.; Rogers, S.; Spath, P.L.; Mann, M.K.

    1995-01-01

    The US by ratification of the United Nations Framework Convention on Climate Change has pledged to emit no higher levels of greenhouse gases in the year 2000 than it did in 1990. Biomass-derived products have been touted as a possible solution to the potential problem of global warming. However, past studies related to the production of liquid fuels, chemicals, gaseous products, or electricity from biomass, have only considered the economics of producing these commodities. The environmental benefits have not been fully quantified and factored into these estimates until recently. Evaluating the environmental impact of various biomass systems has begun using life-cycle assessment. A refinery Linear Programming model previously developed has been modified to examine the effects of CO 2 -capping on the US refining industry and the transportation sector as a whole. By incorporating the results of a CO 2 emissions inventory into the model, the economic impact of emissions reduction strategies can be estimated. Thus, the degree to which global warming can be solved by supplementing fossil fuels with biomass-derived products can be measured, allowing research and development to be concentrated on the most environmentally and economically attractive technology mix. Biomass gasification to produce four different refinery feedstocks was considered in this analysis. These biomass-derived products include power, fuel gas, hydrogen for refinery processing, and Fischer-Tropsch liquids for upgrading and blending into finished transportation fuels

  16. 2011 Biomass Program Platform Peer Review. Integrated Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Rossmeissl, Neil [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s IBR Platform Review meeting.

  17. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  18. Cocombustion of biomass in coal-fired power plants; Meestoken van biomassa in kolengestookte E-centrales

    Energy Technology Data Exchange (ETDEWEB)

    Albrink, W.G.M. [Stork Thermeq, Hengelo (Netherlands)

    2001-12-01

    The aim of the desk study is to determine to what degree several types of biomass can be cofired with existing coal fired utility boilers in the Netherlands. All results with regard to boiler performances are obtained by making use of a computer model of a typical coal fired boiler which make part of a 600 MWe coal fired power plant. Because the existing coal fired units in the Netherlands do deviate more or less from the used model all outcomes and conclusions of this study are indicative. Slagging and corrosion which become more important when firing biogas in a coal fired boiler are considered superficially. More close investigations are necessary when carry out concrete projects. Furthermore all results are based on 100% boiler load and may not be used or extrapolated to part load conditions. The extent of firing biomass gas may depend on available space in the boiler house and correlated restrictions for necessary constructive adaptations. These aspects were leave out of consideration. For information the necessary size of piping for biomass gas from gasifier to the boiler has been determined for several amounts of biomass. [Dutch] Het doel van de studie is te onderzoeken hoeveel biomassa, in percentage van het thermisch vermogen, volgens verschillende concepten kan worden meegestookt in een kolengestookte elektriciteitscentrale. Dit wordt in deze studie behandeld aan de hand van een aantal aspecten: Rookgashoeveelheden door de ketel. Hierbij kornen de volgende zaken aan de orde: snelheden, drukval, belasting van DeNox, DeSox en E-filters, capaciteit van de ventilatoren; Rookgastemperaturen. Dit betreft temperaturen uitlaat vuurhaard, uitlaat ketel en uitlaat LUVO (luchtverhitter); Verslakking en corrosie van oververhitters; Water/stoomzijdige flows. Dit betreft aspecten als flows, temperaturen, flow door de turbine (slikvermogen) en uitlaatconditie stoomturbine (vochtgehalte). Voor de verwerking van biomassa worden alleen vergassing (in hoofdzaak) en, minder

  19. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Leslie [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  20. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  1. Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    Deterministic constrained optimization and stochastic optimization approaches were used to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An economic linear programming model with a sliding time window was developed to assess design and scheduling...... of biomass combined heat and power (BCHP) based microgrid systems. Other available technologies considered within the microgrid were small-scale wind turbines, photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and heat-only boilers. As an illustrative example, a case...... study was examined for a conceptual utility grid-connected microgrid application in Davis, California. The results show that for the assumptions used, a BCHP/PV with battery storage combination is the most cost effective design based on the assumed energy load profile, local climate data, utility tariff...

  2. Biomass and waste management. Chances, risks, perspectives; Biomasse und Abfallwirtschaft. Chancen, Risiken, Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Burth, M.; Wallmann, R. (eds.)

    2002-07-01

    The meeting ''Biomass and waste management'' dealt with the following topics: Biodegradable wastes, their collection and sorting, cooperation with agriculture, waste processing, fermentation, biogas, thermal treatments,power generation, use as fertilizers, economics, ecology, fees, national and international waste market. (uke)

  3. Quality assurance program for isotopic power systems

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1982-12-01

    This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented

  4. Quality assurance program for isotopic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, R.L.; Harnar, R.R.

    1982-12-01

    This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented.

  5. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  6. BioOil presents: Free-flowing alternative to traditional biomass energy generation

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, S.

    2003-12-01

    A new technology, called fast pyrolysis, is described. Fast pyrolysis is a process for converting biomass collected from agricultural and forest residues into an organic liquid fuel, called BioOil, that's easily transported, stored and handled. BioOil's principal virtue is that it can be used to generate carbon-neutral, cost-effective process heat and electricity; it also disposes of organic waste, and creates new jobs and industries. As an indication of interest in BioOil, two recent developments are cited as worthy of note: an award of $23 million for biomass research jointly by the USDA and the USDOE and a commitment of $30 million by the Government of Canada to support the development and demonstration of bio-based systems and technologies. (The Canadian investment is part of the $1 billion commitment toward implementation of the Climate Change Program for Canada). The fast pyrolysis process is carbon dioxide neutral, i.e. when biomass is converted into thermal energy, the carbon dioxide that is released is equal to the amount of carbon dioxide that went into growing the biomass. The process is particularly appealing to energy companies in areas with large forestry or agricultural potential. In Canada, DynaMotive Energy Systems Corporation is the most advanced in developing and commercializing environmentally friendly fuels produced from biomass; the company is also a world leader in fast pyrolysis technology. Ontario Power Generation is cooperating with DynaMotive on a project to produce BioOil from residue supplied by Erie Flooring and Wood Products. The 2.5 megawatt gas turbine that will combust the bio-oil and generate electricity will be supplied by the Magellan Aerospace Corporation. Beyond meeting the energy requirements of Erie Flooring and Wood Products, the project will also contribute about 1.5 megawatts of power to OPG's green energy portfolio in 2004. It is expected that the example of a commercial project of this scale, will serve

  7. Defining and certifying green power

    International Nuclear Information System (INIS)

    1998-02-01

    Studies have shown that as electric utilities restructure from monopolistic utilities to competitive open access retailers, there is an increasing demand by individual and institutional customers for green power. In the United States, 17 electricity suppliers have offered customers the opportunity to buy energy generated from renewable sources such as photovoltaic panels, wind turbines and biomass. Twenty other utilities are conducting market research in preparation for offering a similar program. It was suggested that in order to help the customers make their choice based on accurate information, generating facilities should be obligated to provide credible information about the environmental performance of electricity supply through standardized environmental profile labels. A list of agreed upon environmental indicators and performance levels must be established so that the 'environmental friendliness' of different generating facilities can be measured. One of the problems in tackling this issue is that there is disagreement about what constitutes green power. Opinions range from wind and solar generation being the only two forms of green power, to including even natural gas and nuclear energy (i.e. under the right conditions). The two programs that are used for the certification of green power in Canada and the United States are Canada's Environmental Choice Program and California's Green-e Renewable Electricity Branding Program. This report describes the two programs and summarizes the results of interviews conducted on the definition and certification of green power. 15 refs

  8. Nuclear power programs in the world's developed and developing countries

    International Nuclear Information System (INIS)

    Czibolya, L.

    1983-01-01

    The significance of nuclear power in the world's energy balance related to fossile energy sources is discussed. The general trend of declination of the national power programs could be observed from the seventies as a result of the oil crisis and the economic recession. The main features of the national energy programs including the ratio of the different energy sources in the power supply, the distribution of power production among the different types of nuclear reactors, the time schedules of the national nuclear power programs are reviewed through the examples of some developed and developing countries: USA, FRG, Canada, Japan, France, Sweden, the Soviet Union, Czechoslovakia, Bulgaria, Hungary, Romania, India, and the Republic of Korea. (V.N.)

  9. Economic consideration for Indonesia's nuclear power program

    International Nuclear Information System (INIS)

    Ahimsa, D.; Sudarsono, B.

    1987-01-01

    Indonesia experienced relatively high economic growth during the 1970s and the energy supply system was strained to keep up with demand. Several energy studies were thus carried out around 1980, including a nuclear power planning study and a nuclear plant feasibility study. During the 1980s, economic growth rates were subtantially lower, but surprisingly electricity demand remained fairly high. In 1984 it was therefore decided to update previous nuclear power studies. This effort was completed in 1986. Using energy projections and cost estimates developed during the updating of previous nuclear power studies, the paper discusses the economic justification for a nuclear power program in Indonesia. Results of the update, including computer runs of MAED and WASP models supplied by the IAEA, will be presented along with appropriate sensitivity analysis. These results are then analyzed in the light of 1986 developments in international oil price. Preparations for the forthcoming nuclear power program are described, including the construction of a multi-purpose reactor and associated laboratories in Serpong, near Jakarta. (author)

  10. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  11. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  12. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  13. Biomass energetics potential of wetlands at Saare county

    International Nuclear Information System (INIS)

    Kask, U.; Kask, L.

    2002-01-01

    Most of the fuels that are being used to produce the thermal and electrical power are nonrenewable. Transferring them into energy pollutes the environment with CO 2 and surplus heat. Biomass is the most suitable energy resource in Estonian natural circumstances. Hitherto, one kind of biomass - plants of wetland - has almost not been used. There are plenty of wetlands in Saaremaa that have reasonably high productivity of biomass. Exertion of technologies of processing and using the biomass helps to create new jobs in agriculture as well in other sector of economy and evolve the regional development. The local currency circulation will improve and there are also possibilities in increase of capital expenditures and export potential. The biomass productivity of wetland plants accounting to dry matter can reach up to 4-5 kg/m 2 in a year. One advantage to use the plants of wetland (reed, cattail) in energy production is the fact that these plants will disengage from water in the end of their growth period and will need no extra drying. There are over 12000 ha of wetlands in Saaremaa, half of them could be used to get energetical biomass. The other half is either under (nature)protection or it would be economically inefficient to cut reed there. The major wetlands are in the surroundings of Mullatu bay and the Koigi swamp, also in Tornimae. There could be significant reduce in the emission of solid particles into the atmosphere, if the biomass of wetlands would be used to produce thermal and electrical power in Kuressaare. (author)

  14. GIS Methodology for Location of Biomass Power Plants Via Multi -Criteria Evaluation and Network Analysis. Location-Allocation Models for Forest Biomass Use; Metodologia SIG para la Localizacion de Centrales de Biomasa mediante Evaluacion Multicriterio y Analisis de Redes. Modelos de Localizacion-Asignacion para el Aprovechamiento de Biomasa Forestal

    Energy Technology Data Exchange (ETDEWEB)

    Paz, C de la; Dominguez, J; Perez, M E

    2013-02-01

    The main purpose of this study is to find optimal areas for the installation of Biomass Plants for electric generation and grid connected. In order to achieve this goal, a methodology based on Multi-Criteria Evaluation (MCE) and implemented by means a Geographic Information System (GIS) has been developed. Factors and restrictions for biomass resource and power plants location of biomass have been obtained through the dataset. The methodology output includes maps of greater aptitude areas for resource use (forest biomass available), as well as suitable locations for the placement of Forest Biomass facilities. Both cartographic products have been related by means Network Analysis. It generates Location-Allocation Models which allows locating Forest Biomass Facilities according with an optimization of the supply chain from the resource areas. (Author)

  15. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    Oakey, John; Simms, Nigel; Kilgallon, Paul

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  16. Overall quality assurance program requirements for nuclear power plants

    International Nuclear Information System (INIS)

    1992-09-01

    This standard contains the requirements for the owner's overall quality assurance program for a nuclear power plant. This program encompasses all phases of a nuclear power plant life cycle, including site evaluation, design, procurement, manufacturing, construction and installation, commissioning, operation, and decommissioning. It covers the activities associated with specifying, directing, and administering the work to be done during these phases, and the evaluation and integrated of the activities and programs of participants

  17. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ

  18. The biomass energy market in Finland

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001, it was estimated that the Finnish biomass market was in excess of 235 million dollars. The development of renewable energy, with special emphasis on biomass, was supported by the development of an energy strategy by the government of Finland. The installed capacity of biomass in Finland in 2002 was 1400 megawatt electrical (MWe). Extensive use of combined heat and power (CHP) is made in Finland, and district heating (DH) systems using biomass are gaining in popularity. Wood-based biomass technologies, retrofits to fluidized bed combustion, and wood procurement technologies were identified as the best opportunities for Canadian companies interested in operating in Finland. A country with high standards, Finland seems to look favorably on new innovative solutions. Joint ventures with Finnish companies might be an excellent way for Canadian companies to gain a foothold in Finland and expand into the European Union, the Nordic countries, the Baltic, Russia and the Central and Eastern European markets. It was further noted that Finland is one of the leading exporters of biomass technology in the world. The document provided quick facts, examined opportunities, and looked at key players. 19 refs., 4 tabs

  19. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  20. Gene expression programming for power system static security ...

    African Journals Online (AJOL)

    user

    Keywords: static security, gene expression programming, probabilistic neural network ... Hence digital computers are usually installed in operations control centers to gather ...... power system protection, and applications of AI in power systems.

  1. FY 2000 report on the results of the survey on the biomass-derived energy conversion technology. III; 2000 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In relation to the biomass-derived energy conversion technology which was regarded as promising from the results of the survey already made, the survey was made on the present situation and subjects of the technical development, social needs, energy efficiency, economical efficiency and the future. Studies were conducted on the development of technology for effective biomass utilization and the conceptual design and evaluation of a system for effective biomass utilization. As to the effective biomass utilization technology, the survey was made on the biomass combustion power generation technology/gasification power generation technology, gasification methanol synthesis of biomass, biomass gasification dimethyl ether synthesis, technology of ethanol production by alcohol fermentation via saccharification of biomass, methy-esterification of grease biomass, especially palm oil, and diesel oil production via reformation of by-product glycerin, and energy production from biomass using super- (sub- ) critical reaction. As to the system for effective biomass utilization, the survey was carried out of the regional outline, resource amount and sampling amount, selection of the conversion technology, and economical efficiency of Takatsuki city, Osaka, Shimokawa town, Hokkaido, Yufutsu/Hidaka region, Hokkaido, and Aogaki town, Hyogo. (NEDO)

  2. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei

    2016-01-01

    and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close to its...... stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the restoration....... In this paper, the possibility to exploit the stochastic wind power during restoration was discussed, and a Dynamic Programming (DP) method was proposed to make wind power contribute in the restoration rationally as far as possible. In this paper, the method is tested and verified by a modified IEEE 30 Buses...

  3. Virginia Power's regulatory reduction program

    International Nuclear Information System (INIS)

    Miller, G.D.

    1996-01-01

    Virginia Power has two nuclear plants, North Anna and Surry Power Stations, which have two units each for a total of four nuclear units. In 1992, the Nuclear Regulatory Commission solicited comments from the nuclear industry to obtain their ideas for reducing the regulatory burden on nuclear facilities. Pursuant to the new regulatory climate, Virginia Power developed an internal program to evaluate and assess the regulatory and self-imposed requirements to which they were committed, and to pursue regulatory relief or internal changes where possible and appropriate. The criteria were that public safety must be maintained, and savings must be significant. Up to the date of the conference, over US$22 million of one-time saving had been effected, and US$2.75 million in annual savings

  4. Biomass fuelled indirect fired micro turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2005-07-01

    This report summarises the findings of a project to further develop and improve a system based on the Bowman TG50 50kWe turbine and a C3(S) combustor with a high temperature heat exchanger for the production of electricity from biomass. Details are given of the specific aims of the project, the manufacture of a new larger biomass combustor, the development of startup and shutdown procedures, waste heat recuperation, adaption of a PC-based mathematical model, and capital equipment costs. The significant levels of carbon emission savings and the commercial prospects of the biomass generator gas turbine combined heat and power (CHP) system are considered, and recommendations are presented.

  5. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  6. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  7. Biomass - Activities and projects in 2002; Biomasse Aktivitaeten und Projekte 2002. Ueberblicksbericht zum Forschungsprogramm 2002

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This annual report made for the Swiss Federal Office of Energy reviews the activities carried out under the Biomass Research Programme in 2002 and describes the various projects that were active during the year. The situation concerning energy supply from biomass is discussed and figures are presented on its share in total Swiss energy consumption. Three categories of biomass use are presented - burning, fermentation of wastes and biofuels. >From each of these categories, several pilot and demonstration projects are described that cover a wide range of technologies and research activities, ranging from the pre-processing of biogenic wastes through to the optimisation of biogas-based combined heat and power installations and the operational economics of compact biogas installations. The report is completed with lists of research and development projects and pilot and demonstration projects.

  8. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry; Proceedings, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this first volume deal with Resource Base and Power Production. The particular subjects within the Resource Base area are Biomass, Wastes and Residues, Feedstock Research, and Commercial Systems. The emphasized subjects within the Power Production area are Combustion, Thermal and Biological Gasification, Waste Generation and Waste Disposal and Waste Emissions, and Heat, Steam, and Fuels-Commercial Systems. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Computer program analyzes and monitors electrical power systems (POSIMO)

    Science.gov (United States)

    Jaeger, K.

    1972-01-01

    Requirements to monitor and/or simulate electric power distribution, power balance, and charge budget are discussed. Computer program to analyze power system and generate set of characteristic power system data is described. Application to status indicators to denote different exclusive conditions is presented.

  10. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  11. Community assessment of tropical tree biomass

    DEFF Research Database (Denmark)

    Theilade, Ida; Rutishauser, Ervan; Poulsen, Michael K.

    2015-01-01

    Background REDD+ programs rely on accurate forest carbon monitoring. Several REDD+ projects have recently shown that local communities can monitor above ground biomass as well as external professionals, but at lower costs. However, the precision and accuracy of carbon monitoring conducted by local...... communities have rarely been assessed in the tropics. The aim of this study was to investigate different sources of error in tree biomass measurements conducted by community monitors and determine the effect on biomass estimates. Furthermore, we explored the potential of local ecological knowledge to assess...... measurement, with special attention given to large and odd-shaped trees. A better understanding of traditional classification systems and concepts is required for local tree identifications and wood density estimates to become useful in monitoring of biomass and tree diversity....

  12. Cost-Benefit Analysis of a Biomass Power Plant in Morocco and a Photovoltaic Installation in Algeria

    International Nuclear Information System (INIS)

    Galan, A.; Gonzalez Leal, J.; Varela, M.

    1999-01-01

    This report presents an overview of cost-benefit analysis general methodology, describing its principles and basic characteristics. This methodology was applied to two case studies analyzed in the project INTERSUDMED, one biomass power plant fed by energy crops in El Hajeb (Morocco) and the other a photovoltaic installation in Djanet (Algeria). Both cases have been selected among the ones analyzed in the INTERSUDMED Project because of their interesting social implications and possible alternatives, that make them most suitable for cost-benefit analysis application. Finally, this report addresses the conclusions of both studies and summarizes the most relevant obtained results. (Author) 13 refs

  13. Cost-Benefit Analysis of a Biomass Power Plant in Morocco and a Photovoltaic Installation in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Galan, A.; Gonzalez Leal, J.; Varela, M.

    1999-07-01

    This report presents an overview of cost-benefit analysis general methodology, describing its principles and basic characteristics. This methodology was applied to two case studies analyzed in the project INTERSUDMED, one biomass power plant fed by energy crops in El Hajeb (Morocco) and the other a photovoltaic installation in Djanet (Algeria). Both cases have been selected among the ones analyzed in the INTERSUDMED Project because of their interesting social implications and possible alternatives, that make them most suitable for cost-benefit analysis application. Finally, this report addresses the conclusions of both studies and summarizes the most relevant obtained results. (Author) 13 refs.

  14. Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density.

    Science.gov (United States)

    Jung, SungHoon; Myung, Yusik; Kim, Bit Na; Kim, In Gyoo; You, In-Kyu; Kim, TaeYoung

    2018-01-30

    Here, we present a facile and low-cost method to produce hierarchically porous graphene-based carbons from a biomass source. Three-dimensional (3D) graphene-based carbons were produced through continuous sequential steps such as the formation and transformation of glucose-based polymers into 3D foam-like structures and their subsequent carbonization to form the corresponding macroporous carbons with thin graphene-based carbon walls of macropores and intersectional carbon skeletons. Physical and chemical activation was then performed on this carbon to create micro- and meso-pores, thereby producing hierarchically porous biomass-derived graphene-based carbons with a high Brunauer-Emmett-Teller specific surface area of 3,657 m 2  g -1 . Owing to its exceptionally high surface area, interconnected hierarchical pore networks, and a high degree of graphitization, this carbon exhibited a high specific capacitance of 175 F g -1 in ionic liquid electrolyte. A supercapacitor constructed with this carbon yielded a maximum energy density of 74 Wh kg -1 and a maximum power density of 408 kW kg -1 , based on the total mass of electrodes, which is comparable to those of the state-of-the-art graphene-based carbons. This approach holds promise for the low-cost and readily scalable production of high performance electrode materials for supercapacitors.

  15. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  16. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  17. Quality assurance program manual for nuclear power plants. Volume I. Policies

    International Nuclear Information System (INIS)

    1976-01-01

    The Consumers Power Company Quality Assurance Program Manual for Nuclear Power Plants consists of policies and procedures which comply with current NRC regulatory requirements and industry codes and standards in effect during the design, procurement, construction, testing, operation, refueling, maintenance, repair and modification activities associated with nuclear power plants. Specific NRC and industry documents that contain the requirements, including the issue dates in effect, are identified in each nuclear power plant's Safety Analysis Report. The requirements established by these documents form the basis for the Consumer Power Quality Assurance Program, which is implemented to control those structures, systems, components and operational safety actions listed in each nuclear power plant's Quality List (Q-List). As additional and revised requirements are issued by the NRC and professional organizations involved in nuclear activities, they will be reviewed for their impact on this manual, and changes will be made where considered necessary. CP Co 1--Consumers Power Company QA Program Topical Report is Volume I of this manual and contains Quality Assurance Program Policies applicable during all phases of nuclear power plant design, construction and operation

  18. Biomass production and utilisation. Policy implications for LDCs

    International Nuclear Information System (INIS)

    Davidson, O.

    1997-01-01

    The importance of biomass in the energy sector of LDCs and in Africa in particular is illustrated so as to provide the background to the policy importance on the production and use of this energy source. The main areas for policy attention discussed are: biomass for power generation, biomass use in the transport sector, urban energy supply and the interactions with agricultural policies. The roles of the major institutions the government, private sector institutions, educational institutions and non-governmental organizations are identified. It is concluded that with the necessary policy shift that is being advocated, biomass can contribute to a more equitable supply of high quality and efficient energy services in the future of African countries. (K.A.)

  19. The program of reactors and nuclear power plants

    International Nuclear Information System (INIS)

    Calabrese, Carlos R.

    2001-01-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined

  20. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  1. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  2. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  3. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A [ATEKO a.s., Hradec Kralove (Czech Republic)

    1997-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  4. Integrated resource management of biomass

    International Nuclear Information System (INIS)

    Goodwin, E.R.

    1992-01-01

    An overview is presented of the use of biomass, with emphasis on peat, as an alternative energy source, from an integrated resource management perspective. Details are provided of the volume of the peat resource, economics of peat harvesting, and constraints to peat resource use, which mainly centre on its high water content. Use of waste heat to dry peat can increase the efficiency of peat burning for electric power generation, and new technologies such as gasification and turbo expanders may also find utilization. The burning or gasification of biomass will release no more carbon dioxide to the atmosphere than other fuels, has less sulfur content than solid fuels. The removal of peat reduces methane emissions and allows use of produced carbon dioxide for horticulture and ash for fertilizer, and creates space that may be used for forestry or agricultural biomass growth. 38 refs

  5. Suggestions for an updated fusion power program

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1976-02-01

    This document contains suggestions for a revised CTR Program strategy which should allow us to achieve equivalent goals while operating within the above constraints. The revised program is designed around three major facilities. The first is an upgrading of the present TFTR facility which will provide a demonstration of the generation of tens of megawatts electric equivalent originally envisioned for the 1985 EPR. The second device is the TTAP which will allow the integration and optimization of the plasma physics results obtained from the next generation of plasma physics experiments. The improvement in tokamak reactor operation resulting from this optimization of fusion plasma performance will enable an EPR to be designed which will produce several hundred megawatts of electric power by 1990. This will move the fusion program much closer to its goal of commercial fusion power by the turn of the century. In addition to this function the TTAP will serve as a prototype of the 1990 EPR system, thus making more certain the successful operation of this device. The third element of this revised program is an intense radiation damage facility which will provide the radiation damage information necessary for the EPR and subsequent fusion reactor facilities. The sum total of experience gained from reacting plasma experiments on TFTR, reactor grade plasma optimization and technological prototyping on TTAP, and end of life radiation damage results from the intense neutron facility will solve all of the presently foreseen problems associated with a tokamak fusion power reactor except those associated with the external nuclear systems. These external system problems such as tritium breeding and optimal power recovery can be developed in parallel on the 1990 EPR

  6. Cob biomass supply for combined heat and power and biofuel in the north central USA

    International Nuclear Information System (INIS)

    Schmer, Marty R.; Dose, Heather L.

    2014-01-01

    Corn (Zea mays L.) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) using existing corn grain ethanol plants as a proxy for possible future co-located cellulosic ethanol plants. Cob production estimates averaged 6.04 Tg and 8.87 Tg using a 40 km radius area and 80 km radius area, respectively, from existing corn grain ethanol plants. The use of CHP from cobs reduces overall GHG emissions by 60%–65% from existing dry mill ethanol plants. An integrated biorefinery further reduces corn grain ethanol GHG emissions with estimated ranges from 13.9 g CO 2  equiv MJ −1 to 17.4 g CO 2  equiv MJ −1 . Significant radius area overlap (53% overlap for 40 km radius and 86% overlap for 80 km radius) exists for cob availability between current corn grain ethanol plants in this region suggesting possible cob supply constraints for a mature biofuel industry. A multi-feedstock approach will likely be required to meet multiple end user renewable energy requirements for the north central United States. Economic and feedstock logistics models need to account for possible supply constraints under a mature biofuel industry. - Highlights: • Corn cob biomass was estimated for the north central United States region. • Cobs were evaluated for combined heat and power generation and bioethanol. • Co-located ethanol plants showed a reduction in greenhouse gas emissions. • Biomass supply constraints may occur under a mature cellulosic ethanol scenario

  7. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  8. Startup program after SGR and power increase

    International Nuclear Information System (INIS)

    Krajnc, B.; Dudas, M.; Spiler, J.; Novsak, M.

    2000-01-01

    NPP Krsko replaced steam generators during the outage 2000. Parallel with the steam generator replacement all required systems modifications to accommodate new steam generators into the existing plant (upper feed,..) and support plant power increase of 6.3%, have been implemented. During the years 1997 - 2000 all the required licensing, technical analyses and systems verifications to support such plant changes have been completed. One of the activities within this effort was also the preparation of a detailed Plant Startup Program, which was subject of licensing review and approval process. An integrated plant startup program was then developed based on the plant startup test program, performed regularly during plant startup after refueling and above-mentioned Plant Startup Program. These additional tests defined by the Startup Test Program have been required due to new steam generators, steam generator replacement and related modifications, and power increase from previous 1882 MWt to 2000 MWt. During the preparation period, a startup team was established and procedures were written. All procedures sensitive to the operation were validated on the plant specific simulator. This paper presents more about the Startup Test Program, analysis of its implementation, the results of some key tests as well as the lessons learned. (author)

  9. Biomass for electricity in the EU-27: Potential demand, CO2 abatements and breakeven prices for co-firing

    International Nuclear Information System (INIS)

    Bertrand, Vincent; Dequiedt, Benjamin; Le Cadre, Elodie

    2014-01-01

    This paper analyses the potential of biomass-based electricity in the EU-27 countries, and interactions with climate policy and the EU ETS. We estimate the potential biomass demand from the existing power plants, and we match our estimates with the potential biomass supply in Europe. Furthermore, we compute the CO2 abatement associated with the co-firing opportunities in European coal plants. We find that the biomass demand from the power sector may be very high compared with potential supply. We also identify that co-firing can produce high volumes of CO 2 abatements, which may be two times larger than that of the coal-to-gas fuel switching. We also compute biomass and CO2 breakeven prices for co-firing. Results indicate that biomass-based electricity remains profitable with high biomass prices, when the carbon price is high: a Euros 16–24 (25–35, respectively) biomass price (per MWh prim ) for a Euros 20 (50, respectively) carbon price. Hence, the carbon price appears as an important driver, which can make profitable a high share of the potential biomass demand from the power sector, even with high biomass prices. This aims to gain insights on how biomass market may be impacted by the EU ETS and others climate policies. - Highlights: • Technical potential of biomass (demand and CO 2 abatement) in European electricity. • Calculation for co-firing and biomass power plants; comparison with potential biomass supply in EU-27 countries. • Calculation of biomass and CO 2 breakeven prices for co-firing. • Potential demand is 8–148% of potential supply (up to 80% of demand from co-firing). • High potential abatement from co-firing (up to 365 Mt/yr); Profitable co-firing with €16-24 (25–35) biomass price for €20 (50) CO 2 price

  10. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    Science.gov (United States)

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  11. Manitoba Hydro's earth power program and Manitoba market update

    International Nuclear Information System (INIS)

    Pearson, K.

    2005-01-01

    An outline of Manitoba Hydro's Earth Power program was presented. Details of the heat pump market in Manitoba were provided, including details of residential and commercial sales. Total residential heat pump sales amounted to 577 units in 2004, equivalent to over $11.2 million in sales. Commercial installations amounted to approximately $12.7 million. An outline of industry players was presented. The goals of Manitoba Hydro were outlined in relation to geothermal energy and the Power Smart program. Their objectives included increasing awareness of geothermal energy, making heat pumps more accessible, and improving industry infrastructure. Other objectives included educating the public about life-cycle cost implications, residential loans and commercial incentives. To date, the residential power loan has provided financing to over 300 Manitoba home owners for installations, with electrical savings of over 1.34 Gwh and natural gas savings of 279,425 m 3 . The program is also committed to providing assistance with feasibility studies. Provincial tax credits for the Earth Program included a 10 per cent deduction of geothermal heat pump purchases from corporation income tax. Case studies of the program were presented along with an outline of the geothermal heat pump for homes booklet. Details of the residential earth power loan were provided, including details of installation, system completion and approval processes. Awards and accolades for the program include the 2004 HRAI Education supporter award and recognition by the David Suzuki Foundation, which highlighted the program as a national leader in encouraging and facilitating the use of GeoExchange technology. tabs, figs

  12. Biomass - Activities and projects in 2004; Biomasse - Aktivitaeten und Projekte 2004

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D; Guggisberg, B

    2005-07-01

    This annual report by the Swiss Federal Office of Energy (SFOE) presents an overview of the Swiss research programme on biomass and its efficient use both as a source of heat and electrical power and as a fuel. Work done and results obtained in the year 2004 are looked at. Topics covered include combustion and gasification of wood, the fermentation of biogenic wastes and developments in the bio-fuels area. Several projects in each of these areas are discussed. National co-operation with various universities, private organisations and other federal offices is discussed, as are contributions made to symposia and exhibitions in the biomass area. International co-operation within the framework of International Energy Agency (IEA) tasks is mentioned. Various pilot and demonstration projects in the combustion, gasification and fermentation areas are listed and discussed.

  13. CO Emissions from Gas Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, T. K.; Henriksen, Ulrik Birk

    2004-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where...

  14. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.

    Science.gov (United States)

    Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung

    2017-07-10

    Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Final Technical Report: Thermoelectric-Enhanced Cookstove Add-on (TECA) for Clean Biomass Cookstoves

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, David [RTI International, Research Triangle Park, NC (United States)

    2015-09-29

    This program seeks to demonstrate a solution to enhance existing biomass cookstove performance through the use of RTI’s Thermoelectric Enhanced Cookstove Add-on (TECA) device. The self-powered TECA device captures a portion of heat from the stove and converts it to electricity through a thermoelectric (TE) device to power a blower. Colorado State University and Envirofit International are partners to support the air injection design and commercialization to enhance combustion in the stove and reduce emissions. Relevance: By demonstrating a proof of concept of the approach with the Envirofit M-5000 stove and TECA device, we hope to apply this technology to existing stoves that are already in use and reduce emissions for stoves that have already found user acceptance to provide a true health benefit. Challenges: The technical challenges include achieving Tier 4 emissions from a biomass stove and for such a stove to operate reliably in the harsh field environment. Additional challenges include the fact that it is difficult to develop a cost effective solution and insure adoption and proper use in the field. Outcomes: In this program we have demonstrated PM emissions at 82 mg/MJd, a 70% reduction as compared to baseline stove operation. We have also developed a stove optimization approach that reduces the number of costly experiments. We have evaluated component-level reliability and will be testing the stove prototype in the field for performance and reliability.

  16. Strategy for optimal operation of a biomass-fired cogeneration power plant

    International Nuclear Information System (INIS)

    Prasertsan, S.; Krukanont, P.; Nigamsritragul, P.; Kirirat, P.

    2001-01-01

    Biomass-fired cogeneration not only is an environmentally friendly energy production, but also possesses high energy conversion efficiency. Generally, the wood product industry requires both heat and electricity. Combined heat and power generation (cogeneration) using wood residue has a three-fold benefit: waste minimization, reduction of an energy-related production cost and additional income from selling the excess electricity to the utility. In reality, the process heat demand fluctuates according to the production activities in the factory. The fluctuation of process heat demand affects the cogeneration efficiency and the electricity output and, consequently, the financial return, since the prices of heat and electricity are different. A study by computer simulation to establish a guideline for optimum operation of a process heat fluctuating cogeneration power plant is presented. The power plant was designed for a sawmill and an adjacent plywood factory using wood wastes from these two processes. The maximum boiler thermal load is 81.9 MW while the electricity output is in the range 19-24 MW and the process heat 10-30 MW. Two modes of operation were studied, namely the full (boiler) load and the partial (boiler) load. In the full load operation, the power plant is operated at a maximum boiler thermal load, while the extracted steam is varied to meet the steam demand of the wood-drying kilns and the plywood production. The partial load operation was designed for the partially fuelled boiler to provide sufficient steam for the process and to generate electricity at a desired capacity ranging from the firmed contract of 19 MW to the turbine maximum capacity of 24 MW. It was found that the steam for process heat has an allowable extracting range, which is limited by the low pressure feed water heater. The optimum operation for both full and partial load occurs at the lower limit of the extracting steam. A guideline for optimum operation at various combinations of

  17. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  18. Department of Defense high power laser program guidance

    Science.gov (United States)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  19. Georgia Power Company's college degree program

    International Nuclear Information System (INIS)

    Coggin, C.L.

    1988-01-01

    The purpose of this paper is to describe Georgia Power Company's on-site college degree program for nuclear power plant personnel. In February 1986, the US Nuclear Regulatory Commission issued a policy statement concerning engineering expertise on shift (Generic Letter 86-04), which appeared in Volume 50, Number 208 of the October 28, 1985 Federal Register. One of the options available to nuclear power plant personnel to meet the requirement was the combined senior reactor operator/shift technical adviser position. One of the methods for meeting the option included a bachelor's degree in engineering technology for an accredited institution, including course work in the physical, mathematical, or engineering sciences

  20. Final Scientific and Technical Report State and Regional Biomass Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  1. Availability of Dutch biomass for electricity and heat in 2020

    International Nuclear Information System (INIS)

    Koppejan, J.; Elbersen, W.; Meeusen, M.; Bindraban, P.

    2009-11-01

    Availability of biomass is an important factor in realizing the Dutch targets for renewable energy. This study maps the availability of Dutch biomass in the framework of alternative applications and sustainability requirements, today and in the future. The conclusion is drawn that there is approximately 13 to 16 million tons of dry biomass available for energy generation in the Netherlands in 2020. This is 30 to 40% of the amount of biomass that is annually used in the Netherlands, generating 53 to 94 PJ of final energy, avoiding 101 to 157 PJ of fossil energy. This availability of biomass and the energy that is generated from the biomass can increase further after 2020. In addition, biomass will also be imported, especially for combustion and co-firing in coal-fired power plants and for the production of transport fuels. [nl

  2. The nuclear power public education and information program in the Philippines

    International Nuclear Information System (INIS)

    Garcia, E.A.; Natera, E.S.

    1996-01-01

    The nuclear power public education and information program aims to present the beneficial uses of radiation and nuclear energy. Considering that there are pros and cons to the use of nuclear energy, the program aims to give the public an objective and balanced view of this source of energy. A decision to use or not to use nuclear energy, to be sound,must be based on an adequate and objective knowledge of the atom and nuclear energy. Executive Order 243 created the Nuclear Power Steering committee including subcommittee on Nuclear Power Public Education and Information. This subcommittee is tasked to formulate an effective nuclear power public education and information program. Said program must include training component for science teachers in the high school and college levels and shall also work for the inclusion of nuclear related subjects in all engineering curriculum. It shall coordinate with the University of the Philippines for the revival of the M.S. in Nuclear Engineering Program of the university. This paper will discuss a brief history of nuclear power public education and awareness programs and the present and projected activities of this subcommittee. (author)

  3. Energy Industry Powers CTE Program

    Science.gov (United States)

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  4. Environmental implications of increased biomass energy use. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States)

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  5. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS; SEMIANNUAL

    International Nuclear Information System (INIS)

    Greg F. Weber; Christopher J. Zygarlicke

    2001-01-01

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small ( and lt;1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues

  6. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  7. Report on a survey in fiscal 1999. Part 2. Survey on the biomass-derived energy conversion technology; 1999 nendo biomass shigen wo genryo to suru energy henkan gijutsu ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Biomass energy is positioned as a promising environment harmonizing energy in the 21st century because it does not break down the CO2 balance in the global scale. The present survey has investigated quantity of biomass resources utilizable as energy resources, investigated and analyzed the biomass-derived energy conversion technology, searched for a promising practically usable technology, and discussed the means to achieve the technological introduction. The foreword chapter describes that now is the good time to recognize importance of and introduce the biomass-derived technology. First and second chapters estimate energy potential and utilizable quantity of wastes-based biomass in Indonesia, Malaysia, the Philippines, and Brazil. Chapter 3 investigates feasibility of methane fermentation and ethanol fermentation as a promising bio-chemical conversion process. Chapter 4 has performed feasibility studies on biomass electric power generation, methanol synthesis by gasification, thermal decomposition and gasification as promising thermo-chemical conversion processes. Chapter 5 proposed a biomass electric power generation system, a biomass-gasified methanol synthesizing system, and a dimethyl ether production system. (NEDO)

  8. Economic and environmental considerations of biomass fuels

    International Nuclear Information System (INIS)

    Booth, Roger

    1992-01-01

    The economic and environmental aspects of biomass fuels are considered. Close to source, the cost of useful energy in the form of lignocellulose is often competitive with fossil fuels, say $1-3 per GJ. There are three main options to divert this biomass into commercial energy channels: solid fuels for underboiler use; liquid fuels for automotive use and electric power generation, each of which is discussed. The social, economic and environmental advantages of an afforestation programme are highlighted. (Author)

  9. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  10. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice....... In this study, a fly ash sample from an operating Danish power plant based on wood biomass was collected, chemically characterized and investigated for its leaching release of nutrients and heavy metals. A column leaching test was employed. The strongly alkaline pH of all the collected eluates suggested...

  11. Biomass for electricity

    International Nuclear Information System (INIS)

    Barbucci, P.; Neri, G.; Trebbi, G.

    1995-01-01

    This paper describes the activities carried out at ENEL-Thermal research center to develop technologies suitable to convert biomass into power with high conversion efficiency: a demonstration project, Energy Farm, to build an Integrated Gasification Combined Cycle (IGCC) plant fed by wood chips; a demonstration plant for converting wood chips into oil by thermal conversion (pyrolysis oil); combustion tests of different oils produced by thermal conversion. 3 figs., 1 tab

  12. Fort Carson Building 1860 Biomass Heating Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gaul, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    As part of the Army Net-Zero Energy Installation program, the Fort Carson Army Base requested that NREL evaluate the feasibility of adding a biomass boiler to the district heating system served by Building 1860. We have also developed an Excel-spreadsheet-based decision support tool--specific to the historic loads served by Building 1860--with which users can perform what-if analysis on gas costs, biomass costs, and other parameters. For economic reasons, we do not recommend adding a biomass system at this time.

  13. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  14. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  15. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    Science.gov (United States)

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Breaking the biomass bottleneck of the fossil free society

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    balancing electricity supply and demand from fluctuating sources, because electricity is then stored in the batteries of the car fleet and in reservoirs for heating. Further electricity buffering can be provided by water reservoirs for hydro power or by various means of pressure based reservoirs, and smart...... applications like heat and power, it is possible to collect the CO2 from the biomass and further recover and recycle it in a process here called Carbon Capture and Recycling, CCR. This will further multiply the use of the biogenic carbon from the biomass. Overall, upgrading and recycling biogenic carbon...

  17. Biomass gasification cogeneration – A review of state of the art technology and near future perspectives

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Thomsen, Tobias; Henriksen, Ulrik Birk

    2013-01-01

    Biomass is a renewable resource from which a broad variety of commodities can be produced. However, the resource is scarce and must be used with care to avoid depleting future stock possibilities. Flexibility and efficiency in production are key characteristics for biomass conversion technologies...... in future energy systems. Thermal gasification of biomass is proved throughout this article to be both highly flexible and efficient if used optimally. Cogeneration processes with production of heat-and-power, heat-power-and-fuel or heat-power-and-fertilizer are described and compared. The following...

  18. First biomass conference of the Americas: Energy, environment, agriculture, and industry

    International Nuclear Information System (INIS)

    1993-01-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  19. Introduction to biomass energy project financing, funding sources and government strategies

    International Nuclear Information System (INIS)

    Nordlinger, D.E.; Shaw, F.C.

    1995-01-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  20. Introduction to biomass energy project financing, funding sources and government strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlinger, D E [Skadden, Arps, Slate, Meagher and Flom, London (United Kingdom); Shaw, F C [Skadden, Arps, Slate, Meagher and Flom, Washington, D.C. (United States)

    1995-12-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)