WorldWideScience

Sample records for biomass plantations

  1. Biomass plantations - energy farming

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.

    1981-02-01

    Mounting oil import bills in India are restricting her development programmes by forcing the cutting down of the import of other essential items. But the countries of the tropics have abundant sunlight and vast tracts of arable wastelands. Energy farming is proposed in the shape of energy plantations through forestry or energy cropping through agricultural media, to provide power fuels for transport and the industries and also to provide fuelwoods for the domestic sector. Short rotation cultivation is discussed and results are given of two main species that are being tried, ipil-ipil and Casuarina. Evaluations are made on the use of various crops such as sugar cane, cassava and kenaf as fuel crops together with hydrocarbon plants and aquatic biomass. (Refs. 20)

  2. Biomass production in an age series of Bambusa bambos plantations

    Energy Technology Data Exchange (ETDEWEB)

    Shanmughavel, P.; Muthukumar, T. [Bharathiar Univ., Coimbatore (India). Dept. of Botany; Peddappaiah, R.S. [Institute of Forest Genetics and Tree Breeding, Coimbatore (India)

    2001-07-01

    The biomass production in an age series of Bambusa bambos plantations was estimated, and compared with its interspecies natural stands and between genera of natural and plantation stands. There was a linear increase of the total biomass of all compartments with the age of the plantation. In the above-ground biomass, the percentage contribution of culms (81%), branches (14%) and leaves (1%) was 96%, whereas in the below-ground rhizome contribution was 4%. The total biomass ranged from 2.3 tDM ha{sup -1} (I year) to 297.9 tDM ha{sup -1} (6 year). The mean annual biomass production was 49.6 tDM ha{sup -1}, over the 6 year period. The mean periodic increment and net primary production was highest in the 5th year, during which a peak of 124.1 t DM ha{sup -1} yr{sup -1} in net primary production was obtained. (Author)

  3. Financial and energy analyses of woody biomass plantations

    International Nuclear Information System (INIS)

    This paper provides an economic analysis of a short rotation woody crop (SRWC) plantation system established the financial and energy costs of woody biomass and related net values for the total system. A production model for commercial-sized Populus plantations was developed from a series of research projects sponsored by the U.S,. Department of Energy's Short Rotation Woody Crops Program. The design was based on hybrid poplar planted on good quality agricultural sites at a density of 2100 cutting ha-1. Growth was forecast at 16 Mg(OD) ha-1 yr-1 on a six-year rotation cycle. All inputs associated with plantation establishment, annual operations, and land use were identified on a financial and energy cost basis (Strauss et al. 1989). Net values for the system projected a minimum financial profit and a major net energy gain. Financial profit was limited by the high market value of energy inputs as compared to the low market value of the energy output. The net energy gain was attributed to the solar energy captured through photosynthesis. Principal input costs to the overall system, on both a financial and energy basis, were land rent and the harvesting/transportation requirements

  4. Relationship between species diversity and biomass of eucalyptus plantation in Guangxi, south China

    Institute of Scientific and Technical Information of China (English)

    Yuanguang WEN; Fang CHEN; Shirong LIU; Hongwen LIANG; Changan YUAN; Hongguang ZHU

    2009-01-01

    To reveal the relationship between species diversity and biomass in a eucalyptus (Eucalyptus urophylla × E. grandis) plantation located in the Dongmen State Forestry Farm of Guangxi, south China, 18 sample plots were established and the total biomass, arbor layer biomass and undergrowth biomass of communities were subsequently harvested. The results were as follows: 1) Species richness in eucalypt plantation had remarkable positive correlation with biomass of arbor layer, under growth and community (a = 0.001), its correlation coefficients were 0.6935, 0.7028 and 0.7106 respectively. 2) Leaf area index (LAI) had remarkable positive correlation with species richness and undergrowth biomass (a = 0.001). Its correlation coefficients were 0.7310 and 0.6856, respectively. 3) Arbor layer biomass had remarkable correlation with soil organic matter and hydrolysable N, its correlation coefficients was 0.6416 and 0.6203 respectively. Species richness had remarkable correlation with soil organic matter and correlation coefficient was 0.6359. Among them, the correlation was significant at the 0.1 level. Undergrowth biomass had little correlation with nine soil nutrients and correlation coefficients were under 0.4. To sum up, species diversity was advantageous to the promotion of the biomass of the eucalyptus plantation, and the variation of LAI and soil nutrient in small-scales could result in the difference of species diversity and biomass in different sample plots.

  5. Biomass Accumulation and Carbon Sequestration in Four Different Aged Casuarina equisetifolia Coastal Shelterbelt Plantations in South China

    OpenAIRE

    Wang, Faming; Xu, Xin; Zou, Bi; Guo, Zhihua; Li, Zhian; Zhu, Weixing

    2013-01-01

    Thousands of kilometers of shelterbelt plantations of Casuarina equisetifolia have been planted to protect the southeast coastline of China. These plantations also play an important role in the regional carbon (C) cycling. In this study, we examined plant biomass increment and C accumulation in four different aged C. equisetifolia plantations in sandy beaches in South China. The C accumulated in the C. equisetifolia plant biomass increased markedly with stand age. The annual rate of C accumul...

  6. Yield models for commercial willow biomass plantations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mola-Yudego, Blas [Faculty of Forestry, University of Joensuu, P.O. Box 111, FI-801 01 Joensuu (Finland); Aronsson, Paer [Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7016, S-750 07 Uppsala (Sweden)

    2008-09-15

    A yield model for willow plantations for bioenergy production in Sweden was developed based on recorded production of 2082 commercial plantations during the period 1989-2005. The model predicts yield for the first, second and third harvest using oats (avena) production as agro-climatic index. The mean annual yields were 2.6, 4.2 and 4.5 oven dry tonnes (odt) per hectare during the first, second and third cutting cycles, respectively. The yield correlated inversely with the length of the cutting cycle. The results of the study show significant differences between growers, which suggest the importance of proper management in the establishment and tending of the plantations. Model estimates for 25% of the best growers vary from 4.0 to 6.3 odt ha{sup -1} yr{sup -1} in 5-year-rotation plantations during the first cutting cycle, and from 5.4 to 7.1 odt ha{sup -1} yr{sup -1} in 4-year-rotations for the second cutting cycle. The proposed model can be applied in policy making and for management planning. (author)

  7. Potential for renovation of municipal wastewater using biomass energy hardwood plantations

    International Nuclear Information System (INIS)

    Application of municipal wastewater to plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, at levels greater than that obtained in non-irrigated plantations, is feasible and markets exist in the eastern United States for this biomass. Plantations of sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.), and loblolly pine (Pinus taeda L.) are being established on the coastal plain of eastern North Carolina at the city of Edenton for application of municipal wastewater. Research investigating the production of biomass, production costs, and wastewater renovation are presented. Dry weight biomass following the fourth year of growth for sycamore and sweetgum was 18.7 and 7.4 Mg/ha, respectively. Plantation establishment and system costs were $26,460.12/ha. Comparison costs with a smaller but similar system at Woodland, NC, are presented. Nutrient assimilation and wastewater renovation data are being collected and are not yet available for publication

  8. Harvesting Short-Rotation Poplar Plantations for Biomass Production

    OpenAIRE

    Spinelli, Raffaele; Nati, Carla; Magagnotti, Natascia

    2008-01-01

    In Italy, short rotation forest has become very popular in recent years, with over 4,000 hectares already planted – almost exclusively with clone poplar. The study models the performance of modified forage harvesters on a range of short-rotation poplar plantations, identifies technical obstacles to the deployment of these machines and suggests solutions that may expand the capability of modified forage harvesters when treating short-rotation poplar. Data were collected from 16 operations, cov...

  9. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-01-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass...... and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and...... determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this...

  10. Estimation of Biomass and Carbon Stocks in Rubber Plantation Using Thaichote Satellite Imagery

    Science.gov (United States)

    Charoenjit, Kitsanai; Zuddas, Pierpaolo; Allemand, Pascal

    2014-05-01

    This goal of study is to improve model for estimate biomass and carbon stocks of rubber plantation (clone RRIM 600) in sub-basin of mae num prasae, East Thailand with total area is 232 Km2. We mapped 2011 of the biomass and carbon stocks with the used of integrated Thaichote satellite imagery and field data. In order to tree girth prediction and tree density population, we applied the objected based image analysis (OBIA) which include image mining and modeling by linear multiple regression, then estimate biomass and carbon stocks in rubber plantation. The image mining includes spectral, vegetation, textural and mask information for modeling construction. We found an parameters of the Global Environmental Monitoring Index (GEMI) and texture of homogeneity, dissimilarity, contrast and variance were accepted relationship of tree girt prediction with R2 0.865. The total amount of biomass and carbon stocks in study area is 2,227 Kt and 991.5 KtC respectively. For summary of study area, the annual sequestered in 2011 is 121.3 tCO2 from the atmosphere and the rubber plantation at mature age stage (25 years) had highest capacity of sequestered at 33.53 tCO2 ha-1 yr-1.

  11. An analysis of the feasibility for increasing woody biomass production from pine plantations in the southern United States

    International Nuclear Information System (INIS)

    In the near future, wood from the 130 000 km2 of pine plantations in the southern United States could provide much of the feedstock for emerging bioenergy industries. Research and operational experience show that total plantation biomass productivity exceeding 22.4 Mg ha-1 y-1 green weight basis with rotations less than 25 years are biologically possible, financially attractive, and environmentally sustainable. These gains become possible when intensively managed forest plantations are treated as agro-ecosystems where both the crop trees and the soil are managed to optimize productivity and value. Intensive management of southern US pine plantations could significantly increase the amount of biomass available to supply bioenergy firms. Results from growth and yield simulations using models and a financial analysis suggest that if the 130 000 km2 of cutover pine plantations and an additional 20 000 km2 of planted idle farmland are intensively managed in the most profitable regimes, up to 77.5 Tg green weight basis of woody biomass could be produced annually. However, questions exist about the extent to which intensive management for biomass production can improve financial returns to owners and whether they would adopt these systems. The financial analysis suggests providing biomass for energy from pine plantations on cutover sites is most profitable when intensive management is used to produce a mixture of traditional forest products and biomass for energy. Returns from dedicated biomass plantations on cutover sites and idle farmland will be lower than integrated product plantations unless prices for biomass increase or subsidies are available. (author)

  12. Root biomass and productivity in dominant plantation populations in the mountainous area in western Sichuan

    Institute of Scientific and Technical Information of China (English)

    LIU Xingliang; MA Qinyan; YANG Dongsheng; SHI Zuoming; SU Yiming; ZHOU Shiqiang; LIU Shirong; YANG Yupo

    2006-01-01

    This study investigated root biomass and productivity in dominant populations in western Sichuan,China.A total of 4 plots (Picea balfouriana plantation for 22 age in Maerkang,9 trees,mean DBH of population for 10.4 cm and height for 10.5 m;Larix maxteriana plantation for 22 age in Wolong,9 trees,mean DBH of population for 17.0 cm and height for 13.8 m;Abiesfabri plantation for 35 age in Ebian,18 trees,mean DBH of population for 14.1 cm and height for 11.9 m;Larix kaempferi plantation for 23 age in Miyaluo,8 trees,mean DBH of population for 17.4 cm and height for 14.5 m;a 20 m×25 m plot located on each of the 4 types in western Sichuan,China) were randomly selected and excavated to a depth of 60 cm for each of the 4 plantation types.To estimate the root biomass of an individual tree using DEH,an exponential model was selected with the highest coefficient ranging from 0.94 to 0.99.The total root biomass per hm2 varied among plantation population types following the order:L.kaempferi (37.832 t/hm2)>A.fabri (24.907 t/hm2)> L.maxteriana (18.320 t/hm2)>P.balfouriana (15.982 t/hm2).The biomas's fractions of a given root size class compared to the total root biomass differed among plantation population types.For all 4 studied plantation types,the majority of the roots were distributed in the top 40 cm of soil,e.g.,97.88% for P.balfourianapopulation,96.78% for L.maxteriana,95.65% for A.fabri,and 99.72 for L.kaempferi population.The root biomass fractions distributed in the top 20 cm of soil were 77.13% for P.balfouriana,77.13% for L.maxteriana,65.02% for A.fabri and 80.66% for L.kaempferi,respectively.The root allocation in the 0-20,20-40,and 40-60 cm soil layers gave ratios of 34:12:1 for P.balfouriana,24:6:1 for L.maxteriana,15:7:1 for A.fabri,and 64:4:1 for L.kaempferi populations.The root biomass density of dominant plantation population t/(hm2.year) for A.fabri and 1.64 t/(hm2.year) for L.kaempferi population,respectively.

  13. Microbial biomass and N mineralization in mixed plantations of broadleaves and nitrogen-fixing species

    OpenAIRE

    Pereira, Ermelinda; SANTOS, Sónia A.P.; Arrobas, Margarida; Claro, Ana Marília; Patrício, Maria do Sameiro

    2010-01-01

    The present study was conducted in a 10-year-old trial of mixed plantation located in the Northeast of Portugal. This study was developed in the three following treatments: pure of Robinia pseudoacacia; pure of Prunus avium and mixed of Prunus avium × Robinia pseudoacacia. To better understand the benefit of the consociation of an N-fixing species (Robinia pseudoacacia) with broadleaves quality timber production (Prunus avium), we compared the soil microbial biomass carbon and nitrogen, soil ...

  14. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    International Nuclear Information System (INIS)

    In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha-'1) and 86 % higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  15. Growth Performance and Biomass Accumulation of a Khaya ivorensis Plantation in three Soil Series of Ultisols

    Directory of Open Access Journals (Sweden)

    Yetti Heryati

    2011-01-01

    Full Text Available Problem statement: There was no information about the relationship between growth parameters, such as diameter and height and tree component biomass of Khaya ivorensis plantations with different soil types. The objectives of this study were, first, to determine and compare the growth of K. ivorensis in three different (Padang Besar, Durian and Rengam soil series of Ultisols and, second, to develop an allometric equation that estimates the biomass accumulation of the K. ivorensis plantation in three different soil series five years after planting. Approach: This study was conducted at a K. ivorensis plantation in the Forest Research Institute Malaysia (FRIM Research Station in Segamat, Johor, Malaysia. The tree height (H and Diameter at Breast Height (DBH were measured to evaluate the growth performance of the K. ivorensis plantation. Five sampled or trees stand of K. ivorensis in each soil series were destructively analyzed. Results: The highest growth rates in terms of MAI diameter and height, and basal area were found for the Padang Besar soil series, which was followed by the Durian and Rengam soil series. The best fit regression of site-specific equations developed from the independent variable D are recommended for estimating tree component biomass and stem volume in each site. A single allometric equation using D was applicable for the estimation of biomass and stem volume however, in Padang Besar, stem biomass and stem volume were estimated with an equation using D2H. The highest stem volume and biomass accumulation value were recorded at Padang Besar (77.99 m3 h-1 and 63.16 t ha-1, respectively, which was followed by the Durian (53.10 m3 h-1 and 46.33t ha-1, respectively and Rengam soil series (43.13 m3 h-1 and 40.96 t ha-1, respectively. Conclusion: Differences in the growth and biomass accumulation data indicate that forest productivity of K. ivorensis was affected by different site conditions. The higher growth

  16. Biomass accumulation and carbon sequestration in four different aged Casuarina equisetifolia coastal shelterbelt plantations in South China.

    Directory of Open Access Journals (Sweden)

    Faming Wang

    Full Text Available Thousands of kilometers of shelterbelt plantations of Casuarina equisetifolia have been planted to protect the southeast coastline of China. These plantations also play an important role in the regional carbon (C cycling. In this study, we examined plant biomass increment and C accumulation in four different aged C. equisetifolia plantations in sandy beaches in South China. The C accumulated in the C. equisetifolia plant biomass increased markedly with stand age. The annual rate of C accumulation in the C. equisetifolia plant biomass during 0-3, 3-6, 6-13 and 13-18 years stage was 2.9, 8.2, 4.2 and 1.0 Mg C ha(-1 yr(-1, respectively. Soil organic C (SOC at the top 1 m soil layer in these plantations was 17.74, 5.14, 6.93, and 11.87 Mg C ha(-1, respectively, with SOC density decreasing with increasing soil depth. Total C storage in the plantation ecosystem averaged 26.57, 38.50, 69.78, and 79.79 Mg C ha(-1 in the 3, 6, 13 and 18- yrs plantation, with most of the C accumulated in the aboveground biomass rather than in the belowground root biomass and soil organic C. Though our results suggest that C. equisetifolia plantations have the characteristics of fast growth, high biomass accumulation, and the potential of high C sequestration despite planting in poor soil conditions, the interactive effects of soil condition, natural disturbance, and human policies on the ecosystem health of the plantation need to be further studied to fully realize the ecological and social benefits of the C equisetifolia shelterbelt forests in South China.

  17. Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya

    OpenAIRE

    Omoro, Loice M A; Starr, Mike; Pellikka, Petri K. E.

    2013-01-01

    Carbon (C) densities of the tree biomass and soil (0-50 cm) in indigenous forest and plantations of eucalyptus, cypress and pine in the Taita Hills, Kenya were determined and compared. The cypress and pine plantations were about 30-years-old and eucalyptus plantations about 50-years-old. Biomass C densities were estimated from breast height diameter and wood density using allometric functions developed for tropical species and an assumed C content of 50 %. Belowground biomass C densities were...

  18. Evolution of soil microbial biomass in restoration process of Robinia pseudoacacia plantations in an eroded environment

    Institute of Scientific and Technical Information of China (English)

    Sha XUE; Guobin LIU; Quanhou DAI; Chao ZHANG; Na YU

    2008-01-01

    Vegetation recovery is a key measure to improve ecosystems in the Loess Plateau in China. To understand the evolution of soil microorganisms in forest plantations in the hilly areas of the Loess Plateau, the soil microbial biomass, microbial respiration and physical and chemical properties of the soil of Robinia pseudoacacia plantations were studied. In this study, eight forest soils of different age classes were used to study the evolution of soil microbial biomass, while a farmland and a native forest community of Platycladus orientalis L. were chosen as controls. By measuring soil microbial biomass, meta-bolic quotient, and physical and chemical properties, it can be concluded that soil quality was improved steadily after planting. Soil microbial biomass of C, N and P (SMBC, SMBN and SMBP) increased significantly after 10 to 15 years of afforestation and vegetation recovery. A relatively stable state of soil microbial biomass was main-tained in near-mature or mature plantations. There was an increase of soil microbial biomass appearing at the end of the mature stage. After 50 years of afforestation and vegetation recovery, compared with those in farmland, the soil microbial biomass of C, N and P increased by 213%, 201% and 83% respectively, but only accounting for 51%, 55% and 61% of the increase in P. orientalis forest. Microbial soil respiration was enhanced in the early stages, and then weakened in the later stage after restoration, which was different from the change of soil organic carbon. The metabolic quotient (qCO2) was sig-nificantly higher in the soils of the P. orientalis forest than that in farmland at the early restoration stage and then decreased rapidly. After 25 years of afforestation and vegetation recovery, qCO2 in soils of the R. pseudoacacia forest was lower than that in the farmland soil, and reached a minimum after 50 years, which was close to that of the P. orientalis forest. A significant relationship was found among soil microbial

  19. Carbon Sequestration Potential in Aboveground Biomass of Hybrid Eucalyptus Plantation Forest

    Directory of Open Access Journals (Sweden)

    Siti Latifah

    2013-04-01

    Full Text Available Forests are a significant part of the global carbon cycle. Forests sequester carbon by conducting photosynthesis, which is the process of converting light energy to chemical energy and storing it in the chemical bonds of sugar. Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.  The present investigation was carried out to determine carbon sequestration potential of hybrid Eucalyptus. This study was conducted primarily to develop a prediction model of carbon storage capacity for plantation forest of hybrid Eucalyptus in Aek Nauli, Simalungun District, North Sumatera. Models were tested and assessed for statistical validity and accuracy in predicting biomass and carbon, based on determination coefficient (R and correlation coefficient (r, aggregative deviation percentage (AgD, and the average deviation percentage (AvD. The best general model to estimate the biomass of hybrid Eucalyptus was Y = 1351,09x^0,876. e^(0,094.  Results showed that hybrid Eucalyptus had an average above-ground biomass in year 0 (the land without the eucalyptus trees up to year 3 as large as 1.36, 11.56, 43.18, and 63.84 t ha. The carbon content of hybrid Eucalyptus were 0.61, 5.2, 19.43 t^(-1, and 28,73  t^(-1 C ha while the carbon sequestration potential were 2.23, 19.08, 71.31, and 105.43 t^(-1 CO  ha^(-1 respectively.Keywords: biomass, carbon stock, model, hybrid Eucalyptus, plantation forest

  20. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland

    Directory of Open Access Journals (Sweden)

    Benoit Truax

    2014-12-01

    Full Text Available In this study, we developed clone-specific allometric relationships, with the objective of calculating volume and biomass production after 13 years in 8 poplar plantations, located across an environmental gradient, and composed of 5 unrelated hybrid poplar clones. Allometry was found to be very similar for clones MxB-915311, NxM-3729 and DNxM-915508, all having P. maximoviczii parentage. Clones DxN-3570 and TxD-3230 also had a similar allometry; for a given DBH they have a lower stem volume, stem biomass and branch biomass than P. maximoviczii hybrids. Strong Site × Clone interactions were observed for volume and woody biomass growth, with DxN and TxD hybrids only productive on low elevation fertile sites, whereas P. maximovizcii hybrids were also very productive on higher elevation sites with moderate to high soil fertility. At the site level (5 clones mean, yield reached 27.5 and 22.7 m3/ha/yr. on the two best sites (high fertility and low elevation, confirming the great potential of southern Québec (Canada for poplar culture. The productivity gap between the most and least productive sites has widened from year 8 to year 13, highlighting the need for high quality abandoned farmland site selection in terms of climate and soil fertility. Although clone selection could optimize yield across the studied environmental gradient, it cannot fully compensate for inadequate site selection.

  1. Climate benefits from alternative energy uses of biomass plantations in Uganda

    International Nuclear Information System (INIS)

    The establishment of tree plantations in rural areas in Uganda could provide renewable energy to rural communities, while decreasing greenhouse gas emissions from conventional electricity sources and unsustainable forest use. The study evaluates the greenhouse gas benefits that could be produced by biomass based energy systems in Anaka, a rural settlement in the Amuru district in northern Uganda. Two alternative energy uses are explored: a) electricity production through wood gasification and b) traditional fuelwood use. It is estimated that a small-scale wood gasifier could provide electricity for basic community services by planting less than 10 ha of new short rotation coppices (SRCs). The gasification system could save 50–67% of the GHG emissions produced by traditional diesel based electricity generators in terms of CO2-eq. (0.61–0.83 t MWh−1 or 7.1 t y−1 per hectare of SRCs). It was also estimated that traditional use of fuelwood in households is currently unsustainable, i.e. the consumption of wood is higher than the annual growth from natural wood resources in the study area. It is estimated that 0.02–0.06 ha per capita of plantations could render the current consumption of wood sustainable. In this way, the CO2 emissions produced through unsustainable extraction of wood could be avoided (2.0–7.3 t per capita per year or 50–130 t y−1 per hectare of SRCs). -- Highlights: ► We assessed the GHG benefits of short rotation coppices for bioenergy in Uganda. ► The GHG benefits of two energy uses are explored: gasification and fuelwood use. ► The gasifier could save 50–67% of the GHG emissions produced by diesel generators. ► 0.02–0.06 ha per capita of plantations could avoid unsustainable fuelwood use. ► Fuelwood production is more efficient in terms of GHG savings per hectare

  2. Effects of planting density on the distribution of biomass in a douglas-fir plantation in southern Italy

    Directory of Open Access Journals (Sweden)

    Marziliano PA

    2015-06-01

    Full Text Available The effects of initial planting densities on the distribution of above-ground biomass of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii were investigated in a plantation in southern Italy. Allometric equations designed for the plantation under study were used to estimate above-ground biomass and in particular partitioning to stem and crown compartments. A comparison between biomass estimated with allometric equations and biomass estimated with a constant biomass expansion factor (BEF from the Italian National Forest Inventory (INFC 2005 was carried out. Moreover, a BEF calculated as the ratio of total above-ground or compartment biomass to stem volume was used to define the sensitivity of BEF to age and to tree density. Variation of above-ground standing biomass estimated with allometric equations was evaluated according to 6 differing planting densities (833, 1000, 1250, 1667, 2000 and 2500 trees per hectare. In the first 20 years after planting higher biomass stock was detected in high density plots, but after the age of 32 years differences between plots disappeared. When the plantation was 40 years old, a higher amount of total biomass was observed in plots of 2000 trees per hectare (about 405 Mg ha-1, a lower amount in plots of 2500 trees per hectare (about 381 Mg ha-1. The Douglas-fir plantation has a total above-ground carbon stock of 197 Mg C ha-1 at the age of 40 and a mean annual CO2 sequestration of 18 Mg ha-1 y-1. Constant BEF from INFC underestimated biomass on average by 11% for ages 15 and 25 and overestimated biomass on average by 16% for older ages. BEFs expressed as a ratio of biomass to stem volume significantly depended upon age and planting density, with decreasing trends for total, stem and crown compartments. Our results indicated that total above-ground biomass production is not influenced by different tree density if considered over a long period. If cutting cycles are short, planting density on average

  3. Biomass and Carbon Sequestration in Community Mangrove Plantations and a Natural Regeneration Stand in the Ayeyarwady Delta, Myanmar

    Science.gov (United States)

    Thant, Y. M.; Kanzaki, M.; nil

    2011-12-01

    Mangroves in the Ayeyarwady Delta is one of the most threatened ecosystems, and is rapidly disappearing as in many tropical countries. The deforestation and degradation of mangrove forest in the Ayeryarwady Delta results in the shortage of wood resources and declining of environmental services that have been provided by the mangrove ecosystem. Cyclone Nargis struck the Ayeyarwady Delta on 2 May 2008 with an intensity unprecedented in the history of Myanmar. The overexploitation of mangroves because of local demands for fuel wood and charcoal and the conversion of mangrove forest land into agricultural land or shrimp farms over the past decades have increased the loss of human life and the damage to settlements caused by the Cyclone.The biomass study was conducted in September of 2006 in Bogale Township in the Ayeyarwady Delta and continued monitoring in September of each year from 2007 to 2010. Above and below ground biomass was studied in six years old mangrove plantations of Avicenia marina (Am), Avicenia officinalis (Ao) and Sonneratia apetala (Sa) and a naturally regenerated stand under regeneration improving felling operation (NR: consists of Ceriops decandra, Bruguiera sexangula, and Aegicerus corniculatum) protected for seven years since 2000. These stands were established by small-scale Community Forestry scheme on abandoned paddy fields where natural mangroves once existed. Common allometric equations were developed for biomass estimation by performing regressions between dry weights of trees as dependent variables and biometric parameters such as stem diameter, height and wood density as independent variables. The above and below ground biomass in NR stand (70 Mg ha-1 and 104 Mg ha-1) was the greatest (P < 0.001), and followed by Sa plantation (69 Mg ha-1 and 32 Mg ha-1), Am plantation (25 Mg ha-1 and 27 Mg ha-1) and Ao plantation (21 Mg ha-1 and 26 Mg ha-1). The total carbon stock in biomass was 73 Mg C ha-1 in NR stand, 43 Mg C ha-1 in Sa plantation, 21

  4. Biomass production and water use of Black Locust (Robinia pseudoacacia L.) for short-rotation plantation

    Science.gov (United States)

    Mantovani, D.; Veste, M.; Freese, D.

    2012-04-01

    The early successional tree species Robinia pseudoacacia L. demonstrates a high potential for biomass production in short rotation plantations and agroforestry systems. On marginal lands and recultivated areas, often characterized by poor edaphic conditions, black locust is already successfully cropped. In southern Brandenburg (East Germany), vast areas have been exploited for lignite open cast mining and the outcome is a drastic alteration of the top soil layer and subsurface geological structure, causing a radical change of the hydrologic cycle. Soil poor in nutrient and carbon, combined with low rainfall, limits the reclamation of these areas and their use for conventional agriculture. However, promising results have been obtained by the establishment of black locust for bioenergy production. For the evaluation of the black locust growth potential in southern Brandenburg with its sandy soils and low annual mean rainfall, detailed information about the link between growth, transpiration and soil water availability are needed. Therefore, we determined the biomass-transpiration relation and formulated the equation that describes the intertwined interaction between water use and biomass production. The equation will be integrated into mathematical tools. To reduce the numerous environmental variables involved in field experiments, we grew black locust under semi-controlled environmental conditions by using wick lysimeters. The lysimeters were filled with sandy loam soil and water was supplied solely by an automatic irrigation system in relation to the volumetric soil water content (7%, 10%, and 14%). Rainfall is excluded by a light transmissive roof. Water use efficiency (WUE) at whole plant level is evaluated by the ratio between the biomass produced during the vegetation period and the cumulative daily water use. The study encompasses ecophysiological investigations of the gas exchange (H2O and CO2) on single leaves, to evaluate the influence of the stomata

  5. Seasonal variation in the biomass and non-structural carbohydrate content of fine roots of teak (Tectona grandis L. f.) plantations in a dry tropical region.

    Science.gov (United States)

    Singh, K P; Srivastava, K

    1986-06-01

    Seasonal variation in the biomass and total non-structural carbohydrate content (TNC) of fine roots of teak (Tectona grandis L. f.) were studied in 19- and 29-year-old plantations in a dry tropical region. Fine root TNC content was highest during the dry summer (May), and lowest in the early part of the rainy season (July). Generally, seasonal trends in TNC content were the opposite of those in fine root biomass. The TNC concentration of roots increased with diameter and decreased with soil depth. In the 19-year-old plantation, fine root TNC content was approximately 12% higher than in the 29-year-old plantation. PMID:14975904

  6. Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar

    International Nuclear Information System (INIS)

    Short rotations of Eucalyptus plantations under coppice regime are extensively managed for wood production in Madagascar. Nevertheless, little is known about their biomass production and partitioning and their potential in terms of carbon sequestration. If above-ground biomass (AGB) can be estimated based on established allometric relations, below-ground (BGB) estimates are much less common. The aim of this work was to develop allometric equations to estimate biomass of these plantations, mainly for the root components. Data from 9 Eucalyptus robusta stands (47–87 years of plantation age, 3–5 years of coppice-shoot age) were collected and analyzed. Biomass of 3 sampled trees per stand was determined destructively. Dry weight of AGB components (leaves, branches and stems) were estimated as a function of basal area of all shoots per stump and dry weight for BGB components (mainly stump, coarse root (CR) and medium root (MR)) were estimated as a function of stump circumference. Biomass was then computed using allometric equations from stand inventory data. Stand biomass ranged from 102 to 130 Mg ha−1 with more than 77% contained in the BGB components. The highest dry weight was allocated in the stump and in the CR (51% and 42% respectively) for BGB parts and in the stem (69%) for AGB part. Allometric relationships developed herein could be applied to other Eucalyptus plantations which present similar stand density and growing conditions; anyhow, more is needed to be investigated in understanding biomass production and partitioning over time for this kind of forest ecosystem. -- Highlights: ► We studied the potential of old eucalyptus coppices in Madagascar to mitigate global warming. ► Biomass measurement, mainly for below-ground BGB (stump, coarse-medium-and fine roots) was provided. ► BGB allometry relationships for short rotation forestry under coppice were established. ► BGB were found to be important with their 102-130MgC ha-1 (<77% of the C in the

  7. Biomass estimation by allometric relationships, nutrients, and carbon associated to heart-of-palm plantations in Costa Rica

    International Nuclear Information System (INIS)

    Peach palm (Bactris gasipaes) agroecosystems constitute a productive and sustainable land use for the humid tropics. Allometric methods allow to predict biomass non-destructively at any time and, subsequently, to determine the span of growth phases, biomass and nutrient pools, and economic yields. The overall goals of this study were to obtain and validate predictive functions of aboveground dry biomass, and to relate standing biomass with heart-of-palm yields as well. Towards this purpose, peach palm shoots were harvested and separated into components: foliage, petiole and stem, in the Atlantic region of Costa Rica. A non-linear seemingly unrelated regression (NSUR) procedure, which simultaneously fits the component equations that predict leaf, petiole and stem in order to assure biomass additivity, was used to generate the allometric equations. Basal diameter (BD) was a more effective predictor of biomass than height to the fork between the spear leaf and the first fully expanded leaf, total height and number of leaves. Regression models explained 70-89% of the variance in biomass components (foliage, petiole and stem) or total shoot biomass. Three growth stages were identified: establishment (0-1 years), fast growth (1-3 or 1-8 years depending on plant density) and maturity (> 8 years). Nutrient contents associated to above- and below-ground biomass were measured. For above-ground biomass nutrient contents were N (up to 150 kg ha-1)>K (up to 119 kg ha-1)>Ca (up to 45 kg ha-1)>Mg=S=P (between 15-17 kg ha-1). The below-ground biomass: above-ground biomass ratio increased with the plantation age

  8. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2011-11-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  9. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2013-12-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  10. Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in South Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Okimori, Y.; Ogawa, M.; Takahashi, F. [Kansai Environmental Engineering Center Co., Ltd., 8-4 Ujimatafuri, Uji, 611-0021 (Japan)

    2003-07-01

    Approximately half of the carbon in trees can be fixed to charcoal by carbonization. Porous charcoal is useful as a soil amendment for crop fields and forests, and also as a water purifying agent. Given these facts, charcoal production should be recognized as one of the most promising CO2 sequestration methods. A project on biomass utilization and forest conservation is proposed as a Clean Development Mechanism (CDM) project, by incorporating the carbonization of biomass residue and waste from tree plantations and pulp mills, and also the utilization of carbon products in various fields. A feasibility study was conducted with the existing project of an industrial tree plantation and pulp production in Indonesia. If conventional charcoal-making methods are used, a total of 368,000 t/yr of biomass residue and waste could be transformed into charcoal of 77,000 t/yr, and the carbon emission reductions by the project reaches 62,000 t-C/yr (or 230,000 t-CO2/yr) in consideration of the project baseline. This charcoal project could provide jobs for approximately 2,600 people. The soil fertility in man-made forests could be maintained by returning charcoal to the original forests. Therefore, the project would be beneficial to the regional economy. In addition, the present charcoal project is expected to give more positive impacts than negative ones, or leakage, beyond the project boundary.

  11. Biomass Stock and Carbon Sequestration in a Chronosequence of Pinus massoniana Plantations in the Upper Reaches of the Yangtze River

    Directory of Open Access Journals (Sweden)

    Meta Francis Justine

    2015-10-01

    Full Text Available Planted forest plays a significant role in carbon sequestration and climate change mitigation; however, little information has been available on the distribution patterns of carbon pools with stand ages in Pinus massoniana Plantations. We investigated the biomass stock and carbon sequestration across a chronosequence (3-, 5-, 7-, 9-, 12-, 15-, 19-, 29-, 35- and 42-year of stands with the main objectives: (1 to determine the biomass and carbon stock of the forest ecosystem; and (2 to identify factors influencing their distribution across the age series. Simple random sampling was used for collecting field data in the ten (10 stand ages. Three 20 × 20 m standard plots were laid out in February 2015 across the chronosequence. The diameter at breast height (DBH and tree height (H of each tree within each plot were measured using calipers and height indicator. Sub-plots of 2 × 2 m were established in each main plot for collecting soil samples at a 0–30- and 30–60-cm depth. Plantation biomass increased with increasing stand ages, ranging from 0.84 tonnes per hectare (t·ha−1 in the three-year stand to 252.35 t·ha−1 in the 42-year stand. The aboveground biomass (AGB contributed 86.51%; the maximum value is 300-times the minimum value. Carbon concentrations and storage in mineral soil decreased with increasing soil depth, but were controlled by the management history of the ecosystem. The total ecosystem carbon storage varies with stand ages, ranging from 169.90 t·ha−1 in the five-year plantation to 326.46 t·ha−1 in the 42-year plantation, of which 80.29% comes from the mineral soil carbon and 19.71% from the vegetation. The ratio of the total carbon sequestration by the 42-year to the three-year stand was 1.70, implying substantial amounts of carbon accumulation during the transition period from young to mature-aged trees. The forest ecosystem had the capacity of storing up to 263.16 t·ha−1 carbon, assisting in mitigating climate

  12. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Science.gov (United States)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha‑1•yr‑1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  13. Increasing the productivity of biomass plantations of Populus species and hybrids in the Pacific Northwest. Final report, September 14, 1981--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W. [USDA Forest Service, Olympia, WA (United States)] [and others

    1997-08-01

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies described herein provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns thereof differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. The work was accomplished in three research plantations, all established cooperatively with the Washington State Department of Natural Resources (DNR) and located at the DNR Tree Improvement Center near Olympia. The first plantation was established in Spring 1986 to evaluate the highly touted {open_quotes}woodgrass{close_quotes} concept and compare it with more conventional short-rotation management regimes, using two Populus hybrid clones planted at five spacings. Besides providing scientific data to resolve the politicized {open_quotes}wood-grass{close_quotes} dispute, this plantation has furnished excellent data on stand dynamics and woody biomass yield. A second plantation was established at the same time; groups of trees therein received two levels of irrigation and different amounts of four fertilizer amendments, resulting in microsites with diverse moisture and nutrient conditions.

  14. Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-01-01

    Full Text Available We developed aboveground biomass equations for poplar plantations in Jiangsu Province, China, both compatible with tree volume equations and additive systems. Biomass equations were fitted with 80 selected and previously harvested sample trees. Additivity property was assured by applying a “controlling directly under total biomass proportion function” approach. Weighted regression was used to correct heteroscedasticity. Parameters were estimated using a nonlinear error-in-variable model. The results indicated that (1, on average, stems constituted the largest proportion (71.5% of total aboveground biomass; (2 the aboveground biomass equations, both compatible with tree volume equations and additive systems, obtained good model fitting and prediction, of which the coefficient of determination ranged from 0.903 to 0.987, and the total relative error and the mean prediction error were less than 2.0% and 10.0%, respectively; (3 adding H and CW into the additive system of biomass equations did not improve model fitting and performance as expected, especially for branches and foliage biomass; and (4 the additive systems of biomass equations presented here provided more reliable and accurate biomass predictions than the independent biomass equations fitted by ordinary least square regression. This system of additive biomass equations will prove to be applicable for estimating biomass of poplar plantations in Jiangsu Province of China.

  15. Economic scales for first-generation biomass-gasifier/gas turbine combined cycles fueled from energy plantations

    International Nuclear Information System (INIS)

    This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology is likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The optimum capacity (MWopt), defined as that which yields the minimum calculated cost of electricity (COEm), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MWopt is in the range of 230--320 MWe for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MWopt ranges from 110 to 142 MWe. When a lower fraction of the land around a plant is used for energy farming, values for MWopt are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MWopt

  16. Lignocellulose biomass production potential from poplar short rotation plantations on marginal land in Germany and their impact on soil organic carbon stocks

    Science.gov (United States)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Werner, Christian; Butterbach-Bahl, Klaus

    2013-04-01

    In this study we assess the potential of lignocellulose biomass production by short rotation plantations in Germany. To avoid conflicts with agricultural food production only marginal agricultural land was accounted, which is usually of low quality and productivity. The process-oriented biogeochemical model LandscapeDNDC was used in conjunction with the forest-growth model PSIM to simulate the yield of poplar grown in short-rotation plantations throw-out Germany. The model was validated on five sites with different climatic conditions in Central Europe. The study aims to assess the effects of biomass short rotation plantations on the soil organic carbon stocks in Germany by comparing the cultivation of the bioenergy crops against the former arable land use (taken from the NitroEurope database). Using regional model input, with climatic drivers and soil properties being the most important, the biomass production potential of poplar plantations was simulated. To limit short-term climatic effects on the simulation outcome, we simulated biomass yields from short-rotation (6 year) Populus plantations for three time slices (1990-1995, 2000-2005, and 2010-2015) with climate data taken from the NitroEurope database and provided the simulated yield averages and standard deviations of these runs as well as the changes in soil organic carbon stocks compared to the former land use due to the land use change. Considering 10% of the arable land with the lowest productivity, the model results in a biomass production of approximately 6.78 t DM / ha / year which is approx. 10.1 kilo t DM / year while the 10% of the arable land with the highest productivity result in 8.11 t DM / ha / year which is approx. 12.6 kilo t DM / year (averages over 3 simulation time slices). We will present results of transient simulations of several rotations with various rotation lengths for biomass yields and changes in soil organic carbon stocks.

  17. A review of forest and tree plantation biomass equations in Indonesia

    NARCIS (Netherlands)

    Anitha, Kamalakumari; Verchot, Louis V.; Joseph, Shijo; Herold, Martin; Manuri, Solichin; Avitabile, Valerio

    2015-01-01

    Key message: We compiled 2,458 biomass equations from 168 destructive sampling studies in Indonesia. Unpublished academic theses contributed the largest share of the biomass equations. The availability of the biomass equations was skewed to certain regions, forest types, and species. Further rese

  18. Aboveground biomass of three conifers in the Qianyanzhou plantation, Jiangxi Province, China

    Institute of Scientific and Technical Information of China (English)

    Xuanran LI; Qijing LIU; Yongrui CHEN; Lile HU; Fengting YANG

    2008-01-01

    Regressive models of the aboveground bio-mass for three conifers in subtropical China-slash pine (Pinus elliottii), Masson pine (P. massoniana) andChinese fir (Cunninghamia lanceolata)-were established. Regression analysis of leaf biomass and total biomass of each branch against branch diameter (d), branch length (L), d3 and d2L was conducted with functions of linear, power and exponent. A power law equation with a single parameter (d) was proved to be better than the rest for Masson pine and Chinese fir, and a linear equation with parameter (d3) is better for slash pine. The canopy biomass was derived by adopting the regression equa-tions to all branches of each individual tree. These kinds of equations were also used to fit the relationship between total tree biomass, branch biomass, foliage biomass and tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. However, for foliage biomass and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P<0.001) for foliage biomass, branch biomass and total biomass, among which the equation of the total biomass was the highest. With these equations, the aboveground biomass of Masson pine forest, slash pine forest and Chinese fir forest were estimated, in addition to the allocation of aboveground biomass. The above-ground biomass of Masson pine forest, slash pine forest and Chinese fir forest was 83.6, 72.1 and 59 t/hm2 respectively, and the stem biomass was more than the foliage biomass and the branch biomass. The under-ground biomass of these three forests which estimated with others' research were 10.44, 9.42 and 11.48 t/hm2, and the amount of carbon-fixed were 47.94, 45.14 and 37.52 t/hm2, respectively.

  19. Short-rotation plantations of poplars and willows on formerly arable land: Sites, nutritional status, biomass production, and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    Makeschin, F.; Rehfuess, K.E.; Ruesch, I.; Schoerry, R.

    1989-05-01

    In spring 1983, a short-rotation experiment with poplars and willows was established near Regensburg/Eastern Bavaria as part of an integrated project. The aim of long-term site and nutritional investigations is to test site conditions, nutritional status, and shoot biomass production as well as the ecological consequences of plantation forestry with fast growing deciduous species. In the experiment, the following aspen, balsam poplar, and willow clones are tested: Populus tremula x P. tremuloides cv. Astria, P. trichocarpa cv. Muhle Larsen, P. interamericana cv. Rap, Salix viminalis Klon 722/51. The experimental area consists of an elevated part with well aereated to only moderately moist soils and a wet, groundwater-influenced part. In the spring of 1984 a fertilization trial was started with 9 treatments. After the first rotation of 5 years, poplars and willows were cut in January 1988. The average final top heights of the poplars reached 7-8 m; Salix viminalis was only 5 m tall. The accumulation of shoot biomass during the first two years of growth was only slow, but increased significantly 1985-1987. After 5 years, the poplars showed an accumulated average shoot biomass (without leaves) of 27-30 t DW/ha, while Salix viminalis has produced only 20 t. (orig.).

  20. BIOMASS IN Eucalyptus viminalis Labill. PLANTATIONS IN BUENOS AIRES PROVINCE, ARGENTINA

    Directory of Open Access Journals (Sweden)

    Paula Ferrere

    2009-10-01

    Full Text Available The present work was developed in the West of Buenos Aires Province (Argentina with the objective of adjusting functions of biomass of individual trees, in their different compartments and in the understorey. Stands of Eucalyptus viminalis Labill. were identified, with ages between 4 and 14 years-old. Twenty-one individuals were felled with diameters ranging from 9,2 to 32,5 cm. Simple and multiple regression models were developed and volume, branch leaf and stem biomass were estimated. The best volume equations were based on lineal models and the most adequate behavior was obtained with d2. To estimate leaf, branch and stem, ln-ln models have been suggested, with diameter and h or only diameter. The leaf biomass presented the weakest adjustment. The distribution of trees biomass agrees with the bibliography. The proportion of crown biomass decreases with age; on the other hand, the proportion of stem biomass increases with age.

  1. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    International Nuclear Information System (INIS)

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (Wc; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (Wa) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha-1 at a stand age of 1 year to 153 t ha-1 at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed

  2. Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Lara Danielsen

    Full Text Available Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investigate EM colonization and community composition in relation to biomass and nutrient status in wildtype (WT, Populus tremula × Populus alba and transgenic poplar lines with suppressed activities of cinnamyl alcohol dehydrogenase, caffeate/5-hydroxyferulate O-methyltransferase, and cinnamoyl-CoA reductase in a biomass plantation. In different one-year-old poplar lines EM colonization varied from 58% to 86%, but the EM community composition of WT and transgenic poplars were indistinguishable. After two years, the colonization rate of all lines was increased to about 100%, but separation of EM communities between distinct transgenic poplar genotypes was observed. The differentiation of the EM assemblages was similar to that found between different genotypes of commercial clones of Populus × euramericana. The transgenic poplars exhibited significant growth and nutrient element differences in wood, with generally higher nutrient accumulation in stems of genotypes with lower than in those with higher biomass. A general linear mixed model simulated biomass of one-year-old poplar stems with high accuracy (adjusted R(2 = 97% by two factors: EM colonization and inverse wood N concentration. These results imply a link between N allocation and EM colonization, which may be crucial for wood production in the establishment phase of poplar biomass plantations. Our data further support that multiple poplar genotypes regardless whether generated by transgenic approaches or

  3. Charcoal from biomass residues of a Cryptomeria plantation and analysis of its carbon fixation benefit in Taiwan

    International Nuclear Information System (INIS)

    Charcoal production as an age-old industry not only supplies fuel in developing countries, in recent decades, it has also become a means of supplying new multifunctional materials for environmental improvement and agricultural applications in developed countries. These include air dehumidification and deodorization, water purification, and soil improvement due to charcoal's excellent adsorption capacity. Paradoxically, charcoal production might also help curb greenhouse gas emissions. In this study, we made charcoal from discarded branches and tops of wood from a Cryptomeria plantation after thinning using a still-operational earthen kiln. Woody biomass was used as the carbonization fuel. The effect of carbonization on carbon fixation was calculated and its benefits evaluated. The results showed that the recovered fixed carbon reached 33.2%, i.e., one-third of the biomass residual carbon was conserved as charcoal which if left on the forest ground would decompose and turn into carbon dioxide, and based on a net profit of US$1.13 kg-1 for charcoal, an annual net profit of US$14,665 could be realized. Charcoaling thus appears to be a feasible alternative to promote reutilization of woody resides which would not only reduce greenhouse gas emissions, but also provide potential benefits to regional economies in developing countries.

  4. The impact of poplar tree plantations for biomass production on the aquifer water budget and base flow in a Mediterranean basin

    International Nuclear Information System (INIS)

    Poplar plantations are used for biomass production in many countries. These plantations are often located in areas where the tree roots can reach the water table of shallow aquifers to reduce irrigation costs and increase evapotranspiration, mainly during the summer. This study aims to assess the effects of these plantations on an aquifer water budget and on the stream flow of a Mediterranean basin (Santa Coloma River, 321.3 km2 NE Spain). A numerical flow model was constructed to simulate shallow aquifers and to simulate the stream–aquifer interaction for a period of 9 years. Once the model was calibrated, different land use scenarios, such as deciduous forests, dry farming and irrigated farming, were simulated for comparison. The mass balance shows that poplar extracts an average of 2.40 hm3 from the aquifer, i.e., approximately 18% of the average recharge of the modelled area. This effect reduces the groundwater flow to the main stream and increases the infiltration from the stream to the aquifer. As a result, there is an average reduction in the main stream flow by 46% during the summer, when the lowest flow occurs and when the river is most sensitive. The results indicate that these impacts should be considered in basin management plans and in evaluating the benefits of this type of biomass production. - Highlights: • Poplar plantations can evapotranspirate aquifer groundwater in semiarid areas • A groundwater flow model is presented to quantify poplars’ impact on the water budget • 20% of the aquifer recharge is consumed by poplars • The main stream flow is reduced up to 46% during summer due to plantations uptake • Biomass production impacts must be considered for evaluating water resources planning

  5. The impact of poplar tree plantations for biomass production on the aquifer water budget and base flow in a Mediterranean basin

    Energy Technology Data Exchange (ETDEWEB)

    Folch, Albert, E-mail: folch.hydro@gmail.com [Hydrogeology Group (UPC-CSIC), Department of Geotechnical Engineering and Geo-sciences, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona (Spain); Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Bellaterra (Spain); Ferrer, Núria [Hydrogeology Group (UPC-CSIC), Department of Geotechnical Engineering and Geo-sciences, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona (Spain)

    2015-08-15

    Poplar plantations are used for biomass production in many countries. These plantations are often located in areas where the tree roots can reach the water table of shallow aquifers to reduce irrigation costs and increase evapotranspiration, mainly during the summer. This study aims to assess the effects of these plantations on an aquifer water budget and on the stream flow of a Mediterranean basin (Santa Coloma River, 321.3 km{sup 2} NE Spain). A numerical flow model was constructed to simulate shallow aquifers and to simulate the stream–aquifer interaction for a period of 9 years. Once the model was calibrated, different land use scenarios, such as deciduous forests, dry farming and irrigated farming, were simulated for comparison. The mass balance shows that poplar extracts an average of 2.40 hm{sup 3} from the aquifer, i.e., approximately 18% of the average recharge of the modelled area. This effect reduces the groundwater flow to the main stream and increases the infiltration from the stream to the aquifer. As a result, there is an average reduction in the main stream flow by 46% during the summer, when the lowest flow occurs and when the river is most sensitive. The results indicate that these impacts should be considered in basin management plans and in evaluating the benefits of this type of biomass production. - Highlights: • Poplar plantations can evapotranspirate aquifer groundwater in semiarid areas • A groundwater flow model is presented to quantify poplars’ impact on the water budget • 20% of the aquifer recharge is consumed by poplars • The main stream flow is reduced up to 46% during summer due to plantations uptake • Biomass production impacts must be considered for evaluating water resources planning.

  6. Sampling procedure in a willow plantation for chemical elements important for biomass combustion quality

    DEFF Research Database (Denmark)

    Liu, Na; Nielsen, Henrik Kofoed; Jørgensen, Uffe;

    2015-01-01

    Willow (Salix spp.) is expected to contribute significantly to the woody bioenergy system in the future, so more information on how to sample the quality of the willow biomass is needed. The objectives of this study were to investigate the spatial variation of elements within shoots of a willow...

  7. Productivity and cost of harvesting a stemwood biomass product from integrated cut-to-length harvest operations in Australian Pinus radiata plantations

    International Nuclear Information System (INIS)

    Significant quantities of woody biomass from the tops of trees and larger woody ‘waste’ pieces that fall outside existing sawlog and pulpwood specifications are left on site post final harvest in Australian radiata Pinus radiata (D. Don) (radiata pine) plantations. Woody biomass is a potential product for pulp making or energy generation. Commercial use of woody biomass from radiata pine plantations would add extra value to the Australian plantation estate through improved resource utilisation, and potentially reduced post-harvesting silvicultural costs. This study investigated the productivity and cost impact of the harvest and extraction to roadside of woody biomass in an integrated harvest operation in a typical Australian two machine (harvester/processor and forwarder), cut-to-length, clearfall operation in a mature, thinned radiata pine plantation. The harvest operation yielded 23 GMt/ha (5% of the total yield) of woody biomass (known as ‘fibreplus’), 443 GMt/ha of sawlogs and 28 GMt/ha of pulpwood. The mean quantity of biomass left on site was 128 GMt/ha, mainly consisting of branches and needles, sufficient to minimise nutrient loss and protect the soil from erosion. Woodchips derived from the fibreplus product were suitable for kraft pulp making, (when blended in small amounts with clean de-barked roundwood woodchips), and for energy generation. The method trialed with the fibreplus product being produced did not impact harvesting and processing productivity and costs, but extraction was 14% less productive. Through analysis of the productivities of each phase and development of a cost model the harvest and extraction of the fibreplus product was estimated to increase total unit costs by ∼4.9%. - Highlights: • Study of the productivity and cost impact of producing a woody biomass product. • We compared two scenarios – harvesting with and without the biomass product. • An additional 23 GMt/ha (5% of the total yield) of woody biomass

  8. Ectomycorrhizal Colonization and Diversity in Relation to Tree Biomass and Nutrition in a Plantation of Transgenic Poplars with Modified Lignin Biosynthesis

    OpenAIRE

    Danielsen, Lara; Lohaus, Gertrud; Sirrenberg, Anke; Karlovsky, Petr; Bastien, Catherine; Pilate, Gilles; Polle, Andrea

    2013-01-01

    Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM) fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investiga...

  9. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  10. The impact of poplar tree plantations for biomass production on the aquifer water budget and base flow in a Mediterranean basin.

    Science.gov (United States)

    Folch, Albert; Ferrer, Núria

    2015-08-15

    Poplar plantations are used for biomass production in many countries. These plantations are often located in areas where the tree roots can reach the water table of shallow aquifers to reduce irrigation costs and increase evapotranspiration, mainly during the summer. This study aims to assess the effects of these plantations on an aquifer water budget and on the stream flow of a Mediterranean basin (Santa Coloma River, 321.3 km(2) NE Spain). A numerical flow model was constructed to simulate shallow aquifers and to simulate the stream-aquifer interaction for a period of 9 years. Once the model was calibrated, different land use scenarios, such as deciduous forests, dry farming and irrigated farming, were simulated for comparison. The mass balance shows that poplar extracts an average of 2.40 hm(3) from the aquifer, i.e., approximately 18% of the average recharge of the modelled area. This effect reduces the groundwater flow to the main stream and increases the infiltration from the stream to the aquifer. As a result, there is an average reduction in the main stream flow by 46% during the summer, when the lowest flow occurs and when the river is most sensitive. The results indicate that these impacts should be considered in basin management plans and in evaluating the benefits of this type of biomass production. PMID:25897729

  11. Evaluating Generic Pantropical Allometric Models for the Estimation of Above-Ground Biomass in the Teak Plantations of Southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    S. Sandeep

    2015-09-01

    Full Text Available The use of suitable tree biomass allometric equations is crucial for making precise and non- destructive estimation of carbon storage and biomass energy values. The aim of this research was to evaluate the accuracy of the most commonly used pantropical allometric models and site-specific models to estimate the above-ground biomass (AGB in different aged teak plantations of Southern Western Ghats of India. For this purpose, the AGB data measured for 70 trees with diameter >10 cm from different aged teak plantations in Kerala part of Southern Western Ghats following destructive procedure was used. The results show that site specific models based on a single predictor variable diameter at breast height (dbh, though simple, may grossly increase the uncertainty across sites. Hence, a generic model encompassing dbh, height and wood specific gravity with sufficient calibration taking into account different forest types is advised for the tropical forest systems. The study also suggests that the commonly used pantropical models should be evaluated for different ecosystems prior to their application at national or regional scales.

  12. Species characterization and responses of subcortical insects to trap-logs and ethanol in a hardwood biomass plantation: Subcortical insects in hardwood plantations

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R. [D. B. Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street Athens GA 30602 U.S.A.; Brissey, Courtney L. [D. B. Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street Athens GA 30602 U.S.A.; Gandhi, Kamal J. K. [D. B. Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street Athens GA 30602 U.S.A.

    2015-01-02

    1. We characterized subcortical insect assemblages in economically important eastern cottonwood (Populus deltoides Bartr.), sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) plantations in the southeastern U.S.A. Furthermore, we compared insect responses between freshly-cut plant material by placing traps directly over cut hardwood logs (trap-logs), traps baited with ethanol lures and unbaited (control) traps. 2. We captured a total of 15 506 insects representing 127 species in four families in 2011 and 2013. Approximately 9% and 62% of total species and individuals, respectively, and 23% and 79% of total Scolytinae species and individuals, respectively, were non-native to North America. 3. We captured more Scolytinae using cottonwood trap-logs compared with control traps in both years, although this was the case with sycamore and sweetgum only in 2013. More woodborers were captured using cottonwood and sweetgum trap-logs compared with control traps in both years, although only with sycamore in 2013. 4. Ethanol was an effective lure for capturing non-native Scolytinae; however, not all non-native species were captured using ethanol lures. Ambrosiophilus atratus (Eichhoff) and Hypothenemus crudiae (Panzer) were captured with both trap-logs and control traps, whereas Coccotrypes distinctus (Motschulsky) and Xyleborus glabratus Eichhoff were only captured on trap-logs. 5. Indicator species analysis revealed that certain scolytines [e.g. Cnestus mutilates (Blandford) and Xylosandrus crassiusculus (Motschulsky)] showed significant associations with trap-logs or ethanol baits in poplar or sweetgum trap-logs. In general, the species composition of subcortical insects, especially woodboring insects, was distinct among the three tree species and between those associated with trap-logs and control traps.

  13. Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Wastewaters. Results from a 4-year multidisciplinary field project in Sweden, France, Northern Ireland and Greece

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Stig [Svaloef Weibull AB, Svaloef (Sweden); Cuingnet, Christian; Clause, Pierre [Association pour le Developpement des Culture Energetiques, Lille (France); Jakobsson, Ingvar [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Dawson, Malcolm [Queens Univ., Northern Ireland (United Kingdom); Backlund, Arne [A and B Backlund ApS, Charlottenlund (Denmark); Mavrogianopoulus, George [Agricultural Univ. of Athens (Greece)

    2003-01-01

    This report summarises results and experiences gathered from field trials with recycling of pre-treated wastewater, diverted human urine mixed with water, and municipal sludge, within plantations of willow species specifically selected for biomass production. Experimental sites were established in Sweden (Roma), France (Orchies), Northern Ireland (Culmore) and Greece (Larissa). The project was carried out during a 4-year period with financial support from the EU FAIR Programme. The experimental sites were supplied with primary effluent from municipal treatment plants (Culmore and Larissa), stored industrial effluent from a chicory processing plant (Orchies), biologically treated and stored municipal wastewater (Roma) and human urine mixture from diverting low-flush toilets mixed with water (Roma). Application rates of the wastewaters or the urine mixture were equivalent to the calculated evapotranspiration rate at each site. Wastewaters were also applied up to three times this value to evaluate any possible negative effects. Estimations and evaluations were carried out mainly concerning: biomass growth, potential biological attacks of the plantations, plant water requirements, fertilisation effects of the wastewater, plant uptake of nutrients and heavy metals from applied wastewater, possible soil or groundwater impact, sanitary aspects, and potentials for removal in the soil-plant filter of nutrients and biodegradable organic material from applied wastewater. The results clearly indicated that biomass production in young willow plantations could be enhanced substantially after recycling of wastewater resources. The impact on soil and groundwater of nutrients (nitrogen and phosphorus) and heavy metals (copper, zinc, lead and cadmium) was limited, even when the application of water and nutrients exceeded the plant requirements. Also, the soil-plant system seemed to function as a natural treatment filter for pre-treated (primary settled) wastewater, with a treatment

  14. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    NARCIS (Netherlands)

    Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, de P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.

    2003-01-01

    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment (FA

  15. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.

    Science.gov (United States)

    Li, Shuaifeng; Su, Jianrong; Liu, Wande; Lang, Xuedong; Huang, Xiaobo; Jia, Chengxinzhuo; Zhang, Zhijun; Tong, Qing

    2015-01-01

    The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0-1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0-0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded. PMID:26397366

  16. Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation

    Institute of Scientific and Technical Information of China (English)

    CHENG Yunhuan; HAN Youzhi; WANG Qingcheng; WANG Zhengquan

    2006-01-01

    Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine

  17. The role of plantation forestry in sustainable development

    OpenAIRE

    Ivetić Vladan; Vilotić Dragica

    2014-01-01

    The paper gives an overview of types of forest plantations and their role in sustainable development, with an emphasis on the definition of artificially established (planted) forests and forest plantations. Forest plantations, the most productive part of planted forests, play a significant role in fulfilling the principles of sustainable development. Plantation forestry can provide additional quantities of roundwood and fuelwood (including biomass), additio...

  18. Above-ground Woody Biomass Production of Short-rotation Populus Plantations on Agricultural Land in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Karacic, Almir; Verwijst, Theo; Weih, Martin [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Short Rotation Forestry

    2003-09-01

    Although poplars are widely grown in short-rotation forestry in many countries, little is known about poplar growth performance in Sweden. In this study, above-ground biomass production was estimated for several hybrid aspen and poplar clones planted at different initial density at five locations across Sweden. Biomass assessments were based on allometric relationships between total above-ground woody dry weight and the diameter at breast height. According to a common harvest practice, tree biomass was partitioned into pulpwood and biomass for energy purposes. The percentage of pulpwood was strongly determined by clone for DBH >10 cm. The mean annual increment ranged from 3.3 /ha/yr for balsam poplar in the north to 9.2 Mg/ha/yr for 9-yr-old 'Boelare' in southern Sweden. At the same age, hybrid aspen reached 7.9 Mg/ha/yr. The results suggest that poplars and hybrid aspen are superior as biomass producers compared with tree species commonly grown on agricultural land at these latitudes. The results are discussed in the light of future wood supply for pulpwood and energy purposes in Sweden.

  19. Modelling stand biomass fractions in Galician Eucalyptus globulus plantations by use of different LiDAR pulse densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ferreiro, E.; Miranda, D.; Barreiro-Fernandez, L.; Bujan, S.; Garcia-Gutierrez, J.; Dieguez-Aranda, U.

    2013-07-01

    Aims of study: To evaluate the potential use of canopy height and intensity distributions, determined by airborne LiDAR, for the estimation of crown, stem and aboveground biomass fractions. To assess the effects of a reduction in LiDAR pulse densities on model precision. Area of study: The study area is located in Galicia, NW Spain. The forests are representative of Eucalyptus globulus stands in NW Spain, characterized by low-intensity silvicultural treatments and by the presence of tall shrub. Material and methods: Linear, multiplicative power and exponential models were used to establish empirical relationships between field measurements and LiDAR metrics. A random selection of LiDAR returns and a comparison of the prediction errors by LiDAR pulse density factor were performed to study a possible loss of fit in these models. Main results: Models showed similar goodness-of-fit statistics to those reported in the international literature. R2 ranged from 0.52 to 0.75 for stand crown biomass, from 0.64 to 0.87 for stand stem biomass, and from 0.63 to 0.86 for stand aboveground biomass. The RMSE/MEAN 100 of the set of fitted models ranged from 17.4% to 28.4%. Models precision was essentially maintained when 87.5% of the original point cloud was reduced, i.e. a reduction from 4 pulses m{sup 2} to 0.5 pulses m{sup 2}. Research highlights: Considering the results of this study, the low-density LiDAR data that are released by the Spanish National Geographic Institute will be an excellent source of information for reducing the cost of forest inventories. (Author)

  20. Contribution of the renewable energy sources rape oil and biomass from wood plantations to climate protection; Beitrag der nachwachsenden Energietraeger Rapsoel und Biomasse aus Holzplantagen zum Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    Teepe, R.; Brumme, R.; Flessa, H.; Beese, F. [Goettingen Univ. (Germany). Inst. fuer Bodenkunde und Waldernaehrung

    1999-07-01

    The objective of the present study was to find out whether and to what extent the N{sub 2}O and CH{sub 4} budgets of poplar plantations and rape fields have potential for cutting carbon dioxides and, hence, influence the ecological valuation of the alternative energy sources poplar chipwood and rape oil. N{sub 2}O and CH{sub 4} budgets were measured over a period of 1.5 years; annual budgets were converted into carbon dioxide equivalents. Furthermore, net energy yield was calculated and trace gas emissions from all production steps were established. From this the carbon dioxide conservation effect of the two renewable energy sources and the influence of soil-related trace gas emissions could be determined. (orig.) [German] Ziel dieser Studie war es, zu untersuchen, ob und in welchem Mass die N{sub 2}O- und CH{sub 4}-Fluesse auf der Pappelplantage und dem Rapsfeld das CO{sub 2}-Einsparungspotential und damit die oekologische Bewertung der alternativen Energietraeger Pappel-Hackschnitzel und Rapsoel beeinflussen. Dazu wurden die N{sub 2}O- und CH{sub 4}-Fluesse im Verlauf von 1 {sup 1}/{sub 2} Jahren gemessen und die annuellen Fluesse in CO{sub 2}-Aequivalenten umgerechnet. Weiterhin wurden der Netto-Energieertrag berechnet und die Spurengasemissionen aus allen Produktionsschritten ermittelt. Hieraus liess sich der CO{sub 2}-Einsparungseffekt der beiden nachwachsenden Rohstoffe und der Einfluss der bodenbuertigen Spurengasfluesse bestimmen. (orig.)

  1. Carbono orgânico e biomassa microbiana do solo em plantios de Acacia mangium no Cerrado de Roraima Soil organic carbon and soil microbial biomass in Acacia mangium plantation in the Savanna of Roraima

    Directory of Open Access Journals (Sweden)

    Sara Magda Oliveira Simões

    2010-03-01

    Full Text Available O objetivo do estudo foi avaliar os efeitos de plantios de Acacia mangium, localizados no cerrado em Roraima, sobre o carbono orgânico e biomassa microbiana do solo. Foram realizadas amostragens de solo nas profundidades de 0-20 cm e 20-40 cm em dois plantios de A. mangium com cerca de cinco anos de idade, e em duas áreas de Cerrado nativo consideradas referência. Um dos plantios de A. mangium (localizado na Fazenda Cigolina correspondeu a um plantio homogêneo (espa��amento de 3,6 m entre linhas e 2,0 m entre plantas enquanto que o outro (localizado no Campo Experimental Água Boa - CEAB correspondeu a um plantio em faixas com duas linhas de plantio (espaçamento de 6 m entre linhas, 2,5 m entre plantas e cerca de 30 m entre faixas. As amostras de solo foram analisadas quanto ao carbono orgânico, carbono da biomassa microbiana, respiração basal do solo e quociente metabólico, além de atributos químicos de fertilidade. Foi verificado que os plantios de A. mangium não proporcionaram aumentos significativos do carbono orgânico do solo em comparação às áreas de referência. Entretanto, na média geral, esses plantios proporcionaram aumento do carbono da biomassa microbiana do solo e redução do quociente metabólico, indicando a possibilidade de acúmulo de carbono orgânico no solo em longo prazo. Também foi observado que, em comparação ao plantio da fazenda Cigolina e às áreas de referência, o carbono microbiano do solo foi maior e acompanhado de menor quociente metabólico no plantio de A. mangium no CEAB, mostrando que a estrutura de plantio exerceu influência sobre a biomassa microbiana do solo.The aim of this study was to evaluate the effects of Acacia mangium plantation in the Roraima's Savanna, on soil organic carbon and soil microbial biomass. Soil samplings were collected on the depths of 0-20 cm and 20-40 cm in two Acacia mangium plantation sites, about five years old, and in two sites of native savanna as

  2. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas

    Science.gov (United States)

    Dube, Timothy; Mutanga, Onisimo

    2015-10-01

    The successful launch of the 30-m Landsat-8 Operational Land Imager (OLI) pushbroom sensor offers a new primary data source necessary for aboveground biomass (AGB) estimation, especially in resource-limited environments. In this work, the strength and performance of Landsat-8 OLI image derived texture metrics (i.e. texture measures and texture ratios) in estimating plantation forest species AGB was investigated. It was hypothesized that the sensor's pushbroom design, coupled with the presence of refined spectral properties, enhanced radiometric resolution (i.e. from 8 bits to 12 bits) and improved signal-to-noise ratio have the potential to provide detailed spectral information necessary for significantly strengthening AGB estimation in medium-density forest canopies. The relationship between image texture metrics and measurements of forest attributes can be used to help characterize complex forests, and enhance fine vegetation biophysical properties, a difficult challenge when using spectral vegetation indices especially in closed canopies. This study examines the prospects of using Landsat-8 OLI sensor derived texture metrics for estimating AGB for three medium-density plantation forest species in KwaZulu Natal, South Africa. In order to achieve this objective, three unique data pre-processing techniques were tested (analysis I: Landsat-8 OLI raw spectral-bands vs. raw texture bands; analysis II: Landsat-8 OLI raw spectral-band ratios vs. texture band ratios and analysis III: Landsat-8 OLI derived vegetation indices vs. texture band ratios). The landsat-8 OLI derived texture parameters were examined for robustness in estimating AGB using linear regression, stepwise-multiple linear regression and stochastic gradient boosting regression models. The results of this study demonstrated that all texture parameters particularly band texture ratios calculated using a 3 × 3 window size, could enhance AGB estimation when compared to simple spectral reflectance, simple

  3. Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms

    Science.gov (United States)

    Dube, Timothy; Mutanga, Onisimo; Adam, Elhadi; Ismail, Riyad

    2014-01-01

    The quantification of aboveground biomass using remote sensing is critical for better understanding the role of forests in carbon sequestration and for informed sustainable management. Although remote sensing techniques have been proven useful in assessing forest biomass in general, more is required to investigate their capabilities in predicting intra-and-inter species biomass which are mainly characterised by non-linear relationships. In this study, we tested two machine learning algorithms, Stochastic Gradient Boosting (SGB) and Random Forest (RF) regression trees to predict intra-and-inter species biomass using high resolution RapidEye reflectance bands as well as the derived vegetation indices in a commercial plantation. The results showed that the SGB algorithm yielded the best performance for intra-and-inter species biomass prediction; using all the predictor variables as well as based on the most important selected variables. For example using the most important variables the algorithm produced an R2 of 0.80 and RMSE of 16.93 t·ha−1 for E. grandis; R2 of 0.79, RMSE of 17.27 t·ha−1 for P. taeda and R2 of 0.61, RMSE of 43.39 t·ha−1 for the combined species data sets. Comparatively, RF yielded plausible results only for E. dunii (R2 of 0.79; RMSE of 7.18 t·ha−1). We demonstrated that although the two statistical methods were able to predict biomass accurately, RF produced weaker results as compared to SGB when applied to combined species dataset. The result underscores the relevance of stochastic models in predicting biomass drawn from different species and genera using the new generation high resolution RapidEye sensor with strategically positioned bands. PMID:25140631

  4. Shady Plantations

    DEFF Research Database (Denmark)

    Hastrup, Frida

    2011-01-01

    practice and analysis, data and theory, I discuss anthropological knowledge-making as a truly lateral endeavour that engages in describing and cultivating a shared capacity for world-making, the challenge then being to find the right story of sameness and difference, without ascribing fixity and...... these, as they are realized in social encounters. This calls for a view of theory and analysis as generative of objects in the world, rather than applied to them from some fictitious elsewhere or posterity. Exploring the plantation and the shelter it offers as an intertwinement and simultaneity of...

  5. Biomass and its allocation in a 28-year-old Mytilaria laosensis plantation in southwest Guangxi%桂西南28年生米老排人工林生物量及其分配特征

    Institute of Scientific and Technical Information of China (English)

    明安刚; 贾宏炎; 陶怡; 卢立华; 苏建苗; 史作民

    2012-01-01

    By the methods of plot sampling and allometric dimension, this paper studied the biomass and its allocation in a 28-year-old Mytilaria laosensis plantation in southwest Guangxi. The biomass in the plantation was 281.47 t · hm-2 , and the biomass allocation was in the order of tree layer (97. 89% ) > litter layer (1. 87% ) > shrub layer (0. 16% ) > herb layer (0.08% ). The biomass in the tree layer was 275. 54 t · hm-2, and the biomass allocation was in the sequence of stem (63.01% ) > root (21. 01% ) > branch (9. 64% ) > bark (4. 38% ) > leaf (1. 72% ) > fruit (0. 25% ). The biomass of the trees with different diameter at breast height (DBH) was approximately in normal distribution, and that of the trees with 25-29 cm DBH accounted for 48. 15% of the total. The mean annual net productivity of the plantation was 15.61 t · hm-2 · a-1, and the net productivity of different components of the plantation was tree layer (81.50% ) > litter layer (16. 82% ) > shrub layer (0. 98% ) > herb layer (0. 70% ). The mean annual net productivity of the tree layer was 12.72 t · hm-2 · a-1, and the relative proportion of different tree organs was stem (48.76% ) > leaf (18.64% ) > root (16. 26% ) > branch (7.46%) > fruit (5.50%) > bark (3.39%).%应用相对生长法对桂西南28年生米老排人工林生物量及其分配特征进行了研究.结果表明:28年生米老排人工林生物量为281.47 t·hm-2,生态系统生物量分配格局为乔木层(97.89%)>凋落物层(1.87%)>灌木层(0.16%)>草本层(0.08%);其中,乔木层生物量为275.54 t· hm-2,其生物量在各器官的分配规律为树干(63.01%)>树根(21.01%)>树枝(9.64%)>树皮(4.38%)>树叶(1.72%)>果实(0.25%);乔木生物量的径级分布接近正态分布,生物量主要集中在径级为25~29 cm的林木,占乔木层生物量总量的48.15%;28年生米老排人工林林分年均净生产力为15.61 t· hm-2·a-1,各组分净生

  6. Soil microbial biomass and the influencing factors under Pinus tabulaeformis and Picea asperata plantations in the upper Minjiang River%岷江上游油松与云杉人工林土壤微生物生物量及其影响因素

    Institute of Scientific and Technical Information of China (English)

    江元明; 庞学勇; 包维楷

    2011-01-01

    以立地条件和营林方式相同的约30a林龄油松与云杉人工纯林为对象,测定地表微气候、土壤理化性质以及微生物生物量C、N、P(MBC、MBN、MBP),揭示林分结构、土壤性质与微生物生物量间的关系,以及两林分间的差异性.结果表明:两个林分地表环境荫湿,土壤肥力较低,土壤微生物生物量低,林地土壤碳积累低,土壤生态服务功能不强.相对而言,云杉林比油松林相对湿度大而地表温度低、林地土壤肥力高、土壤微生物生物量高,因此更有利于林地土壤生态服务功能的恢复.综合分析发现,林分结构、土壤养分状况及地表小气候影响着土壤微生物生物量与肥力转换过程,降低乔木冠层密度可以改善地表小气候,为有机物分解与养分归还创造良好的条件,从而改善土壤肥力与林地土壤生态服务功能.%Pinus tabulaeformis and Picea asperata plantations are extensively distributed in the upper Minjiang River,western Sichuan. They became representative low-benefit forests at present which display low biodiversity and productivity,poor soil fertility, vulnerable to forest disturbances and difficult for new species to immigration.We selected two typical plantations with about 30-year-old and uniform in habitats and afforestation management to investigate microclimate under forest, stand structure, soil properties and soil microbial biomass. Through comparing the differences in microclimate under forest, soil properties and soil microbial biomass between pine and spruce plantations, we aimed to illustrate whether there are different effects on soil quality and forest microclimate bwteen pine and spruce plantations. It is well known that microbial biomass is clearly important to a series of soil process and sensitive to change in soil texture and environmental conditions, and forest microclimate and soil properties are very important factors controlled microbial biomass. Therefore, we

  7. Vatenfall relies on biomass. Short rotation plantations shall secure the energy supply of a thermal power station in Berlin; Vattenfall setzt auf Biomasse. Kurzumtriebsplantagen sollen Versorgung eines Berliner Heizkraftwerkes sichern

    Energy Technology Data Exchange (ETDEWEB)

    Biernath, Dieter

    2013-04-01

    The Vattenfall subsidiary Energy Crops (Hamburg, Federal Republic of Germany) looks for farmers for contract farming of short rotation plantations in order to secure the energy supply of a thermal power station in Berlin (Federal Republic of Germany). Energy Crops supports farmers with seedlings, equipment and consultancy. However, Energy Crops looks for the correct methods.

  8. Estoques de carbono no solo e na biomassa em plantações de eucalipto Carbon storage in the soil and in the biomass of eucalypt plantations

    Directory of Open Access Journals (Sweden)

    Alcides Gatto

    2010-08-01

    stored in the soil and in the biomass of these forest stands. The main objective of this study was to estimate the amount of soil-stored carbon (SSC of eucalypt plantations and determine soil and climate characteristics that influence SSC. The study was carried out in the Central-Eastern region of Minas Gerais State, Brazil, in five micro-regions (CO, RD, SB, SA, and VI with varying soil and climatic conditions. Soil carbon was determined to a depth of 100 cm. Carbon in the forest floor was estimated by allometric equations. The carbon stored in the soil-plant system differed among micro-regions and soil classes. SSC ranged from 183.1 t ha-1 in Red Latosol to 95.1 t ha-1 in Inceptisol, and was negatively correlated to soil K, Ca2+; and Mg2+ content and density in the top soil layer. SSC was highest in the micro-region VI (141.2 t ha-1; average value for all soil types and lowest in RD (80.8 t ha-1. Considering the soil-plant ecosystem and the usual rotation age (84 months, the absolute SSC value was greatest in the micro-region SA (251.6 t ha-1 and lowest in RD (186.8 t ha-1. Regression equations showed that the clay and aluminum content and altitude and water stress explained most of the SSC variation.

  9. The Early Effects of Forest Gap Harvesting on Soil Microbial Biomass in Pinus massoniana Plantations%采伐林窗对马尾松人工林土壤微生物生物量的初期影响

    Institute of Scientific and Technical Information of China (English)

    欧江; 张捷; 崔宁洁; 陈亚梅; 张健; 杨万勤; 刘洋

    2014-01-01

    为了解人为采伐活动形成的林窗对马尾松低效人工林土壤微生物生物量的影响,以39 a生的马尾松人工林7种不同大小林窗(G1:100 m2、G2:225m2、G3:400m2、G4:625m2、G5:900m2、G6:1 225m2、G7:1 600m)以及林下为研究对象,分析了林窗中央和林窗边缘土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)的季节变化.结果显示:①林窗大小显著影响了林窗内各位置土壤MBC和MBP,对MBN影响不显著;MBN与MBC变化趋势相同,均随林窗增大呈先升后降的单峰型变化,但MBN变化幅度较小,MBP仅在林窗中央具有单峰型变化.MBC、MBN和MBP分别在面积为400~900m2、225~625m2和625~900m2的林窗较高.总体来看,中型林窗更有利于微生物生物量的增值.②季节变化对土壤MBC、MBN、MBP均有极显著影响,MBC为夏高春低,MBN夏高冬低;MBP的变化较复杂,秋季相对较高.③林窗中央与边缘间MBC、MBN、MBP差异不显著,但MBC、MBN显著高于林下.说明较之马尾松纯林,林窗内土壤微生物活性有较大提高.④土壤温度对MBC、MBN有显著影响,土壤含水量对MBN、MBP有显著影响,土壤温度和水分是林窗形成后影响土壤微生物生物量的重要环境因子.%There are a certain degree of low-efficient Pinus massoniana plantations in a hilly area of the upper reaches of the Yangtze River.To understand the forest gap formed by artificial tending thinning to regulate forest structure and the impact on ecological effect of low-efficient plantation,which to provide critical scientific basis for the optimum control mode of forest gap size of masson pine plantation in the hilly area.The study takes seven gaps with different sizes (G1:100 m2,G2:225 m2,G3:400 m2,G4:625 m2,G5:900 m2,G6:1225 m2,G7:1600 m2) as objects and pure 39-year-old plantation as a control,analyzes the seasonal variations of soil microbial biomass carbon (MBC),microbial biomass nitrogen (MBN) and

  10. The role of plantation forestry in sustainable development

    Directory of Open Access Journals (Sweden)

    Ivetić Vladan

    2014-01-01

    Full Text Available The paper gives an overview of types of forest plantations and their role in sustainable development, with an emphasis on the definition of artificially established (planted forests and forest plantations. Forest plantations, the most productive part of planted forests, play a significant role in fulfilling the principles of sustainable development. Plantation forestry can provide additional quantities of roundwood and fuelwood (including biomass, additional products in the form of non-timber forest products and additional services in the form of shelterbelts and phytoremediation.

  11. Understory herb layer exerts strong controls on soil microbial communities in subtropical plantations.

    Science.gov (United States)

    Yin, Kai; Zhang, Lei; Chen, Dima; Tian, Yichen; Zhang, Feifei; Wen, Meiping; Yuan, Chao

    2016-01-01

    The patterns and drivers of soil microbial communities in forest plantations remain inadequate although they have been extensively studied in natural forest and grassland ecosystems. In this study, using data from 12 subtropical plantation sites, we found that the overstory tree biomass and tree cover increased with increasing plantation age. However, there was a decline in the aboveground biomass and species richness of the understory herbs as plantation age increased. Biomass of all microbial community groups (i.e. fungi, bacteria, arbuscular mycorrhizal fungi, and actinomycete) decreased with increasing plantation age; however, the biomass ratio of fungi to bacteria did not change with increasing plantation age. Variation in most microbial community groups was mainly explained by the understory herb (i.e. herb biomass and herb species richness) and overstory trees (i.e. tree biomass and tree cover), while soils (i.e. soil moisture, soil organic carbon, and soil pH) explained a relative low percentage of the variation. Our results demonstrate that the understory herb layer exerts strong controls on soil microbial community in subtropical plantations. These findings suggest that maintenance of plantation health may need to consider the management of understory herb in order to increase the potential of plantation ecosystems as fast-response carbon sinks. PMID:27243577

  12. Biomass allocation in relation to stand density in Pinus tabuliformis plantation%不同林分密度油松人工林生物量分配模式

    Institute of Scientific and Technical Information of China (English)

    贾全全; 罗春旺; 刘琪璟; 刘丽婷; 李俊清

    2015-01-01

    The biomass allocation pattern is critical for understanding individual growth processes and modeling terrestrial ecosystem carbon cycles in the context of global climate change. Our objective was to determine the effects of stand density on biomass allocation pattern in a Pinus tabuliformis plantation in Beijing, China. Eighteen sample trees for aboveground components and eleven sample trees for belowground components were used for developing DBH-biomass models by the nested regression method. Thirty⁃three temporary plots (20 m×30 m) with different stand densities (267-3 367 trees/hm2 ) were investigated by recording DBH of all trees over 5 cm DBH in July—August 2012. All components exhibited significant variations across the surveyed plots with different stand densities. Above and below ground biomass ranged from 20.74 to 141.25 t/hm2 and 5.36 to 36.92 t/hm2 , respectively. The average biomass ratio of root to shoot was 0.276, and increased from 0.223 to 0.313 as stands becoming denser. In addition, with increasing stand density, the proportion of stem and branch to total forest biomass decreased, while foliage, fine root and coarse root bio⁃mass increased. The functional balance theory is tested in part by our results, which were also improtant for accurate es⁃timation of ecosystem biomass and carbon accounting.%为了解不同林分密度下各组分生物量分配模式的变化特征,以20年生油松( Pinus tabuliformis)人工林为研究对象,采用嵌套式回归法建立了油松各器官生物量与胸径、树高的回归方程,并分析了林分地上和地下各器官生物量比例随林分密度的变化趋势。结果表明:油松林生物量分配格局因林分密度(267~3367株/hm2)的不同存在较大的差异。地上、地下生物量范围分别介于20.74~141.25 t/hm2和5.36~36.92 t/hm2之间。生物量根冠比随林分密度的增加而增加(0.223~0.313,平均0�276),其中

  13. Quantificação da biomassa em plantios de Pinus elliottii Engelm. em Clevelândia – PR. Measurement of biomass in plantations of Pinus elliottii Engelm.

    Directory of Open Access Journals (Sweden)

    Gerson dos Santos LISBOA

    2015-06-01

    Full Text Available Este trabalho teve como objetivo quantificar e modelar a biomassa em plantações de Pinus elliottii Engelm., com diferentes idades, no município de Clevelândia, Estado do Paraná. Os dados para a realização deste estudo foram provenientes de 25 povoamentos com idades de 1 a 25 anos, totalizando 125 árvores, sendo 5 para cada idade. As árvores foram derrubadas e seccionadas nos compartimentos: acículas, galhos vivos, galhos mortos, raízes, estruturas reprodutivas, madeira do fuste e casca do fuste. Em seguida, uma amostra de cada componente foi tomada para a obtenção de matéria seca. A ordenação da biomassa nos distintos componentes se distribuiu na ordem: madeira do fuste > raiz > casca > galhos vivos > acículas (estrutura fotossintética > galhos mortos e estruturas reprodutivas. Visando à obtenção de estimativas do peso de biomassa nos diferentes compartimentos da árvore por meio de variáveis dendrométricas, foram ajustados vários modelos matemáticos, entre eles, modelos tradicionalmente encontrados na literatura florestal. De uma maneira geral, a quantidade de biomassa da maioria dos componentes, apresentou alta relação com as variáveis dendrométricas, resultando em equações adequadas, exceto para os componentes galhos mortos e estruturas reprodutivas. As equações geradas para estimativa de peso total e dos componentes arbóreos da biomassa nas árvores de Pinus elliottii Engelm. são importantes ferramentas para análises técnicas, planejamento de projetos e estudos de viabilidade para uso da madeira. This study aimed to quantify and model the biomass in Pinus elliottii Engelm. plantations, with different ages, in the city of Clevelândia, state of Paraná. The data for this study came from 25 forest stands aged 1-25 years totaling 125 trees, 5 for each age. Trees were felled and sectioned in the compartments: needles, live branches, dead branches, roots, reproductive structures, wood stem and bark stem. Then

  14. Biomass production in forest plantations used as raw material for industry and energy. Final report. Biomasseproduktion in forstlichen Plantagen fuer die Rohstoff- und Energiegewinnung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, M.R.; Muhs, H.J.

    1986-10-01

    European aspen (Populus tremula), quaking aspen (Populus tremuloides), and their hybrids (hybrid aspen) are short-rotation, fast growing forest tree species, that apparently hold potential for biomass and energy production. Because of inherent difficulties in vegetative propagation in aspen, it has not been possible to propagate selected aspen and hybrid aspen tress on a large scale. Therefore, the aim of this project was to develop unconventional methods of vegetative propagation in aspen that can easily be adapted to nursery practices and are also cost-effective. Explants from buds, leaves, stems, and roots were cultured on a modified Woody Plant Medium for the purposes of microvegetative propagation. Protoplasts were also cultured for regenerative studies. Mainly the bud explants were employed for microvegetative propagation. A 2-step micropropagation method, which is commmercially feasible, has been developed for aspen. This method involves: (1) culture of bud explants on a medium for bud conditioning and microshoot proliferation, and (2) rooting of microshoots in peat-perlite mix. By employing this 2-step micropropagation method, several thousand plants have been regenerated from about 50 mature selected aspen and hybrid aspen trees ranging from 1 to 40 years of age. Following transfer to field conditions, tissue culture derived plants exhibited vigorous growth and attained a height of 1.5-2 meters in the first growing season. (orig.) With 23 refs., 1 tab., 20 figs.

  15. The impact of integrating WorldView-2 sensor and environmental variables in estimating plantation forest species aboveground biomass and carbon stocks in uMgeni Catchment, South Africa

    Science.gov (United States)

    Dube, Timothy; Mutanga, Onisimo

    2016-09-01

    Reliable and accurate mapping and extraction of key forest indicators of ecosystem development and health, such as aboveground biomass (AGB) and aboveground carbon stocks (AGCS) is critical in understanding forests contribution to the local, regional and global carbon cycle. This information is critical in assessing forest contribution towards ecosystem functioning and services, as well as their conservation status. This work aimed at assessing the applicability of the high resolution 8-band WorldView-2 multispectral dataset together with environmental variables in quantifying AGB and aboveground carbon stocks for three forest plantation species i.e. Eucalyptus dunii (ED), Eucalyptus grandis (EG) and Pinus taeda (PT) in uMgeni Catchment, South Africa. Specifically, the strength of the Worldview-2 sensor in terms of its improved imaging agilities is examined as an independent dataset and in conjunction with selected environmental variables. The results have demonstrated that the integration of high resolution 8-band Worldview-2 multispectral data with environmental variables provide improved AGB and AGCS estimates, when compared to the use of spectral data as an independent dataset. The use of integrated datasets yielded a high R2 value of 0.88 and RMSEs of 10.05 t ha-1 and 5.03 t C ha-1 for E. dunii AGB and carbon stocks; whereas the use of spectral data as an independent dataset yielded slightly weaker results, producing an R2 value of 0.73 and an RMSE of 18.57 t ha-1 and 09.29 t C ha-1. Similarly, high accurate results (R2 value of 0.73 and RMSE values of 27.30 t ha-1 and 13.65 t C ha-1) were observed from the estimation of inter-species AGB and carbon stocks. Overall, the findings of this work have shown that the integration of new generation multispectral datasets with environmental variables provide a robust toolset required for the accurate and reliable retrieval of forest aboveground biomass and carbon stocks in densely forested terrestrial ecosystems.

  16. The effects of energy grass plantations on biodiversity

    International Nuclear Information System (INIS)

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI

  17. The effects of energy grass plantations on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.

    2005-07-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI.

  18. Multi-functional energy plantation; Multifunktionella bioenergiodlingar

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)

    2002-02-01

    There exists a significant potential for utilising perennial energy plantations in protecting and restoring polluted water and land resources in Sweden. By optimising the design, location and management, several additional environmental services could be obtained which will increase the value of the energy plantations, thereby improving future market conditions for biomass. Multi-functional energy plantations (mainly Salix but also energy grass) can be divided into two categories, those designed for dedicated environmental services (e.g. vegetation filters for wastewater and sewage sludge treatment and shelter belts against soil erosion), and those generating more general benefits (e.g. soil carbon accumulation, increased soil fertility, cadmium removal and increased hunting potential). The practical potential of those two categories is estimated to be equivalent to up to 3% and more than 20% of the total Swedish arable land, respectively. The regional conditions of utilising multi-functional plantations vary, however, with the best possibilities in densely populated areas dominated by farmland. The economic value of multi-functional plantations is normally highest for those designed for dedicated environmental services. Purification of wastewater has the highest value, which could exceed the production cost in conventional Salix plantations, followed by treatment of polluted drainage water in vegetation filters and buffer zones (equivalent to more than half of the production cost), recirculation of sewage sludge (around half of the production cost), erosion control (around one fourth) and increased hunting potential (up to 15% of the production cost). The value of increased hunting potential varies due to nearness to larger cities and in which part of Sweden the plantation is located. The economic value of cadmium removal and increased soil fertility is equivalent to a few percent of the production cost, but the value of cadmium removal might increase in the

  19. The push for plantations

    DEFF Research Database (Denmark)

    Thulstrup, Andreas Waaben; Casse, Thorkil; Nielsen, Thomas Theis

    2013-01-01

    We observe signs of social differentiation, where poor households end up serving as causal labour for the richer families on their acacia plantations. In addition, the poor can be rendered more vulnerable after becoming labourers, because they may not longer have an alternative source of income, ......, yet they still face the risk of increasing frequency of typhoon exposure....

  20. Mineral nutrients, biomass and litter deposition on Eucalyptus plantation under different residue management Nutrientes minerais, biomassa e deposição de serapilheira em plantio de Eucalyptus com diferentes sistemas de manejo de resíduos florestais

    Directory of Open Access Journals (Sweden)

    Antonio Francisco Jurado Bellote

    2010-03-01

    Full Text Available It was evaluated the effect of different residue management systems in the plant nutrition status, nutrient contents in the litter and litter biomass yield, on Eucalyptus grandis plantation. Samples were taken on four residue management systems: (i removal of all residues from previous harvesting and NPK fertilization; (ii maintenance of all residues on soil surface and NPK fertilization; (iii removal all at bark  and commercial-size crop stems over 3 cm diameter and NPK fertilization; (iv removal of all residues from previous harvesting, NPK fertilization and addition of industrial waste (15 t.ha-1 of pulp and paper sludge, C:N ratio 25:1 and 4 t.ha-1 of wood ash, C:N ratio 30:1. Results showed that the maintenance of the forest residues on site improved the nutritional status of trees and increased productivity. Addition of industrial waste allowed expressive increase of Eucalyptus sp growth. Possible excesses of Ca from the industrial waste used  should be corrected, to avoid nutritional unbalance in the trees; independent of the treatment used, the amounts of K added to the soil are not enough to maintain appropriate tree nutritional status. Greater amounts of K should be added to correct soil nutritional deficiencies on this element. Neste trabalho foi avaliado o efeito de diferentes manejos de resíduos florestais no estado nutricional
    das árvores, no conteúdo de nutrientes na serapilheira e a biomassa de serapilheira produzida pelo Eucalyptus
    grandis. Foram avaliados quatro sistemas diferentes de manejo de resíduo: (i remoção de todo resíduo do sítio
    proveniente da colheita florestal e adubação NPK; (ii manutenção no sítio de todos os resíduos da colheita
    florestal e adubação NPK; (iii remoção do sítio de todo o resíduo da colheita com diâmetro superior a 3 cm e
    adubação NPK; (iv remoção de todos os resíduos da colheita, adubação NPK e adição de 15 t.ha-1 de resíduo
    celul

  1. Understanding forest-derived biomass supply with GIS modelling

    DEFF Research Database (Denmark)

    Hock, B. K.; Blomqvist, L.; Hall, P.;

    2012-01-01

    In New Zealand, residues from the harvest of plantation forests have been identified as the largest potential source of biomass for energy production to replace fossil fuels. Barriers to the increased use of biomass include uncertainty of supply as local plantations may not have an even age distr...

  2. Energy from biomass. Economic and ecological evaluation; Energie aus Biomasse. Oekonomische und oekologische Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The book includes the following presentations: Energy from biomass - introduction into the round table discussion; biomass for heat, fuel and electricity production; technological aspects of biomass based energy production; perspectives and scenarios for sustainable biomass utilisation; economical aspects of biomass based energy production; energy wood utilisation and sustainable forestry - a conflict of objectives?; impact of biomass plantations for the energy production on the ecosystem and land managment; impacts of the plant based energy production from the view of environmental protection.

  3. Carbon Sequestration Potential of Teak Plantations of Different Agro-Climatic Zones and Age-Gradations of Southern India

    OpenAIRE

    Milkuri Chiranjeeva Reddy; R. M. Priya; S. L. Madiwalar

    2014-01-01

    Carbon sequestration potential of teak plantations in different agro-climatic zones of Southern India, viz. Northern Dry Zone, Northern Transition Zone, and Hilly Zone were studied. Teak plantations belonging to three age gradations viz. 10, 15 and 20 years were considered for the study. Above ground biomass was computed based on volume estimation and wood density after considering three 10 x 10 m plots. Carbon sequestration potential of teak plantations on farmlands differed significantly wi...

  4. THE Eucalyptus sp. AGE PLANTATIONS INFLUENCING THE CARBON STOCKS

    Directory of Open Access Journals (Sweden)

    Charlote Wink

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989279The tree growth and biomass accumulation, as well as the maintenance of forest residue at the soil surface can act in the removal of carbon from the atmosphere through the cycling process of plant material. The objective was to study the influence of Eucalyptus sp. Plantations with 20, 44 and 240 months of age on the variation of carbon in soil and biomass. The carbon in the soil depth was determined by CHNS auto-analyzer and carbon in the vegetation was determined by the biomass in each forest, considering a factor of 0.45 of the dry mass. We determined the density and particle size distribution of soil. For the comparison between plantations, there was analysis of variance and comparison of means of carbon in vegetation and soil, considering the 5% level of probability. The carbon content and stock in the soil were low, indicating that a natural feature of the category of Paleuldt, or the growth of eucalyptus forests, replacing the field native vegetation did not aggregate a significant increase in the carbon. Although, there was a significant increase carbon in aboveground biomass. It includes forest biomass and litter. So, despite the values ​​of carbon stocks are low, it identified a greater average total in the soil compared to the stock aboveground. Furthermore, this increase aboveground (tree and litter compartments can be considered significant between the eucalyptus plantations of different ages.

  5. Carbon Storage in a Eucalyptus Plantation Chronosequence in Southern China

    Directory of Open Access Journals (Sweden)

    Hu Du

    2015-05-01

    Full Text Available Patterns of carbon (C allocation across different stages of stand development in Eucalyptus urophylla × E. grandis plantations are not well understood. In this study, we examined biomass and mineral soil C content in five development stages (1, 2, 3, 4–5, and 6–8 years old of a Eucalyptus stand in southern China. The tree biomass C pool increased with stand age and showed a high annual rate of accumulation. Stems accounted for the highest proportion of biomass C sequestered. The C pool in mineral soil increased initially after afforestation and then declined gradually, with C density decreasing with soil depth. The upper 50 cm of soil contained the majority (57%–68% of sequestered C. The other biomass components (shrubs, herbaceous plants, litter, and fine roots accounted for <5% of the total ecosystem C pool. Total C pools in the Eucalyptus plantation ecosystem were 112.9, 172.5, 203.8, 161.1, and 162.7 Mg ha−1 in the five developmental stages, respectively, with most of the C sequestered below ground. We conclude that Eucalyptus plantations have considerable biomass C sequestration potential during stand development.

  6. Biomass in Germany

    International Nuclear Information System (INIS)

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  7. [Soil quality assessment of forest stand in different plantation esosystems].

    Science.gov (United States)

    Huang, Yu; Wang, Silong; Feng, Zongwei; Gao, Hong; Wang, Qingkui; Hu, Yalin; Yan, Shaokui

    2004-12-01

    After a clear-cutting of the first generation Cunninghamia lanceolata plantation in 1982, three plantation ecosystems, pure Michelia macclurei stand (PMS), pure Chinese-fir stand (PCS) and their mixed stand, were established in spring 1983, and their effects on soil characteristics were evaluated by measuring some soil physical, chemical, microbiological and biochemical parameters. After 20 years' plantation, all test indices showed differences among different forest management models. Both PMS and MCM had a favorable effect on soil fertility maintenance. Soil quality assessment showed that some soil functions, e.g., water availability, nutrient availability, root suitability and soil quality index were all in a moderate level under the mixed and pure PMS stands, whereas in a relatively lower level under successive PCS stand. The results also showed that there existed close correlations between soil total organic C (TOC), cation exchange capacity (CEC), microbial biomass-C (Cmic) and other soil physical, chemical and biological indices. Therefore, TOC, CEC and Cmic could be used as the indicators in assessing soil quality in this study area. In addition, there were also positive correlations between soil microbial biomass-C and TOC, soil microbial biomass-N and total N, and soil microbial biomass-P and total P in the present study. PMID:15825426

  8. The role of plantation sinks

    International Nuclear Information System (INIS)

    In this paper it is argued that in the long term biofuel should play a significant role in global climate policy. Recent technological developments, as well as sustainable development criteria, would favour growing biofuel in community- scale plantations in developing countries. It is also pointed out that the lead times involved in growing biofuels are so great that the inclusion of biofuel plantation sinks in the CDM for the first commitment period would be desirable. It is suggested that to meet opposition to the inclusion of plantation sinks in the first commitment period plantation, sinks should be linked to biofuels technology development and production, and a biofuels obligation for plantation sink projects in the CDM should be established. (Author)

  9. Estimating aboveground biomass of oil palm : allometric equations for estimating frond biomass

    OpenAIRE

    Aholoukpe, H.; Dubos, B.; Flori, A.; Deleporte, P.; Amadji, G.; Chotte, Jean-Luc; Blavet, Didier

    2013-01-01

    Allometric equations were developed to estimate the biomass of oil palm frond with nontree-lethal methods. The study was conducted in oil palm plantations belonging to the Oil Palm Research Center of the Institut National de Recherches Agricoles du Benin (INRAB) and to neighboring smallholders oil palm plantations. Complete measurements of individual fronds biomass and measurements of predictor variables were made by two methods: (1) a tree-lethal (destructive) method and (2) a nontree-lethal...

  10. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium Biomassa e atividade microbiana da serapilheira durante o desenvolvimento inicial de plantios puros e mistos de Eucalyptus grandis e Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  11. Nutrient accumulation and export in teak (Tectona grandis L.f.) plantations of Central America

    OpenAIRE

    Fernández-Moya J; Murillo R; Portuguez E; Fallas JL; Ríos V; Kottman F; Verjans JM; Mata R; Alvarado A

    2015-01-01

    In order to assess the nutrient sustainability of teak plantations, a study was conducted to measure the amount of nutrients accumulated by the trees and exported during wood harvest. Three teak plantations (28 stands of different age) were studied in Costa Rica and Panama to assess those questions. Nutrient and biomass accumulation and allocation in different tree components (bole, bark, branches and foliage) were measured in the best performing trees between 1 and 19 years of age. A stand o...

  12. Interferometric processing of C-band SAR data for the improvement of stand age estimation in rubber plantation

    Science.gov (United States)

    Trisasongko, Bambang H.; Paull, David J.; Panuju, Dyah R.

    2015-01-01

    Rubber ranks the second largest plantation in Indonesia after oil palm. While oil palm plantations have been exploited mainly by large companies, many rubber plantations are still managed by peasant farmers who maintain its biodiversity. Due to its broad and scattered location, monitoring tropical rubber plantation is a crucial application of active remote sensing. In this paper, the backscatter coefficient of Envisat Advanced Synthetic Aperture Radar (ASAR) is compared to interferometric coherence to study the relationship between stand age and SAR parameters. It is shown that VV polarized C-band SAR achieves its saturation level in plantations aged about 5-10 years. Extension of saturation level can be achieved by processing an interferometric pair of ASAR data, which results in interferometric coherence. In this paper, coherence can take up to 20 years stand age to achieve prior to saturation. Since stand age is highly related to biomass, this finding argues that the biomass can be best estimated using coherence.

  13. Dynamics of soil nutrients in larch plantations

    Institute of Scientific and Technical Information of China (English)

    Yan Deren; Chen Jinglian

    1999-01-01

    The annual dynamic changes of soil nutrients were measured in pure larch plantation and in mixed larch plantation in the arboretum of Inner Mongolia Academy of Forestry Science, Huhehaote. The results showed that soil nutrients in pure larch plantations changed rapidly in July and August. The variation of soil nutrients is more stable in mixed larch plantation. Compared with the pure larch plantation, the content of soil nutrients in mixed larch plantation obviously increased. The soil degradation occurred in the pure larch plantation, and related to the forest age.

  14. Nitrogen balance in soil under eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Patrícia Anjos Bittencourt Barreto

    2012-08-01

    Full Text Available An understanding of the role of organic nitrogen (N pools in the N supply of eucalyptus plantations is essential for the development of strategies that maximize the efficient use of N for this crop. This study aimed to evaluate the distribution of organic N pools in different compartments of the soil-plant system and their contributions to the N supply in eucalyptus plantations at different ages (1, 3, 5, and 13 years. Three models were used to estimate the contributions of organic pools: Model I considered N pools contained in the litterfall, N pools in the soil microbial biomass and available soil N (mineral N; Model II considered the N pools in the soil, potentially mineralizable N and the export of N through wood harvesting; and Model III (N balance was defined as the difference between the initial soil N pool (0-10 cm and the export of N, taking the application of N fertilizer into account. Model I showed that N pools could supply 27 - 70 % of the N demands of eucalyptus trees at different ages. Model II suggested that the soil N pool may be sufficient for 4 - 5 rotations of 5 years. According to the N balance, these N pools would be sufficient to meet the N demands of eucalyptus for more than 15 rotations of 5 years. The organic pools contribute with different levels of N and together are sufficient to meet the N demands of eucalyptus for several rotations.

  15. Overview of Rattan Plantation Management

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Rattans are climbing spiny plants that are regarded as an important kind of commercial non-timber forest products. Rattan resources are dwindling rapidly due to over-exploitation in the wild and the loss of tropical forest cover. These threaten the sustainable utilization of rattan resources and long-term survival of the rattan industry. The development of rattan plantation and the improvement of management technique are hence important. The major issues on plantation management are reviewed in this pap...

  16. Energy capacity of black wattle wood and bark in different spacing plantations

    Directory of Open Access Journals (Sweden)

    Elder Eloy

    2015-06-01

    Full Text Available The study aimed at the energetic description of wood and bark biomass of Acacia mearnsii De Wild. in two spacing plantations: 2.0 m × 3.0 m × 1.0 m and 1.5 m, during 36 months after the planting. The experiment was conducted in the municipality of Frederico Westphalen, state of Rio Grande do Sul, Brazil. Biomass (BIO, calorific value, basic density, ash content, volatile matter and fixed carbon content and energy density (ED of wood and bark were determined. The smallest spacing plantation presented the highest production per unit area of BIO and ED of wood and bark.

  17. Intercrops under coconut plantations

    International Nuclear Information System (INIS)

    The successes of growing intercrops under coconut plantations are controlled by environmental factors which are influenced by the coconut growth and characters, interception of solar radiation, as well as the coconut space and system of planting. Assuming that soil fertility be able to be manipulated by certain treatments, then climatic factors become priority to be considered for selection of intercrops. Coconut palms grow well on areas of 500 m asl., 27-32 deg. C temperature, and 1,500-3,000 mm in annual rainfall with even distribution throughout the year. Each kind (tall, dwarf, hybrid) of coconut performs specific growth characters, mainly on its root system and canopy coverage, as well as general conditions due to its growth phase (young, productive, senile). Above such conditions greatly influence the kind of crops suitable for development under coconut trees. However space and system of coconut planting give various conditions of interception solar radiation to ground surface, which means by manipulating both space and system, environmental requirement is able to be achieved accordingly

  18. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Science.gov (United States)

    Liao, Chengzhang; Luo, Yiqi; Fang, Changming; Li, Bo

    2010-01-01

    Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1) in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation. PMID:20523733

  19. Sustainable biomass production for energy in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T. [Moratuwa Univ., Moratuwa (Sri Lanka)

    2003-11-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-l, IBD-2, SBD-l, SBD-2, FBD-l and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 m x 1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mtyr{sup -l} for Scenario 1 and 6.7 Mtyr{sup -l} for Scenario 2. Under SBD Scenario

  20. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr-1 for Scenario 1 and 6.7 Mt yr-1 for Scenario 2. Under SBD Scenario, the

  1. The Carbon Sequestration Potential of Tree Crop Plantations

    DEFF Research Database (Denmark)

    Kongsager, Rico; Napier, Jonas; Mertz, Ole

    2013-01-01

    ), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 t...... been suggested for integration into REDD+(reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao...... forest or agricultural land, and not on land with oldgrowth forest. We also show that simple C assessment methods can give reliable results, which makes it easier for developing countries to partake in REDD+ or other payment schemes....

  2. Environmental assessment of energy production based on long term commercial willow plantations in Sweden.

    Science.gov (United States)

    González-García, Sara; Mola-Yudego, Blas; Dimitriou, Ioannis; Aronsson, Pär; Murphy, Richard

    2012-04-01

    The present paper analyzed the environmental assessment of short rotation willow plantations in Sweden based on the standard framework of Life Cycle Assessment (LCA) from the International Standards Organisation. The analysis is focused on two alternative management regimes for willow plantations dedicated to biomass production for energy purposes. The data used included the averages of a large sample of commercial plantations. One of the scenarios is carried out under nitrogen based fertilized conditions and the other under non-fertilized management with total biomass yields (dry weight) of 140t/ha and 86t/ha over a 21 and 22-year life time respectively. The environmental profile was analyzed in terms of the potentials for abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, photochemical oxidant formation, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity. In addition, an energy analysis was performed using the cumulative energy demand method (CED). The application of nitrogen based fertilizers allows an increase in the biomass yield per ha of up to 40% although the contributions to almost all impact categories, particularly the eutrophication potential and toxicity potential impact categories are also considerably higher. Conversely, due to the higher biomass yields achieved with fertilization of these willow plantations, that regime presents a better overall environmental profile in terms of energy yield and global warming potential. PMID:22369863

  3. Sycamore and sweetgum plantation productivity on former agricultural land in South Carolina

    International Nuclear Information System (INIS)

    Former agricultural lands in the southern US comprise a significant land base to support short rotation woody crop (SRWC) plantations. This study presents the seven-year response of productivity and biomass allocation in operational-scale, first rotation sycamore (Plantanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) plantations that were established on drained Ultisols which were historically planted in cotton and soybeans. Three plantation systems, sycamore open drainage, sycamore plus water management, and sweetgum open drainage were established on replicate 3.5-5.5ha catchments. Height, diameter, and mortality were measured annually. Allometric equations, based on three, five, and seven year-old trees, were used to estimate aboveground biomass. Below-ground biomass was measured in year-five. Water management did not affect sycamore productivity, probably a result of a 5 year drought. The sycamore plantations were more productive after seven growing seasons than the sweetgum. Sycamore were twice the height (11.6 vs. 5.5m); fifty percent larger in diameter (10.9 vs. 7.0cm); and accrued more than twice the biomass (38-42 vs. 17Mgha-1) of the sweetgum. Sweetgum plantation productivity was constrained by localized areas of high mortality (up to 88%) and vegetative competition. Mean annual height increment has not culminated for either species. Diameter growth slowed in the sycamore during growing seasons five through seven, but was still increasing in the sweetgum. Both species had similar partitioning of above-ground (60% of total) and below-ground biomass (40% of total)

  4. Allometric models for estimating biomass and carbon in Alnus acuminata

    OpenAIRE

    William Fonseca; Laura Ruíz; Marylin Rojas; Federico Allice

    2013-01-01

    In order to quantify the climate change mitigation potential of forest plantations, information on total biomass and its growth rate is required. Depending on the method used, the study of the biomass behavior can be a complex and expensive activity. The main objective of this research was to develop allometric models to estimate biomass for different tree components (leaves, branches, stem and root) and total tree biomass in Alnus acuminata (Kunth) in Costa Rica. Additionally, models were de...

  5. Effects of thinning and mixed plantations with Alnus cordata on growth and efficiency of common walnut (Juglans regia L.

    Directory of Open Access Journals (Sweden)

    Giannini T

    2009-01-01

    Full Text Available Results about the effects of thinning and mixed plantations with Italian alder (Alnus cordata Loisel. on growth and efficiency of common walnut (Juglans regia L. plantations for wood production are reported. The study, carried out for six years on sixteen year old plantations, compared three theses: pure common walnut plantation (pure common walnut; 50% common walnut - 50% Italian alder plantation; 25% common walnut - 75% Italian alder plantation. Beyond annual surveys of girth at breast height, total height, stem volume and biomass, several variables, useful to describe canopy and foliage characteristics such as leaf area index (LAI, leaf biomass and photosynthetic active radiation below the canopy, were recorded. Data collected allowed to compare growth at individual and whole stand level, to calculate the net assimilation rate (NAR and to compare the growth efficiency of the three theses. Mixed plantations performed results significantly higher than the pure plantation in terms of growth, LAI and leaf biomass both before and after experimental thinning. With reference only to common walnut, growth in mixed plantations was higher than the pure plantation with differences ranging from +40% to +100%. More relevant differences among pure common walnut, 50% common walnut and 25% common walnut at canopy and foliage characteristics were observed, with LAI values of 1.07, 3.96 e 4.35 m2 m-2 respectively. Results accounted for a general positive effect of Italian alder as accessory tree species on growth and efficiency of mixed plantations, mainly due to the good performances induced in common walnut trees. Such performances were enabled by the good ecological integration between the two species and by the positive effects of N-fixing activity of Italian alder. Experimental thinning applied, although heavy, did not biased the dynamics observed before thinning both in pure and mixed plantations. In addition, they had positive effects on common walnut

  6. An intensive plantation of poplars

    Energy Technology Data Exchange (ETDEWEB)

    Maussion, J. de

    1993-12-31

    A french land owner and forester planted 3.6 ha of short rotation coppice on a meadow with the technical support of Cellulose Forest Association (AFOCEL). The crop of poplars can either be sold to trituration industries or used as energy source for the heating. Moreover, an intensive plantation of poplars can solve the problem of set-aside lands fixed by the PAC (European Agricultural Policy). (TEC). 2 figs.

  7. Increasing the productivity of short-rotation Populus plantations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  8. An integrated environmental analysis of short rotation forests as a biomass resource

    International Nuclear Information System (INIS)

    Short-rotation plantations are an environmental sound energy resource if: (1) the biomass production systems are not pressed to maximum production, (2) cultivation measures are taken to minimize nutrient leaching, (3) the short-rotation plantations are designed for visual adaptation to the landscape, and (4) directed silvicultural measures are taken to retain and improve important habitats and protect marginal forest areas. (author)

  9. Carbon stock of oil palm plantations and tropical forests in Malaysia

    DEFF Research Database (Denmark)

    Kho, Lip Khoon; Jepsen, Martin Rudbeck

    2015-01-01

    In Malaysia, the main land change process is the establishment of oil palm plantations on logged-over forests and areas used for shifting cultivation, which is the traditional farming system. While standing carbon stocks of old-growth forest have been the focus of many studies, this is less the...... case for Malaysian fallow systems and oil palm plantations. Here, we collate and analyse Malaysian datasets on total carbon stocks for both above- and below-ground biomass. We review the current knowledge on standing carbon stocks of 1) different forest ecosystems, 2) areas subject to shifting...... cultivation (fallow forests) and 3) oil palm plantations. The forest ecosystems are classified by successional stage and edaphic conditions and represent samples along a forest succession continuum spanning pioneer species in shifting cultivation fallows to climax vegetation in old-growth forests. Total...

  10. The potential of willow and poplar plantations as carbon sinks in Sweden

    International Nuclear Information System (INIS)

    A large share, estimated at 12–25%, of the annual anthropogenic greenhouse gas emissions is attributed to global deforestation. Increasing the forested areas therefore has a positive impact on carbon (C) sequestration and mitigation of high atmospheric CO2 concentrations. Fast-growing species, such as willow and poplar, are of high interest as producers of biomass for fuel, but also as C sinks. The present study estimated the rate of C sequestration in biomass and soil in willow and poplar plantations. Calculations were based on above- and below-ground biomass production data from field experiments, including fine root turnover, litter decomposition rates, and production levels from commercial plantations. Accumulation of C in woody biomass, above and below ground, was estimated at 76.6–80.1 Mg C ha−1 and accumulation of C in the soil at 9.0–10.3 Mg C ha−1 over the first 20–22 years. The average rates of C sequestration were 3.5–4.0 Mg C ha−1 yr−1 in woody biomass, and 0.4–0.5 Mg C ha−1 yr−1 in the soil. If 400,000 ha of abandoned arable land in Sweden were planted with willow and poplar, about 1.5 Tg C would be sequestered annually in woody biomass and 0.2 Tg C in soils. This would be nearly one tenth of the annual anthropogenic emissions of C in Sweden today. These calculations show the potential of fast-growing plantations on arable land to mitigate the effect of high CO2 concentrations over a short time span. Knowledge gaps were found during the calculation process and future research areas were suggested. -- Highlights: ► Poplars and willows as producers of biomass for fuel and as C sinks. ► Calculation of C sequestration rates in biomass and soil in willow and poplar plantations. ► Increasing forested areas has positive impact on high CO2 levels. ► Willow and poplar plantations on arable land mitigate anthropogenic CO2 emissions.

  11. Losses of soil organic carbon by converting tropical forest to plantations: Assessment of erosion and decomposition by new δ13C approach

    Science.gov (United States)

    Guillaume, Thomas; Muhammad, Damris; Kuzyakov, Yakov

    2015-04-01

    -use compared to rubber plantations. Finally, we discussed the advantages and limitations of the new δ13C based approach to assess erosion and decomposition as well as possibilities for its development and broader application. The reestablishment of new oil palm plantations has just started in the studied region. We therefore advise 1) to reduce the period without soil protection by planting cover crops at the early stage of the establishment to reduce soil erosion and 2) to leave a maximum of the biomass from the old palm trees on site and/or to keep the land lying fallow for a few years to enable the reconstruction of the SOC pool for the next oil palm generation.

  12. Carbon sequestration and water use of a young hybrid poplar plantation in north-central Alberta

    International Nuclear Information System (INIS)

    Hybrid poplar (HP) is an important fast-growing crop with the potential to provide a reliable supply of biomass for the pulp and bioenergy industries while also sequestering carbon (C) in the soil. We used the eddy-covariance technique to measure CO2, water vapor and sensible heat fluxes above a three-year-old HP plantation on high productivity land near St Albert, Alberta. Measurements showed that the annual C balance of the plantation shifted from a C source of about 1.54 Mg C ha−1 y−1 in the 2nd year (2010) to a C sink of 0.80 Mg C ha−1 y−1 in the 3rd year (2011). Water use or evapotranspiration (E) for 1 June – 31 October increased from 272 mm in 2010 to 321 mm in 2011, and exceeded the respective values of total precipitation of 251 mm and 298 mm for the same period. Annual E in 2010 of 364 mm was less than annual precipitation of 398 mm. In 2011, annual E (442 mm) exceeded annual P (411 mm) by 31 mm; it also exceeded the annual plantation water use Ewb, estimated using a water balance method assuming no drainage from the root zone, by 40 mm. However, both courses of cumulative E and Ewb closely followed cumulative P. Monthly E increased with increasing net radiation and gross primary productivity. Growing season mean albedo increased from 0.16 in 2010 to 0.21 in 2011 and was consistent with the increase in broadband NDVI. Values of albedo during winter months (November–April) exceeded 0.80. The results suggested that as the plantation grows, growing season albedo, annual C sequestration, and annual water use will increase with the possibility that the latter may exceed annual precipitation. This emphasizes the need to study the long-term sustainability of HP plantations in relation to annual P and its temporal distribution, especially when HP plantations will likely be established on large contiguous areas to supply biomass feedstock for the expanding pulp and bioenergy industries in Western Canada. -- Highlights: •The plantation was a C source

  13. Development of Harvesting Machines for Willow Small-Sizes Plantations in East-Central Europe

    OpenAIRE

    Trzepieciński, Tomasz; Stachowicz, Feliks; Niemiec, Witold; Kępa, Leszek; Dziurka, Marek

    2016-01-01

    The production of plant biomass in small farms within the Central and Eastern European countries requires the application of agricultural machines adjusted to the scale of production. In the article, new machines for small-sized plantations of energy crops have been presented. Furthermore, the results of strength analysis of three-point linkage mower frame are presented by finite element method. The advantage of the proposed solutions is their simple construction, which is connected with low ...

  14. Review of wood fuel from precommercial thinning and plantation clearing in Canada

    International Nuclear Information System (INIS)

    Precommercial thinning and plantation cleaning offer opportunities for increasing the availability of wood fuel in Canada. In 1992, approximately 130 000 ha were treated with precommercial thinning or stand cleaning. Manual methods predominate in these silvicultural activities; however, at stand densities greater than 10 000 - 15 000 stems/ha, mechanized systems are more economical. Recovering this biomass for wood fuel would require changes to silvicultural systems and harvesting technology

  15. Ecosystem-based greenhouse budgets in oil palm plantations differ with plantation age

    Science.gov (United States)

    Meijide, Ana; Hassler, Evelyn; Corre, Marife D.; June, Tania; Veldkamp, Edzo; Knohl, Alexander

    2016-04-01

    Global increase in demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia. Oil palm plantations in Sumatra, Indonesia, together with those in Kalimantan, are responsible for half of the world's palm oil production. Available studies point to plantations being large carbon dioxide (CO2) sinks due to the high photosynthetic rates of oil palm as a result of high fertilizer inputs, especially in large-scale plantations. However, methane (CH4) uptake in the soil of oil palm plantations is reduced and soil nitrous oxide (N2O) emissions increased right after nitrogen (N) fertilization. Greenhouse gas (GHG) budgets at the ecosystem level are still missing, and the few available information was derived from mature plantations, pointing to a lack of knowledge on the changes of these GHG budgets with plantation age. With the aim of quantifying CO2, CH4 and N2O fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2-year old (non-productive) oil palm plantation and was subsequently moved to a 12-year old (productive) plantation. Both sites were on Acrisol soils and were located in Jambi province, Sumatra. Chamber-based measurements of soil GHG fluxes were also carried out along the EC footprint. Net ecosystem exchange (NEE), based on EC measurement, showed that the non-productive plantation was a strong CO2 source (990 g C m-2 yr-1) whereas the productive plantation was a CO2 sink (-790 g C m-2 yr-1). For CH4 fluxes, both plantations showed similar soil CH4 uptake that led to a small carbon sink of (~1.3 g C m-2 yr-1). Soil N2O fluxes were high in the productive plantation (3.26 ± 1.73 kg N ha-1 yr-1), as measurements were carried out in a plantation with high fertilization rates. In the non-productive plantation, soil N2O fluxes were lower and were associated with fertilization events. Our results show that the global warming potential of a non-productive oil

  16. Patterns of carbon allocation in a chronosequence of Caragana intermedia plantations in the Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Tian Y

    2015-12-01

    Full Text Available Revegetation is being considered as a mitigation option to improve the ecological environment and reduce the atmospheric carbon (C dioxide concentrations of regions experiencing desertification. This study assessed the development of the above- and belowground ecosystem C pools in a chronosequence of four Caragana intermedia plantations (3, 12, 27, and 37 years old in the desertified region of the Qinghai-Tibet Plateau, China. The biomass C stock of the total shrub and under-canopy increased with stand age. The soil inorganic carbon (SIC pool in the soil C stocks was approximately 3 to 7 times larger than the soil organic carbon (SOC storage. Both SIC and SOC increased after revegetation. However, the contribution of SIC to the total ecosystem C stock decreased from 87% in the 3-year-old plantation to 85%, 75%, and 72% in the 12-, 27-, and 37-year-old plantations, respectively. The total ecosystem C pool exhibited a greater increase in the shrub plantations than in the mobile dunes, but the total C stock of the stands changed slightly with time. Soil C, including SOC and SIC, was the major contributor to the total ecosystem C stock for all shrub plantations. The aboveground shrub biomass became the secondary ecosystem C pool in older srands. The results of this study indicate that revegetation in desertification ecosystems has a significant impact on SIC, SOC, and total ecosystem C pools. Furthermore, the total ecosystem C pool reached a relatively stable state after sand-binding stands.

  17. Obstacles for Plantation to Get FSC Certification in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The development of plantation plays a very important role in forestry industry development in China because of its unique advantages. However, the ecological and environmental issues urgently require sustainable plantation development. FSC certification for sustainable forest management balances the economic, environmental and social benefits and contributes to sustainable development of plantation. FSC certification for plantation is significantly important to China with the most plantation area in the wor...

  18. Landscape ecological planning: Integrating land use and wildlife conservation for biomass crops

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A.

    1995-12-31

    What do a mussel shoat, a zoo, and a biomass plantation have in common? Each can benefit from ecology-based landscape planning. This paper provides examples of landscape ecological planning from some diverse projects the author has worked on, and discusses how processes employed and lessons learned from these projects are being used to help answer questions about the effects of biomass plantings (hardwood tree crops and native grasses) on wildlife habitat. Biomass environmental research is being designed to assess how plantings of different acreage, composition and landscape context affect wildlife habitat value, and is addressing the cumulative effect on wildlife habitat of establishing multiple biomass plantations across the landscape. Through landscape ecological planning, answers gleaned from research can also help guide biomass planting site selection and harvest strategies to improve habitat for native wildlife species within the context of economically viable plantation management - thereby integrating the needs of people with those of the environment.

  19. Economics and yields of energy plantations: Status and potential

    International Nuclear Information System (INIS)

    A study was carried out to: determine the factors affecting the cost of energy conversion feedstocks in short rotation intensive culture plantations of trees; determine the factors influencing biomass yield; identify interrelationships between the previous two objectives; present estimates of potential biomass yields and associated economics; and to identify gaps in the knowledge of the economics and yields of biomass production and their interrelationships. Reported costs for most aspects had a wide range. Currently, yields of 10-15 dry Mg/hectare/y are readily achievable. Using the cost and yield data, and assuming a biomass price of $40/dry Mg, a series of cash flow analyses were performed. For the low cost inputs, all scenarios were marginally profitable. For the high cost inputs, none of the scenarios were profitable. A current scenario, using figures for contract farming, was not profitable, however this system would break even with a yield of 23.3 dry Mg/hectare/y, within the range of some production clones. A future scenario using farm labour with increased productivity, product values, and machinery efficiencies yielded a profit-making situation. The addition of incentives increased profitability. There is great potential for the production of woody biomass in Canada as a feedstock for energy and other products. Continued and more intensive breeding and selection to develop high yielding stress tolerant clones, cost efficient harvesting systems, continued research into optimization of planting density, rotation length and cultural techniques, and characterization of promising clones with respect to nutrient-use efficiency, site requirements and pest/disease resistance are important areas for further work. 81 refs., 3 figs., 13 tabs

  20. Carbon stored in forest plantations of Pinus caribaea, Cupressus lusitanica and Eucalyptus deglupta in Cachí Hydroelectric Project

    Directory of Open Access Journals (Sweden)

    Marylin Rojas

    2014-06-01

    Full Text Available Forest plantations are considered the main carbon sinks thought to reduce the impact of climate change. Regarding many species, however, there is a lack of information in order to establish metrics on accumulation of biomass and carbon, principally due to the level of difficulty and the cost of quantification through direct measurement and destructive sampling. In this research, it was evaluated carbon stocks of forest plantations near the dam of hydroelectric project Cachí, which belongs to Instituto Costarricense de Electricidad. 25 unit samples were evaluated along some plantations that contain three different species. 30 Pinus caribacea trees, 14 Cupressus lusitanica and 15 Eucalyptus deglupta were extracted. The biomass was quantified by means of the destructive method. First of all, every component of the tree was weighed separately; then, sampling was obtained in order to determine the dry matter and the carbon fraction. 110 biomass samples from the three species were analyzed in laboratory, including all the components (leaves, branches, shaft, and root. The carbon fraction varied between 47,5 and 48,0 for Pinus caribacea; between 32,6 and 52,7 for Cupressus lusitanica, and beween 36,4 and 50,3% for Eucalyptus deglupta. The stored carbon was 230, 123, and 69 Mg ha-1 in plantations of P. caribaea, C. lusitanica and E. deglupta, respectively. Approximately, 75% of the stored carbon was detected in the shaft.

  1. Development model for energy crop plantations in the Czech Republic for the years 2008-2030

    International Nuclear Information System (INIS)

    This paper deals with modelling the development of plantations for intentional biomass production. The model of plots for the areas of interest consider the following biomass sources: intentionally produced biomass from SRC of fast-growing trees and non-woody energy crops (sorrel, reed grass and triticale). Statistical data for the entire area of interest (NUTS1 size) and data for a part of this area (NUTS3 size - 18% of total area of interest) were used to determine data on the area of arable land and permanent grasslands in the initial year. This paper presents a model of the development of production plots for the period 2008-2030. Yields are calculated of selected energy crops with regard to their growing cycle using so-called triangular method. The core of the algorithm for calculation of growing area of energy crop is an optimalization of processes regarding economic and technical demands for long-term and sustainable production of biomass. (author)

  2. Oil palm plantations fail to support mammal diversity.

    Science.gov (United States)

    Yue, Sam; Brodie, Jedediah F; Zipkin, Elise F; Bernard, Henry

    2015-12-01

    Agricultural expansion is the largest threat to global biodiversity. In particular, the rapid spread of tree plantations is a primary driver of deforestation in hyperdiverse tropical regions. Plantations tend to support considerably lower biodiversity than native forest, but it remains unclear whether plantation traits affect their ability to sustain native wildlife populations, particularly for threatened taxa. If animal diversity varies across plantations with different characteristics, these traits could be manipulated to make plantations more "wildlife friendly." The degree to which plantations create edge effects that degrade habitat quality in adjacent forest also remains unclear, limiting our ability to predict wildlife persistence in mixed-use landscapes. We used systematic camera trapping to investigate mammal occurrence and diversity in oil palm plantations and adjacent forest in Sabah, Malaysian Borneo. Mammals within plantations were largely constrained to locations near native forest; the occurrence of most species and overall species richness declined abruptly with decreasing forest proximity from an estimated 14 species at the forest ecotone to -1 species 2 km into the plantation. Neither tree height nor canopy cover within plantations strongly affected mammal diversity or occurrence, suggesting that manipulating tree spacing or planting cycles might not make plantations more wildlife friendly. Plantations did not appear to generate strong edge effects; mammal richness within forest remained high and consistent up to the plantation ecotone. Our results suggest that land-sparing strategies, as opposed to efforts to make plantations more wildlife-friendly, are required for regional wildlife conservation in biodiverse tropical ecosystems. PMID:26910955

  3. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-05-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as a major sink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied under different plantation forest ecosystems comprising of eight different tree species: Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnusnitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57±48.99tha-1 and below ground (42.47±10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera(118.37±1.49 tha-1 and minimum (36.50±9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86±10.34 tha-1 in Alnus nitida, and minimum (170.83±20.60 tha-1 in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79±2.0 tha-1. Carbon sequestration (7.91±3.4 tha-1 and CO2 mitigation potential (29.09±12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions for sustainable management of fragile hilly ecosystem.

  4. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-07-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as amajorsink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied underdifferent plantation forest ecosystems comprising of eight different tree species viz. Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnus nitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57 ą 48.99 tha-1 and below ground (42.47 ą 10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera (118.37 ą 1.49 tha-1 and minimum (36.50 ą 9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86ą 10.34 tha-1 in Alnus nitida, and minimum (170.83ą 20.60 tha-1in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79 ą 2.0 tha-1. Carbon sequestration (7.91ą 3.4 tha-1 and CO2 mitigation potential (29.09 ą 12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions forsustainable management of fragile hilly ecosystem. 

  5. Productivity assessment of three leguminous species under high-density plantations on degraded soil sites

    Energy Technology Data Exchange (ETDEWEB)

    Goel, V.L.; Behl, H.M. [National Botanical Research Institute, Lucknow (India). Biomass Biology Div.

    2004-11-01

    Performance of three leguminous species, (Acacia farnesiana, A. nilotica subspecies cupressiformis and Cassia siamea), was investigated at three planting densities (10,000, 20,000 and 30,000 plants ha{sup -1}) on a highly alkaline soil site (pH 8.6-10.5) in order to identify promising species and suitable plant spacing for optimum biomass harvest per unit area under shorter rotation harvests (3 year). The study revealed the differential behaviour of various species with respect to plant growth, survival and stand productivity in different population densities. Performance of A. farnesiana and C. siamea in terms of plant height, stem diameter and plant establishment was marginally affected by population density. Stand basal area (2.4-6.4 m{sup 2} ha{sup -1}) and biomass (4.45-13.5 t ha{sup -1}) in A. farnesiana increased markedly with increasing population density. Similar gains in biomass were observed in C. siamea when planted at higher densities. Individual tree biomass also was not affected by increasing plant densities, suggesting that these two species respond well to high-density plantation. A. nilotica subspecies cupressiformis, on the other hand, showed a negative response when planted in high density. Its biomass and basal area decreased beyond 20,000 plants ha{sup -1} planting density, suggesting that planting density of 20,000 plants ha{sup -1} and above were supra-optimal. Plants spaced at 10,000 plants ha{sup -1} showed faster growth rate and higher productivity as compared to the same at 20,000 and 30,000 planting density. Competition for space also effected individual tree growth in higher densities. The concept of high-density plantation is not applicable in A. nilotica subspecies cupressiformis. However, this species has significantly greater potential since it has relatively high biomass production even at a low population density of 10,000 plants ha{sup -1}. The study is useful in identifying productive species and optimum plantation density per

  6. An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak

    OpenAIRE

    Nasrin Aghamohammadi; Stacy Simai Reginald; Ahmad Shamiri; Ali Akbar Zinatizadeh; Li Ping Wong; Nik Meriam Binti Nik Sulaiman

    2016-01-01

    Sarawak is the largest state in Malaysia, with 22% of the nation's oil palm plantation area, making it the second largest contributor to palm biomass production. Despite the enormous amount of palm biomass in the state, the use of biomass as fuel for power generation remains low. This study is designed to investigate the sustainability of power generation from palm biomass specifically in Sarawak by conducting a survey among the palm oil mill developers. To conduct this investigation, several...

  7. Nutrient accumulation and export in teak (Tectona grandis L.f. plantations of Central America

    Directory of Open Access Journals (Sweden)

    Fernández-Moya J

    2015-02-01

    Full Text Available In order to assess the nutrient sustainability of teak plantations, a study was conducted to measure the amount of nutrients accumulated by the trees and exported during wood harvest. Three teak plantations (28 stands of different age were studied in Costa Rica and Panama to assess those questions. Nutrient and biomass accumulation and allocation in different tree components (bole, bark, branches and foliage were measured in the best performing trees between 1 and 19 years of age. A stand of 150 teak trees ha-1 at age 19 would accumulate (kg ha-1 405 N, 661 Ca, 182 K, 111 Mg, 33 P, 53 S, 9 Fe, 0.47 Mn, 0.22 Cu, 0.92 Zn, 1 B; whereas the expected nutrient export by timber harvest (bole and bark is (kg ha-1 220 N, 281 Ca, 88 K, 63 Mg, 23 P, 39 S, 6 Fe, 0.13 Mn, 0.10 Cu, 0.21 Zn, 0.40 B. Hence, teak nutrition should pay special attention to N and K, together with Ca the nutrients most accumulated by teak. In addition, P and B could also be limiting planted teak forest productivity due to their general soil deficiencies. Proposed models estimate the amount of nutrients removed from the site during timber harvests, information that can be used by plantation managers to avoid soil nutrient depletion, approaching sustainability in forest plantation management.

  8. Impact of spacing and rotation length on nutrient budgets of poplar plantations for pulpwood

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The above-ground biomass and nutrient accumulation by poplar plantations were evaluated for pulpwood production in China. Experimental treatments applied in a split-plot design included four planting densities (1111, 833, 625 and 500 stems·hm-2), three rotation lengths (4a, 5a and 6a) and three poplar clones (I-69,NL-80351 and 1-72). The highest biomass was achieved in the highest stocked stand (1111 stem·hm-2) at 6 of rotation age for both clone 1-69 and clone 1-72, which is about two times that in the stands of 500 stems·hm-2 at 4 of rotation age. However, the highest occurred in the stand of 833 stems·hm-2 at 6-year rotation for NL-80351. Ranking of the plantation biomass production by component was stem > branches > foliage > stem-bark and the production of the support components of the plantation was 10-fold that of the productive component, i.e., foliage. The pattern of accumulation of nutrients by the plantations was similar to the biomass. Nutrient accumulation in the plantations was in the order of Ca > N > K > Mg > P, but some differences existed in annual nutrient accumulation rates for four planting densities and three poplar clones. The mean annual accumulation of N and P in the plantations was 13.2 and 2.8 kg·hm-2 in stem, 12.1 and 1.9 kg·hm-2 in branch, and 98.5 and 9.5 kg·hm-2 in foliage. The mean Ca, K and Mg accumulations were 28.2, 18.5 and 2.9 kg·hm-2· a-1, 26.9, 11.0 and 2.3 kg·hm-2·a-1 in branch,and 116.5, 81.3 and 16.1 kg·hm-2· a-1 in foliage, respectively. Biomass utilization standards markedly affected the export of nutrients from the site. Whole tree utilization yields the most biomass and removes the most nutrients.Removal of stem with ≥ 10-cm diameter exports about half of the biomass, but N and nutrients removals are only 23% and 28% of the total, respectively. Removal of the entire stem provides about two-thirds of the total biomass and removes 31.1% total N and 37.5 % total nutrients respectively

  9. Energy sensitivity and variability analysis of Populus hybrid short-rotation plantations in northeastern United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, T.W.; Blankenhorn, P.R.

    1979-10-24

    Production of biomass by corn-like plantations has been demonstrated by a number of researchers. These forest analogs of agronomic cropping systems have the potential to yield substantially more biomass per unit area than traditional forests. Care is needed in choosing the appropriate sites, species, spacing, and harvesting strategies. Opportunities for increased yields have been suggested for fertilization and irrigation. Utilization of the biomass from these dense plantations for energy was the focus of this study. Although the amount of energy potential of the biomass is important, the energy output must be greater than the energy input for biomass to have a positive benefit to society. Further, in order to completely evaluate the net energy of the system it is necessary to examine the energy out-to-in ratios on the basis of usable energy (for example, usable heat, process steam and electricity), as well as all of the energies expended in producing, harvesting, transporting and processing the biomass. The objective of this study is to establish and analyze the energy inputs for selected management strategies in order to evaluate the sensitivity and variability of the energy inputs in the net energy analysis, and based on the net energy analysis to recommend a management strategy that minimizes energy inputs while maximizing biomass yield for short-rotation systems of Populus spp. in the northeastern United States.

  10. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  11. Comparative study on active soil organic matter in Chinese fir plantation and native broad-leaved forest in subtropical China

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-kui; WANG Si-long; DENG Shi-jian

    2005-01-01

    Active soil organic matter (ASOM) has a main effect on biochemical cycles of soil nutrient elements such as N, P and S, and the quality and quantity of ASOM reflect soil primary productivity. The changes of ASOM fractions and soil nutrients in the first rotation site and the second rotation site of Chinese fir plantation and the native broad-leaved forest were investigated and analyzed by soil sampling at the Huitong Experimental Station of Forestry Ecology (at latitude 26°48′N and longitude 109°30′E under a subtropical climate conditions), Chinese Academy of Sciences in March, 2004. The results showed that values of ASOM fractions for the Chinese fir plantations were lower than those for the broad-leaved forest. The contents of easily oxidisable carbon (EOC), microbial biomass carbon (MBC), water soluble carbohydrate (WSC) and water-soluble organic carbon (WSOC) for the first rotation of Chinese fir plantation were 35.9%, 13.7%, 87.8% and 50.9% higher than those for the second rotation of Chinese fir plantation, and were 15.8%, 47.3%, 38.1% and 30.2% separately lower than those for the broad-leaved forest. For the three investigated forest sites, the contents of MBC and WSOC had a larger decrease, followed by WSC, and the change of EOC was least. Moreover, soil physico-chemistry properties such as soil nutrients in Chinese fir plantation were lower than those in broad-leaved forest. It suggested that soil fertility declined after Chinese fir plantation replaced native broad-leaved forest through continuous artificial plantation.

  12. Hemipteran diversity in Endau-Rompin plantation

    Science.gov (United States)

    Bakri, Asraf; Rahim, Faszly

    2015-09-01

    Study on hemipteran at Endau Rompin Plantation (LER), Pahang was conducted at oil palm plantation planted at different type of soils. The aim of the study was to determine hemipteran diversity in oil palm ecosystem. Sampling was done from April 2012 to September 2012 by using Malaise and impact traps. Cicadellidae was the most abundance and dominance family with 105 individuals and 6 species (=morphospecies) recorded. The rarefaction curve becomes flatter to the right indicating a reasonable number of individual samples have been taken. Peat area show high Shannon index and Margalef index values compared to clay area.There were significant differences in hemipteran community between three type of soils (χ2=98.751,df=58,poil palm plantation is affected by the type of soil.

  13. Wastewater purification in a willow plantation. The case study at Aarike

    International Nuclear Information System (INIS)

    In order to combine wastewater purification and biomass production for energy purposes, a willow plantation for wastewater treatment was established in 1995 in Aarike, Southern Estonia. Wastewater from a dwelling house (25 person equivalents, pe) is treated in a combined free-water filter system consisting of three separate basins, isolated with clay and having filter beds of gravel and sand mixture. The beds were planted with Salix viminalis. At the end of the first growing season, the purification efficiency of the newly established treatment system was 65% for BOD7, 43% for nitrogen and 11% for phosphorus removal. At the end of the establishment year, the above ground production of willow stems (bark and wood) and leaves was 1.3 and 0.3 t ha-1, respectively. The figures are about three to five times higher than those recorded in previously established energy forest plantations of comparable ages in Estonia. 15 refs, 2 figs

  14. Foraging ecology of howler monkeys in a cacao (Theobroma cacao) plantation in Comalcalco, Mexico.

    Science.gov (United States)

    Muñoz, David; Estrada, Alejandro; Naranjo, Eduardo; Ochoa, Susana

    2006-02-01

    Recent evidence indicates that primate populations may persist in neotropical fragmented landscapes by using arboreal agroecosystems, which may provide temporary habitats, increased areas of vegetation, and connectivity, among other benefits. However, limited data are available on how primates are able to sustain themselves in such manmade habitats. We report the results of a 9-month-long investigation of the feeding ecology of a troop of howler monkeys (n = 24) that have lived for the past 25 years in a 12-ha cacao plantation in the lowlands of Tabasco, Mexico. A vegetation census indicated the presence of 630 trees (> or =20 cm diameter at breast height (DBH)) of 32 shade species in the plantation. The howlers used 16 plant species (13 of which were trees) as sources of leaves, fruits, and flowers. Five shade tree species (Ficus cotinifolia, Pithecellobium saman, Gliricidia sepium, F. obtusifolia, and Ficus sp.) accounted for slightly over 80% of the total feeding time and 78% of the total number trees (n = 139) used by the howlers, and were consistently used by the howlers from month to month. The howlers spent an average of 51% of their monthly feeding time exploiting young leaves, 29% exploiting mature fruit, and 20% exploiting flowers and other plant items. Monthly consumption of young leaves varied from 23% to 67%, and monthly consumption of ripe fruit varied from 12% to 64%. Differences in the protein-to-fiber ratio of young vs. mature leaves influenced diet selection by the monkeys. The howlers used 8.3 ha of the plantation area, and on average traveled 388 m per day in each month. The howlers preferred tree species whose contribution to the total tree biomass and density was above average for the shade-tree population in the plantation. Given the right conditions of management and protection, shaded arboreal plantations in fragmented landscapes can sustain segments of howler monkey populations for many decades. PMID:16429417

  15. A review of soil erosion potential associated with biomass crops

    International Nuclear Information System (INIS)

    It has been estimated that up to 60 million hectares could be devoted to energy crop production in the U.S. Due to economic considerations, biomass crops will probably be produced on marginal cropland which is frequently highly erodible. Thus, the impact of herbaceous and woody biomass crop production on soil erosion must be addressed. Perennial grasses provide year-round soil cover, limiting erosion even with continued biomass harvest. Vigorous perennial herbaceous stands reduce water runoff and sediment loss and favor soil development processes by improving soil organic matter, soil structure and soil water and nutrient-holding capacity. Minimum tillage management of row crops reduces erosion compared with systems involving more frequent or more extensive tillage. Woody biomass plantations reduce water erosion by improving water infiltration, reducing impacts by water droplets, intercepting rain and snow and physically stabilizing soil by their roots and leaf litter. Shelterbelts reduce wind erosion when planted as shelterbelts and improve soil organic matter, soil structure and soil moisture in their leeward zone, reducing soil erodibility. Harvesting of woody biomass plantations may be accompanied by increased erosion. Forestry clear-cutting, especially on steep slopes, often results in a large increase in water erosion. For this reason, it is essential that woody biomass plantations be designed for rotational harvesting, even though this may result in higher harvesting costs. (Author)

  16. Long-term tobacco plantation induces soil acidification and soil base cation loss.

    Science.gov (United States)

    Zhang, Yuting; He, Xinhua; Liang, Hong; Zhao, Jian; Zhang, Yueqiang; Xu, Chen; Shi, Xiaojun

    2016-03-01

    Changes in soil exchangeable cations relative to soil acidification are less studied particularly under long-term cash crop plantation. This study investigated soil acidification in an Ali-Periudic Argosols after 10-year (2002-2012) long-term continuous tobacco plantation. Soils were respectively sampled at 1933 and 2143 sites in 2002 and 2012 (also 647 tobacco plants), from seven tobacco plantation counties in the Chongqing Municipal City, southwest China. After 10-year continuous tobacco plantation, a substantial acidification was evidenced by an average decrease of 0.20 soil pH unit with a substantial increase of soil sites toward the acidic status, especially those pH ranging from 4.5 to 5.5, whereas 1.93 kmol H(+) production ha(-1) year(-1) was mostly derived from nitrogen (N) fertilizer input and plant N uptake output. After 1 decade, an average decrease of 27.6 % total exchangeable base cations or of 0.20 pH unit occurred in all seven tobacco plantation counties. Meanwhile, for one unit pH decrease, 40.3 and 28.3 mmol base cations kg(-1) soil were consumed in 2002 and 2012, respectively. Furthermore, the aboveground tobacco biomass harvest removed 339.23 kg base cations ha(-1) year(-1) from soil, which was 7.57 times higher than the anions removal, leading to a 12.52 kmol H(+) production ha(-1) year(-1) as the main reason inducing soil acidification. Overall, our results showed that long-term tobacco plantation not only stimulated soil acidification but also decreased soil acid-buffering capacity, resulting in negative effects on sustainable soil uses. On the other hand, our results addressed the importance of a continuous monitoring of soil pH changes in tobacco plantation sites, which would enhance our understanding of soil fertility of health in this region. PMID:26566613

  17. Private valuation of carbon sequestration in forest plantations

    Energy Technology Data Exchange (ETDEWEB)

    Guitart, A. Bussoni [Facultad de Agronomia, Universidad de la Republica. Avda. E. Garzon, 780, CP 12.900, Montevideo (Uruguay); Rodriguez, L.C. Estraviz [Escola Superior de Agricultura ' ' Luiz de Queiroz' ' , Universidad de Sao, Paulo (Brazil)

    2010-01-15

    Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO{sub 2-e}) stored within a certain forest area. Potential CO{sub 2-e} above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO{sub 2-e}){sup -} {sup 1} and US$7.19 (MgCO{sub 2-e}){sup -} {sup 1} for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C{sup -} {sup 1} and US$35.1 Mg C{sup -} {sup 1} and yearly payments of US$4.4 m{sup -} {sup 3} and US$8.2 m{sup -} {sup 3} due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value, an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is

  18. Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Cherubini, Francesco; Michelsen, Ottar

    2014-01-01

    human influenced state to another.Concerning the impacts from biogenic CO2 fluxes, in the case of conversion from a forest to a miscanthus plantation (case A) there is a contribution to global warming, whereas when a fallow land is converted (case B), there is a climate cooling. When the effects from...... albedo changes are included, both scenarios show a net cooling impact, which is more pronounced in case B. Both cases reduce biodiversity in the area where the miscanthus plantation is established, though most in case A.The results illustrate the relevance of these issues when considering environmental......Depletion in oil resources and environmental concern related to the use of fossil fuels has increased the interest in using second generation biomass as alternative feedstock for fuels and materials. However, the land use and land use change for producing second generation (2G) biomass impacts the...

  19. CO2 sequestration. World CO2 emission reduction by forest plantations on agricultural land up to 2050

    International Nuclear Information System (INIS)

    The main objective of this study was to determine the possible contribution on CO2 emission reductions of new forest plantations on agricultural land which may become available in the world from now to 2050. Emission reductions have been calculated by taking into account potential changes in carbon stocks on afforested land (in biomass and soil) and replacement with biomass of fossil fuel and material such as steel, aluminium or concrete. Increase of carbon stocks in wood as building material and final conversion of wood recycled from buildings into energy to replace fossil fuel have also been taken into account. CO2 emission reductions (or carbon benefits) from afforested agricultural land become significant only after 2030 or 2050, and even at a later stage with long rotations. In the case of the latter, about 100 years are needed to get the full benefits. Forest plantations can therefore only be considered as long term options

  20. Mapping organic carbon stocks in eucalyptus plantations of the central highlands of Madagascar : a multiple regression approach

    OpenAIRE

    Razakamanarivo, R. H.; Grinand, Clovis; Razafindrakoto, M. A.; Bernoux, Martial; Albrecht, Alain

    2011-01-01

    Recent concerns about global warming have resulted in more concerted studies on quantification and modeling of carbon (C) storage in different ecosystems. The aim of this study was to assess and map the carbon stocks in above (ABG), below-ground (BLG) biomass and soil organic carbon contained in the 30 centimeter top-layer (SOC) in coppices of eucalyptus plantations in the central highlands of Madagascar in an area of 1590 ha. Relationships between C stock and various biophysical (stool or sh...

  1. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  2. Changes in Structure and Functioning of Protist (Testate Amoebae) Communities Due to Conversion of Lowland Rainforest into Rubber and Oil Palm Plantations

    Science.gov (United States)

    Krashevska, Valentyna; Klarner, Bernhard; Widyastuti, Rahayu; Maraun, Mark; Scheu, Stefan

    2016-01-01

    Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs. PMID:27463805

  3. [Allelopathic effects of the humus soils from Betula platyphylla and Quercus liaotungensis pure plantations on 9 kinds of common shrubs and herbs].

    Science.gov (United States)

    Huang, Liang-Jia; Liu, Zeng-wen; Zhu, Bo-Chao; Bing, Yuan-Hao; Zhang, Xiao-Xi; Lü, Chen

    2014-06-01

    The humus soils were collected from Betula platyphylla and Quercus liaotungensis pure plantations and woodless land separately where the site conditions were basically the same, and taken as medium for potting culture test of 9 kinds of shrubs or herbs in plastic greenhouse to assess the allelopathic effects of humus soils of pure plantations on shrubs or herbs. Humus soils from B. platyphylla plantation significantly inhibited the seed germinations of Medicago sativa and Melilotus officinalis, decreased the catalase (CAT) activity of M. officinalis, Coronilla varia, M. sativa and Lespedeza davurica, and improved malondialdehyde (MDA) contents in seedlings of Caragana kor-shinskii, C. varia and Astragalus adsurgens. The biomass growths of C. varia, Amorpha fruticosa, M. sativa, M. officinalis and A. adsurgens in humus soils from B. platyphylla plantation were significantly decreased by 48.2%, 45.1%, 44.3%, 37.3% and 36.0%, respectively. In addition, humus soil of Q. liaotungensis plantation significantly decreased the germination rates of M. sativa and A. adsurgens, the chlorophyll contents of Vicia villosa, A. fruticosa and M. sativa, and improved malondialdehyde (MDA) contents in seedlings of Lespedeza davurica, Caragana korshinskii, M. officinalis and A. adsurgens. The biomass growths of A. adsurgens, M. sativa, M. officinalis and A. fruticosa were significantly decreased by 52.6% , 43.8%, 35.5% and 34.6%, respective- ly. B. platyphylla plantation humus soil had obvious inhibition effects on M. sativa, M. officinalis and A. fruticosa, while Q. liaotungensis plantation humus soil had obvious inhibition effects on M. sativa, A. adsurgens and A. fruticosa. PMID:25223017

  4. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes......, enzymatic hydrolysis, and product fermentation options. Biomass Recalcitrance is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology. This book examines the connection between biomass...... of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options. "Biomass Recalcitrance" is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology....

  5. Energy productivity of some plantation crops in Malaysia and the status of bioenergy utilisation

    International Nuclear Information System (INIS)

    The paper assesses the energy productivity of the major plantation crops in Malaysia as well as the status of bioenergy utilisation in that country. Of the crops studied and under present local cultivation practices, oil palms and cocoa trees stand out as good trappers of solar energy while paddy plants are the least efficient. Presently, Malaysia consumes roughly 340 million boe of energy per year. Of this amount 14% are contributed by biomass. However of the total amount of biowastes generated in the country roughly 24.5% are already utilised for energy purposes and roughly 75.5% are still unutilised and therefore wasted. (Author)

  6. Wood ash effects on C and N dynamics of a soil from a Pinus pinaster plantation

    OpenAIRE

    Gómez-Rey, Maria Xesus; Madeira, Manuel; Coutinho, João; Vasconcelos, Ernesto

    2010-01-01

    Effects of wood ash (loose and pelleted) on chemical properties and microbial activity in an Arenosol from a Pinus pinaster plantation were assessed through laboratory incubation. Wood ash was applied at a rate of 0, 4 and 8 g kg-1 soil both alone or together with N. Loose ash significantly increased pH values and extractable nutrients from the soil. Net nitrification was stimulated by it application. Amounts of microbial biomass C were lower in soils with loose ash than in the control. Basal...

  7. Ten Year Evaluation of Carbon Stock in Mangrove Plantation Reforested from an Abandoned Shrimp Pond

    OpenAIRE

    Jirasak Chukwamdee; Wijarn Meepol; Keiyo Morimune; Naohiro Matsui

    2012-01-01

    Forest carbon stocks—both in terms of the standing biomass and the soil organic carbon (OC)—were monitored in the mangrove plantation reforested from an abandoned shrimp pond for the 10 years following land excavation. Excavation to a level of 25 cm below the existing ground level increased the inundation time of tidal water from 463 to 7,597 hours per year, resulting in a significant increase of survival/growth rates for planted mangrove species, Rhizophora mucronata (RM...

  8. Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain

    Directory of Open Access Journals (Sweden)

    González-García M

    2016-04-01

    Full Text Available This study provides essential information related to the nutrient and carbon levels and the energy potential of Eucalytpus nitens (Deane & Maiden Maiden bionenergy plantations located in northwestern Spain. Nutritional analysis showed that leaves and bark had the highest concentrations of N, P, K and Mg. Carbon concentration was constant for all above-ground tree components. Nutrients and carbon were analyzed at stand level according to plantation productivity. Stemwood, the main tree component at the end of the rotation, had the highest nutrient content, except for N and Ca, which were highest in leaves and bark respectively. Based on this study, the nutrient content per ha of above-ground biomass was 243-706 kg N, 44-122 kg P, 131-375 kg K, 121-329 kg Ca and 25-67 kg Mg at the end of the bioenergy rotation (6-12 years, depending on site quality and 19-56 Mg C ha-1. Energy analysis showed a fairly constant Net Calorific Value for wood, 18.32 ± 0.19 MJ kg-1. The results obtained are valuable for selecting the most appropriate forest management system in these bioenergy plantations, and thereby promote the sustainable use of woody crops.

  9. Plantation future of bamboo in China

    Institute of Scientific and Technical Information of China (English)

    LIZhao-hua; MikioKOBAYASHI

    2004-01-01

    In the past, utilization of bamboo resources in China has been traditionally dominated by direct consumption of local farmers as minor forest products with weak linkage with market. In recent years, the over-supply of grains and rapid degradation of agricultural environment call for alternative crops that can be developed through integrating the environmental plantation with the market demands. Closely associated with forestry and agriculture, bamboo is able to deal with the new challenges which China's agriculture is facing. Of 534 documented bamboo species in China, 153 species produce edibleshoots and of which 56 species are recommended for agricultural plantation; 139 species provide timbers and of which 58 species recommended; 116 species can be splited as good strips for weaving and of which 22 species recommended; 88 species are considered as garden bamboos and of which 34 species recommended; 45 species are able to produce paper pulp and of which 18 species recommended.

  10. Crop modelling of eucalyptus plantations in Nicaragua

    OpenAIRE

    Hoogwijk, Monique Maria

    2006-01-01

    In Nicaragua, at this moment, there is a potential for sugarmills to extend their power production and sell power to the national grid, both during and outside the sugarcane crushing season. During the sugarcane crushing season bagasse can be used as an energy source. An off-season fuel is eucalyptus from dedicated energy plantations. In Nicaragua two sugarmills ( "San Antonio" and "Victoria de Julio") have taken the initiative to implement this concept.

  11. Modeling Mortality of Loblolly Pine Plantations

    OpenAIRE

    Thapa, Ram

    2014-01-01

    Accurate prediction of mortality is an important component of forest growth and yield prediction systems, yet mortality remains one of the least understood components of the system. Whole-stand and individual-tree mortality models were developed for loblolly pine plantations throughout its geographic range in the United States. The model for predicting stand mortality were developed using stand characteristics and biophysical variables. The models were constructed using two modeling approache...

  12. Effects of nitrogen application on beetle communities in tea plantations

    Institute of Scientific and Technical Information of China (English)

    Shao-Bo Chen; Zhi-Juan Wei; Zhao-Hua Zeng; Li-Lin Chen; Hui-Tao Chen; Min-Sheng You

    2009-01-01

    In contrast to grassland and forest ecosystems, little is known about insect response to nitrogen deposition in agricultural ecosystems. This study was carried out to investigate the effects of short-term (1-2 years) nitrogen application (0, 172.5, 345.0, 690.0, families, 89 species of beetles, was obtained from a tea plantation in Wuyishan, China. Among them, herbivores, predators and detritivores had 52, 29, and eight species, respectively. Species richness, effective diversity and abundance (measured as the number of individuals and insect biomass) of the beetle community were not significantly related to the rate of nitrogen application. However, nitrogen application changed the species distribution and weakly increased the evenness of species distribution, while this did not significantly change the species evenness. Species richness and abundance of herbivores and predators were not significantly related to the rate of nitrogen application. However, there were some variations in trophic responses to nitrogen. Species richness and abundance of detritivores increased with increasing nitrogen application.

  13. Evaluating Public Plantation and Community Planted Forests under the CDM and REDD+ Mechanism for Carbon Stock in Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2013-09-01

    Full Text Available Public plantations (PPs and Community planted forests (CPFs are inimitable types of participatory forest management practices in Nepal, but their eligibility issues under the framework of clean development mechanism (CDM and reducing emission from the deforestation and forest degradation mechanism (REDD+ are not evaluated. So, to explore the management system of PP and CPF, we compared forest carbon stocks in plantations and evaluated these plantations under these mechanisms as objectives of this research. The relevant documents were revised and altogether 55 samples were collected from Shreepur, Banauta and Bisbity PPs and Sita, Ramnagar and Jogikuti CPFs, in Mahottary district, Nepal. The equation of Chave et al was used to calculate the biomass, which was further converted into carbon. Meanwhile, management practices were evaluated under the framework of CDM and REDD+. The PPs are public land managed, especially by disadvantaged communities, while CPFs are the patches of national forest managed by users. The variation in carbon stock was found to be highest (148.89 ton ha-1 in Sita CPF and lowest (30.34 ton ha-1 in Bisbitty PP. In fact, it is difficult to certify plantations under CDM, due to its complexity, but they can easily be candidate to the REDD+ mechanism, if they are bundled with large forest blocks.

  14. Allometric models for estimating biomass and carbon in Alnus acuminata

    Directory of Open Access Journals (Sweden)

    William Fonseca

    2013-12-01

    Full Text Available In order to quantify the climate change mitigation potential of forest plantations, information on total biomass and its growth rate is required. Depending on the method used, the study of the biomass behavior can be a complex and expensive activity. The main objective of this research was to develop allometric models to estimate biomass for different tree components (leaves, branches, stem and root and total tree biomass in Alnus acuminata (Kunth in Costa Rica. Additionally, models were developed to estimate biomass and carbon in trees per hectare and for total plant biomass per hectare (trees + herbaceous vegetation + necromass. To construct the tree models, 41 sampling plots were evaluated in seven sites from which 47 trees with a diametric from 4.5 to 44.5 cm were selected to be harvested. In the selected models for the stem, root and total tree biomass, a r 2 >93.87 % was accomplished, while the r 2aj for leaves and branches was 88 %. For the biomass and carbon models for total trees and total plant biomass per hectare the r2 was >99 %. Average biomass expansion factor was 1.22 for aboveground and 1.43 for total biomass (when the root was included. The carbon fraction in plant biomass varied between 32.9 and 46.7 % and the percentage of soil carbon was 3 %.

  15. The effects of energy grass plantations on biodiversity. 2nd annual report

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.

    2004-07-01

    This report, which covers the year 2003 growing season, is the second annual report about a project to investigate the ecological impact on biodiversity of plantations of biomass grass crops grown in Hertfordshire in the UK. Wildlife monitoring was carried out at five field sites growing the perennial rhizomatous grass crops Miscanthus, reed canary grass and switch grass. The report covers the findings from wildlife surveys for the 2003 season, the final results from the invertebrate identification from the 2002 season, data entry from the 2002 and 2003 seasons, and the continued invertebrate identification during the 2003 season. Butterfly assessments and an evaluation of crop characteristics such as plant height, plant/stem density and biomass yield were also performed. Results are presented with respect to crop field characteristics, pests and diseases, ground flora, ground beetles, birds, small mammals, butterflies and epigeal invertebrates. Plans for the next growing season are outlined.

  16. Ectomycorrhizal status of a mature productive black truffle plantation

    OpenAIRE

    Agueda, B. (Beatriz); Fernandez-Toiran, L.M. (Luz Marina); Miguel Velasco, A.M. (Ana Maria) de; Martinez-Peña, F. (Fernando)

    2010-01-01

    The truffle-plantation «Los Quejigares» was planted in 1971 by AROTZ-CATESA company. It is a 600 ha plot of Quercus ilexmycorrhizated with Tuber melanosporum at 1,250 m a.s.l. on calcareous soil. This plantation is the largest of the world and one of the eldest truffle-plantations of Spain and it is in full production. Knowledge of the mycorrhizal status of a mature black truffle plantation is significant for the improvement of truffle cultivation. Ectomycorrhizae were studied for ...

  17. Optimization of Palm Oil Plantation Revitalization in North Sumatera Indonesia

    Directory of Open Access Journals (Sweden)

    Juliza Hidayati

    2015-01-01

    Full Text Available The idea of making North Sumatera  as a barometer of national oil palm industry require efforts commodities and agro-industry development of oil palm. One effort that can be done is by successful execution plantation revitalization. The plantation Revitalization is an effort to accelerate the development of smallholder plantations, through expansion and replanting by help of palm estate company as business partner and bank financed plantation revitalization fund. Business partner agreement obliged and bound to make at least the same smallholder plantation productivity with business partners, so that the refund rate to banks become larger and prosperous people as a plantation owner. Generally low productivity of smallholder plantations under normal potential caused a lot of old and damaged plants with plant material at random. The purpose of revitalizing oil palm plantations which are to increase their competitiveness through increased farm productivity. The research aims to identify potential criteria in influencing plantation productivity improvement priorities to be observed and followed up in order to improve the competitiveness of destinations and make North Sumatera barometer of national palm oil can be achieved. Research conducted with Analytical Network Process (ANP, to find the effect of dependency relationships between factors or criteria with the knowledge of the experts in order to produce an objective opinion and relevant depict the actual situation. 

  18. Biomass energy: Another driver of land acquisitions?

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo; Finnegan, Lynn; MacQueen, Duncan

    2011-08-15

    As governments in the global North look to diversify their economies away from fossil fuel and mitigate climate change, plans for biomass energy are growing fast. These are fuelling a sharp rise in the demand for wood, which, for some countries, could outstrip domestic supply capacity by as much as 600 per cent. It is becoming clear that although these countries will initially look to tap the temperate woodlands of developed countries, there are significant growth rate advantages that may lead them to turn to the tropics and sub-tropics to fill their biomass gap in the near future. Already there is evidence of foreign investors acquiring land in Africa, South America and Southeast Asia to establish tree plantations for biomass energy. If left unchecked, these trends could increase pressures on land access and food security in some of the world's poorest countries and communities.

  19. Biomass energy and the global carbon balance

    International Nuclear Information System (INIS)

    Studies on climate change and energy production increasingly recognise the crucial role of biological systems. Carbon sinks in forests (above and below ground), CO2 emissions from deforestation, planting trees for carbon storage, and biomass as a substitute for fossil fuels are some of the key issues which arise. Halting deforestation is of paramount importance, but there is also great potential for reforestation of degraded lands, agroforestry and improved forest management. It is concluded that biomass energy plantations and other types of energy cropping could be a more effective strategy for carbon mitigation than simply growing trees as a carbon store, particularly on higher productivity lands. Use of the biomass produced as an energy source has the added advantage of a wide range of other environmental, social and economic benefits. (author)

  20. The influence of mature oak stands and spruce plantations on soil-dwelling click beetles in lowland plantation forests

    OpenAIRE

    Loskotová, Tereza; Horák, Jakub

    2016-01-01

    Most European forests have been converted into forest plantations that are managed for timber production. The main goal of this paper was to determine the difference between mature native sessile oak (Quercus petraea) stands and non-indigenous Norway spruce (Picea abies) plantations, with respect to communities of Athous click beetles in approximately 6,500 ha of lowland plantation forest area in the Czech Republic. Athous subfuscus was the most abundant and widespread species, followed by A....

  1. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  2. Tephritids in fruit plantations in Costa Rica

    International Nuclear Information System (INIS)

    Full text: The diversity of tephritids captured in fruit orchards in Costa Rica during four years (2001- 2004) with MultilureRM Traps is presented. These were baited with different attractants (Torula, Nu-Lure and several synthetic mixtures) in a project to determine their capacity of attraction, in mixed plantations of coffee and citrus in the Grecia Canton (year 2001) and in the Corralar District (2002 and 2004); in a mango plantation in the Esparza Canton (2001 and 2003), in a guava orchard in Pocora District (2002 and 2004) and in a citrus plantation in the San Carlos Canton, (2003). In the Grecia Canton 4,545 fruit flies were captured: 3837 (84.42%) medflies, 634 (13,94%) Anastrepha ludens, 49 (1,07%) A. striata, 29 (0.06%) A. fraterculus. In Esparza Canton (2001) 2239 tephritids were captured: 1107 (49,44%) Medflies, 875 (39,07%) A. obliqua, 156 (6,96%) A. striata, 73 (3,26%) A. serpentina and 1 (0.04%) A. ludens. In Esparza (2003) 792 tephritids were captured: 518 (65.40%) medflies, 216 (27,27%) A. obliqua, 15 (1.89%) A. striata, 18 (2.27%) A. serpentina and 24 (3.03%) Hexachaeta obscura. In Corralar District (2002) 3873 tephritids were captured: 2323 (59.99%) medflies, 1416 (36.56%) A. ludens, 20 (0.51%) A. obliqua and 114 (2.94%) A. striata. In the same place (Corralar - 2004) 533 tephritids were captured: 270 (50.65%) medflies, 118 (22.13%) A. ludens, 19 (3.56%) A. obliqua, 5 (0.93%) A. striata, 105 (19.69%) of the genus Molynocoelya spp., 14 (2.62%) Paroxyna spp. and 2 (0.37%) Tetreuareta spp. In Pocora District (2002) 1542 tephritids were captured: 1526 (98.96%) A. striata, 3 (0.19%) A. obliqua, 6 (0.38%) A. fraterculus, 1 (0.064%) A. zuelianiae, 2 (0.12%) Pesudocrotaenia spp. and 1 (0.064%) Pyrgotoides spp. In the same place (2004) 9250 tephritidis was captured: 8071 (87.25%) A. striata, 935(10.10%) A. obliqua, 235 (2.54%) medflies, 6 (0.06%) A. serpentina, 2 (0.02%) A. cyclayae and 1 (0.01%) Hexachaeta obscura. In a citrus plantation in the San Carlos

  3. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  4. Green Gold. On variations of truth in plantation forestry

    NARCIS (Netherlands)

    Romeijn, P.

    1999-01-01

    The "variations of truth in plantation forestry" is a study on the Teakwood investment program. Teakwood offered the general public in The Netherlands the opportunity to directly invest in a teak plantation in Costa Rica. The program was pioneered in 1989 and truly gained momentum when it was joined

  5. Does forest certification enhance community engagement in Australian plantation management?

    NARCIS (Netherlands)

    Dare, Melanie (Lain); Vanclay, Frank; Schirmer, Jacki

    2011-01-01

    The rapid expansion of timber plantations across Australia has been contentious, with ongoing debate in rural communities about the social, economic and environmental impacts of plantations. The need for effective and ongoing community engagement (CE) has been highlighted by this ongoing contention

  6. Changes in the soil microbial community with a pine plantation restoration in a dry valley of the upper reaches of the Minjiang River, southwest China.

    Science.gov (United States)

    Liu, Zhanfeng; Liu, Guohua; Fu, Bojie; Wu, Yaqiong; Hu, Huifeng; Fu, Shenglei

    2010-05-01

    The objective of this study was to investigate the changes in soil microbial biomass C, microbial metabolic activity, functional diversity, and metabolic diversity pattern during the restoration process of a pine (Pinus tabulaeformis) plantation. In this study, a chronosequence approach was adopted. Three sites of pine plantations along a restoration chronosequence (12 years old (PF12), 25 years old (PF25), 35 years old (PF35)), and their paired reference sites of natural shrub community (Shrub1, Shrub2, and Shrub3) were selected. Soil microbial biomass C increased and microbial quotient declined with pine plantation age. Microbial metabolic activity, as measured by average well color development (using Biolog GN(2) plates), exhibited a decline along the restoration chronosequence with values ranked as PF12 > PF35 > PF25 in topsoil and PF12 > PF25 > PF35 in subsoil. Functional diversity, as estimated by substrate diversity and substrate richness, exhibited a pattern similar to the metabolic activity. Principal component analysis indicated that metabolic diversity followed recognized patterns along the restoration chronosequence with PF12 significantly different from PF25 and PF35. There was an apparent reduction of microbial metabolic activity and functional diversity during pine plantation restoration, which can be explained by a general decline in soil nutrient availability, particularly C availability, and soil pH associated with the establishment of a coniferous species. PMID:20586776

  7. Soil organic matter on citrus plantation in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    , Y., Boardman, J. 2009a. Soil erosion and agriculture Soil and Tillage Research 106, 107-108. DOI: 10.1016/j.still.2009.1 Cerdà, A., Jurgensen, M.F. 2008. The influence of ants on soil and water losses from an orange orchard in eastern Spain. Journal of Applied Entomology 132, 306-314. Cerdà, A., Jurgensen, M.F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena 85, 231-236. Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia 64, 527-531. Cerdà, A., Morera, A.G., Bodí, M.B. 2009b. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. 10.1016/j.still.2009.06.002 García-Orenes, F., Guerrero, C., Roldán, A.,Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca. F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. 10.1016/j.still.2010.05.005. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28, 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., Moeyersons, J. 2013. Assessing the performance of a Spatially distributed soil erosion and sediment delivery

  8. Carbon storage and sequestration rate assessment and allometric model development in young teak plantations of tropical moist deciduous forest, India

    Institute of Scientific and Technical Information of China (English)

    Kaushalendra Kumar Jha

    2015-01-01

    Carbon (C) sequestration through plantations is one of the important mitigation measures for rising levels of carbon dioxide and other greenhouse gases in the atmosphere. This study aimed to assess C stocks and their sequestration rate, and to develop allometric models for estimation of C stocking in age-series young teak (Tectona grandis) planta-tions (1, 5, 11, 18, 24 and 30 years) by using biomass and productivity estimation and regression, respectively. These plantations were raised in tropical moist deciduous forests of Kumaun Himalayan tarai. Total C stocks estimated for these plantations were 1.6, 15.8, 35.4, 39.0, 61.5 and 73.2 Mg ha-1, respectively. Aboveground and belowground C storage in-creased with increasing plantation age;however, the range of their percentage contribution showed little variation (87.8–88.2 and 11.7–12.7%, respectively). The rate of C sequestration for these respective plantations was 1.06, 6.95, 5.46, 5.42, 3.39 and 5.37 Mg ha-1 a-1. Forty percent of the aboveground annual storage was retained in the tree while 60%was released in the form of foliage, twigs, and fruit litter. In the case of total (tree) annual production, 43%was retained while 57%was released as litter including root. C stock, C sequestration rate, accumulation ratio (1.4–18.1), root:shoot C ratio (0.61–0.13) and production efficiency (0.01–0.18) were comparable to some previous reports for other species and forests. These data could be useful in deciding the harvesting age for young teak with respect to C storage and sequestration rate. Four allometric models using linear regression equations were developed between biomass (twice the C stock) and diameter, girth, and height of the tree at different ages. The diameter model was found more suitable for C stock predic-tion in similar areas.

  9. Economics and yields of energy plantations: Status and potential, 1992-1993 update

    International Nuclear Information System (INIS)

    An update is presented of a study carried out to: determine the factors affecting the cost of energy conversion feedstocks in short rotation intensive culture plantations of trees; determine the factors influencing biomass yield; identify interrelationships between the previous two objectives; present estimates of potential biomass yields and associated economics; and to identify gaps in the knowledge of the economics and yields of biomass production and their interrelationships. Developments in economics and yields in short rotation intensive silviculture for the production of biomass energy since 1991 are documented. The most substantial changes have been: the introduction of new clones in Sweden with a 20% increase in yield; illustrating the potential genetic gains achievable through selection and breeding; and halving of harvesting costs with new machinery. Harvesting costs with chipping incorporated have fallen to $51.21/dry tonne. The twin row ESM and Frobbester harvesters have lower estimated costs of $36.62 and $ 33.69 respectively. Agricultural based machines have further reduced costs to $19.42 and $26.12/dry tonne. Using these new data, three new scenarios were developed for cost of production analysis, using contract labour, farm labour or farm labour plus a subsidy. A contracted operation is now viable with an annual equivalent net value (AENV) of $35/ha. With the use of farm labour for most operations and omitting land rent, profitability increased to $127/ha. With a subsidy of $75/ha, the AENV increases to $205/ha. 25 refs., 1 fig., 3 tabs

  10. Biomass power; Biomasse-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Woergetter, M.

    2003-07-01

    The author reports about use of biomass in Austria and Bavaria: power generation, production of biodiesel, bioethanol, energy efficiency of small biomass furnaces. (uke) [German] Bioenergie wird von breiten Kreisen als wichtiger Ansatz in Richtung einer nachhaltigen Entwicklung in Europa gesehen. Die Herausforderung liegt dabei im neuen Herangehen an Entscheidungen; Dimensionen der Wirtschaft, der Umwelt und der Gesellschaft sind dabei zu beruecksichtigen. Bioenergie ist somit keine reine Frage der Umwelt, sondern zielt auf den Umbau unseres Systems in Richtung Nachhaltigkeit. (orig.)

  11. Biomass expansion factors for Eucalyptus globulus stands in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Soares, P.; Tome, M.

    2012-11-01

    One of several procedures for estimating carbon stocks in forests is the estimation of tree or stand biomass based on forest inventory data. The two approaches normally used to convert field measurements of trees to stand biomass values are allometric biomass equations and biomass expansion factors (BEFs). BEFs are used in published National Forest Inventory results in which biomass is not estimated or as a complement of growth models that do not include biomass predictions. In this paper, the effectiveness of BEFs for estimating total stand biomass in Portuguese Eucalyptus globulus plantations was analyzed. Here, BEF is defined as the ratio of total stand biomass (aboveground biomass plus root biomass) to stand volume with bark. To calculate total biomass, an equation was developed to estimate root biomass as a function of aboveground biomass. Changes of BEF with stand variables were analyzed. Strong relationships were observed between BEF and stand age, stand basal area, stand volume and dominant height. Consequently, an equation to predict BEF as a function of stand variables was fitted, and dominant height was selected as the predictor stand variable. Estimates of total stand biomass based on individual tree allometric equations were compared with estimates obtained with a constant BEF (0.77), used in the Portuguese National Inventory Report on Greenhouse Gases, and with estimates obtained using the dominant height-dependent BEF equation developed in this work. The BEF prediction model proposed in this work may be used to improve E. globulus Portuguese biomass estimates when tree allometric equations cannot be used. (Author) 40 refs.

  12. Global options for biofuels from plantations according to IMAGE simulations

    International Nuclear Information System (INIS)

    In this report the contribution of biofuels to the renewable energy supply and the transition towards it are discussed for the energy crops miscanthus, eucalyptus, poplar, wheat and sugar cane. Bio-electricity appears to be the most suitable option regarding energetic and financial aspects and in terms of avoided CO2 emissions. The IMAGE 2.0 model is a multi-disciplinary, integrated model designed to simulate the dynamics of the global society-biosphere-climate system, and mainly used here for making more realistic estimates. Dynamic calculations are performed to the year 2100. An IMAGE 2.0-based Conventional Wisdom scenario simulates, among other things, future energy demand and supply, future food production, future land cover patterns and future greenhouse gas emissions. Two biofuel scenarios are described in this report. The first consists of growing energy crops on set asides. According to a 'Conventional Wisdom' scenario, Canada, the U.S. and Europe and to a lesser extent Latin America will experience set asides due to a declining demand in agricultural area. The second biofuel scenario consists of growing energy crops on set asides and on 10% of the agricultural area in the developing countries. Growing energy crops on all of the areas listed above leads to an energy production that consists of about 12% of the total non-renewable energy use in 2050, according to the 'Conventional Wisdom' scenario. Furthermore, the energy related CO2 emissions are reduced with about 15% in 2050, compared to the Conventional Wisdom scenario. Financial aspects will have great influence on the success of growing energy crops. However, energy generated from biomass derived from plantations is currently more expensive than generating it from traditional fuels. Levying taxes on CO2 emissions and giving subsidies to biofuels will reduce the cost price difference between fossil fuels and biofuels

  13. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    International Nuclear Information System (INIS)

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  14. Biomass, nutrient and heavy metal in eucalyptus roots fertilized with different sewage sludge

    OpenAIRE

    Alexandre de Vicente Ferraz; Fábio Poggiani

    2014-01-01

    The application of sewage sludge in forestry plantations has been encouraged in several countries for promoting growth of trees. However, because the sludge eventually contains heavy metals, it has been disposed frequently in landfills. This study investigated the biomass and the concentration of nutrients and heavy metals in fine roots (Ø

  15. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress.

    OpenAIRE

    Hennig, Anne; Kleinschmit, Jörg R. G.; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppi...

  16. LCA METHODS TO COMPARE TREATMENT OPTIONS ON BIOMASS RESIDUES PRODUCED IN A PALM-OIL SYSTEM

    OpenAIRE

    Wiloso, Edi Iswanto; Bessou, Cécile; Heijungs, Reinout; De Snoo, Geert

    2014-01-01

    Palm oil systems generate large amounts of biomass residues. According to best agri-cultural practices, they are supposed to be returned back to plantation to maintain soil fertility. However, there are variations in practice. Differences in economic status and treatment options on biomass residues cause variations on the preference to perform LCA, leading to divergence in results that complicate interpretation. Difficulties found in comparing LCA results based on literature are not unusual. ...

  17. Impact factors on fine root seasonal dynamics in Fraxinus mandshurica plantations

    Institute of Scientific and Technical Information of China (English)

    MEI Li; HAN Youzhi; YU Shuiqiang; SHI Jianwei; WANG Zhengquan

    2007-01-01

    Fine root turnover plays important roles in carbon allocation and nutrient cycling in forest ecosystems.Seasonal dynamics of fine roots is critical for understanding the processes of fine root turnover.From May to October 2002,soil core method was used for estimating the seasonal pattern of fine root (diameter < 1 mm) parameters (biomass,specific root length (SRL) and root length density (RLD)) in a Manchurian ash (Fraxinus mandshurica) plantation located at the Maoershan Experiment Station,Heilongjiang Province,northeast of China.The relationships of fine root biomass,SRL and RLD with available nitrogen in soil,average soil temperature per month in 10 cm depth and soil moisture content were analyzed.Seasonal variation of fine root biomass was significant (P < 0.05).The peak values of fine root biomass were observed both in spring and in autumn,but SRL and RLD were the highest in spring and lowest in autumn.Specific root length and root length density were higher in spring and summer,which means that fine root diameter was thinner.In autumn,both parameters decreased significantly due to secondary incrassation of fine root diameter or the increase of tissue density.Seasonal dynamics of fine roots was associated with available nitrogen in soil,soil temperature in 10 cm depth and moisture content.Fine root biomass has a significant relationship with available NH4+-N in soil.Available NO3--N in soil,soil temperature in 10-cm depth and moisture content have a positive correlation with fine root biomass,SRL and RLD,although these correlations are not significant (P >0.05).But the compound effects of soil available N,soil temperature and soil moisture content are significant to every root parameter.The variations of these three root parameters in different seasons show different physiological and ecological functions in different growing periods.

  18. Regional Mapping of Plantation Extent Using Multisensor Imagery

    Directory of Open Access Journals (Sweden)

    Nathan Torbick

    2016-03-01

    Full Text Available Industrial forest plantations are expanding rapidly across Monsoon Asia and monitoring extent is critical for understanding environmental and socioeconomic impacts. In this study, new, multisensor imagery were evaluated and integrated to extract the strengths of each sensor for mapping plantation extent at regional scales. Two distinctly different landscapes with multiple plantation types were chosen to consider scalability and transferability. These were Tanintharyi, Myanmar and West Kalimantan, Indonesia. Landsat-8 Operational Land Imager (OLI, Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2, and Sentinel-1A images were fused within a Classification and Regression Tree (CART framework using random forest and high-resolution surveys. Multi-criteria evaluations showed both L-and C-band gamma nought γ° backscatter decibel (dB, Landsat reflectance ρλ, and texture indices were useful for distinguishing oil palm and rubber plantations from other land types. The classification approach identified 750,822 ha or 23% of the Taninathryi, Myanmar, and 216,086 ha or 25% of western West Kalimantan as plantation with very high cross validation accuracy. The mapping approach was scalable and transferred well across the different geographies and plantation types. As archives for Sentinel-1, Landsat-8, and PALSAR-2 continue to grow, mapping plantation extent and dynamics at moderate resolution over large regions should be feasible.

  19. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  20. Nutrient leaching losses in lowland forests converted to oil palm and rubber plantations in Sumatra, Indonesia

    Science.gov (United States)

    Kurniawan, Syahrul; Corre, Marife D.; Rahayu Utami, Sri; Veldkamp, Edzo

    2015-04-01

    and Mg). In the clay Acrisol landscape, oil palm showed higher leaching losses of dissolved organic C and Ca than forest whereas jungle rubber and rubber plantation had intermediate fluxes; oil palm had also higher Na, Mg and total Si leaching losses than all the other land uses (all P ≤ 0.05). The low soil solution pH, which was negatively correlated with total Al, and large mineral N and total P leaching losses in oil palm were due to N and P fertilization, and the large base cation losses were attributable to liming and ash from biomass burning. Such increased nutrient leaching losses with forest conversion to oil palm plantation calls for improved management to minimize losses and its effects on ground water quality.

  1. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  2. Ecosystem functions of oil palm plantations - a review

    OpenAIRE

    Dislich, Claudia; Keyel, Alexander C.; Salecker, Jan; Kisel, Yael; Meyer, Katrin M.; Marife D Corre; Faust, Heiko; Hess, Bastian; Knohl, Alexander; Kreft, Holger; Meijide, Ana; Nurdiansyah, Fuad; Otten, Fenna; Pe'er, Guy; Steinebach, Stefanie

    2015-01-01

    Oil palm plantations have expanded rapidly in the last decades. This large-scale land-use change has had great impacts on both the areas converted to oil palm and their surroundings. Howev-er, research on the impacts of oil palm agriculture is scattered and patchy, and no clear overview ex-ists. Here, we address this gap through a systematic and comprehensive literature review of all ecosys-tem functions in oil palm plantations. We compare ecosystem functions in oil palm plantations to those ...

  3. [Population density of Eucalyptus urophylla plantation].

    Science.gov (United States)

    Huang, B; Lu, C

    2000-02-01

    This paper dealt with the relationships and correlation models of the population density of 5.6 years old Eucalyptus urophylla plantation with its crown width, diamter at breast height(DBH), tree height, individual standing volume, stand volume, wood properties and survital rate. The results showed that the population density remarkably affected DBH, individual standing volume, crown width, live branch height, stand volume and wood fiber width; but not affect tree height, basic density of wood, and length of wood fibers. It had a positive relationship with stand volume, live branch height and wood fibers width, and a negative relationship with DBH, individual standing volume and crown width. In addition, E. urophylla had a wide range of reasonable density. For short-rotation puplwoods, the optimum planting density of E. urophylla is 2000 individuals per hectare. PMID:11766582

  4. SOIL FAUNA CHARACTERIZATION IN Eucalyptus spp. PLANTATIONS

    Directory of Open Access Journals (Sweden)

    Juliana Garlet

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810545Forest soils provide good conditions for the development and the establishment of soil fauna, manly by the deposition of litter. However, monoculture systems conducted in a single substrate by providing food, can promote the development of certain animal groups over others, causing outbreaks of pest species. The aim of this study was to characterize the soil fauna and its relationship with meteorological variables, in plantations of Eucalyptus spp. This study was conducted in six stands of Eucalyptus from three species: Eucalyptus dunni Maiden, Eucalyptus grandis Maiden and Eucalyptus grandis x Eucalyptus urophylla S. T. Blake (clone hybrid and two ages (planted in 2006 and 2007.

  5. EucaTool®, a cloud computing application for estimating the growth and production of Eucalyptus globulus Labill. plantations in Galicia (NW Spain

    Directory of Open Access Journals (Sweden)

    Alberto Rojo-Alboreca

    2015-12-01

    Full Text Available Aim of study: To present the software utilities and explain how to use EucaTool®, a free cloud computing application developed to estimate the growth and production of seedling and clonal blue gum (Eucalyptus globulus Labill. plantations in Galicia (NW Spain.Area of study: Galicia (NW Spain.Material and methods: EucaTool® implements a dynamic growth and production model that is valid for clonal and non-clonal blue gum plantations in the region. The model integrates transition functions for dominant height (site index curves, number of stems per hectare (mortality function and basal area, as well as output functions for tree and stand volume, biomass and carbon content.Main results: EucaTool® can be freely accessed from any device with an Internet connection, from http://app.eucatool.com. In addition, useful information about the application is published on a related website: http://www.eucatool.com.Research highlights: The application has been designed to enable forest stakeholders to estimate volume, biomass and carbon content of forest plantations from individual trees, diameter classes or stand data, as well as to estimate growth and future production (indicating the optimal rotation age for maximum income by measurement of only four stand variables: age, number of trees per hectare, dominant height and basal area.Keywords: forest management; biomass; seedling; clones; blue gum; forest tool.

  6. Importance of poplar plantations in the groundwater mass balance and stream base flow of a Mediterranean basin

    Science.gov (United States)

    Ferrer, Nuria; Folch, Albert

    2015-04-01

    Poplar plantations are used for biomass production in many countries.Poplar (Populus spp.) is well known for its large biomass production, its ability to adapt to different environments, its ability to synergise with agriculture and its high energy potential. These plantations areoften located in areas where the tree roots can reach the water table of shallow aquifers to reduce irrigation costs but increasing evapotranspiration, mainly during the summer. This study aims to assess the effects of these plantations on an aquifer water budget and on the stream base flow of a Mediterranean basin, the Santa Coloma river (321.3 km2) located in the NE Spain. A numerical flow model was constructed using Visual Modflow 4.5 Software to simulate groundwater flow in the shallow aquifers and the stream-aquifer interaction for a period of 9 years. Once the model was calibrated, different land use scenarios, such as deciduous forests, dry farming and irrigated farming, were simulated for comparison. The mass balance shows that poplar extracts an average of 2.40 hm3 from the aquifer. This amount of water represents the 30% of the aquifer withdrawal, approximately 18% of the average recharge of the aquifer and 12 % of the total outputs of the system. This effect reduces the groundwater flow to the main stream and increases the infiltration from the stream to the aquifer. Compared with deciduous forest as a soil use , there is an average reduction in the main stream flow by 46% during the summer months, when the lowest flow occurs and when the river is most sensitive. These results indicate that this impact should be considered in basin management plans and in evaluating the benefits of this type of biomass production.Additional research is needed to conceptualise the costs and benefits of this type of non-natural plantations for biomass production, specifically, the associated economic benefits and the effects on the water budget (i.e., stream flow) at various scales (local, basin

  7. Estimating slash pine biomass using radar backscatter

    Science.gov (United States)

    Hussin, Yousif Ali; Reich, Robin M.; Hoffer, Roger M.

    1991-01-01

    L-band HV multiple-incidence-angle aircraft synthetic aperture radar (SAR) data were analyzed in relation to average stand biomass, basal area, and tree height for 55 slash pine plantations located in northern Florida. This information was used to develop a system of equations to predict average stand biomass as a function of L-band (24.5-cm) radar backscatter. The system of equations developed in this study using three-stage least-squares and combinatorial screening accounted for 97 percent of the variability observed in average stand biomass per hectare. When applied to an independent data set, the biomass equations had an average bias of less than 1 percent with a standard error of approximately 3 percent. These results indicate that future Shuttle Imaging Radar Systems (e.g., SIR-C, which will have cross-polarized radar sensors) should be able to obtain better estimates of forest biomass than were obtained with previous satellite radar missions, which utilized only HH-polarized SAR data.

  8. Regional potential yields of short rotation willow plantations on agricultural land in Northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Mola-Yudego, B. (Univ. of Eastern Finland, School of Forest Sciences, Joensuu (Finland)), email: blas.mola@uef.fi

    2010-07-01

    The development of short rotation forestry for bioenergy requires accurate and reliable yield estimates. This paper analyses the current, expected and potential regional productivity of short rotation willow plantations for six countries in Northern Europe. The estimations for present productivity are based on empirical models, using data regarding management, and local productivity based on the regional cereal yields. The estimates of expected yield rely on the current trends of yield increase from commercial willow plantations in the region. The estimates for potential yield are based on climatic restrictions. The results show potential average yields of 9.5, 6.8, 7.9, 9.0, 9.3, and 8.0 odt ha-1 yr-1 for Denmark, Finland, Estonia, Latvia, Lithuania and Sweden, respectively. The results of the study also show that there is a wide regional variation between the different countries. In Denmark, Finland and Sweden there is a convergence between the future forecasts and the climatic potential yields in the areas of high productivity. The Baltic countries seem to present lower estimates of present productivity, reflecting possible socio-economic restrictions, although they show a high biomass potential. The methods presented in this study can be further developed in other areas where willow cultivation is considered, and can serve as a basis for future economic considerations. (orig.)

  9. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  10. Biotechnology of biomass conversion

    International Nuclear Information System (INIS)

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion

  11. Pengaruh modal kerja terhadap profitabilitas PT.Goodyear Sumatra Plantations

    OpenAIRE

    Fatma Fauriya Sari

    2008-01-01

    Fatma Fauriya Sari (2006). Pengaruh Modal Kerja Terhadap Profitabilitas PT Goodyear Sumatra Plantations Dolok Merangir. Ketua Departemen Manajemen, Prof. Dr. Ritha F. Dalimunthe, SE, M.Si. Dosen Pembimbing, Drs. Syahyunan, M.Si. Dosen Penguji, Dra. Husnani Sudardjat dan Dra. Lisa Marlina, M.Si. Berdasarkan laporan keuangan PT Goodyear Sumatra Plantations Dolok Merangir tahun 2001-2004, perputaran modal kerja bersih perusahaan mengalami penurunan yang signifikan sementara Return on Investment ...

  12. The Sustainability Status of Partnership of Palm Oil Plantations

    OpenAIRE

    Wilson Daud; Sri Panuntun

    2015-01-01

    One of existence determining factor of PBS palm oil is a harmonious relation with communities surroundings, thus the partnership between the palm oil plantation with the farmers surroundings is one of effort which has created the harmonization in palm oil plantation. The objective of the article is to express the sustainability of each pattern of palm oil PBS partnership, and this partnership form gives the sustainability advantages for the farmer and palm oil PBS in Central Kalimantan. The a...

  13. Importance of residual trees to birds in regenerating pine plantations

    OpenAIRE

    JC Jones; Demarais S; Hanberry P; Hanberry BB

    2012-01-01

    Pine plantation establishment methods can alter vegetation composition and structure, thus affecting habitat important characteristics for declining early successional bird species. We evaluated eight vegetation characteristics, which varied due to a range of pine plantation establishment methods, to identify vegetation most closely associated with spring bird abundance in the Lower Coastal Plain of southern Mississippi, USA. Presence of residual trees and snags was positively related to rela...

  14. Results of the 2000 Creek Plantation Swamp Survey

    International Nuclear Information System (INIS)

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible

  15. Results of the 2000 Creek Plantation Swamp Survey

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    2000-10-30

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible.

  16. Plantation Forests for Sustainable Wood Supply and Development in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the implementation of Natural Forests Protection Program, wood resource base in China is shifting from naturally grown forests to plantation forests. This paper reviews: 1) The evolution of Chinese decade-long reforestation program and its contribution to sustainable wood supply and development, and 2) impacts of "China's Natural Forest Protection Program and " Fast-Growing and High-Yield Plantation Program in China " on China's wood supply and sustainability. In addition, this paper highlights Chi...

  17. Green Gold. On variations of truth in plantation forestry

    OpenAIRE

    Romeijn, P.

    1999-01-01

    The "variations of truth in plantation forestry" is a study on the Teakwood investment program. Teakwood offered the general public in The Netherlands the opportunity to directly invest in a teak plantation in Costa Rica. The program was pioneered in 1989 and truly gained momentum when it was joined by the world's largest environmental organization WWF and an insurance and banking company called OHRA in 1993. Thousands of people invested, many millions of Guilders were transferred and about a...

  18. Eucalyptus plantations for energy production in Hawaii. 1980 annual report, January 1980-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Whitesell, C. D.

    1980-01-01

    In 1980 200 acres of eucalyptus trees were planted for a research and development biomass energy plantation bringing the total area under cultivation to 300 acres. Of this total acreage, 90 acres or 30% was planted in experimental plots. The remaining 70% of the cultivated area was closely monitored to determine the economic cost/benefit ratio of large scale biomass energy production. In the large scale plantings, standard field practices were set up for all phases of production: nursery, clearing, planting, weed control and fertilization. These practices were constantly evaluated for potential improvements in efficiency and reduced cost. Promising experimental treatments were implemented on a large scale to test their effectiveness under field production conditions. In the experimental areas all scheduled data collection in 1980 has been completed and most measurements have been keypunched and analyzed. Soil samples and leaf samples have been analyzed for nutrient concentrations. Crop logging procedures have been set up to monitor tree growth through plant tissue analysis. An intensive computer search on biomass, nursery practices, harvesting equipment and herbicide applications has been completed through the services of the US Forest Service.

  19. [Nutrient content in litterfall and its translocation in plantation forests in south China].

    Science.gov (United States)

    Li, Z; Lin, Y; Peng, S

    2000-06-01

    The amounts of litterfall, nutrient content in it and leaves of five plantation forests in south China were determined. The order of litterfall biomass was in sequence of Acacia mangium (11.1 t.hm-2) > Pinus elliotii (7.3 t.hm-2) > Schima superba (6.5 t.hm-2) > Acacia auriculaiformis (4.8 t.hm-2) > Eucalyptus citriodora (2.6 t.hm-2). A. mangium returned soil much more nutrient to soil through litterfall than other forests did. N, P and K were largely translocated from senescing leaves for all the five forests, and especially for A. mangium. Nutrient translocated varied greatly with seasons. The translocation of other elements was not definite. PMID:11767624

  20. Biomass shock pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  1. Variações de curto prazo nas emissões de CO2 do solo em diferentes sistemas de manejo do cafeeiro Short-term variations of soil CO2 emissions in coffee plantations

    Directory of Open Access Journals (Sweden)

    Alexandre Fonseca D'Andréa

    2009-01-01

    Full Text Available Soil CO2 emissions represent an important component of carbon global cycle. However, information about short-term alterations of CO2 fluxes in soils of tropical regions are scarce. So, the objective of this study was to evaluate such variations in coffee plantations in Latosol (Oxisol. The CO2 emissions were not affected by environmental abiotic factors, such as temperature and soil water evaporation, but they were significantly correlated with the carbon content of microbial biomass (R=0.90, P<0.05. It happens a close relationship between root activity and soil CO2 emission in coffee plantations.

  2. Effect of Continuous Plantation of Chinese Fir on Soil Fertility

    Institute of Scientific and Technical Information of China (English)

    DINGYING-XIANG; CHENJIN-LIN

    1995-01-01

    The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soil samples from different forest stands:the first and second plantations of Chinese fir,evergreen broad-leaved forests,and clear-cut and burnt Chinese fir land located at Xihou Village,Nanping of Fujian Province.The soils were humic red soil originated from weathered coarse granite of the Presinian system.Soil pH,CEC,base saturation ,exchangeable Ca2+,exchangeable Mg2+ and A1-P declined after continuous plantation of Chinese fir.The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leaching of nutrients,soil erosion and nutrient losses due to clear cutting and slash burning of the preceduing plantation caused the soil deterioration .Only some of main soil nutrients decreased after continuous plantation of Chinese fir,depending on specific silvicultural system,which was different from the conclusions in some other reports which showed that all main nutrients,such as OM,total N,available P and available K decreased,Some neccessary step to make up for the lost base,to apply P fertilizer and to avoid buring on clear cut lands could be taken to prevent soil degradation and yield decline in the system of continuous plantation of Chinese fir.

  3. Transmission of Leishmania in coffee plantations of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Bruce Alexander

    2002-07-01

    Full Text Available Transmission of Leishmania was studied in 27 coffee plantations in the Brazilian State of Minas Gerais. Eighteen females and six males (11.6% of the people tested, aged between 7-65 gave a positive response to the Montenegro skin test. Awareness of sand flies based on the ability of respondents to identify the insects using up to seven predetermined characteristics was significantly greater among inhabitants of houses occupied by at least one Mn+ve individual. Five species of phlebotomine sand fly, including three suspected Leishmania vectors, were collected within plantations under three different cultivation systems. Four of these species i.e., Lu. fischeri (Pinto 1926, Lu. migonei (França 1920, Lu. misionensis (Castro 1959 and Lutzomyia whitmani (Antunes & Coutinho 1939 were collected in an organic plantation and the last of these was also present in the other two plantation types. The remaining species, Lu. intermedia (Lutz & Neiva 1912, was collected in plantations under both the "adensado" and "convencional" systems. The results of this study indicate that transmission of Leishmania to man in coffee-growing areas of Minas Gerais may involve phlebotomine sand flies that inhabit plantations.

  4. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  5. Electrifying biomass

    International Nuclear Information System (INIS)

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  6. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams.

    Science.gov (United States)

    Graça, Manuel A S; Pozo, Jesús; Canhoto, Cristina; Elosegi, Arturo

    2002-04-30

    Vast areas of the Iberian Peninsula are covered by monocultures of the exotic tree Eucalyptus globulus. Given that (1) leaf litter produced in the riparian areas is the main energy source for small streams, and (2) trees differ in their nutrient content, chemical defenses, and physical attributes, eucalypt plantations have the potential to affect the biology of streams. Research teams from the University of Coimbra and the University of the Basque Country have been addressing the potential effects of eucalypt plantations at several levels of study. Here we review the main conclusions of these investigations. Eucalypt plantations produced less litter than some deciduous forests. However, there were marked differences in timing of litterfall: litter production peaked during autumn in deciduous forests, whereas in the eucalypt forests it tended to peak in summer and to be more evenly distributed throughout the year. Despite these differences, the average standing stock of organic matter was higher in the eucalypt than in the deciduous forest. This may be attributed to (1) the occurrence of spates or heavy rain in autumn, the period of maximum litter fall in deciduous forests, and (2) bark accumulation in eucalypt forests. Because of differences in leaf composition, the nutrient input in eucalypt forests seems to be lower than in deciduous forests. The rate of decomposition of eucalypt leaves was strongly dependent on nutrients in the water: in nutrient-poor waters it was slower than that of most other leaf species, whereas in nutrient-rich waters it can be as fast as alder--a fast-decaying species. The biomass and cumulative diversity of aquatic hyphomycetes colonizing leaves did not differ between eucalypt and other native leaf species, but fungal sporulation generally peaked 2 weeks later on eucalypt leaves. This lag disappeared when lipids (but not polyphenolics) were chemically removed from eucalypt leaves. Similarly, addition of eucalypt oils to culture media

  7. Comparing growth and fine root distribution in monocultures and mixed plantations of hybrid poplar and spruce

    Institute of Scientific and Technical Information of China (English)

    Lahcen Benomar; Annie DesRochers; Guy R.Larocque

    2013-01-01

    Disease prevention,biodiversity,productivity improvement and ecological considerations are all factors that contribute to increasing interest in mixed plantations.The objective of this study was to evaluate early growth and productivity of two hybrid poplar clones,P.balsamifera x trichocarpa (PBT) and P.maximowiczii x balsamifera (PMB),one improved family of Norway spruce (Picea glauca (PA)) and one improved family of white spruce (Picea abies (PG)) growing under different spacings in monocultures and mixed plots.The plantations were established in 2003 in Abitibi-Témiscamingue,Quebec,Canada,in a split plot design with spacing as the whole plot factor (1 × 1 m,3 × 3 m and 5 × 5 m) and mixture treatments as subplot factor (pure:PBT,PMB,PA and PG,and 1:1 mixture PBT:PA,PBT:PG,PMB:PA and PMB:PG).Results showed a beneficial effect of the hybrid poplar-spruce mixture on diameter growth for hybrid poplar clones,but not for the 5 × 5 m spacing because of the relatively young age of the plantations.Diameter growth of the spruces decreased in mixed plantings in the 1 × 1 m,while their height growth increased,resulting in similar aboveground biomass per tree across treatments.Because of the large size differences between spruces and poplars,aboveground biomass in the mixed plantings was generally less than that in pure poplar plots.Leaf nitrogen concentration for the two spruce families and hybrid poplar clone PMB was greater in mixed plots than in monocultures,while leaf nitrogen concentration of clone PBT was similar among mixture treatments.Because of its faster growth rate and greater soil resources demands,clone PMB was the only one showing an increase in leaf N with increased spacing between trees.Fine roots density was greater for both hybrid poplars than spruces.The vertical distribution of fine roots was insensitive to mixture treatment.

  8. Prospects for biomass-to-electricity projects in Yunnan Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.

    1996-02-01

    Efforts have been underway since 1989 to assess the prospects for biomass-to-electricity projects in Yunnan Province. Results of prefeasibility studies for specific projects suggest that they are both financially and technically viable. Because of low labor costs and favorable climate biomass can be grown on marginal and underutilized land and converted to electricity at costs lower than other alternatives. Bases on current plantation establishment rates, the potential size of the biomass resource can easily support over 1 GW of electric generating capacity in small-sized (up to 20-40 MW) cogeneration and stand-alone projects. These projects, if implemented, can ease power shortages, reduce unemployment, and help sustain the region`s economic growth. Moreover, the external environmental benefits of biomass energy are also potentially significant. This report briefly summarizes the history of biomass assessment efforts in Yunnan Province and discusses in more detail twelve projects that have been identified for U.S. private sector investment. This discussion includes a feasibility analysis of the projects (plantation-grown biomass and its conversion to electricity) and an estimate of the biomass resource base in the general vicinity of each project. This data as well as information on power needs and local capabilities to manage and operate a biomass-to-electricity project are then used to rank-order the twelve projects. One cogeneration and one stand-alone facility are recommended for additional study and possible investment.

  9. Of peasants, plantations, and immigrant proletarians

    Directory of Open Access Journals (Sweden)

    Samuel Martí­nez

    1993-01-01

    Full Text Available [First paragraph] Dominican Sugar Plantations: Production and Foreign Labor Integration. MARTIN F. MURPHY. New York: Praeger, 1991. xii + 186 pp. (Cloth US$49.95 Peasants in Distress: Poverty and Unemployment in the Dominican Republic. ROSEMARY VARGAS-LUNDIUS. Boulder CO: Westview 1991. xxi + 387 pp. (Paper US$ 32.95 Few other places in the Caribbean region have as great a potential for international conflict as the island of Hispaniola. The historical antagonism between Haiti and the Dominican Republic is no doubt known to readers of this journal, as is the recent upsurge in tension between the two countries, which culminated in the expulsion of tens of thousands of Haitian immigrants from the Dominican Republic, from June to September 1991. The quickening pace of events, added to the worsening spiral of economic hardship gripping both nations, threaten to render obsolete even the most recent analyses of relations between the two countries. Even so, against the background of an increasingly acrimonious debate between the Dominican government and international human rights organizations accusing it of enslaving Haitian immigrants in the cane flelds, the appearance of two works by long-time students of the migration of Haitians as cane workers to the Dominican Republic is particularly timely.

  10. Plant community and white-tailed deer nutritional carrying capacity response to intercropping switchgrass in loblolly pine plantations

    Science.gov (United States)

    Greene, Ethan Jacob

    Switchgrass (Panicum virgatum L.) is a cellulosic feedstock for alternative energy production that could grow well between planted pines (Pinus spp.). Southeastern planted pine occupies 15.8 million hectares and thus, switchgrass intercropping could affect biodiversity if broadly implemented. Therefore, I evaluated effects of intercropping switchgrass in loblolly pine (P. taeda L.) plantations on plant community diversity, plant biomass production, and white-tailed deer (Odocoileus virginianus Zimmerman) nutritional carrying capacity. In a randomized complete block design, I assigned three treatments (switchgrass intercropped, switchgrass monoculture, and a "control" of traditional pine management) to 4 replicates of 10-ha experimental units in Kemper County, Mississippi during 2014-2015. I detected 246 different plant species. Switchgrass intercropping reduced plant species richness and diversity but maintained evenness. I observed reduced forb and high-use deer forage biomass but only in intercropped alleys (interbeds). Soil micronutrient interactions affected forage protein of deer plants. White-tailed deer nutritional carrying capacity remained unaffected.

  11. Plantation forestry in Brazil: the potential impacts of climatic change

    International Nuclear Information System (INIS)

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO2 enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  12. Plantation forestry in Brazil: the potential impacts of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Manaus (Brazil). Dept. of Ecology

    1999-11-01

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO{sub 2} enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  13. Plantation forestry in Brazil: the potential impacts of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Manaus (Brazil). Dept. of Ecology

    1999-07-01

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO{sub 2} enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  14. Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation.

    Science.gov (United States)

    Jørgensen, Susanne V; Cherubini, Francesco; Michelsen, Ottar

    2014-12-15

    Depletion in oil resources and environmental concern related to the use of fossil fuels has increased the interest in using second generation biomass as alternative feedstock for fuels and materials. However, the land use and land use change for producing second generation (2G) biomass impacts the environment in various ways, of which not all are usually considered in life cycle assessment. This study assesses the biogenic CO2 fluxes, surface albedo changes and biodiversity impacts for 100 years after changing land use from forest or fallow land to miscanthus plantation in Wisconsin, US. Climate change impacts are addressed in terms of effective forcing, a mid-point indicator which can be used to compare impacts from biogenic CO2 fluxes and albedo changes. Biodiversity impacts are assessed through elaboration on two different existing approaches, to express the change in biodiversity impact from one human influenced state to another. Concerning the impacts from biogenic CO2 fluxes, in the case of conversion from a forest to a miscanthus plantation (case A) there is a contribution to global warming, whereas when a fallow land is converted (case B), there is a climate cooling. When the effects from albedo changes are included, both scenarios show a net cooling impact, which is more pronounced in case B. Both cases reduce biodiversity in the area where the miscanthus plantation is established, though most in case A. The results illustrate the relevance of these issues when considering environmental impacts of land use and land use change. The apparent trade-offs in terms of environmental impacts further highlight the importance of including these aspects in LCA of land use and land use changes, in order to enable informed decision making. PMID:25194521

  15. Non-destructive estimation of Oecophylla smaragdina colony biomass

    DEFF Research Database (Denmark)

    Pinkalski, Christian Alexander Stidsen; Offenberg, Joachim; Jensen, Karl-Martin Vagn

    . smaragdina colonies assessed in a plantation in the dry season, ranged in size from 131,000-562,388 workers and from 0.8-3.3 kg total ant wet biomass for the smallest and largest colony, respectively. Correspondingly, the areal abundance of ants in the plantation was 353 workers/m2 and 2.1 g ant mass/m2......In most ecosystems, ants are a dominant part of the arthropod community. However, understanding of their importance has been hampered by limited availability of data on ant abundance. We developed a model to estimate the size (biomass and number of workers) of Oecophylla smaragdina colonies in...... prediction of ant biomass directly from ant activity. With this combined regression the ant biomass in a tree equaled 244.5 g fresh mass*ant activity. Similarly, the number of workers in trees was estimated using the relationship between nest volume and worker numbers (R2=0.84). Based on the model, five O...

  16. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities.

    Science.gov (United States)

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations. PMID:25658843

  17. Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance

    International Nuclear Information System (INIS)

    Miscanthus is a perennial rhizomatous warm-season grass with C4-photosynthesis. It shows considerable production potentials (10-20 t dry matter ha-1) under NW European growth conditions and plantations of Miscanthus are established to provide biomass for energy. The plant senesces in the autumn in response to adverse climatic conditions, but harvest is normally postponed until spring when the biomass is more suitable for combustion. Total pre-harvest and harvest losses may account for as much as two-thirds of autumn standing biomass and these losses provide a significant carbon input to the soil. In this study, we examine soil organic carbon (SOC) storage and turnovers beneath 9 and 16 year old Miscanthus plantations established at Hornum, Denmark (56 deg. 50'N, 09 deg. 26'E). The soil is a loamy sand (Typic Haplumbrept, coarse loamy, mixed, mesic) with a C3 vegetation history. Soil was sampled at 0-20, 20-50 and 50-100 cm depth in the Miscanthus plantations and in two reference sites under C3-plants. The 0-20 cm samples were divided into fine soil (13C/12C ratio. Rhizomes/stubbles accounted for 10.9-12.6 t DM ha-1 and coarse roots for 3.2-3.7 t DM ha-1 at 0-20 cm depth. No rhizomes and coarse roots were observed in the deeper soil layers. Concentrations of SOC were higher at all soil depths under the 16 year old Miscanthus whereas 9 years of Miscanthus and reference sites showed similar SOC concentrations. δ13C in 0-20 cm reference soil averaged -27.6 per mille while soil beneath 9 and 16 year Miscanthus showed -25.6 per mille and -22.8 per mille, respectively. Difference in δ13C between reference and Miscanthus soils was smaller at greater soil depths. SOC inventories at 0-100 cm ranged from 91-92 t C ha-1 in reference and 9 year Miscanthus to 106 t C ha-1 under 16 years of Miscanthus growing. The main part of the SOC was at 0-20 and 20-50 cm soil with 30-40 t C ha-1 in each layer. Although changes in the overall SOC storage were less significant, 13% and 31

  18. Biomass energy production. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Moore, P. W.

    1980-01-01

    These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.

  19. Biomass systems

    International Nuclear Information System (INIS)

    Biofuels productions and uses should allow valorization of raw materials belonging to biomass: plants used in food utilization, ligno-cellulose plants, or by-products even wastes from animal or vegetable origin. These bioenergies are renewable energies, and their developments pass through an economical competitivity, a clean and spare production, and atmospheric emissions control of vehicles. The principal advantage of bioenergies is the reduction of fossil carbon consumption and its replacement by a renewable carbon consumption. (A.B.). 13 refs., 7 figs., 3 tabs

  20. Biomass and its potential for power generation application. Moeglichkeiten der energetischen Nutzung von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgrimm, H.J. (Inst. fuer Technologie, Bundesforschungsanstalt fuer Landwirtschaft (FAL), Braunschweig (Germany))

    1992-01-01

    Energy from biomass will cover but a small part of energy demand although its worldwide potentials are considerable. Energy seems to be produced best and easiest in terms of availability from by-products, from residues and wastes of farming and forestry, from the processing of produce to foods and raw materials, from sewage treatment and municipal/industrial wastes. As liquid fuels derived from regenerative biomass, rapseed oil and ethanol can be used best for automative applications unless their use as raw materials proves to be more meaningful. Enhanced potentials would result from a planned cultivation of energy crops like rushes (miscanthus species) and wood on fast-growth plantation e.g. on areas no longer needed for food crops. (orig./BWI)

  1. Quantification and economic valuation of the capture of CO2 for plantations of the Eucalyptus, genus, settled down by the PRECA in the carboniferous basins of Cesar, Cauca Valley, Cauca and Cundiboyacense Highland

    International Nuclear Information System (INIS)

    In this study, the first measure is to quantify the tons of CO2 captured by the increment in the biomass of forest plantations of the Eucalyptus genus, settled down by the PRECA of Ecocarbon in the carboniferous basins of the Cesar, Cauca Valley, Cauca and Cundiboyacense highland and in second measure to determine the economic value that the sale of this environmental service can represent for a developing country as Colombia. The results obtained for each one of the plantations settled down in each carboniferous basin are determined and statistical models that will allow to calculate the capture of CO2 carried out by plantations of three different species of Eucalyptus (E. Camaldulensis, E. grandis and E. globulus)

  2. Quantification and economic valuation of the capture of CO2 for Eucalyptus plantations, established by the Preca in the carboniferous Basins of Cesar, Cauca Valley, Cauca and Highland Cundiboyacense

    International Nuclear Information System (INIS)

    This study, as first measure it looks for to quantify the tons of CO2 captured by the increment in the biomass of forestall plantations of the Eucalyptus genus established by the PRECA of Ecocarbon in the carboniferous basins of the Cesar, Cauca Valley, Cauca and Highland Cundiboyacense and in second measure to determine the economic value that the sale of this environmental service can represent for a developing country as Colombia. The results obtained for each one of the plantations in each carboniferous basin are determined, and statistical models that will allow calculating the capture of CO2 carried out by plantations of three different species of Eucalyptus (E. camaldulensis, e. grandis and E. globulus), starting from the volume in foot of the timber only barked

  3. Forest Plantations and Water Consumption: A Strategy for Hydrosolidarity

    Directory of Open Access Journals (Sweden)

    W. P. Lima

    2012-01-01

    Full Text Available A case study of a deliberate change in the design of a new Eucalyptus plantation, aimed at alleviating water impacts, was carried out in an experimental catchment located in the center part of the State of São Paulo, Brazil. It involved the identification of saturated areas in the catchment, based essentially on topographic analysis, as a tool to help in zoning of the new forest plantation, with the objective of improving the flow of water to downstream users, as well as to avoid water quality changes. The design involved the allocation of part of the identified saturated areas as water conservation areas, as well as a change in the spacing of the planting. Measurements of tree growth at the age of two years of the new plantation reveal that the forest productivity of the new plantation design, in terms of projected annual wood increment at the end of the rotation, will be similar to the old plantation scheme, despite the loss of planted area. Preliminary results of the continuous monitoring of the catchment water balance appear to indicate that the objective of increasing the catchment water yield may possibly also be achieved.

  4. Carbon emissions from forest conversion by Kalimantan oil palm plantations

    Science.gov (United States)

    Carlson, Kimberly M.; Curran, Lisa M.; Asner, Gregory P.; Pittman, Alice Mcdonald; Trigg, Simon N.; Marion Adeney, J.

    2013-03-01

    Oil palm supplies >30% of world vegetable oil production. Plantation expansion is occurring throughout the tropics, predominantly in Indonesia, where forests with heterogeneous carbon stocks undergo high conversion rates. Quantifying oil palm's contribution to global carbon budgets therefore requires refined spatio-temporal assessments of land cover converted to plantations. Here, we report oil palm development across Kalimantan (538,346km2) from 1990 to 2010, and project expansion to 2020 within government-allocated leases. Using Landsat satellite analyses to discern multiple land covers, coupled with above- and below-ground carbon accounting, we develop the first high-resolution carbon flux estimates from Kalimantan plantations. From 1990 to 2010, 90% of lands converted to oil palm were forested (47% intact, 22% logged, 21% agroforests). By 2010, 87% of total oil palm area (31,640km2) occurred on mineral soils, and these plantations contributed 61-73% of 1990-2010 net oil palm emissions (0.020-0.024GtCyr-1). Although oil palm expanded 278% from 2000 to 2010, 79% of allocated leases remained undeveloped. By 2020, full lease development would convert 93,844km2 (~ 90% forested lands, including 41% intact forests). Oil palm would then occupy 34% of lowlands outside protected areas. Plantation expansion in Kalimantan alone is projected to contribute 18-22% (0.12-0.15GtCyr-1) of Indonesia's 2020 CO2-equivalent emissions. Allocated oil palm leases represent a critical yet undocumented source of deforestation and carbon emissions.

  5. Prospect of Neem Plantation at Arafat, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M. A. U Mridha

    2014-04-01

    Full Text Available Neem (Azadirachta indicaA.Juss. is a multipurpose agroforestry tree that is well adapted to a wide range of climatic and soil conditions and has gained worldwide recognition for its pharmaceutical and pesticidal properties.The world's largest pure Neem plantations are available in the plains of Arafat, Saudi Arabia where 50,000 thousands Neem trees were planted to provide shade from the blazing summer sun for the millions of Hajis (Muslim pilgrims. Sporadic mature Neem trees are also found in Medinah, Taif and elsewhereof the Kingdom. The Neem tree is adapted to Arafat under harsh climatic conditions of Saudi Arabia and the plantation may be extended to other parts of the Kingdom as a avenue tree and also to minimize the desertification under changing climatic conditions and to improve the environmental condition of the country. At Arafat mixed plantations may be advocated to save the present plantation which may come from climate change as well as pest and diseases problems. So care must be taken to monitor the diseases of Neem tree at Arafat on a regularbasis. Because of insufficient growth of Neem at Arafat the methods of green cultivation with microbial inoculants, organic fertilizers, mycotrophic green manure plants may be practiced for successful plantation.

  6. Fire effects in Pinus uncinata Ram plantations

    Directory of Open Access Journals (Sweden)

    Adrián Cardil Forradellas

    2016-04-01

    Full Text Available Aim of study: Understanding fire ecology of main forest species is essential for a sound, scientifically based on managing of wildlands and also to assess likely implications due to changes in fire regime under a global change scenario. Few references can be found about fire ecology of Pinus uncinata Ram. (PU. PU species grows in the Central Pyrenees where large, severe wildland fires did not occur frequently in the past. However, several fires with extreme fire behavior have affected PU stands in last years and they might disturb other PU forest in the future.Area of study: Cabdella fire (February 2012, in Lleida province, is one of the several wildland fires occurred in 2012 (winter season in the Central Pyrenees. Fire affected a large PU plantation (102 ha located at 1.800-2,100 meters above the sea.Material and methods: We have analyzed first order fire effects in three fireline intensity thresholds along three years in terms of mortality ratio, scorched height, percentage of scorched crown volume and bark char height.Main results: PU seems to be a very tolerant species to low and medium fire line intensity but fire effects were very significant when fire line intensity was high. In medium fireline intensity sites, probability of mortality ranged from 15 to 30% and the dead trees had the highest values on scorched height and percentage of scorched crown volume.Research highlights: Results from this work supports that prescribed burning might be used to efficiently decrease fuel load and fuel vertical continuity while avoiding considerable PU mortality. It also displayed that when fuel management has been implemented, PU mortality might be limited even under extreme fire behavior.Abbreviations used: PU: Pinus uncinata Ram.

  7. Is spatial structure the key to promote plant diversity in Mediterranean forets plantations?

    NARCIS (Netherlands)

    González-Moreno, P.; Quero, J.L.; Poorter, L.; Bonet, F.J.; Zamora, R.

    2011-01-01

    Mediterranean forest plantations are currently under an intense debate related to their ecological function, sustainability and future performance. In several Mediterranean countries, efforts are directed to convert pine plantations into mixed and more diverse forests. This research aims to evaluate

  8. The influence of mature oak stands and spruce plantations on soil-dwelling click beetles in lowland plantation forests.

    Science.gov (United States)

    Loskotová, Tereza; Horák, Jakub

    2016-01-01

    Most European forests have been converted into forest plantations that are managed for timber production. The main goal of this paper was to determine the difference between mature native sessile oak (Quercus petraea) stands and non-indigenous Norway spruce (Picea abies) plantations, with respect to communities of Athous click beetles in approximately 6,500 ha of lowland plantation forest area in the Czech Republic. Athous subfuscus was the most abundant and widespread species, followed by A. zebei and A. haemorrhoidalis, while A. vittatus was considered rare. Spatial analysis of environmental variables inside studied patches showed that the species composition of Athous beetles best responded to a 20 m radius surrounding traps. The species' responses to the environment showed that A. vittatus and A. haemorrhoidalis preferred oak stands, while A. zebei and A. subfuscus were associated with spruce plantations. In addition, oak stands showed higher diversity of beetle communities. The studied species are important for their ecosystem services (e.g. predation on pests or bioturbation) and seem to tolerate certain degrees of human disturbances, which is especially beneficial for forest plantations managed for timber production. PMID:26793425

  9. The expansion of farm-based plantation forestry in Vietnam.

    Science.gov (United States)

    Sandewall, Mats; Ohlsson, Bo; Sandewall, R Kajsa; Viet, Le Sy

    2010-12-01

    This study targets plantation forestry by farm households (small holders), which is increasing globally and most rapidly in China and Vietnam. By use of an interdisciplinary approach on three study sites in Vietnam, we examined the trends in farmers' tree planting over time, the various pre-requisites for farm-based plantation forestry and its impact on rural people's livelihood strategies, socioeconomic status, income and security. The findings indicated a change from subsistence to cash-based household economy, diversification of farmers' incomes and a transformation of the landscape from mainly natural forests, via deforestation and shifting cultivation, to a landscape dominated by farm-based plantations. The trend of transformation, over a period of some 30 years, towards cash crops and forestry was induced by a combination of policy, market, institutional, infrastructural and other conditions and the existence of professional farming communities, and was most rapid close to the industrial market. PMID:21141776

  10. Study on Cultivation Nutrition of Cunninghamia lanceolata Plantations with Multi-generation Management

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on the previous study on cultivation nutrition of Cunninghamia lanceolata plantations of first generation, the cultivation nutrition of C. lanceolata plantations with multi-generation was studied. The results show that there are significant differences in the growth, development and nutrient assimilation among C. lanceolata plantations with different generations and nutrition conditions. These differences are closely related to the land fertility decline of C. lanceolata plantations. This paper de...

  11. Demarcation of Seabuckthorn Plantations in Three Northern Areas of China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Seabuckthorn (Hippophae rhamnoides) planting areas in the three northern areas (north, northeast and northwest) of China are divided into five planting zones: the semi-humid forest prairie climate zone for ecological and economic types of seabuckthorn plantations in the southern part of the Loess Plateau; the semi-arid steppe climate zone for similar types of plantations in the central part of the Loess Plateau; the arid desert steppe climate zone for ecological type of seabuckthorn plantations in the northern part of the Loess Plateau; the semi-arid and semi-humid steppe climate zone again for ecological and economic types of plantations in northern Hebei and western Liaoning and the cold humid steppe climate zone for economic types of plantations in the northern part of northeast China. The aim of this demarcation is to avoid a random introduction of seabuckthorn. In each of the five zones,objectives should be set and suitable seabuckthorn species, subspecies and varieties should be planted according to site conditions,seed sources and methods of tree breeding. The cultivation centers, bases, stations, or units should be established and successful models of seedling and planting methods should be encouraged. The principle of matching trees with suitable site conditions and adjusting measures to local conditions should be practiced. From a strategic viewpoint of solving ecological and economic problems of seabuckthorn development in the three northern areas, every seabuckthorn center must have its own germplasm nursery, standard plantation for popularizing, excellent seed and seedling nurseries and sufficient afforestation areas for demonstration and propaganda purposes. These measures would improve the ecological environment and promote economic and social development in the three northern areas of China.

  12. Dense poplar plantations as the raw material for the production of energy

    Directory of Open Access Journals (Sweden)

    Klašnja Bojana

    2006-01-01

    Full Text Available The higher heating value of wood and bark was determined for several poplar (Populus spp clones. The study included the juvenile one year old plants of the following clones: P.×euramericana cl. ostia, P. nigra cl.53/86, P. deltoides cl. PE 19/66, P.×euramericana cl. I-214, P. deltoides cl. S6-7 and P.×euramericana cv. robusta. By using FVI which takes into account ash content, wood bulk density, and moisture content, it was determined that poplar wood can be a significant energy raw material, primarily thanks to its short rotation cycle and a very high wood volume increment. Significant differences were determined in the values of wood basic density which affect the higher heating value of the study poplar clones, and consequently the yield (weight of biomass produced per unit area of dense plantations. This is reflected also on the estimated amount of energy that can be produced by the combustion of biomass of the whole one year old plants.

  13. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  14. Analysis of commercial cost-effectiveness of poplar plantations

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2005-01-01

    Full Text Available The commercial cost-effectiveness of poplar cultivation and commercial cost-effectiveness of long-rotation (42-year poplar plantation were analyzed. The aim of the research is, based on analysis of expenses and receipts during the period of 42 years and by applying the method of analysis of the project commercial cost-effectiveness, to show the justification of long rotations in poplar plantations. Modern methods of investment valuation were applied and consequently their practical application in forestry was confirmed.

  15. Soil greenhouse gas fluxes from a poplar bioenergy plantation: How long does former land use type matter?

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    The cultivation of fast-growing tree species for the production of bioenergy -- known as short rotation woody crops (SRWC) -- is considered to be carbon-neutral because biomass combustion releases only carbon which has previously been extracted from the atmosphere via photosynthesis. The true greenhouse gas (GHG) mitigation potential of SRWC, however, remains largely unknown due to limited knowledge on the amount of GHG released from the soil during cultivation, and the soil organic carbon (SOC) sequestration rate over time. Especially measurements of the complete GHG balance of SRWC plantations which have already been managed for several years are lacking. The aim of this study was to quantify the spatial and temporal variability of soil GHG fluxes in a SRWC plantation with poplar located in Lochristi, Belgium (POPFULL, http://uahost.uantwerpen.be/popfull/). The plantation has been established in April 2010 partly on former cropland and partly on former pasture, enabling us to study the dependency of soil GHG fluxes on former land use type under identical climate and management conditions. Furthermore, spatial differences in the SOC content created by alternating row spacings between poplars were studied. The plantation was harvested in February 2012, and in February 2014. Soil CO_2, CH_4, N_2O and CO fluxes were simultaneously monitored with automated closed dynamic chamber systems from May 2013 until August 2014, embracing a pre- and post-harvest period. The chamber measurements were accompanied by fortnightly measurements of soil gas concentrations in the top- and subsoil (2013: CO2 and O_2, 2014: CO_2, CH_4, and N_2O). Preliminary results show that former pasture and cropland areas were still distinguishable within the plantation based on properties such as weed composition, dry bulk density and SOC content. During a drought period in August 2013, soil CO2 fluxes seemed to be slightly higher from the former cropland area, but no apparent effect of former land

  16. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  17. Observations of evapotranspiration in a break of slope plantation susceptible to periodic drought stress

    International Nuclear Information System (INIS)

    Break of slope (BOS) plantations are advocated as a means of water table control in areas where groundwater flows through colluvial deposits overlying low permeability bedrock. It is also believed that BOS plantations can supplement their water use requirements by exploiting shallow groundwater at the breaks in topographic slope. Although BOS plantations are attracting much interest from landholders, relevant research on their hydrologic function is limited. We compared measurements of BOS plantation and pasture evapotranspiration during spring, when the weather was warm and soils moist, and late summer when drought conditions prevailed In spring we found that pasture evapotranspiration was 65% of that of the plantation, whereas in summer, pasture evapotranspiration was equivalent to only 35% of plantation evapotranspiration. Rainfall interception by the canopy of the plantation was found to be twice that of the pasture. The greater evapotranspiration of the plantation reinforces the notion that trees can help to reduce groundwater recharge and alleviate dryland salinity and water logging. During the summer drought period, daily plantation transpiration was only 20% of that measured during spring. This suggested that the plantation was not utilising groundwater supplies but was instead 'mining' soil moisture supplies. Isotopic analysis of soil and tree water supported this hypothesis. The BOS plantation we studied is not behaving in the manner expected, and our findings raise some doubt as to mooted advantages of establishing plantations in 'break of slope' positions

  18. Flux agreement above a Scots pine plantation

    Science.gov (United States)

    Gay, L. W.; Vogt, R.; Bernhofer, Ch.; Blanford, J. H.

    1996-03-01

    The surface energy exchange of 12m high Scots pine plantation at Hartheim, Germany, was measured with a variety of methods during a 11-day period of fine weather in mid-May 1992. Net radiation and rate of thermal storage were measured with conventional net radiometers, soil heat flux discs and temperature-based storage models. The turbulent fluxes discussed in this report were obtained with an interchanging Bowen ratio energy budget system (BREB, at 14 m), two one-propeller eddy correlation systems (OPEC systems 1 and 2 at 17m), a 1-dimensional sonic eddy correlation system (SEC system 3) at 15 m, all on one “low” tower, and a 3-dimensional sonic eddy correlation system (SEC system 22) at 22 m on the “high” tower that was about 46 m distant. All systems measured sensible and latent heat (H and LE) directly, except for OPEC systems 1 and 2 which estimated LE as a residual term in the surface energy balance. Closure of turbulent fluxes from the two SEC systems was around 80% for daytime and 30% for night, with closure of 1-dimensional SEC system 3 exceeding that of 3-dimensional SEC system 22. The night measurements of turbulent fluxes contained considerable uncertainty, especially with the BREB system where measured gradients often yielded erroneous fluxes due to problems inherent in the method (i.e., computational instability as Bowen's ratio approaches -1). Also, both eddy correlation system designs (OPEC and SEC) appeared to underestimate |H| during stable conditions at night. In addition, both sonic systems (1- and 3-dimensional) underestimated |LE| during stable conditions. The underestimate of |H| at night generated residual estimates of OPEC LE containing a “phantom dew” error that erroneously decreased daily LE totals by about 10 percent. These special night problems are circumvented here by comparing results for daytime periods only, rather than for full days. To summarize, turbulent fluxes on the low tower from OPEC system 2 and the adjacent

  19. Response of infiltration capacity to thinning treatment in Japanese cypress plantation

    Science.gov (United States)

    Hiraoka, M.; Onda, Y.

    2011-12-01

    Forest management practice such as thinning treatment changes the physical structure of stands and canopy and ecohydrology in the forest system, resulting in the change of runoff and hydrological processes in watershed scale. Understory vegetation is a major factor controlling infiltration rate in a forested hillslope because it can reduce the raindrop impact to surface soil, trap the litter, and form the macropore in surface soil. In unmanaged Japanese cypress forest, understory vegetation has decreased because of high stand density and low light conditions, resulting in low infiltration due to surface sealing and crusting and overland flow generation. In such forest, improvement of infiltration capacity is expected by the recovery of understory vegetation after a thinning treatment, but the effect of the practice on infiltration has never been evaluated due to the lack of infiltration measurement in situ. The objective of this study is to elucidate the response of infiltration capacity to thinning treatment in Japanese cypress plantation. Rainfall simulation experiments on a plot-scale were conducted on 21 forested hillslopes experienced by various thinning treatments in Japanese cypress plantation in Yamaguchi Prefecture, western Japan. The average values of infiltration capacity in the unthinned and thinned plots were 51 and 152 mm/h, respectively. The relative light intensity of the thinned plots was higher than that of the unthinned plots. The cover percentages and dry weights of understory vegetation and litter of the thinned plots were greater than those of the unthinned plots. The organic matter content, bulk density, and soil particle size distribution of surface soil (4-cm in depth) had little difference between the unthinned and thinned plots, indicating that the physical properties of surface soil were less likely to change after a thinning treatment. These results suggest that above-ground biomass can increase with the light condition of forest floor

  20. Soil Nitrogen-Cycling Responses to Conversion of Lowland Forests to Oil Palm and Rubber Plantations in Sumatra, Indonesia.

    Science.gov (United States)

    Allen, Kara; Corre, Marife D; Tjoa, Aiyen; Veldkamp, Edzo

    2015-01-01

    Rapid deforestation in Sumatra, Indonesia is presently occurring due to the expansion of palm oil and rubber production, fueled by an increasing global demand. Our study aimed to assess changes in soil-N cycling rates with conversion of forest to oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations. In Jambi Province, Sumatra, Indonesia, we selected two soil landscapes - loam and clay Acrisol soils - each with four land-use types: lowland forest and forest with regenerating rubber (hereafter, "jungle rubber") as reference land uses, and rubber and oil palm as converted land uses. Gross soil-N cycling rates were measured using the 15N pool dilution technique with in-situ incubation of soil cores. In the loam Acrisol soil, where fertility was low, microbial biomass, gross N mineralization and NH4+ immobilization were also low and no significant changes were detected with land-use conversion. The clay Acrisol soil which had higher initial fertility based on the reference land uses (i.e. higher pH, organic C, total N, effective cation exchange capacity (ECEC) and base saturation) (P≤0.05-0.09) had larger microbial biomass and NH4+ transformation rates (P≤0.05) compared to the loam Acrisol soil. Conversion of forest and jungle rubber to rubber and oil palm in the clay Acrisol soil decreased soil fertility which, in turn, reduced microbial biomass and consequently decreased NH4+ transformation rates (P≤0.05-0.09). This was further attested by the correlation of gross N mineralization and microbial biomass N with ECEC, organic C, total N (R=0.51-0. 76; P≤0.05) and C:N ratio (R=-0.71 - -0.75, P≤0.05). Our findings suggest that the larger the initial soil fertility and N availability, the larger the reductions upon land-use conversion. Because soil N availability was dependent on microbial biomass, management practices in converted oil palm and rubber plantations should focus on enriching microbial biomass. PMID:26222690

  1. Soil Carbon Losses after Rainforest Conversion to Oil Palm and Rubber Plantations: Processes and Sensitivity of Soil Fertility Indicators Assessed by a New Approach

    Science.gov (United States)

    Guillaume, T.; Maranguit, D.; Murtilaksono, K.; Kuzyakov, Y.

    2015-12-01

    Tropical forest conversion to agricultural land leads to strong decrease of soil organic matter (SOM). Nonetheless, the magnitude of SOM losses and their impacts on soil fertility in oil palm and rubber plantations remain unclear, despite the large scale extension of such land-use types. We quantified SOM losses, and estimated soil erosion and changes in SOM turnover using SOM δ13C values in forest, oil palm plantations, extensive rubber plantations and rubber monocultures on Sumatra Island (Indonesia). Further, we assessed the response of biological (basal respiration, microbial biomass, acid phosphatase) and chemical fertility indicators (light fraction, DOC, total N, available P) to SOM losses. We used a new approach based on (non-)linear regressions between SOM losses and the indices standardized to natural ecosystem. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber (41%). The estimated erosion was the strongest in oil palm (35±8 cm) and rubber (33±10 cm) plantations. The SOM 13C enrichment used as a proxy of its turnover indicates a decrease of SOM turnover under oil palm after forest conversion. The negative impact of land-use changes on all measured indicators increased in the following sequence: forest > extensive rubber > rubber > oil palm. The basal respiration, microbial biomass and nutrients were comparatively resistant to SOM losses, whereas the light fraction was lost faster than the SOM. The resistance of the microbial activity to SOM losses is an indication that the microbial functions sustain SOM losses. However, responses of basal respiration and microbial biomass to SOM losses were non-linear. Below 2.7 % C content, the relationship was reversed. The basal respiration decreased faster than the SOM, resulting in a stronger drop of microbial activity under oil palm compared to rubber despite small difference in C content

  2. Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020

    International Nuclear Information System (INIS)

    Forests in Southeast Asia are important sources of timber and other forest products, of local energy for cooking and heading, and potentially as sources of bioenergy. Many of these forests have experienced deforestation and forest degradation over the last few decades. The potential flow of woody biomass for bioenergy from forests is uncertain and needs to be assessed before policy intervention can be successfully implemented in the context of international negotiations on climate change. Using current data, we developed a forest land use model and projected changes in area of natural forests and forest plantations from 1990 to 2020. We also developed biomass change and harvest models to estimate woody biomass availability in the forests under the current management regime. Due to deforestation and logging (including illegal logging), projected annual woody biomass production in natural forests declined from 815.9 million tons (16.3 EJ) in 1990 to 359.3 million tons (7.2 EJ) in 2020. Woody biomass production in forest plantations was estimated at 16.2 million tons yr-1 (0.3 EJ), but was strongly affected by cutting rotation length. Average annual woody biomass production in all forests in Southeast Asia between 1990 and 2020 was estimated at 563.4 million tons (11.3 EJ) yr-1 declining about 1.5% yr-1. Without incentives to reduce deforestation and forest degradation, and to promote forest rehabilitation and plantations, woody biomass as well as wood production and carbon stocks will continue to decline, putting sustainable development in the region at risk as the majority of the population depend mostly on forest ecosystem services for daily survival. (author)

  3. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  4. Short Communication. Restoring monoculture plantation using stand spatial structure analysis

    Directory of Open Access Journals (Sweden)

    G. Gao

    2013-03-01

    Full Text Available Aim of study. To improve the quality of monoculture plantations in China.Area of study. structure-based forest management was conducted in Rocky Mountain Area of Northern China.Material and Methods. Stand spatial structure indicators of mingling degree, uniform angle index, neighborhood comparison and opening degree were comparably investigated to understand the changes of Pinus tabulaeformis plantations.Main results. The results indicated that structure-based forest management accounted for 0.403 and 0.448 of the significant variations in mingling degree and opening degree increments, and had no essential changes in uniform angle index and neighborhood comparison. Structure-based forest management is greatly beneficial to plantation quality, and it can be a source of improvement on stand structure.Research highlights. This improved information is essential to provide a firm basis for future policy-making on how best to restore degraded forests in China as well as the rest of the world.Key words: monoculture plantation; structure-based forest management; stand spatial structure; forest restoration

  5. Carbon and water vapor balance in a subtropical pine plantation

    Directory of Open Access Journals (Sweden)

    Posse G

    2016-05-01

    Full Text Available Afforestation has been proposed as an effective tool for protecting primary and/or secondary forests and for mitigating atmospheric CO2. However, the dynamics of primary productivity differs between plantations and natural forests. The objective of this work was to evaluate the potential for carbon storage of a commercial pine plantation by determining its carbon balance. Measurements started when trees were aged 6 and ended when they were older than 8 years. We measured CO2 and water vapor concentrations using the Eddy covariance method. Gross primary productivity in 2010 and 2011 was 4290 ± 473 g C m-2 and 4015 ± 485 g C m-2, respectively. Ecosystem respiration ranged between 7 and 20 g C m-2 d-1, reaching peaks in all Februaries. Of the 30 months monitored, the plantation acted as carbon source for 21 months and as carbon sink for 6 months, while values close to neutrality were obtained during 3 months. The positive balance representing CO2 loss by the system was most likely due to the cut branches left on the ground following pruning activities. The plantation was subjected to pruning in January and September 2008 and to sanitary pruning in October 2010. In all cases, cut branches were not removed but remained on the ground. Residue management seems to have a very important impact on carbon balance.

  6. Site specific management in an olive tree plantation

    DEFF Research Database (Denmark)

    Fountas, S.; Aggelopoulou, K.; Bouloulis, C.;

    2011-01-01

    Yield and soil mapping were carried out in 2007 and 2008 in a 9.1 ha commercial olive tree plantation for olive oil production. The orchard is in the southern Peloponnese, where olives are cultivated extensively for extra virgin olive oil production. The field is planted in rows with about 1650 t...

  7. Environmental Development cum Forest Plantation Planning and Management.

    Science.gov (United States)

    Katoch, C. D.

    This textbook covers environmental conservation through forest plantation planning and management for all levels of forestry professionals and non-professionals in India and abroad. The book is divided into six parts and 29 sections in sequential order. Part I contains details on site selection, site preparations, site clearance, layout, and…

  8. Ten Year Evaluation of Carbon Stock in Mangrove Plantation Reforested from an Abandoned Shrimp Pond

    Directory of Open Access Journals (Sweden)

    Jirasak Chukwamdee

    2012-06-01

    Full Text Available Forest carbon stocks—both in terms of the standing biomass and the soil organic carbon (OC—were monitored in the mangrove plantation reforested from an abandoned shrimp pond for the 10 years following land excavation. Excavation to a level of 25 cm below the existing ground level increased the inundation time of tidal water from 463 to 7,597 hours per year, resulting in a significant increase of survival/growth rates for planted mangrove species, Rhizophora mucronata (RM and Bruguiera cylindrica (BC, and of carbon stocks as well. RM showed high rates of standing biomass accumulation with 98.7 ton/ha while 28.8 ton/ha for BC was measured over 10 years in the excavated area. In contrast, the unexcavated area showed low rates of biomass accumulation, 1.04 ton/ha for RM and 0.53 ton/ha for BC in the same period. The excavated area recorded a twofold increase of soil OC in the upper 5 cm of the surface soil from 71.8 to 154.8 ton/ha in 10 years, however it decreased to 68.3 ton/ha in the unexcavated area where soil OC is susceptible to decomposition. These results imply that the potential of carbon sinks in reforested land from abandoned areas cannot be developed unless hydraulic conditions are properly recovered. The fast growing species Avicennia marina (AM grew quickly for the first two years after colonization but its growth slowed down afterwards, showing a limited ability of carbon capture.

  9. Power generation from biomass (with special emphasis on gasification)

    International Nuclear Information System (INIS)

    Technological, social, economic and environmental aspects of power generation from biomass (through gasification process) are discussed with special reference to India. Resource base for biomass is mainly formed of agricultural residues, agro-industrial residues and energy plantations. It is shown that in India power generation potential of biomass will be of the order of 61 x 109 kilowatt-hours/yr i.e. more than 10,000 MW of installed capacity of thermal power plants by the year 2000. Aerobic digestion, combustion and gasification technologies are used for biomass conversion. Out of these, gasification is of special relevance to a country like India, because it has a wide range of applications and can be used on decentralised small scale level as well as on centralised large scale level. Cost of power from biomass for irrigation pumpsets, village electrification and captive power units for industries is given. Finally social benefits and positive environmental impacts of power from biomass are discussed. (M.G.B.)

  10. Potential for rural electrification based on biomass gasification in Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hitofumi [Ecosystems Research Group, School of Plant Biology, The University of Western Australia, Crawley, WA 6009 (Australia); JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Katayama, Akio [JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Nippon Koei Co. Ltd., Tokyo 102-0083 (Japan); Sah, Bhuwneshwar P. [JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Pasco Corporation, Tokyo 153-0043 (Japan); Toriu, Tsuyoshi [JICA study team for ' The Master Plan Study on Rural Electrification by Renewable Energy in The Kingdom of Cambodia' , Phnom Penh (Democratic Kampuchea); Sojitz Research Institute, Ltd., Tokyo 107-0052 (Japan); Samy, Sat; Pheach, Phon [Ministry of Industry, Mines and Energy, Phnom Penh (Democratic Kampuchea); Adams, Mark A. [School of Biological Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052 (Australia); Grierson, Pauline F. [Ecosystems Research Group, School of Plant Biology, The University of Western Australia, Crawley, WA 6009 (Australia)

    2007-09-15

    Around 76% of the 10,452 villages of Cambodia will still be without electricity in the year 2010. We examined the potential of biomass gasification fuelled by alternative resources of agricultural residues and woody biomass to increase rural power supply, using geographic and social economic databases provided by the Royal Government of Cambodia. About 77% of villages currently without electricity have sufficient land available for tree planting for electricity generation based on a requirement of 0.02 ha per household. Among 8008 villages with sufficient land, we assumed that those villages that had greater than 10% of households owning a television (powered by a battery or a generator) would have both a high electricity demand and a capacity to pay for electricity generation. Those 6418 villages were considered appropriate candidates for mini-grid installation by biomass gasification. This study demonstrated that while agricultural residues such as rice husks or cashew nut shells may have high energy potential, only tree farming or plantations would provide sufficient sustainable resources to supply a biomass gasification system. Cost per unit electricity generation by biomass gasification is less than diesel generation when the plant capacity factor exceeds 13%. In order to ensure long-term ecological sustainability as well as appropriate tree-farming technology for farmers, there is an urgent need for studies aimed at quantifying biomass production across multiple rotations and with different species across Cambodia. (author)

  11. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  12. Carbon Stocks and Soil C Dynamics: an Investigation of C Sequestration Potential in a Eucalyptus grandis Plantation in Hawaii

    Science.gov (United States)

    Reeves, M. I.; Crow, S. E.; Yost, R.; Turn, S.

    2012-12-01

    Tropical forests are important for many reasons, one of which is their ability to transfer large quantities of CO2 from the atmosphere to living biomass thereby potentially offsetting climate change. If the biomass is then harvested for commercial use, the stored carbon (C) is released back to the atmosphere and as a result, rotational forestry is generally considered C neutral. However, the growth and harvest of forests also affects the soil C cycle through inputs of below ground biomass (BG) in proportion to above ground biomass (ABG). With sustainable management practices, soil can be a long-term sink for C, and provide a climate offset. This study examines the C stocks and dynamics of a E. grandis plantation located in Hawaii. There are two parts: 1) A snapshot of C resources in the plantation, including live biomass C (both BG and ABG) as well as soil C stock, and 2) An investigation of change in soil C stock and pool size with afforestation in E. grandis plantation. ABG C was calculated using published allometric equations and from measurements of the E. grandis trees and ranged from 41-68 Mg C/ha, while BG C ranged from 7-12 Mg C/ha. Added together, the biomass C stocks constitute a mere ≈10% of the soil C stock. To identify the effect of E. grandis afforestation on changes in soil C stock and pools, we compared adjacent pastureland and forested plots in a paired design. Soil C stocks were measured by taking five 1m soil cores in each of the plots. In the pasture, soil C ranged from 431-723 Mg C/ha, while in the E. grandis, it ranged from 544-692 Mg C/ha, an average percent change of 16%. In all plots, soil C decreased by depth. As expected, the surface (0-18) cm cores in the pasture contained more C on average, as grasses tend to input larger amounts of root biomass C in the surface soil. However, in the 20-70 cm depth, the E. grandis plots contained 20-30% more soil C. It is hypothesized that this is due to large differences in rooting depth. The greater

  13. Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez-Marti, B.; Fernandez-Gonzalez, E. [Department of Rural and Food Engineering, Mechanization and Agrarian Technology Division, Universidad Politecnica de Valencia, Camino de Vera s/n. 46022, Valencia (Spain); Lopez-Cortes, I.; Salazar-Hernandez, D.M. [Department of Vegetal Production, Universidad Politecnica de Valencia, Camino de Vera s/n. 46022, Valencia (Spain)

    2011-02-15

    This research quantified the available residual biomass obtained from pruning almond trees. The additional biomass quantified could be used as a source of energy or as raw material for the wood industry and would provide additional income for fruit producers and also a more sustainable system. Several factors were analyzed: Variety, aim of the pruning, age of the plants, size of the plantation, crop yield and irrigation. Regression models were also calculated to predict the weight of dry biomass obtained per tree and tonnes of dry biomass obtained per hectare according to the significant factors. These equations could implement logistic planning as the Borvemar model, which defines a logistics network for supplying bioenergy systems. Almond tree varieties were classified into three groups: a first group with high residual biomass productivity (average yield 12.6 kg dry biomass/tree), a second group with low productivity (average yield 4.5 kg dry biomass/tree) and a transition group with a intermediate biomass yield of 7 kg dry biomass/tree. This means that in Mediterranean areas the residual biomass from almond pruning reaches an average 1.34 t/ha annual. (author)

  14. Biomass Accumulation and Carbon Stocks in 13 Different Clones of Teak (Tectona Grandis Linn. F.) in Odisha, India

    OpenAIRE

    Manoj Kumar Behera; Nilima Priyadarshini Mohapatra

    2015-01-01

    The rate of biomass accumulation and carbon stocks of 13 different clones of Teak in Odisha were studied to identify the promising genotypes suitable for massive clonal plantations in Odisha. ORANP2 produced highest biomass among the 13 clones of teak i.e. 223.72m3/ha, while ORANP1 registered lowest value of 64.05m3/ha in regards to biomass accumulation. The total carbon stock values were found in the range of 32.02-111.86t/ha for 13 different clones of teak. The Mean Annual Increment (MAI) v...

  15. Integrated crop management of SRC plantations to maximise crop value, wildlife benefits and other added value opportunities

    International Nuclear Information System (INIS)

    This report summaries the results of a study aiming to develop an integrated approach to pest management (IPM) for the short rotation cultivation (SRC) of willows and poplars. Details are given of crop and site characteristics, non-destructive assessment of SRC biomass, the quantification of crop shadiness, and the effects of wind exposure on crop growth. The section on invertebrates covers invertebrates colonising UK SRC plantations, invertebrates which are or can become pests, natural control agents of SRC pests, the abundance and distribution of chrysomelids between sites, preferences exhibited by chrysomelids for different varieties, overwintering and dispersal of chrysomelids into SRC, and IPM of insects. The section on vertebrate fauna addresses birds in winter, the breeding birds of SRC, gamebird use of SRC, and mammals and other vertebrates of SRC. A section on ground flora deals with changes in ground flora with time, ground flora introductions, the effects of weeds on the growth of SRC, and an overview of integrated crop management in SRC plantations

  16. Estimation of Carbon Balance in Young and Mature Stands of Japanese Cedar (Cryptomeria Japonica) Plantation

    Science.gov (United States)

    Lee, M.; Sode, N.; Koizumi, H.

    2006-12-01

    direction is south-east. The site had 1153 trees ha-1 with ca. 20-25m in height. The annual mean of air temperature and precipitation during 44 years (1961~2004) were 11°C and 1745mm, respectively. The young stand located in about 20km east of the mature plantation stand. The ecological-process research plot was established on the middle of a slope (20m×20m) in May 2004. The young stand cleared cut in 1998, and planted in 2001. The altitude of plot ranged from 1400 to 1450m. The site had 2353 trees ha-1 with ca. 1-2m in height. The annual mean of air temperature and precipitation during 7 years (1999~2005) were 7°C and 2061mm, respectively. In the mature cedar stand, the tree biomass was 1326gC m-2 of aboveground and 339gC m-2 of belowground. The NPP was estimated to be 540gC m-2 year-1. SR was estimated as about 940gC m-2 year-1 (from May to December 2005) by AOCC measurements. If the contribution of RR to SR is assumed 45%, NEP was estimated approximately 23gC m-2 year-1. On the other hand, the tree biomass of young cedar stand was 41gC m-2 of aboveground and 11gC m-2 of belowground. The total NPP was estimated to be 486gC m-2 year-1. The NPP of cedar tree and understory vegetation constituted about 23 and 463gC m-2 year-1, respectively. Soil respiration was estimated as about 730gC m-2 year-1 (from October 2004 to September 2005) by LI-6400. If the contribution of RR to SR is assumed 45%, NEP was estimated approximately 84gC m-2 year-1. u.ac.jp/sateco/eng/index.html

  17. Wood biomass production potential on agricultural lands in Northern Europe. Achieving the goals of energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Mola-Yudego, B.

    2009-07-01

    Short rotation forestry for bioenergy is an important means of meeting renewable energy targets for the shift towards a more sustainable energy model. This research focuses on the production and expansion of short rotation willow coppice on agricultural land in Northern Europe, based on empirical data from a large sample of commercially managed plantations. The thesis reviews six manuscripts concerning: the current yields of willow plantations in Sweden, for first, second and third cutting cycles, the yield trends for the first cutting cycle during the period 1986-2000, the use of remote sensing in order to assess productivity from willow plantations, the geographical spread of willow cultivation in Sweden and the effect of policy incentives on the expansion of willow cultivation in Sweden during the period 1986-2006. The final paper presents estimates of productivity potential from willow plantations on agricultural land on six EU countries in Northern Europe. The results of the analysis of yield performance show a great variability between growers, which suggests the importance of proper management in the establishment and tending of the plantations. Although the average yields of the first established plantations were significantly lower than previous estimates, the results show a clear trend of yield improvement over time. During the period studied, the average productivity of the plantations increased each year by 0.20 odt ha-1 yr-1, and in the best managed plantations 0.27 odt ha-1 yr-1, possibly due to the release of improved willow clones and management practices. In addition to regional estimates, the thesis also provides tools for the assessment of yield at plantation level using remote sensed images, with reasonable levels of accuracy. The research stressed the role of policy incentives as an important tool for the spread of short rotation forestry, which significantly affects the adoption of willow cultivation by local farmers. The thesis offers

  18. Energetic and economic evaluation of a poplar cultivation for the biomass production in Italy

    International Nuclear Information System (INIS)

    The cultivation of crops for biomass production on good soils allows to reduce surplus production of food crops and increase the sustainability of energy production from the environmental point of view. The short rotation forestry (SRF), is only at a preliminary study level in Italy but, is already a reality in North Europe where was already developed an high planting density (6000-8000 cuttings ha-1) technique and a whole mechanization of plantation and biomass harvest. On the basis of this cultivation technique, it was realized as an energetic and economic evaluation of a poplar SRF in Northern Italy. In detail, they were considered data of poplar growth in a plantation for the production of two-year whips in Western Po Valley considering SRF duration of 8 years and a biomass (20 t ha-1 D.M.) harvest every 2 years. Indeed it was assumed to operate on a plantation in production (12.5% of the surface replanted every year) with a spacing 3.00 x 0.4 m (6700 cutting per hectare) that allows the use of conventional tractors. In this computing system it was pointed out a ratio between output and input energy of 13 and a cost of 80 EUR t-1 of D.M. Nevertheless a positive energetic balance, the economic sustainability of poplar SRF depends, due to the present monopolistic energy management in the same countries, on political choices of chip price or public subventions to the producers. (author)

  19. Application of lidar and optical data for oil palm plantation management in Malaysia

    Science.gov (United States)

    Shafri, Helmi Z. M.; Ismail, Mohd Hasmadi; Razi, Mohd Khairil M.; Anuar, Mohd Izzuddin; Ahmad, Abdul Rahman

    2012-11-01

    Proper oil palm plantation management is crucial for Malaysia as the country depends heavily on palm oil as a major source of national income. Precision agriculture is considered as one of the approaches that can be adopted to improve plantation practices for plantation managers such as the government-owned FELDA. However, currently the implementation of precision agriculture based on remote sensing and GIS is still lacking. This study explores the potential of the use of LiDAR and optical remote sensing data for plantation road and terrain planning for planting purposes. Traditional approaches use land surveying techniques that are time consuming and costly for vast plantation areas. The first ever airborne LiDAR and multispectral survey for oil palm plantation was carried out in early 2012 to test its feasibility. Preliminary results show the efficiency of such technology in demanding engineering and agricultural requirements of oil palm plantation. The most significant advantage of the approach is that it allows plantation managers to accurately plan the plantation road and determine the planting positions of new oil palm seedlings. Furthermore, this creates for the first time, digital database of oil palm estate and the airborne imagery can also be used for related activities such as oil palm tree inventory and detection of palm diseases. This work serves as the pioneer towards a more frequent application of LiDAR and multispectral data for oil palm plantation in Malaysia.

  20. Significant increase in ecosystem C can be achieved with sustainable forest management in subtropical plantation forests.

    Science.gov (United States)

    Wei, Xiaohua; Blanco, Juan A

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500-2500 trees ha⁻¹. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir--Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr⁻¹, offsetting 1.9% of China's annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products

  1. Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil

    DEFF Research Database (Denmark)

    Ingerslev, Morten; Hansen, Mette; Pedersen, Lars Bo;

    2014-01-01

    Harvest of forest biomass for energy production may lead to export of nutrients from the forest. Recirculation of nutrients from wood chip combustion by ash spreading in forests has been proposed as a means for counteracting the nutrient export. This study was carried out to examine the effect of...... wood chip ash application on soil chemistry in a 44-year-old Norway spruce (Picea abies) plantation on a nutrient-poor soil in Denmark and to investigate the effect of applying different ash types and doses. Soil samples were collected and analyzed 2.5years (3 growing seasons) after ash application....... This study shows that, regardless of ash formulation, preparation or dose, application of wood ash to forest soil has a liming effect in the O-horizon manifested as an increase in CECe, BS and pH. This effect was not seen in the mineral soil within the time frame of this study. At the same time, an...

  2. Potential Biomass Evaluation on Forest Plant Stands In Aceh Province, Indonesia: A Case Study of Forest Product Utilization Permit for Cultivated Forest Area by PT. Acehnusa Indrapuri

    Directory of Open Access Journals (Sweden)

    Dahlan

    2012-12-01

    Full Text Available Development of industrial forest plantation currently has a primary function to produce timber for the fulfillment of the pulp and paper industry raw matter. In times of growing trees plantations have the ability to absorb carbon dioxide gases (CO2 in the atmosphere throught the process of photosynthesis which builds biomass stands and produce oxygen gases (O2. The potency of forest stands biomass and build a model standing stock biomass using the Normalized Difference Vegetation Index (NDVI value from Satellite Imagery was investigated. Types of crops grown in Forest Product Utilization Permit for Cultivated Forest Area in PT.Acehnusa Indrapuri are A.mangium and E.urophylla plantations with area approximately 15,500.59 ha. The results showed the biomass content at the lowest value 16.81 tons per hectare with the NDVI Value of 0.342 whereas the highest content of biomass amounted to 145.750 tons per hectare in NDVI value 0.813. The content of plant biomass of forest stands can be expected by NDVI values using the model equation Y = 250.32 X 2 -15.221X- 3.3623 with R2 of 97.27%.

  3. A new density model of Cryptomeria fortunei plantation

    Institute of Scientific and Technical Information of China (English)

    Jiang Xidian; Huang Langzeng; Chen Baohui

    2006-01-01

    According to the volume increase model of an average individual tree in a plant population and the theory of invariable final output,we put forward a new density model of plant population: V-β=ANβ+B.Here N means the stand density and V stands for average individual tree volume;A,B and β are parameters that change with growth stage.Using the density variation of standard plots of Cryptromeriafortunei plantation to verify the new model,it turns out that this model can well simulate the population density effect law of C.fortunei plantation,and it is markedly better and shows higher accuracy than the commonly used reciprocal model of density effect and secondary-effect model.Let β=1,we can obtain the reciprocal model of density effect,which means the reciprocal model of density effect is only a special case of this new model.

  4. Competition for light and light use efficiency for Acacia mangium and Eucalyptus grandis trees in mono-specific and mixed-species plantations in Brazil

    Science.gov (United States)

    Le Maire, G.; Nouvellon, Y.; Gonçalves, J.; Bouillet, J.; Laclau, J.

    2010-12-01

    Mixed plantations with N-fixing species might be an attractive option for limiting the use of fertilizer in highly productive Eucalyptus plantations. A randomized block design was set up in southern Brazil, including a replacement series and an additive series design, as well as a nitrogen fertilization treatment, and conducted during a full 6 years rotation. The gradient of competition between Eucalyptus and Acacia in this design resulted in very different conditions of growth of Acacia, from totally dominated up to dominant canopies. We used the MAESTRA model to estimate the amount of absorbed photosynthetically active radiation (APAR) at tree level. This model requires the description of the scene and distinct structural variables of the two species, and their evolution with time. The competition for light is analysed by comparing the inter-specific values of APAR during a period of 2 years at the end of the rotation. APAR is further compared to the measured increment in stem wood biomass of the tree, and their ratio is an estimation of the light use efficiency for stemwood production at tree-scale. Variability of these LUE are analysed in respect to the species, the size of the tree, and at plot scale (competition level). Stemwood production was 3400, 3900 and 2400 gDM/m2 while APAR was 1640, 2280 and 2900 MJ/y for the pure Eucalyptus, pure Acacia and 50/50 mixed plantation, respectively, for an average LAI of 3.7, 3.3 and 4.5, respectively. Individual LUE for stemwood was estimated at an average value of 1.72 and 1.41 gDM/MJ/tree for Eucalyptus and Acacia, respectively, and at 0.92 and 0.40 gDM/MJ/tree when they were planted in mixed 50/50 plantations. LUE was highly dependant on tree size for both species. At the plot scale, LUE for stemwood were 2.1 gDM/MJ and 1.75 for Eucalyptus and Acacias, respectively, and 0.85 for the mixed 50/50 plantation. These results suggest that the mixed 50/50 plantation, which absorbed a higher amount of light, produce less

  5. The water and energy exchange of a shaded coffee plantation in the lower montane cloud forest zone of central Veracruz, Mexico

    Science.gov (United States)

    Holwerda, F.; Bruijnzeel, L. A.; Barradas, V.; Cervantes, J.

    2012-12-01

    The water and energy fluxes of a shaded coffee plantation in the lower montane cloud forest (LMCF) zone of central Veracruz, Mexico, were measured over a two-year period (September 2006-August 2008) using the eddy covariance method. Complementary measurements of throughfall and stemflow were made to study rainfall interception. The sum of the observed sensible (H) and latent (λE) heat fluxes was almost 95% of the net radiation (Rn) minus the canopy heat storage fluxes, indicating very good energy balance closure. Monthly means of the mid-day (11:00-15:00 h) Bowen ratio (H/λE) and evaporative fraction (λE/Rn) averaged 0.74 +/- 0.12 and 0.56 +/- 0.05, respectively. Energy partitioning showed distinct seasonal variation, with significantly higher Bowen ratios prevailing during the dry season (0.81 +/- 0.13) compared to the rainy season (0.67 +/- 0.06). The lower evaporation rates during the dry season reflected a combination of lower soil moisture availability and a lower leaf area of the Inga shade trees during this part of the year. Both the eddy covariance, and the throughfall and stemflow measurements showed average wet-canopy evaporation rate to be very low (0.05 mm/h) compared to the corresponding rainfall rate (3.06 mm/h). As a result, and despite the low canopy storage capacity of the coffee plantation (Cm, 0.50 mm), interception was dominated by post-event evaporation of intercepted water rather than by within-event evaporation. Comparing the results for the coffee plantation with interception data from mature and secondary LMCFs in the study area suggests that the conversion of LMCF to shade-coffee may lead to a decrease in interception loss of 8-18% of incident rainfall. This decrease is caused by a three- to seven-fold decrease in Cm due to the lower leaf area and smaller epiphyte biomass of the coffee plantation. Comparing the eddy covariance-based estimate of dry-canopy evaporation for the coffee plantation with sapflow-based estimates of

  6. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    OpenAIRE

    Holly K. Ober; Lucas W. DeGroote

    2014-01-01

    Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantatio...

  7. SOIL FAUNA CHARACTERIZATION IN Eucalyptus spp. PLANTATIONS

    OpenAIRE

    Juliana Garlet; Ervandil Correa Costa; Jardel Boscardin

    2013-01-01

    http://dx.doi.org/10.5902/1980509810545Forest soils provide good conditions for the development and the establishment of soil fauna, manly by the deposition of litter. However, monoculture systems conducted in a single substrate by providing food, can promote the development of certain animal groups over others, causing outbreaks of pest species. The aim of this study was to characterize the soil fauna and its relationship with meteorological variables, in plantations of Eucalyptus spp. This ...

  8. Leaf area estimation from tree allometrics in Eucalyptus globulus plantations

    OpenAIRE

    Fabião, António; J. M. C. Pereira; Tomé, Margarida; Carreiras, J.M.B.; Tomé, José; Pereira, J. S.; David, J. S.

    1997-01-01

    Data from five studies on the relationships between dendrometric measurements and leaf area of Eucalyptus globulus Labill. plantations were pooled and analyzed to develop regression models for the estimation of leaf area of individual trees. The data, collected at two sites in west-central and southwestern Portugal, varied in age from 2 to 19 years and in plant density from 481 to 1560 trees/ha and included both first and second rotation coppice stands. A total of 29 nonlinear reg...

  9. Integrated Bali Cattle Development Model Under Oil Palm Plantation

    OpenAIRE

    Rasali Hakim Matondang; C. Talib

    2015-01-01

    Bali cattle have several advantages such as high fertility and carcass percentage, easy adaptation to the new environment as well. Bali cattle productivity has not been optimal yet. This is due to one of the limitation of feed resources, decreasing of grazing and agricultural land. The aim of this paper is to describe Bali cattle development integrated with oil palm plantations, which is expected to improve productivity and increase Bali cattle population. This integration model is carried ou...

  10. Vanuatu’s largest coconut plantation goes organic

    OpenAIRE

    Paull, John

    2013-01-01

    Vanuatu is a cluster of 83 tropical islands in the Pacific Ocean, 1800 km north east of Australia. Over 80% of the population are engaged in agriculture. In 2012, Vanuatu reported 2664 hectares of organic agriculture but this is set to double. Australia’s leading organic certifier, Biological Farmers of Australia (BFA), reports that Vanuatu’s largest coconut grove, the 1550 hectare Plantation Russet du Vanuatu is converting to organic. Also in conversion to organic is the community grower gro...

  11. Developing Cattle Agribusiness in an Intergrated Coconut Plantation Area

    OpenAIRE

    Kusuma Diwyanto; S Rusdiana; B Wibowo

    2010-01-01

    Developing an integrated coconut beef cattle system could be prospective in view of both technical and economical aspects. The present agribusiness of coconut plantation as monoculture, has not met sufficient farmer’s income, because each hectare of land, only produces equivalent to 2,500,000 rupiahs per year. Constraints such as plant disease, fluctuation price of coconut and the large areas of old plants need to be solved seriously. Integrated coconut-cattle system (CCS) in small holding sc...

  12. Investment appraisal of a poplar plantation aged 42 years

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2013-01-01

    Full Text Available Commercial profitability of poplar cultivation was analyzed in an artificial poplar plantation in Serbia. The aim of this study was to validate the invested financial means in the artificial poplar plantation, on the basis of the analysis of costs and receipts during a 42-year rotation, on alluvial semigley, at a discount rate of 12%. Methods of dynamic investment calculation (net present value - NPV, internal rate of return - IRR, benefit-cost method - B/C and payback period - PBP were used. The investigated plantations were established from Populus x euramericana cl. I-214, with a planting spacing of 6 x 3 m. At the calculation discount rate of 12%, the project for the production cycle of 42 years was not cost-effective from the economic aspect. The discount rate of 6% can be accepted in the studied plot because of the better site (alluvial semigley, but the oldness of the stand is unfavourable. For the studied sample plot, IRR was 5.51 %. B/C at r=12% in the study compartment was 0.24. The analysis shows that PBP is practically unacceptable for the investor at the discount rate of 6%. In practice, it is necessary to improve the position of producers in getting financial means for investment in poplar cultivation, so as to stimulate the establishment of artificial poplar plantations, especially in the private sector (on private land. [Projekat Ministarstva nauke Republike Srbije, br. TR 37008, TR 31041 and Value chain of non-wood forest products and its role in development of forestry sector in Serbia

  13. Plantation Patriarchy and Structural Violence: Women Workers in Sri Lanka

    OpenAIRE

    Kurian, Rachel; Jayawardena, Kumari

    2013-01-01

    markdownabstract__Abstract__ Plantation production began in Sri Lanka in the early 19th century under British colonial rule, when the government provided financial incentives and infrastructural support for the commercialisation and export of agricultural crops in line with promoting laissez-faire capitalism. Motivated by the possibility of making high profits, British entrepreneurs, including several officials, took up the large-scale cultivation of initially coffee, and then subsequently, t...

  14. Energy plantation for solving the crisis of fuel and energy

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, O.P.

    1985-10-01

    Concentrated efforts are required for achieving better social foresty in rural areas of India. There are a large number of tree species that can be considered for energy plantations. Some of the fuel wood plants are described: subabul, eucalyptus, agathi, babul, ber, casuarina, imli, karanji, pardeshibabul, siris, jamun, and neem. Carbohydrate plants contain sugar and starch and serve as the source of energy in the form of food and fuel. The latex of some plants can be processed as fuel oil. (Refs. 29).

  15. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress.

    Science.gov (United States)

    Hennig, Anne; Kleinschmit, Jörg R G; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites. PMID:26042130

  16. Factors affecting the remotely sensed response of coniferous forest plantations

    International Nuclear Information System (INIS)

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response of a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation

  17. Fiscal and Monetary Policy for The Development of Indonesian Plantation

    Directory of Open Access Journals (Sweden)

    Suharyadi Suharyadi

    2011-09-01

    Full Text Available The global monetary crisis in 2007-2008 and the focus of development on climate changesmake it important to promote a healthy economic growth based on the local resources, Theeconomic crisis, which has slowed down the economic growth and has caused job losseswhich result in increasing unemployment and poverty, should alter the focus of Indonesianeconomic development in the future to be based on renewable and sustainable local resources.Indonesia is an agricultural and maritime country so these two aspects should be thecore of the growth. In agricultural culture, plantation sector is the source of sustainable economicgrowth because of its geographical, demographic, and cultural potentials. The problemsin plantation sector are the low growth of areas and productivity as well as its limitedend-products. The research findings indicated that in order to increase areas, there should bea guarantee on investment, interest rate, and little retribution or good governance. To increaseproductivity, we need a guarantee on fertilizer price, interest rate, and wages, as wellas pricing factors to avoid market distortion. This is very important relating to the economicstimulus policy which is essential to revitalize from the economic doom in the future.Keywords: plantation sector, area, productivity, investment, interest rate, and wages

  18. Integrated Bali Cattle Development Model Under Oil Palm Plantation

    Directory of Open Access Journals (Sweden)

    Rasali Hakim Matondang

    2015-09-01

    Full Text Available Bali cattle have several advantages such as high fertility and carcass percentage, easy adaptation to the new environment as well. Bali cattle productivity has not been optimal yet. This is due to one of the limitation of feed resources, decreasing of grazing and agricultural land. The aim of this paper is to describe Bali cattle development integrated with oil palm plantations, which is expected to improve productivity and increase Bali cattle population. This integration model is carried out by raising Bali cattle under oil palm plantation through nucleus estate scheme model or individual farmers estates business. Some of Bali cattle raising systems have been applied in the integration of palm plantation-Bali cattle. One of the intensive systems can increase daily weight gain of 0.8 kg/head, calfcrop of 35% per year and has the potency for industrial development of feed and organic fertilizer. In the semi-intensive system, it can improve the production of oil palm fruit bunches (PFB more than 10%, increase harvested-crop area to 15 ha/farmer and reduce the amount of inorganic fertilizer. The extensive system can produce calfcrop ³70%, improve ³30% of PFB, increase business scale ³13 cows/farmer and reduce weeding costs ³16%. Integrated Bali cattle development may provide positive added value for both, palm oil business and cattle business.

  19. ECONOMIC EVALUATION OF Eucalyptus grandis PLANTATION FOR CELLULOSE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Antonio Donizette de Oliveira

    2008-03-01

    Full Text Available The aims of this research were: to analyze the economic feasibility of planting eucalyptus for producing wood pulp,considering various site index and two spacings; to analyze the economic effects regarding the profitability of the forest activity indifferent distances from the industry and changes on discount rate, wood price, transportation costs, minimum profitable diameter oflogs and the length of the logs. A biometric model for making wood volume prognosis was developed, using data of a trial ofEucalyptus grandis stands 19 and 103 months old. The prognosis started at the age zero, considering logs of 2.5 and 6.0 m of lenghtand the minimum diameter varying from 4 to 10 cm, in intervals of 2 cm. Net Present Worth (NPW was used as the economic decisioncriterium, considering an infinite horizon. The main conclusions were: reducing the minimum profitable diameter and the length ofthe logs are good strategies to increase wood utilization and profit; plantations located in less productive lands are economicallyunfeasible; the cost of transportation has significant effect on the profitability of the forest activity and must be analyzed carefully atthe moment of defining the location of new plantations; small variations on wood sales price may cause big alterations on theprofitability of the forest activity, suggesting that the improvement of the wood quality together with other decisions that may increasewood price are alternatives that may render the plantations in less productive areas profitable.

  20. THE WATER USE BY FOREST PLANTATIONS – A REVIEW

    Directory of Open Access Journals (Sweden)

    Silvana Lucia Caldato

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810562This review aims to present some of the main results and infer about the current state-of-the-art of the controversy related to the water use by forest plantations. Several studies have been carried out in this area in different regions, mainly in Australia, South Africa, Europe, India and Brazil. However, according to authors, the controversy persists and it is necessary that the scientific results are understood by the community in order to avoid the predominance of myths and half-truths. In this way, the current review intends to summarize some scientific results concerning the main hydrologic aspects of the plantations (interception, transpiration and catchment water balance, the relationship between the high productivity and the water use efficiency, and the importance of the establishment of forest management plan focused on the river watershed scale, in order to contribute to hydrological sustainability.  The results coincide that the relationship between the forest plantations and the water depends on the region, species, environmental conditions  and management practices on the watershed scale.

  1. Contributions of a global network of tree diversity experiments to sustainable forest plantations.

    Science.gov (United States)

    Verheyen, Kris; Vanhellemont, Margot; Auge, Harald; Baeten, Lander; Baraloto, Christopher; Barsoum, Nadia; Bilodeau-Gauthier, Simon; Bruelheide, Helge; Castagneyrol, Bastien; Godbold, Douglas; Haase, Josephine; Hector, Andy; Jactel, Hervé; Koricheva, Julia; Loreau, Michel; Mereu, Simone; Messier, Christian; Muys, Bart; Nolet, Philippe; Paquette, Alain; Parker, John; Perring, Mike; Ponette, Quentin; Potvin, Catherine; Reich, Peter; Smith, Andy; Weih, Martin; Scherer-Lorenzen, Michael

    2016-02-01

    The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network. PMID:26264716

  2. Conservation Value of Forest Plantations: A Study of Four Timber Species in Sri Lanka

    Directory of Open Access Journals (Sweden)

    M. R. Wijesinghe

    2012-05-01

    Full Text Available This paper assesses the potential of forest plantations in Sri Lanka consisting of teak, mahoganyand two species of eucalyptus, to facilitate the conservation of biodiversity using two taxonomic groups,the plants and birds. Their diversity in plantations at a harvestable age were compared with that of anatural forest. Enumerations of plants and dbh/height measurements were conducted in quadrates, whileavifauna was recorded along transects. Results show that plantation forests supported a reasonably richcommunity of both plants and birds, including natives and endemics. A large proportion of species werecommon to both plantations and natural forests indicating that plantations hold a subset of forest species.The presence of plants of various height and girth classes together with the high diversity and evennessvalues indicate that, although timber plantations are initially established as mono-cultivations, theyfacilitate the colonization of additional species. These findings thus demonstrate that forest plantationscould make a significant contribution towards biodiversity conservation.

  3. Comparison of insect biodiversity between organic and conventional plantations in Kodagu, Karnataka, India

    Directory of Open Access Journals (Sweden)

    S. Mone

    2014-08-01

    Full Text Available We undertook a comparative analysis of ground insects and fruit eating butterflies on 29 different plantations in Kodagu District of Karnataka which is one of the rich biodiversity zones of the Western Ghats. These included organic and conventional coffee and cardamom plantations using different levels of chemical fertilizers and pesticides. A total number of 457 ground insect species were collected using pit-fall traps which included 92 species of ants and 123 species of beetles, among other insect taxa that we measured. Similarly, 25 species of butterflies belonging to the family Nymphalidae were collected using bait traps. We found a clear negative effect on the ground insect species diversity (Shannon index and evenness (Shannon evenness index in pesticide treated plantations as compared to the organic plantations. A similar negative effect was observed for butterfly diversity in plantations using pesticides. Our results corroborate the value of organic plantations in supporting higher levels of biodiversity.

  4. Policy and project implementation in the field of biomass energy in England. Report of a study trip to England. Final report

    International Nuclear Information System (INIS)

    May 1998 a group of Dutch experts in the field of biomass energy visited several biomass processing plants and a biomass plantation in England to gain insight and learn from experiences of projects and the policy with respect to biomass in the United Kingdom. Also a seminar was organized to discuss the British and Dutch policy with regard to biomass energy. The British policy resulted in a relatively successful market for renewable energy, in particular based on the Non Fossil Fuel Obligation (NFFO), a regulating competition by means of which a price convergence has been realized. The essence of NFFO that it makes projects 'bankable' by offering a guaranteed sellback. Only a limited number of biomass installations is in operation in England. In the next few years some biomass projects will be implemented (50-100 MWe) in which short rotation crops will play an important part. 50 refs

  5. Effect of Management Practices on Seasonal Dynamics of Organic Carbon in Soils Under Bamboo Plantations

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guo-Mo; XU Jian-Ming; JIANG Pei-Kun

    2006-01-01

    Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to quantify seasonal dynamics in SOC for bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) stands. The results with IM compared to CM showed large decreases in total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC), and the MBC/TOC ratio in the soils. With all IM plots in the 0-20 cm depth across sampling periods,average decreases compared with CM were: TOC, 12.1%; MBC, 26.1%; WSOC, 29.3%; the MBC/TOC ratio, 16.1%;and the WSOC/TOC ratio, 20.0%. Due to seasonal changes of climate, seasonal variations were observed in MBC and WSOC. Soil MBC in the 0-20 cm depth in September compared to May were 122.9% greater for CM and 57.6% greater for IM. However, due primarily to soil temperature, soil MBC was higher during the July to November period, whereas because of soil moisture, WSOC was lower in July and January. This study revealed that intensive management in bamboo plantations depleted the soil C pool; therefore, soil quality with IM should be improved through application of organic manures.

  6. SILVICULTURE AND ECONOMIC EVALUATION OF EUCALYPT PLANTATIONS IN THE SOUTHERN US

    Directory of Open Access Journals (Sweden)

    Derek Dougherty,

    2012-02-01

    Full Text Available Demand for hardwood from plantation-grown stands for pulp and bio-energy in the southern US is more than 90 million tons per year and is increasing. In the specific case of bio-energy and pulp, demand for biomass from eucalypts could approach 20 million tons/year by the year 2022. Fast growing species and hybrids of Eucalyptus are being evaluated to partially fill this demand gap. Though widely grown in a number of countries for pulp as well as for bio-energy, eucalypts in the southern US have not been extensively researched. Initial growth rates of 18 to 36 green tons/ha/year on rotation lengths of 6 to 8 years are possible. Current estimated costs for energy production from eucalypts in the Southern US are estimated at $3.10 to $3.49 per MBtu, where landowner required return rates on reforestation capital invested range from 6 to 14 percent. Eucalypts as a bio-energy feedstock can be competitive with coal in cost per BTU in the southern US.

  7. Economics of short-rotation woody crops plantation at Amana, Iowa

    International Nuclear Information System (INIS)

    This paper reports on a 21 ha energy plantation of silver maple (Acer saccharinum) established on an old-field bottomland site near Amana, IA. The project started in 1988 and sponsored by the Oak Ridge National Laboratory, (US Dept. of Energy), is a 6 year cooperative effort of the Amana Society, Department of Forestry, ISU, and the Iowa Dept. of Natural Resources. The objective is to accurately estimate biomass yields and costs of growing wood for energy in a short-rotation, close spacing system under operational conditions. Research is being conducted on spacing rotation, fertilization, groundwater quality, and improved seedlings. A detailed cost accounting system was established to accurately record time and cost data by activity. Establishment costs (rent, site preparation, tree planting) and initial (2 year) cultural management costs (herbicide and mowing) total $1,304/ha. Cost proportions for rent, site preparation, and planting are 11%, 18.2%, and 59.4%, respectively. Cultural management costs incurred through 1990 total $148/ha

  8. Productivity and carbon allocation in pure and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil

    Science.gov (United States)

    Nouvellon, Y.; Laclau, J.; Epron, D.; Le Maire, G.; Gonçalves, J.; Bouillet, J.

    2010-12-01

    Nitrogen fertilizer inputs are required in fast growing eucalypt plantations to meet tree requirements, and to compensate for the large nitrogen outputs associated with wood exportation at the end of the short rotations. Due to the economic and potential environmental cost of fertilizers, mixed-species plantations (MSP) with N-fixing species (NFS) such as Acacia sp. might be an attractive option to improve the long-term soil N (and possibly soil carbon) status. In such MSP, increases in N availability may influence the productivity and C partitioning of the non-N fixing species. To investigate the effects of NFS on nutrient cycling, wood production, C sequestration, and soil fertility, a randomized block design including monocultures of Eucalyptus grandis (100%E) and Acacia mangium (100%A), and mixtures of these species (50%E:50%A) was set up in southern Brazil. Our specific goals in the present study were to compare the production and C allocation patterns of these plantations, during the two last years of the 6-yr rotation. We hypothesized that 1) a large part of the differences in wood production between monospecific stands would be explained by differences in C allocation; and 2) the C allocation patterns of each species would be strongly modified in mixed- species plantations compared to mono-specific plantations due to inter-specific interactions and shifts in soil N status. Biomass increase (growth, G) in the different plant compartments was assessed by means of inventories and allometric relationships. Total aboveground net primary productivity (ANPP), and the productivity of each aboveground plant compartment were estimated from measurements of G and litterfall (L) (ANPP=G+L). Total belowground C allocations (TBCA) were estimated using a mass-balance approach as soil CO2 efflux C minus the C input from aboveground litter plus changes in the C stored in roots, in the forest floor litter layer, and in soil. Over this first rotation, mixing NFS with eucalypt

  9. Mid-infrared spectroscopy for rapid assessment of soil properties after land use change from pastures to Eucalyptus globulus plantations.

    Science.gov (United States)

    Madhavan, Dinesh B; Kitching, Matt; Mendham, Daniel S; Weston, Christopher J; Baker, Thomas G

    2016-06-15

    There is an increasing demand for rapid and cost effective techniques to accurately measure the effects of land use change on soil properties. This study evaluated the ability of mid-infrared spectroscopy (MIRS) coupled with partial least squares regression (PLSR) to rapidly predict soil properties affected by land use change from agriculture (mainly pasture) to Eucalyptus globulus plantations in south-western Australia. We measured total organic carbon (TOC), total nitrogen (Total N), TOC/Total N (C/N ratio), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and total phosphorus (Total P). The PLSR calibration models were developed using mid-infrared (MIR) spectra (4000 to 450 cm(-1)) and square root transformed measured soil data (n = 180) from 23 paired pasture and E. globulus plantation sites representing the soils and climate of E. globulus plantation estates in south-western Australia. The calibration models for TOC, Total N, C/N ratio and Total P showed excellent correlations between measured and predicted data with coefficient of determination (R(2)) exceeding 0.91 and minimum root-mean-square error (RMSE) of calibration [TOC (R(2) = 0.95, RMSE = 0.36), Total N (R(2) = 0.96, RMSE = 0.10), C/N ratio (R(2) = 0.92, RMSE = 0.14) and Total P (R(2) = 0.91, RMSE = 0.06)]. The calibration models had reasonable predictions for MBC (R(2) = 0.66, RMSE = 0.07) and MBN (R(2) = 0.63, RMSE = 0.06). The calibrated models were validated using soils from 8 independent paired pasture and E. globulus sites (n = 64). The validated predictions were excellent for TOC (R(2) = 0.92, RMSE = 0.40) and Total N (R(2) = 0.91, RMSE = 0.12), but less so for C/N ratio (R(2) = 0.80, RMSE = 0.35), MBC (R(2) = 0.70, RMSE = 0.08) and Total P (R(2) = 0.75, RMSE = 0.12). The results demonstrate the potential of MIRS-PLSR to rapidly, accurately and simultaneously determine several properties in land use change affected soils. PMID:27043775

  10. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  11. Energy use of biomass

    OpenAIRE

    HOLEČKOVÁ, Michaela

    2010-01-01

    The aim of this bachelor thesis is the research of different types of biomass, description of the various types of methods and technologies for energy usage of biomass and the mapping of large power plant units in the Czech Republic. The first part of this thesis deals with the definition of biomass, its distribution and the description of basic essential attributes describing its composition. The downstream part of this work is focused on the technologies of gaining energy out of biomass or ...

  12. Statistical models related to accumulated biomass of Hopea odorata in three soil series of ultisols

    Science.gov (United States)

    Maarof, Fauziah; Fauzi, Mohd Adi Faiz Ahmad; Mohamed, Shamsiah

    2014-07-01

    This paper presents results on statistical distribution fitting and polynomial regression on accumulated biomass of seven year-old tree species Hopea odorata, which were planted in three different soil series of ultisols, namely Rengggam, Baling and Kuala Berang. Data were collected from a study conducted in a Hopea odorata plantation at FRIM Research Station, Segamat, Johor. Thirty tree stands in each soil series were randomly sampled to measure their growth performance and accumulated biomass. The Kolmogorov-Smirnov and Anderson-Darling tests indicated that for all tree stands, diameter, height, above ground (stem, branch, leaves) and below ground (root) biomass were found to be best fitted with the four parameters Johnson's System Bounded (SB) distributions. Then, for each soil series, a polynomial regression model was estimated to describe the relationship between total accumulated biomass and functions of tree diameter and height.

  13. Are Mixed Tropical Tree Plantations More Resistant to Drought than Monocultures?

    OpenAIRE

    Norbert Kunert; Alida Mercado Cárdenas

    2015-01-01

    Tropical tree plantations usually consist of a single exotic fast growing species, but recent research describes positive effects on ecosystem functions from mixed tropical tree plantations. In this review, we present the current knowledge of drought resistance of tropical mixed species plantations and summarize preliminary evidence from a tree biodiversity experiment in Panama. Converting mono-specific stands into mixed ones may improve stand stability and might reduce increasing abiotic and...

  14. Les communautés bulu contre la plantation industrielle HEVECAM au Cameroun

    OpenAIRE

    Gerber, Julien-François

    2007-01-01

    In 1975 the Kribi region (Southern Cameroon) became host of the rubber plantation HEVECAM, the third largest employer in Cameroon. The establishment of the plantation has been preceded by the expropriation of customary land and by the destruction of the rainforest used by local populations. As a result, conflicts – mostly latent – pitting neighbouring Bulu communities against the plantation have occurred, especially during the last few years. Drawing on fieldwork data as well as on anthropol...

  15. Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations

    Directory of Open Access Journals (Sweden)

    Dileep Kumar M.

    2014-10-01

    Full Text Available Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enforcement in Malaysia, have been living inremotely located inhabitations engaging in ‘dirty, dangerous and distance’ wise oil palm plantations. Though thelarger oil palm plantation companies ensure minimum living and working conditions for the foreign workers,vastly located small holding plantations never follow such minimum and fair working environment. Theseconditions to be correlated with the term “precarious working conditions’ in small holding oil palm plantations.Due to lack of availability of the locals to engage in oil palm work, the plantations have to depend on foreignworkers do all these ‘dirty, dangerous and distance’ workers in oil palm plantations. Except a few literatureavailable from Amnesty international and local NGOs, there is less evidence to prove the existence of suchexploitative working conditions in oil palm plantations. In order to explore precarious working conditions in oilpalm plantations thus a qualitative research study is conducted in the Sabah region of the Eastern Part ofMalaysia. The study followed, triangulation method through interviews with the migrated foreign workers, (legaland illegal, focus group discussions and Delphi technique with the identification of experts in the field to arriveat the factors and categories related to the theme ‘precarious working conditions’ in oil palm plantations. Theoutcome of the study fixes the variables that need to be concentrated for a higher level research

  16. Mangrove Plantation as a Tourist Attraction in San Juan Batangas, Philippines

    OpenAIRE

    Sarah Jane M. Miranda; Joy O. Reyes; Anne Tan; Letlet C. Villanueva; Sarah Mae F. Zara; Amada G. Banaag; Renato Rosales

    2013-01-01

    This study about the Mangrove Plantation in San Juan, Batangas, Philippines aimed to identify the potential of mangrove plantation as a tourist attraction; to describe the status of mangroves, the programs offered by the government; to determine the level of support given by the government; to determine the benefits of the mangroves; and to propose an action plan that will develop the mangrove plantation as a tourist attraction. The study used descriptive method in order to determine the need...

  17. Way to Measure the Concept Precarious Working Conditions in Oil Palm Plantations

    OpenAIRE

    Dileep Kumar M.; Noor Azizi Ismail; Normala S Govindarajo

    2014-01-01

    Oil palm plantations are the backbone of the Malaysian economy, since day immemorial. When you look intothe past, the workers in the oil palm plantations were dominated by Indian and Chinese communities. Later dueto the sigma associate with oil palm plantations jobs viz., dirty, dangerous and distance, the Indians and Chineseworkers moved away from the oil palm work and they were replaced by Indonesians and Philippines. Theseforeign workers whom having the legal and illegal status under enfor...

  18. Prospects of Applying Feed Processing Technologies Based on Industrial Plantation

    Directory of Open Access Journals (Sweden)

    Simon Petrus Ginting

    2012-06-01

    Full Text Available The potency of plantation sectors (palm oil, sugar cane and cacao as alternative feed resources for ruminants has been acknowledged since 20 – 25 years ago. However, the level of utilization of these feeds in small ruminant production system has been very low and sporadic. The typical chemical and physical characteristics of most of those feedstuffs required some steps of processing in order to improve their nutritional quality and to ease their handling. Small ruminants, like sheep and goats have relatively higher metabolic energy requirement per kg BW and anatomically have lower gut capacity to process lignocelluose materials compared to large ruminants. It is, therefore, these animals nutritionally face more constraints in handling lignocellulose and bulky materials mostly found in industrial by products or crop-residues from plantations. Physical processes (chopping, phyiscal separation, hydrothermal, chemical processes (ammoniation, hydrolyses and oxidative treatments and bio-conversions (fermentation, ensiling have been recommended as alternative technologies in maximizing the utilization of those feedstuffs for small ruminant animals. The principal mechanisms of those treatments are: (i breaking the linkages between structural carbohydrate and lignin so that it could be easily digested by the animal enzyme systems and (ii preserving the material from being spoilage due to its high moisture content or for feed stocking purposes. Priorities for choosing the most effective processing technology for implementation or adoption is depent largely on the scale of feed production. Ammoniation, chopping, physical separation, ensiling or bio-conversion are several technologies mostly recommended for small scale operation in situ. These alternative technologies should be able to be adopted by small-holders living around the plantation area. The commercial or large scale feed production could be implemented by the plantation industry by giving high

  19. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich

    2015-10-01

    Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. PMID:25980371

  20. Proteins in biomass streams

    NARCIS (Netherlands)

    Mulder, W.J.

    2010-01-01

    The focus of this study is to give an overview of traditional and new biomasses and biomass streams that contain proteins. When information was available, the differences in molecular structure and physical and chemical properties for the different proteins is given. For optimal biomass use, isolati

  1. More Trees, More Poverty? The Socioeconomic Effects of Tree Plantations in Chile, 2001-2011

    Science.gov (United States)

    Andersson, Krister; Lawrence, Duncan; Zavaleta, Jennifer; Guariguata, Manuel R.

    2016-01-01

    Tree plantations play a controversial role in many nations' efforts to balance goals for economic development, ecological conservation, and social justice. This paper seeks to contribute to this debate by analyzing the socioeconomic impact of such plantations. We focus our study on Chile, a country that has experienced extraordinary growth of industrial tree plantations. Our analysis draws on a unique dataset with longitudinal observations collected in 180 municipal territories during 2001-2011. Employing panel data regression techniques, we find that growth in plantation area is associated with higher than average rates of poverty during this period.

  2. Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images

    Directory of Open Access Journals (Sweden)

    Weili Kou

    2015-01-01

    Full Text Available Accurate and updated finer resolution maps of rubber plantations and stand ages are needed to understand and assess the impacts of rubber plantations on regional ecosystem processes. This study presented a simple method for mapping rubber plantation areas and their stand ages by integration of PALSAR 50-m mosaic images and multi-temporal Landsat TM/ETM+ images. The L-band PALSAR 50-m mosaic images were used to map forests (including both natural forests and rubber trees and non-forests. For those PALSAR-based forest pixels, we analyzed the multi-temporal Landsat TM/ETM+ images from 2000 to 2009. We first studied phenological signatures of deciduous rubber plantations (defoliation and foliation and natural forests through analysis of surface reflectance, Normal Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, and Land Surface Water Index (LSWI and generated a map of rubber plantations in 2009. We then analyzed phenological signatures of rubber plantations with different stand ages and generated a map, in 2009, of rubber plantation stand ages (≤5, 6–10, >10 years-old based on multi-temporal Landsat images. The resultant maps clearly illustrated how rubber plantations have expanded into the mountains in the study area over the years. The results in this study demonstrate the potential of integrating microwave (e.g., PALSAR and optical remote sensing in the characterization of rubber plantations and their expansion over time.

  3. Biomass rural economy

    Energy Technology Data Exchange (ETDEWEB)

    Lukehurst, C.

    1993-12-31

    The development strategy of wood fuel in the United Kingdom aims at reducing CO{sub 2} and providing farmers with a new income source. Wood fuel will be produced by poplar and willow plantations or by traditional coppice. For example, two wood fired heating schemes will be discussed. Wood fuel can provide a useful alternative to the set-aside land and can have wider implications for the local rural economy. (Authors). 1 fig.

  4. Effect of pruning history on growth and dry mass partitioning of jatropha on a plantation site in Madagascar

    International Nuclear Information System (INIS)

    While technical aspects of oil processing of seeds of jatropha are under intensive investigation, comparably little is known about the performance of jatropha in the field. We investigated the effects of water availability (rainfed versus irrigated) and pruning-induced differences in plant stature on growth, biomass partitioning, and canopy size at a plantation site in Madagascar in 2010. Plants of different pruning types differed in trunk height (43 versus 29 cm) and primary branches total length (171 versus 310 cm). The two pruning types had effects on dry mass formation and leaf area projection (LAP) during the vegetation period. Trees which had a shorter trunk and longer lateral branches produced more biomass and had a higher LAP. Total dry mass formation varied from 489 to 912 g m−2 and LAP from 3.26 to 7.37. Total aboveground biomass increased from 2.3 ± 0.5 to 4.89 ± 1.4 kg tree−1 and from 4.6 ± 1.8 to 8.9 ± 1.0 kg tree−1 for the pruning types with shorter and longer lateral branches, respectively. Growth of twigs and leaves was positively correlated with total length of branches. Relative dry mass allocation to branches, twigs and leaves, length of twigs per cm of branches and specific leaf area (13.57 ± 0.72 m2 kg−1) were not affected by pruning and water supply. Trees with shorter branches had higher LAD. Results indicate that pruning type should be considered as a management tool to optimize biomass production. Detailed studies on effects of canopy size and shape on radiation interception and growth are required to improve the productivity of jatropha. -- Highlights: ▶ Correlation between branch length and newly formed twigs and leaves. ▶ Comparison of LAI and leaf area density in the field. ▶ Twigs per unit length of branches.

  5. Silvicultural manipulation and site effect on above and belowground biomass equations for young Pinus radiata

    International Nuclear Information System (INIS)

    There is little understanding of how silvicultural treatments, during the early stages of tree development, affect allometric relationships. We developed and compared stem, branch, foliage, coarse and fine root biomass, and leaf area estimation equations, for four-year-old genetically improved radiata pine trees grown on three contrasting soil-site conditions. At each site, selected trees were destructively sampled from a control (shovel planted, no weed control, fertilized with 2 g of boron), a shovel planted + weed control (2 first years) + complete fertilization (nitrogen + phosphorus + boron 2 first years + potassium 2nd year), and a soil tillage (subsoil at 60 cm) + weed control (first 2 years) + complete fertilization treatment. Tissues were separated into foliage, branch, stem, fine and coarse roots (>2 mm). Regression equations for each tree biomass tissue versus leaf area were fit for each site and compared among treatments and sites with the same genetic material. Our results indicated that individual tree biomasses for young plantations are affected by silvicultural treatment and site growing conditions. Higher variability in estimates was found for foliage and branches due to the ephemeral nature of these components. Stem biomass equations vary less, but differences in biomass equations were found among sites and treatments. Coarse root biomass estimates were variable but less than expected, considering the gradient among sites. Similar to stem biomass, a simple positive general linear relationship between root collar diameter, or diameter at breast height with coarse roots biomass was developed across sites and treatments.

  6. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  7. Oil palm biomass as a sustainable energy source: A Malaysian case study

    International Nuclear Information System (INIS)

    It has been widely accepted worldwide that global warming is by far the greatest threat and challenge in the new millennium. In order to stop global warming and to promote sustainable development, renewable energy is a perfect solution to achieve both targets. Presently million hectares of land in Malaysia is occupied with oil palm plantation generating huge quantities of biomass. In this context, biomass from oil palm industries appears to be a very promising alternative as a source of raw materials including renewable energy in Malaysia. Thus, this paper aims to present current scenario of biomass in Malaysia covering issues on availability and sustainability of feedstock as well as current and possible utilization of oil palm biomass. This paper will also discuss feasibility of some biomass conversion technologies and some ongoing projects in Malaysia related to utilization of oil palm biomass as a source of renewable energy. Based on the findings presented, it is definitely clear that Malaysia has position herself in the right path to utilize biomass as a source of renewable energy and this can act as an example to other countries in the world that has huge biomass feedstock. (author)

  8. Disaster risk assessment at Roburnia Plantation, Mpumalanga, South Africa

    Directory of Open Access Journals (Sweden)

    Rudzani A. Makhado

    2013-03-01

    Full Text Available This study reports about disaster risk assessment undertaken at Roburnia Plantation, Mpumalanga Province, South Africa. Both quantitative and qualitative approaches were followed to collect data. A total of eight experienced foresters and fire fighters were purposively sampled for interview at Roburnia Plantation. A questionnaire survey was also used to collect the data. Risk levels were quantified using the risks equations of Wisner et al. (2004 and the United Nations International Strategy for Disaster Reduction (UNISDR 2002. Data were analysed using descriptive and inferential statistics. Analysis of variance (ANOVA, single factor was also applied. This study found that Roburnia Plantation is highly exposed to fire risks. The mean (± s.d. output from the Wisner risk equation shows that fire is the highest risk at 7.7 ± 0.3, followed by harsh weather conditions at 5.6 ± 0.4 and least by tree diseases, pests and pathogens at 2.3 ± 0.2. Similarly, the mean (± s.d. output from the UNISDR risk equation also shows that fire is the highest risk at 2.9 ± 0.2, followed by harsh weather conditions at 2.2 ± 0.3 and least by tree diseases, pests and pathogens at 1.3 ± 0.2. There was no significant deference in the risk analysis outputs (p = 0.13. This study also found that the number of fire incidents were low during summer, but increased during winter and spring. This variation is mainly due to a converse relationship with rainfall, because the availability of rain moistens the area as well as the fuel. When the area and fuel is moist, fire incidents are reduced, but they increase with a decrease in fuel moisture.

  9. Estimating productivity of tropical forest plantations by climatic factors

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, D.

    1996-12-31

    This study presents an alternative method of estimating wood production at regional/global levels from tropical plantations based on climatic variables. A generic model for estimating potential yield in tropical plantations was formulated. The model was developed for teak (Tectona grandis L. F.) as a case study. Available data of teak sample plots from India, Myanmar, Indonesia, Nigeria and Ivory Coast, consisting of 153 plots distributed over 38 meteorological stations were used. A new base age invariant site index function was developed and the site index of each plot was estimated. The mean annual volume increment (MAI) of each plot from existing yield tables was then interpolated. Treating MAI at 50 years (rotation age) as potential yield of teak, a model was constructed which could explain about 59% variance of the potential yield. Models constructed for estimating the maximum MAI and the site index of teak explained the variability up to 61% and 57% respectively. The models underestimated the productivity of teak in Indonesia, Nigeria and Ivory Coast. The rainfall and the relative humidity have been identified as the most important climatic variables influencing the growth of teak. The length of the growing season and the temperature of the warmest month of the growing season were found significant in the models. The temperature and the day length (sunshine) have not been found to be the limiting factors for the growth of teak. However, the maximum temperature beyond a certain upper limit has a negative effect on growth. The study indicates that this upper limit is around 33 deg C for teak. The models could be used to forecast the potential yield of the existing as well as planned teak plantations in the tropical region. 109 refs, 15 figs, 11 tabs

  10. Urban gardens promote bee foraging over natural habitats and plantations.

    Science.gov (United States)

    Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A; Klein, Alexandra-Maria; Leonhardt, Sara D

    2016-03-01

    Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness. PMID:26848387

  11. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    Science.gov (United States)

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and

  12. Software Development Of Sugar Cane Plantation And Harvesting Management

    International Nuclear Information System (INIS)

    This software is a management system based on database-driven computer software application. It is intended to improve the quality of sugar cane through increased efficiency in managing, harvesting and transporting of sugar cane, as part of a sugar factory operation. The software was developed using the Borland Delphi development platform, with database manipulation using Microsoft Access. The software is intended for Personal Computer with Windows 95 (or later) installed. The application has been tested with acceptable result and can be used in Sragi Sugar Factory's related activities; namely sugar cane plantation management, harvesting and transporting of sugar cane, payment process and other related administrative processes

  13. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria

    International Nuclear Information System (INIS)

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 x 103 ha (kilohectare, or kha) and 200 x kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125,561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. 9 tabs., 44 refs

  14. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria.

    Science.gov (United States)

    Isichei, A O; Muoghalu, J I; Akeredolu, F A; Afolabi, O A

    1995-01-01

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 10(3) ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. PMID:24197951

  15. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L-1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  16. Short-rotation eucalypt plantations in Brazil: Social and environmental issues

    Energy Technology Data Exchange (ETDEWEB)

    Couto, L. [Universidade Federal de Vicosa, Minas Gerais (Brasil). Dept. de Engenharia Florestal; Betters, D.R. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Forest Sciences

    1995-02-01

    This report presents an overview of the historical and current legislative, social, and environmental aspects of the establishment of large-scale eucalypt plantations in Brazil. The report consolidates the vast experience and knowledge relating to these forest plantation systems and highlights lessons learned and new trends. The overview should prove useful to those interested in comparing or beginning similar endeavors.

  17. Age of oil palm plantations causes a strong change in surface biophysical variables

    Science.gov (United States)

    Sabajo, Clifton; le Maire, Guerric; Knohl, Alexander

    2016-04-01

    Over the last decades, Indonesia has experienced dramatic land transformations with an expansion of oil palm plantations at the expense of tropical forests. As vegetation is a modifier of the climate near the ground these large-scale land transformations are expected to have major impacts on the surface biophysical variables i.e. surface temperature, albedo, and vegetation indices, e.g. the NDVI. Remote sensing data are needed to assess such changes at regional scale. We used 2 Landsat images from Jambi Province in Sumatra/Indonesia covering a chronosequence of oil palm plantations to study the 20 - 25 years life cycle of oil palm plantations and its relation with biophysical variables. Our results show large differences between the surface temperature of young oil palm plantations and forest (up to 9.5 ± 1.5 °C) indicating that the surface temperature is raised substantially after the establishment of oil palm plantations following the removal of forests. During the oil palm plantation lifecycle the surface temperature differences gradually decreases and approaches zero around an oil palm plantation age of 10 years. Similarly, NDVI increases and the albedo decreases approaching typical values of forests. Our results show that in order to assess the full climate effects of oil palm expansion biophysical processes play an important role and the full life cycle of oil palm plantations need to be considered.

  18. Productivity and nitrogen use of tea plantations in relation to age and genotype

    NARCIS (Netherlands)

    Kamau, D.M.; Spiertz, J.H.J.; Oenema, O.; Owuor, P.O.

    2008-01-01

    Lack of science-based knowledge on responses of tea bushes to nitrogen (N) in ageing tea plantations hampers the development of ecologically sound and economically profitable N-management strategies. It is hypothesized that ageing of tea plantations lowers productivity and weakens the yield response

  19. Gender and plantation labour in Africa : the story of tea pluckers' struggles in Cameroon

    NARCIS (Netherlands)

    Konings, P.J.J.

    2012-01-01

    This book explores the relationship between plantation labour and gender in Africa, particularly Cameroon. It demonstrates that the introduction of plantation labour during colonial rule has had significant consequences for gender roles and relations within and beyond the capitalist labour process.

  20. Bird community comparisons of four plantations and conservation concerns in South China.

    Science.gov (United States)

    Zou, Fasheng; Yang, Qiongfang; Lin, Yongbiao; Xu, Guoliang; Greenberg, Russell

    2014-01-01

    Plantations of non-native, fast-growing trees are increasing in the tropics and subtropics, perhaps with negative consequences for the native avifauna. We studied bird diversity in 4 types of plantations in South China to determine which plantation types are especially detrimental, and compared our findings with studies in nearby natural forests to assess the magnitude of the negative impact. A total of 57 species was recorded. The mean capture rate of understory birds was 1.7 individuals 100-net-h(-1). Bird richness and capture rate were lower in plantations than in nearby natural forests. Babblers (Timaliidae), primarily forest-dependent species in South China, were particularly under-represented in plantations. Species richness, composition and bird density, particularly of understory birds, differed between plantation types. Plantations of Schima, which is native to South China, had the highest species richness according to point count data. Plantations of Acacia (non-native) supported the highest understory species richness and produced the highest capture rate of understory birds, probably because of their complex structure and high arthropod abundance. If bird diversity is to be considered, we strongly recommend that future re-afforestation projects in South China should, as far as possible, use mixed native tree species, and especially Schima, ahead of the other species. PMID:24447665

  1. Tree Plantation Systems Influence Nitrogen Retention and the Abundance of Nitrogen Functional Genes in the Solomon Islands

    OpenAIRE

    Reverchon, Frédérique; Bai, Shahla H.; Liu, Xian; Blumfield, Timothy J.

    2015-01-01

    Tree mono-plantations are susceptible to soil nutrient impoverishment and mixed species plantations have been proposed as a way of maintaining soil fertility while enhancing biodiversity. In the Solomon Islands, mixed species plantations where teak (Tectona grandis) is inter-planted with a local tree species (Flueggea flexuosa) have been used as an alternative to teak mono-plantations and are expected to increase soil microbial diversity and modify microbial biogeochemical processes. In this ...

  2. Development of a Compatible Taper Function and Stand-Level Merchantable Volume Model for Chinese Fir Plantations

    OpenAIRE

    Tang, Xiaolu; Pérez-Cruzado, César; Fehrmann, Lutz; Álvarez-González, Juan Gabriel; Lu, Yuanchang; Kleinn, Christoph

    2016-01-01

    Chinese fir (Cunninghamia lanceolata [Lamb.] Hook) is one of the most important plantation tree species in China with good timber quality and fast growth. It covers an area of 8.54 million hectare, which corresponds to 21% of the total plantation area and 32% of total plantation volume in China. With the increasing market demand, an accurate estimation and prediction of merchantable volume at tree- and stand-level is becoming important for plantation owners. Although there are many studies on...

  3. Biomass production of young lodgepole pine (Pinus contorta var. latifolia stands in Latvia

    Directory of Open Access Journals (Sweden)

    Jansons A

    2013-01-01

    Full Text Available Biomass as a source of renewable energy is gaining an increasing importance in the context of emission targets set by the European Union. Large areas of abandoned agricultural land with different soils are potentially available for establishment of biomass plantations in the Baltic states. Considering soil and climatic requirements as well as traits characteristic for lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm and the scarcity of published knowledge, we assessed the above-ground biomass of Pinus contorta in comparison to that of native Scots pine (Pinus sylvestris L. and factors affecting biomass production. Data were collected in 3 experimental trials, located in two sites in central part of Latvia: Zvirgzde and Kuldiga (56°41’ N, 24°28’ E and 57°03’ N, 21°57’ E, respectively. Trials were established with density 5000 tree ha-1, using seed material from Canada (50°08’-60°15’ N, 116°25’-132°50’ W and two Pinus contorta stands with unknown origin growing in Latvia. Results reveal that absolute dry aboveground biomass of Pinus contorta reaches 114 ± 6.4 t ha-1 at age 16 on a fertile former arable land, 48 ± 3.6 and 94 ± 9.4 t ha-1 at age 22 and 25, respectively, on a sandy forest land (Vacciniosa forest type. The biomass is significantly (p < 0.01 and considerably (more than two-fold higher than that of the native Pinus sylvestris and the productivity is similar (in fertile soils or higher (on poor soils than reported for other species in energy-wood plantations. Provenance was a significant factor affecting the above-ground biomass, and the ranking of provenances did not change significantly between different soil conditions. It provides opportunities for further improvement of productivity using selection.

  4. Soil Respiration at Different Stand Ages (5, 10, and 20/30 Years in Coniferous (Pinus tabulaeformis Carrière and Deciduous (Populus davidiana Dode Plantations in a Sandstorm Source Area

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-07-01

    Full Text Available Understanding the effects of stand age and forest type on soil respiration is crucial for predicting the potential of soil carbon sequestration. Thus far, however, there is no consensus regarding the variations in soil respiration caused by stand age and forest type. This study investigated soil respiration and its temperature sensitivity at three stand ages (5, 10, and 20 or 30 years in two plantations of coniferous (Pinus tabulaeformis Carrière and deciduous (Populus davidiana Dode species using an automated chamber system in 2013 in the Beijing-Tianjin sandstorm source area. Results showed that mean soil respiration in the 5-, 10-, and 20/30-year-old plantations was 3.37, 3.17, and 2.99 μmol·m−2·s−1 for P. tabulaeformis and 2.92, 2.85, and 2.57 μmol·m−2·s−1 for P. davidiana, respectively. Soil respiration decreased with stand age for both species. There was no significant difference in soil respiration between the two plantation species at ages 5 and 10 years (p > 0.05. Temperature sensitivity of soil respiration, which ranged from 1.85–1.99 in P. tabulaeformis and 2.20–2.46 in P. davidiana plantations, was found to increase with stand age. Temperature sensitivity was also significantly higher in P. davidiana plantations and when the soil water content was below 12.8%. Temperature sensitivity incorporated a combined response of soil respiration to soil temperature, soil water content, soil organic carbon, and fine root biomass and, thus, provided an ecological metric for comparing forest carbon dynamics of these species.

  5. Complex pendulum biomass sensor

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  6. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica;

    2014-01-01

    can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by dehy-dration or decarboxylation. The chemical properties of the product are mostly de-pendent of the biomass substrate composition. Biomass consists of various com-ponents such as......Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided into...... biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass into...

  7. Eco-exergy and emergy based self-organization of three forest plantations in lower subtropical China

    Science.gov (United States)

    The bio-thermodynamic structures of a mixed native species plantation, a conifer plantation and an Acacia mangium plantation in Southern China were quantified over a period of 15 years based on eco-exergy methods. The efficiencies of structural development and maintenance were qu...

  8. Biomass to energy

    International Nuclear Information System (INIS)

    This road-map proposes by the Group Total aims to inform the public on the biomass to energy. It explains the biomass principle, the possibility of biomass to energy conversion, the first generation of biofuels (bio ethanol, ETBE, bio diesel, flex fuel) and their advantages and limitations, the european regulatory framework and policy with the evolutions and Total commitments in the domain. (A.L.B.)

  9. Intensive Eucalyptus plantation management in Brazil: Long-term effects on soil carbon dynamics across 300 sites

    Science.gov (United States)

    Cook, R. L.; Stape, J.; Binkley, D.

    2011-12-01

    Intensively managed forest plantations now cover more than 6 million hectares in Brazil, and another 20 million hectares in other tropical regions. Although aboveground biomass, and therefore carbon, is well monitored due to commercial interest, the belowground carbon dynamics and site sustainability remain poorly understood. So, how does intensive silviculture change the storage of carbon in soils? Trends in soil organic carbon from land-use change indicate that conversion from pastures to Eucalyptus plantations should maintain soil carbon stocks. However, comprehensive, long-term studies are needed to understand the variability in these trends to better manage these systems for sustainable productivity across a highly variable landscape, as well as to understand the role that soils may play in sequestering carbon for climate change mitigation. In this unique, long-term soil study, soil samples were collected in the 1980s/90s, 2001, and 2010 across 300 intensively managed Eucalyptus plantation sites located in the states of Bahia, Espirito Santo, and Sao Paulo, Brazil. Natural ecosystems for these states include Savannah-Dry Forest, Atlantic Forest, and Savanna, respectively. The sampling covered at least three complete rotations of Eucalyptus at each site; climate, past land use, productivity, and soil characteristics vary across this geographic gradient. Across the two periods, both Espirito Santo (P<0.001) and Bahia (P=0.05) showed a decrease in soil carbon concentrations, while Sao Paulo saw no change over time. For the 0-30 cm layer, plantations in Espirito Santo state had the largest decrease in soil carbon concentration up to 2001, decreasing soil carbon stocks at an average rate of 1.3 Mg C ha-1 year-1. This, however, was followed by no significant change from 2001 to 2010 which may indicate stabilization of soil carbon stocks under the new land use. The Eucalyptus in Bahia created no change in the first sampling period, but saw a decline of 0.35 Mg C ha-1

  10. Process for treating biomass

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  11. Process for treating biomass

    Science.gov (United States)

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  12. Gasification-based biomass

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Directory of Open Access Journals (Sweden)

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  14. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-12-01

    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  15. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-11-01

    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  16. Chemical composition of five deciduous tree species in four-year-old, closely spaced plantations. [Hybrid popular, American sycamore, European alder, river birch, and green ash, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wittwer, R.F.; Immel, M.J.

    1980-01-01

    Contents of N, P, K, Ca, Mg, and Mn in above ground tree components of five deciduous species were determined in closely-spaced (0.9 x 0.6 m) 4-year-old plantations growing on a river terrace site in the Ohio Valley region of western Kentucky (USA). Species evaluated were: a hybrid poplar, American sycamore, European alder, river birch and green ash. The only significant difference in dry weight of tree components was greater bolebark biomass of the hybrid poplar. Total above ground elemental content of N, K, Ca, and Mn varied significantly for some species. N content of green ash was significantly lower and K content of the hybrid poplar and Mn content of European alder were significantly greater compared with the other species. Ca contents of the hybrid poplar, American sycamore and European alder were significantly greater than those of other species. Based on the relationship between biomass production and nutrient content of the harvested biomass, it seems that on this and comparable sites, river birch is a preferred species in view of the lower potential nutrient removals in the harvested biomass.

  17. Effects of Large Scale Poplar Plantations on the Hydrology of Semiarid Areas in Inner Mongolia

    Science.gov (United States)

    Wilske, B.; Lu, N.; Chen, S.; Liu, C.; Xu, W.; Noormets, A.; Wei, L.; Lin, G.; Miao, H.; Wei, Y.; Zhang, Z.; Chen, J.; Zha, T.; Ni, J.; Sun, G.; Guo, K.; McNulty, S.; John, R.; Chen, J.

    2007-12-01

    Tree plantation is widely practiced to counteract desertification. It often involves planting forests in semiarid and arid areas, which are naturally dominated by grass- or shrub steppe. Severe land degradation has been observed in the vast grasslands of Inner Mongolia, China. Under drying climates vegetation may naturally change from grass- to open shrub land. Current programs aim at a large number of poplar plantations to compose a super-scale shelterbelt to curb soil erosion, dust storms, and further loss of vegetation cover. However, the water consumption of poplar plantations can be expected to exceed the water use of grass- or shrub steppe. Hence, large-scale poplar plantation may significantly alter the water budget in the semiarid region. We compared Eddy- Covariance-derived evapotranspiration (ET) of a young poplar plantation and an adjacent shrub land south of the Yellow River in Inner Mongolia. In addition, ET from the semiarid site was compared with ET from an older poplar plantation growing under semi-humid conditions south of Beijing. In spite of 33% lower precipitation, ET was 6% higher from the young poplar plantation (236.52 mm) than from the natural shrub land (223.02 mm) based on the five-month period May- September 2006. The difference was mainly because of higher ET from the poplar plantation during the drier periods of the growing season. Further comparison with the older plantation outlined future potential of the poplars to exceed ET of the shrub land by 100-200%. To highlight potential hydrological consequences of large scale poplar plantations, ET values were set in relation to the total size of plantations projected for the area and the stream flow of the nearby Yellow River. Additional groundwater discharge by mature poplar plantations may equal 6.5-15% of the Yellow River mean stream flow. Thus, the water expenditure of poplar plantations renders them a questionable tool in sustainable arid-land management, particularly as climate

  18. An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak

    Directory of Open Access Journals (Sweden)

    Nasrin Aghamohammadi

    2016-04-01

    Full Text Available Sarawak is the largest state in Malaysia, with 22% of the nation's oil palm plantation area, making it the second largest contributor to palm biomass production. Despite the enormous amount of palm biomass in the state, the use of biomass as fuel for power generation remains low. This study is designed to investigate the sustainability of power generation from palm biomass specifically in Sarawak by conducting a survey among the palm oil mill developers. To conduct this investigation, several key sustainability factors were identified: the security of the biomass supply, the efficiency of conversion technology, the existing network system, challenges and future prospects for power generation from palm biomass. These factors were assessed through a set of questionnaires. The returned questionnaires were then analysed using statistical tools. The results of this study demonstrate that Sarawak has biomass in abundance, and that it is ready to be exploited for large scale power generation. The key challenge to achieving the renewable energy target is the inadequate grid infrastructure that inhibits palm oil developers from benefiting from the Feed-in-Tariff payment scheme. One way forward, a strategic partnership between government and industrial players, offers a promising outcome, depending on an economic feasibility study. The decentralization of electricity generation to support rural electrification is another feasible alternative for renewable energy development in the state.

  19. World wide biomass resources

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2012-01-01

    In a wide variety of scenarios, policy strategies, and studies that address the future world energy demand and the reduction of greenhouse gas emissions, biomass is considered to play a major role as renewable energy carrier. Over the past decades, the modern use of biomass has increased rapidly in

  20. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, Dragan

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of wat

  1. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  2. Modelling traditional household use of biomass policy changes for a commercial sustainable alternative

    International Nuclear Information System (INIS)

    Feasible policy alternatives are searched for, which could tackle the job market problem, thus achieving the first step towards solving the biomass dependency issue. To do this, an economic model is built which includes specific characteristics of biomass collection and use, such as non-monetary income, determinants of time allocation between formal and informal activities, and energy sources substitutability. The economic features of biomass production and use is studied in order to understand the underlying principles at work at the cross-roads between rural labour market and energy consumption patterns. The issue of fuelwood plantation is examined on a commercial basis using a spread-sheet model to assess its viability and the constraints for the policy maker. An economic model is developed to test the effects of a variety of policy changes on the local economy as described in the spread-sheet framework. The case of India is studied. (K.A.)

  3. Potential of Reduction in CO2 Emission by Biomass Power Generation with Thinning Residues

    Science.gov (United States)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    In Japan, forest thinning residues as woody biomass have potential to increase domestic primary energy supply, because there still remain many conifer plantations where thinning is not carried out. However, taking the reduction in carbon stock in forests into account, the additional thinning for energy supply may not contribute to the reduction in CO2 emission. Considering the change in the carbon stock in forests, this paper discusses the potential of reduction in CO2 emission by biomass power generation with thinning residues. As power generation systems with thinning residues, co-firing with coal in a utility's power station and a molten carbonate fuel cell (MCFC) with gasification system are taken into account. The results suggest that the co-firing of woody biomass supplied by the additional thinning at utilities' coal-fired power stations has a potential for reducing overall CO2 emission.

  4. BIOMASS AND WOOD CHARACTERISTICS OF THE Sclerolobium paniculatum IN DIFFERENT LEVELS OF FERTILIZATION

    Directory of Open Access Journals (Sweden)

    Iuri da Rocha Marmo de Oliveira

    2008-12-01

    Full Text Available The present work studied the production of biomass and the anatomical, physical and energy characteristics ofSclerolobium paniculatum Vogel var. subvelutinum wood of a plantation of 18 years old, under different levels of soil fertilization. Theinfluences of fertilization in the production of biomass and the anatomical, physical and energy characteristics showed no significantresults. The results showed an average production of biomass per hectare of 92.55t. The results disclose that the cultivated carvoeiro,with 18 years old, have fibers with 14.03mm of diameter; 3.41mm of thickness and 708mm length; basic specific gravity of 0.52g/cm3;83.84% of volatile material; 15.65% of fixed carbon; calorific power of 4,671kcal/kg.

  5. Wood fuel from early thinning and plantation cleaning. Summary of an international review

    International Nuclear Information System (INIS)

    This paper summaries the results of an international of wood fuel from early thinning and plantation cleaning. The economic and biological benefits from early thinning have been well documented. However, removing forest biomass during early stages of stand development from sites which are low in one or more nutrients may contribute a loss of nutrients and organic matter. Depending on the pre-thinning density and the thinning intensity, the potential yield of wood fuel from early thinning may be as much as 79 dry tons per hectare. Thus, wood fuel from the thinnings could be an important source of revenue to forest owners and would contribute to domestic energy requirements. Motor-manual felling predominates in early thinning, mainly due to the lack of appropriate technology for thinning small trees. However, the productivity of motor-manual felling is greatly affected by the initial stand density and declines dramatically at densities greater than 10 000 stems per ha. Under these conditions, purpose-built wood fuel harvesters with small-tree harvesting capability offer the greatest potential for increasing felling productivity and reducing the cost of wood fuel. The cost of wood fuel from early thinnings varies widely between countries from USD 25.00 - 87.50 per dry ton depending on stand conditions, harvesting system, transport distance, domestic tax rates, and stumpage prices. At the low end of this range, wood fuel chips from early thinning are competitive with wood fuel produced from mill waste, the residues from clearfell operations, or from later thinnings

  6. Growth dynamics and productivity of pure and mixed Castanea sativa Mill. and Pseudotsuga menziesii (Mirb. Franco plantations in northern Portugal

    Directory of Open Access Journals (Sweden)

    Nunes Leónia --

    2014-04-01

    Full Text Available Since the late 1980’s the productivity of monocultures versus mixed-species forests has been the object of special interest and study by forest managers and ecologists. All over the world mixed plantations have been established in different proportions to analyse if mixtures can provide greater yields and more benefits than monocultures of the component species and also to understand if they can be an interesting economic option. An experimental design trial was set up in the north of Portugal in a replacement series with pure and mixed Castanea sativa Mill. and Pseudotsuga menziesii (Mirb. Franco. The objective of this study was to assess growth dynamics and compare the aboveground biomass and net primary production of the two species in pure and mixed treatments in proportions 1:1 and 1:3. The growth was measured at 7, 11, 15, 17, 19, 27 and 28 years after planting and aboveground net primary production was estimated at age 28 years. As a component of the mixed treatments, P. menziesii exhibited greater height, diameter and aboveground biomass than C. sativa. Relative yield total indicated a higher productivity in the mixtures compared with the pure treatments. Early in the development the pure treatments had a similar aboveground biomass per hectare as the mixtures, but later the mixtures had more yield than the pure treatments. The mixture productivity increase trough time appears to be a result of both canopy stratification and better use of site resources. The aboveground net primary production was also higher in mixed than in the pure treatments. This study shows the importance of comparing mixed and pure stands.

  7. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction. In......This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During the...... hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by...

  8. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related to...... thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... nineteen eighties. Originally, the main aim was to collect and transfer knowledge about gasification of straw. Very quickly it became clear, that knowledge was insufficient and the available technology, in most cases, unsuitable for converting the Danish biomass. The need for such technology was...

  9. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  10. Rheology of concentrated biomass

    Science.gov (United States)

    Samaniuk, J. R.; Wang, J.; Root, T. W.; Scott, C. T.; Klingenberg, D. J.

    2011-12-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained using torque rheometry agree with those obtained using other rheometric methods, but torque rheometry can be used at much larger solids concentration (weight fractions of insoluble solids greater than 0.2). Yield stresses decrease with severity of hydrolysis, decrease when water-soluble polymers are added (for nonhydrolyzed biomass), and increase with particle length. Experimental results are qualitatively consistent with those obtained from particle-level simulations.

  11. An interdisciplinary framework to evaluate bioshield plantations: Insights from peninsular India

    Science.gov (United States)

    Mukherjee, Nibedita; Dahdouh-Guebas, Farid; Koedam, Nico; Shanker, Kartik

    2015-02-01

    Bioshields or coastal vegetation structures are currently amongst the most important coastal habitat modification activities in south-east Asia, particularly after the December 2004 tsunami. Coastal plantations have been promoted at a large scale as protection against severe natural disasters despite considerable debate over their efficacy as protection measures. In this paper, we provide an interdisciplinary framework for evaluating and monitoring coastal plantations. We then use this framework in a case study in peninsular India. We conducted a socio-ecological questionnaire-based survey on government and non-government organizations directly involved in coastal plantation efforts in three 2004 Indian Ocean tsunami affected states in mainland India. We found that though coastal protection was stated to be the primary cause, socio-economic factors like providing rural employment were strong drivers of plantation activities. Local communities were engaged primarily as daily wage labour for plantation rather than in the planning or monitoring phases. Application of ecological criteria has been undermined during the establishment and maintenance of plantations and there was a general lack of awareness about conservation laws relating to coastal forests. While ample flow of international aid has fuelled the plantation of exotics in the study area particularly after the Indian Ocean tsunami in 2004, the long term ecological consequences need further evaluation and rigorous monitoring in the future.

  12. ACCOUNTING PARADIGM OF LIVED EXPERIENCES IN ACTION RESEARCH: THE CASE OF MALAYSIAN PLANTATION WORKERS

    Directory of Open Access Journals (Sweden)

    S. Susela DEVI

    2014-11-01

    Full Text Available This paper introduces action research as a possible new method to reduce the distance between idealism and accounting practice, thus contributing to the accounting literature. The source of this paper is an on-going large research project. The project has three objectives. Firstly, to provide evidence of the utilisation of accounting methods in the Malaya plantation industry from its earliest beginnings through to the introduction of accounting tools such as budgets, leading to the creation of a social and economic underclass in Malaysia. Secondly, to examine the extent to which accounting information provided in the Annual Reports of Malaysian plantation companies is used in determining the wages of plantation workers on the grounds that workers in the plantation industry have been and still are, among the most poorly paid in Malaysia, and perhaps the world. Interestingly, the wages of plantation workers are determined through a negotiation process between the National Union of Plantation Workers and the Malaysian Agricultural Producers Association. This paper draws from this research project and explicates the utilisation of the Action Research methodology in reporting the “lived experiences” of those affected by Management Accounting budgets and demonstrating how the parties to wage negotiation, the employers, union and employees, can better derive value from accounting information provided within the annual reports of Malaysian plantation companies.

  13. The effects of nitrogen fertilization on N2O emissions from a rubber plantation

    Science.gov (United States)

    Zhou, Wen-Jun; Ji, Hong-Li; Zhu, Jing; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhang, Xiang; Zhao, Wei; Dong, Yu-Xin; Bai, Xiao-Long; Lin, You-Xin; Zhang, Jun-Hui; Zheng, Xun-Hua

    2016-06-01

    To gain the effects of N fertilizer applications on N2O emissions and local climate change in fertilized rubber (Hevea brasiliensis) plantations in the tropics, we measured N2O fluxes from fertilized (75 kg N ha‑1 yr‑1) and unfertilized rubber plantations at Xishuangbanna in southwest China over a 2-year period. The N2O emissions from the fertilized and unfertilized plots were 4.0 and 2.5 kg N ha‑1 yr‑1, respectively, and the N2O emission factor was 1.96%. Soil moisture, soil temperature, and the area weighted mean ammoniacal nitrogen (NH4+-N) content controlled the variations in N2O flux from the fertilized and unfertilized rubber plantations. NH4+-N did not influence temporal changes in N2O emissions from the trench, slope, or terrace plots, but controlled spatial variations in N2O emissions among the treatments. On a unit area basis, the 100-year carbon dioxide equivalence of the fertilized rubber plantation N2O offsets 5.8% and 31.5% of carbon sink of the rubber plantation and local tropical rainforest, respectively. When entire land area in Xishuangbanna is considered, N2O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest’s carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N2O emissions may enhance local climate warming.

  14. Community perceptions towards the establishment of an urban forest plantation: a case of Dzivaresekwa, Zimbabwe

    Directory of Open Access Journals (Sweden)

    A. Mureva

    2014-06-01

    Full Text Available The health of urban forest communities not only depend on the government and nongovernmental organizations, but also strongly rely on local community stewardship. A study was carried out to assess community perceptions on the establishment of an urban forest plantation among urban residents in Dzivaresekwa, an urban area in Harare. Randomized systematic sampling was used to select 150 households and one resident per household was interviewed using a pretested questionnaire with both closed and open-ended questions. The objectives of the study were to determine how age and gender and employment status variables, were related to the urban residents’ perceptions towards establishment of a forest plantation in an urban area. Most females (58.3% viewed the plantation as a threat while most men (51.7% viewed the plantation as a recreational area. The highest proportion (61.9% of the middle age group (21-40 years perceived the plantation as a source of employment. There was a statistically significant relationship (p = 0.040 between gender and the general perception of establishing a forest plantation in the urban area. However, there was no statistically significant relationship (p = 0.203 between age groups and the perception of establishing a forest plantation in the urban area. It is concluded that the community had diverse perceptions on urban community forestry.

  15. Mangrove Plantation as a Tourist Attraction in San Juan Batangas, Philippines

    Directory of Open Access Journals (Sweden)

    Sarah Jane M. Miranda

    2013-08-01

    Full Text Available This study about the Mangrove Plantation in San Juan, Batangas, Philippines aimed to identify the potential of mangrove plantation as a tourist attraction; to describe the status of mangroves, the programs offered by the government; to determine the level of support given by the government; to determine the benefits of the mangroves; and to propose an action plan that will develop the mangrove plantation as a tourist attraction. The study used descriptive method in order to determine the needed information regarding the current status of mangrove plantation as tourist attraction. The study concluded that the status of the mangroves in the coastal areas of San Juan, Batangas is continuously propagating and the local government does not neglect the mangrove plantations in the said community, as such, it is properly protected; the government’s level of support given to the mangrove plantation in terms of policies, management and planning and budget are highly implemented while in terms of promotion is implemented only; mangroves are beneficial to the residents of San Juan particularly in terms of environmental/ecological, economic and health, and ; proposed an action plan regarding development of Mangrove Plantation was designed by the researchers.

  16. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  17. Study on Drying Characteristic of Chinese Fir and Poplar Plantation Wood

    Institute of Scientific and Technical Information of China (English)

    ZHOUYongdong; LIXiaoling

    2004-01-01

    The drying characteristic was studied for plantation wood of Chinese fir and poplar, which are typical plantation wood of southern and northern part of China, respectively. Through lO0-degree-method the drying characteristic and basic drying condition were gotten, then drying schedule was developed for practical drying, the results showed that the drying schedule is suitable for Chinese fir and poplar plantation lumber, but shrinkage is large. The recommendation was made that enough dead weight is needed to decrease shrinkage in drying process. The drying quality of the two species of lumber is good in conventional drying method.

  18. Understory succession in post-agricultural oak plantations

    DEFF Research Database (Denmark)

    Brunet, Jörg; Valtinat, Karin; Mayr, Marian Lajos;

    2011-01-01

    species and of generalists remained stable, and were not affected by fragmentation. Abundance of generalists gradually decreased in non-fragmented plantations, probably due to competition from colonizing forest specialists. Soil pH in post-arable stands remained consistently higher than in continuously...... on loamy soils of intermediate to high pH proximate to older forest with source populations, and that a continuous overstory canopy cover of 70-80% is maintained by regular light thinnings and promotion of a shrub layer.......The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post...

  19. PLUM PLANTATION VALUE BASED ON REAL OPTION CONTRIBUTION

    Directory of Open Access Journals (Sweden)

    Lari Hadelan

    2009-06-01

    Full Text Available This paper is aimed to stress the modern methods of project value analysis based on valuation of opportunities emerged during the project’s life. Traditional appraisal methodology can hardly incorporate option value and quantify management flexibility. Therefore, traditional investment appraisal should be completed with option value evaluation (Real Option. The appliance of option quantification is showed on a model of plum and plum brandy production as an extension activity. Results of traditional NPV analysis for 1 ha of plum production imply to be unacceptable. On the other hand, economic analysis of extended plum brandy production indicates high profitability. It implies that plum plantation has an option calculated using Black-Scholes and Binomial model. Plum production strategic NPV that includes option value is in this case 2 950.54 EUR indicating acceptability of investment.

  20. Proposal of a method for environmental zoning of eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Leonardo Duarte Batista da Silva

    2012-06-01

    Full Text Available The objective of this work was to develop a method for environmental zoning of eucalyptus plantations, to identify areas where eucalyptus planting could be developed, and to determine suitability of such areas. The study area was the County of Vassouras, in the State of Rio de Janeiro, considering physical data, environmental legislation, urban areas, and the municipal land use plan. The areas for permanent preservation, as well as the conservation units and areas for industrial expansion, as defined in the county land use plan, plus areas nearby the city were considered restricted for the planting of eucalyptus trees. Vassouras is 552 km² large. Approximately 144 km² are suitable eucalyptus planting, of which 97% are now used for pastures. Approximately 50% of the area suitable for eucalyptus is of average suitability, whereas the class of highest suitability occupies about 30%. The less suitable areas correspond to 20% of the remaining 144 km2.

  1. Nutrient losses in forest plantations in Sabah, Malaysia

    International Nuclear Information System (INIS)

    Inorganic nutrients are lost from terrestrial ecosystems through the harvesting of plant products, leaching, soil erosion and volatilization of nitrogen and sulfur compounds. In this study, carried out in a tropical rain forest ecosystem in Sabah, Malaysia, losses of inorganic nutrients through log removal and runoff/leaching to stream water were compared in clear-fellings, harvested and prepared for planting in two different ways: (i) tractor logging/burning; (ii) and manual logging/no burning. The major findings of the study were that nutrient losses in stream water were reduced by 50% and growth of the planted forest was twice as fast on the catchment where soil disturbance was minimized and burning not used. Weeds were more abundant after burning, and the extra weeding needed increased costs for plantation establishment. Ways of decreasing the loss of inorganic nutrients when clear-felling tropical rain forests are discussed. 32 refs, 4 figs, 3 tabs

  2. Vehicular emission and contamination od roadside plantation in Lahore city

    International Nuclear Information System (INIS)

    Contamination of roadside plantation is an indicator of air quality in the area. Concentration of Fe, Mn, Ni, Se, Cr, Co, Pb, Cd, and Zn were investigated vis- vis concentration of these trace elements in the ambient aerosols. The results indicate the typical relationship between Pb being emitted by automobiles, the traffic density and plant uptake. Maximum lead of 200 mg/g has been observed in leave samples collected at the roadside plants whereas little of Pb and Cd have been seen away from the roads. Cd has shown very little correlation with vehicular emission, rather, it is related to industrial processes. The sites showing considerable high concentration of Pb, Cd, Ni and Cr both in aerosol and leaves are old campus, Railway station and Shahra-e-Quaid-e-Azam. The study demonstrates that plant uptake could be used as an indicator of atmospheric pollution caused by vehicular traffic and industrial activities in urban areas. (author)

  3. What causes the density effect in young forest plantations?

    Energy Technology Data Exchange (ETDEWEB)

    Barbara J. Bond; Gary A. Ritchie

    2002-07-21

    In young forest plantations, trees planted at high densities frequently show more rapid height and diameter growth than those plants at lower densities. This positive growth response to density (the ''density effect'') often manifests long before seedlings are tall enough to shade one another, so it is not a simple response to shade. The mechanism(s) which trigger and sustain this growth enhancement are unknown. Our objectives were to document the temporal dynamics of positive growth response to increasing density in Douglas-fir plantations and to test two hypotheses as potential mechanisms for this response. The hypotheses are (1) a canopy boundary layer effect, and (2) alterations in the quality of light reflected from neighboring trees. The ''boundary layer'' hypotheses proposes that changes in atmospheric mixing occur in high-density plantations, promoting increased concentrations of CO{sub 2} and H{sub 2}O vapor during early morning hours, which in turn would enhance carbon assimilation. The ''light quality'' hypothesis proposes that the presence of neighbors alters the ratio of red to far red light in the canopy environment. Plant sensors detect this change in light quality, and growth and development is altered in response. We found that boundary layer conductance was higher, as we predicted, in low-density Douglas-fir stands than in high-density stands five years after planting. The changes in boundary conductance were accompanied by higher CO{sub 2} and H{sub 2}O vapor during early morning hours. However, we also found that the primary manifestation of the density effect in Douglas-fir occurs two to four years after planting, and we were not able to measure differences in boundary conductance in different densities at that time. Also, we found no difference in carbon isotope composition of wood cellulose formed in high- vs. low-density stands two to three years after planting. We conclude that

  4. The biomass file

    International Nuclear Information System (INIS)

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  5. ECONOMIC ROTATION OF Eucalyptus grandis PLANTATIONS FOR PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Thais Cunha Ferreira

    2004-07-01

    Full Text Available The objectives of the research were: to determine the economic impact of several minimum diameter and length of logs in economic rotation age, economic feasibility of Eucalyptus grandis plantation for cellulose production; to determine the economic loss of cutting the stand before or after the optimal economic rotation age. A biometric model for making wood volume prognosis was developed using data of a trial of Eucalyptus grandis plantation envisaging pulp production. Eucalyptus grandis stands of 19 and 103 months old, in the spacing 3 x 2 and 3 x 3 m in site index of 30; 28; 26 and 24 m were used. Theprognosis started at the age zero, considering logs of 2.5; 2.8; 4.0 and 6.0 m of length for minimum diameter varying from 4 to 10 cm, in intervals of 2 cm. Net Present Worth (VPL was used the economic criterion, considering an infinite horizon and a cost relation including reestablishment, yearly maintenance, logging and wood transportation costs. The main conclusions were: increases in the minimum diameter and or in logs length increase the rotation age; harvesting the stands in ages different from the optimal one cause large economic loss mainly in the better sites; the economic loss is larger if the harvest is made before the optimal economic rotation than if it is make after; economic feasibility increases when the minimum diameter is smaller and when the length of the logs is shorter. Any way, before making any decision it is necessary to take into account possible technical restrictions and effect on harvest and transportation costs caused by changer in the length of logs and in the size of the minimum commercial diameter.

  6. Alocação de nutrientes em plantios de eucalipto no Brasil Nutrient allocation in eucalypt plantations in Brazil

    Directory of Open Access Journals (Sweden)

    Reynaldo Campos Santana

    2008-12-01

    Full Text Available Práticas de manejo florestal podem alterar a exportação de nutrientes do sítio. Este trabalho teve por objetivo estimar o conteúdo de nutrientes em árvores de eucalipto, em diferentes regiões do Brasil. Avaliou-se a influência de algumas características climáticas na produção e no conteúdo de nutrientes na biomassa, utilizando-se o banco de dados do Programa de Pesquisa em Solos e Nutrição de Eucalipto do Departamento de Solos - UFV. As características climáticas foram um importante componente dos modelos. A produção de biomassa e o conteúdo de nutrientes foram positivamente relacionados entre si e ambos foram menores nas regiões com menor disponibilidade de água. As estimativas apontaram que até à idade de 4,5 anos pós-plantio acumulam-se as maiores proporções de nutrientes (68 % do N, 69 % do P, 67 % do K, 63 % do Ca e 68 % do Mg para a idade de corte de 6,5 anos. Isto indica que, após 4,5 anos, o potencial de resposta à aplicação de fertilizantes é menor. O conteúdo estimado de nutrientes acumulados na copa e na casca representou 65, 70, 64, 79 e 79 %, de N, P, K, Ca e Mg, respectivamente, até 6,5 anos de idade. Assim, a colheita apenas do lenho representa expressiva redução na exportação desses nutrientes proporcionando maior sustentabilidade da produção nas plantações de eucalipto.Forest management practices can alter nutrient exportation from the site. The purpose of this study was to estimate nutrient contents in the aboveground biomass of eucalyptus plantations in Brazil. The influence of key climatic variables on eucalypt productivity and nutrient content was evaluated, using the database from the Reserch Programa on Soil and Eucalyptus Nutrition of the Soil Science, Departament - Federal University of Viçosa, Minas Gerais State, Brazil. Climatic characteristics were an important component of the models. In regions with low water availability the nutrient accumulation in aboveground biomass as

  7. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  8. Estimation of Below-Ground Biomass in Natural and Replanted Mangroves in Gazi Bay, Kenya

    International Nuclear Information System (INIS)

    Estimation of belowground biomass in woody ecosystems is important because of it's relevance to nutrient turnover and the potential store in carbon. Most studies om mangroves biomass have concentrated on standing biomass with very little on belowground biomass; this is particularly true for he eastern African region. The present study was conducted at Gaza Bay in Southern Coast of Kenya. The main objective was to determine belowground biomass mangroves in natural and replanted plantations of Rhizophora mucronata, Avicennia marina and Sonneratia alba. The study in addition investigated horizontal and vertical root distribution. Sampling was carried out in 10m * 10m plots where cores (65 cm length and 15.6 cm diameter) were made at the present root base, between and away from the stem as far as the roots from individual stem could possibly extend based on the sampled tree canopy diameter. In R. mucronata belowground biomass from different stands ranged between 4.9 to 3.7 t ha-1, S. alba 50.8 to 87.3 t ha-1and A. marina 28.7 to 47.6 t ha-1. R mucronata showed a clear effect of age with the amount of biomass increasing with age. Vertical root distribution showed high root densities in the top 20 cm layer decreasing gradually with depth in all species under study. Fine root (<5 mm) density ranged between 20 to 52.8% of the total live root biomass among all species. The information generated is useful in complimenting previous studies on above-ground biomass in Gazi bay and therefore contribute to determination of the potential amount of carbon sequestered by mangroves total biomass within the entire Gazi bay hence improving on forest management

  9. The importance of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey)

    2004-03-15

    Various agricultural residues such as grain dust, wheat straw and hazelnut shell are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. The total forest potential of Turkey is around 935 million m3 with an annual growth of about 28 million m{sup 3}. Turkey's annual biomass potential in 2001 was million tons of oil equivalent. (author)

  10. Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: Lessons to be learned about the spread of energy crops

    International Nuclear Information System (INIS)

    Where and when farmers will adopt new energy crops is a key issue for the proper development of a country's energy strategy on renewables based in bioenergy. This paper analyses the spread of willow cultivation for bioenergy in Sweden, during the period 1986-2005, linked to the changes in the policies of promotion of wood-energy crops and to the local economic framework. To perform the study, a geostatistic method based on kernel analysis is applied, in order to identify the spatial grouping patterns of growers and plantations, and the areas where cultivation was successful. The analysis of the resulting figures shows that the development of an infrastructure and a market for willow chips are essential pre-conditions for the development of short rotation coppice for bioenergy. The results of this study confirm that probably the most important factor in the location of willow plantations is the existence of consumers that can guarantee a long-term demand for willow chips. The tools and methods presented, and its analysis, can provide a better understanding of the interactions between the biomass producers, the energy consumers and the different local and national actors. (author)

  11. Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: Lessons to be learned about the spread of energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Mola-Yudego, Blas [University of Joensuu, Faculty of Forest Sciences, PO Box 111, FI 80101 Joensuu (Finland); Gonzalez-Olabarria, Jose Ramon [Centre Tecnologic Forestal de Catalunya, Pujada del Seminari, s/n. 25280 Solsona (Lleida) (Spain)

    2010-04-15

    Where and when farmers will adopt new energy crops is a key issue for the proper development of a country's energy strategy on renewables based in bioenergy. This paper analyses the spread of willow cultivation for bioenergy in Sweden, during the period 1986-2005, linked to the changes in the policies of promotion of wood-energy crops and to the local economic framework. To perform the study, a geostatistic method based on kernel analysis is applied, in order to identify the spatial grouping patterns of growers and plantations, and the areas where cultivation was successful. The analysis of the resulting figures shows that the development of an infrastructure and a market for willow chips are essential pre-conditions for the development of short rotation coppice for bioenergy. The results of this study confirm that probably the most important factor in the location of willow plantations is the existence of consumers that can guarantee a long-term demand for willow chips. The tools and methods presented, and its analysis, can provide a better understanding of the interactions between the biomass producers, the energy consumers and the different local and national actors. (author)

  12. Plantation-Seeding Forest Plantations – the New Method for Regeneration of Coniferous Forests at Large Clearings on Burned Lands

    Directory of Open Access Journals (Sweden)

    V. V. Tarakanov

    2014-02-01

    Full Text Available The new method of restoration of coniferous stands on large felling areas on burnt lands that lack seed trees is discussed. It involves limited planting of big grafted seedlings of quality wood, that have a high level of seed production, with the purpose of the subsequent natural sowing on these territories. Results of two-year-old research on approbation of the method on cuttings on large felling areas on burnt lands in conditions of the mid-Ob' river pine forests are stated. A good viability of «seed cultures» is noted. There is damage of the grafting pines by elk. Therefore there is a problem of protecting plantations against elk. For preservation of a high level of genetic variability of pine stands it is desirable to use in «seed cultures» the best trees from local plantings.

  13. Biomass_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biomass data found in this data set are broken into four regions of the Northeast US Continental Shelf Large Marine Ecosystem: Gulf of Maine, Georges Bank,...

  14. Biomass Carbon Stock

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Biomass carbon includes carbon stored in above- and below-ground live plant components (such as leaf, branch, stem and root) as well as in standing and down dead...

  15. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  16. Development and field performance of a woody biomass harvester

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Frederic; D' Amours, Luc [McGill University (Canada). Agriculture and Agri-Food Canada; Savoie, Philippe [Universite Laval (Canada). Agriculture and Agri-Food Canada

    2008-07-01

    A novel harvester using a round baler platform was developed to collect woody biomass with stems up to 75 mm in diameter in a single pass. Two cutter heads were developed to optimize cutting, perform light shredding and feed the woody biomass into the bale chamber. The first header was designed to harvest willow plantations in rows. Four rotary saws with a total cutting width of 1.97 m were integrated in a disc mower frame and were installed in front of the baler. A modified hammer type shredder was placed between the saws and the baler to break the willow stems and make them more flexible. The narrow compression chamber belts were replaced by a single full-width belt to better contain long stems within the chamber. A swing-pivot tongue was added to offset the baler from the tractor's drive line. Five field trials were carried out in 2006 using the four-saw header; a total of 92 bales were harvested and several functional components of the willow harvester were improved. The second header developed in 2007 used a wider shredder of 2.3 m without saws; it cut and shredded brushes or stems in the same action. The second header was tested in various conditions: on abandoned agricultural land, in a willow plantation, on wetland and in a natural forest. More than 250 bales were harvested in 2007, of which 98 were monitored for baling capacity. The harvesting rates achieved during trials ranged from 2 to 17 t/h according to yield and field conditions. (author)

  17. Making environmental assessments of biomass production systems comparable worldwide

    Science.gov (United States)

    Meyer, Markus A.; Seppelt, Ralf; Witing, Felix; Priess, Joerg A.

    2016-03-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  18. The importance of understorey on wildlife in a brazilian eucalypt plantation

    Directory of Open Access Journals (Sweden)

    Jody R. Stallings

    1990-01-01

    Full Text Available Wildlife surveys were conducted in two stands of Eucalyptus, one homogeneous and the other with a native species understorey in the Atlantic forest region of southeastern Brazil Deforestation has reduced the original forested habitat to a patchwork of cultivated fields and mono-specific forestry plantations. Wildlife communities were depauperate in the homogeneous stand, but richer in eucalypt forest with native species understorey. Small mammals, particularly didelphid marsupials, used the understorey rather than the eucalypt emergent trees Primates were absent from both areas. The increasing demand for charcoal for the growing steel industry in the region means that eucalypt plantations will persist until an alternative energy source is found. It is essential that management efforts be directed towards multi-use strategies in these plantations Eucalypt plantations with a native species understorey might provide sufficient habitat to support some wildlife species of the rapidly disappearing Atlantic coastal forest ecosystem.

  19. Suitability of online 3D visualization technique in oil palm plantation management

    Science.gov (United States)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  20. Risk and Control of Mosquito-Borne Diseases in Southeast Asian Rubber Plantations.

    Science.gov (United States)

    Tangena, Julie-Anne A; Thammavong, Phoutmany; Wilson, Anne L; Brey, Paul T; Lindsay, Steve W

    2016-05-01

    Unprecedented economic growth in Southeast Asia (SEA) has encouraged the expansion of rubber plantations. This land-use transformation is changing the risk of mosquito-borne diseases. Mature plantations provide ideal habitats for the mosquito vectors of malaria, dengue, and chikungunya. Migrant workers may introduce pathogens into plantation areas, most worryingly artemisinin-resistant malaria parasites. The close proximity of rubber plantations to natural forest also increases the threat from zoonoses, where new vector-borne pathogens spill over from wild animals into humans. There is therefore an urgent need to scale up vector control and access to health care for rubber workers. This requires an intersectoral approach with strong collaboration between the health sector, rubber industry, and local communities. PMID:26907494

  1. Hydrothermal conversion of biomass

    OpenAIRE

    Knezevic, Dragan

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experime...

  2. Steam boiler for biomass

    OpenAIRE

    Knichal, Jaroslav

    2008-01-01

    At present, people already fully aware of how expensive it is energy dependence on fossil fuels. Trying to reduce this dependence goes hand in hand with environmental limits, which restrict the production of dangerous compounds. Biomass is a fuel that does not create large amounts of sulfur and carbon dioxide generated during combustion is in a closed cycle. Different types of biomass have different calorific value, and therefore different demands on the quantity needed to produce MWh. It is ...

  3. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  4. Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective

    Science.gov (United States)

    Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz

    2016-08-01

    Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework

  5. Do the rubber plantations in tropical China act as large carbon sinks?

    OpenAIRE

    Song Q-H; Tan Z-H; Zhang Y-P; Sha L-Q; Deng X-B; Deng Y; Zhou W-J; Zhao J-F; Zhao J-B; Zhang X; Zhao W; Yu G-R; Sun X-M; Liang N-S

    2014-01-01

    The regrowth of tropical secondary forests and plantations can not offset the carbon release caused by tropical deforestation, consequently determining net carbon losses on tropical lands. However, large uncertainties remain in relation to this assumption. Here, we used a biometric method to estimate the net dry matter production and net ecosystem production in a rubber forest, the most widespread plantation type in tropical Southeast Asia. According to biometric estimates made during the stu...

  6. Selecting Evaluation Indices for Cleaner Production of Plantation Logging in Southern China with Fuzzy Clustering Methods

    OpenAIRE

    Yu, Aihua; Gallagher, Tom; Zhao, Chen; Zhao, Yao

    2016-01-01

    Over the years, China has shown a significant reduction in natural forest resources, while the increasing area of plantations has made greater contributions to the huge demand for wood. In southern China, these new plantations have produced some problems such as environmental hazards of logging operations and the most reasonable use of forest resources. A new management process called »cleaner production« is defined as reducing pollution from its source, increasing the rate of utilization of ...

  7. Farmers' perspectives about agroforests conversion to plantations in Sumatra. Lessons learnt from Bungo district (Jambi, Indonesia)

    OpenAIRE

    Therville, C.; Feintrenie, L.; Levang, Patrice

    2011-01-01

    Located on the fringe of the last tropical rainforests of Sumatra, rubber agroforests are known to conserve the main ecological functions of the primary forest, including a large part of its biodiversity. Nowadays these smallholder plantations are under threat. The regular rise of natural rubber and crude palm oil prices has been a major incentive for farmers to convert their agroforests into clonal rubber and oil-palm plantations. However, some areas seem to resist conversion. A multidiscipl...

  8. Distribution of Pine Woolly Adelgids Infestation on Pinus merkusii Plantation in Java

    OpenAIRE

    Oemijati Rachmatsyah; Ulfah Juniarti Siregar; Noor Farikhah Haneda; Dodi Nandika; Purnama Hidayat

    2012-01-01

    Pine woolly adelgid is a recently found exotic pest attacking seedling up to grown plants of Pinus merkusii plantations forest. Since its discovery, there were not much information about it.  The objectives of this research were to study pine woolly adelgids distribution, symptoms and indicators, and its scale of infestations on Pinus merkusii plantation in Java, to determine the presence of any specific P. merkusii sites invaded by pine woolly adelgids, considering the pests were native...

  9. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests

    OpenAIRE

    Barlow, J.; Gardner, T.A; Araujo, I. S.; Ávila-Pires, T. C.; Bonaldo, A. B.; Costa, J. E.; Esposito, M. C.; FERREIRA L.V.; Hawes, J; Hernandez, M. I. M.; Hoogmoed, M. S.; Leite, R. N.; Lo-Man-Hung, N. F.; Malcolm, J. R.; Martins, M. B.

    2007-01-01

    Biodiversity loss from deforestation may be partly offset by the expansion of secondary forests and plantation forestry in the tropics. However, our current knowledge of the value of these habitats for biodiversity conservation is limited to very few taxa, and many studies are severely confounded by methodological shortcomings. We examined the conservation value of tropical primary, secondary, and plantation forests for 15 taxonomic groups using a robust and replicated sample design that mini...

  10. Redistribution of the solar radiation and the rain inside of coffee plantations (Arabic Coffea L.)

    International Nuclear Information System (INIS)

    The following review presents a series of studies on microclimates of non-shaded and shaded conditions of coffee plantations (Coffea arabica L.) in Colombia. Likewise, The redistribution of solar radiation and the temperature, as well as the energy balance, of the coffee plant and the crop are described. The results on the components of water balance and transport of nutrients within the coffee plantations are reported

  11. Understanding forest dynamics and plantation transformation using a simple size-structured model

    OpenAIRE

    Adams, Tom; ACKLAND, Graeme; Marion, Glenn; Edwards, Colin

    2009-01-01

    Concerns about biodiversity and the long-term stability of forest ecosystems have lead to changing attitudes with respect to plantations. These artificial communities are ubiquitous, yet provide reduced habitat value in comparison to their naturally established counterparts, key factors being high density, homogeneous spatial structure, and their even-sized/aged nature. Transformation (manipulation of plantations to produce stands more reminiscent of natural ones) represents a major challenge...

  12. Perlakuan Akuntansi Aktiva Tetap Dan Penerapan Metode Depresiasi Pada PT. Bakrie Sumatera Plantations, TBK.

    OpenAIRE

    Mellisa, Shanti

    2011-01-01

    PT. Bakrie Sumatera Plantations Tbk. is a company engaged in oil palm and rubber plantations. In order to achieve company goals that have been defined, companies need a variety of factors of production. One of the factors of production necessary to facilitate and streamline operational activities whose value is sufficiently large fixed assets. In preparing this thesis, the author discusses research on the method of depreciation of fixed assets. The purpose of this study was to determine wheth...

  13. Selection of trees for rubbing by red and roe deer in forest plantations

    OpenAIRE

    Ramos, Jaime; Bugalho, Miguel; Cortez, José Paulo; Iason, Glenn

    2006-01-01

    Antler rubbing is a form of behaviour by which deer may damage and ultimately induce mortality of trees. Understanding factors affecting selection of trees for rubbing may contribute to mitigation of negative effects of such behaviour in plantations or woodlands. We analysed characteristics of trees rubbed by red and roe deer along transects established in plantations of Pinus pinaster (Aiton), Pseudotsuga menziesii (Mirbel) Franco, Betula alba L. and Quercus robur L. in Northeast Portugal. T...

  14. Soil carbon storage in plantation forests and pastures: land-use change implications

    OpenAIRE

    Neal A. Scott; Tate, Kevin R; Ford-Robertson, Justin; Giltrap, David J.; Smith, C. Tattersall

    2011-01-01

    Afforestation may lead to an accumulation of carbon (C) in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Plantation forest carbon budget models often omit mineral soil C changes from stand-level C budget calculations, while including forest floor C accumulation, or predict continuous soil C increases over several rotations. We used national soil C databases to quantify differences in soil C content between pasture and exotic pine for...

  15. Leaf-cutting ant attack in initial pine plantations and growth of defoliated plants

    OpenAIRE

    Mariane Aparecida Nickele; Wilson Reis Filho; Edilson Batista Oliveira; Edson Tadeu Iede; Nádia Caldato; Priscila Strapasson

    2012-01-01

    The objective of this work was to evaluate the natural attack by Acromyrmex crassispinus in initial Pinus taeda plantations without control measures against ants, as well as the effect of defoliation in seedlings of P. taeda. Evaluations of the attack of leaf-cutting ants on P. taeda plantations were done monthly in the first six months, then 9 and 12 months after planting. The percentages of plants that were naturally attacked by ants were registered. The effect of defoliation was evaluated ...

  16. Research on Change of Rhizosphere Soil Properties of Chinese fir Plantation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This article emphatically reviews the difference of soil biological activities, biochemical activities and soil chemical properties between the rhizosphere and non-rhizosphere soil of first rotation of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) plantation. It also reviews their dynamic patterns during Chinese fir plantation development. The results show that the contents of organic and inorganic nutrients in the rhizosphere soil of young, half-mature and near-mature Chinese fir of first-rotation ...

  17. Physical and mechanical properties of plywood panels manufactures with tropical plantation species for structural use

    OpenAIRE

    Diego Camacho; Roger Moya; Carolina Tenorio

    2012-01-01

    Concrete, steel and plastics are the materials used for construction in Costa Rica. Meanwhile, wood from plantation are being introduced in the market. The present study aims to characterize and measured some physical and mechanical properties of plywood panels manufactured with veneers of Gmelina arborea, Tectona grandis and Acacia mangium coming from forest plantations for structural use. It was produced three plywood boards of each species and general characterization of them was done, and...

  18. A Study on the Effects of Insect Pests and Diseases on Intensively Managed Plantations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Basedon the results of monitoring the environment of China National Afforestation Project (NAP) and the investigation on insect pests and diseases in 1.2 million ha of plantations, the author elaborates the areas, species and causes of insect pests and diseases occurring in the project's areas and provides fundamental theory for guiding environmental protection and plantation establishment in a sound way. Since the project's activities strictly follovved the guideline of environmental protection in past...

  19. Spatial Analysis of Pollution-free Land for Tea Plantation and Comprehensive Evaluation of Soil Suitability

    OpenAIRE

    Wen, Ximei; Lu, Yang; Lan, Anjun; Tan, Hong

    2013-01-01

    To survey the tea resource advantages in Guizhou's mountainous areas and complete rational layout of pollution-free tea planting areas, we take the case of Guiding County in Guizhou Province to establish the comprehensive evaluation indicator system of pollution-free land for tea plantation and comprehensive evaluation model of soil suitability of land for tea plantation according to the Environmental Conditions Standard for Pollution-free Food-Tea Producing Areas by the Ministry of Agricultu...

  20. Biomass cogeneration. A business assessment

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  1. Malaria in tree crop plantations in south-eastern and western provinces of Thailand.

    Science.gov (United States)

    Singhasivanon, P; Thimasarn, K; Yimsamran, S; Linthicum, K; Nualchawee, K; Dawreang, D; Kongrod, S; Premmanisakul, N; Maneeboonyang, W; Salazar, N

    1999-09-01

    During the past three decades almost half of the existing natural tropical forests in Thailand were destroyed and replaced by cash crops, rubber, coffee, fruit orchards (durian, rambutan, mangosteen) and other commercial plantations. In order to determine the proportion of malaria cases contracted from such commercial plantations, an epidemiological study was conducted between June 1996 to May 1997 in two districts, one in Pong Nam Ron, located in a south-eastern province near the Cambodian border and another in Sai Yok, in a western province along the Myanmar border. Data were collected by passive case detection from patients attending the existing malaria clinics and active case detection by monthly malariometric survey in selected villages. All malaria cases were thoroughly investigated and classified according to exposure to different ecotypes prior to onset of malaria symptoms in the preceding two weeks. Malaria cases acquired from commercial plantations accounted for 35.2% and 11.2% in Pong Nam Ron and in Sai Yok districts respectively. In such plantations, most of the malaria cases were contracted from fruit orchards and to a lesser extent from rubber and teak plantations. From this study it is evident that commercial plantations provide a significant site of malaria transmission in addition to the forest and foothills areas in Southeast Asia where efficient vectors such as An. dirus and An. minimus are prevalent and have adapted to such changed ecosystems. PMID:10774642

  2. Evaluation of Soil Physical and Chemical Properties in Poplar Plantations in North of Iran

    Directory of Open Access Journals (Sweden)

    Ali Salehi

    2012-12-01

    Full Text Available Soil physical and chemical properties and some quantitative characteristics of Populus deltoides Marsh (clone 79.51 plantations and relationships between them were evaluated in Guilan plain of north of Iran. Two same aged poplar plantations with low and high qualities were selected. In each poplar plantation, fifteen sample plots with systematic sampling method were selected. In each sample plot diameter at breast height (DBH as well as height of all trees within them was determined. Soil samples were taken from 0-20cm in each plot and soil texture, water holding capacity (WHC, bulk density (B.D and particle density (P.D as well as soil porosity, O.C, N, available P and exchangeable K were determined for each soil sample in laboratory. Tree data and soil properties between two plantations were analysed using independent samples t-test (Student’s t test at p < 0.05. The results showed that among soil physical properties, percentage of clay, sand, B.D and WHC and amongst soil chemical properties O.C, N, available P and exchangeable K were significantly different between two plantations. Heavy textured soils with high B.D are undesirable for growing of populus deltoides in study area. The results also indicated that poor quality plantations has negative effect on soil nutrient and reduces its fertility. Reduction of nutrient availability had negative effects on quantity and quality of poplar trees.

  3. Soil carbon budget in different-aged Chinese fir plantations in south China

    Institute of Scientific and Technical Information of China (English)

    Shebao Yu; Dan Wang; Wei Dai; Ping Li

    2014-01-01

    Understanding the age effect on soil carbon balance in forest ecosystems is important for other material cycles and forest man-agement. In this research we investigated soil organic carbon density, litter production, litter decomposition rate, soil respiration, and soil mi-crobial properties in a chronosequence of four Chinese fir plantations of 7, 16, 23 and 29 years at Dagangshan mountain range, Jiangxi Province, south China. There was a significant increasing trend in litter production with increasing plantation age. Litter decomposition rate and soil respira-tion, however, declined from the 7-year to the 16-year plantation, and then increased after 16 years. This was largely dependent on soil micro-organisms. Soil carbon output was higher than carbon input before 16 years, and total soil carbon stock declined from 35.98 t·ha-1 in the 7-year plantation to 30.12 t·ha-1 in the 16-year plantation. Greater litter produc-tion could not explain the greater soil carbon stock, suggesting that forest growth impacted this microbial process that controlled rates of soil car-bon balance together with litter and soil respiration. The results highlight the importance of the development stage in assessing soil carbon budget and its significance to future management of Chinese fir plantations.

  4. Differential Performance between Two Timber Species in Forest Logging Gaps and in Plantations in Central Africa

    Directory of Open Access Journals (Sweden)

    Adeline Fayolle

    2015-02-01

    Full Text Available To develop silvicultural guidelines for high-value timber species of Central African moist forests, we assessed the performance of the pioneer Milicia excelsa (iroko, Moraceae, and of the non-pioneer light demander Pericopsis elata (assamela, Fabaceae in logging gaps and in plantations in highly degraded areas in south-eastern Cameroon. The survival and size of each seedling was regularly monitored in the silvicultural experiments. Differences in performance and allometry were tested between species in logging gaps and in plantations. The two species performance in logging gaps was significantly different from plantations and concurred with the expectations of the performance trade-off hypothesis but not with the expectations of species light requirements. The pioneer M. excelsa survived significantly better in logging gaps while the non-pioneer P. elata grew significantly faster in plantations. The high mortality and slow growth of M. excelsa in plantations is surprising for a pioneer species but could be explained by herbivory (attacks from a gall-making psyllid. Identifying high-value native timber species (i with good performance in plantations such as P. elata is of importance to restore degraded areas; and (ii with good performance in logging gaps such as M. excelsa is of importance to maintain timber resources and biodiversity in production forests.

  5. The potential, variety, and nutrient content of natural vegetation as feedstuffs grown under cashewnut plantation

    Directory of Open Access Journals (Sweden)

    E Sutedi

    2001-06-01

    Full Text Available Ruminant production is limited by the quality, the sufficiency and the continuation of feed supply, especially during the dry season. The objective of the study was to find out the potency, type and quality of natural vegetation grown under cashewnut plantation. The study was carried out by exploration of existing natural vegetation resources in cashewnut plantation area. Results showed that native pasture growing under cashewnut plantation area comprised of dry-tolerant grasses and legumes, such as Setaria sp., Themeda sp., Calopogonium mucunoides, and Desmodium sp. The fresh yield and the dry matter production of natural vegetation grown under less than eight years old of cashewnut plantation was lower compared to those grown under cashewnut plantation of more than eight years old. This may be due to shading by the tree crop, which is known to reduce the photosynthetically active radiation reaching the ground of vegetation. It seems that, light is the critical factor affecting the growth of vegetation underneath tree canopies. Carrying capacity of native forages grown under cashewnut plantation was only 0.5 animal unit of ruminant/ha/year.

  6. Diversity of drought-resistant plants and the benefits of their biomass for improving fertility of a degraded soil of Brantas River Basin

    OpenAIRE

    E. Arisoesilaningsih; S Suyono

    2015-01-01

    In support of healthy agriculture development to improve farmer’s prosperity status, soil remediation and land conservation efforts maybe relied on the use of biomass of local vegetation. Results of field exploration conducted at Brantas Watershed of East Java indicated that there were at least 154 species of undergrowth scrubs, 47 species of agriculture-plantation crops, and 59 species of road shelter trees. The native undergrowth vegetations had undergone enormous seasonal variations. Bioma...

  7. Spatially-explicit estimates of greenhouse-gas payback times for perennial cellulosic biomass production on open lands in the Lake States

    Science.gov (United States)

    Sahajpal, R.

    2015-12-01

    The development of renewable energy sources is an integral step towards mitigating the carbon dioxide induced component of climate change. One important renewable source is plant biomass, comprising both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). Due to their market acceptability and excellent energy balance, cellulosic feedstocks represent an abundant and if managed properly, a carbon-neutral and environmentally beneficial resource. We evaluate how site variability impacts the greenhouse-gas (GHG) benefits of SRWC plantations on lands potentially suited for bioenergy feedstock production in the Lake States (Minnesota, Wisconsin, Michigan). We combine high-resolution, spatially-explicit estimates of biomass, soil organic carbon and nitrous oxide emissions for SRWC plantations from the Environmental Policy Integrated Climate (EPIC) model along with life cycle analysis results from the GREET model to determine the greenhouse-gas payback time (GPBT) or the time needed before the GHG savings due to displacement of fossil fuels exceeds the initial losses from plantation establishment. We calibrate our models using unique yield and N2O emission data from sites across the Lake states that have been converted from pasture and hayfields to SRWC plantations. Our results show a reduction of 800,000 ha in non-agricultural open land availability for biomass production, a loss of nearly 37% (see attached figure). Overall, GPBTs range between 1 and 38 years, with the longest GPBTs occurring in the northern Lake states. Initial soil nitrate levels and site drainage potential explain more than half of the variation in GPBTs. Our results indicate a rapidly closing window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States.

  8. Increasing the biomass production of short rotation coppice forests. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, K.; Brown, C. L.

    1980-09-01

    The objective of the project is to increase biomass yields from coppice forests by admixing tree species (Alnus glutinosa, Robinia pseudoacacia and others) to plantations of Platanus occidentalis and Liquidambar styraciflua. Yield increases due to intensive cultivation, especially fertilization and irrigation, will be documented. A genetic improvement program of promising candidate species both through the identification of superior genotypes and mass cloning with tissue culture is also included. Three plantings have been established successfully to screen candidate species on various sites and to test the effects of weed control, fertilization and irrigation on short rotation forests. Two plantations in Georgia are in their 2nd and 3rd growing seasons while one in South Carolina is in its 1st growing season. A two acre plantation has been established to test development of geographic seed source material for sycamore. A nursery is in operation to develop seedling production methods for new species and to grow and maintain genetic material. Mass cloning of selected material by tissue culture techniques has produced material for testing in outplantings.

  9. Green energy. Biomass fuels and the environment

    International Nuclear Information System (INIS)

    The United Nations Environment Programme has been concerned with energy/environment issues since it was first set up after the United Nations Conference on the Human Environment held in Stockholm in 1972. In the late 1970s, UNEP compiled three comprehensive reports on the the environmental impacts of the production and use of fossil fuels, nuclear energy and renewable energy sources. In 1987 it was decided to update the volume on renewable energy since knowledge of biofuels and their effects on the environment had greatly improved. Among many innovations, Brazil's decision to embark on a major, and now successful, programme to produce ethanol from sugarcane as a substitute vehicle fuel is one of the most significant. At the same time, energy tree crops, agroforestry systems and the use of plantations for environmental improvement have become issues of key importance to sustainable development in developing countries. Biomass fuels, of course, have always been important in terms of the numbers of people who use them; the significant change during the 1980s was that the potential advantages of these fuels took on a new significance in the light of environmental degradation and related issues such as greenhouse warming. The biomass fuels began to be considered as attractive energy sources in their own right - not simply as 'last resort' fuels for developing countries with only limited energy options. While this development may solve some environmental problems, it certainly raises others - the improper utilization of biomass fuels in the past has been responsible for deforestation, desertification and the ill health of many millions of the women in developing countries who use biomass fuels in unventilated huts. These issues currently affect about half of the world population. The new UNEP study was intended to provide an up-to-date evaluation of the environmental issues raised by the use of biomass fuels, and hence to reduce or eliminate their adverse impacts while

  10. Productivity and resource use in ageing tea plantations

    NARCIS (Netherlands)

    Kamau, D.M.

    2008-01-01

    Keywords: Kenya, Camellia sinensis L., clones, seedlings, tea industry, management, N-P-K, biomass, made tea yields. The tea industry in Kenya is rural-based and provides livelihood to over three million people along the value chain. The industry which started in the first quarter of the 20th cent

  11. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO2, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case with

  12. Effects of management thinning on CO2 exchange by a plantation oak woodland in south-eastern England

    Science.gov (United States)

    Wilkinson, Matthew; Crow, Peter; Eaton, Edward L.; Morison, James I. L.

    2016-04-01

    Forest thinning, which removes some individual trees from a forest stand at intermediate stages of the rotation, is commonly used as a silvicultural technique and is a management practice that can substantially alter both forest canopy structure and carbon storage. Whilst a proportion of the standing biomass is removed through harvested timber, thinning also removes some of the photosynthetic leaf area and introduces a large pulse of woody residue (brash) to the soil surface, which potentially can alter the balance of autotrophic and heterotrophic respiration. Using a combination of eddy covariance (EC) and aerial light detection and ranging (lidar) data, this study investigated the effects of management thinning on the carbon balance and canopy structure in a commercially managed oak plantation in the south-east of England. Whilst thinning had a large effect on the canopy structure, increasing canopy complexity and gap fraction, the effects of thinning on the carbon balance were not as evident. In the first year post thinning, the peak summer photosynthetic rate was unaffected by the thinning, suggesting that the better illuminated ground vegetation and shrub layer compensated for the removed trees. Peak summer photosynthetic rate was reduced in the thinned area between 2009 and 2011, but there was no significant difference between sectors. Ecosystem respiration fluxes increased in the thinned relative to the unthinned area in the post-thinning phase.

  13. White Spruce Plantations on Abandoned Agricultural Land: Are They More Effective as C Sinks than Natural Succession?

    Directory of Open Access Journals (Sweden)

    Sylvie Tremblay

    2013-12-01

    Full Text Available The objective of this study was to compare organic carbon (C accumulation in plantations (PL and natural succession (NS established on fallow lands along a 50-year chronosequence in the eastern mixed forest subzone of Quebec (Canada. Above- and below-ground woody biomass were estimated from vegetation measurement surveys, and litter and soil (0–50 cm depth C from samplings. At the year of abandonment, total C content of both PL and NS sites averaged 100 ± 13 Mg C ha−1. Over 50 years, total C content doubled on NS sites and tripled on PL sites (217.9 ± 28.7 vs. 285.7 ± 31.0 Mg ha−1 with respect to fallow land. On NS sites, the new C stocks accumulated entirely in the vegetation. On PL sites, C accumulated mostly in the vegetation and to a lesser extent in the litter, whereas it decreased by a third in the soil. As a result, the net C accumulation rate was 1.7 ± 0.7 Mg ha−1 yr−1 greater on PL sites than on NS sites over 50 years. By the 23rd year, PL sites became greater net C sinks than NS sites in the fallow lands of the study area, even with the loss of soil C.

  14. Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau

    Directory of Open Access Journals (Sweden)

    Bueis T

    2016-06-01

    Full Text Available The assessment of forest productivity at early stages of stand development may help to define the most appropriate silviculture treatment to be applied for each stand. Site index (dominant height at a reference age is a useful tool for forest productivity estimation. The aim of this study was to develop a model to predict site index for Scots pine (Pinus sylvestris L. plantations in northern Spain acidic plateau by using soil (physical, chemical and biochemical, climatic and physiographic parameters. To meet this objective, data from 35 stands classified into three different site quality classes and 63 soil, climatic and physiographic parameters were examined in order to develop a discriminant model. After selecting 12 discriminant models which were biologically consistent and presented the higher cross-validated rate of correct classification, a model including four parameters (latitude, inorganic Al, porosity and microbial biomass carbon as predictors was chosen. The discriminant model classified 71% of cases correctly and no inferior-quality stands were misassigned to the highest quality class. Soil and physiographic parameters included in the above model are easily obtainable in the field or by simple laboratory analysis, thus our results can be easily integrated in operational forestry to determine site quality.

  15. Deep Soil Carbon Influenced Following Forest Organic Matter Manipulation In A Loblolly Pine Plantation In The Southeastern United States

    Science.gov (United States)

    Hatten, J. A.; Mack, J.; Sucre, E.; Leggett, Z.; Roberts, S.; Dewey, J.

    2013-12-01

    Forest harvest residues and forest floor materials are significant sources of mineral soil organic matter and nutrients for regenerating and establishing forests. Harvest residues in particular are occasionally removed, piled, or burned following harvesting. Weyerhaeuser Company established an experimental study to evaluate the effect of the removal and addition of harvest residual and forest-floor on site productivity and soil carbon. This study was installed in a loblolly pine plantation near Millport, Alabama, USA on the Upper Gulf Coastal Plain to test both extremes from complete removal of harvest residues and forest floor to doubling of these materials. This study has been continuously monitored since its establishment in 1994. We have examined the effects of varying forest floor levels on the biomass, soil carbon content, and soil carbon composition in the context of these management activities. Above- and below-ground productivity, soil moisture, soil temperature, and nutrient dynamics have been related to soil organic carbon in mineral soil, size/density fractionation, and lignin and cutin biomarkers from the cupric oxide (CuO)-oxidation technique. We have found that while removing litter and harvest residues has little effect on biomass production and soil carbon, importing litter and harvest residues increases forest productivity and soil carbon content. Interestingly, increased carbon was observed in all depths assessed (O horizon, 0-20, 20-40, and 40-60cm) suggesting that this practice may sequester organic carbon in deep soil horizons. Our biomarker analysis indicated that importing litter and harvest residues increased relative contributions from above ground sources at the 20-40cm depth and increased relative contributions from belowground sources at the 40-60cm depth. These results suggest that organic matter manipulations in managed forests can have significant effects on deep soil carbon that may be resistant to mineralization or the effects of

  16. Effects of Converting Secondary Forest on Peat to Oil Palm Plantation on Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Chng H. Ywih

    2009-01-01

    Full Text Available Problem statement: Peat has been identified as one of the major groups of soils found in Malaysia. Sarawak as the largest state in Malaysia has the biggest reserve of peat-land. There are about 1.5 million ha of peat-land in Sarawak, which are relatively under developed. As is the case with any plant, oil palm trees do sequester carbon as they grow. Nevertheless, the process of clearing forest in order to establish a plantation may release more carbon. The carbon losses may be greater when the plantation established on peat-land, which store vast amounts of carbon but release it as they are drained. Little study has been done on the comparison of soil organic matter, soil organic carbon and yield of humic acids when secondary forest on peat soil is converted to oil palm plantation. The objectives of this study were to: (i Quantify Soil Organic Matter (SOM, Soil Organic Carbon (SOC, Humic Acids (HA and stable carbon upon the conversion of secondary forest on peat to different ages of oil palm plantation and (ii Compare carbon sequestration of a secondary forest with different ages of oil palm plantation. Approach: Soil samples were collected from the secondary forest, 1, 3, 4 and 5 year old oil palm plantation at the Tatau district. Ten samples were taken at random with a peat auger at 0-25 and 25-50 cm depths. The bulk densities at these depths were determined by the coring method. The bulk density method was used to quantify the total carbon, total organic carbon, total organic matter, total nitrogen, humic acids and stable carbon at the stated sampling depths on per hectare basis. Results: There were no significant differences in the amounts of stable C of both secondary forest and different ages of oil palm plantations at 0-25 and 25-50 cm. The amounts of stable C of secondary forest, 1, 3, 4 and 5 year old oil palm plantation at the depth of 0-25 cm were generally higher than those in the 25

  17. Burning of biomass waste

    International Nuclear Information System (INIS)

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  18. Effect of Alnus subcordata, Acer insigne and Sequoia sempervirens plantations on plant diversity in Hyrcanian forest of Iran

    OpenAIRE

    FATEMEH GHEIBI; MOSLEM AKBARINIA; YAHYA KOOCH

    2015-01-01

    Gheibi F, Akbarinia M, Kooch Y. 2015. Effect of Alnus subcordata, Acer insigne and Sequoia sempervirens plantations on plant diversity in Hyrcanian forest of Iran. Biodiversitas 16: 10-15. Forest plantation is a common action in order to restore the degraded forests in Hyrcanian forests of Iran. This study compares the plant biodiversity in four 25-year-old stands of plantation, adjacent understory of alder (Alnus subcordata C. A. Mey.), maple (Acer insigne Boiss.), sequoia or red wood (Sequo...

  19. Plantation states : region, race, and sexuality in the cultural memory of the U.S. South, 1900-1945

    OpenAIRE

    Steeby, Elizabeth Anna

    2008-01-01

    In "Plantation States," I analyze cultural representations of plantation formations from the first half of the twentieth century, a period when "the South" operated as an imagined social landscape that galvanized post-Civil War national reconciliation and expansion as well as resistant social movements. I argue that the plantation, and the region it often symbolizes, served as a powerful site of identification that animated collective memories and provoked competing visions of progress. Conse...

  20. Loblolly Pine (Pinus taeda L.) Plantation Response to Mechanical Site Preparation in the South Carolina and Georgia Piedmont

    OpenAIRE

    Cerchiaro, Michael Paul

    2003-01-01

    Site preparation is fundamental for establishing loblolly pine (Pinus taeda L.) plantations, but long-term sustainability of plantations established using mechanical treatments is in question because of concerns regarding soil tillage and the removal of harvest residue and soil organic matter. A study was installed in 1981 on 12 locations in northeastern Georgia and west-central South Carolina to evaluate pine plantation response to mechanical site preparation. Site preparation treatments i...

  1. Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages

    OpenAIRE

    Jianping Wu; Zhanfeng Liu; Guomin Huang; Dima Chen; Weixin Zhang; Yuanhu Shao; Songze Wan; Shenglei Fu

    2014-01-01

    Reforested plantations have substantial effects on terrestrial carbon cycling due to their large coverage area. Although understory plants are important components of reforested plantations, their effects on ecosystem carbon dynamics remain unclear. This study was designed to investigate the effects of vegetation removal/understory removal and tree girdling on soil respiration and ecosystem carbon dynamics in Eucalyptus plantations of South China with contrasting ages (2 and 24 years old). We...

  2. SOCIAL EXCLUSION: GUATEMALAN YOUTH WITHIN COFFEE PLANTATIONS AT SOCONUSCO CHIAPAS

    Directory of Open Access Journals (Sweden)

    Laura Itzel Ramírez-Ramos

    2014-07-01

    Full Text Available Mexico's southern border is the entry point for different migratory flows, mainly from Central America, these flows have taken place under socioeconomic contexts and conditions which demand the constant livelihood strategies pursuit from people. This paper is focused on the agricultural laborers from Guatemalan origin, within coffee plantation farms at the Soconusco, Chiapas. The main objective is arguing how the lack of access -or restricted access- to education and the precarious inclusion to work and migration, have positioned youth population of migrant laborers, from Guatemalan origin, into social processes of social exclusion and vulnerability. It is concluded that conditions generated from these processes, preclude the generation of different work expectations, the access to a higher quality of life and the social mobility in a men and woman development crucial stage. The exposed information comes from quantitative and qualitative research methods. A nonrandom survey was applied to 129 families; 20 semi-structured interviews for children and adolescents within farms and 25 to actors involved in the recognition and performance of the human rights of migrant children in the southern Mexican border area.

  3. Dissipation of the fungicide hexaconazole in oil palm plantation.

    Science.gov (United States)

    Maznah, Zainol; Halimah, Muhamad; Ismail, Sahid; Idris, Abu Seman

    2015-12-01

    Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions. PMID:26276276

  4. Development of an aerial counting system in oil palm plantations

    Science.gov (United States)

    Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor

    2016-07-01

    This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.

  5. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  6. Northeast Regional Biomass Program

    International Nuclear Information System (INIS)

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ''Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory

  7. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  8. From Uas Data Acquisition to Actionable Information - how AN End-To Solution Helps Oil Palm Plantation Operators to Perform a More Sustainable Plantation Management

    Science.gov (United States)

    Hoffmann, C.; Weise, C.; Koch, T.; Pauly, K.

    2016-06-01

    Palm oil represents the most efficient oilseed crop in the world but the production of palm oil involves plantation operations in one of the most fragile environments - the tropical lowlands. Deforestation, the drying-out of swampy lowlands and chemical fertilizers lead to environmental problems that are putting pressure on this industry. Unmanned aircraft systems (UAS) together with latest photogrammetric processing and image analysis capabilities represent an emerging technology that was identified to be suitable to optimize oil palm plantation operations. This paper focuses on two key elements of a UAS-based oil palm monitoring system. The first is the accuracy of the acquired data that is necessary to achieve meaningful results in later analysis steps. High performance GNSS technology was utilized to achieve those accuracies while decreasing the demand for cost-intensive GCP measurements. The second key topic is the analysis of the resulting data in order to optimize plantation operations. By automatically extracting information on a block level as well as on a single-tree level, operators can utilize the developed application to increase their productivity. The research results describe how operators can successfully make use of a UAS-based solution together with the developed software solution to improve their efficiency in oil palm plantation management.

  9. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites.

    Science.gov (United States)

    Morrison, Emily B; Lindell, Catherine A

    2012-07-01

    Both birds and bats are important insect predators in tropical systems. However, the relative influence of birds and bats on insect populations and their indirect effects on leaf damage have not previously been investigated in tropical forest restoration sites. Leaf damage by herbivorous insects can negatively affect the growth and survival of tropical plants and thus can influence the success of tropical forest restoration efforts. We used an exclosure experiment to examine the top-down effects of birds and bats on insects and leaf damage in a large-scale forest restoration experiment. Given the potential influence of tree planting design on bird and bat abundances, we also investigated planting design effects on bird and bat insectivory and leaf damage. The experiment included two planting treatment plots: islands, where trees were planted in patches, and plantations, where trees were planted in rows to create continuous cover. In both types of plots, insect biomass was highest on tree branches where both birds and bats were excluded from foraging and lowest on branches without exclosures where both birds and bats were present. In the island plots, birds and bats had approximately equal impacts on insect populations, while in plantations bats appeared to have a slightly stronger effect on insects than did birds. In plantations, the levels of leaf damage were higher on branches where birds and bats were excluded than on branches where both had access. In island plots, no significant differences in leaf damage were found between exclosure treatments although potential patterns were in the same direction as in the plantations. Our results suggest that both birds and bats play important roles as top predators in restoration systems by reducing herbivorous insects and their damage to planted trees. Tropical restoration projects should include efforts to attract and provide suitable habitat for birds and bats, given their demonstrated ecological importance. PMID

  10. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    Science.gov (United States)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang

    2016-04-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ~0.128 and 0.47m, and ~0.223 and 0.01m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47×10-2 and 7.13×10-3, and 2.91×10-3 and 1.96×10-3, for banana plantation and alpine meadow areas, respectively. This is the first time in Asia that long-term open field measurements have been taken with the specific aim of making comparisons between banana plantation and alpine meadow surfaces.

  11. Biomass stoves in dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo

    and analyzed in this session. Experimental results regarding the performance of biomass combustion stoves and the effects of real-life practices in terms of thermal efficiency, particulate and gaseous emissions will be addressed. This research is based on the development of a new testing approach that...... combines laboratory and field measurements established in the context of the implications of the upcoming eco-design directive. The communication will cover technical aspects concerning the operating performance of different types of biomass stoves and building envelopes, in order to map the ongoing...

  12. Biomass living energy

    International Nuclear Information System (INIS)

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  13. Clean fuels from biomass

    Science.gov (United States)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  14. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized...

  15. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  16. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  17. Overcoming Constraints to High-Yield Plantation-Grown Hardwoods in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-26

    This project was comprised of the following four inter-related tasks: Task 1 Plantation Maintenance and Measurement--Data on dry weight productivity per tree and/or growth as measured by individual tree height and diameter at a specified height on the stem was determined at the end of each of five years corresponding to ages 2 through 6. Measurements of height and diameter were recorded once a month during the growing season on a subsample of four trees per clone per species per treatment combination. Dry biomass in the leaf litter traps during the growing season once the canopy has closed was periodically collected and measured. Foliar nutrient levels were determined once a month by removing LPI 8 on each subsampled measurement tree and completing nutrient analyses. Weather data, including precipitation, minimum and maximum temperature and photosynthetically active radiation on an hourly basis were recorded daily. Information on irrigation rates and fertilization levels were collected. Task 2 Intra- And Interspecific Variation In Osmotic Potential--The specific objectives of this task were: (1) to determine whether limitation in water availability constrains productivity and influences leaf osmotic potential of cottonwood, sycamore, and/or sweetgum growing under short-rotation field conditions, (2) to document the occurrence of osmotic adjustment under varying levels of water availability levels, and (3) to determine the effect of nitrogen fertilization on osmotic potential and response to irrigation. Task 3 Leaf Gas Exchange And Water-Use Efficiency--The specific objectives of this task were: (1) to quantify the contribution of photosynthesis, respiration, and water-use efficiency to the productivity of individual cottonwood, sycamore, and sweetgum trees grown under various levels of water and/or nutrient availability, and (2) to quantify intra- and interspecific variability for photosynthesis, respiration, and water-use efficiency for cottonwood, sycamore, and

  18. A Comparison of Hierarchical and Non-Hierarchical Bayesian Approaches for Fitting Allometric Larch (Larix.spp. Biomass Equations

    Directory of Open Access Journals (Sweden)

    Dongsheng Chen

    2016-01-01

    Full Text Available Accurate biomass estimations are important for assessing and monitoring forest carbon storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical Bayesian approach has received increasing attention for improving biomass models. In this study, tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from larch plantations in six regions across China. Non-hierarchical and hierarchical Bayesian approaches were used to model allometric biomass equations. We found that the total, root, stem wood, stem bark, branch and foliage biomass model relationships were statistically significant (p-values < 0.001 for both the non-hierarchical and hierarchical Bayesian approaches, but the hierarchical Bayesian approach increased the goodness-of-fit statistics over the non-hierarchical Bayesian approach. The R2 values of the hierarchical approach were higher than those of the non-hierarchical approach by 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 for the total tree, root, stem wood, stem bark, branch and foliage models, respectively. The hierarchical Bayesian approach significantly improved the accuracy of the biomass model (except for the stem bark and can reflect regional differences by using random parameters to improve the regional scale model accuracy.

  19. An economic assessment of the use of short-rotation coppice woody biomass to heat greenhouses in southern Canada

    International Nuclear Information System (INIS)

    This study explores the economic feasibility of fossil fuel substitution with biomass from short-rotation willow plantations as an option for greenhouse heating in southern Ontario, Canada. We assess the net displacement value of fossil fuel biomass combustion systems with an integrated purpose-grown biomass production enterprise. Key project parameters include greenhouse size, heating requirements, boiler capital costs and biomass establishment and management costs. Several metrics have been used to examine feasibility including net present value, internal rate of return, payback period, and the minimum or break-even prices for natural gas and heating oil for which the biomass substitution operations become financially attractive. Depending on certain key assumptions, internal rates of return ranged from 11-14% for displacing heating oil to 0-4% for displacing natural gas with woody biomass. The biomass heating projects have payback periods of 10 to >22 years for substituting heating oil and 18 to >22 years for replacing a natural gas. Sensitivity analyses indicate that fossil fuel price and efficiency of the boiler heating system are critical elements in the analyses and research on methods to improve growth and yield and reduce silviculture costs could have a large beneficial impact on the feasibility of this type of bioenergy enterprise. (author)

  20. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    International Nuclear Information System (INIS)

    prospectively lower than with present-day coal-fuelled steam electric power generation using flue gas desulphurization, while sulphur emissions would be much lower. Assuming costs for plantation-grown biomass based on commercial plantation practice in Brazil, it is shown that the break-even coal price is lower that the cost of coal projected by the World Bank for many developing countries for the year 2005. For fluid fuels, a comparison is made between biomass and coal as feedstocks for the production of methanol and H2. These fuels are the energy carriers of choice for vehicles based on fuel cell technologies. Fuel cell technology for transport applications is rapidly advancing, and fuel cell buses have already been demonstrated and will be available commercially before 2000; fuel cells could be available for automotive applications in the period 2005-2010. The main attractions of fuel cell vehicles for developing countries are their favourable emissions characteristics (zero or near-zero pollutant emissions without the need for control technologies), their high fuel economy (energy requirements per kilometre are just one third to one half those for internal combustion engine vehicles) and their energy supply diversity advantages (natural gas, biomass and coal can be used at fuel costs per kilometre that are prospectively competitive with costs for petroleum). As in the case of power generation, it is shown that methanol and H2 derived from plantation-grown biomass have good prospects for being competitive with coal-derived methanol and H2 in many regions, assuming biomass prices based on Brazilian experience with commercial plantations and World Bank projections of coal prices for developing countries. (author)

  1. THE POTENTIAL OF OIL PALM TRUNK BIOMASS AS AN ALTERNATIVE SOURCE FOR COMPRESSED WOOD

    Directory of Open Access Journals (Sweden)

    Othman Sulaiman,

    2012-06-01

    Full Text Available Compressed wood, which is formed by a process that increases the wood’s density, aims to improve its strength and dimensional stability. Compressed wood can be used in building and construction, especially for construction of walls and flooring. Currently, supplies of wood are becoming limited, and the oil palm tree has become one of the largest plantation species in Malaysia. Oil palm trunk could be an appropriate choice for an alternative source for compressed wood. This paper aims to review the current status of oil palm biomass, including the availability of this tree, in order to illustrate the potential of oil palm biomass as an alternative source for compressed wood. Up to the present there has been insufficient information regarding the manufacturing conditions and properties of compressed wood from oil palm trunk. This paper will cover the background of compressed wood and the possibilities of producing compressed wood using oil palm trunk as a raw material.

  2. Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis

    International Nuclear Information System (INIS)

    Bioenergy has several advantages over fossil fuels. For example, it delivers energy at low net CO2 emission levels and contributes to sustaining future energy supplies. The concern, however, is that an increase in biomass plantations will reduce the land available for agricultural production. The aim of this study is to investigate the effect of taxing conventional electricity production or carbon use in combination with subsidizing biomass or bioelectricity production on the production of biomass and agricultural commodities and on the share of bioelectricity in total electricity production. We develop a partial equilibrium model to illustrate some of the potential impacts of these policies on greenhouse gas emissions, land reallocation and food and electricity prices. As a case study, we use data for Poland, which has a large potential for biomass production. Results show that combining a conventional electricity tax of 10% with a 25% subsidy on bioelectricity production increases the share of bioelectricity to 7.5%. Under this policy regime, biomass as well as agricultural production increase. A carbon tax that gives equal net tax yields, has better environmental results, however, at higher welfare costs and resulting in 1% to 4% reduction of agricultural production

  3. Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis

    International Nuclear Information System (INIS)

    Bioenergy has several advantages over fossil fuels. For example, it delivers energy at low net CO2 emission levels and contributes to sustaining future energy supplies. The concern, however, is that an increase in biomass plantations will reduce the land available for agricultural production. The aim of this study is to investigate the effect of taxing conventional electricity production or carbon use in combination with subsidizing biomass or bioelectricity production on the production of biomass and agricultural commodities and on the share of bioelectricity in total electricity production. We develop a partial equilibrium model to illustrate some of the potential impacts of these policies on greenhouse gas emissions, land reallocation and food and electricity prices. As a case study, we use data for Poland, which has a large potential for biomass production. Results show that combining a conventional electricity tax of 10% with a 25% subsidy on bioelectricity production increases the share of bioelectricity to 7.5%. Under this policy regime, biomass as well as agricultural production increase. A carbon tax that gives equal net tax yields, has better environmental results, however, at higher welfare costs and resulting in 1% to 4% reduction of agricultural production. (author)

  4. Biomass Conversion Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-05

    To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today’s vehicles and infrastructure.

  5. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying;

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  6. Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  7. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...

  8. Ranking of industrial forest plantations in terms of sustainability: A multicriteria approach.

    Science.gov (United States)

    Diaz-Balteiro, L; Alfranca, O; González-Pachón, J; Romero, C

    2016-09-15

    As forest managers and owners must have precise assessments of sustainability, in this study we have proposed a methodology based on multi-criteria techniques for assessing sustainability in industrial forest plantations and establishing a ranking of these plantations in terms of sustainability. First, we identified and have briefly described a set of sustainability indicators (economic, environmental and social). Next, we developed a statistical procedure to determine if a linear relationship existed between the indicators. With this analysis, the final set of indicators was defined and normalized. Then, we formulated four goal programming models, by which to aggregate the different indicators. In these models, we introduced the preferences of the decision makers for each indicator, using a survey with questions formulated in a pairwise comparison format. The procedure was applied to 30 Eucalyptus globulus Labill. plantations in northwestern Spain and 11 indicators were selected in order to define the sustainability. The results showed several rankings under each goal programming model. Although the results may not be the same in the different models, some plantations are always the most sustainable, while others are always the worst in terms of sustainability. The combination of initial values of indicators, goal programming models and preferences of stakeholders (preferential weights and targets) influence the results, and it cannot be predicted a priori which plantation is the best/worst in terms of sustainability. In our case study, we show how changes in preferential weights and targets substantially modify the results obtained. PMID:27213865

  9. Monitoring expansion of plantations in Lao tropical forests using Landsat time series

    Science.gov (United States)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-11-01

    Clearing of native forest for plantation expansion is a significant component of land use change in many tropical regions. The continuing expansion of plantations has many environmental consequences, including the loss and fragmentation of habitat, alteration of nutrient cycling processes, reduction in environmentally sequestered carbon, increased soil erosion and land degradation, and loss of biodiversity. The primary goal of this research was to develop and test remote sensing methods to detect the expansion of plantations in the southern part of the Lao People's Democratic Republic (PDR). We used Landsat satellite imagery acquired between 2003 and 2012. Principal component analysis (PCA) was applied to three Landsat temporal image pairs (2003-2006, 2006-2009 and 2009-2012) to identify areas of change. Change identification accuracy was evaluated by comparison against 1,240 random sample locations which had been independently classified from Google Earth imagery from 2006 and 2012. It was found that one of the principal components detected change in areas of plantation in the study area, with producer's accuracy of 92% and user's accuracy of 79%. This method was relatively easy to implement, involved no image purchase costs, and could be used by ecologists or forestry managers seeking to monitor forest loss or plantation expansion.

  10. Conceptual design of semi-automatic wheelbarrow to overcome ergonomics problems among palm oil plantation workers

    Science.gov (United States)

    Nawik, N. S. M.; Deros, B. M.; Rahman, M. N. A.; Sukadarin, E. H.; Nordin, N.; Tamrin, S. B. M.; Bakar, S. A.; Norzan, M. L.

    2015-12-01

    An ergonomics problem is one of the main issues faced by palm oil plantation workers especially during harvesting and collecting of fresh fruit bunches (FFB). Intensive manual handling and labor activities involved have been associated with high prevalence of musculoskeletal disorders (MSDs) among palm oil plantation workers. New and safe technology on machines and equipment in palm oil plantation are very important in order to help workers reduce risks and injuries while working. The aim of this research is to improve the design of a wheelbarrow, which is suitable for workers and a small size oil palm plantation. The wheelbarrow design was drawn using CATIA ergonomic features. The characteristic of ergonomics assessment is performed by comparing the existing design of wheelbarrow. Conceptual design was developed based on the problems that have been reported by workers. From the analysis of the problem, finally have resulting concept design the ergonomic quality of semi-automatic wheelbarrow with safe and suitable used for palm oil plantation workers.

  11. Carbon stock in Korean larch plantations along a chronosequence in the Lesser Khingan Mountains, China

    Institute of Scientific and Technical Information of China (English)

    Wei MA; Yan-hong LIU; Yu-jun SUN; Jason Grabosky

    2014-01-01

    Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance, how total forest ecosystem C stock (FECS) develops fol-lowing land-use changes from cropland to plantation is poorly under-stood, in particular the relationship of C allocation to pools. We quanti-fied C pools in a chronosequence ranging from 0 to 48 years, using com-plete above-and below-ground harvests based on detailed field inventory. Stands were chosen along a succession sequence in managed plantations of Korean larch (Larix olgensis Henry.), a native planting species in the Lesser Khingan Mountains, Northeast of China. The FECS of Korean larch plantation (KLP) were dynamic across stand development, chang-ing from 88.2 Mg·ha-1 at cropland, to 183.9 Mg·ha-1 as an average of forest C from 7-through 48-year-old plantation. In a 48-year-old mature KLP, vegetation comprises 48.63%of FECS and accounts for 67.66%of annual net C increment (ANCI). Soil is responsible for 38.19% and 13.53% of those, and with the remainders of 13.18% and 18.81% in down woody materials. Based on comparisons of our estimate to those of others, we conclude that afforestation of Korean larch plantation is a valid approach to sequester carbon.

  12. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China

    Science.gov (United States)

    Ren, H.; Jian, S.; Lu, H.; Zhang, Q.; Shen, W.; Han, W.; Yin, Z.; Guo, Q.

    2008-01-01

    To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical-chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species-Sonneratia apetala Buch.Ham-between plantations and natural forest. We found that severely degraded mangrove stands could not regenerate naturally without human intervention due to severely altered local environments, whereas some native species had been recruited into the 4-10 year S. apetala plantations. In the first 10 years, the exotic species S. apetala grew better than native species such as Rhizophora stylosa Griff and Kandelia candel (Linn.) Druce. The mangrove plantation gradually affected soil physical and chemical properties during its recovery. The exotic S. apetala was more competitive than native species and its plantation was able to restore soil organic matter in about 14 years. Thus, S. apetala can be considered as a pioneer species to improve degraded habitats to facilitate recolonisation by native mangrove species. However, removal to control proliferation may be needed at late stages to facilitate growth of native species. To ensure sustainability of mangroves in South China, the existing mangrove wetlands must be managed as an ecosystem, with long-term scientific monitoring program in place. ?? 2007 The Ecological Society of Japan.

  13. Persistence and detection of black truffle ectomycorrhizas in plantations: comparison between two field detection methods.

    Science.gov (United States)

    Sánchez, Sergio; Ágreda, Teresa; Águeda, Beatriz; Martín, María; de Miguel, Ana María; Barriuso, Juan

    2014-04-01

    Owners of black truffle (Tuber melanosporum) plantations are concerned about the persistence of its mycorrhizas and mycelium in the soil, especially until the appearance of the "truffle burn" areas and the triggering of sporocarp production, at least 5-7 years after planting truffle-inoculated seedlings. During this period, the farmer does not know whether his management is promoting black truffle development. To study the presence and abundance of T. melanosporum ectomycorrhizas in plantations, two sampling methods, direct sampling of root tips and soil core collection, are compared by analyzing 48 evergreen oak trees (Quercus ilex) inoculated with truffle. Those trees are grouped by age (9 years old) and presence or absence of truffle production. T. melanosporum was present in 46 out of the 48 studied trees, and its ectomycorrhizas appeared in 65% of the ectomycorrhizal tips. Its abundance is significantly higher with productive trees and young trees. Direct sampling of root tips and soil core collection were equally effective in detecting this species, although soil core collection proved a better method to also evaluate ectomycorrhizal fungal diversity. To detect the presence of T. melanosporum in a given plantation, three samples suffice, with a single sample per random tree. Although the presence of mycorrhizas is not a sure sign of the future success of a black truffle plantation, its absence influences managers as to whether to continue culturing truffles in a plantation. PMID:24509698

  14. The legacy of George L. Beckford’s plantation economy thesis in Jamaica

    Directory of Open Access Journals (Sweden)

    Jean Besson

    1995-01-01

    Full Text Available [First paragraph] Plantation Economy, Land Reform and the Peasantry in a Historical Perspective: Jamaica 1838-1980. CLAUS STOLBERG & SWITHIN WILMOT(eds.- Kingston: Friedrich Ebert Stiftung, 1992. 145 pp. (Paper n.p. This interdisciplinary collection focuses on the integration of Jamaica's classical plantation economy with the world economy, and the impact of the plantation economy on the peasantry, land reform, and agrarian modemization in Jamaica from emancipation in 1838 up to 1980. The eight papers comprising the volume were, as a one-page editorial "Introduction" outlines, presented at a symposium at the University of the West Indies, Mona, and are dedicated to the late Professor George Beckford whose work on persistent poverty in plantation economies championed the Jamaican peasantry. As such, the book is a welcome addition to the literature on the Caribbean plantation-peasant interface. However, the chapters are uneven in quality, with some reflecting analytical weaknesses and a lack of historical depth. Typographical errors, grammatical mistakes, and poor documentation are also noticeable. In addition, contrasting perspectives emerge among the contributors and this is not addressed by the editors.

  15. Do Extensive Rubber Plantation Influences Local Environment? A Case Study From Tripura, Northeast India.

    Directory of Open Access Journals (Sweden)

    Abhik Majumder

    2014-12-01

    Full Text Available Tripura is the second largest Natural Rubber (NR producing state of India. As most of the NR plantation in the state is rain dependent, it is observed that fluctuation in monsoon poses a serious threat to plantation growth of NR crops. The effect of such shift and fluctuation in climate ranges from surface and ground water level variation, air quality and soil preservation. At present no assessment is available to critically review the impact of large scale NR plantation on environment. In the present paper the effect and impact of annual rainfall deficit, depleted ground water level, average local atmospheric temperature variation and rainfall ground water recharge on NR plantation is studied for the state of Tripura. Considering the large scale accelerated NR plantation in the state, an attempt has been made to figure out the consequences related to water management. The multidirectional environmental threat to the state comprising annual rainfall deficit of 23.3 %, depleted ground water level and significant rise in average atmospheric temperature may severely hit the production of NR in the region. Moreover, the estimated requirement of water to produce ribbed smokes sheet (RSS will may escalate to more than 152140 kiloliters in the next ten years. The predicted amount of wastewater generated (directly or indirectly in RSS collection and industry processing effluents may cause large environmental issue due to their open disposal in many cases. Hence, also claims a threat to the rubber production and growth of the sector.

  16. Biomass Residue from Palm Oil Mills in Aceh Province: A Potential Usage for Sustainable Energy

    Directory of Open Access Journals (Sweden)

    M. Faisal M. Faisal

    2013-01-01

    Full Text Available Palm oil is one of the major agro industries in Aceh province. There are 25 crude palm oil (CPO Mills in Aceh located in 8 districts with 551.12 tons/hour total capacity. The mills are concentrated in five districts along the western and eastern coasts, Aceh Utara, Aceh Timur, Aceh Tamiang, Nagan Raya, and Aceh Singkil (including the newly-established municipality of Subullusalam. As the climatic conditions in the Aceh are suitable for palm trees, the oil palm plantation area has expanded every year. The processing of FFB (Fresh fruit bunches in palm oil mill produced a biomass residue that mainly consist of EFB (Empty fruit bunches, fiber, shells, and POME (Palm oil mill effluent. This study investigates the potential usage of biomass residue from palm oil mills in Aceh province. Results of the study indicated that the fiber and shells are mainly used as fuel for the mill boilers to generate heat and electricity for the whole plant. The EFB is disposed and spread on the plantation, incinerated or dumped in unmanaged sites. The POME is treated in the anaerobic and aerobic ponds, then normally being discharged into waterways or rivers. In some mills, the treated POME was spread to the plantation for fertilizer. Based on investigation on site, it shows that the load factor of the mill is only about 70% of capacity, thus the mills are inefficient since a lot of energy is lost. The use of EFB is very potential to be implemented in Aceh since this province produce of 724,185 ton EFB per year. With the total capacity of 551.12 tons/hour, palm oil mills in Aceh produce about 426.12 tons/hr of POME that also can be converted into energy. If 3.37 million ton FFB are treated in Aceh CPO mills, biogas energy of about 1.51 millions GJ will be produced.

  17. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon that was not...

  18. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  19. Rock fragment cover controls the sediment detachment in citrus plantations

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Hamidreza Sadeghi, Seyed; Brevik, Eric; Giménez Morera, Antonio; Novara, Agata; Masto, Reginald E.; Jordán, Antonio; Wang, Juan

    2016-04-01

    conditions. The objective of this research is to determine the impact of the rock fragment cover on soil and water losses in citrus plantations. Within the Corral Roig Soil Erosion Research Station, located in the Municipality of Montesa, 82 plots were selected with different rock fragment cover. In each circular plot of 0.25 m2, a rainfall simulation experiments was carried out at 55 mm h-1 of rainfall intensity during 1 hour under dry conditions in the Summer of 2013 under very dry conditions. It was found that the soil erosion rates are related to percentage of bare soil, and negatively correlated to the rock fragment covers. A cover of 30 % of rock fragments reduces the loss of soil with 81%. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project). References Cerdà, A. 1999. Parent material and vegetation affect soil erosion in eastern Spain. Soil Science Society of America Journal, 63 (2), 362-368. Cerdà, A., Giménez-Morera, A. and Bodí, M.B. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms, 34, 1822-1830. 2009. DOI: 10.1002/esp.1889 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2015. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude simulated rainfall events. Soil Res. (In press) Cerdà, A., Jurgensen, M.F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approachCatena, 85 (3), 231-236. DOI: 10.1016/j.catena.2011.01.008 Cerdà, A., Jurgensen, M.F. 2008.The influence of ants on soil and water losses from an orange orchard in

  20. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  1. Diversity of drought-resistant plants and the benefits of their biomass for improving fertility of a degraded soil of Brantas River Basin

    Directory of Open Access Journals (Sweden)

    E Arisoesilaningsih

    2015-01-01

    Full Text Available In support of healthy agriculture development to improve farmer’s prosperity status, soil remediation and land conservation efforts maybe relied on the use of biomass of local vegetation. Results of field exploration conducted at Brantas Watershed of East Java indicated that there were at least 154 species of undergrowth scrubs, 47 species of agriculture-plantation crops, and 59 species of road shelter trees. The native undergrowth vegetations had undergone enormous seasonal variations. Biomass of predominance vegetations, e.g. Psophocarpus tetragonolobus, Phaseolus lunatus, Flemingia, Mimosa somian, Acacia villosa, Cassia mimosoides, Mucuna could potentially be used as organic matter sources to improve availability of nitrogen and phosphorus in soils. The amount of nitrogen and phosphorus contributed of the plant biomass significantly correlated with quality of the biomass.

  2. Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil

    Science.gov (United States)

    Arbex, Marcos Abdo; Martins, Lourdes Conceição; de Oliveira, Regiani Carvalho; Pereira, Luiz Alberto Amador; Arbex, Flávio Ferlin; Cançado, José Eduardo Delfini; Saldiva, Paulo Hilário Nascimento; Braga, Alfésio Luís Ferreira

    2007-01-01

    Objective To evaluate the association between the total suspended particles (TSPs) generated from preharvest sugar cane burning and hospital admission due to asthma (asthma hospital admissions) in the city of Araraquara. Design An ecological time‐series study. Total daily records of asthma hospital admissions (ICD 10th J15) were obtained from one of the main hospitals in Araraquara, São Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (μg/m3) was obtained using Handi‐vol equipment (Energética, Brazil) placed in downtown Araraquara. The local airport provided the daily mean figures of temperature and humidity. The daily number of asthma hospital admissions was considered as the dependent variable in Poisson's regression models and the daily concentration of TSP was considered the independent variable. The generalised linear model with natural cubic spline was adopted to control for long‐time trend. Linear terms were used for weather variables. Results TSP had an acute effect on asthma admissions, starting 1 day after TSP concentrations increased and remaining almost unchanged for the next four days. A 10 μg/m3 increase in the 5‐day moving average (lag1–5) of TSP concentrations was associated with an increase of 11.6% (95% CI 5.4 to 17.7) in asthma hospital admissions. Conclusion Increases in TSP concentrations were definitely associated with asthma hospital admissions in Araraquara and, despite using sugar cane alcohol to reduce air pollution from automotive sources in large Brazilian urban centres, the cities where sugar cane is harvested pay a high toll in terms of public health. PMID:17435205

  3. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  4. Influence of main site factors on Fraxinus mandshurica(Oleaceae) plantation

    Institute of Scientific and Technical Information of China (English)

    SUHan-ying; LINDai-bin

    2003-01-01

    The investigation was carried out on 10-year-old plantation of Fraxinus mandshurica in Mao'er Mountain Experimental Station of Northeast Forest University.tree height(H),diameter at breast height(D1.3) and the increment of tree height in 5 years (H5),the thickness of humus layer,as well as the soil moisture were measured for the plantation and the growth indexes(H,D1.3,H5) for different site conditions were analyzed.The results showedthat main site factors influencing the growth of Fraxinus mandshurica were soil moisture,gradient and location of siope in order.The growth of Fraxinus mandshurica was better on the middle-or up-slope site than on the down-slope site.Soil moisture and late frost caused by terrain are the main reasons that limit the growth of Fraxinus mandshurica plantation.

  5. Contribution of a mixed forest plantation to avifauna conservation at Rio Cauca canyon, Colombia

    International Nuclear Information System (INIS)

    The avifauna of a forest mixed plantation at Cauca river canyon in Caldas department; was monitored during 10 months. Fifty nine understory resident species were captured,10% of them presented high sensibility to habitat perturbation (forest specialists). Only those species with low sensibility (generalists) presented differences between monthly numbers of captures. Other 50 species associated to the plantation, including two endemic and 26% boreal migratory species were registered visually and/or by its vocalizations. The results suggest that this plantation plays a key role in the conservation of local avifauna, is habitat both for species associated with natural forests and for those with less habitat requirements. This type of reforestation with native species could be a restoration model for other degraded areas from the region.

  6. Effects of the second-generation larch plantations on soil fertility and tree growth

    Institute of Scientific and Technical Information of China (English)

    王培华; 席苏桦; 姜文娟; 刘亚彬; 孙玉英

    2000-01-01

    In order to realize the effect of second generation of larch plantations on soil fertility and tree growth and to provide the theoretical base and the reasonable management measures, the growth of larch plantations for different generations at different soil conditions were inventoried and compared. The relationship between soil nutrition and tree growth of the second-generation larch plantations was analyzed. Comparing with the first generation, the second generation of larch did not present acidation phenomenon on the dark brown soil. With respect to the organic matter, rapidly available K and N, the values of the second-generation larch is close to that of first generation at later time. Platform-preparation is good measures for improving soil conditions

  7. Methanotrophic community abundance and composition in plateau soils with different plant species and plantation ways.

    Science.gov (United States)

    Dai, Yu; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2015-11-01

    Aerobic methane-oxidizing bacteria (MOB) play an important role in mitigating the methane emission in soil ecosystems to the atmosphere. However, the impact of plant species and plantation ways on the distribution of MOB remains unclear. The present study investigated MOB abundance and structure in plateau soils with different plant species and plantation ways (natural and managed). Soils were collected from unmanaged wild grassland and naturally forested sites, and managed farmland and afforested sites. A large variation in MOB abundance and structure was found in these studied soils. In addition, both type I MOB (Methylocaldum) and type II MOB (Methylocystis) were detected in these soils, while type II MOB usually outnumbered type I MOB. The distribution of soil MOB community was found to be collectively regulated by plantation way, plant species, the altitude of sampling site, and soil properties. PMID:26142389

  8. Problems in Fast-growing and High-yield Plantation Ecosystem Management and Their Countermeasures in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper analyzed the basic characteristics of fast-growing and high-yield plantation, classified and identified the ecological problems in its development, and finally proposed the basic principles and corresponding technical measures for fast-growing and high-yield plantation ecosystem management based on these problems.

  9. A comparative assessment on regeneration status of indigenous woody plants in Eucalyptus grandis plantation and adjacent natural forest

    Institute of Scientific and Technical Information of China (English)

    Shiferaw Alem; Tadesse Woldemariam

    2009-01-01

    Diversity, density and species composition of naturally regenerated woody plants under Eucalyptus grandis plantation and the adjacent natural forest were investigated and compared. Twenty plots, with an area of 20 m× 20 m for each, were established in both of E. Grandis plantation and adjacent natural forest, independently. In each plot, species name, abundance, diameter and height were recorded. Numbers of seedling were collected in five sub-plots (4 m2) within each major plot. A total of 46 species in the plantation, and 52 species in the natural forest, which belongs to 36 families were recorded. The diversity of species (H') is 2.19 in the plantation and 2.74 in the natural forest. The density of understory woody plant was 3842 stems/ha in the plantation and 4122 stems/ha in the natural forest. The densities of seedlings in the natural forest and the plantation were 8101 stems/ha and 4151 stems/ha, respectively. High similarity of woody species composition was found between the natural forest and the plantation. The E. Grandis plantation was found favoring the regeneration and growth of Millitia ferruginia and Coffea arabica in a much better way than other underneath woody species.

  10. Post-dispersal seed predation of woody forest species limits recolonization of forest plantations on ex-arable land

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Valtinat, K.; Kollmann, Johannes Christian;

    2010-01-01

    Reforestation of ex-arable land in temperate regions increases the area of potential habitat for forest plants. However, the herbaceous plant layer of these plantations contains fewer forest species than comparable plantations at continuously forested sites. One of the reasons for this might be...

  11. Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China

    Science.gov (United States)

    Kang, M.; Zhang, Z.; Noormets, A.; Fang, X.; Zha, T.; Zhou, J.; Sun, G.; McNulty, S.; Chen, J.

    2015-01-01

    Poplar (Populus sp.) plantations have been used broadly for combating desertification, urban greening, and paper and wood production in northern China. However, given the high water use by the species and the regional dry environment, the long-term sustainability of these plantations needs to be evaluated. Currently, the understanding of energy partitioning and canopy resistance to water vapor and CO2 in poplar plantations is limited, impeding an accurate assessment of their true ecosystem functions. This study examined the variability of canopy bulk resistance parameters and energy partitioning over a four-year period encompassing both dry and wet conditions in a poplar (Populus euramericana CV. "74 / 76") plantation ecosystem located in northern China. Available energy (Net radiation Rn minus Soil Heat Flux, G) partitioning to latent (LE) and sensible (H) heat was responsive to climatological drought, with LE/(Rn-G) ranging from 62% in wet years (e.g. 2007 and 2008) to 53% in dry years (e.g. 2006 and 2009), and H/(Rn-G) from 25 to 33% between wet and dry years. Correspondingly, the Bowen ratio (β=H/LE) were 0.83 and 1.57. Surface resistance (Rs) had the greatest response to drought (+43%), but the aerodynamic and climatological resistances did not change significantly (p > 0.05). Partial correlation analysis indicated that Rs was the dominant factor in controlling the Bowen ratio. Furthermore, Rs was the major factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively), and the LE / LEeq ratio ranged from 0.81 and 0.68 in wet and dry years, respectively. In general, the dry surface conditions dominated in this poplar plantation ecosystem regardless of soil water availability suggesting that fast-growing and water use-intensive species like poplar plantations are poorly adapted for the water limited region.

  12. Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China

    Directory of Open Access Journals (Sweden)

    M. Kang

    2015-01-01

    Full Text Available Poplar (Populus sp. plantations have been used broadly for combating desertification, urban greening, and paper and wood production in northern China. However, given the high water use by the species and the regional dry environment, the long-term sustainability of these plantations needs to be evaluated. Currently, the understanding of energy partitioning and canopy resistance to water vapor and CO2 in poplar plantations is limited, impeding an accurate assessment of their true ecosystem functions. This study examined the variability of canopy bulk resistance parameters and energy partitioning over a four-year period encompassing both dry and wet conditions in a poplar (Populus euramericana CV. "74 / 76" plantation ecosystem located in northern China. Available energy (Net radiation Rn minus Soil Heat Flux, G partitioning to latent (LE and sensible (H heat was responsive to climatological drought, with LE/(Rn-G ranging from 62% in wet years (e.g. 2007 and 2008 to 53% in dry years (e.g. 2006 and 2009, and H/(Rn-G from 25 to 33% between wet and dry years. Correspondingly, the Bowen ratio (β=H/LE were 0.83 and 1.57. Surface resistance (Rs had the greatest response to drought (+43%, but the aerodynamic and climatological resistances did not change significantly (p > 0.05. Partial correlation analysis indicated that Rs was the dominant factor in controlling the Bowen ratio. Furthermore, Rs was the major factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively, and the LE / LEeq ratio ranged from 0.81 and 0.68 in wet and dry years, respectively. In general, the dry surface conditions dominated in this poplar plantation ecosystem regardless of soil water availability suggesting that fast-growing and water use-intensive species like poplar plantations are poorly adapted for the water limited region.

  13. Biophysical Impacts of Tropical Land Transformation from Forest to Oil Palm and Rubber Plantations in Indonesia

    Science.gov (United States)

    Knohl, Alexander; Meijide, Ana; Fan, Yuanchao; Gunawan, Dodo; Hölscher, Dirk; June, Tania; Niu, Furong; Panferov, Oleg; Ringeler, Andre; Röll, Alexander; Sabajo, Clifton; Tiralla, Nina

    2016-04-01

    Indonesia currently experiences rapid and large-scale land-use changes resulting in forest loss and the expansion of cash crop plantations such as oil palm and rubber. Such land transformations are associated with changes in surface properties that affect biophysical processes influencing the atmosphere. Yet, the overall effect of such land transformations on the atmosphere at local and regional scale remains unclear. In our study, we combine measurements of microclimate, transpiration via sap-flux, surface energy fluxes via eddy covariance, surface temperature via remote sensing, land surface (CLM) and regional climate modeling (WRF) for Jambi Province in Indonesia. Our microclimatic measurements showed that air temperature within the canopy was on average 0.7-0.8°C higher in monoculture plantations (oil palm and rubber) compared to forest. Remote sensing analysis using MODIS and Landsat revealed a higher canopy surface temperature for oil palm plantations (+1.5°C) compared to forest, but only little differences for rubber plantations. Transpiration (T) and evapotranspiration (ET) as well as the contribution of T to ET of oil palm showed a strong age-dependent increase. The sensible to latent heat flux ratio decreased with age. Overall, rubber plantations showed the lowest transpirations rates (320 mm year-1), oil palm intermediate rates (414 mm year-1), and forest the highest rates (558 mm year-1) indicating substantial differences in water use. Despite the differences in water use and the higher within-canopy and surface temperatures of the plantations compared to the forest, there was only a minor effect of land transformation on the atmosphere at the regional scale (<0.2 °C), irrespectively of the large spatial extend of the transformation. In conclusion, our study shows a strong local scale biophysical impact affecting the conditions at the stand level, which is however mitigated in the atmosphere at the regional level.

  14. Effect of tree-crop intercropping on a young Populus tomentosa plantation

    Institute of Scientific and Technical Information of China (English)

    JIANG Yuezhong; QIN Guanghua

    2007-01-01

    In order to study the effect of tree crop intercropping on a young plantation ofPopulus tomentosa in the plains along the Yellow River,field experiments were conducted by observing the growth of the plantation,the nutrient content in leaves,the nutrient and water content in the soil,and the output of crops.The relationship between forest growth and nutrient content in the tree leaves and the soil were analyzed.Results show that tree crop intercropping in young plantations can not only improve soil water content,but also enhance the contents of organic matter and the available nitrogen,phosphorus and potassium in soil resulting in the vigorous growth of the individual trees.Diameter at breast height (DBH) was positively related to the contents of organic matter in the soil,and the contents of N,P and K in the tree leaves had correlation coefficients of 0.967,0.955,0.988 and 0.972,respectively.Whole tree leaf area,crown width,number of branches and the mean length of branches in the intercropped plantation (intercropped with watermelon and vegetables,peanut and winter wheat,and soybean) were,respectively,1.70-3.0 times,2.22-2.47 times,1.0-1.41 times and 1.70-2.32 times of those of CK (without intercropping).Diameter at breast height (DBH) and tree height in the intercropped plantation were 50.5%-136.7% and 27%-59.5% higher than those of the CK,respectively.The study also showed that intercropping with watermelon and vegetables proved to have the highest economic return among the treatments adopted.Tree crop intercropping in young plantations is an effective measure to increase forest growth and economic benefit.

  15. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    Science.gov (United States)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  16. Evapotranspiration components determined by eddy covariance and sap flux measurements in oil palm plantations in Sumatra, Indonesia

    Science.gov (United States)

    Meijide, Ana; Röll, Alexander; Niu, Furong; June, Tania; Hölscher, Dirk; Knohl, Alexander

    2015-04-01

    The expansion of oil palm cultivation fueled by the increasing global demand for palm oil is leading to massive land transformations in tropical areas, particularly in South-East Asia. Conversions of forest land to oil palm plantations likely affect ecosystem water fluxes. However, there is a lack of information on water fluxes from oil palm plantations as well as on the partitioning of these fluxes into its different components such as transpiration and evaporation. It is expected that water fluxes from oil palm plantations vary temporally, both long-term, i.e. between different age-classes of plantations, and short-term, i.e. from day to day within a certain plantation (e.g. during or after periods of rainfall). A proper evaluation of water fluxes from oil palm plantations thus requires an experimental design encompassing these types of variability. To assess evapotranspiration (ET) rates, an eddy covariance tower was installed in a 2-year-old oil palm plantation in the lowlands of Jambi, Sumatra; it was subsequently moved to a 12-year-old oil palm plantation located in the same region. In parallel to the ET, sap flux density was measured on 16 leaf petioles on four oil palms; stand transpiration rates were derived from these measurements with stand inventory data. The parallel measurements ran for several weeks in both plantations. Preliminary results for our period of study show that the average ET rate of the 2-year-old oil palm plantation was 5.2 mm day-1; values up to 7.0 mm day-1 were observed on dry, sunny days with non-limiting soil moisture. Stand transpiration (T) by the young oil palms was very low, 0.3 mm day-1on average, and only showed a small variation between days. Under optimal environmental conditions, the ratio of T to total ET was up to 0.08 in the young plantation, while in the mature, 12-year-old plantation, it was significantly higher and reached 0.5. Transpiration rates in the mature oil palm plantation were about six- to seven-fold higher

  17. Soil greenhouse gases emissions and carbon storage in coffee plantations on Andosols in tropical climate

    OpenAIRE

    Hergoualc'H, Kristell

    2008-01-01

    Coffee plantations represent 7.5% of the world's permanent crops and generally use large amounts of N fertilizer (up to 350 kg N ha-1 y-1). Coffee is often grown under the shade of N fixing trees. The contribution of N fixing plants to N2O emissions is a growing concern in the sustainable development framework. To date results in the literature are contradictory. We, therefore, studied the greenhouse gas (GHG) balance in two highly fertilized (250 kg N ha-1 y-1) coffee plantations, in Costa R...

  18. The Impact of Accounting Earnings on Stock Returns: The Case of Malaysia’s Plantation Industry

    OpenAIRE

    Wong Pik Har; Muhammad Afif. Abdul Ghafar

    2015-01-01

    This study seeks to examine, (1) the effect of ROA, ROE and ROCE on stock return for plantation companies listed on the Main Board of Bursa Malaysia, in two distinct economic periods, prior to (2004-2006) and during (2007-2008) an economic recession and, (2) the resiliency of the plantation industry in Malaysia. Simple linear regression was used in analyzing the data. It was revealed that ROE had the highest explanatory power in explaining the variation in stock returns. ROA and ROCE were dis...

  19. Incidences and severity of vascular wilt in Acacia mangium plantations in Sabah, Malaysia

    Science.gov (United States)

    Maid, Mandy; Ratnam, Wickneswari

    2014-09-01

    This study aimed to evaluate the incidences and severity of vascular wilt disease associated with dieback in stands of commercial Acacia mangium plantations. The study revealed that the prevalence of the symptoms is high between 50 to 60% in two plantations, where it is found scattered in the plots that were surveyed. The incidence of the disease in each plot is low between 0 to 6%. The disease symptoms were more often found where the symptom syndrome in a chronic (level 3) or critical state (level 4). This suggests that the causal pathogen has the ability to penetrate into the tissues of the plants and only display symptoms at the latest stage.

  20. Relationship of Change in Corporate Social Disclosure (CSD) on Financial Performance of Plantation Companies in Malaysia

    OpenAIRE

    Manasseh, Stephen

    2007-01-01

    This study attempts to investigate the relationship between the “change in CSD” that is captured from annual reports of companies and its link to improvements in financial performance using parameters such as Earnings Per Share (EPS), Share Price, PBIT (Profit before Interest and Tax) and Sales Revenue. The focus of this study is on Plantation companies in the KLSE (Kuala Lumpur Stock Exchange) in the Main Board. The Plantation sector has been selected as it is in the “High Profile” category ...

  1. Rehabilitation of an old palm-tree plantation in Ivory Coas

    Directory of Open Access Journals (Sweden)

    Abodou Ake, N.

    1988-01-01

    Full Text Available In the "Sous-prefecture" of Anyama, South-east of Ivory Coast, an old palm-tree plantation run at village level had to be replaced by another activity such as cassava cultivation or broiler production. The success of such a rehabilitation is closely associated with an adequate choice of the new agricultural activity, with technical competence, with the acceptance of the new techniques and with an appropriate regional extension service. The conjunction of all these factors has made the operation a success. The poultry production is more profitable than cassava to substitute palm-oil plantation in the context concerned.

  2. An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae in Brazilian Forest Plantations

    Directory of Open Access Journals (Sweden)

    Ronald Zanetti

    2014-03-01

    Full Text Available Brazilian forest producers have developed integrated management programs to increase the effectiveness of the control of leaf-cutting ants of the genera Atta and Acromyrmex. These measures reduced the costs and quantity of insecticides used in the plantations. Such integrated management programs are based on monitoring the ant nests, as well as the need and timing of the control methods. Chemical control employing baits is the most commonly used method, however, biological, mechanical and cultural control methods, besides plant resistance, can reduce the quantity of chemicals applied in the plantations.

  3. Short-rotation plantations. Processes, economic efficiency and ecological balance; Kurzumtriebsplantagen. Verfahren, Wirtschaftlichkeit und Oekobilanz

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Frank [Bayerische Landesanstalt fuer Wald und Forstwirtschaft, Freising (Germany)

    2012-11-15

    A short-rotation plantation is defined as the cultivation of fast-growing species of trees on agricultural land. Following the harvest, the trees sprout from the floor. Thus, the trees can be utilized repeatedly. The stocks produce enormous growth rates. Nearly 5,000 to 6,000 litre of heating oil can be conserved by means of the wood growing on an area of one hectare annually. The well organized harvest is decisive for the economic efficiency. The ecological balance presents the short-rotation plantations as a very extensive form of land use.

  4. Continuous urea-molasses supplementation for Sumatra thin tail ewes grazing in rubber plantation : Reproductive performances.

    OpenAIRE

    Simon P Ginting; L.P Batubara; M.D Sanchez; K.R Pond

    1999-01-01

    The reproductive responses of local Sumatra ewes on the continuous urea-molasses supplementation was studied in 116 ewes for 21 months. The animals were divided into two groups and randomly allocated to urea-molasses supplement and grazing in rubber plantation or grazing in rubber plantation only (control). Both groups were allowed to graze for 8 hours a day. The urea-molasses mixture contained 3% urea (kg/kg) and were fed to the supplemented ewes ad libitum. The number of lambs born from sup...

  5. Growth performance of cork oak plantations recently established on farmlands in Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    Dettori S

    2006-01-01

    Full Text Available Recently, significant forestry activities have taken place in Sardinia thanks to EU Regulation 2080/92 funds. Some 80% of the afforestated surface has been planted with holm oak and cork oak. The latter also characterizes 89% of the reforestation area. Given the funding source, plantations have been established on farmlands. Growth performances of these recent cork oak stands have been quantitatively evaluated and compared with the performances of two experimental plots. In Gallura (north-east of Sardinia, that is the traditional cork production area and still is economically the most important cork district of the island, these new cork oak plantations have an average size of 28 ha. They have been established on lands that, before plantation, were either pastures (30% or arable lands (70%. Plantation failures are limited to 8.8% of the total (in term of mass and seem independent of environmental factors or plantations species composition (conifers have been frequently used as secondary species. Average growth of the stem, measured above cork at collar height, is in the range 4 to 8mm/year with a mean value of 5.5mm/year. No correlation appears with either environmental conditions or species composition of the plantations. In the first experimental plot, soil management practices (natural vegetation removal vs its cutting and mulching does not differentiate young plants growth trends. In the control subplots (no removal stem collar diameter is 20% smaller. Localized manual hoeing around trunk base increased the diameters by 13% but reduced cork thickness by 21%. The second experimental plot allows comparisons among 27 Mediterranean proveniences of cork oak. The trial exhibits reduced genetic influence: diameters and heights growth are significantly different only among extreme groups. In conclusion, reduced growth performances of the plantations established in farmlands is due, to some extent, to the limitations inherent with private land

  6. Performance of an Age Series of Alnus–Cardamom Plantations in the Sikkim Himalaya: Nutrient Dynamics

    OpenAIRE

    G. Sharma; Sharma, R.; SHARMA, E.; SINGH, K. K.

    2002-01-01

    Nutrient cycling, nutrient use efficiency and nitrogen fixation in an age series of Alnus–cardamom plantations were studied in the eastern Himalaya. The impact of stand age (5, 10, 15, 20, 30 and 40 years) on the nutrient dynamics of mixtures of N2‐fixing (Alnus nepalensis) and non‐N2‐fixing (large cardamom) plants was assessed. Foliar nutrient concentrations of Alnus decreased with advancing age groups of plantations and showed an inverse relationship with stand age. Annual N fixation inc...

  7. Response of groundwater levels to rainfall and to leaf growth of farm plantations near salt seeps

    Science.gov (United States)

    Biddiscombe, E. F.; Rogers, A. L.; Allison, H.; Litchfield, R.

    1985-05-01

    Clearing of native forest has caused a rise in soil water tables and secondary salinisation in south Western Australia. An experiment in reclamation began in May 1976 with the replanting of tree vegetation near salt seeps. Spectral analysis was used to relate the subsequent changes in static water levels of the groundwater to rainfall input and progressive leaf area index of two plantations on a single subcatchment. The upslope static water levels lagged the seasonal rainfall by 3-4 months, whereas the midslope levels lagged rainfall by ˜ 1 month. Increasing leaf area of the plantations corresponded to decreasing groundwater levels in their vicinity.

  8. The influence of the plantation establishment method on the yield of marshmallow (Althaea officinalis L.) flowers

    OpenAIRE

    Sylwia Andruszczak

    2012-01-01

    The field experiment with one- and two-year-old marshmallow plants was carried out in Zamość on brown soil of loess origin in 2002-2004. There were four methods of plantation establishment: 1) direct sowing in the field (control object); 2) direct sowing in the field with cover of polypropylene sheet; 3) by seedlings from a plastic house; 4) by seedlings produced in multi-cell propagation trays. It was found that, in the case of one-year-old plants, all the methods of plantation establishment...

  9. BIOMASS newsletter. No. 5

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  10. BIOMASS newsletter. No. 3

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  11. BIOMASS newsletter. No. 4

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  12. BIOMASS newsletter. No. 8

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  13. BIOMASS newsletter. No. 7

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  14. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  15. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 2200C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw

  16. Transpiration characteristics of a rubber plantation in central Cambodia.

    Science.gov (United States)

    Kobayashi, Nakako; Kumagai, Tomo'omi; Miyazawa, Yoshiyuki; Matsumoto, Kazuho; Tateishi, Makiko; Lim, Tiva K; Mudd, Ryan G; Ziegler, Alan D; Giambelluca, Thomas W; Yin, Song

    2014-03-01

    The rapid and widespread expansion of rubber plantations in Southeast Asia necessitates a greater understanding of tree physiology and the impacts of water consumption on local hydrology. Sap flow measurements were used to study the intra- and inter-annual variations in transpiration rate (Et) in a rubber stand in the low-elevation plain of central Cambodia. Mean stand sap flux density (JS) indicates that rubber trees actively transpire in the rainy season, but become inactive in the dry season. A sharp, brief drop in JS occurred simultaneously with leaf shedding in the middle of the dry season in January. Although the annual maxima of JS were approximately the same in the two study years, the maximum daily stand Et of ∼2.0 mm day(-1) in 2010 increased to ∼2.4 mm day(-1) in 2011. Canopy-level stomatal response was well explained by changes in solar radiation, vapor pressure deficit, soil moisture availability, leaf area, and stem diameter. Rubber trees had a relatively small potential to transpire at the beginning of the study period, compared with average diffuse-porous species. After 2 years of growth in stem diameter, transpiration potential was comparable to other species. The sensitivity of canopy conductance (gc) to atmospheric drought indicates isohydric behavior of rubber trees. Modeling also predicted a relatively small sensitivity of gc to the soil moisture deficit and a rapid decrease in gc under extreme drought conditions. However, annual observations suggest the possibility of a change in leaf characteristics with tree maturity and/or initiation of latex tapping. The estimated annual stand Et was 469 mm year(-1) in 2010, increasing to 658 mm year(-1) in 2011. Diagnostic analysis using the derived gc model showed that inter-annual change in stand Et in the rapidly growing young rubber stand was determined mainly by tree growth rate, not by differences in air and soil variables in the surrounding environment. Future research should focus on the

  17. Impact of Community Involvement in Urban Plantation and Landscape

    Directory of Open Access Journals (Sweden)

    Saif-ur-Rehman

    2002-01-01

    Full Text Available To explore the value of plants in creating a positive community atmosphere, urban planners have looked at the role of plants in several related areas such as environmental preferences and perceptions, neighborhood satisfaction and economic impact including residential property value and value to recreation and tourism. In urban tree-planting planning, sociological factors may be more important than biological factors in terms of tree survival because planting without community involvement in planning or implementations lacks support at the grass root level and is therefor open to all kind of hazards. Faisalabad is the third biggest city of Pakistan and is presently undergoing a developmental transition form a sort of semi-rural to an urban outfit with new roads, parks, green belts and waterways under construction and old ones being renovated. A research study was designed to assess the changing requirements and responses of the population of residential areas and institutions of the city in respect of landscaping/tree plantation. A questionnaire was developed to document the perception of people visiting the sites and interviews were held with the residents who were prepared to donate funds for landscaping activities. The landscape plan/design was developed on the basis of document analysis according to the requirements of the people both visiting and residing there. Different features like walking tracks, dust bins, child play areas, flowering shrubs for semi privacy and trees for complete privacy were included in the landscape design. All the selected trees and shrubs were evergreen because they require minimum maintenance and contributed more to greenery in the dry environment. The design received a quick response from the community and had great impact on Faisalabad environment. All the wasteland in the interior city has been greatly improved and it helped to curb pollution, enhance blodiversity and beautify the city at the same time. The

  18. The barley straw residues avoid high erosion rates in persimmon plantations. Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Giménez-Morera, Antonio; Jordán, Antonio; Novara, Agata; Pereira, Paulo; Mataix-Solera, Jorge

    2015-04-01

    plantations in eastern Spain. A three-scale rainfall simulation approach. Catena 85, 231-236. Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia 64, 527-531. Cerdà, A., Morera, A.G., Bodí, M.B. 2009. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. Fernández, C., Vega, J.A. 2014. Efficacy of bark strands and straw mulching after wildfire in NW Spain: Effects on erosion control and vegetation recovery. Ecological Engineering 63, 50-57 García-Moreno, J., Gordillo-Rivero, Á.J., Zavala, L.M., Jordán, A., Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research 130, 62-68. García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. 10.1016/j.still.2009.06.002 García-Orenes, F., Guerrero, C., Roldán, A.,Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca. F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. 10.1016/j.still.2010.05.005. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28, 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., Moeyersons, J. 2013. Assessing the performance of a Spatially

  19. Resilience Assessment of Lowland Plantations Using an Ecosystem Modeling Approach

    Directory of Open Access Journals (Sweden)

    Chia-Hsin Wu

    2015-03-01

    Full Text Available As afforestation programs of former farmlands take hold in Taiwan to achieve a variety of ecological and socio-economic values, it is becoming necessary to define best forest management. Hence, we simulated mixed stands of Cinnamomum camphora and Fraxinus griffithii planted through a gradient of soil fertility and varying camphor/ash density ratios, but maintaining a fixed total stand density of 1500 trees ha−1. Total stand productivity was slightly lower in mixed stands than the combination of both monocultures in rich and poor sites. Maximum negative yield surpluses for 50-year old stands were 7 Mg ha−1 and 6 Mg ha−1 for rich and poor sites with a 1:1 camphor laurel/ash ratios. Maximum stand woody biomass in rich sites was reached in camphor laurel monocultures (120 Mg ha−1 and in poor sites for Himalayan ash monocultures (58 Mg ha−1. However, for medium-quality sites, a small yield surplus (11 Mg ha−1 was estimated coinciding with a maximum stand woody biomass of 95 Mg ha−1 for a 1:1 camphor laurel/ash density ratio. From an ecological resilience point of view, rotation length was more important than stand composition. Long rotations (100 years could improve soil conditions in poor sites. In rich sites, short rotations (50 years should be avoided to reduce risks or fertility loss.

  20. Thermal gasification of biomass technology development in the U.S.A

    International Nuclear Information System (INIS)

    In the U.S.A., the widely recognized importance of biomass utilization in controlling carbon build-up in the biosphere and the potential benefit of creating new industries associated with new job opportunities, particularly in the rural areas, have added impetus to the development and commercialization of advanced biomass energy conversion methods. Recent analyses and evaluations have shown that many short rotation energy crops (SREC) produce significant net-energy (i.e., energy yield greater than the energy input for plant growth). SREC such as willow, poplar, and miscanthus may yield up to 20 dry tonnes/yr/ha/year of biomass feedstocks, some with about 20 % moisture, after the third year of plantation. Implementation by U.S. EPA of the recent Clean Water Act Federal Biosolids Rules specified as Code 40 of Federal Register 503, should make available large quantities of high nitrogen content, pathogen-free municipal sludges ideally suited as an inexpensive source of organic fertiliser, thus improving the economics of SREC. The concept of herbaceous SREC can be further augmented when value-added byproducts, such as cattle feed, could be produced along with biomass energy feedstocks. Since 1990, there has been renewed interest in the United States in developing advanced power-generating cycles utilizing biomass gasification. The advanced systems have the potential for higher generation efficiencies, 35 % to 40 %, and lower costs of electricity, $0.045 to $0.055/kWh, compared to conventional direct-combustion systems. The efficiency of power production can be even higher (about 55 %) when the fuel gas is converted to hydrogen followed by electrochemical conversion to electricity in a fuel cell. The Energy Policy Act of 1992 includes a number of provisions to promote the commercialisation of biomass power production. The recent Global Climate Change Action Plan also includes several programs and incentives for biomass power production. A summary of U.S. demonstration