WorldWideScience

Sample records for biomass pellet production

  1. Hydrothermal pretreatment of biomass for pellet production

    Energy Technology Data Exchange (ETDEWEB)

    Tooyserkani, Z. [British Columbia Univ., Vancouver, BC (Canada). Clean Energy Research Centre, Biomass and Bioenergy Research Group

    2010-07-01

    This presentation discussed innovative technologies for the production of wood pellets using the hydrothermal pre-treatment of biomass. Conventional techniques use low-cost mill residues, such as saw dust and shavings, as feedstock to produce durable, low-ash pellets. However, mill residues are becoming less available as a result of fewer saw mills, increased pellet production, and increased competition for saw dust. Advanced techniques use mixed biomass such as logging residue as feedstock, creating pellets that are durable for handling and long-term storage, of a higher energy density for transport and mixing with coal for co-firing, and a choice feedstock for biofuels. Advanced pellet production uses steam explosion/pre-treatment in which biomass receives a short-term high-pressure steam treatment followed by sudden decompression. Mild torrefaction seems to have positive feedback, and steam-treated pellets are durable with superior hydrophobicity. 3 figs., 3 tabs.

  2. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    to pelletize a 60% (wt) pine + 40% (wt) beech mixture but not a 40% (wt) pine + 60% (wt) beech mixture. Addition of 3% (wt) rape oil or 3% (wt) Wafolin did not facilitate the pelletizing process of beech. However, it was found that the addition of polymer-rich compounds such as brewers spent grains...... tests are needed, it appears that the addition of small amounts of brewers spent grains increases the quality of the pellets. A model is presented which describes the pelletizing pressure variation along the press channels of the die. Equations based on differential control volumes are set up...

  3. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  4. Economic analysis of manufacturing costs of pellet production in the Republic of Ireland using non-woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, A.; McDonnell, K.; Devlin, G.J. [Dublin Univ. College (Ireland). Dept. of Biosystems Engineering, UCD School of Agriculture, Food Science and Veterinary Medicine; Carroll, J.P.; Finnan, J. [Teagasc Crops Research Centre, Carlow (Ireland)

    2010-07-01

    Pellets are a key technology for increasing the use of biomass in both electricity and heat production. This paper presented an economic analysis of a non-woody biomass pelleting process located in the Republic of Ireland. The establishment, harvest, storage, and drying costs of the feedstock were considered in addition to transportation costs to the processing plant and costs associated with the pelletizing process. Several biomass pellet plant capacities were considered. Results of the study showed that raw materials are the largest cost component of the total pellet production cost. Other major costs included the cost of the pelleting and cooling plant, the straw grinding plant, and personnel costs. The study showed that decreasing production capacity to 6 tons per hour resulted in increases in production costs, while increasing the capacity to 10 tons per hour resulted in a decrease in production costs. Non-woody biomass pellet production compared favorably with fossil fuel energy production processes. 25 refs., 9 tabs.

  5. Mobile Biomass Pelletizing System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  6. Best Available Techniques (BAT) in solid biomass fuel processing, handling, storage and production of pellets from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.P.; Tana, J. [AaF-Industri Ab, Stockholm (Sweden)

    2012-09-15

    With the increasing use of biomass fuels the varieties of sources for biomass have expanded to almost all possible combustible matter with biological origin. The increasing scale in solid biomass fuel production and utilization at the combustion plants of the wide variety of biomass fuels have contributed to littering, dust, odor and noise emissions of the production chain. The report aims to provide information for operators, environmental consultants and competent environmental authorities on what is considered BAT, as defined in the IPPC directive (2008/1/EC), in biomass processing and handling as well as the production of pellets from biomass. The project gives a brief description of commonly used solid biomass fuels and the processes, handling and storage of these biomasses in the Nordic countries covering processes from production site to the point of use. Environmental emissions, sources of waste and other relevant environmental aspects from commonly used processes, included raw material and energy use, chemical use and emissions to soil are also included in the report. (Author)

  7. From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa;

    2016-01-01

    (SPP) can be extrapolated to larger scale pellet mills. The single pellet press was used to find the optimum moisture content and die operating temperature for pellet production. Then, these results were compared with those obtained from a bench-scale pellet mill. A moisture content of around 10 wt.......% was found to be optimal for the six biomass feedstocks. A friction increase was seen when the die temperature increased from room temperature to 60-90 degrees C for most biomass types, and then a friction decrease when the die temperature increased further. The results obtained in the bench-scale pellet...... mill support the proposed theory that good quality pellets and satisfactory pelletizing should occur in the region where the friction decreases with die temperature. Therefore, the friction vs. die temperature curve measured for each biomass in the SPP can be used as an indication of the right die...

  8. RECENT DEVELOPMENTS IN BIOMASS PELLETIZATION – A REVIEW

    Directory of Open Access Journals (Sweden)

    Wolfgang Stelte,

    2012-07-01

    Full Text Available The depletion of fossil fuels and the need to reduce greenhouse gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is expected for the coming years. Due to an increase in demand for biomass, the traditionally used wood residues from sawmills and pulp and paper industry are not sufficient to meet future needs. An extended raw material base consisting of a broad variety of fibrous residues from agriculture and food industries, as well as thermal pre-treatment processes, provides new challenges for the pellet industry. Pellet production has been an established process for several decades, but only in the past five years has there been significant progress made to understand the key factors affecting pelletizing processes. A good understanding about the pelletizing process, especially the processing parameters and their effect on pellet formation and bonding are important for process and product optimization. The present review provides a comprehensive overview of the latest insights into the biomass pelletization processes, such as the forces involved in the pelletizing processes, modeling, bonding, and adhesive mechanisms. Furthermore, thermal pretreatment of the biomass, i.e. torrefaction and other thermal treatment to enhance the fuel properties of biomass pellets are discussed.

  9. Mechanical durability and combustion characteristics of pellets from biomass blends

    Energy Technology Data Exchange (ETDEWEB)

    Gil, M.V.; Oulego, P.; Casal, M.D.; Pevida, C.; Pis, J.J.; Rubiera, F. [CSIC, Oviedo (Spain)

    2010-11-15

    Biofuel pellets were prepared from biomass (pine, chestnut and eucalyptus sawdust, cellulose residue, coffee husks and grape waste) and from blends of biomass with two coals (bituminous and semianthracite). Their mechanical properties and combustion behaviour were studied by means of an abrasion index and thermogravimetric analysis (TGA), respectively, in order to select the best raw materials available in the area of study for pellet production. Chestnut and pine sawdust pellets exhibited the highest durability, whereas grape waste and coffee husks pellets were the least durable. Blends of pine sawdust with 10-30% chestnut sawdust were the best for pellet production. Blends of cellulose residue and coals (<20%) with chestnut and pine sawdusts did not decrease pellet durability. The biomass/biomass blends presented combustion profiles similar to those of the individual raw materials. The addition of coal to the biomass in low amounts did not affect the thermal characteristics of the blends.

  10. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    The depletion of fossil fuels and the need to reduce green house gas emissions has resulted in a strong growth of biomass utilization for heat and power production. Attempts to overcome the poor handling properties of biomass, i.e. its low bulk density and inhomogeneous structure, have resulted...... influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet...... surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding...

  11. Influence of chemical properties of biomass plant agricultural origin on outlays energy incurred during the production of pellets

    Directory of Open Access Journals (Sweden)

    Artur KRASZKIEWICZ

    2014-06-01

    Full Text Available In this study, was analysed made the measurements of the content of water, carbon, hydrogen, nitrogen, sulphur and chlorine in plant biomass of agricultural origin in the context of the impact of these features on the energy expenditures incurred in its pelleting. For the examined raw materials statistical analysis results showed negative linear trend between energy expenditures and: water content, total sulfur and chlorine. Positive linear trend between energy expenditures and: contents of carbon, hydrogen, and nitrogen. Wherein the coefficients of correlation expenditures energy and: carbon, hydrogen and chlorine are significant p<0.05.

  12. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  13. Optimization of a multi-parameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Stelte, Wolfgang; Posselt, Dorthe;

    2011-01-01

    and error” experiments and personal experience. However in recent years the utilization of single pellet press units for testing the biomass pelletizing properties has attracted more attention. The present study outlines an approach where single pellet press testing is combined with modeling to mimic......Pelletization of biomass residues increases the energy density, reduces storage and transportation costs and results in a homogeneous product with well-defined physical properties. However, raw materials for fuel pellet production consist of ligno-cellulosic biomass from various resources...

  14. Pyrolysis Model of Single Biomass Pellet in Downdraft Gasifier

    Institute of Scientific and Technical Information of China (English)

    薛爱军; 潘继红; 田茂诚; 伊晓璐

    2016-01-01

    By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a one-dimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyro-lysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.

  15. Fuel pellets from biomass - Processing, bonding, raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    2011-12-15

    The present study investigates several important aspects of biomass pelletization. Seven individual studies have been conducted and linked together, in order to push forward the research frontier of biomass pelletization processes. The first study was to investigate influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical properties of the formed pellets. The outcome of this study resulted in study four and five investigating the role of lignin glass transition for biomass pelletization. It was demonstrated that the softening temperature of lignin was dependent on species and moisture content. In typical processing conditions and at 8% (wt) moisture content, transitions were identified to be at approximately 53-63 deg. C for wheat straw and about 91 deg. C for spruce lignin. Furthermore, the effects of wheat straw extractives on the pelletizing properties and pellet stability were investigated. The sixth and seventh study applied the developed methodology to test the pelletizing properties of thermally pre-treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 deg

  16. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets.

    Science.gov (United States)

    Wang, Congwei; Peng, Jianghong; Li, Hui; Bi, Xiaotao T; Legros, Robert; Lim, C J; Sokhansanj, Shahab

    2013-01-01

    Oxidative torrefaction of sawdust with a carrier gas containing 3-6% O(2) was investigated in a TG and a fluidized bed reactor, with the properties of the torrefied sawdust and pellets compared with traditional torrefaction without any O(2), as well as the dry raw material. It is found that the oxidative torrefaction process produced torrefied sawdust and pellets of similar properties as normally torrefied sawdust and corresponding pellets, especially on the density, energy consumption for pelletization, higher heating value and energy yield. For moisture absorption and hardness of the torrefied pellets, the oxidative torrefaction process showed slightly poor but negligible performance. Therefore, it is feasible to use oxygen laden combustion flue gases as the carrier gas for torrefaction of biomass. Besides, torrefied sawdust can be made into dense and strong pellets of high hydrophobicity at a higher die temperature than normally used in the production of traditional control pellets.

  17. A study of energy balances in biomass drying and pelleting processes

    Energy Technology Data Exchange (ETDEWEB)

    Mani, S.; Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2004-07-01

    Making pellets from biomass is considered to be the best way to use biomass as a replacement for fossil fuels. This study developed a simulation tool and a rotary biomass drying model to optimize unit operations for pellet production. A pelletizing plant layout was presented along with a table indicating the typical energy and power consumptions per ton of pellets produced. The importance of the drying process was discussed with reference to drying results for timothy grass, alfalfa stems and leaves. It was shown that a dryer control system can reduce energy consumption from 12 GJ/ton to 6.5 GJ/ton. This drop in energy consumption by nearly 50 per cent is due to a reduction in moisture from 70 per cent to 10 per cent. Future research will focus on reducing the environmental emissions from the biomass dryer. tabs., figs.

  18. Quality properties of fuel pellets from forest biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lehtikangas, P.

    1999-07-01

    Nine pellet assortments, made of fresh and stored sawdust, bark and logging residues (a mixture of Norway spruce and Scots pine) were tested directly after production and after 5 months of storage in large bags (volume about 1 m{sup 3} loose pellets) for moisture content, heating value and ash content. Dimensions, bulk density, density of individual pellets and durability were also determined. Moreover, sintering risk and contents of sulphur, chlorine, and lignin of fresh pellets were determined. It is concluded that bark and logging residues are suitable raw materials for pellets production, especially regarding durability and if the ash content is controlled. Pellets density had no effect on its durability, unlike lignin content which was positively correlated. The pellets had higher ash content and lower calorific heating value than the raw materials, probably due to loss of volatiles during drying. In general, the quality changes during storage were not large, but notable. The results showed that storage led to negative effects on durability, especially on pellets made of fresh materials. The average length of pellets was decreased due to breakage during storage. Microbial growth was noticed in some of the pellet assortments. Pellets made out of fresh logging residues were found to be weakest after storage. The tendency to reach the equilibrium with the ambient moisture content should be taken into consideration during production due to the risk of decreasing durability.

  19. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Holm, Jens K.; Sanadi, Anand R.

    2011-01-01

    The aim of the present study was to identify the key factors affecting the pelletizing pressure in biomass pelletization processes. The impact of raw material type, pellet length, temperature, moisture content and particle size on the pressure build up in the press channel of a pellet mill......, was in good accordance with experimental data. It was shown that increasing the temperature resulted in a decrease of the pelletizing pressure. Infrared spectra taken from the pellets surface, indicated hydrophobic extractives on the pellet surface, for pellets produced at higher temperatures. The extractives...

  20. Production potentielle de bioéthanol, de biométhane et de pellets à partir des déchets de biomasse lignocellulosique du bananier (Musa spp. au Cameroun

    Directory of Open Access Journals (Sweden)

    Kamdem, I.

    2011-01-01

    Full Text Available Potential production of bioethanol, biomethane and wood pellets from lignocellulosic biomass wastes of the banana plant (Musa spp. in Cameroon. Like most African countries who are producers and exporters of banana, Cameroon is facing a major energy deficit. Yet, the country is generating annually about 4,500,000 tons of fresh banana plant lignocellulosic waste biomass matter equivalent to 402,750 tons of dry matter. The dry matter contained about 80,57% organic matter which are not exploited. Under the sustainable development, which is linked to environmental protection, the biotransformation of these residues can potentially produce about 93,800; 92,133; 447,500 tons of bioethanol, biomethane and pellets respectively. The waste transformation could reduce the energy deficit and create jobs opportunities. Productions of this renewable energy or biofuel also constitute a new area which could assure an important source of income for the banana cultivators and the entire country.

  1. Assessment of Biomass Pelletization Options for Greensburg, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.

    2010-05-01

    This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report.

  2. 生物质颗粒燃料生产线及其关键制造技术的研究与开发%The research and development of biomass fuel pellets production line and key manufacturing technology

    Institute of Scientific and Technical Information of China (English)

    朱典想

    2014-01-01

    生物质颗粒燃料(俗称木煤)作为生物质能源转化的一个重要领域,越来越受到人们的关注。本文对生物质颗粒燃料的燃烧特性、节能减排效果、制造工艺技术、关键生产设备进行了研究与开发,并在此基础上最终建成了规模化(年产2.0×105 t)、低成本的木煤生产线,对推动我国木煤产业的健康发展具有重要的示范意义。%As an important field of the conversion of biomass energy,biomass fuel pellets (commonly known as“wood-pellet”)get more and more attention. This paper discusses the combustion performance,the effect of energy conservation and emissions reduction,manufa-cturing technology and research achievement of the key production equipments. On the basis, the large-scale(annual output of 2.0 × 105 t) and low-cost wood-pellet production line is comple-ted finally,which has an important demonstration significance to promote the healthy develop-ment of wood-pellet industry.

  3. Energy resources and technologies, today and tomorrow with emphasis on pellets from woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, James

    2010-09-15

    There is a good case to be made for increased development of pellet and briquette production facilities in North America to alleviate our dependence on foreign oil, reduce carbon emissions and provide a continuously renewable energy source. Fuel from woody biomass, in the form of pellets and briquettes have the capability to provide the best near term solution to offsetting fossil fuels for power generation. Due to their transportability, existing transportation systems, and the vast amount of harvestable wood, this fuel will be a viable energy solution for future needs.

  4. Differences between pellets from biomass made in manufactory and in domestic conditions

    Science.gov (United States)

    Holubcik, Michal; Jachniak, Ewa; Smatanová, Helena

    2014-08-01

    Pellets from biomass are more and more used. As input material can be used various types of biomass, like wood, straw, grass or different organic materials. A lot of people want to produce pellets from biomass in domestic condition. But qualities of these pellets don't achieve quality of pellets made in manufacture. In this work are compared energetic and qualitative parameters of pellets made from spruce wood and wheat straw in domestic condition and in manufacture. There are results from moisture content, total heating value, mechanical durability, amount of fines and disintegration time in water test.

  5. Comparison of woody pellets, straw pellets, and delayed harvest system herbaceous biomass (switchgrass and miscanthus): analysis of current combustion techniques determining the value of biomass

    NARCIS (Netherlands)

    Hui, Y.

    2011-01-01

    Since the energy consumption is growing fast, it is important to find alternative resources for the future generation energy supply. This study is going to compare the woody pellets, straw pellets and delayed harvest system biomass (switchgrass and miscanthus) from the combustion technique perspecti

  6. Wood pellet production costs under Austrian and in comparison to Swedish framework conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thek, Gerold [Bios Bioenergiesysteme GmbH, Graz (Austria); Obernberger, Ingwald [Bios Bioenergiesysteme GmbH, Graz (Austria); Graz Univ. of Technology, Inst. for Resource Efficient and Sustainable Systems, Graz (Austria)

    2004-12-01

    Owing to the rapidly increasing importance of pellets as high-quality biomass fuel in Austria and Europe within the last years, many companies, mainly from the wood industry, are thinking of entering this market. The calculation of the production costs before starting a pellet plant is essential for an economic operation. Based on comprehensive investigations within the EU-ALTENER project 'An Integrated European Market for Densified Biomass Fuels', calculations of the pellet production costs loco factory for different framework conditions with basic data based on already realised plants as well as a questionnaire survey of pellet producers in Austria, South Tyrol and Sweden have been performed. The production costs for wood pellets are mainly influenced by the raw material costs and, in the case of using wet raw materials, by the drying costs. Depending on the framework conditions these two parameters can contribute up to one-third of the total pellet production costs. Other important parameters influencing the pellet production costs are the plant utilisation (number of shifts per week) as well as the availability of the plant. For an economic production of wood pellets at least three shifts per day at 5 days per week are necessary. An optimum would be an operation at 7 days per week. A low plant availability also leads to greatly increased pellet production costs. A plant availability of 85-90% should therefore be achieved. The calculations show that a wood pellet production is possible both in small-scale (production rates of some hundred tonnes per year) as well as in large-scale plants (some ten thousand tonnes per year). However, especially for small-scale units it is very important to take care of the specific framework conditions of the producer, because the risk of a non-economic pellet production is considerably higher than for large-scale systems. The direct comparison of typical pellet production costs in Austria and Sweden showed the Swedish

  7. Fuel Pellets Production from Biodiesel Waste

    Directory of Open Access Journals (Sweden)

    Kawalin Chaiyaomporn

    2010-01-01

    Full Text Available This research palm fiber and palm shell were used as raw materials to produce pelletised fuel, and waste glycerol were used as adhesive to reduce biodiesel production waste. The aim of this research is to find optimum ratio of raw material (ratio of palm fiber and palm shell, raw material size distribution, adhesive temperature, and ratio of ingredients (ratio of raw material, waste glycerol, and water. The optimum ratio of pelletized fuel made only by palm fiber was 50:10:40; palm fiber, water, and waste glycerol respectively. In the best practice condition; particle size was smaller than 2 mm, adhesive glycerol was heated. From the explained optimum ratio and ingredient, pelletizing ratio was 62.6%, specific density was 982.2 kg/m3, heating value was 22.5 MJ/kg, moisture content was 5.9194%, volatile matter was 88.2573%, fix carbon content was 1.5894%, and ash content was 4.2339% which was higher than the standard. Mixing palm shell into palm fiber raw material reduced ash content of the pellets. The optimum raw material ratio, which minimizes ash content, was 80 to 20 palm fiber and palm shell respectively. Adding palm shell reduced ash content to be 2.5247% which was higher than pelletized fuel standard but followed cubed fuel standard. At this raw material ratio, pelletizing ratio was 70.5%, specific density was 774.8 kg/m3, heating value was 19.71 MJ/kg, moisture content was 9.8137%, volatile matter was 86.2259%, fix carbon content was 1.4356%, and compressive force was 4.83 N. Pelletized fuel cost at optimum condition was 1.14 baht/kg.

  8. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  9. Influence of consumption on pellets production in Austria

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar

    2008-01-01

    Full Text Available Results of the research on pellet production in Austria as well as the influence of consumption on the production are presented. In that sense, the functional relation between pellet production and pellet consumption obtained by modeling method has been given. The basic elements and trends on pellet market are shown and the summary of other factors influencing pellet production in Austria are explained. The choice of Austria as a market to carry out research is due to the fact that Austria is a leader in Europe in pellet production and consumption and its experiences could be significant for the formation of the market and energy policy in Serbia. This adds to the fact that pellet market, as well as the policy in the field of renewable sources of energy (including pellets, in Serbia are still at the very beginning.

  10. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  11. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.

    Science.gov (United States)

    Cao, Liang; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihua; Jiang, Longbo; Huang, Binbin; Xiao, Zhihong; Chen, Xiaohong; Wang, Hou; Zeng, Guangming

    2015-06-01

    In this study, complementary of torrefaction and co-pelletization for biomass pellets production was investigated. Two kinds of biomass materials were torrefied and mixed with oil cake for co-pelletization. The energy consumption during pelletization and pellet characteristics including moisture absorption, pellet density, pellet strength and combustion characteristic, were evaluated. It was shown that torrefaction improved the characteristics of pellets with high heating values, low moisture absorption and well combustion characteristic. Furthermore, co-pelletization between torrefied biomass and cater bean cake can reduce several negative effects of torrefaction such as high energy consumption, low pellet density and strength. The optimal conditions for energy consumption and pellet strength were torrefied at 270°C and a blending with 15% castor bean cake for both biomass materials. The present study indicated that compelmentary performances of the torrefaction and co-pelletization with castor bean cake provide a promising alternative for fuel production from biomass and oil cake.

  12. Quality of pellets from torrefied biomass and pellets torrefied at different temperatures

    DEFF Research Database (Denmark)

    Shang, Lei; Dahl, Jonas; Ahrenfeldt, Jesper;

    facility to do torrefaction before co-firing. In this study, both ways were utilized to produce torrefied pellets. The quality of these pellets have been characterized for higher heating value (HHV), energy consumption during grinding, mechanical durability and equilibrium moisture content (EMC) under...

  13. Biomass gasification for liquid fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  14. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation.

    Science.gov (United States)

    Salema, Arshad Adam; Ani, Farid Nasir

    2012-12-01

    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg).

  15. TECHNO-ECONOMICAL ANALYSIS OF WOOD PELLETS PRODUCTION FOR U.S. MANUFACTURERS

    Directory of Open Access Journals (Sweden)

    Adrian Pirraglia

    2010-09-01

    Full Text Available Many companies in the U.S. are entering the wood pellets market due to the increasing importance of woody biomass utilization for energy purposes. Despite a 200% increase in U.S. production, it is difficult to obtain reliable information from the research community relative to the production costs, requirements, and market trends for wood pellets. Based on comprehensive investigations, a techno-economical model for the determination of production costs for U.S. manufacturers (internal market, with sell strategy based on bagged product was developed, considering the most important technical and financial factors that affect pellet production. Outcomes from a case-study show that pellet production is profitable for U.S. manufacturers and distributors/retailers, with more revenue margin for retailers. Sensitivity analyses were performed, showing that a pellet plant is especially sensitive to changes to the cost of biomass and labor. In addition, changes in energy and CAPEX also affect the NPV and IRR of the project, but not as significantly as biomass and labor costs. Additional findings indicate that increasing the plant size especially increases CAPEX, with labor being the least increased cost factor; in addition, production factors have to be closely monitored for small-scale producers, due to increases in operational costs.

  16. Effect of Aluminum Oxide on Grifola frondosa Mycelial Biomass,Pellet Diameter and Polysaccharide Production%添加氧化铝对灰树花菌丝体生长及多糖产量的影响

    Institute of Scientific and Technical Information of China (English)

    陈潇筱; 杨焱; 崔凤杰; 孙文敬; 刘伟民

    2016-01-01

    考察添加不同浓度的氧化铝(粒径为200~300目)对灰树花(Grifola frondosa)发酵菌丝体生长及多糖(胞内和胞外粗多糖)产量的影响。结果表明,在试验添加范围内,灰树花菌球直径随氧化铝添加浓度的增加而显著变小,当添加氧化铝浓度为20 g/L时,游离菌丝体明显增多,且菌球主要表现为S型(D<0.5 cm,D:菌体当量直径,与对象具有相等面积的圆形的直径),其中L(D≥1.5 cm)、M(0.5 cm≤ D<1.5 cm)和 S 型菌丝体的比例分别为4.9%、24.3%和70.8%;添加3 g/L氧化铝时灰树花菌丝体生物量最高,达到5.81 g/L,比空白组提高了2.7倍;添加20 g/L氧化铝时灰树花胞外多糖产量达到最大,为8.46 g/L,为空白组的1.7倍左右,而菌丝体多糖产量以添加0.1 g/L氧化铝时最高,为65.6 mg/g。%Mycelial biomass, pellet diameter, exo-polysaccharide and mycelium-associated polysaccharide production in submerged cultures of Grifola frondosa CS-15 grown in media (g/L,30.0 glucose,6.0 peptone,3.0 KH2 PO3 ,1.5 MgSO4·7H2 O)supplemented with different concentrations (0.1 g/L to 20.0 g/L) of aluminum oxide were determined. Mycelial pellet diameters decreased significantly with increasing concentrations of aluminum oxide, and the size distribution of the highly dispersed pellets in cultures containing 20.0 g/L aluminum oxide was as follows:L fraction (D≥1.5 cm)4.9%,M fraction (0.5 cm≤D<1.5 cm)24.3%,S fraction (D<0.5 cm)70.8%.Highest mycelial biomass levels (5.81 g/L),and yields of exo-polysaccharide (8.46 g/L)and mycelium-associated polysaccharide (65.6 mg/g)were recorded in cultures supplemented with 3.0 g/L,20.0 g/L and 0.1 g/L aluminum oxide,respectively.

  17. The development of eco-efficient wood-based pellet production

    Energy Technology Data Exchange (ETDEWEB)

    Kuokkanen, M.; Kuokkanen, T. (Univ. of Oulu, Dept. of Chemistry (Finland)). email: toivo.kuokkanen@oulu.fi; Pohjonen, V. (Univ. of Helsinki, Vaerrioe Research Station, Ruuvaoja (Finland))

    2009-07-01

    Up to 20 million tons of waste wood biomass per year are left unused in Finland mainly in the forests during forestry operations. Due to global demands to considerably increase the proportion of renewable energy, there is currently tremendous enthusiasm in Finland to substantially increase wood-based pellet production. Pellets are short cylindrical pieces (the diameter being usually 6-10 mm and the length 10-30 mm), which are produced mechanically by compressing the uniform material that has first passed through a hammer mill or mills to provide a homogeneous dough-like mass. As part of European objective to increase the eco- and cost-efficient utilization of bioenergy from the European forest belt, the aim of our research group is to promote the development of Nordic wood-based pellet production both in the quantitative as well as in the qualitative sense. The main fields of pellet research, and our chemical toolbox, developed for these studies, including a new specific staining and optical microscope method for understanding the binding mechanisms of pellet processing, and thus for the control and development of pellet production, are described in this paper. In Finland the goal suggested by the EU sets the total proportion of renewable energy as high as 38% by 2020. The goal is demanding and requires also a strong increase of utilizing forestry waste biomasses which are classified as carbon dioxide emission neutral, in terms of the emission trading in the EU. Concerning the utilization of strongly increasing amount of wood biomass energy, one reasonable solution in Nordic forest belt is decentralized and optimized wood pellet production. Forest economists have calculated that with present costs the maximum distance of profitable transport for forest chips, saw dust or shavings in Finland is ca.100 km, for round wood it is 1000 km, but for wood pellets transported by sea the figure, however, is as much as 5000 km. These calculations, in conjunction with the

  18. Studying Pellet Formation of a Filamentous Fungus Rhizopus oryzae to Enhance Organic Acid Production

    Science.gov (United States)

    Liao, Wei; Liu, Yan; Chen, Shulin

    Using pelletized fungal biomass can effectively improve the fermentation performance for most of fugal strains. This article studied the effects of inoculum and medium compositions such as potato dextrose broth (PDB) as carbon source, soybean peptone, calcium carbonate, and metal ions on pellet formation of Rhizopus oryzae. It has been found that metal ions had significantly negative effects on pellet formation whereas soybean peptone had positive effects. In addition PDB and calcium carbonate were beneficial to R. oryzae for growing small smooth pellets during the culture. The study also demonstrated that an inoculum size of less than 1.5×109 spores/L had no significant influence on pellet formation. Thus, a new approach to form pellets has been developed using only PDB, soybean peptone, and calcium carbonate. Meanwhile, palletized fungal fermentation significantly enhanced organic acid production. Lactic acid concentration reached 65.0 g/L in 30 h using pelletized R. oryzae NRRL 395, and fumeric acid concentration reached 31.0 g/L in 96 h using pelletized R. oryzae ATCC 20344.

  19. Cryogenic pellet production developments for long-pulse plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A. [Oak Ridge National Laboratory, 1Bethel Valley Rd Oak Ridge, TN 37831 (United States)

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  20. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    Science.gov (United States)

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  1. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications

    Science.gov (United States)

    Rollinson, Andrew N.; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  2. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2016-07-01

    Increased sewage sludge production and disposal, as well as the properties of sewage sludge, are currently affecting the environment, which has resulted in legislation changes in Poland. Based on the Economy Minister Regulation of 16 July 2015 (Regulation of the Economy Minister, 2015) regarding the criteria and procedures for releasing wastes for landfilling, the thermal disposal of sewage sludge is important due to its gross calorific value, which is greater than 6MJ/kg, and the problems that result from its use and application. Consequently, increasingly restrictive legislation that began on 1 January 2016 was introduced for sewage sludge storage in Poland. Sewage sludge thermal utilisation is an attractive option because it minimizes odours, significantly reduces the volume of starting material and thermally destroys the organic and toxic components of the off pads. Additionally, it is possible that the ash produced could be used in different ways. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies of the mechanisms and kinetics of sewage sludge, coal and biomass combustion and their co-combustion in spherical-pellet form. Compared with biomass, a higher temperature is required to ignite sewage sludge by flame. The properties of biomass and sewage sludge result in the intensification of the combustion process (by fast ignition of volatile matter). In contrast to coal, a combustion of sewage sludge is determined not only burning the char, but also the combustion of volatiles. The addition of sewage sludge to hard coal and lignite shortens combustion times compared with coal, and the addition of sewage sludge to willow Salix viminalis produces an increase in combustion time compared with willow alone.

  3. Microwave moisture measurements of flowing biomass

    Science.gov (United States)

    Production of pelleted biomass is a significant emerging industry in the United States. A primary quality attribute of pelleted biomass is moisture content. This parameter is critical in pricing, binding, combustion, and storage of pelleted biomass. In order to produce pellets of a high quality mois...

  4. 秸秆固体成型燃料与颗粒饲料的对比%Comparison of Biomass Pellet of Straw and Pellet Feed

    Institute of Scientific and Technical Information of China (English)

    霍丽丽; 孟海波; 田宜水; 赵立欣; 侯书林

    2011-01-01

    中国农作物秸秆资源丰富,为研究剩余秸秆的能源和饲料2种转化利用途径,对秸秆固体成型燃料和颗粒饲料性能和用途、加工原料和工艺过程等进行对比研究.结果表明,秸秆固体成型燃料和颗粒饲料的原料成分、工艺路线和工况均不同,对成型设备的磨损不同,秸秆固体成型燃料的生产工艺路线较短,工况较复杂,关键部件达不到设计使用寿命,增加了维修成本.为缩短秸秆固体燃料成型机设计周期,可借鉴颗粒饲料使用的环模式成型机的成型原理进行结构和部件的优化.因此,颗粒饲料成型机不能直接生产秸秆固体成型燃料,需对关键部件加以改进,并建议秸秆分级利用以适应饲料和燃料的不同用途.%There are plenty resources of crop straw in China. The paper had a comparative study on the performance, usage, raw material and technological process of the biomass pellet and pellet feed for transformation usage of energy and feed with remaining straw. The results showed that: because of the differences between the material component and process route and working conditions of the biomass pellet and pellet feed, the abrasion of molding equipment was distinct. The process route of biomass pellet was shorter,and conditions were more complicated, so the key parts were unable to achieve the designed life, and led to maintenance costs increasing. In order to reduce the design life of biomass pellet molding equipment, the construction and components can be optimized consulting the molding principle of pellet feed loop molding machine. Therefore, the pellet feed molding equipment can not be used directly for processing biomass pellet,and people need to optimize the equipment. It was suggested that grading the straw was to adapt the different usages about feed and fuel.

  5. Development of an eco- and material-efficient pellet production chain. A chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Kuokkanen, M.

    2013-06-01

    According to the EU's strategy and the corresponding Finnish national strategy on waste materials, all kinds of waste must be utilised primarily as material (reuse, recycling) and secondarily as energy, and at the lowest level of waste hierarchy is their disposal using environmentally friendly methods. Today material efficiency is an essential topic in promoting sustainable use of natural resources, industrial by-products and waste material. The present goal proposed by the EU sets the target for the total proportion of renewable energy as high as 38% by 2020 in Finland. Up to 20 million tonnes of waste wood biomass per year are left unused in Finland, mainly in the forests during forestry operations, because supply and demand do not meet. As a consequence of high heat energy prices, the looming threat of climate change, the greenhouse effect and global as well as national demands to considerably increase the proportion of renewable energy, Finland currently has a tremendous interest in increasing decentralised pellet production alongside of large-scale factories. The aim of this thesis is to promote the development of eco-, material- and cost-efficient Nordic wood-based pellet production and utilisation of pellet bio-ash by means of chemical research. Using Finnish wood (sawdust and shavings) as a model raw material, the total functionality of a pilot-scale pellet facility combined with an extensive chemical toolbox was tested in this study to promote development of an eco-, material- and cost-efficient wood-based pellet production chain. The chemical toolbox includes measurements of moisture content, density, heat value, mechanical durability and particle size distribution, TG analysis and elementary analysis, as well as new applications for pellet biodegradation using BOD OxiTop equipment and optical microscopic staining methods. To improve the quality of pellets, considering the profitability of production and occupational safety factors (wood dust

  6. Choosing an Appropriate Method for Sustained Release Flurbiprofen Pellet Production

    Directory of Open Access Journals (Sweden)

    S. Zenginer

    2015-07-01

    Full Text Available Flurbiprofen is a slightly water soluble, nonsteroidal anti-inflammatory active ingredient with analgesic and antipyretic activity. The purpose of this study was to develop an appropriate pellet production method for pH independent sustained release pellet formulation of flurbiprofen. Flurbiprofen pellets were produced by three different production methods; Suspension Layering, Extrusion Spherization, Rotagranulation. Although the simple and fast processing properties of Extrusion Spheronization and Rotagranulation methods, according to visual control and comparative dissolution profiles, Suspension Layering method was found more suitable for Flurbiprofen SR (Sustained Release having high drug load for each single dose. Beginning with the spherical core has brought great advantage to Suspension Layering method, since ideal sphericity could not be reached at Extrusion Spheronization and Rotagranulation methods due to limited microcrystalline cellulose amount.

  7. Clean and economical gasification of combined coal and biomass pelletized fuels by industries worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Carlo Amorino; Alberto Pettinau; Rolf E. Maurer; Evan Hughes; Filippo Larceri; Francesco Repetto; Phil Wellhausen; Peter Lange [Sotacarbo S.p.A. (Italy)

    2007-07-01

    Industrial clean coal utilization is enhanced when gasifying low cost high ash coals combined with locally available biomass and/or biowaste from agricultural and/or industrial operations. The cost of the biowaste is near zero if there is a cost associated with the removal of the biowaste from the industrial site. The clean gas and liquids generated for industrial usage are in the range of 0.12 to 0.15 euro/nM{sup 3} displacing much costlier petroleum or gaseous fuels. Sotacarbo S.P.A. and Ansaldo Ricerche S.r.l. with collaboration of Hamilton Maurer International, Inc. (HMI) have designed, installed and commissioned an advanced single stage fixed-bed gasifier in Sotacarbo's R&D facility in April 2007. Clean coal utilization is enhanced when coal is combined with a biomass or biowaste feedstock. Ansaldo Ricerche and HMI, Inc. designed a single-stage fixed bed biomass gasifier, installed and successfully commissioned in 2001 at ARI's research facility in Genova, Italy. This presentation highlights the simplicity and high efficiency (82 to 87%) of the coal and coal/biomass gasification process. CPM both in the US and Europe has extensive experience with coal fuels preparation (pelletization). The economics and ability to combine coals with biomass to generate an economical and viable gasification fuel pellets are reviewed. This paper presents the ability to utilize coal cleanly with biomass (Bio-coal) to lower fuel costs while enhancing the availability and reliability of industrial energy and reducing CO{sub 2} emissions provides a quantum jump forward for both industries and the environment. 21 refs., 4 figs.

  8. 生物质颗粒燃料致密化成形典型设备的比较%Comparison between the solidification equipments of biomass pellets

    Institute of Scientific and Technical Information of China (English)

    徐德民; 陆辛; 刘泰岳; 李凭

    2011-01-01

    对玉米秸秆和木屑两种生物质致密成形方式进行比较,分析各自的优缺点;结合压制颗粒的实际经验,总结生物质颗粒压制过程中,随着物料的不同,采用的生产工艺和成形设备结构相应变化的基本规律.为生物质颗粒生产提供帮助.%Comparison between the ways of solidification of pellets of the corn straw and the wood scrap was made.The characteristics of these biomass compacted were analyzed.Combining with practice experience in solidification of the pellets, the basic rule for adopting different production processes and different construction of forming equipment for different material was discussed.The results are useful for pellets production.

  9. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Sudhagar; Sokhansanj, Shahab [University of British Columbia, Vancouver, BC (Canada). Department of Chemical and Biological Engineering; Tabil, Lope G. [University of Saskatchewan, Saskatoon, (Canada). Department of Agricultural and Bioresource Engineering

    2006-07-15

    Mechanical properties of wheat straw, barley straw, corn stover and switchgrass were determined at different compressive forces, particle sizes and moisture contents. Ground biomass samples were compressed with five levels of compressive forces (1000, 2000, 3000, 4000 and 4400N) and three levels of particle sizes (3.2, 1.6 and 0.8mm) at two levels of moisture contents (12% and 15% (wet basis)) to establish compression and relaxation data. Compressed sample dimensions and mass were measured to calculate pellet density. Corn stover produced the highest pellet density at low pressure during compression. Compressive force, particle size and moisture content significantly affected the pellet density of barley straw, corn stover and switchgrass. However, different particle sizes of wheat straw did not produce any significant difference on pellet density. The relaxation data were analyzed to determine the asymptotic modulus of biomass pellets. Barley straw had the highest asymptotic modulus among all biomass indicating that pellets made from barley straw were more rigid than those of other pellets. Asymptotic modulus increased linearly with an increase in compressive pressure. A simple linear model was developed to relate asymptotic modulus and maximum compressive pressure. (author)

  10. Effect of raw material properties and die geometry on the density of biomass pellets from composted municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abedin Zafari

    2012-11-01

    Full Text Available Densification of biomass feedstocks, such as pelletizing, can increase bulk density, improve storability, reduce transportation costs, and ease the handling of biomass using existing handling and storage equipment for grains. In order to study the pelletizing process, compost pellets were produced under controlled conditions. The aim of the work was to investigate the effect of raw material properties and the die geometry on the true density of formed pellets and also find the optimal conditions of the densification process for producing pellets with high density. Compost was extruded into cylindrical pellets utilizing open-end dies under axial stress from a vertical piston applied by a hydraulic press. The effects of independent variables, including the raw material moisture content (35 to 45% (wet basis, hammer mill screen size (0.3 to 1.5 mm, speed of piston (2 to 10 mm/s, and die length (8 to 12 mm on pellet density, were determined using response surface methodology. A quadratic model was proposed to predict the pellet density, which had high F and R2 values along with a low p value, indicating the predictability of the model. Moisture content, speed of piston, and particle size significantly affected (P 0.05.

  11. Lab and Bench-Scale Pelletization of Torrefied Wood Chips

    DEFF Research Database (Denmark)

    Shang, Lei; Nielsen, Niels Peter K.; Stelte, Wolfgang

    2013-01-01

    Combined torrefaction and pelletization is used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. In the present study, a single-pellet press tool was used to screen for the effects of pellet die temperature, moisture...... up from single-pellet press to bench-scale pelletizer. Tuning moisture content or increasing the die temperature did not ease the pellet production of torrefied wood chips significantly. The addition of rapeseed oil as a lubricant reduced the static friction by half and stabilized pellet production...... content, additive addition, and the degree of torrefaction on the pelletizing properties and pellet quality, i.e., density, static friction, and pellet strength. Results were compared with pellet production using a bench-scale pelletizer. The results indicate that friction is the key factor when scaling...

  12. 烤烟秸秆固体成型燃料的工艺优化%Process Optimization for Biomass Pellet of Flue-cured Tobacco Straws

    Institute of Scientific and Technical Information of China (English)

    顾怀胜; 曾中林; 王邦; 刘燕; 王玉川; 杨健; 王大荣; 李阳; 曹廷茂

    2013-01-01

    [ Objective] In order to provide a theoretical basis for application of biomass pellet of straws in tobacco leaves production. [ Method] Flue-cured tobacco straws were used as materials to study the effects of the different process on the quality and productivity of biomass pellet of flue-cured tobacco straws. [Result] The results showed that;the process was the best for biomass pellet of flue-cured tobacco straws when the moisture content was 20% ,and the fermentation time was 5 days,and the aperture of screen was 12 mm. [ Conclusion] The study can provide reference for application of flue-cured tobacco straw biomass pellet in practical production.%[目的]将秸秆固体成型燃料应用于烟叶生产中.[方法]以烤烟秸秆为原料,研究了不同生产工艺对烤烟秸秆固体成型燃料生产率和质量的影响.[结果]试验表明,采用含水率为20%,发酵时间为5d的烤烟秸秆,筛网孔径为12 mm的工艺进行生产,所得秸秆固体成型燃料产品的质量较好,生产率较高.[结论]研究可为烤烟秸秆固体成型技术在实际生产中的推广应用提供合理的依据.

  13. Demand Side Management in Pellet Production: Internal and External Factors

    Science.gov (United States)

    Vigants, Haralds; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    This paper demonstrates a demand side management case study: how to save energy and how research and data analysis help to create an energy management system in a pellet production facility; and shows ways to implement the EU energy efficiency directive in production facilities. The study carried out in this research serves as a far-reaching step that can be taken to improve energy efficiency during the operation mode of technological equipment. The benchmarking methodology is used for analysis of results. Internal and external factors and indicators, which affect energy management potential in pellet production are analysed. Analysis of external factors is based on the state legal framework regulating the development of the energy sector. Methodology on the analysis of energy demand includes the internal energy management of an enterprise. The experimental results discussed in this paper show that particular steps, which are oriented to specific use of technological equipment, could play significant role in energy efficiency improvement in industry which is illustrated by the pre-milling process in the pellet production system using power.

  14. Image Analysis of Pellet Size for a Control System in Industrial Feed Production

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Nielsen, Michael Engelbrecht; Ersbøll, Bjarne Kjær

    2011-01-01

    When producing aquaculture fish feed pellets, the size of the output product is of immense importance. As the production method cannot produce pellets of constant and uniform size using constant machine settings, there is a demand for size control. Fish fed with feed pellets of improper size...

  15. Reduction of Low-grade Manganese Dioxide Ore Pellets by Biomass Wheat Stalk

    Institute of Scientific and Technical Information of China (English)

    Honglei ZHANG; Guocai ZHU; Hong YAN; Yuna ZHAO; Tiancheng LI; Xiujuan FENG

    2013-01-01

    An investigation on reducing low-grade manganese dioxide ore pellets was carried out by using wheat stalk as reductant.The main impact factors of reduction percent such as particle size,biomass/ore ratio,heating rate,nitrogen flow rate,temperature and time in reduction process were discussed.The morphology and component of manganese dioxide ore particle at different stages were also analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS).The results show the increase of the reduction temperature and time,biomass/ore ratio,and the decrease of particle size,heating rate and nitrogen flow rate can significantly enhance reduction efficiency.The reduction kinetic of the manganese ore is controlled by three-dimensional mass diffusion of gaseous reductive volatiles passing from the surface to the core of the ore particles.The activation energy E and frequency factor A were calculated to be 24.15 kJ.mol-1 and 166 min-1,respectively.Biomass pyrolysis volatiles adsorbed onto the surface of the ore particle leads to serious variation of the microstructures and chemical composition of the manganese ore particles.

  16. Demand Side Management in Pellet Production: Internal and External Factors

    Directory of Open Access Journals (Sweden)

    Vigants Haralds

    2014-12-01

    Full Text Available This paper demonstrates a demand side management case study: how to save energy and how research and data analysis help to create an energy management system in a pellet production facility; and shows ways to implement the EU energy efficiency directive in production facilities. The study carried out in this research serves as a far-reaching step that can be taken to improve energy efficiency during the operation mode of technological equipment. The benchmarking methodology is used for analysis of results.

  17. Production and Comparartive Study of Pellets from Maize Cobs and Groundnut Shell as Fuels for Domestic Use

    Directory of Open Access Journals (Sweden)

    Kyauta E. E

    2015-01-01

    Full Text Available The economic development of any nation is unavoidably a prerequisite of the amount of energy available for its consumption. The need to develop alternative energy sources for fossil fuel is clear due to its scarcity, persistent increase in price and non renewability. The development of energy from biomass is one area among the various energy alternatives that has considerable promise and is receiving attention. This paper handles the production and comparative study of solid fuels from agricultural waste (i.e. maize cobs and groundnut shell that can serve as alternative energy sources for domestic use, using the densification process. The material were grounded and sieved to particle sizes of 0.425mm and below and was compressed into pellets of 12.5mm diameter and 13mm length at a minimum pressure of 275 bars. The characteristics of the pellets determined were moisture content, ash content, combustion rate and calorific value. The result showed that groundnut shell pellets attained a higher temperature than maize cobs. The temperatures attained by 100g of each type of fuel were 7560C and 6000C for ground nut and maize cob pellets respectively. The result of the net calorific value test for maize cob was found to be 13.8MJ/kg while that of groundnut shell pellets was 13.9MJ/kg. These results showed that the pellets are capable of generating heat that is sufficient for domestic use if appropriate appliances are used.

  18. Photoinduced Biohydrogen Production from Biomass

    Directory of Open Access Journals (Sweden)

    Yutaka Amao

    2008-07-01

    Full Text Available Photoinduced biohydrogen production systems, coupling saccharaides biomass such as sucrose, maltose, cellobiose, cellulose, or saccharides mixture hydrolysis by enzymes and glucose dehydrogenase (GDH, and hydrogen production with platinum colloid as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a from higher green plant or artificial chlorophyll analog, zinc porphyrin, are introduced.

  19. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  20. Role of the Biomass and Pelleted Forms of Aspergillus ochraceus ATCC 3150 on the 11α-hydroxylation of Progesterone

    Directory of Open Access Journals (Sweden)

    Abd-Elsalam, I. S.

    2009-01-01

    Full Text Available The formation of non-coagulative type of pellet could be induced in the submerged cultivation of Aspergillus ochraceus ATCC 3150. The results showed that the pellet size and form were found to be varied with inoculums size and agitation speed changes where, the maximum biomass was obtained at high inoculum (1x10^7 spore/mL and high agitation (200 rpm. The differences in the pellets morphology results in changes in their physiology which reflected by its ability to transform progesterone to the 11α-hydroxyl derivative. The maximum 11α-hydroxy-progesterone out put (67.5% could be obtained at inoculums size (5x10^6 spore/mL, agitation speed 150 rpm, and 28 °C at transformation time 48 h.

  1. Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

    Energy Technology Data Exchange (ETDEWEB)

    Folk, Richard L.; Govett, Robert L.

    1992-07-01

    Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

  2. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts.

    Science.gov (United States)

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Liu, Yupeng; Liang, Jing; Tang, Juming

    2013-08-01

    The effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.77% in the upgraded bio-oils by DARCO MRX (wood based) and DARCO 830 (lignite coal based) activated carbons, respectively). The catalysts recycling test of the selected catalysts indicated that the carbon catalysts can be reused for at least 3-4 times and produced high concentrations of phenol and phenolic compounds. The chemical reaction mechanism for phenolics production during microwave pyrolysis of biomass was analyzed.

  3. Change of the ash melting behaviour of biomass-mix-pellets by addition of kaolin; Veraenderung des Ascheschmelzverhaltens von Biomasse-Mischpellets durch Zudosierung von Kaolin

    Energy Technology Data Exchange (ETDEWEB)

    Kappler, Uta [RWE Power AG, Koeln (Germany). Forschung und Entwicklung; Wenghoefer, Volker; Pude, Ralf [Bonn Univ., Landwirtschaftliche Fakultaet, Rheinbach (Germany). Forschungsbereich Nachwachsende Rohstoffe

    2013-06-01

    In the last few years, the design of solid biofuels for small combustion plants < 50 kW has become an important topic of biomass research. The European Union, for example, is sponsoring the European 'MixBioPells' project that is mainly supported by the German Biomass Research Center (DBFZ) in Leipzig. From 2010 until late 2012, the Agency of Renewable Resources (FNR) sponsored the 'C4-Kompakt' project in Germany. The aim of the project, which was executed by the University of Bonn/Center for Renewable Resources, was the development of mixed pellets with a minimum miscanthus content of 50%wt. First combustion tests showed increased fouling and slagging of pellet combustion. This problem, however, can be overcome by deliberate adding of inorganic additives (kaolin). (orig.)

  4. Power from Pellets Technology and Applications

    CERN Document Server

    Döring, Stefan

    2013-01-01

    This book provides a practical description of the technology of pellet production on the basis of renewable sources as well as the utilization of pellets. The author explains what kinds of biomass are usable in addition to wood, how to produce pellets and how to use pellets to produce energy. Starting with the basics of combustion, gasification and the pelletizing process, several different technologies are described. The design, planning, construction and economic efficiency are discussed as well. The appendix gives useful advice about plant concepts, calculations, addresses, conversion tables and formulas.

  5. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor

    Science.gov (United States)

    Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.

    Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.

  6. A study of bonding and failure mechanisms in fuel pellets from different biomass resources

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Holm, Jens K.; Sanadi, Anand R.;

    2011-01-01

    higher for wood pellets than for straw pellets. Scanning electron microscopy of the beech pellets fracture surfaces, pressed at higher temperatures, showed areas of cohesive failure, indicating high energy failure mechanisms, likely due to lignin flow and inter-diffusion between adjacent wood particles...... the adhesion mechanism to van der Waals forces. Electron micrographs indicating interfacial failure mechanisms support these findings. Infrared spectra of the fracture surface of wood pellets, pressed at elevated temperatures, showed no signs of hydrophobic extractives. It has been shown that both temperature...

  7. H₂-rich syngas production by fluidized bed gasification of biomass and plastic fuel.

    Science.gov (United States)

    Ruoppolo, G; Ammendola, P; Chirone, R; Miccio, F

    2012-04-01

    This paper reports the results of gasification tests using a catalytic fluidized bed gasifier to obtain a H(2)-rich stream by feeding different pellets made of wood, biomass/plastic and olive husks to the gasifier. The effects of both the steam supply and an in-bed catalyst on gasifier performance have been investigated. In general, pelletization was an effective pre-treatment for improving the homogeneity of the fuel and the reliability of the feeding devices. The use of biomass/plastic pellets in a catalyst bed yielded good results in terms of the hydrogen concentration (up to 32%vol.), even if an increase in tar production and in the fine/carbon elutriation rate was observed in comparison with wood pellets.

  8. Thermophysical properties and modeling of a hydrogenic pellet production system

    Science.gov (United States)

    Leachman, Jacob William

    A fusion energy experiment that is under construction, the ITER machine, has the mission to be the first device to demonstrate the technological feasibility of fusion energy and serve as the primary step towards commercialization of fusion reactors. The ITER machine and future fusion energy machines will require a continuous supply of hydrogenic fuel pellets for sustained operation. The purpose of this research is to provide the fundamental visco-plastic flow measurements as well as the numerical models that are necessary to design a hydrogenic pellet production system (PPS) to meet the ITER fueling specifications. A numerical model of a PPS for the ITER machine is presented and used to design a system that precools, liquefies, and solidifies hydrogenic material that is ultimately extruded and cut into fuel pellets. The specific components modeled within the PPS include a precooling heat exchanger, a liquefier, and a twin-screw solidifying extruder. Numerical models of these components are developed and used as design tools. The modeling results suggest that the performance of the PPS will be dictated by the heat transfer and viscous dissipation associated with the solid and solidifying hydrogen in the twin-screw extruder. This observation motivates experimental efforts that are aimed at precise measurement of these quantities. Steady-state measurements are presented of the dynamic shear stress and heat transfer during flow of solid hydrogen, deuterium, and neon in a Couette type viscometer cell. Thermal conductivity measurements in the stationary condition are compared with those reported in the literature. The measurements span a range of shear rates and extend from temperatures associated with the onset of solidification to sub-cooled solid states. The viscous dissipation is found to vary directly with the applied heat load from the onset of solidification to the point at which the solid begins to sub-cool. Flow of the sub-cooled solid exhibits behavior that is

  9. Analysis of the global production location dynamics in the industrial wood pellet market : an MCDA approach

    NARCIS (Netherlands)

    Smith, T. Pieter; Junginger, H. Martin

    2011-01-01

    Industrial wood pellet demand and international trade have been growing rapidly, requiring producers to build new production facilities. The purpose of this paper is to illustrate the trade-offs of different wood pellet production locations across the world within the next ten years and to improve t

  10. Use of coffee (Coffea arabica pulp for the production of briquettes and pellets for heat generation

    Directory of Open Access Journals (Sweden)

    Robert Cubero-Abarca

    2014-10-01

    Full Text Available Coffee bean (Coffea arabica processing generates high amount of residues that are sources of environmental pollution. Therefore, an appropriate solution is needed. The objective of this study was to determine the potential of coffee pulp to produce briquettes and pellets. The study included pulp drying (using air, solar and hot air methods; the production of briquettes and pellets; the evaluation of their energy, physical and mechanical properties; and the evaluation of pellet quality using X-ray densitometry. The results showed that the pulp presented an initial moisture content of 90%, resulting in drying times of 699, 308 and 55 hours for air, solar and hot air drying, respectively, and the calorific values of the pellets and briquettes were 12,501 kJ kg-1 and 11,591 kJ kg-1, respectively. The ash content was 8.68% for the briquettes and 6.74% for the pellets. The density of the briquettes was 1,110 kg m-3, compared with 1,300 kg m-3 for the pellets. The apparent densities were 1,000 kg m-3 and 600 kg m-3 for the briquettes and pellets, respectively, and the water absorptions by the briquettes were 7.90% and 8.10% by the pellets. The maximum horizontal compression effort was 26.86 kg cm-2, measured in the pellets, compared with 4.52 kg cm-2 in the briquettes. The maximum horizontal load was 93.24 kg, measured in the briquettes, compared with 33.50 kg in the pellets. The value of the pellet durability test was 75.54%. X-ray densitometry showed that the pellet was uniform and a few cracks were observed on the pellet surface.

  11. A Review on Biomass Torrefaction Process and Product Properties

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  12. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  13. Pellets for Power: sustainable biomass import from Ukraine : public final report

    NARCIS (Netherlands)

    Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P.; Sluis, van der T.; Galytska, M.; Kulyk, M.; Jamblinne, de P.; Kraisvitnii, P.; Rii, O.; Hoekstra, T.

    2013-01-01

    This project responds to the mismatch between on the one hand a growing demand for biomass on the Dutch and EU energy markets with a limited biomass potential and on the other hand large amounts of biomass and biomass potential currently underutilised in Ukraine. Ukraine itself is seen as a very pro

  14. 生物质颗粒燃料燃烧技术发展现状及趋势%Development status and trends of biomass pellet combustion technology

    Institute of Scientific and Technical Information of China (English)

    徐飞; 侯书林; 赵立欣; 田宜水; 孟海波

    2011-01-01

    生物质颗粒燃料燃烧器具有热效率高,污染物排放量低,控制性好等优点,可以用于家庭取暖、热水、工业干燥等领域.目前国外生物质颗粒燃料燃烧器已发展成熟,但我国在这方面还有一定差距.通过分析典型生物质颗粒燃烧器的构造,以及点火方式和控制系统,指出国内目前存在燃烧器自动化程度低,核心技术缺乏,原料适应性差,相关技术标准缺乏等问题,最后提出加快点火和自控系统研发,制定行业标准等建议.%This paper takes its research interest in providing an overview of the status quo of the biomass pellet combustion technology and its future prospects. As is known, biomass pellet fuel is a kind of high-quality renewable energy resource that can be adopted to replace some primary energy resources like coal. Due to its high thermal efficiency, low emission and convenient controllability, it can be used for house warm-keeping, water-heating, industrial products-drying and so on, which accounts for its fast development both at home and abroad, particularly in recent years. Nevertheless, large gaps still exist between us and the industrially-developed countries, particularly between us and the European countries. As the structure of this kind of fuel is concerned, it is composed of 6 components: its first component is the feeding system, which is used to transport the pellet from silo to the pellet burner; the second component is ignition system,which functions as an igniter of the fuel; the third one is air distribution system, which provides the gas for combustion; the fourth is combustion tube, in which the combustion takes place; the fifth is clean-up system for driving the slag during combustion, while the last component works as a controller, which is the heart of the pellet burner. Thus, analyzing the structure, ignition and controlling system of a typical pellet burner, it can be found that there still exist some problems in the pellet

  15. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres.

    Science.gov (United States)

    Chen, Wei-Hsin; Zhuang, Yi-Qing; Liu, Shih-Hsien; Juang, Tarng-Tzuen; Tsai, Chi-Ming

    2016-01-01

    The aim of this work was to study the characteristics of solid and liquid products from the torrefaction of oil palm fiber pellets (OPFP) in inert and oxidative environments. The torrefaction temperature and O2 concentration in the carrier gas were in the ranges of 275-350°C and 0-10 vol%, respectively, while the torrefaction duration was 30 min. The oxidative torrefaction of OPFP at 275°C drastically intensified the HHV of the biomass when compared to the non-oxidative torrefaction. OPFP torrefied at 300°C is recommended to upgrade the biomass, irrespective of the atmosphere. The HHV of condensed liquid was between 10.1 and 13.2 MJ kg(-)(1), and was promoted to 23.2-28.7 MJ kg(-)(1) following dewatering. This accounts for 92-139% improvement in the calorific value of the liquid. This reveals that the recovery of condensed liquid with dewatering is able to enhance the energy efficiency of a torrefaction system.

  16. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean).

    Science.gov (United States)

    Turner, Andrew; Holmes, Luke

    2011-02-01

    The distribution, abundance and chemical characteristics of plastic production pellets on beaches of the island of Malta have been determined. Pellets were observed at all locations visited and were generally most abundant (> 1000m⁻² at the surface) on the backshores of beaches with a westerly aspect. Most pellets were disc-shaped or flattened cylinders and could be categorised as white, yellow, amber or brown. The polymeric matrix of all pellets analysed by infrared spectroscopy was polyethylene and the degree of yellowing or darkening was associated with an increase in the carbonyl index, hence extent of photo-oxidation or aging. Qualitatively, pellets are similar to those reported for other regions of the Mediterranean in surveys spanning three decades, suggesting that they are a general and persistent characteristic of the region.

  17. Characterization of fine and carbonaceous particles emissions from pelletized biomass-coal blends combustion: Implications on residential crop residue utilization in China

    Science.gov (United States)

    Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan

    2016-09-01

    Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.

  18. Methane production from plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zauner, E.

    1985-01-01

    Methane fermentations of plant biomass were performed to increase basic knowledge necessary for development of suitable conversion technologies. Effects of bacterial inoculants, substrate compounds and varied process conditions were analyzed in batch and continuous fermentation experiments. Use of enriched bacterial populations precultured and adapted to plant materials was proved to be advantageous for inoculation. Methane yields and productivities as well as chemical and bacterial composition of digester fluids were determined at various loading rates and retention times during fermentation of different grass and maize silages. Recycling for favorable amounts of decomposed effluent for neutralization of supplied acid raw materials was important to achieve high methane yields. Quantity and composition of acido-, aceto- and methanogenic bacteria were not essentially influenced by changed fermentation conditions. Results of these laboratory examinations have to be completed by long run and scale up experiments to develop control parameters for plant biogas digesters.

  19. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.

    Science.gov (United States)

    Lu, Xiaoming; Withers, Mitch R; Seifkar, Navid; Field, Randall P; Barrett, Steven R H; Herzog, Howard J

    2015-05-01

    The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment.

  20. Design and Experiment on Biomass Pellet Densifying Machine for Residue%菌渣颗粒燃料固化成型机的设计与试验

    Institute of Scientific and Technical Information of China (English)

    王明友; 宋卫东; 闵建兴; 李尚昆; 吴今姬; 王教领

    2014-01-01

    Aiming at the present situation regarding the handling of edible fungi discarding , which leads to the environ-mental contamination and lower ratios of comprehensive utilization .According to the principle of biomass pellet grinding , cutting and extrusion molding , and takes analysis in the structural parameters and mechanical properties of its core com-ponent -circular mould and pressed roller , the biomass pellet densifying machine for edible fungi residue was designed . Through a densifying test of enoki mushroom residue , the results of machine performance test showed that the productivity was 945.5kg/h, tons of power consumption was 71.43kW· h/t, forming rate of particle fuel was 96.4%,mechanical durability was 97.2%,particle density was 1.24g/cm3 ,and particle moisture content was 10.1%.All the parameters can meet the requirements of biomass pellet fuel forming , which has durable , stable and reliable performance , as while as materials adaptable and no dust in the operating environment .%针对食用菌生产中的菌渣丢弃导致环境污染及综合利用率低的问题,依据生物质碾切挤压成型原理,研究设计了菌渣颗粒燃料固化成型机,并对其核心部件环模与压辊的结构参数、力学特性等进行了分析。通过对栽培过后的金针菇菌渣成型试验,试验结果表明:该机生产率为945.5kg/h,吨料电耗71.43kW· h/t,颗粒燃料的成型率为96.4%,机械耐久性为97.2%,颗粒质量密度为1.24 g/cm3,颗粒含水率为10.1%,均符合生物质颗粒燃料成型要求。整机工作平稳,成型可靠,物料适应性强和操作环境无粉尘等优点,性能满足设计要求。

  1. Optimization of extrusion process for production of nutritious pellets

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.

  2. 不同种类生物质对工业硅球团性能影响的研究%Research on Effect of Different Biomass on Performances of Industrial Silicon Pellets

    Institute of Scientific and Technical Information of China (English)

    杨妮; 谢刚; 李荣兴; 俞小花; 和晓才; 姚云; 包崇军

    2015-01-01

    In this paper,anthracite fine,petroleum coke powders,charcoal powders,silica fume as raw materi-als and rice husk,corn straw,wheat straw or rice straw as binder are used to prepare industrial silicon pellets as carbonaceous reducing agent.The effects of different biomass on compressive strength of fresh pellets and air dried pellets,the heat intensity,the shatter strength,and porosity of pellets are then researched.The perform-ances of four kinds pellets are compared with pellets made from R binder purchased from the market.The results show that:when rice straw is used as biomass,the performances of the pellets are as follows:compressive strength of fresh pellets and air dried pellets are 1 215.6 N and 5 230.8 N respectively,the shatter strength is 80.36%,the heat intensity 94.40%,and porosity 24.39%.Compared with those of pellets made from R bind-er,compressive strength of fresh pelletizing is increased by 74.47%,compressive strength of air dried pellets and the shatter strength drop by 25.11% and 13.32% respectively,while the heat intensity and porosity are in-creased by 39.15% and 9.20%.The pellets using biomass and lignin sulfonate or different kinds of starch to-gether as compound binder could be considered in the actual production.%实验以洗精煤、木炭粉、石油焦、微硅粉为原料,并与改性后的稻壳、玉米秸秆、小麦秸秆或水稻秸秆混合,制备生物质工业硅球团.研究了不同种类生物质含量对湿球抗压强度、干球抗压强度、抗碎率、热强度与孔隙率的影响,并与市购的 R 粘结剂制备的球团性能进行比较.实验结果表明:当以水稻秸秆为生物质时,制备的生物质球团湿球抗压强度为1215.6 N,干球抗压强度为5230.8 N,抗碎率为80.36%,热强度为94.40%,孔隙率为24.39%.与 R 制备的球团相比,湿球抗压强度提高74.47%,干球抗压强度降低25.11%,抗碎率降低13.32%,热强度提高39

  3. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    The production of construction materials is very energy intensive and requires large quantities of fossil fuels.Asphalt is the major road paving material in Europe and is being produced primarily in stationary batch mixasphalt factories. The production process requiring the most energy...... is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required....... This paper analyses different pathways for the useof biomass feedstock as a primary process fuel. The analysed cases consider the gasification of straw andwood chips and the direct combustion of wood pellets. The additional use of syngas from the gasifier for theproduction of heat or combined heat and power...

  4. Engineering verification of the biomass production chamber

    Science.gov (United States)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  5. Fuzzy rule-based prediction of lovastatin productivity in continuous mode using pellets of Aspergillus terreus in an airlift reactor

    Directory of Open Access Journals (Sweden)

    Kamakshi Gupta

    2009-12-01

    Full Text Available Lovastatin production using pellets of Aspergillus terreus was investigated in an airlift reactor. A fuzzy system has been developed for predicting the lovastatin productivity. Analysis of the effect of dilution rate and biomass concentration on the productivity of lovastatin was carried out and hence these were taken as inputs for the fuzzy system. The rule base has been developed using the conceptions of developmental processes in lovastatin production. The fuzzy system has been constructed on the basis of experimental results and operator’s knowledge. The values predicted for lovastatin productivity by the fuzzy system has been compared with the experimental data. The R squared value and mean squared error has been calculated to evaluate the quality of the fuzzy system. The performance measures show that the rule-based results of the fuzzy system is in accordance with the experimental results. The utilization of fuzzy system aided in the increase of lovastatin productivity by about 1.3 times when compared to previous empirical experimental results. Keywords: Lovastatin, airlift reactor, fuzzy rule-based system, Aspergillus terreus, continuous fermentation, pellets. Received: 27 November 2009 / Received in revised form: 18 January 2010, Accepted: 11 February 2010, Published online: 23 March 2010

  6. Reduction behavior and reaction kinetics of iron ore--biomass composite pellets%铁矿--生物质复合球团还原行为及还原动力学

    Institute of Scientific and Technical Information of China (English)

    罗思义; 马晨; 孙鹏鹏

    2015-01-01

    The reduction reaction rate, reduction degree, surface microstructure and weight loss of composite pellets with different components under biomass syngas atmosphere were investigated to illustrate the effects of biomass addition in pellets on the reduction behavior and reaction kinetics. The porosity of pellets with the addition of biomass is higher than that without the addition of biomass, which is favorable to heat and mass transfer of the reduction process, increases the reduction degree of products and decreases the apparent activation energy of reaction. The reduction of pellets was carried out in the manner of a shrinking core model. In the range of 1123 to 1323 K, the rate-controlling mechanism of reduction for these two kinds of pellets is interfacial chemical reaction. The addi-tion of biomass in pellets can improve the interfacial chemical reaction, and thus the apparent activation energy of reaction decreases from 95. 448 kJ·mol-1 to 68. 131 kJ·mol-1 .%通过分析生物质合成气气氛下,不同组分复合球团(添加和未添加生物质)的还原速率、还原度、表面微观结构和失重变化规律,对球团中添加生物质的作用机理以及含生物质球团还原过程的限制性环节展开研究.添加生物质的复合球团表面结构比无生物质球团疏松,孔隙率高,有利于后续还原的热质传递,增加产物还原度,降低反应活化能;复合球团的还原以收缩核方式进行,在1123~1323 K温度范围内,界面化学反应是两种球团还原反应的主要控速环节;添加生物质后,有利于界面化学反应的进行,使得球团的还原表观活化能由95.448 kJ·mol-1降低到68.131 kJ·mol-1.

  7. Fermentative hydrogen gas production using biosolids pellets as the inoculum source.

    Science.gov (United States)

    Kalogo, Youssouf; Bagley, David M

    2008-02-01

    Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.

  8. Study on the associated removal of pollutants from coal-firing flue gas using biomass activated carbon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Yuan, Wanli [Qingdao Univ., Shandong (China). Electrical and Mechanical Engineering College; Qi, Haiying [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    A pilot-scale multi-layer system was developed for the adsorption of SO{sub 2}/NO{sub x}/Hg from flue gas (real flue gases of an heating boiler house) at various operating conditions, including operating temperature and activated carbon materials. Excellent SO{sub 2}/NO{sub x}/Hg removal efficiency was achieved with the multi-layer design with carbons pellets. The SO{sub 2} removal efficiency achieved with the first layer adsorption bed clearly decreased as the operating temperature was increased due to the decrease of physisorption performance. The NO{sub x} removal efficiency measured at the second layer adsorption bed was very higher when the particle carbon impregnated with NH{sub 3}. The higher amounts of Hg absorbed by cotton-seed-skin activated carbon (CSAC) were mainly contributed by chlorinated congeners content. The simultaneously removal of SO{sub 2}/NO{sub x}/Hg was optimization characterized with different carbon layer functions. Overall, The alkali function group and chloride content in CSAC impelled not only the outstanding physisorption but also better chemisorptions. The system for simultaneously removal of multi-pollutant-gas with biomass activated carbon pellets in multi-layer reactor was achieved and the removal results indicated was strongly depended on the activated carbon material and operating temperature.

  9. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  10. Butanol production from renewable biomass by clostridia.

    Science.gov (United States)

    Jang, Yu-Sin; Malaviya, Alok; Cho, Changhee; Lee, Joungmin; Lee, Sang Yup

    2012-11-01

    Global energy crisis and limited supply of petroleum fuels have rekindled the worldwide focus towards development of a sustainable technology for alternative fuel production. Utilization of abundant renewable biomass offers an excellent opportunity for the development of an economical biofuel production process at a scale sufficiently large to have an impact on sustainability and security objectives. Additionally, several environmental benefits have also been linked with the utilization of renewable biomass. Butanol is considered to be superior to ethanol due to its higher energy content and less hygroscopy. This has led to an increased research interest in butanol production from renewable biomass in recent years. In this paper, we review the various aspects of utilizing renewable biomass for clostridial butanol production. Focus is given on various alternative substrates that have been used for butanol production and on fermentation strategies recently reported to improve butanol production.

  11. Health Effects of Operators in the Production of Wood Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, K.; Arvidsson, H.; Bryngelsson, I.L.; Fedeli, C. [Oerebro Univ. (Sweden). Dept. of Occupational and Environmental Medicine; Eriksson, K. [Univ. Hospital of Umeaa (Sweden). Dept. of Occupational and Environmental Medicine; Andersson, E. [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Occupational and Environmental Medicine

    2006-07-15

    The environmental and energy policy in Sweden is aiming to replace fossil energy with renewable sources such as biofuels, e.g., wood Pellets produced from shavings and sawdust of pine and spruce. Reported health effects in the wood processing industries are airway, eye and skin irritation, reduced lung function as well as eczema. The aim of our study was to investigate the prevalence of airway and skin symptoms and measure lung function in a population of pellet operators in the Swedish wood industry. Additional reported acute effects from the airways, eyes, nose and skin were recorded. From May 2004 until April 2005 50 blue-collar workers from four Swedish pellet-producing industries were investigated. The study included a questionnaire about skin and airway symptoms (n=50), acute effect questionnaire (n=67; 44 individuals) as well as a test of the lung function (spirometry) before and after work shift (n=118; 39 individuals). Acute effects questionnaire and spirometry were done one to three times per participants and for the acute effects the worker had to assess their symptoms in the airways, eyes, nose and skin between 6 and 8 times during a day. The results from the symptom questionnaires were compared with reference data from other Swedish studies and the lung function data with a European reference material. Statistical tests used were chi-2-test for the questionnaire, t-test for lung function before shift compared expected values, and for difference in lung function between before and after work shift mixed models with subjects as a random factor. No statistical significant difference was seen for the skin and airway symptoms in the questionnaire. Reported acute effects were seen especially for eye and nose symptoms (table 1). Spirometry showed significantly higher forced vital capacity (FVC; p=0.0003) and no difference in forced expiratory volume in 1 second (FEV1; p=0.08) before work shift compared to expected values. FVC was 108,1 % and FEV1 was 104

  12. Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii

    OpenAIRE

    Gutierrez-Sanchez, G.; Roussos, Sevastianos; Augur, Christopher

    2013-01-01

    The aim of the present study was to evaluate the effect of the initial caffeine concentration (1-8 g/L) on growth and caffeine consumption by Aspergillus tamarii as well as pellet morphology, in submerged fermentation. Caffeine was used as sole nitrogen source. At 1 g/L of initial caffeine concentration, caffeine degradation was not affected, resulting in a production of 8.7 g/L of biomass. The highest biomass production (12.4-14.8 g/L) was observed within a range of 2 to 4 g/L of initial caf...

  13. Closed photobioreactors for production of microalgal biomasses.

    Science.gov (United States)

    Wang, Bei; Lan, Christopher Q; Horsman, Mark

    2012-01-01

    Microalgal biomasses have been produced industrially for a long history for application in a variety of different fields. Most recently, microalgae are established as the most promising species for biofuel production and CO(2) bio-sequestration owing to their high photosynthesis efficiency. Nevertheless, design of photobioreactors that maximize solar energy capture and conversion has been one of the major challenges in commercial microalga biomass production. In this review, we systematically survey the recent developments in this field.

  14. 生物质颗粒燃料储藏理化特性变化规律%Variation law of physical and chemical characteristics of biomass pellet fuels during storage

    Institute of Scientific and Technical Information of China (English)

    张中波; 田宜水; 侯书林; 赵立欣; 孟海波

    2013-01-01

    With the social and economic development, demand of energy is increasing. Biomass pellet fuels have a wide range of renewable raw materials. Biomass pellet fuels with small storage space, easily transport and use of clean and green, high thermal efficiency, and sustainable use, have broad prospects for the development in the future. Long-term storage of biomass fuels is necessary because that there is a time gap between feedstock harvesting and production for at least 6 months of storage in the factory. In order to study whether they can be adapted to store under northern climate, the physical and chemical characteristics of the different storage methods (bagging, semi-closed, open-air), we carried out an experiment to study the laws of the three storage modes with corn pellets and wood pellets on March to August in 2011. The results showed that the all biomass pellet fuels did not appear mildew, while the changing laws of total water and bulk density were accordance with the climate changes. The range of the corn pellet fuels and wood pellet fuels in the open-air storage mode were the largest with (2.42% and 2.55% respectively) of all the storage form, as the particle density does (0.12 and 1.297 t/m3 respectively). The ash and volatile matter of the three storage form kept stable. However, we found some strange phenomenon as follows:1) generally, all the net calorific values become bigger as time (the total water values);2) The range of the total water was the biggest (2.42%) when the corn pellets was stored in the open-air mode, while the range of the particle density was the smallest. So the phenomenon needs further study. The conclusions provide a theoretical basis for the safe storage of biomass pellet fules.%  为分析生物质颗粒燃料在北方气候下是否可以长期储藏,以及不同储藏方式对颗粒燃料理化特性的影响规律,2011年3月至8月期间,针对北京地区气候,对玉米秸秆和木质2种颗粒燃料,以

  15. Viscoelastic constitutive model of biomass pellet%生物质颗粒燃料成型的黏弹性本构模型

    Institute of Scientific and Technical Information of China (English)

    霍丽丽; 赵立欣; 田宜水; 姚宗路; 孟海波

    2013-01-01

    Biomass resources such as agricultural and forestry wastes are very rich in China. Biomass can be compressed into a pellet and used instead of coal for heating, electricity, etc. Currently, the use of biomass pellets is being rapidly promoted. Not only can they be used for home cooking, heating, they can also be used as high-quality fuel for industrial boilers and power plants. Compared with coal, the greenhouse gas emissions of biomass pellet less than 1/9 of the coal, so these pellets have environmental benefits. This thesis research is about a biomass pellet molding viscoelastic constitutive model. The six kinds of biomass pellet raw materials which include corn straw, peanut shell, wheat straw, soybean straw, cotton straw and sawdust were the study objects densified by a 485 type roll pellet mill to analyze the stress change rules during the densifying process and measure the single feedstock of a biomass pellet by microscope in this paper. The densifying process of biomass pellets after feedstock was simulated and studied through a universal testing machine and self-made compress fixture when this is no raw material feed. The constitutive model was built for biomass pellets with viscoelastic theory to present the densifying mechanism for biomass pellets from the standpoint of mechanics, and the maximum stress and the energy consumption of the densifying process of the different species of raw material were compared and studied. The results showed that the viscoelastic constitutive model can be used to describe the densifying process of biomass pellets. A constitutive model of stress to strain can be adopted at the densifying process phase, and stress to time at stress relaxation phase. The fitting of a model curve is perfect and all coefficients of association are higher than 90%. Basically, the single feedstock for different raw material is the same, which is approximate 150 to 160 mg, while the densifying pellet density varies from each other which can be

  16. Biomass gasification and energy production

    Energy Technology Data Exchange (ETDEWEB)

    Mahinpey, N.; Nikoo, M.B. [Regina Univ., SK (Canada). Faculty of Engineering

    2007-07-01

    The ASPEN PLUS simulation program was used to model an atmospheric fluidized bed biomass gasifier. The aim of the study was develop a simulation capable of accurately predicting steady state performance of the gasifier in relation to hydrodynamics and reaction kinetics. The influences of feed decomposition, volatile reactions, gas gasification and gas-solid separation were considered through modularized ASPEN PLUS models. The ASPEN PLUS yield reactor was used to simulate biomass feed decomposition. A separation column model was used to separate volatile materials and solids. Experimental data from a pine biomass gasification experiment conducted in a laboratory-scale fluidized bed gasifier was used to validate the simulation results. Good agreement was shown for gas composition, although carbon dioxide (CO{sub 2}) rates were slightly underestimated. The study also demonstrated that higher temperatures improved the gasification process and carbon conversion. The optimized gasification process produced more carbon monoxide (CO) and less CO{sub 2}. The introduction of lower temperature steam to the gasification process increased tar output. It was concluded that the conversion efficiency increased when the equivalence ratio was increased. 7 refs., 1 tab., 12 figs.

  17. Life cycle assessment of biomass chains: Wood pellet from short rotation coppice using data measured on a real plant

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Buratti, Cinzia [University of Perugia - Biomass Research Centre, Via Duranti - 06125 Perugia (Italy)

    2010-12-15

    This paper presents a LCA study about household heat from Short Rotation Coppice wood pellets combustion. The overall process, from field growth to ash disposal, was considered; environmental analysis was carried out using a LCA software programme (Simapro 7.0) and adopting the EcoIndicator 99 model for the evaluation of the global burden; analysis with EPS 2000 and EDIP methodologies were also carried out, in order to compare the different approaches. For the pellet production process, mass and energy flows were measured on an existing Italian plant, while other data were obtained from the Literature; a comparison between results obtained using only data from Literature and using data from the existing plant was made, showing for the pelleting phase a value of about 23% lower if measured data are used. The LCA study showed that agricultural operations account for most of the environmental impact if evaluated both with EcoIndicator 99 and EPS 2000; EDIP gave results that were not very reliable for this chain, due to the high weight given to the infra-structures and machinery construction. The comparison between data obtained considering and not considering the infra-structures contribution in the LCA analysis with EcoIndicator 99 showed a modest contribution of infra-structures on the final score (about 2%). The overall impact evaluated with EcoIndicator 99 is considerably less than the one caused by natural gas heating. The Energy Return Ratio was finally calculated; a value of 3.25 was found, good if compared to the one for the methane combustion, equal to 6. (author)

  18. Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii.

    Science.gov (United States)

    Gutiérrez-Sánchez, G; Roussos, S; Augur, C

    2013-05-01

    The aim of the present study was to evaluate the effect of the initial caffeine concentration (1-8 g/L) on growth and caffeine consumption by Aspergillus tamarii as well as pellet morphology, in submerged fermentation. Caffeine was used as sole nitrogen source. At 1 g/L of initial caffeine concentration, caffeine degradation was not affected, resulting in a production of 8.7 g/L of biomass. The highest biomass production (12.4-14.8 g/L) was observed within a range of 2 to 4 g/L of initial caffeine concentration. At these initial caffeine concentrations, after 96 h of fermentation, 41-51 % of the initial caffeine was degraded. Using an initial caffeine concentration of 2-3 g/L, the highest specific growth rate was observed (μ = 0.069 1/h). Biomass production decreased at 8 g/L of initial caffeine concentration. A. tamarii formed mainly pellets at all concentrations tested. The size of the pellet decreased at a caffeine concentration of 8 g/L.

  19. Biomass production by freshwater and marine macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    North, W.J.; Gerard, V.A.; Kuwabara, J.S.

    1981-01-01

    Research on aquatic macrophytes as producers of biomass has been undertaken at Woods Hole Oceanographic Institution (WHOI) on the east coast and on the west coast by a group of collaborators in a joint effort known as the Marine Biomass Project. Studies at WHOI have focused on estuarine and coastal situations with some attention recently to freshwater plants. The Marine Farm Project has primarily been concerned with oceanic biomass production. A group at WHOI has undertaken a wide variety of studies concerning aquatic macrophytes including nutrient uptake, growth, yields, and environmental factors affecting yields. Aquatic biomass production systems have been surveyed on a worldwide basis and currently the role of carbon as a potential limiting nutrient in biomass culturing is being examined. The Marine Farm Project is presently attempting to grow giant kelp in offshore waters off southern California. Other work related to aquatic biomass production includes an investigation at the University of California, Berkeley, of microalgae in ponds. This paper will emphasize discussion of the kelp production phases of the Marine Farm Project. Activities by the WHOI are briefly summarized.

  20. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y. [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T. [Aston Univ. Birmingham (United Kingdom); Beckman, D. [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  1. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  2. Production of wood pellets. Influence of additives on production, quality, storage, combustion and life cycle analysis of wood pellets; Herstellung von Holzpellets. Einfluss von Presshilfsmitteln auf Produktion, Qualitaet, Lagerung, Verbrennung sowie Energie- und Oekobilanz von Holzpellets

    Energy Technology Data Exchange (ETDEWEB)

    Hasler, P.; Nussbaumer, T. [Verenum, Zuerich (Switzerland); Buerli, J. [Buerli Pellets, Willisau (Switzerland)

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study concerning the influence of additives on the various factors related to the manufacture of wood pellets and their use. Results of tests concerning the production, storage and combustion of wood pellets with and without additives are presented. Process modifications are discussed. The report shows that for all investigated additives neither energy consumption nor pellet throughput was improved. The influence of additives on the mechanical strength of the pellets is discussed, as are the combustion characteristics of the pellets, which emit significantly lower levels of NO{sub x} and particulate matter than typical wood chips. The authors recommend the application of advanced control technology to ensure optimum combustion conditions. A life-cycle analysis is presented which shows that pellets are ecologically more favourable than wood chips. The ecological potential for improvement in the manufacturing process is discussed, including emission reductions and heat recovery.

  3. Conservative species drive biomass productivity in tropical dry forests

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der Masha T.; Lohbeck, Madelon; Poorter, Lourens

    2016-01-01

    Forests account for a substantial part of the terrestrial biomass storage and productivity. To better understand forest productivity, we need to disentangle the processes underlying net biomass change. We tested how above-ground net biomass change and its underlying biomass dynamics (biomass recr

  4. Woody biomass production systems for Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, D.L.; Pathak, N.N.; Satapathy, P.C. (Florida Univ., Gainesville, FL (United States). Dept. of Forestry)

    1993-01-01

    Woody biomass production research in Florida has addressed genetic improvement, coppice productivity, clonal propagation, biomass properties, and economics of Eucalyptus and other species in short rotation, intensive culture systems. Improved E. grandis seedlings could more than double productivity, but exceptional clones offer more immediate potential in southern Florida. E. tereticornis and E. camaldulensis appear to have frost-resistance and good growth in central and southern Florida. For northern Florida, E. amplifolia has good frost-resilience and coppicing ability. Eucalytpus species are suitable for fermentation processes. Other promising species include Casuarina glauca and Taxodium distichum in southern Florida, and Sapium sebiferum state-wide. Break-even costs for biomass production systems with Eucalyptus range from approximately $2.00 to $4.00 GJ[sup -1]; short rotation culture appears feasible for slash pine in northern and central Florida but cannot yet be advised for sand pine. (author)

  5. Experimental Investigation on NOx Reduction by Primary Measures in Biomass Combustion: Straw, Peat, Sewage Sludge, Forest Residues and Wood Pellets

    Directory of Open Access Journals (Sweden)

    Øyvind Skreiberg

    2012-02-01

    Full Text Available An experimental investigation was carried out to study the NOx formation and reduction by primary measures for five types of biomass (straw, peat, sewage sludge, forest residues/Grot, and wood pellets and their mixtures. To minimize the NOx level in biomass-fired boilers, combustion experiments were performed in a laboratory scale multifuel fixed grate reactor using staged air combustion. Flue gas was extracted to measure final levels of CO, CO2, CxHy, O2, NO, NO2, N2O, and other species. The fuel gas compositions between the first and second stage were also monitored. The experiments showed good combustion quality with very low concentrations of unburnt species in the flue gas. Under optimum conditions, a NOx reduction of 50–80% was achieved, where the highest reduction represents the case with the highest fuel-N content. The NOx emission levels were very sensitive to the primary excess air ratio and an optimum value for primary excess air ratio was seen at about 0.9. Conversion of fuel nitrogen to NOx showed great dependency on the initial fuel-N content, where the blend with the highest nitrogen content had lowest conversion rate. Between 1–25% of the fuel-N content is converted to NOx depending on the fuel blend and excess air ratio. Sewage sludge is suggested as a favorable fuel to be blended with straw. It resulted in a higher NOx reduction and low fuel-N conversion to NOx. Tops and branches did not show desirable NOx reduction and made the combustion also more unstable. N2O emissions were very low, typically below 5 ppm at 11% O2 in the dry flue gas, except for mixtures with high nitrogen content, where values up to 20 ppm were observed. The presented results are part of a larger study on problematic fuels, also considering ash content and corrosive compounds which have been discussed elsewhere.

  6. Combustion of mediterranean agro-forest biomasses in small and medium scale pellet boilers: strategies for minimizing ash fusion and slagging

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Nieva, Daniel J.; Dopazo, Raquel; Ortiz, Luis [Forest Engineering Univ. School. Univ. of Vigo, Pontevedra (Spain)], e-mail: DanielJVN@gmail.com

    2012-11-01

    The slagging and fouling risk remain as important barriers that are currently limiting the use of various agricultural residues and potential energy crops feedstocks (e.g. [1-3]), which remain largely unutilized, particularly in Mediterranean countries. In this oral communication, the main results from the VI Framework European Project Domoheat on the combustion of mediterranean biomasses and its mixtures on small and medium size domestic pellet boilers, are presented, together with the goals of the ongoing VII Framework European Project AshMelT focusing on the definition of objective criteria and tests for ash slagging in domestic pellet boilers. The utilization of ash slagging indices based on ash composition and the definition of biomass mixtures based on such ash indices are presented as potentially useful tools for minimizing the occurrence of ash fusion and slagging during combustion.

  7. A Review of Pellets from Different Sources

    Directory of Open Access Journals (Sweden)

    Teresa Miranda

    2015-03-01

    Full Text Available The rise in pellet consumption has resulted in a wider variety of materials for pellet manufacture. Thus, pellet industry has started looking for alternative products, such as wastes from agricultural activities, forestry and related industries, along with the combination thereof, obtaining a broad range of these products. In addition, the entry into force of EN ISO 17225 standard makes wood pellet market (among other types possible for industry and household purposes. Therefore, wastes that are suitable for biomass use have recently increased. In this study, the main characteristics of ten kinds of laboratory-made pellets from different raw materials were analyzed. Thus, we have focused on the most limiting factors of quality standards that determine the suitability for biomass market, depending on the kind of pellet. The results showed considerable differences among the analyzed pellets, exceeding the limits established by the standard in almost all cases, especially concerning ash content and N and S composition. The requirements of the studied standard, very demanding for certain factors, disable the entry of these densified wastes in greater added value markets.

  8. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  9. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    Science.gov (United States)

    Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda

    2016-10-01

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.

  10. An Innovative Agro-Forestry Supply Chain for Residual Biomass: Physicochemical Characterisation of Biochar from Olive and Hazelnut Pellets

    Directory of Open Access Journals (Sweden)

    Ilaria Zambon

    2016-07-01

    Full Text Available Concerns about climate change and food productivity have spurred interest in biochar, a form of charred organic material typically used in agriculture to improve soil productivity and as a means of carbon sequestration. An innovative approach in agriculture is the use of agro-forestry waste for the production of soil fertilisers for agricultural purposes and as a source of energy. A common agricultural practice is to burn crop residues in the field to produce ashes that can be used as soil fertilisers. This approach is able to supply plants with certain nutrients, such as Ca, K, Mg, Na, B, S, and Mo. However, the low concentration of N and P in the ashes, together with the occasional presence of heavy metals (Ni, Pb, Cd, Se, Al, etc., has a negative effect on soil and, therefore, crop productivity. This work describes the opportunity to create an innovative supply chain from agricultural waste biomass. Olive (Olea europaea and hazelnut (Corylus avellana pruning residues represent a major component of biomass waste in the area of Viterbo (Italy. In this study, we evaluated the production of biochar from these residues. Furthermore, a physicochemical characterisation of the produced biochar was performed to assess the quality of the two biochars according to the standards of the European Biochar Certificate (EBC. The results of this study indicate the cost-effective production of high-quality biochar from olive and hazelnut biomass residues.

  11. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    Tomberlin, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  12. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  13. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US

    NARCIS (Netherlands)

    Hoefnagels, Ric; Junginger, Martin; Faaij, Andre

    2014-01-01

    The global demand for wood pellets used for energy purposes is growing. Therefore, increased amounts of wood pellets are produced from primary forestry products, such as pulp wood. The present analysis demonstrates that substantial amounts of alternative, low-value wood resources are available that

  14. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  15. Experiment on fuel flexibility of biomass pellet burner%生物质颗粒燃烧器燃料适应性试验

    Institute of Scientific and Technical Information of China (English)

    王月乔; 田宜水; 侯书林; 赵立欣; 孟海波

    2014-01-01

    为深入研究生物质颗粒燃料的燃烧特性,探讨自动燃烧器的燃料适应性,该文基于PB-20型生物质颗粒燃烧器,选择了5种灰分小于25%(空气干燥基)的颗粒燃料,分别研究了燃烧工况中进料量和空气量对燃烧性能的影响。试验结果表明灰分含量大于20%的颗粒燃料燃烧不充分,工况不稳定,效率低,结渣大,易熄火,不适用于此类生物质颗粒燃烧器;灰分含量为12.40%的颗粒燃料推荐参数为进料量4 kg/h,风机转速2600~2800 r/min,清渣速度为3 r/min,转5 s/停35 s;灰分在7.21%的颗粒燃料推荐控制参数为进料量3~4 kg/h,风机转速2600~2800 r/min,清渣速度相对应为3 r/min,转5 s/停60~55 s;灰分值低于1%的颗粒燃料均以进料量3~4 kg/h,风机转速2600~2800 r/min,不需清渣为推荐参数。该研究总结了生物质颗粒燃烧器的燃料适用控制参数,为燃烧器的推广应用提供了数据支持。%Because there exists much diversity in raw materials, biomass fuel pellet properties, and corresponding combustion equipment, research to develop the fuel adaptability of biomass burners is necessary. The research was accomplished on a self-build biomass combustion equipment-monitoring platform. The monitoring platform has multiple sensors to collect and process data of the burner’s control parameters and combustion state parameters. Based on the platform, the author used a PB-20-type biomass pellet burner, which is designed by the Chinese Academy of Agricultural Engineering. The author investigated five kinds of biomass pellets with ash values from 0 to 25 percent, And tested nine kinds of working conditions for each pellet with 3, 4, and 5 kg/h fuel feed rates and 2 600, 2 700, and 2 800 r/min fan speed. The thermal performance of the burner was tested according to the GB/T10180-2003 Thermal performance test code for industrial boilers and the GB13271-2001 Emission

  16. Cost of non-renewable energy in production of wood pellets in China

    Science.gov (United States)

    Wang, Changbo; Zhang, Lixiao; Liu, Jie

    2013-06-01

    Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials. Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J, of which only 0.09 J was derived from NE, indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable. Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%), during which electricity and diesel are the two major forms of NE used, respectively. Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly. Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.

  17. Cost of non-renewable energy in production of wood pellets in China

    Institute of Scientific and Technical Information of China (English)

    Changbo WANG; Lixiao ZHANG; Jie LIU

    2013-01-01

    Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials.Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J,of which only 0.09 J was derived from NE,indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable.Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%),during which electricity and diesel are the two major forms of NE used,respectively.Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly.Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.

  18. Magnesium Production by Silicothermic Reduction of Dolime in Pre-prepared Dolomite Pellets

    Science.gov (United States)

    Fu, Da-Xue; Zhang, Ting-An; Guan, Lu-Kui; Dou, Zhi-He; Wen, Ming

    2016-12-01

    A novel process has been proposed for magnesium production, in which powder materials including dolomite, ferrosilicon, fluorite and binder are mixed to produce pellets. Kinetics of the silicothermic reduction using the pre-prepared dolomite pellets was investigated by a non-isothermal, flowing argon-protected gravimetric technique at a temperature range from 1323 K to 1673 K. The results suggest that the process is controlled by a chemical reaction, with the second-order chemical reaction model providing the best representation of the process. The apparent activation energy was determined to be 280 kJ/mol. Calcium silicide (was found in the pellet after calcinations. The silicothermic process in the pre-prepared dolomite pellets is possibly a solid-liquid reaction since calcium silicide transformed into liquid alloy, which reduced diffusion resistance of silicon during the reduction process. The gas-film mass transfer may have some effect on the reduction kinetics but is not the major rate-limiting step.

  19. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels.

    Science.gov (United States)

    Yang, Y; Brammer, J G; Mahmood, A S N; Hornung, A

    2014-10-01

    This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%.

  20. Phytoplankton diversity, biomass, and production

    Digital Repository Service at National Institute of Oceanography (India)

    Madondkar, S.G.P.; Gomes, H.; Parab, S.G.; Pednekar, S.; Goes, J.I.

    of the standing stock and organic productivity of an estuary. These variables have often been utilized to evaluate the overall health of an estuarine ecosystem and in management strategies to ensure sustainable use of the estuaries. Earlier investigations...) 2002. in the Zuari (1.02?3.07 ? 105 cellsl-1), suggesting that the phytoplankton species in the Zuari were more amenable to freshwater as compared to those in the Mandovi. The presence of a prominent community of freshwater phytoplankton was evident...

  1. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  2. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus;

    -58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). • A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  3. Modeling and analysis of biomass production systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishoe, J.W.; Lorber, M.N.; Peart, R.M.; Fluck, R.C.; Jones, J.W.

    1984-01-01

    BIOMET is an interactive simulation model that is used to analyze specific biomass and methane production systems. The system model is composed of crop growth models, harvesting, transportation, conversion and economic submodels. By use of menus the users can configure the structure and set selected parameters of the system to analyze the effects of variables within the component models. For example, simulations of a water hyacinth system resulted in yields of 63, 48 and 37 mg/ha/year for different harvest schedules. For napier grass, unit methane costs were $3.04, $2.86 and $2.98 for various yields of biomass. 10 references.

  4. 混合生物质颗粒燃料的燃烧特性%Combustion characteristics of composite biomass pellets

    Institute of Scientific and Technical Information of China (English)

    矫振伟; 赵武子; 王瀚平; 苏俊林

    2012-01-01

    The purpose of this study is to optimize the raw material composition of biomass pellets from cornstalk and rice husk by means of experimental optimization design and analysis, based on two key targets of ash melting characteristic and heat value. The optimum residue mixtures heighten the softening temperature over 1 400 ℃, which effectively improves the ashresidue properties of cornstalk pellets. Several types of analysis have been investigated in the paper by thermo -gravimetric experiment, combustion mechanism and dynamic characteristic for composite biomass pellets, the results show that composite biomass pellets are apt to ignite and have better performance of single peak pyrolysis and combustion characteristic. The results obtained here can be very useful for biomass fuel to improve the combustion characteristic, and can direct further development and application of biomass energy.%从生物质燃料的灰熔融性和热值两个关键性的特性指标着手,以玉米秸秆和水稻稻壳作为主要原料,用试验优化设计和分析的方法,寻求混合生物质颗粒燃料的优化配方,提高混合生物质颗粒的软化温度ST>1400℃,有效地解决了玉米秸秆颗粒结渣问题.对混合生物质颗粒进行了热重试验研究和燃烧机理、动力学特性分析,结果表明:混合生物质颗粒具有易着火和单峰值热解特性,燃烧性能良好.此研究为改善单一成分生物质燃料的燃烧性能,推广利用生物质能提供指导性建议.

  5. 吉林省几种常见生物质颗粒燃料的性能%Fuel Performances of Several Common Biomass Pellets in Jilin Province

    Institute of Scientific and Technical Information of China (English)

    张启昌; 张英楠; 王峰洁; 孙国文; 颜科

    2009-01-01

    对吉林省几种常见树种颗粒燃料的性能指标进行了测定分析.结果表明,7种颗粒燃料以玉米秸秆颗粒的灰分质量分数最大(11.90%),沙松去皮颗粒的灰分质量分数最低(0.37%);杨木颗粒的去灰分热值最大(20.896kJ/g),其次是椴桦混颗粒(20.885kJ/g),白桦去皮颗粒的去灰分热值大于白桦未去皮颗粒,木质颗粒大于秸秆颗粒.木质颗粒燃料以杂木颗粒燃料的轴向抗压性最强,其轴向载荷值为0.2355kN,其次为沙松去皮颗粒,其轴向载荷值为0.2149kN,白桦未去皮颗粒要强于去皮颗粒;白桦未去皮颗粒燃料的径向抗压性最强,其径向载荷值为0.6402kN,其次为杂木颗粒,其径向载荷值为0.6242kN,白桦未去皮颗粒要强于去皮颗粒.从抗压性角度分析宜选用杂木颗粒.杨木颗粒和杂木颗粒的质量损失率相对于其他4种颗粒较低,分别为0.1316%和0.1438%.椴桦混颗粒燃料的渗水率最大(10.235%),其次为白桦去皮颗粒(10.233%),白桦未去皮颗粒的抗渗水性要强于去皮颗粒.通过不同时间抗渗水性能测试,20h后,6种木质颗粒都呈完全剥落状,但杂木颗粒状态要稍好一些,外型仍呈颗粒状.不同颗粒燃料的去灰分热值、轴向载荷和抗渗水率具有显著差异(t检验,p<0.05).%A study was conducted to determine the fuel performances of seven common biomass pellets in Jilin Province. Results showed that the highest ash content was 11.90% for corn straw, and the lowest was 0. 37% for Abies holophylla pellet. It was also found that Populus simonii pellet had the largest ash-free caloric value (20.896 kJ) , then followed by the mixture of Tilia amurensis, Tilia mandshurica and Betula platyphylla pellet (20. 885 kj) , and the largest ash-free caloric value of wood pellet was larger than that of straw pellet. Ash-free calorific value for peeled B. platyphylla pellet was larger than that for the unpeeled, and the same result was also found in axial load

  6. Carbon savings with transatlantic trade in pellets: accounting for market-driven effects

    Science.gov (United States)

    Wang, Weiwei; Dwivedi, Puneet; Abt, Robert; Khanna, Madhu

    2015-11-01

    Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007-2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass.

  7. Emission characteristics of CO and NO during co-combustion with municipal solid waste and straw biomass pellets%生活垃圾混烧秸秆类生物质颗粒CO和NO的排放特性

    Institute of Scientific and Technical Information of China (English)

    邢献军; 李永玲; 张静; 邢勇强; 张学飞; 马培勇; 许宝杰

    2016-01-01

    with the increasing of particle size. Compared to the result from the combustion of MSW, the CO peak concentration of MSW co-fired with biomass pellets dropped significantly. For the MSW mixed with the equal mass ratio of different biomass species, the higher nitrogen content of biomass pellets can result in the higher yields of NO during the co-combustion. These results can be as the reference for the actual production of MSW co-combustion with biomass particles and the pollutant emission control technology.%选取典型秸秆类生物质颗粒掺混垃圾作为研究对象,利用自制燃烧试验平台,研究掺混比、温度、粒径及生物质种类等因素对垃圾掺混生物质颗粒燃烧过程中CO与NO释放规律的影响。试验结果表明:CO排放量随着混合燃料中棉花秆颗粒含量增加而减小;混合燃料中垃圾掺混量高于棉花秆颗粒时,焦炭氮燃烧峰值随棉花秆含量增加而增大,掺混量低于棉花秆颗粒时,焦炭氮燃烧峰值逐渐减小,掺混比为5:5时NO生成量最低。燃烧温度为850℃时CO生成量最低;NO峰值时间随温度升高向前偏移,排放量呈先增大后减小趋势,较高的反应温度有利于降低燃烧过程中NO生成量。随着燃料粒径减小,CO峰值浓度降低;存在粒径临界值(60~80目),当粒径小于临界值时,NO生成量随粒径减小而减小,大于临界值时,NO生成量随粒径增大而减小。垃圾混烧生物质颗粒后CO生成量显著降低;掺混同质量分数生物质颗粒试样中,生物质颗粒氮含量越高,混合燃料燃烧 NO 生成量越大。该研究可为实际生产中城市生活垃圾混烧生物质颗粒技术及污染物排放控制提供参考依据。

  8. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru

    2014-12-01

    A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾ 12 MJ/kg for the lower heating value, and >95% durability.

  9. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  10. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  11. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    Science.gov (United States)

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was 510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  12. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.

    Science.gov (United States)

    Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was 510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.

  13. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  14. Analysis of the characteristics of eight kinds of biomass pellet combustion%八种生物质颗粒燃烧特征分析

    Institute of Scientific and Technical Information of China (English)

    任敏娜; 崔永章; 李晓; 曲云霞; 张林华

    2012-01-01

    生物质成型颗粒燃料具有易储存、运输及使用方便、清洁环保、燃烧效率高等优点.本文通过实验得到八种生物质颗粒燃料的工业分析值,结合傅—张着火指标和缪岩燃烧特性指标分别计算出FZ和ZM值,得出装饰纸的着火温度最低,稻壳的着火温度最高.通过观察燃料燃烧后焚烧灰的形貌,指出在740~920℃温度范围内,生物质颗粒燃料燃烧后的灰颜色由黑逐渐变白,硬度由软逐渐变硬,甚至结焦渣.%The biomass pellet fuel is easy to store and transport, convenient to use, clean and helpful to environmental protection, and of high combustion efficiency. The study obtained the industry analysis values of eight kinds of biomass pellet fuels by experiment. Combined with fire indicator of Fu-Zhang and combustion characteristics indicator of Yan Niu, the study calculated the values of FZ and ZM and shows that the decorative paper has the minimum ignition temperature, while the rice husk has the highest ignition temperature. Finally, through the observation of the morphology of ash after the burning of fuel combustion, it is pointed out that with the increase of temperature from 740℃ to 920℃ , gray color of pellet fuel became gradually from black to white and hardness gradually hardened, even coke residue.

  15. Materials in Sweden for future production of fuel pellets. A review of possible materials in short- and medium long-term; Raavaror foer framtida tillverkning av braenslepellets i Sverige. En kartlaeggning av taenkbara alternativa raavaror paa kort och medellaang sikt

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Lars [Swedish National Testing and Research Inst., Boraas (Sweden)

    2003-07-01

    The use of fuel pellets, mainly produced from sawdust and shavings from the Swedish sawmill industry, has increased during the 1990s among small-scale users such as private houses as well as large-scale users such as thermal power stations. During the last years this increase has continued for small-scale use. Due to a significant increase of the pellet prices the last couple of years the increase for the large-scale users seems to have stopped. It is reasonable to believe that these higher prices depend mostly on lack of raw materials for the fuel pellet production. The greater part of sawdust from Swedish saw mills is used in the pellet industry, the board industry or as an internal fuel. It is reasonable to assume a small increase of present raw material available for pellet production without a further decrease in the use for the board industry. Another sawmill by-product, dry chips, may increase in importance as a fuel pellet raw material and give a small contribution while the green chips should be for use in the pulp industry only. If the use of fuel pellets should increase there is a need for new raw materials. In the short-term, thinning material and cull tree could be alternatives that could give pellets with similar characteristics as present fuel pellets. For large-scale consumers with greater ability to handle problems concerning ash, such as sintering and fouling, as well as particle and gaseous emissions a further choice of raw materials could be possible, such as bark, peat and logging residues. In the longer term energy crops could be used as well as lignin, derived from energy effective pulp industry and from possible large-scale production of ethanol from woody biomass. Nearly all of the different raw materials studied in this review have higher amounts of substances not desirable in combustion such as potassium, chlorine and nitrogen. However, pelletizing gives an unique opportunity to mix different raw materials and possible additives in order

  16. An Experimental Investigation of Hydrogen Production from Biomass

    Institute of Scientific and Technical Information of China (English)

    吕鹏梅; 常杰; 付严; 王铁军; 陈勇; 祝京旭

    2003-01-01

    In gaseous products of biomass steam gasification, there exist a lot of CO, CH4 and other hydrocarbons that can be converted to hydrogen through steam reforming reactions. There exists potential hydrogen production from the raw gas of biomass steam gasification. In the present work, the characteristics of hydrogen production from biomass steam gasification were investigated in a small-scale fluidized bed. In these experiments, the gasifying agent (air) was supplied into the reactor from the bottom of the reactor and the steam was added into the reactor above biomass feeding location. The effects of reaction temperature, steam to biomass ratio, equivalence ratio (ER) and biomass particle size on hydrogen yield and hydrogen yield potential were investigated. The experimental results showed that higher reactor temperature, proper ER, proper steam to biomass ratio and smaller biomass particle size will contribute to more hydrogen and potential hydrogen yield.

  17. Conversion of biomass to selected chemical products.

    Science.gov (United States)

    Gallezot, Pierre

    2012-02-21

    This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

  18. Biofuel production from plant biomass derived sugars

    Energy Technology Data Exchange (ETDEWEB)

    Cripps, R.

    2007-03-15

    This report details the results of a project that aimed to develop a recombinant thermophilic microorganism able to produce ethanol in a commercial yield from mixed C5 (xylose and arabinose) and C6 (mainly glucose) sugar substrates typically found in biomass hydrolysates. The main focus of the project was on producing a stable recombinant which formed ethanol as its major product and did not produce significant quantities of by-products. The costs of bioethanol could be substantially reduced if cheap plant-based feedstocks could be utilised. This study focussed on a strain of Geobacillus thermoglucosidasius known to be a thermophilic ethanol producer and developed the genetic manipulation techniques necessary to engineer its metabolism such that unwanted products (mainly organic acids) were no longer formed and ethanol became the overwhelming product. An appropriate genetic took kit to allow the required metabolic engineering was acquired and used to inactivate the genes of the metabolic pathways involved in the formation of the organic acids (e.g. lactic acid) and to up-regulate genes concerned with the formation of ethanol. This allowed the flow of metabolites derived from the sugar substrates to be redirected to the desired product. Stable mutants lacking the ability to form lactic acid were created and shown to give enhanced levels of ethanol, with yields from glucose approaching those achieved in yeast fermentations and low by-product formation.

  19. Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium.

    Science.gov (United States)

    Horiuchi, J; Tabata, K; Kanno, T; Kobayashi, M

    2000-01-01

    A packed bed bioreactor using charcoal pellets produced from waste mushroom medium by thermal carbonization was developed and applied to continuous acetic acid production. The pellets were characterized by their high specific surface area (200 m2/g) with numerous micropores (2-10 microm). The continuous acetic acid fermentation started up smoothly after seeding and was successfully operated for about 180 d under various retention times. The maximum acetic acid productivity was about 3.9 g/l/h using normal aeration and 6.5 g/l/h using air enriched with 40% O2. The pellets are expected to prove useful as a new packing material for bioreactor in terms of their bacterial affinity, high specific surface area with appropriate pore sizes for bacteria, as well as the operational stability of the system and the low production cost.

  20. Quality of Pelleted Olive Cake for Energy Generation

    Directory of Open Access Journals (Sweden)

    Radmilo Čolović

    2012-03-01

    Full Text Available Olive cake is by-product of olive oil production. This material cannot be stored in original condition for a long time because it has high water content and relatively high portion of oil that causes rapid deterioration. Thus it is necessary to investigate possible methods of remediation of such by-product, where utilization for energy generation presents a useful option. Several studies have been conducted on energy generation from olive cake, however not one that includes pelleting as a pre-treatment. Therefore, the aim of this paper was to determine the chemical composition of different cultivars of olive cake, to produce pellets, and determine their basic quality parameters. The pellets obtained from olive cake had mainly satisfactory results regarding their quality in comparison to standards for fuel pellets. It should be kept in mind that these standards are manly for wood pellets, and therefore some lower criteria could be applied for olive cake and such biomass. The highest amount of residual oil and the lowest amount of protein was found in cultivar ‘Buža’ and produced pellets had the smallest abrasion index (8.15%. Other cultivars had lower oil and higher protein content, and abrasion index higher than 10%. For these cultivars preparation of material (conditioning and/or binder adding prior to pelleting is necessary. Higher heating value (HHV and lower heating value (LHV were not significantly influenced by different chemical composition of cultivars, thus attention should be paid on their influence on pelleting process.

  1. 生物质颗粒燃料燃烧模拟实验%The Combustion Simulation Experiments on Biomass Pellet Fuel

    Institute of Scientific and Technical Information of China (English)

    矫振伟; 苏俊林; 罗小金

    2011-01-01

    With the combustion test boiler using biomass pellet fuel, the experimental researches of the four working condition were made at different primary and secondary air rate, different positions and different fuel layer thickness. Experiment results show that the heat efficiency of the biomass boiler can reach 77. 69% ,and that environmental protection indexes of exhaust gas, such as NOx ,SO2 and so on,are much lower than those of the coal boiler. The eombustion simulation experiment results provided credible information for the design and operation of the biomass boiler.%在生物质颗粒燃料燃烧试验用锅炉平台上,进行了多种配风、一、二次风配比、不同的二次送风位置及改变燃料层厚度四个工况下的实验研究.实验结果表明:生物质颗粒燃料锅炉热效率高达77.69%,而锅炉排烟中NOx、SO2等环保指标远远低于燃煤锅炉.燃烧模拟实验为生物质颗粒锅炉设计和运行提供规律性参考数据.

  2. Aprovechamiento de Biomasa Peletizada en el Sector Ladrillero en Bogotá-Colombia: Análisis Energético y Ambiental Use of Pelleted Biomass in the Brick Industry in Bogota-Colombia: Energy and Environmental Analysis

    Directory of Open Access Journals (Sweden)

    César A García-Ubaque

    2013-01-01

    Full Text Available En este estudio se compara el desempeño energético y ambiental del uso de combustibles a partir de dos tipos de biomasas peletizadas: residuos de madera, provenientes de podas y residuos de la producción de muebles, principalmente aserrín. La biomasa proveniente de residuos de madera es uno de los materiales más adecuados para utilizar como combustible alternativo. El sector ladrillero tiene una gran demanda energética para sus procesos de secado y cocción y el uso de combustibles alternativos a partir de biomasa permite obtener reducciones importantes en emisiones atmosféricas y no afecta las condiciones técnicas del proceso de producción de ladrillos. La biomasa con mejor desempeño, tanto en las variables energéticas como ambientales evaluadas, fue el aserrín.This study compared the energy and environmental performance of fuels from two types of pelleted biomass: wood waste from pruning and waste from furniture production, mainly sawdust. Wood residues biomass is one of the most suitable materials for using as an alternative fuel. The brick manufacture sector has a high energy demand for its drying and firing processes and the use of alternative fuels from biomass allows significant reductions in emissions and does not affect the technical conditions of the process of brick production. The biomass with better performance was sawdust, which presented the optimum energy and environmental variables.

  3. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  4. 生物质颗粒燃料在松阳香茶加工中的推广应用前景分析%Application and Development Expectation of Biomass Pellets Fuel in the Processing of Songyang Xiang Tea

    Institute of Scientific and Technical Information of China (English)

    郑得林; 钱园凤; 周为; 廖苏里; 徐松富; 潘墉; 王津生

    2015-01-01

    介绍了国内外生物质颗粒燃料产业发展现状, 阐述了松阳香茶加工中推广生物质颗粒燃料的重要意义. 分析了松阳香茶加工中推广生物质颗粒燃料存在的问题,并且针对这些问题提出了相应的解决方法.在此基础上,指出生物质颗粒燃料在松阳香茶加工中推广应用具有良好的发展前景.%The present development status of global biomass pellets fuel industry was introduced in this paper, and the significance for developing biomass pellets fuel in the processing of Songyang Xiang Tea was described. It also analyzed existing problems in the application and development of biomass pellets fuel and put forward corresponding countermeasures. At last, it concluded that biomass pellets fuel would have great developing potential as an industry in the processing of Songyang Xiang Tea.

  5. Effects of carbon source, phosphorus concentration, and several micronutrients on biomass and geosmin production by Streptomyces halstedii.

    Science.gov (United States)

    Schrader, K K; Blevins, W T

    2001-04-01

    The effects of various carbon sources, phosphorus concentration, and different concentrations of the micronutrients calcium, cobalt, copper, iron, manganese, potassium, and zinc were determined on biomass dry weight production, geosmin production, and geosmin/biomass (G/B) values for Streptomyces halstedii, a geosmin-producing actinomycete isolated from the sediment of an aquaculture pond. Of the substrates tested, maltose as a sole carbon source promoted maximal growth by S. halstedii while mannitol promoted maximal geosmin production, and galactose yielded the highest G/B values. Fish-food pellets and galactose were poor substrates for growth. Increasing phosphorus concentrations enhanced geosmin production and G/B values. Of the seven micronutrients tested, zinc, iron, and copper had the most profound effects on biomass and geosmin production. Increasing zinc concentrations promoted biomass production while inhibiting geosmin production and G/B values; increasing concentrations of copper and iron inhibited biomass and geosmin production. Increased copper concentrations had the greatest effect in preventing growth and geosmin production by S. halstedii.

  6. Fundamental study on production of 'hyper wood pellet' - (4) characterization of torrefied products obtained using various methods of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Takahiro; Sano, Tetsuya; Ohara, Seiji [Forestry and Forest Products Research Inst., Tsukuba (Japan)], e-mail: tyoshid@ffpri.affrc.go.jp; Nomura, Takashi; Watada, Hiroki [Fukui Prefectural Green Center, Sakai, Fukui (Japan)

    2012-11-01

    Improved wood pellets (hyper wood pellets) were produced from the torrefaction of Japanese cedar (Cryptomeria japonica) and oak (Konara, Quercus serrata). Five types of ovens were used under dry and wet conditions for the torrefaction of wood chips and the subsequent pellet samples. As a result, calorific values were improved in both Japanese cedar and oak species, and a 30% higher HHV was obtained in Japanese cedar by heat treatment at 240 deg C using an inert gas torrefaction oven. We also investigated the characteristics of torrefied products obtained using four other types of heat treatment under reduced pressure, with superheated steam, and using conventional charcoal ovens in view of larger-scale production. By using a flow-type oven with superheated steam, hyper wood pellets having a calorific value of 21.4MJ/kg were produced by heat treatment at 240 deg C. Elemental analyses showed that dehydration mainly occurred during the torrefaction conducted in this study.

  7. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  8. Obtenção de pellets por extrusão e esferonização farmacêutica. Parte II: avaliação das características física de pellets Production of pellets by pharmaceutical extrusion and spheronisation. Part II: physical characterisation of pellets

    Directory of Open Access Journals (Sweden)

    Helton Max Massaranduba Santos

    2006-09-01

    Full Text Available O processo de peletização, abordado na Parte I, consiste na aglomeração por via úmida de pós de uma substância ativa e excipientes sob a forma de unidades esféricas denominadas por pellets. Os pellets diferem de grânulos não apenas pela técnica utilizada para a produção, mas também no que respeita as características físicas conseguidas. O presente trabalho, o segundo de uma série de dois, apresenta uma revisão das características físicas e das técnicas para a caracterização física de pellets farmacêuticos abordando as principais necessidades posteriores a produção dessas multi-unidades, nomeadamente revestimento com película, enchimento de cápsulas, compressão, manuseamento, armazenamento e transporte.The pelletisation process described in Part I consists of the wet agglomeration of fine powders of a drug substance and excipients into spherical units referred as pellets. Pellets differ from granules in terms of the production process and the physical characteristics. The current work, the second part of a series of two, intends to describe and revise the literature of the evaluation and characterisation of active drug pellets regarding the needs of postproduction of the units namely, film coating, capsule filling, compression, handling, storing and shiping.

  9. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Daugbjerg Jensen, P.; Svane Bech, K. [Danish Technological Institute (DTI), Taastrup (Denmark)] [and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  10. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  11. Effect of SO2 and steam on CO2 capture performance of biomass-templated calcium aluminate pellets.

    Science.gov (United States)

    Erans, María; Beisheim, Theodor; Manovic, Vasilije; Jeremias, Michal; Patchigolla, Kumar; Dieter, Heiko; Duan, Lunbo; Anthony, Edward J

    2016-10-20

    Four types of synthetic sorbents were developed for high-temperature post-combustion calcium looping CO2 capture using Longcal limestone. Pellets were prepared with: lime and cement (LC); lime and flour (LF); lime, cement and flour (LCF); and lime, cement and flour doped with seawater (LCFSW). Flour was used as a templating material. All samples underwent 20 cycles in a TGA under two different calcination conditions. Moreover, the prepared sorbents were tested for 10 carbonation/calcination cycles in a 68 mm-internal-diameter bubbling fluidized bed (BFB) in three environments: with no sulphur and no steam; in the presence of sulphur; and with steam. When compared to limestone, all the synthetic sorbents exhibited enhanced CO2 capture performance in the BFB experiments, with the exception of the sample doped with seawater. In the BFB tests, the addition of cement binder during the pelletisation process resulted in the increase of CO2 capture capacity from 0.08 g CO2 per g sorbent (LF) to 0.15 g CO2 per g sorbent (LCF) by the 10(th) cycle. The CO2 uptake in the presence of SO2 dramatically declined by the 10(th) cycle; for example, from 0.22 g CO2 per g sorbent to 0.05 g CO2 per g sorbent in the case of the untemplated material (LC). However, as expected all samples showed improved performance in the presence of steam, and the decay of reactivity during the cycles was less pronounced. Nevertheless, in the BFB environment, the templated pellets showed poorer CO2 capture performance. This is presumably because of material loss due to attrition under the FB conditions. By contrast, the templated materials performed better than untemplated materials under TGA conditions. This indicates that the reduction of attrition is critical when employing templated materials in realistic systems with FB reactors.

  12. Iron nutrition, biomass production, and plant product quality.

    Science.gov (United States)

    Briat, Jean-François; Dubos, Christian; Gaymard, Frédéric

    2015-01-01

    One of the grand challenges in modern agriculture is increasing biomass production, while improving plant product quality, in a sustainable way. Of the minerals, iron (Fe) plays a major role in this process because it is essential both for plant productivity and for the quality of their products. Fe homeostasis is an important determinant of photosynthetic efficiency in algae and higher plants, and we review here the impact of Fe limitation or excess on the structure and function of the photosynthetic apparatus. We also discuss the agronomic, plant breeding, and transgenic approaches that are used to remediate Fe deficiency of plants on calcareous soils, and suggest ways to increase the Fe content and bioavailability of the edible parts of crops to improve human diet.

  13. The regional environmental impact of biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.

    1994-09-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

  14. Strategies for optimizing algal biology for enhanced biomass production

    Directory of Open Access Journals (Sweden)

    Amanda N. Barry

    2015-02-01

    Full Text Available One of the more environmentally sustainable ways to produce high energy density (oils feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source and subsequent carbon capture and sequestration (BECCS has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass. To increase aerial carbon capture rates and biomass productivity it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to two-fold increases in biomass productivity.

  15. Levulinic acid production from waste biomass

    OpenAIRE

    Anna Maria Raspolli Galletti,; Claudia Antonetti; Valentina De Luise,; Domenico Licursi,; Nicoletta Nassi

    2012-01-01

    The hydrothermal conversion of waste biomass to levulinic acid was investigated in the presence of homogeneous acid catalysts. Different cheap raw materials (poplar sawdust, paper mill sludge, tobacco chops, wheat straw, olive tree pruning) were employed as substrates. The yields of levulinic acid were improved by optimization of the main reaction parameters, such as type and amount of acid catalyst, temperature, duration, biomass concentration, and electrolyte addition. The catalytic perform...

  16. Validation of the stamping method for CaSO{sub 4}:RE + Teflon® pellets production

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Maira G.; Rodrigues, Leticia L.C., E-mail: mgnunes@ipen.br, E-mail: lcrodri@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    The IPEN method for the CaSO{sub 4}:RE + Teflon® production, developed and patented at the Dosimetric Materials Laboratory - LMD/IPEN in the earlier 1980's, is highly time-demanding, so that the use of the stamping method, already widely industrially applied, would enhance the CaSO{sub 4}:RE + Teflon® pellets production. Thus, validating the stamping method, by comparing the dosimetric properties of a batch of pellets produced by each method, became a must. The stamped batch presents the same mean non-irradiated signals either after sintering or annealing while IPEN batch mean non-irradiated signals vary in 23%. The mean TL signal after irradiation was about 50 nC, but the standard deviation varies from 20% to 33% for IPEN batch and keeps in 10% for the stamped batch. 24 h after the irradiation, the TL signal decreased to about 35 nC, with no differences in IPEN batch standard deviation and a decrease to 5% in stamped batch standard deviation, for the five performed essays. Calibration curves present a linear behavior over the entire studied dose range and the same coefficients for both methods, however, the uncertainties in the coefficients determined to the calibration curve obtained with stamped pellets are significantly smaller, leading to a more precise dose determination. This results show that the stamping method produces more homogeneous batches, with pellets that maintain the dosimetric characteristics of the detectors produced by IPEN method, in such a way that the stamping method can substitute with advantages the IPEN method in the CaSO{sub 4}:RE + Teflon® dosimetric pellets production. (author)

  17. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  18. Diversity increases biomass production for trematode parasites in snails

    Science.gov (United States)

    Hechinger, Ryan F.; Lafferty, Kevin D.; Kuris, Armand M.

    2008-01-01

    Increasing species diversity typically increases biomass in experimental assemblages. But there is uncertainty concerning the mechanisms of diversity effects and whether experimental findings are relevant to ecological process in nature. Hosts for parasites provide natural, discrete replicates of parasite assemblages. We considered how diversity affects standing-stock biomass for a highly interactive parasite guild: trematode parasitic castrators in snails. In 185 naturally occurring habitat replicates (individual hosts), diverse parasite assemblages had greater biomass than single-species assemblages, including those of their most productive species. Additionally, positive diversity effects strengthened as species segregated along a secondary niche axis (space). The most subordinate species—also the most productive when alone—altered the general positive effect, and was associated with negative diversity effects on biomass. These findings, on a previously unstudied consumer class, extend previous research to illustrate that functional diversity and species identity may generally both explain how diversity influences biomass production in natural assemblages of competing species.

  19. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  20. Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production.

    Science.gov (United States)

    Lay, Chyi-How; Sen, Biswarup; Chen, Chin-Chao; Wu, Jou-Hsien; Lee, Shih-Chi; Lin, Chiu-Yue

    2013-05-01

    Hydrogen (H2) production potential of water hyacinth (WH) and beverage wastewater (BW) mixture in powder and pellet form at various combination ratios were evaluated. Batch co-fermentation results showed peak biogas production of 105.5 mL and H2 production of 55.6 mL at the combination ratio of 1.6 g WH and 2.4 g BW in pellet form. With the same ratio in pellet form, the maximum H2 production rate 542 mL H2/L-d, maximum specific H2 production rate 869 mL H2/g VSS-d and H2 yield 13.65 mL/g feedstock were obtained, and were 88, 88 and 34% higher than its powder form. The predominant soluble metabolite was acetate in the concentration of 1059-2639 mg COD/L (40-79% of total metabolites) in most runs during co-fermentation of mixed feedstock. Carbon-to-nitrogen ratio and the physical form of the combined feedstock are essential criteria for optimum H2 production. Co-fermentation also alleviates the waste disposal problem of the industries.

  1. GENETICALLY MODIFIED LIGNOCELLULOSIC BIOMASS FOR IMPROVEMENT OF ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2010-02-01

    Full Text Available Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.

  2. Production and characterization of spodumene dosimetric pellets prepared by a sol-gel route

    Science.gov (United States)

    Lima, H. R. B. R.; Nascimento, D. S.; Bispo, G. F. C.; Teixeira, V. C.; Valério, M. E. G.; Souza, S. O.

    2014-11-01

    Spodumene is an aluminosilicate that has shown good results for high-dose TL dosimetry for beta or gamma rays. Due to its chemical composition (LiAlSi2O6) it has potential to be used as a neutron dosimeter. The synthetic spodumene is usually produced by solid state reaction and conventional sol-gel, whose shortcomings arise from the need to employ high temperatures and high cost reagents, respectively. Proteic sol-gel method is promising, because it can reduce production costs and the possibility of environmental contamination. This work reports the production of the spodumene by the proteic sol-gel method using edible unflavored gelatin as a precursor. The product is characterized physically and morphologically, and investigated its applicability as a TL dosimeter. Two sets of samples were prepared using different sources of silicon, one with TEOS (Si(OC3H5)4) and one with SILICA (SiO2). The materials produced were characterized by X-ray diffraction, differential thermal analysis and thermogravimetry in order to evaluate the structural properties, as well as possible changes in physical or chemical properties depending on the temperature. The production of spodumene was successful, with generation of the crystals in the β-phase with tetragonal structure. Sintered pellets produced from these crystals were irradiated with a 90Sr-90Y source and their TL glow curves were evaluated. Although the samples prepared by the proteic sol-gel method with TEOS presented a lower forming temperature, the samples produced with SILICA showed higher sensitivity to radiation.

  3. [Experience in scaling up the film coating process for theophylline sustained-release pellets in mass production].

    Science.gov (United States)

    Grunenberg, P; Lorck, C; Jünger, H; Laicher, A

    1998-05-01

    The scale-up of the film coating process for the production of Bronchoretard pellets (theophylline, CAS 58-55-9) is an example for the successful setup of a modern production technology designed to meet the increasing GMP requirements while taking into consideration ecological and economical aspects. This technology provides a reduction in polymer losses on drying from approx. 20% to under 5% and a distinct improvement in the reproducibility of the in vitro dissolution profiles. Double batch sizes and higher spray rates allow for a substantially higher batch turnover. A production line installed exclusively for Bronchoretard pellets and specific process optimization measures resulted in considerably lower lag-times of the equipment.

  4. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51......-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). • A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal...

  5. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    .D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...... and grinding showed a swift grinding of the torrefied biomass which implies that the rate limiting step in the laboratory reactor is the heat transfer, and not the grinding process. Different torrefaction characteristics are observed from straw and wood chips, therefore an improved understanding and ability...... wheat straw, miscanthus, spruce, beech, pine, and spruce bark) with different chemical and physical properties were pyrolyzed by Simultaneous Thermal Analysis (STA) and torrefied in the simultaneous torrefaction and grinding reactor. The effect of biomass alkali content on torrefaction characteristics...

  6. Market potential of Ukrainian herbaceous biomass : analyzing market obstacles and promoting business strategies

    NARCIS (Netherlands)

    Jamblinne, de P.; Poppens, R.P.; Elbersen, H.W.; Schoonewille, W.

    2013-01-01

    The Pellets for Power project, funded by Agentschap NL under the Sustainable Biomass Import program, is defining ways for sustainable biomass production in Ukraine. It is focused on three biomass sources: straw, switchgrass and reed. However, so far commercialization of Ukrainian non-wood biomass ha

  7. Investigating combustion as a method of processing inedible biomass produced in NASA's biomass production chamber

    Science.gov (United States)

    Dreschel, T. W.; Wheeler, R. M.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project at the John F. Kennedy Space Center is a research program to integrate and evaluate biological processes to provide air, water, and food for humans in closed environments for space habitation. This project focuses on the use of conventional crop plants as grown in the Biomass Production Chamber (BPC) for the production and recycling of oxygen, food, and water. The inedible portion of these crops has the potential to be converted to edible biomass or directly to the elemental constituents for direct recycling. Converting inedible biomass directly, by combustion, to carbon dioxide, water, and minerals could provide a baseline for estimating partitioning of the mass balance during recycling in a CELSS. Converting the inedible biomass to carbon dioxide and water requires the same amount of oxygen that was produced by photosynthesis. The oxygen produced during crop growth is just equal to the oxygen required to oxidize all the biomass produced during growth. Thus, the amount of oxygen produced that is available for human consumption is in proportion to the amount of biomass actually utilized by humans. The remaining oxygen must be available to oxidize the rest of the biomass back to carbon dioxide and water or the system will not be a regenerative one.

  8. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  9. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  10. Numerical prediction of the chemical composition of gas products at biomass combustion and co-combustion in a domestic boiler

    Directory of Open Access Journals (Sweden)

    Radomiak Henryk

    2017-01-01

    Full Text Available In recent years the numerical modelling of biomass combustion has been successfully applied to determine the combustion mechanism and predict its products. In this study the influence of the addition of waste glycerin in biomass wood pellets on the chemical composition of exhaust gases has been investigated. The pellets have been prepared from spruceand pine wood sawdust without and with addition of waste glycerin. The waste glycerol is a undesirable by-product of biodiesel transesterification at oil manufacturing. The produced pellets were being burned in the 10 kW domestic boiler adapted to wood pellets combustion. The possibilities of pollutants generation (CO2, CO, NOx SOx and compounds containing chlorine in the exhaust gases coming from the boiler were numerically calculated using the latest version of CHEMKIN-PRO software, introduced by the American company Reaction Design. The results of the calculations correspond to the data obtained on a real object, in particular: combustion temperature, gas pressure, residence time of fuel in the burner, air flow, fuel consumption, as well as elementary composition of fuel supplied into the boiler. The proposed method of predicting the chemical composition of exhaust gases allows proper control of the combustion process and can be considered as an important step in reducing the pollutants (lower emission of NOx, SOx and CO2 neutral and thus to contribute to the improvement of the environmental quality. In addition, knowledge of the amounts of Clbased compounds produced in combustion process (under given conditions, can serve as an important hint in terms of corrosion prevention of boiler- and chimney steels.

  11. Biomass gasification for the production of methane

    NARCIS (Netherlands)

    Nanou, P.

    2013-01-01

    Biomass is very promising as a sustainable alternative to fossil resources because it is a renewable source that contains carbon, an essential building block for gaseous and liquid fuels. Methane is the main component of natural gas, which is a fuel used for heating, power generation and transportat

  12. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  13. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin;

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...

  14. Photoelectrochemical hydrogen production from biomass derivatives and water.

    Science.gov (United States)

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  15. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    Science.gov (United States)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  16. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  17. Biomass and neutral lipid production in geothermal microalgal consortia.

    Science.gov (United States)

    Bywaters, Kathryn F; Fritsen, Christian H

    2014-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems - in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L(-1) day(-1). The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L(-1 )day(-1); the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  18. Sophorolipid production from lignocellulosic biomass feedstocks

    Science.gov (United States)

    Samad, Abdul

    , the yield of SLs was 0.55 g/g carbon (sugars plus oil) for cultures with bagasse hydrolysates. Further, SL production was investigated using sweet sorghum bagasse and corn stover hydrolysates derived from different pretreatment conditions. For the former and latter sugar sources, yellow grease or soybean oil was supplemented at different doses to enhance sophorolipid yield. 14-day batch fermentation on bagasse hydrolysates with 10, 40 and 60 g/L of yellow grease had cell densities of 5.7 g/L, 6.4 g/L and 7.8 g/L, respectively. The study also revealed that the yield of SLs on bagasse hydrolysate decreased from 0.67 to 0.61 and to 0.44 g/g carbon when yellow grease was dosed at 10, 40 and 60 g/L. With aforementioned increasing yellow grease concentration, the residual oil left after 14 days was recorded as 3.2 g/L, 8.5 g/L and 19.9 g/L. For similar experimental conditions, the cell densities observed for corn stover hydrolysate combined with soybean oil at 10, 20 and 40 g/L concentration were 6.1 g/L, 5.9 g/L, and 5.4 g/L respectively. Also, in the same order of oil dose supplemented, the residual oil recovered after 14-day was 8.5 g/L, 8.9 g/L, and 26.9 g/L. Corn stover hydrolysate mixed with the 10, 20 and 40 g/L soybean oil, the SL yield was 0.19, 0.11 and 0.09 g/g carbon. Overall, both hydrolysates supported cell growth and sophorolipid production. The results from this research show that hydrolysates derived from the different lignocellulosic biomass feedstocks can be utilized by C. bombicola to achieve substantial yields of SLs. Based upon the results revealed by several batch-stage experiments, it can be stated that there is great potential for scaling up and industrial scale production of these high value products in future.

  19. Owl Pellets.

    Science.gov (United States)

    Thompson, Craig D.

    1987-01-01

    Provides complete Project WILD lesson plans for 20-45-minute experiential science learning activity for grades 3-7 students. Describes how students construct a simple food chain through examination of owl pellets. Includes lesson objective, method, background information, materials, procedure, evaluation, and sources of owl pellets and posters.…

  20. LEVULINIC ACID PRODUCTION FROM WASTE BIOMASS

    Directory of Open Access Journals (Sweden)

    Anna Maria Raspolli Galletti,

    2012-02-01

    Full Text Available The hydrothermal conversion of waste biomass to levulinic acid was investigated in the presence of homogeneous acid catalysts. Different cheap raw materials (poplar sawdust, paper mill sludge, tobacco chops, wheat straw, olive tree pruning were employed as substrates. The yields of levulinic acid were improved by optimization of the main reaction parameters, such as type and amount of acid catalyst, temperature, duration, biomass concentration, and electrolyte addition. The catalytic performances were also improved by the adoption of microwave irradiation as an efficient heating method, allowing significant energy and time savings. The hydrothermal conversions of inulin and wheat straw were carried out in the presence of niobium phosphate, which up to now have never been employed in these reactions. The preliminary results appeared to be in need of further optimization.

  1. Study on Factors Affecting Pellet Drop Resistance During Dual Ultrasonic Vibration-assisted Pelletizing of Biomass%双超声振动压缩生物质压块抗跌碎性的影响因素研究

    Institute of Scientific and Technical Information of China (English)

    温凯林; 张永俊; 姚震; 张娇

    2016-01-01

    The influence of 5 factors such as particle size,moisture content,preload,ultrasonic power and compression time to the drop resistance of wheat straw pellet in dual ultrasonic vibration assisted pelletizing were investigated to improve pellet durability. With the increase of particle size ,the drop resistance of wheat straw pellet decrease. As preload ,ultrasonic power and compression time increase,the drop resistance of wheat straw pellet increase. Moreover,with the increase of moisture content,the drop resistance of wheat straw pellet increase and then decrease.%为提高双超声辅助压缩生物质所得压块的持久性,研究了双超声压缩生物质过程中颗粒度、含水率、预压力、超声电源功率和压缩时间等单因素对麦草压块抗跌碎性的影响.结果表明:压块抗跌碎性随着生物质颗粒度的增大而逐渐减弱,随着预压力、超声电源功率和压缩时间的增加而增强,随着含水率的增加呈先增强、后减弱的趋势.

  2. Design and experiment on biomass pellet densifying machine for banana stem%香蕉秸秆颗粒燃料固体成型机的设计与试验

    Institute of Scientific and Technical Information of China (English)

    张喜瑞; 王俊霖; 李粤; 王涛; 仇倩倩

    2012-01-01

    针对中国热带农业区香蕉秸秆粗大、含水率高、秸秆固体成型设备少等问题,该文研究设计了香蕉秸秆固体成型机,确定了螺杆挤压装置、搅拌装置、挤出成型装置和排水装置等部件的主要结构参数.样机性能试验结果表明:该机生产率为358 kg/h,颗粒燃料的成型率为95.4%,机械耐久性为96.7%,颗粒质量密度为1.35 g/cm3,颗粒含水率为2.76%,符合生物质颗粒燃料成型要求.整机工作平稳,成型可靠,经济效益与生态效益明显,在中国热带农业区具有广阔的推广应用前景.%Aiming at the present situation regarding the handling of the coarse banana straws which are labor intensive, high water content, and unavailability of satisfactory straw solid molding equipment in the tropical agricultural areas of China, the biomass pellet densifying machine for banana stem was designed. The main structural parameters of screw extrusion device, mixing device, extrusion device and draining mechanism were determined. The results of machine performance test showed that the productivity was 358 kg/h, forming rate of particle fuel was 95.4%, mechanical durability was 96.7%, particle density was 1.35 g/cm3, and particle moisture content was 2.76%. The machine can meet the requirements of biomass pellet fuel forming, which has durable, stable and reliable performance, as while as obvious economical and ecological benefit. It will have the broad prospect of application in the tropical agricultural areas in China.

  3. Engineering analysis of biomass gasifier product gas cleaning technology

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  4. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.

    Science.gov (United States)

    Negro, Maria José; Manzanares, Paloma; Ballesteros, Ignacio; Oliva, Jose Miguel; Cabañas, Araceli; Ballesteros, Mercedes

    2003-01-01

    Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210 C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

  5. Production, characterization and utilization of the biomass from various sources

    OpenAIRE

    Gojkovic, Živan

    2014-01-01

    Biomass management is one of the most important issues in modern natural science as it is the basic category which spans through various disciplines of biotechnology. Whether animal, plant or microbial by its origin, biomass presents a vast source of food components, fine chemicals and bioactive molecules, which extraction, characterization and formulation can result in interesting new products destined for human consumption or as new materials in biomedicine. In the scope of t...

  6. Production of distillate fuels from biomass-derived polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  7. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  8. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  9. Production of Spirulina biomass in closed photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Torzillo, G.; Pushparaj, B.; Bocci, F.; Balloni, W.; Materassi, R.; Florenzano, G.

    1986-01-01

    The results of six years investigation on the outdoor mass culture of Spirulina platensis and S. maxima in closed tubular photobioreactors are reported. On average, under the climatic conditions of central Italy, the annual yield of biomass obtained from the closed culture units was equivalent to 33 t dry weight/ha per year. In the same climatic conditions the yield of the same organisms grown in open ponds was about 18 t/ha per year. This considerable difference is due primarily to better temperature conditions in the closed culture system. The main problems encountered relate to the control of temperature and oxygen concentration in the culture suspension. This will require an appropriate design and management of the photobioreactor as well as the selection of strains specifically adapted to grow at high temperature and high oxygen concentration. 8 references.

  10. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  11. Modelling biomass production and yield of horticultural crops: a review.

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J.

    1998-01-01

    Descriptive and explanatory modelling of biomass production and yield of horticultural crops is reviewed with special reference to the simulation of leaf area, light interception, dry matter (DM) production, DM partitioning and DM content. Most models for prediction of harvest date (timing of produc

  12. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...... dielectric heating’’ effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass...

  13. Production d'éthanol a partir de biomasse lignocellulosique Ethanol Production from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Ogier J. C.

    2006-12-01

    Full Text Available Cette étude fait le point des connaissances scientifiques et techniques dans le domaine de la production alcoolique à partir de susbstrats lignocellulosiques. Ce travail, réalisé dans le cadre d'Agrice (Agriculture pour la chimie et l'énergie, est une synthèse bibliographique qui a cherché à identifier les avancées capables de débloquer certains verrous technologiques et économiques liés à ce type de procédé. La biomasse lignocellulosique est un substrat complexe, constitué des trois principales fractions que sont la cellulose, les hémicelluloses et la lignine. Le procédé de production d'éthanol consiste à récupérer par hydrolyse le maximum de sucres issus à la fois des fractions cellulosiques et hémicellulosiques, puis de fermenter ces sucres en éthanol. Les premiers procédés d'hydrolyse utilisés étaient surtout chimiques, mais ils sont peu compétitifs à l'heure actuelle, en raison notamment du coût des réactifs et de la formation de nombreux sous-produits et de composés inhibiteurs rendant les hydrolysats peu fermentescibles. Ils sont désormais concurrencés par les procédés enzymatiques, plus spécifiques et qui permettent de meilleurs rendements d'hydrolyse dans des conditions moins sévères. Cependant, la biomasse lignocellulosique n'est pas directement accessible aux enzymes, et elle doit subir au préalable une phase de prétraitement dont l'objectif est d'améliorer la susceptibilité à l'hydrolyse enzymatique de la cellulose et éventuellement d'hydrolyser la fraction hémicellulosique en sucres monomères. Parmi les nombreuses méthodes de prétraitement qui ont été étudiées, nous en avons identifié trois répondant au mieux aux objectifs précédemment cités : le prétraitement à l'acide dilué, l'explosion à la vapeur avec utilisation d'un catalyseur, et la thermohydrolyse. Ces trois méthodes permettraient d'atteindre des rendements d'hydrolyse enzymatique de la cellulose proches de

  14. Production of energy pellets from wet harvested greenery; Herstellung von Energiepellets aus feucht geerntetem Gruengut

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Hoffmann, Thomas [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. ' ' Technik der Aufbereitung, Lagerung und Konservierung' ' ; Daries, Werner

    2011-07-01

    Wet harvested greenery can be processed to energy pellets to be burned or gasified for sustainable energy supply. The harvest of the forage and the preservation in plastic tubes are known processes with low energy consumption. The mechanical dewatering of the silage with screw presses requires a higher energy demand with 0.26 to 2.02 GJ/T{sub DM}. The dry matter content can be reduced with screw presses by 4 to 21 percentage points depending on the kind of forage. The drying process requires an energy demand of 4.73 to 13.7 GJ/t{sub DM}. The total energy demand of the complete processing line corresponds to 65 % of the heating value of the pellets. (orig.)

  15. 林木基与秸秆基生物质颗粒燃烧特性对比研究%Comparison of combustion characteristics between forest-based and straw-based biomass pellet

    Institute of Scientific and Technical Information of China (English)

    朱复东

    2014-01-01

    选取落叶松、红松作为林木基生物质颗粒原料,选取棉秆、玉米秸秆作为秸秆基生物质颗粒原料,采用江苏东工生物质能研究院有限公司开发的生物质颗粒燃烧器为试验装置,分析了4类生物质颗粒的燃烧特性、污染物排放特性及底灰结渣特性。结果表明:水分越低、挥发分越高、灰分越低,所需点火时间越短;运行阶段林木基与秸秆基生物质颗粒能够充分燃烧,CO排放浓度达到最小;林木基与秸秆基生物质颗粒燃烧烟气中NOx 排放浓度低于国家标准,NOx排放浓度与N含量基本成正比, NOx生成方式主要为燃料型反应机制;软化温度越高,结渣率越低,当软化温度达到1390℃以上时,不会发生结渣。%Larch and korean pine were used as forest-based biomass pellet,cotton and corn straw were used as straw-based biomass pellet. Burning characteristics,pollutants discharge and bottom ash slagging characteristics of four biomass particles were analyzed with the bio-mass pellet burner developed by Jiangsu Donggong Biomass Energy Research Institute Limited Company. The results show that the lower moisture,ash content and the higher volatile matter,the shorter the ignition time.The forest-based and straw-based biomass pellet can full combustion during the running stage,and concentration of CO emission is the smallest,the emission of NOx in flue gas concentration is low-er than the national standard,the NOx emission concentration is proportional to the content of N,the formation of NOx is mainly the fuel type reaction mechanism.The higher the softening temperature,the lower the slagging rate.There is no evidence of slagging when the soften-ing temperature is above 1390 ℃.

  16. Application of on-line NIR spectroscopy in fuel pellet production

    Energy Technology Data Exchange (ETDEWEB)

    Grothage, Morgan; Svensson, Elin; Johnsson, Bo [Casco Adhesives AB, Sundsvall (Sweden); Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry

    2006-07-15

    Different possibilities of installation of on-line NIR spectrometers in various process environments in the fuel Pellets process were investigated using moisture content on dried wood raw material as the model analyte. Scanning NIR instruments of different types and to some extent diode-array instrument were used. Real time predictions of moisture content from partial least squares regression models were presented to the process operators using dedicated software.

  17. Rapid exploration of curing process design space for production of controlled-release pellets.

    Science.gov (United States)

    Kristan, Katja; Horvat, Matej

    2012-10-01

    Time and cost are among the most often cited hurdles limiting the rate and extent of adoption of Quality by Design (QbD) and Process Analytical Technology. In this article, we demonstrate that, with appropriate techniques, a key QbD element can be achieved with amount of resources comparable to classical development approach. To control the dissolution rate of a highly soluble drug substance from latex polymer coated pellets, we have examined the effect of key variables affecting the curing process step by an experimental design study. To explore and characterize the Design Space, we have produced and tested 62 distinct pellet samples. To achieve this in a reasonable amount of time, we have developed a scaled-down automated dissolution method that demonstrated excellent correlation to the classical method. By careful planning of experimentation, we were able to obtain all samples from just two batches of pellet cores. The curing process Design Space was explored by statistical modeling of samples obtained from the first batch. Robustness and repeatability of the Design Space at the edge of failure was preliminarily investigated by analysis of selected samples from the second batch with encouraging results.

  18. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  19. Ethanol production from biomass: technology and commercialization status.

    Science.gov (United States)

    Mielenz, J R

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level.

  20. The Pelletising Proces: the Aspects that Influence Denstity of Wood Pellets

    Directory of Open Access Journals (Sweden)

    Petra ŽIDKOVÁ

    2011-06-01

    Full Text Available Pellets are a modern form of biomass compaction, which offers many opportunities for the development of renewable energies in the 21st century. This paper examined the influence of input parameters on the density of pellets with the use of the real pelletizing machine. Knowledge of the influence of changes in input parameters can effectively affect the output density of pellets so as to maximize and to simultaneously meet the required characteristics of the pellets according to the pellets standards. The building of the measuring point enabled to manufacture our own pellets. Furthermore, were created charts that display the dependence between the density and input factors. The influence of the fraction size and type, humidity content and the type of raw materials and the influence of pressing canal diameter change were examined. Finally, this paper concluded that the output pellets density is very sensitive to changes in input parameters. It is important to use input parameters that contribute to a high concentration of energy per unit volume and the efficient use of machines for production of pellets. As well as it reduces the necessary amount of space for storage.

  1. An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy

    Directory of Open Access Journals (Sweden)

    Weidong Huang

    2015-01-01

    Full Text Available There is not enough land for the current bioenergy production process because of its low annual yield per unit land. In the present paper, an integrated biomass production and conversion process for sustainable bioenergy is proposed and analyzed. The wastes from the biomass conversion process, including waste water, gas and solid are treated or utilized by the biomass production process in the integrated process. Analysis of the integrated process including the production of water hyacinth and digestion for methane in a tropical area demonstrates several major advantages of the integrated process. (1 The net annual yield of methane per unit land can reach 29.0 and 55.6 km3/h for the present and future (2040 respectively, which are mainly due to the high yield of water hyacinth, high biomethane yield and low energy input. The land demand for the proposed process accounts for about 1% of the world’s land to meet the current global automobile fuels or electricity consumption; (2 A closed cycle of nutrients provides the fertilizer for biomass production and waste treatment, and thus reduces the energy input; (3 The proposed process can be applied in agriculturally marginal land, which will not compete with food production. Therefore, it may be a good alternative energy technology for the future.

  2. Marginal land-based biomass energy production in China.

    Science.gov (United States)

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  3. Spirogyra biomass a renewable source for biofuel (bioethanol Production

    Directory of Open Access Journals (Sweden)

    Fuad Salem Eshaq

    2010-12-01

    Full Text Available Biofuels refer to renewable fuels from biological sources that can be used for heat, electricity and fuel. The fuels obtained from algae are termed as third generation fuels. The production of fuel from algae provides many advantages when compared to the fuel produced from other sources like agrobased raw materials. Other than environmental pollution control the algal biofuel will help in reduction of the fuel cost when compared to the agrobased and fossil fuels. In the present study algae specifically Spirogyra was used for the production of bioethanol by the fermentative process. A comparative study was carried out by using chemically pre-treated anduntreated Spirogyra biomass. The Spirogyra has a very simple cell wall made up of cellulose and starch that can be converted to ethanol by the fermentation process. The Spirogyra biomass was subjected to saccharification process by the fungal organism Aspergillus niger MTCCC 2196 for the hydrolysis, this process was followed by the fermentation using yeast Saccharomyces cerevisiae MTCC170 for the production of alcohol. A high yield of ethanol was recorded for untreated Spirogyra biomass when compared to chemically pre-treated biomass. The yield of alcohol using algal biomass is more when compared to alcohol produced from other sources like agrobased rawmaterials.

  4. Exposure assessment to alpha- and beta-pinene, delta(3)-carene and wood dust in industrial production of wood pellets.

    Science.gov (United States)

    Edman, K; Lofstedt, H; Berg, P; Eriksson, K; Axelsson, S; Bryngelsson, I; Fedeli, C

    2003-04-01

    The main aim of the study was to measure the exposure to monoterpenes (alpha- and beta-pinene and Delta(3)-carene) and wood dust during industrial production of wood pellets and briquettes. Additional aims were to compare the results from wood dust sampled on a filter with real time measurements using a direct reading instrument and to identify peak exposures to dust. Twenty-four men working at six companies involved in industrial production of wood pellets and briquettes participated in the study. Monoterpenes were measured by diffusive sampling and wood dust was measured as total dust. A data logger (DataRAM) was used for continuous monitoring of dust concentration for 18 of the participants. The sampling time was approximately 8 h. The personal exposure to monoterpenes ranged from 0.64 to 28 mg/m(3) and a statistically significant (Kruskal-Wallis test, P = 0.0002) difference in levels of monoterpenes for workers at different companies was seen. In the companies the personal exposure to wood dust varied between 0.16 and 19 mg/m(3) and for 10 participants the levels exceeded the present Swedish occupational exposure limit (OEL) of 2 mg/m(3). The levels of wood dust during the morning shift were significantly (Mann-Whitney test, P = 0.04) higher compared with the afternoon shift. Continuous registration of dust concentration showed peak values for several working operations, especially cleaning of truck engines with compressed air. For 24 workers in six companies involved in industrial production of wood pellets the personal exposure to monoterpenes was low and to wood dust high compared with the present Swedish OEL and previous studies in Swedish wood industries. Since the DataRAM can identify critical working tasks with high wood dust exposure a reduction in exposure levels could probably be achieved by changes in working routines and by the use of protective equipment.

  5. Feasibility of Bioethanol Production From Lignocellulosic Biomass

    Science.gov (United States)

    Aunina, Zane; Bazbauers, Gatis; Valters, Karlis

    2010-01-01

    The objective of the paper is to discuss the potential of cellulosic ethanol production processes and compare them, to find the most appropriate production method for Latvia's situation, to perform theoretical calculations and to determine the potential ethanol price. In addition, price forecasts for future cellulosic and grain ethanol are compared. A feasibility estimate to determine the price of cellulosic ethanol in Latvia, if production were started in 2010, was made. The grain and cellulosic ethanol price comparison (future forecast) was made through to the year 2018.

  6. Biomass Performance : Monitoring and Control in Pharmaceutical Production

    OpenAIRE

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this thesis process monitoring is one of the central themes, from monitoring the environment of the micro-organisms to monitoring the micro-organisms themselves. The latter is called monitoring biomass performa...

  7. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing

    Science.gov (United States)

    Mustafa, Ghulam; Arshad, Muhammad

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  8. Energy-efficient photobioreactor configuration for algal biomass production.

    Science.gov (United States)

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs.

  9. Algal biomass production and carbon fixation from flue gas

    Institute of Scientific and Technical Information of China (English)

    WANG Ling; ZHU Jing

    2016-01-01

    Algal biofuel has established as one of renewable energy. In this study, Nannochloropsis salina was cultured to test feasibility of biomass production and CO2 fixation from flue gas. Firstly, cultivation was conducted under different light intensity. Results showed that the highest dry biomass of 1.25±0.061 g/L was achieved at light intensity of 10klux, while the highest total lipids was 33.677±1.9% at light intensity of 15klux. The effect of mercury on algae growth was also investigated, the algae growth was serious limited at the presence of mercury, and there was no any difference at the range of 10-50 ug/m3. These results provide useful information for algal biomass production and CO2 fixation from flue gas.

  10. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2015-11-01

    Full Text Available Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc., which limits their practical application. Among these, metabolic engineering is presently the most promising for the production of biohydrogen as it overcomes most of the limitations in other technologies. Microbial electrolysis is another recent technology that is progressing very rapidly. However, it is the dark fermentation approach, followed by photo fermentation, which seem closer to commercialization. Biohydrogen production from lignocellulosic biomass is particularly suitable for relatively small and decentralized systems and it can be considered as an important sustainable and renewable energy source. The comprehensive life cycle assessment (LCA of biohydrogen production from lignocellulosic biomass and its comparison with other biofuels can be a tool for policy decisions. In this paper, we discuss the various possible approaches for producing biohydrogen from lignocellulosic biomass which is an globally available abundant resource. The main technological challenges are discussed in detail, followed by potential solutions.

  11. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  12. Biomass-based hydrogen production: A review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kalinci, Yildiz [Department of Technical Programs, Izmir Vocational High School, Dokuz Eylul University, Education Campus Buca, Izmir (Turkey); Hepbasli, Arif [Department of Mechanical Engineering, Faculty of Engineering, Ege University, 35100 Izmir (Turkey); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2009-11-15

    In this study, various processes for conversion of biomass into hydrogen gas are comprehensively reviewed in terms of two main groups, namely (i) thermo-chemical processes (pyrolysis, conventional gasification, supercritical water gasification (SCWG)), and (ii) biological conversions (fermentative hydrogen production, photosynthesis, biological water gas shift reactions (BWGS)). Biomass-based hydrogen production systems are discussed in terms of their energetic and exergetic aspects. Literature studies and potential methods are then summarized for comparison purposes. In addition, a biomass gasification process via oxygen and steam in a downdraft gasifier is exergetically studied for performance assessment as a case study. The operating conditions and strategies are really important for better performance of the system for hydrogen production. A distinct range of temperatures and pressures is used, such as that the temperatures may vary from 480 to 1400 C, while the pressures are in the range of 0.1-50 MPa in various thermo-chemical processes reviewed. For the operating conditions considered the data for steam biomass ratio (SBR) and equivalence ratio (ER) range from 0.6 to 10 and 0.1 to 0.4, respectively. In the study considered, steam is used as the gasifying agent with a product gas heating value of about 10-15 MJ/Nm{sup 3}, compared to an air gasification of biomass process with 3-6 MJ/Nm{sup 3}. The exergy efficiency value for the case study system is calculated to be 56.8%, while irreversibility and improvement potential rates are found to be 670.43 and 288.28 kW, respectively. Also, exergetic fuel and product rates of the downdraft gasifier are calculated as 1572.08 and 901.64 kW, while fuel depletion and productivity lack ratios are 43% and 74.3%, respectively. (author)

  13. Phytoplankton biomass, production and potential export in the North Water

    Science.gov (United States)

    Klein, Bert; LeBlanc, Bernard; Mei, Zhi-Ping; Beret, Rachel; Michaud, Josée; Mundy, C.-J.; von Quillfeldt, Cecilie H.; Garneau, Marie-Ève; Roy, Suzanne; Gratton, Yves; Cochran, J. Kirk; Bélanger, Simon; Larouche, Pierre; Pakulski, J. Dean; Rivkin, Richard B.; Legendre, Louis

    The seasonal patterns of phytoplankton biomass and production were determined in the North Water, located between Greenland and Ellesmere Island (Canadian Arctic), in August 1997, April-July 1998, and August-September 1999. The patterns differed among the four defined regions of this large polynya, i.e. North (>77.5°N), East (>75°W), West (5 μm) fraction dominated the biomass and production during the bloom. During July, August, and September, biomass and production decreased over the whole region, with the highest biomass, dominated by large cells, occurring in the North. The annual particulate and dissolved phytoplankton production were the highest ever reported for the high Arctic, reaching maximum values of 254 and 123 g C m -2 yr -1, respectively, in the East. Rates in the North and West were considerably lower than in the East (ca. two- and three-fold, respectively). The f-ratios (i.e. ratio of new to total production), derived from the size structure of phytoplankton, were high north of 76°N (0.4-0.7). Regionally, this indicated a high potential export of particulate organic carbon ( EPOC) from the phytoplankton community to other trophic compartments and/or downwards in the East (155 g C m -2 yr -1), with lower values in the North and West (i.e. 77 and 42 g C m -2 yr -1, respectively). The seasonal and spatial patterns of EPOC were consistent with independent estimates of potential carbon export. Phytoplankton biomass and production were generally dominated by the large size fraction, whereas EPOC seemed to be dominated by the large size fraction early in the season and by the small size fraction (<5 μm) from June until the end of the growing season.

  14. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  15. Recovery of phenolic compounds from biomass during ethanol production

    Science.gov (United States)

    Biomass to ethanol conversion represents an alternative liquid fuel technology that does not need to compete with food crops. Maintaining agricultural production of commodity crops such as corn and soybeans for the food supply and using agricultural waste or low input energy crops grown on marginal ...

  16. Progress on optimizing miscanthus biomass production for the european bioeconomy

    NARCIS (Netherlands)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M.; Linden, van der Gerard C.; Schwarz, Kai Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C.L.; Dolstra, Oene; Donnison, Iain S.; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M.; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; Weijde, van der Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and s

  17. Alfalfa -- a sustainable crop for biomass energy production

    Science.gov (United States)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  18. Optimization of a photobioreactor biomass production using natural light

    CERN Document Server

    Grognard, Frédéric; Pierre, Masci; Bernard, Olivier

    2010-01-01

    We address the question of optimization of the biomass long term productivity in the framework of microalgal biomass production in photobioreactors under the influence of day/night cycles. For that, we propose a simple bioreactor model accounting for light attenuation in the reactor due to biomass density and obtain the control law that optimizes productivity over a single day through the application of Pontryagin's maximum principle, with the dilution rate being the control. An important constraint on the obtained solution is that the biomass in the reactor should be at the same level at the beginning and at the end of the day so that the same control can be applied everyday and optimizes the long term productivity. Several scenarios are possible depending on the microalgae's strain parameters and the maximal admissible value of the dilution rate: bang-bang or bang-singular-bang control or, if the growth rate of the algae is very strong in the presence of light, constant maximal dilution. A bifurcation diagr...

  19. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION: ¿Developm

  20. Wood products biomass gasification: technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G.; Scarzella, L.

    In this paper, a design lay-out is presented for the gasification of wood products biomass. Regarding this alternative energy form, the paper discusses historical aspects and recent technological developments made by Italian industry. The design, construction, performance, efficiency, present and future applications of a twin-feeding system are described.

  1. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet ex

  2. Non-thermal production of pure hydrogen from biomass: HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.; Koukios, E.G.; Niel, van E.W.J.; Eroglu, I.; Modigell, M.; Friedl, A.; Wukovits, W.; Ahrer, W.

    2010-01-01

    The objectives and methodology of the EU-funded research project HYVOLUTION devoted to hydrogen production from biomass are reviewed. The main scientific objective of this project is the development of a novel two-stage bioprocess employing thermophilic and phototrophic bacteria, for the cost-effect

  3. Photosynthetic pathway and biomass energy production.

    Science.gov (United States)

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value.

  4. Potential of various fungi for biomass production of castor.

    Science.gov (United States)

    Sawant, V S; Bansode, K G; Bavachkar, S N; Bhale, U N

    2013-11-01

    An experiment was conducted to evaluate biomass production of castor (Ricinus communis) with inoculation of native Arbuscular Mycorrhizal Fungi (AMF), Trichoderma harzianum and Aspergillus niger. In castor, dual treatment of mycorrhiza and T. harzianum was better for shoot length (29.5 cm), root length (40.3 cm), fresh shoot weight (4.90 g), fresh root weight (1.13 g), number of leaves (10) and leaf area (75.5 cm2) than dual treatment of mycorrhiza and A. niger or mycorrhiza alone. These findings established the potential of the fungi for increase in biomass of castor.

  5. Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets

    Directory of Open Access Journals (Sweden)

    C. A. Forero Nuñez

    2016-02-01

    Full Text Available The continuous increase of the world energy demand, the rise of fossil fuels costs, and the strong environmental policies around the globe are some of the reasons for the wood pellets industry increase. However, there are some other available biomass feedstocks capable of being densified for energy production. Among the various options, the use of mixed biomass pellets is becoming remarkable due to the wide variety of species, although more research is needed in order to enhance the mechanical properties of these pellets. This study aims to identify the effect of particle size on the mechanical properties of sawdust and coal pellets when cocoa pod husks are used as an additive. Cocoa pod husks have a similar composition to sawdust and less sulfur and nitrogen than coal. Thus, the use of this additive might decrease the environmental impact during coal pellets combustion. Results show an attractive potential of cocoa pod husks grinds for pellet production, an increase of the durability of coal pellets mixed with this raw material, and similar performance between cocoa pod husks and sawdust pellets. The compression ratio, the compressive and impact resistance varied linearly with the addition of cocoa pod husks.

  6. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    Science.gov (United States)

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules.

  7. 基于Pro/Mechanica的新型生物质颗粒成型机箱体结构分析及优化%Structure Analysis and Optimization of Support Body of a New Biomass Pellet Molding Machine

    Institute of Scientific and Technical Information of China (English)

    袁大龙; 俞国胜

    2013-01-01

    The structure parameters of biomass (at room temperature) movable plunger-ring die biomass pellet briquetting machine is input into the Pro/Mechanica module. Using CAE technology, a finite element analysis of virtual structure model of the support body of the machine is made to study its stress and deformation. The sensitivity analysis of structure parameters influencing the mechanical properties is carried out and a mathematical model of the support body is established when the support body has the lightest weight. Through optimization calculation, the parameter value to make the structure reach its best mechanical performance is obtained. Based on the optimization result, the original design is improved, which reduces the weight of the support body by 22.98%, thereby saving materials and making the structure safer and more reliable, and at the same time shortening the product development cycle and reducing production and testing cost.%将生物质可移动柱塞式环模颗粒成型机结构参数输入到Pro/Mechanica模块中,通过CAE技术对成型机箱体的虚拟结构模型进行有限元分析,研究其应力和变形情况,并对影响其力学性能的结构参数进行灵敏度分析,建立了箱体质量最轻时的数学模型。通过优化计算,得到使结构达到最佳力学性能时的参数值,并根据优化结果对原始设计进行了改进,使箱体质量减轻了22.98%,既节省材料,又使结构更加安全可靠,同时也缩短了产品开发周期,降低了生产和试验成本。

  8. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  9. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  10. Studies on the effectiveness of oral pellet vaccine in improving egg production and egg quality in desi chicken

    Directory of Open Access Journals (Sweden)

    T. Lurthu Reetha

    2016-08-01

    Full Text Available Aim: To study the effect of Newcastle disease (ND oral pellet vaccine in egg production and egg quality in desi chicken. Materials and Methods: The study was conducted at Veterinary University Training and Research Centre, Tiruchirapalli, Tamil Nadu. A total of 48-day-old desi chicks obtained from a private hatchery in Namakkal, Tamil Nadu, were maintained under cage system of rearing up to 52 weeks of age as per standard management practices. All the 48 chicks were divided into six groups having eight chicks in each group were subjected to different treatment regimes. All the birds were challenged at 52 weeks of age with 0.5 ml dose of 104.0 egg infectious dose 50 virulent ND field virus. 10 eggs from each group were randomly collected during the last 3 days of 8 weeks interval period from 28 to 52 weeks of age and were used to measure the egg quality parameters. The production performance of each group was assessed at 4 weeks interval period from 25 to 52 weeks of age. Results: In all the six treatment groups with respect to egg production, no significant difference (p≥0.05 was noticed from 25 to 52 weeks of age. Similarly, in egg weight, egg shape index and specific gravity, no significant difference (p≥0.05 was noticed from 28 to 52 weeks of age. Conclusion: From this study, it is concluded that the administration of ND oral pellet vaccine to desi chicken does not affect the egg production performance, egg weight, egg shape index, and specific gravity of egg.

  11. APPLICATION OF THE GENERALISED OBJECT MODEL FOR THE TECHNICAL CREATION RELATED TO THE PRODUCTION OF WOODEN BRIQUETTES AND PELLETS

    Directory of Open Access Journals (Sweden)

    Mihai OLAN

    2016-12-01

    Full Text Available The present paper describes the usage of the generalised object model for the analysis of the production processes of biofuels from wooden biomass. The “imposed decision” technique is employed to analyse several alternative solutions in order to find out the optimum one, to be further developed and put into practice.

  12. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  13. Combustion Gases And Heat Release Analysis During Flame And Flameless Combustion Of Wood Pellets

    Directory of Open Access Journals (Sweden)

    Horváth Jozef

    2015-06-01

    Full Text Available With the growing prices of fossil fuels, alternative fuels produced of biomass come to the fore. They are made of waste materials derived from the processing of wood and wood materials. The main objective of this study was to analyse the fire-technical characteristics of wood pellets. The study analysed three dust samples acquired from wood pellets made of various types of wood biomass. Wood pellet dust is produced when manipulating with pellets. During this process a potentially hazardous situations may occur. Biomass is chemically composed mostly of hemicellulose, cellulose and lignin. During straining of the biomass by heat flux, combustion initiation occurs. Also, there was a change in the composition of material throughout combustion gases production, and the amount of heat generated by a flame or flameless combustion. Measurement of fire characteristics was conducted according to ISO 5660-1 standard using a cone calorimeter. Two samples of wood pellet dust were tested under the heat flux of 35 kW.m−2 and 50 kW.m−2. The process of combustion, the time to ignition, the carbon monoxide concentration and the amount of released heat were observed.

  14. Combustion Gases And Heat Release Analysis During Flame And Flameless Combustion Of Wood Pellets

    Science.gov (United States)

    Horváth, Jozef; Wachter, Igor; Balog, Karol

    2015-06-01

    With the growing prices of fossil fuels, alternative fuels produced of biomass come to the fore. They are made of waste materials derived from the processing of wood and wood materials. The main objective of this study was to analyse the fire-technical characteristics of wood pellets. The study analysed three dust samples acquired from wood pellets made of various types of wood biomass. Wood pellet dust is produced when manipulating with pellets. During this process a potentially hazardous situations may occur. Biomass is chemically composed mostly of hemicellulose, cellulose and lignin. During straining of the biomass by heat flux, combustion initiation occurs. Also, there was a change in the composition of material throughout combustion gases production, and the amount of heat generated by a flame or flameless combustion. Measurement of fire characteristics was conducted according to ISO 5660-1 standard using a cone calorimeter. Two samples of wood pellet dust were tested under the heat flux of 35 kW.m-2 and 50 kW.m-2. The process of combustion, the time to ignition, the carbon monoxide concentration and the amount of released heat were observed.

  15. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  16. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  17. Carbonaceous residues from biomass gasification as catalysts for biodiesel production

    Institute of Scientific and Technical Information of China (English)

    Rafael Luque; Antonio Pineda; Juan C. Colmenares; Juan M. Campelo; Antonio A. Romero; Juan Carlos Serrano-Ruiz; Luisa F. Cabeza; Jaime Cot-Gores

    2012-01-01

    Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation,generating clogging of filters and issues related with the purity of syngas production.To date,these waste residues find no useful applications and they are generally disposed upon generation in the gasification process.A detailed analysis of these residues pointed out the presence of high quantities of Ca (>30 wt%).TG experiments indicated that a treatment under air at moderate temperatures (400-800 ℃) decomposed the majority of carbon species,while XRD indicated the presence of a crystalline CaO phase.CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils,providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.

  18. [Moraxella bovis biomass production in a bench-top fermentor].

    Science.gov (United States)

    González, R D; Oberti, E R

    1994-01-01

    A Moraxella bovis strain was isolated from a kerato-conjunctivities lesion of a calf in Villa Valeria (Córdoba); it was used to establish improved cultural conditions, such as nature and concentration of carbon and nitrogen sources, and pH control in shaken flasks. The selected conditions were assayed for biomass production in a bench-top fermentor. The strain is used by the pharmaceutical industry to produce vaccines and adjuvants. In the initial condition (48 h culture on blood agar) 0.019 g biomass/l.h-1 was obtained. With the use of liquid defined medium with pH control, productivity was increased to 0.153g/l.h-1, with optimum harvest time of 32 h.

  19. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well.

  20. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  1. Lignocellulosic biomass utilization toward biorefinery : technologies, products and perspectives

    OpenAIRE

    Mussatto, Solange I.

    2014-01-01

    Lignocellulosic biomass wastes (LBW) are generated and accumulated in large amounts around the world every year. The disposal of large amounts of such wastes in the nature may cause environmental problems, affecting the quality of the soil, lakes and rivers. In order to avoid these problems, efforts have been directed to use LBW in a biorefinery to maximize the reutilization of these wastes with minimal or none production of residual matter. Through biorefiner...

  2. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  3. Salmon carcasses increase stream productivity more than inorganic fertilizer pellets: A test on multiple trophic levels in streamside experimental channels

    Science.gov (United States)

    Wipfli, Mark S.; Hudson, John P.; Caouette, John P.; Mitchell, N.L.; Lessard, Joanna L.; Heintz, Ron A.; Chaloner, D.T.

    2010-01-01

    Inorganic nutrient amendments to streams are viewed as possible restoration strategies for re-establishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-alevels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment × time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring

  4. Pelleting of feed for broiler chickens: Factors affecting pellet quality

    Directory of Open Access Journals (Sweden)

    Daniel José Antoniol Miranda

    2011-01-01

    Full Text Available The efficiency of the pellet can be translated by the quality of the pellet which is defined as the proportion of intact pellets that come to feeders for chickens, i.e., its resistance to breakage between the feed mill and farms. The use of diets with a higher percentage of intact pellets results in better performance of birds when compared with the feed rations. The main factors that affect pellet quality are: characteristics of pelleting, the feed composition, particle size, pelleting temperature, moisture and steam injection. From a nutritional standpoint, one can consider that the smaller the particle size of food increased their contact with the digestive juices, which aids digestion and absorption of nutrients. However, finely ground lead to less stimulation and growth of intestinal ephitellium. But from the standpoint of production of feed, the larger the particle size of ingredients largest economy with energy and greater efficiency (tons / hour milling. Because of this, it is suggested that the particle sizes used vary between 500 and 700 ìm to not to cause loss of performance of the birds, nor the income from the factory. Increased energy, through the addition of oils and fats, have much influence on performance parameters of broilers and the quality of the pellet produced. The presence of oils and / or fat, depending on the amount, on its hydrophoby characteristic, causing damage to the particles aggregation acting as a lubricant between food particles and the matrix of pelleting, decreasing the pelleting pressure and its gelatinization, resulting into poor quality pellets.

  5. Improvement in lipids extraction processes for biodiesel production from wet microalgal pellets grown on diammonium phosphate and sodium bicarbonate combinations.

    Science.gov (United States)

    Shah, Syed Hasnain; Raja, Iftikhar Ahmed; Mahmood, Qaisar; Pervez, Arshid

    2016-08-01

    Biomass productivity and growth kinetics for microalgae grown on sodium bicarbonate and diammonium phosphate were investigated. Different carbon and nitrogen ratios have shown different growth rates and biomass productivity and C:N ratio 50:10 as mgL(-1) has shown the best production than all. For effective lipids extraction from biomass thermolysis and sonolysis were carried out from wet biomass. Sonolysis at 2.3W intensity for 5min has released 8.58mg at neutral pH. More quantity of lipids was extracted when extraction was made at pH 4 and 10 which resulted 9mg and 9.28mg lipids respectively. Thermal treatment at 100°C for 10min has released 12.82mg lipid at neutral pH. In the same thermolysis at pH 4 and 10 more quantity of lipids was extracted which were 15.16mg and 14.81mg respectively. Finally transesterified lipids were analyzed through GC-MS for FAME composition analysis.

  6. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  7. Environmentally adapted energy production and working environment. Manufacture of wood pellets; Miljoeanpassad energiproduktion och arbetsmiljoe. Tillverkning av traepellets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez de Davila, Eliana

    2002-04-01

    The working environment at three wood pellet production plants was studied. Measurements were made of dust, microorganisms (bacteria and molds) and terpenes. Both stationary and personal sampling equipment were used. Dust sources and dust diffusion were mapped. Work in the raw material storage rooms and at the semi-automatic sack-filling stations can give high exposure to wood dusts (max. 4.7 mg/m{sup 3}). These high levels might cause irritations in the respiratory tract. Relatively high levels of terpenes were detected in the plant that did not dry wood shavings or sawdust. Pressing of non-dried shavings probably leads to emission of terpenes and other gaseous substances in the plant. Recommendations for improvements of the working conditions are given in the report.

  8. Research on processing technology and equipment of biomass pellet fuel%木质颗粒燃料加工技术与装备研究

    Institute of Scientific and Technical Information of China (English)

    刘强; 朱典想; 郭东升

    2012-01-01

    As an important mode of biomass energy’s conversion, wood pallet has drawn more and more attention. The paper discussed the processing technology and equipment of wood pallet fuel, focused on the summery of the whole procedure and pointed out the existing problems that could be improved in the future so as to get the best effect in actual production.%木质颗粒燃料作为生物质能源转化的一个重要领域,越来越受到人们的关注。本文主要对木质颗粒燃料的加工技术和关键设备进行说明,探讨了实际生产中存在的一些问题,并对木煤设备未来研发方向做了总结。

  9. Economics and price risks in international pellet supply chains

    CERN Document Server

    Ehrig, Rita; Wörgetter, Manfred; Strasser, Christoph

    2014-01-01

    The aim of this book is to investigate critical economic aspects and price risks along international pellet supply chains and to offer new insights into the interconnections between the sector, the various supply risks within the market and guidelines for de-risking biomass supply chains. It provides three real case studies as practical examples of determining actual supply costs from resource production to end-user and in doing so identifies and analyzes general economic performance indicators and price drivers for biomass supply chains. It also investigates the impact of several risks like r

  10. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  11. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  12. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  13. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B.L.; Castillo, F.J.

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  14. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    Science.gov (United States)

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology.

  15. Production, composition and fatty acid profile of milk and butter texture of dairy cows fed ground or pelleted concentrate with sunflower and/or lignosulfonate

    Directory of Open Access Journals (Sweden)

    Fábio José Ferreira Figueiroa

    2013-10-01

    Full Text Available The objective of this study was to evaluate the milk production, composition, milk fatty acid profile, butter texture and blood parameters of Holstein cows fed corn silage and concentrate containing one of the following: ground sunflower seeds; ground sunflower seeds treated with 50 g of lignosulfonate/kg of sunflower dry matter; pelleted sunflower seeds; or ground sunflower seeds pelleted and treated with 50 g of lignosulfonate/kg of sunflower dry matter. Four lactating cows were used, each with 130±28 days in lactation and a body weight of 569±63 kg. These animals were distributed in a Latin square design with four periods of 21 days each, with 14 days of adaptation and seven days of data collection. The diets were formulated to meet nutritional requirements and had a forage:concentrate ratio of 60:40. The milk fat was lower in the pelleted treatments. The concentrations of 16:1 n-11 and trans18:1 n-9 in the milk increased, and the n-6:n-3 ratio was higher for the pelleted treatments. The firmness and adhesiveness of the butter and the blood parameters analyzed were not affected by the treatments. Addition of lignosulfonate is not effective in protecting polyunsaturated fatty acids from the ruminal biohydrogenation process, and the pelleting process has little effect on the milk fatty acid profile and can not change the butter texture.

  16. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  17. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  18. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    xylose conversion, effective glucose/xylose co-fermentation, and ethanol productivity of 1 g/l/h required for an economically viable bioethanol process. Furthermore, the fermentation of two undetoxified feed streams of industrial interest (acid hydrolyzed corn stover and wet-exploded wheat straw...... steps, various inhibitors towards microbial fermentation are generated along with the monomeric sugars. The inhibitors can be removed by various detoxification methods but the inclusion of this extra process step increases significantly the ethanol production cost. Compared with glucose, which can....... In order to keep ethanol production cost at a minimum, the major sugars in lignocellulosic biomass (glucose and xylose) must be converted into ethanol due to high raw material cost, typically about 40% of the total ethanol production cost. The need for a microorganism able to utilize both glucose...

  19. On-line catalytic upgrading of biomass fast pyrolysis products

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; ZHU XiFeng; LI WenZhi; ZHANG Ying; CHEN DengYu

    2009-01-01

    Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of biomass and on-line analysis of the pyrolysis vapors. Four biomass materials (poplar wood, fir wood, cotton straw and rice husk) were pyrolyzed to reveal the difference among their products. Moreover, catalytic cracking of the pyrolysis vapors from cotton straw was performed by using five catalysts, including two microporous zeolites (HZSM-5 and HY) and three mesoporous catalysts (ZrO2&TiO2, SBA-15 and AI/SBA-15). The results showed that the distribution of the pyrolytic products from the four materials differed a little from each other, while catalytic cracking could significantly alter the pyrolytic products. Those important primary pyrolytic products such as levoglucosen, hydroxyacetaldehyde and 1-hydroxy-2-propanone were decreased greatly after catalysis. The two microporous zeolites were ef-fective to generate high yields of hydrocarbons, while the three mesoporous materials favored the formation of furan, furfural and other furan compounds, as well as acetic acid.

  20. Microbial biodiesel production by direct methanolysis of oleaginous biomass.

    Science.gov (United States)

    Thliveros, Panagiotis; Uçkun Kiran, Esra; Webb, Colin

    2014-04-01

    Biodiesel is usually produced by the transesterification of vegetable oils and animal fats with methanol, catalyzed by strong acids or bases. This study introduces a novel biodiesel production method that features direct base-catalyzed methanolysis of the cellular biomass of oleaginous yeast Rhodosporidium toruloides Y4. NaOH was used as catalyst for transesterification reactions and the variables affecting the esterification level including catalyst concentration, reaction temperature, reaction time, solvent loading (methanol) and moisture content were investigated using the oleaginous yeast biomass. The most suitable pretreatment condition was found to be 4gL(-1) NaOH and 1:20 (w/v) dried biomass to methanol ratio for 10h at 50°C and under ambient pressure. Under these conditions, the fatty acid methyl ester (FAME) yield was 97.7%. Therefore, the novel method of direct base-catalyzed methanolysis of R. toruloides is a much simpler, less tedious and time-consuming, process than the conventional processes with higher FAME (biodiesel) conversion yield.

  1. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  2. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  3. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  4. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  5. Crude protein levels in diets containing pelleted concentrate for lactating goats: intake, digestibility, milk production and composition

    Directory of Open Access Journals (Sweden)

    Edileusa de Jesus dos Santos

    2015-08-01

    Full Text Available This study aimed to evaluate the effects of crude protein (100, 130, 160 and 190 g kg-1 of dry matter of diets composed of 200 g kg-1 of Tifton 85 grass hay and 800 g kg-1 of pelleted concentrate on intake, nutrient digestibility, production and composition of milk in lactating goats. Eight female Saanen goats with 42.7 ± 1.43 kg and 57.7 ± 7.37 days of lactation and milk production of 2 ± 0.22 kg at the beginning of the experiment were housed in individual 1.32 × 3.10 m stalls and distributed into two 4 × 4-balanced Latin squares. Intake of dry matter, organic matter, crude protein, neutral detergent fiber corrected for ash and protein, ether extract and total digestible nutrients showed a quadratic effect, with maximum intake of 2.030; 2.000; 305; 769; 55 and 1.574 g day-1 at the levels of 140.7; 140.8; 189.2; 140.9; 144.9 e 142.7 g kg-1 DM, respectively. Digestibility of dry matter, organic matter, crude protein, non-fibrous carbohydrates, ether extract and total digestible nutrient level varied linearly, with increases estimated at 0.54; 0.50, 2.02, 0.49, 0.80 and 0.63 g/100g for each percentage unit of protein added to the diet, respectively. Milk production was affected, with increase of 0.54 g for each 1% crude protein added to the diet. Milk lactose level decreased linearly, unlike the fat level, which increased linearly. Protein level showed a quadratic behavior, with a maximum of 36.7 g per kg of milk at the level of 160.5 g per kg of DM. It is recommended to use crude protein between 135 g and 150 g per kg of dry matter of diets consisting of 800 g of pelleted concentrate (composed of soybean meal replacing the alfalfa hay as protein source per kg of DM for lactating goats producing 2 kg of milk per day.

  6. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus.

    Science.gov (United States)

    Liu, Yuan-Shuai; Wu, Jian-Yong

    2012-04-01

    This study investigated the effects of surfactant additives and medium pH on mycelial morphology and exopolysaccharide (EPS) production in liquid culture of a valuable medicinal fungus Cordyceps sinensis Cs-HK1. In the medium containing 20 g l⁻¹ glucose and 6 g l⁻¹ peptone as the sole nitrogen source, the Cs-HK1 fungal mycelia formed smooth and spherical pellets about 1.8-mm mean diameter. The mycelial pellets became less uniform at pH (4.0-5.0) lower than the optimum (pH 6.0) or turned to filamentous form at higher pH (8-9). Surfactants added to the medium inhibited pellet formation, resulting in smaller and looser pellets. Tween 80 exhibited a remarkable promoting effect on EPS production, increasing the EPS yield more than twofold at 1.5% (w/v), which was most probably attributed to the stimulation of EPS biosynthesis and release from the fungal cells by Tween 80.

  7. NIR Techniques Create Added Values for the Pellet and Biofuel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Johnsson, Bo; Grothage, Morgan [Casco Adhesives AB, Sundsvall (Sweden)

    2006-07-15

    Pelletizing of biomass as biofuels increases energy density, improves storability and reduces transport costs. This process is a major key factor in the transition from fossil fuels to renewable biomass refined as solid biofuels. The fast growing pellet industry is today producing more than 1.2 Gg wood Pellets in Sweden - one of the leading nations to utilize bioenergy in its energy mix. The multitude of raw biomaterials available for fuel pellet production and their widely different characteristics stress the need for rapid characterization methods. A suitable technique for characterization of variation in biomaterials is near infrared (NIR) spectrometry. NIR radiation interacts with polar molecules and especially with structural groups O-H as in water, C-H as in biomass, but also with C-O bonds and C=C double bonds frequently found in biomass. Biomass contains mostly the atoms C, O and H. This means that transmittance or reflectance in the NIR wavelength region covers most of the covalent bonds in biomass, except for the C-C bonds in carbon chains. The NIR technique is also developed for on-line measurement in harsh industrial conditions. Thus, NIR techniques can be applied for on-line and real time characterization of raw biomass as well as in the refinement process of biomass into standardized solid biofuels. Spectral patterns in the NIR region contain chemical and physical information structure that together with reference parameters can be modeled by multivariate calibration methods to obtain predictions. These predictions can be presented to the operators in real time on screens as charts based on multivariate statistical process controls. This improves the possibilities to overview the raw biomass variation and to control the responses of the treatments the biomass undergo in the pelletizing process. The NIR-technique is exemplified by a 23-factorial experiment that was carried out in a pellet plant using sawdust as raw material to produce wood Pellets as

  8. Value added liquid products from waste biomass pyrolysis using pretreatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition.

  9. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste......, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate......, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass...

  10. Comparative study of residue pellets from cane sugar and palm-oil industries with commercial wood pellets, applied in downdraft gasification

    Energy Technology Data Exchange (ETDEWEB)

    Erlich, Catharina

    2009-10-15

    While biomass utilization for energy conversion in the industrialized nations is being largely developed, highly efficient and environmentally friendly, many tropical countries still use biomass at low efficiencies and high emission levels. The main reasons for these gaps are both political and technological: the energy markets are different, the Gross National Product (GDP) differs widely, and the feedstock differs in form and conversion behaviour. By implementing newer technologies adapted for tropical biomass feedstock, there would be a large potential in these countries for increased energy services since access to modern energy still is an essential step for improving the GDP for a country. Two dominant and tropically placed industries available for energy improvements are the cane sugar and palm-oil industries, which both produce an abundant amount of biomass residues. One step towards enhanced utilization of the residues, which would not require large investment costs in the power plant section nor in the processes of these industries, would be to install a pelletizing unit in the industry area to make fuel out of the excess residues for sale to the nearby villages. The pellets could be used both for cooking/heating and for small-scale power generation in a gasification-IC engine plant. The overall objective of this study is to experimentally evaluate the biomass residues in pellet form from the cane sugar and palm oil industries during conversion to useful energy in small-scale systems. The thesis is built upon five publications which include experimental analysis on flaming pyrolysis and rapid heating of pellets (paper I), pyrolysis in oxygen-free atmosphere and slow heating with subsequent steam gasification (paper II), global pelletizing data such as relative energy consumption, temperature levels, particle size and moisture content for successful pelletizing process (paper III), downdraft gasification evaluation including reactor temperature

  11. Biomass. Energy carrier and biobased products; Biomasse. Energietraeger und biobasierte Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, W. [Technische Univ. Muenchen (Germany). Inst. fuer Toxikologie und Umwelthygiene; Groeger, G. (eds.) [BioRegionUlm Foerderverein Biotechnologie e.V., Ulm (Germany)

    2006-07-01

    Within the scope of the 3rd Reivensburg Environmental Biotechnology Meeting at 29th June, 2007, at Castle Reivensburg near Guenzburg (Federal Republic of Germany), the following lectures were held: (a) Challenges according to materials management, land use and power generation in the background of precarious economical situation in the Federal Republic of Germany (H.-G. Petersen); (b) Regenerative raw materials in Germany: Plant sources and potentials (W. Luehs, W. Friedt); (c) Biobased industrial products and bioraffinery systems (B. Kamm, M. Kamm); (d) Potential of biomass materials conversion in chemical industries (R. Busch); (e) Environmental compatible processes and low-priced ecological materials from the processing of biotechnological poly-3-hydroxybutyrate (H. Seliger, H. Haeberlein, R. Kohler, P. Sulzberger); (f) New starch from potatoes - a regenerative raw material (T. Servay); (g) Fuels from renewable energy sources: potential, production, perspectives (M. Specht, U. Zuberbuehler, A. Bandi); (h) Application of biogas as a fuel from the view of a car manufacturer (S. Schrahe); (i) Large-scale production of bioethanol (P. Johne, C. Sauter); (j) Environmental political evaluation of the use of biofuels and politics of biofuels of selected countries (J.M. Henke).

  12. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  13. Biomass for bioethanol production and technological process in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Nadiradze, K.; Phirosmanashvili, N. [Association for Farmers Rights Defence, Tbilisi (Georgia)

    2010-07-01

    This study discussed the use of biomass for bioethanol production in Georgia and its potential impacts on the country's rural economy. Eighty-five per cent of the country's lands are forested or used for agricultural purposes, and more than 56 per cent of the adult population is involved in the agricultural sector. The privatization of land in post-Soviet Georgia has resulted in the creation of a new social class of land-owners. The use of biofuel in petroleum fuel has significantly lowered greenhouse gases (GHGs) in the country. The biofuel is produced using local agricultural and forest wastes. Use of the biofuel has lowered the country's reliance on imported oil and has increased its energy security. The production of ethanol in Georgia has resulted in significant socio-economic benefits in the country.

  14. Reprint of: Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter K.; Hansen, Hans Ove;

    2013-01-01

    Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  15. Upgrading fuel properties of biomass by torrefaction

    Energy Technology Data Exchange (ETDEWEB)

    Lei Shang

    2012-12-15

    Torrefaction is a mild thermal (200 - 300 UC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability and hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss, higher heating value, better grindability, and less moisture absorption. However, severe torrefaction conditions were found not necessary in order to save energy during grinding, since strain energy and grinding energy decreased tremendously in the first 5 - 25% anhydrous weight loss. By correlating the heating value and mass loss, it was found that wheat straw contained less heating value on mass basis than the other two fuels, but the fraction of energy retained in the torrefied sample as a function of mass loss was very similar for all three biomass. Gas products formed during torrefaction of three biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels at 300 UC for 1 h were compared, and water was found to be the dominant product during torrefaction. The degradation kinetics of wheat straw was studied in TGA by applying a two-step reaction in series model and taking the mass loss during the initial heating period into account. The model and parameters were proven to be able to predict the residual mass of wheat straw in a batch scale torrefaction reactor with different heating rates well. It means the mass yield of solids

  16. Production of New Biomass/Waste-Containing Solid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration

  17. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  18. An evaluation of alternate production methods for Pu-238 general purpose heat source pellets

    Energy Technology Data Exchange (ETDEWEB)

    Mark Borland; Steve Frank

    2009-06-01

    For the past half century, the National Aeronautics and Space Administration (NASA) has used Radioisotope Thermoelectric Generators (RTG) to power deep space satellites. Fabricating heat sources for RTGs, specifically General Purpose Heat Sources (GPHSs), has remained essentially unchanged since their development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the applicable fields of chemistry, manufacturing and control systems. This paper evaluates alternative processes that could be used to produce Pu 238 fueled heat sources. Specifically, this paper discusses the production of the plutonium-oxide granules, which are the input stream to the ceramic pressing and sintering processes. Alternate chemical processes are compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product.

  19. Biomass production by fescue and switchgrass alone and in mixed swards with legumes. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, M. [Univ. of Kentucky, Lexington, KY (United States). Univ. of Agronomy

    1994-06-01

    In assessing the role of biomass in alleviating potential global warming, the absence of information on the sustainability of biomass production on soils of limited agricultural potential is cited as a major constraint to the assessment of the role of biomass. Research on the sustainability of yields, recycling of nutrients, and emphasis on reduced inputs of agricultural chemicals in the production of biomass are among the critical research needs to clarify optimum cropping practice in biomass production. Two field experiments were conducted between 1989 and 1993. One study evaluated biomass production and composition of switchgrass (Panicum virgatum L.) grown alone and with bigflower vetch (Vicia grandiflora L.) and the other assessed biomass productivity and composition of tall fescue (Festuca arundinacea Schreb.) grown alone and with perennial legumes. Switchgrass received 0, 75 or 150 kg ha{sup {minus}1} of N annually as NH{sub 4}NO{sub 3} or was interseeded with vetch. Tall fescue received 0, 75, 150 or 225 kg ha{sup {minus}1} of N annually or was interseeded with alfalfa (Medicago L.) or birdsfoot trefoil (Lotus corniculatus L.). It is hoped that production systems can be designed to produce high yields of biomass with minimal inputs of fertilizer N. Achievement of this goal would reduce the potential for movement of NO{sub 3} and other undesirable N forms outside the biomass production system into the environment. In addition, management systems involving legumes could reduce the cost of biomass production.

  20. Test and Analysis on Properties of Six Kinds of Biomass Pellets%6种生物质颗粒成型燃料性能测试分析

    Institute of Scientific and Technical Information of China (English)

    孙毅; 张文标; 林启晨; 李文珠; 汪孙国

    2015-01-01

    对竹粉、红木粉和杉木刨花、树皮、棉秆、玉米秆6种生物质成型燃料进行工业分析、元素测试、密度和发热量及燃烧特性等相关参数的测定。结果表明:各生物质成型燃料的全水分、密度、灰分、挥发分和固定碳的物理特性参数基本满足瑞典生物质颗粒燃料标准SS187120的要求;通过元素分析法可知,6种生物质成型燃料的N为0.51%~3.45%,S为0.03%~0.22%,都远低于煤的值,是一种清洁能源;通过锥形量热仪的测试分析,结合傅一张着火特性指标FZ可知,6种生物质成型燃料的着火温度从低到高依次是红木粉>杉木刨花>竹粉>树皮>玉米秆>棉秆。综合各项性能指标考虑,红木粉成型燃料的性能最优,其热值20.64 MJ/kg,全水分6.49%,灰分0.41%,挥发分82.01%,固定碳11.09%,N元素0.51%,S元素0.03%,点燃时间13 s。%Proximate and elemental analysis, determinations of density, caloric value and TTI were made on six kinds of biomass pellets made from bamboo powder, wood powder, Chinese fir shaving, tree bark, cotton stalk and cornstalk. The results showed that the total moisture, density, ash content, volatiles and fixed carbon of tested biomass pellets met the requirements of SS187120. Elemental analysis demonstrated that the content of N and S of tested pellets was 0.51%-3.45%and 0.03%-0.22%, both were lower than that of the coal, indicating clean energy. Cone calorimeter method with fire indicators of Fz showed that the ignition temperature of tested pellets was ordered by wood powder>Chinese fir shaving>bamboo powder>tree bark>cornstalk>cotton stalk. Integrated indicators resulted that properties of pellets from wood powder was the best, with calorific value of 20.64MJ/kg, total moisture of 6.49%, ash content of 0.41%, volatiles of 82.01%, fixed carbon of 11.09%, the content of N of 0.51%, the content of S of 0.03%, time to ignition of 13 seconds.

  1. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  2. Progress on optimizing miscanthus biomass production for the European bioeconomy: Results of the EU FP7 project OPTIMISC

    Directory of Open Access Journals (Sweden)

    Iris Lewandowski

    2016-11-01

    Full Text Available This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing fifteen diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: 1 demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; 2 characterisation of the interactions of physiological growth responses with environmental variation within and between sites; 3 quantification of biomass-quality-relevant traits; 4 abiotic stress tolerances of miscanthus genotypes; 5 selections suitable for production on marginal land; 6 field establishment methods for seeds using plugs; 7 evaluation of harvesting methods; and 8 quantification of energy used in densification (pellet technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas and

  3. Modeling of biofuel pellets torrefaction in a realistic geometry

    Directory of Open Access Journals (Sweden)

    Artiukhina Ekaterina

    2016-01-01

    Full Text Available Low temperature pyrolysis also known as torrefaction is considered as a promising pretreatment technology for conversion of biomass into a solid biofuel with enhanced properties in terms of lower moisture and volatile matter content, hydrophobicity and increased heating value. A thermal treatment leads to a non-uniform temperature field and chemical reactions proceeding unevenly within the pellets. However the temperature is assumed to be uniform in the pellets in the majority of models. Here we report on the model of single pellet biomass torrefaction, taking into account the heat transfer and chemical kinetics in the realistic geometry. The evolution of temperature and material density in the non-stationary thermo-chemical process is described by the system of non-linear partial differential equations. The model describing the high-temperature drying of biomass pellet was also introduced. The importance of boundary effects in realistic simulations of biomass pellets torrefaction is underlined in this work.

  4. Rationally engineered synthetic coculture for improved biomass and product formation.

    Directory of Open Access Journals (Sweden)

    Suvi Santala

    Full Text Available In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications.

  5. Quality of Pelleted Olive Cake for Energy Generation

    Directory of Open Access Journals (Sweden)

    Tea Brlek

    2014-02-01

    Full Text Available Normal 0 21 false false false SR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Olive cake is by-product of olive oil production. This material cannot be stored in original condition for a long time because it has high water content and relatively high portion of oil that causes rapid deterioration. Thus it is necessary to investigate possible methods of remediation of such by-product, where utilization for energy generation presents a useful option. Several studies have been conducted on energy generation from olive cake, however not one that includes pelleting as a pre-treatment. Therefore, the aim of this paper was to determine the chemical composition of different cultivars of olive cake, to produce pellets, and determine their basic quality parameters. The pellets obtained from olive cake had mainly satisfactory results regarding their quality in comparison to standards for fuel pellets. It should be kept in mind that these standards are manly for wood pellets, and therefore some lower criteria could be applied for olive cake and such biomass. The highest amount of residual oil and the lowest amount of protein was found in cultivar ‘Buža’ and produced pellets had the smallest abrasion index (8.15%. Other cultivars had lower oil and higher protein content, and abrasion index

  6. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; G. L. Hawkes; J. E. O' Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  7. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source.

  8. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie;

    2015-01-01

    species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could......Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass...... and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined...

  9. Premium Fuel Production From Mining and Timber Waste Using Advanced Separation and Pelletizing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R. Q.; Taulbee, D.; Parekh, B. K.; Tao, D.

    2005-12-05

    The Commonwealth of Kentucky is one of the leading states in the production of both coal and timber. As a result of mining and processing coal, an estimated 3 million tons of fine coal are disposed annually to waste-slurry impoundments with an additional 500 million tons stored at a number of disposal sites around the state due to past practices. Likewise, the Kentucky timber industry discards nearly 35,000 tons of sawdust on the production site due to unfavorable economics of transporting the material to industrial boilers for use as a fuel. With an average heating value of 6,700 Btu/lb, the monetary value of the energy disposed in the form of sawdust is approximately $490,000 annually. Since the two industries are typically in close proximity, one promising avenue is to selectively recover and dewater the fine-coal particles and then briquette them with sawdust to produce a high-value fuel. The benefits are i) a premium fuel product that is low in moisture and can be handled, transported, and utilized in existing infrastructure, thereby avoiding significant additional capital investment and ii) a reduction in the amount of fine-waste material produced by the two industries that must now be disposed at a significant financial and environmental price. As such, the goal of this project was to evaluate the feasibility of producing a premium fuel with a heating value greater than 10,000 Btu/lb from waste materials generated by the coal and timber industries. Laboratory and pilot-scale testing of the briquetting process indicated that the goal was successfully achieved. Low-ash briquettes containing 5% to 10% sawdust were produced with energy values that were well in excess of 12,000 Btu/lb. A major economic hurdle associated with commercially briquetting coal is binder cost. Approximately fifty binder formulations, both with and without lime, were subjected to an extensive laboratory evaluation to assess their relative technical and economical effectiveness as binding

  10. Potential For Agricultural Biomass Production for Energy Purposes in Poland: a Review

    Directory of Open Access Journals (Sweden)

    Rafał Baum

    2013-03-01

    Full Text Available This article reviews the production capacity of Polish agriculture with respect to biomass used for energy production. The forecast production potential of agricultural biomass in Poland in 2020 includes three key areas: the expected consumption of renewable energy according to energy type, the energy potential of agriculture and barriers to the use of biomass. Studies have shown that in Poland, total energy consumption will significantly increase (over 10% by 2020. Growth of demand for renewable energy will primarily result from strong growth of demand for transport biofuels and electricity. In 2020, approximately 80% of final energy from renewable sources will come from biomass. More than three-quarters of the biomass will be generated from agriculture. In Poland, crops from 1.0 to 4.3 million ha can be used for energy production. The study shows changes in the structure of biomass use, and the analysis confirms the declining share of biomass for heat production and the increasing share of biomass for electricity and biofuels. The main obstacles to the continued use of agricultural biomass are a lack of local markets for biomass energy and poor financial support for energy crop production.

  11. Premium Fuel Production From Mining and Timber Waste Using Advanced Separation and Pelletizing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R. Q.; Taulbee, D.; Parekh, B. K.; Tao, D.

    2005-12-05

    The Commonwealth of Kentucky is one of the leading states in the production of both coal and timber. As a result of mining and processing coal, an estimated 3 million tons of fine coal are disposed annually to waste-slurry impoundments with an additional 500 million tons stored at a number of disposal sites around the state due to past practices. Likewise, the Kentucky timber industry discards nearly 35,000 tons of sawdust on the production site due to unfavorable economics of transporting the material to industrial boilers for use as a fuel. With an average heating value of 6,700 Btu/lb, the monetary value of the energy disposed in the form of sawdust is approximately $490,000 annually. Since the two industries are typically in close proximity, one promising avenue is to selectively recover and dewater the fine-coal particles and then briquette them with sawdust to produce a high-value fuel. The benefits are i) a premium fuel product that is low in moisture and can be handled, transported, and utilized in existing infrastructure, thereby avoiding significant additional capital investment and ii) a reduction in the amount of fine-waste material produced by the two industries that must now be disposed at a significant financial and environmental price. As such, the goal of this project was to evaluate the feasibility of producing a premium fuel with a heating value greater than 10,000 Btu/lb from waste materials generated by the coal and timber industries. Laboratory and pilot-scale testing of the briquetting process indicated that the goal was successfully achieved. Low-ash briquettes containing 5% to 10% sawdust were produced with energy values that were well in excess of 12,000 Btu/lb. A major economic hurdle associated with commercially briquetting coal is binder cost. Approximately fifty binder formulations, both with and without lime, were subjected to an extensive laboratory evaluation to assess their relative technical and economical effectiveness as binding

  12. Altered sucrose metabolism impacts plant biomass production and flower development.

    Science.gov (United States)

    Coleman, Heather D; Beamish, Leigh; Reid, Anya; Park, Ji-Young; Mansfield, Shawn D

    2010-04-01

    Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9), sucrose synthase (SuSy, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14). Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2 x 35S::UGPase x SPS, 4CL::UGPase x SPS, 2 x 35S::SuSy x SPS, 4CL::SuSy x SPS, 2 x 35S::UGPase x SuSy x SPS, and 4CL::UGPase x SuSy x SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.

  13. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  14. Productivity developments in European agriculture: relations to and opportunities for biomass production

    NARCIS (Netherlands)

    de Wit, M.P.; Londo, H.M.; Faaij, A.P.C.

    2011-01-01

    This paper discusses if, how fast and to what maximum yield improvements can be realized in Europe in the coming decades and what the opportunities and relations are to biomass production. The starting point for the analysis is the historic context of developments in European agriculture over the pa

  15. Screw Extruder for Pellet Injection System

    Directory of Open Access Journals (Sweden)

    Sharadkumar K. Chhantbar

    2014-05-01

    Full Text Available Solid hydrogenic pellets are used as fuel for fusion energy reactor. A technique for continuous production of solid hydrogen and its isotopes by a screw extruder is suggested for the production of an unlimited number of pellets. The idea was developed and patented by PELIN laboratories, Inc. (Canada. A Gifford McMahon cryocooler is used for the generation of solid hydrogenic fluid pellets. Requirements of the pellets is depends upon the energy to be produced by tokamak. This review paper focuses on the model for the screw extruder for solidification of hydrogen ice having high injection reliability.

  16. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    Biorefinery has the potential of displacing fossil fuels and oil-refinery based products. Within the biorefinery a palette of marketable commodities can be produced from biomass, including food, feed, biochemicals and biofuels. Which bioproducts are produced is largely dependent on the chemical....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...... biogas upgrading technologies deliver. Results obtained in this study constitute the first report for utilization of macroalgae, hemp and Jerusalem artichoke tuber biomass for fermentative succinic acid production. It was demonstrated that all biomasses are attractive biomass feedstocks for succinic acid...

  17. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000.

    Science.gov (United States)

    Haberl, Helmut; Kastner, Thomas; Schaffartzik, Anke; Ludwiczek, Nikolaus; Erb, Karl-Heinz

    2012-12-01

    Global trade of biomass-related products is growing exponentially, resulting in increasing 'teleconnections' between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The 'embodied human appropriation of NPP' (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism.

  18. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  19. MICROALGAE BIOMASS PRODUCTION BASED ON WASTEWATER FROM DAIRY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Marcin Dębowski

    2016-05-01

    Full Text Available The goal of this study was to determine the feasibility of culturing high-oil algae biomass based on wastewater from dairy processing plants. The experiments were conducted in laboratory scale with tubular photobioreactor using. The best technological properties were demonstrated for eluates from an anaerobic reactor treating dairy wastewater. The use of a substrate of this type yielded algae biomass concentration at a level of 3490 mg d.m./dm3, with the mean rate of algae biomass growth at 176 mg d.m./dm3∙d. The mean content of oil in the proliferated biomass of algae approximated 20%.

  20. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  1. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  2. Ethanol and lignin production from Brazilian empty fruit bunch biomass.

    Science.gov (United States)

    Raman, Jegannathan Kenthorai; Gnansounou, Edgard

    2014-11-01

    Brazil Government is promoting palm plantations to use degraded land for biofuels. Palm production is expected to increase 35 per cent in future and there would be profuse biomass available that needs to be handled efficiently. Therefore, in this study the potential of EFB from Brazil as raw material for biorefinery was explored by compositional analysis and pretreatment conditions optimization to produce ethanol and co-products. EFB from Brazil contains significant cellulose, hemicellulose, lignin and low ash content. The optimized dilute sulfuric acid pretreatment conditions for efficient cellulose and hemicellulose separation were 160°C temperature, 1.025% v/v acid concentration, 10.5min and 20% solid loading. Under optimum pretreatment process conditions, low enzyme loading (10FPU, 20IU cellulase and glucosidase enzyme/g glucan) and 15% solid loading, 51.1g ethanol, 344.1g solid residue (65% lignin and 24.87MJ/kg LHV) and 3.7l xylose rich liquid could be produced per kg dry EFB.

  3. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  4. The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands

    NARCIS (Netherlands)

    Sikkema, R.; Junginger, H.M.; Pichler, W.; Hayes, S.; Faaij, A.P.C.

    2010-01-01

    The European wood pellet market is booming: concerns about climate change and renewable energy targets are predominant drivers. The aim of this analysis is to compare typical wood pellet chains from the purchase of the feedstock from sawmills to the conversion into heat or electricity. Cost structur

  5. Fast pyrolysis of biomass : an experimental study on mechanisms influencing yield and composition of the products

    NARCIS (Netherlands)

    Hoekstra, Elly

    2011-01-01

    Pyrolysis oil originating from biomass has the potential to replace ‘crude fossil oil’ and to produce fuels and chemicals in a more sustainable way. The favorable perspective of fast pyrolysis as biomass pre-treatment step is directly related to the production of a liquid as main product and the sig

  6. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite

    DEFF Research Database (Denmark)

    Ploug, H.; Iversen, M.H.; Koski, Marja;

    2008-01-01

    sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d(-1) independent on diet (range: 0.08-0.21 d(-1)). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +/- 169 m d...

  7. A METHOD OF IMPROVING THE PRODUCTION OF BIOMASS OR A DESIRED PRODUCT FROM A CELL

    DEFF Research Database (Denmark)

    1998-01-01

    the F¿1? ATPase or portions thereof is expressed, may be selected from prokaryotes and eukaryotes. In particular the DNA encoding F¿1? or a portion thereof may be derived from bacteria and eukaryotic microorganisms such as yeasts, other fungi and cell lines of higher organisms and be selected from......The production of biomass or a desired product from a cell can be improved by inducing conversion of ATP to ADP without primary effects on other cellular metabolites or functions which is achieved by expressing an uncoupled ATPase activity in said cell and incubating the cell with a suitable...... substrate to produce said biomass or product. This is conveniently done by expressing in said cell the soluble part (F¿1?) of the membrane bound (F¿0?F¿1? type) H?+¿-ATPase or a portion of F¿1? exhibiting ATPase activity. The organism from which the F¿1? ATPase or portions thereof is derived, or in which...

  8. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  9. Effect of Sawdust Characteristics on Pelletizing Properties and Pellet Quality

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Robert; Thyrel, Mikael; Lestander, Torbjoern; Jonsson, Carina [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Sjoestroem, Michael [Univ. of Umeaa (Sweden). Dept. of Chemistry

    2006-07-15

    Sawdust of pine and spruce from sawmills is the most common raw material for pellet production in Sweden today. Experiences from pellet plants indicate that raw material properties like wood species, storage time (maturity), growing latitude and moisture content influence the pelletizing properties and the pellet quality. However, no systematic investigation where the above mentioned parameters were studied in combination with pelletizing parameters like die length and steam treatment has been reported so far. In this paper the pelletizing of sawdust using a reduced factorial design with six parameters is described. The independent parameters studied were wood species (pine, spruce), growing latitude (57, 64 deg N), storage time (fresh, 140 days), moisture content (9 %, 12 %), die length (55 mm, 65 mm) and steam treatment (2,0 kg/h, 6,0 kg/h). The pelletizing parameters measured during the experiments were i.e. die temperature, energy consumption, Pellets temperature, while the main pellet quality parameters were bulk density, durability, fines and moisture content. All results were evaluated by using multivariate data analysis. The results can be summarized as follows: Bulk density: The two-factor interaction between moisture content and steam treatment affected the bulk density most significantly. The best response was obtained at either high moisture content and low steam treatment or vice versa. In addition, the results showed that long storage time influenced the bulk density positively. durability: Storage time is the most significant factor for the durability; long storage results in higher durability. Even for the durability the two-factor interaction between moisture content and steam treatment is of great importance. fines: The amount of fines is to a large extent determined by the two-factor interaction between moisture content and steam treatment together with the storage time. The amount of fines is also affected by wood species and growing latitude

  10. Crop production without fossil fuel: production systems for tractor fuel and mineral nitrogen based on biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, Serina

    2009-12-15

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categories of renewable tractor fuel were studied: first generation fuels and second generation fuels, the latter defined as fuels not yet produced on a commercial scale. An organic farm self-sufficient in tractor fuel was modelled. Raw material from the farm was assumed to be delivered to a large fuel production facility and fuel transported back to the farm, where it was utilised. In general, the second generation renewable fuels had higher energy balance and lower environmental impact than the first generation fuels. However all systems studied reduced the use of fossil fuels to a great extent and lowered the contribution to global warming. The land needed to be set aside for tractor fuel varied between 2% and 5% of the farm's available land. Two major routes for biomass-based production of mineral nitrogen for conventional agriculture were studied, one based on anaerobic digestion and one on thermochemical gasification of biomass. The crops studied were able to produce between 1.6 and 3.9 tonnes N per hectare in the form of ammonium nitrate. The use of fossil fuel for ammonium nitrate production was 35 MJ per kg N in the fossil reference scenario, but only 1-4 MJ per kg N in the biomass systems. The contribution to global warming can be greatly reduced by the biomass systems, but there is an increased risk of eutrophication and acidification. It is clear that the agricultural sector has great potential to reduce the use of fossil fuel and to lower the emissions of greenhouse

  11. Oil Palm Biomass As Potential Substitution Raw Materials For Commercial Biomass Briquettes Production

    Directory of Open Access Journals (Sweden)

    A. B. Nasrin

    2008-01-01

    Full Text Available Palm oil industry generates vast amount of palm biomass. Converting palm biomass into a uniform and solid fuel through briquetting process appears to be an attractive solution in upgrading its properties and add value. In this study, raw materials including empty fruit bunch (EFB, in powder and fibre forms, palm kernel expeller (PKE and sawdust were densified into briquettes at high temperature and pressure using screw extrusion technology. The briquettes were analysed to determine its physical and chemical properties, mechanical strength and burning characteristics. It was found that briquettes made either from 100% pulverized EFB or mixed with sawdust exhibited good burning properties. EFB fibre and PKE, due to their physical properties, were recommended to be blended with sawdust in producing quality briquettes. In overall, converting palm biomass into briquettes has increased its energy content and reduced moisture content about minimum of 5% and 38% respectively compared to its raw materials. The properties of palm biomass briquettes obtained from the study were compared to the commercial sawdust briquettes properties and to the minimum requirements of DIN 51731. The details of the study were highlighted in this paper. Palm biomass briquettes can become an important renewable energy fuel source in the future.

  12. Production of substitute natural gas by biomass hydrogasification

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffarian, M.; Zwart, R.W.R. [ECN Biomass, Petten (Netherlands)

    2000-11-01

    Hydrogen, generated from renewable sources, is likely to play a major role in the future energy supply. The storage and transport of hydrogen can take place in its free form (H2), or chemically bound, e.g. as methane. However, the storage and transport of hydrogen in its free form are more complex, and probably would require more energy than the storage and transport of hydrogen in chemical form. An additional important advantage of the indirect use of hydrogen as energy carrier is, that in the future renewable energy supply, pads of the existing large-scale energy infra- structure could still be used. Production of Substitute Natural Gas (SNG) by biomass hydrogasification has been assessed as a process for chemical storage of hydrogen. Thermodynamic analysis has shown the feasibility of this process. The product gas of the process has a Wobbe-index, a mole percentage methane, and a calorific value quite comparable to the quality of the Dutch natural gas. With a hydrogen content below 10 mol%, the produced SNG can be transported through the existing gas net without any additional adjustment. The integrated system has an energetic efficiency of 81% (LHV). In the long term, the required hydrogen for this process can be produced by water electrolysis, with electricity from renewable sources. In the short term, hydrogen may be obtained from hydrogen-rich gases available as by-product from industrial processes. Results of thermodynamic analysis of the process and experimental work, application potentials of the process in the Netherlands, and plans for future development are presented. 21 refs.

  13. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  14. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  15. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol

  16. Glycolate oxidation in A. thaliana chloroplasts improves biomass production

    Directory of Open Access Journals (Sweden)

    Alexandra eMaier

    2012-02-01

    Full Text Available A complete glycolate catabolic cycle was established in chloroplasts of the C3-model plant Arabidopsis thaliana by which one molecule of glycolate is completely oxidized within the chloroplast to two molecules of CO2. Genes coding for glycolate oxidase, malate synthase, and catalase were introduced into the nuclear genome of A. thaliana by step-wise transformation. Other genes required for a fully operational pathway are the endogenous NADP-malic enzyme and pyruvate dehydrogenase. Transgenic lines expressing the complete novel pathway produced rossettes with more leaves and higher fresh and dry weight but individual leaves were flatter and thinner than the wild type. The photosynthetic rates of the transgenic plants were higher on a dry weight and chlorophyll basis, but there were no differences in the compensation point. In addition, transgenic plants showed a lower glycine/serine ratio than the wild type indicating a reduction of the flux through the photorespiratory pathway. In this way, due to the increased oxidation of glycolate inside the chloroplasts, a photorespiratory bypass was created, which resulted in higher CO2 assimilation and enhanced biomass production.

  17. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy.

  18. Chromium speciation in coal and biomass co-combustion products.

    Science.gov (United States)

    Stam, Arthur F; Meij, Ruud; Te Winkel, Henk; Eijk, Ronald J van; Huggins, Frank E; Brem, Gerrit

    2011-03-15

    Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.

  19. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  20. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  1. Synthesis and analysis of biomass and net primary productivity in Chinese forests

    OpenAIRE

    Ni, Jian; Zhang, Xin-Shi; Scurlock, Jonathan

    2001-01-01

    International audience; An extant dataset is presented on biomass and net primary productivity (NPP) of 6 forest biomes, including 690 stands from 17 forest types of China. Data on latitude, longitude, elevation, field measurements of stand age, leaf area index (LAI) and total biomass were collected for 29 provinces from forestry inventory data of the Forestry Ministry of China, as well as a wide range of published literature. The individual site-based NPP was estimated from field biomass mea...

  2. Sustainable production of microalgae biomass in liquid digestates and by products from agro-food industries

    OpenAIRE

    Massa, Marina

    2016-01-01

    Globally, there is growing interest in microalgae production as innovative vegetable biomass rich in phytochemicals at high added value to apply in different commercial sectors (food, feed, nutraceutical, cosmetician and wastewaters depuration) and as future biodiesel source for the high lipid content and fatty acid profile of some species. To date the microalgae market for food and feed is a niche market but it is increasingly relevant and strictly correlate to their chemical com...

  3. Fast pyrolysis of biomass thermally pretreated by torrefaction

    Science.gov (United States)

    Torrefied biomass samples were produced from hardwood and switchgrass pellets using the biochar experimenter’s kit (BEK) reactor and analyzed for their utility as pretreated feedstock for biofuels production via fast pyrolysis. The energy efficiency for the BEK torrefaction process with propane gas ...

  4. Injection of Deuterium Pellets

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, P.; Andersen, S. A.

    1984-01-01

    A pellet injection system made for the TFR tokamak at Fontenay-aux-Roses, Paris is described. 0.12-mg pellets are injected with velocities of around 600-700 m/s through a 5-m long guide tube. Some details of a new light gas gun are given; with this gun, hydrogen pellets are accelerated...

  5. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  6. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  7. Pellet as a Technological Nutrient within the Circular Economy Model: Comparative Analysis of Combustion Efficiency and CO and NOx Emissions for Pellets from Olive and Almond Trees

    Directory of Open Access Journals (Sweden)

    Valentín Molina-Moreno

    2016-09-01

    Full Text Available This study analyzes the operation of Biomass System (BIO System technology for the combustion of pellets from almond and olive trees within the circular economy model. Its aims are the reduction of greenhouse gas emissions as well as waste removal and its energy use by reintroducing that waste into the production process as technological nutrient. In order to do so, combustion efficiency under optimal conditions at nominal power was analyzed. In addition, a TESTO 350-XL analyzer was employed to measure CO and NOx emissions. High combustion efficiency values were obtained, 87.7% and 86.3%, for pellets from olive tree and almond tree, respectively. The results of CO and NOx emission levels were very satisfactory. Under conditions close to nominal power, CO emission levels were 225.3 ppm at 6% O2 for pellet from almond tree and 351.6 ppm at 6% O2 for pellet from olive tree. Regarding NOx emissions, the values were 365.8 ppm at 6% O2 and 333.2 ppm at 6% O2 for pellets from almond tree and olive tree, respectively. In general, these values were below those legally established by current legislation in European countries. Therefore, BIO System technology is a perfectly feasible option in terms of energy use and circular economy.

  8. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  9. Biomass and fibre productivity evaluation of novel native warm season grasses

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, P.G. [Agriculture and Agri-Food Canada, Swift Current, SK (Canada); McElroy, A.R. [Agriculture Canada, Ottawa, ON (Canada). Grain and Oilseeds Branch; McCaughey, P. [Agriculture and Agri-Food Canada Research Centre, Brandon, MB (Canada)

    1997-07-01

    Biomass production and cellulose content of a range of switchgrass (Panicum virgatum L.) cultivars was discussed. In 1991 the U.S. Department of Energy identified switchgrass, a native warm-season grass, as the model biomass crop for ethanol production from lignocellulosic materials. A Canadian study was conducted in which 11 cultivars of switchgrass were seeded at small plots of dryland and irrigated sites in Manitoba and Saskatchewan. No switchgrass plants established themselves at the dryland site at Swift Current Saskatchewan. Biomass was determined by clipping above-ground biomass in September 1994 and 1996. Dry matter content and cellulose content was determined. Results showed that the biomass production of the cultivar Dacotah was less than cool-season grasses at test sites in Manitoba, and Saskatchewan. The high yields observed for cultivars adapted to southern or eastern regions were not sustainable in the semiarid prairie region of Canada. 8 refs., 2 tabs.

  10. New head process for non-HEU 99Mo production based on the oxidation of irradiated UO2-pellets forming soluble U3O8

    Directory of Open Access Journals (Sweden)

    Beyer Gerd Juergen

    2016-01-01

    Full Text Available All fission-based 99Mo producers worldwide are required to convert their 99Mo production processes from using highly enriched uranium to low-enriched uranium. At a recent IAEA meeting in Vienna, problems related to bottlenecks and target modification and optimization of low-enriched uranium-based 99Mo production processes were discussed. Ceramic UO2-pellets (as used in fuel were excluded from the discussion with the argument that this material cannot be dissolved under practically applicable conditions. In this paper, we suggest transforming the non-soluble ceramic UO2 fuel-pellets into the U3O8 form by simple oxidation and the use of the soluble U-oxide modification as the starting material for the 99Mo production processes. Due to the absence of Al, larger target quantities could be processed and the waste volume could still be kept small. The approach is known and proven in nuclear technology. In principle, this new head process can be connected to any of the presently used 99Mo production procedures.

  11. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  12. Challenges and perspectives for catalysis in production of diesel from biomass

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Søndergaard, Helle; Fehrmann, Rasmus;

    2011-01-01

    The production of biofuels is expected to increase in the future due to environmental concerns, accelerating oil prices and the desire to achieve independence from mineral oil sources. Of the proposed methods for diesel production from biomass, the esterification and transesterification of plant ...... gas of CO and H2 and liquefaction to alkanes via Fischer-Tropsch synthesis. Here, the current challenges and perspectives regarding catalysis and raw materials for diesel production from biomass are surveyed. © Future Science Ltd....

  13. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for indust

  14. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Nerantzis, Elias

    2013-01-01

    In the present study the potential of bioethanol production using carbohydrate-enriched biomass of the cyanobacterium Arthrospira platensis was studied. For the saccharification of the carbohydrate-enriched biomass, four acids (H2SO4, HNO3, HCl and H3PO4) were investigated. Each acid were used at...

  15. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  16. Production of Renewable Natural Gas from Waste Biomass

    Science.gov (United States)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  17. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O. [Enugu State Univ. of Science and Technology (Nigeria). Faculty of Applied Natural Sciences; Okafor, M.; Ezejiofor, E. [Nnamdi Azikiwe Univ., Awka (Nigeria). Dept. of Applied Microbiology

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  18. Evaluation of a pilot-scale wood torrefcaction plant based on pellet properties and Finnish market economics

    Directory of Open Access Journals (Sweden)

    Tapio Ranta, Jarno Föhr, Hanne Soininen

    2016-01-01

    Full Text Available In this study torrefaction was demonstrated at a Torrec Ltd. pilot plant located in Mikkeli, eastern Finland. The pilot plant with a nominal capacity of 10,000 tonnes/year began operation in August 2014. The torrefaction solution was a batch type process based on a vertical reactor, where biomass material flows by gravity without drives or actuators and torrefaction happens by steam inertization and accurate process control. Steam was supplied from the local biomass combined heat and power (CHP plant next to the pilot plant. The product quality of torrefied pellets was analysed by testing alternative local woody biomass sources, such as forest chips made from coniferous trees (spruce, pine and broadleaf (birch, as well as by-products such as veneer chips. Lower heating value as dry basis varied 18.47–20.53 MJ/kg with a moisture content of 4.41-8.60% for torrefied pellets. All raw materials were suitable for torrefied pellet production without binder addition. Noteworthy was good results also with hardwood species. The potential Finnish customers are CHP plants aiming to replace coal with pellets. In 2013 coal use was 31.2 TWh, where condensing was 15.3 TWh, CHP 14.2 TWh, and separate heat 1.6 TWh in Finland. If half of the current coal use in CHP would be replaced by biocoal, then Finnish potential bio-coal markets would be 7 TWh or 1.2 million tonnes of pellets/year. Aided by the results of this demonstration study and modelling of logistics it is possible to evaluate the competitiveness of torrefied pellets based on the local circumstances.

  19. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  20. Airborne measurements of biomass burning products over Africa

    Science.gov (United States)

    Helas, Guenter; Lobert, Juergen; Goldammer, Johann; Andreae, Meinrat O.; Lacaux, J. P.; Delmas, R.

    1994-01-01

    Ozone has been observed in elevated concentrations by satellites over hitherto believed 'background' areas. There is meteorological evidence that these ozone 'plumes' found over the Atlantic ocean originate from biomass fires on the African continent. Therefore we have investigated ozone and assumed precursor compounds over African regions. The measurements revealed large photosmog layers in altitudes between 1.5 and 4 km. Here we will focus on some results of ozone mixing ratios obtained during the DECAFE 91/FOS experiment and estimate the relevance of biomass burning as a source by comparing the strength of this source to stratospheric input.

  1. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2016-03-01

    Full Text Available The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating “greener” industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone, a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  2. Biomass for energy production. Economic evaluation, efficiency comparison and optimal utilization of biomass; Biomasse zur Energiegewinnung. Oekonomische Bewertung, Effizienzvergleich und optimale Biomassenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Zeddies, Juergen [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Landwirtschaftliche Betriebslehre; Schoenleber, Nicole

    2015-07-01

    An optimized and/or goal-oriented use of available biomass feedstock for energetic conversion requires a detailed analysis of bioenergy production lines according to technical and economic efficiency indicators. Accordingly, relevant parameters of selected production lines supplying heat, electricity and fuel have been studied and used as data base for an optimization model. Most favorable combination of bioenergy lines considering political and economic objectives are analyzed by applying a specifically designed linear optimization model. Modeling results shall allow evaluation of political courses of action.

  3. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Science.gov (United States)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  4. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    , modelling and computational fluid dynamics (CFD) simulations are discussed in detail. The literature survey and discussions are primarily pertaining to grate-fired boilers burning biomass, though these issues are more or less general. Other technologies (e.g., fluidized bed combustion or suspension...

  5. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  6. Biomass energy production. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Moore, P. W.

    1980-01-01

    These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.

  7. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hultberg, Malin; Jönsson, Helene Larsson; Bergstrand, Karl-Johan; Carlsson, Anders S

    2014-05-01

    In this study, the green microalga Chlorella vulgaris was exposed to monochromatic light at six different wavelengths in order to study the effect on biomass productivity and fatty acid content. A significantly higher amount of biomass by produced in the treatments with yellow, red and white light compared with blue, green and purple light. There were also significant differences in total lipid content and fatty acid profile between the treatments. The green light regime gave the lowest concentration of lipids, but increased the concentration of polyunsaturated fatty acids. Thus it can be concluded that light quality significantly affects biomass productivity, total lipid concentration and fatty acid profile in the microalga C. vulgaris.

  8. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared.

  9. A review on advances of torrefaction technologies for biomass processing

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bimal; Sule, Idris; Dutta, Animesh [University of Guelph, School of Engineering, Guelph, ON (Canada)

    2012-12-15

    Torrefaction is a thermochemical pretreatment process at 200-300 C in an inert condition which transforms biomass into a relatively superior handling, milling, co-firing and clean renewable energy into solid biofuel. This increases the energy density, water resistance and grindability of biomass and makes it safe from biological degradation which ultimately makes easy and economical on transportation and storing of the torrefied products. Torrefied biomass is considered as improved version than the current wood pellet products and an environmentally friendly future alternative for coal. Torrefaction carries devolatilisation, depolymerization and carbonization of lignocellulose components and generates a brown to black solid biomass as a productive output with water, organics, lipids, alkalis, SiO{sub 2}, CO{sub 2}, CO and CH{sub 4}. During this process, 70 % of the mass is retained as a solid product, and retains 90 % of the initial energy content. The torrefied product is then shaped into pellets or briquettes that pack much more energy density than regular wood pellets. These properties minimize on the difference in combustion characteristics between biomass and coal that bring a huge possibility of direct firing of biomass in an existing coal-fired plant. Researchers are trying to find a solution to fire/co-fire torrefied biomass instead of coal in an existing coal-fired based boiler with minimum modifications and expenditures. Currently available torrefied technologies are basically designed and tested for woody biomass so further research is required to address on utilization of the agricultural biomass with technically and economically viable. This review covers the torrefaction technologies, its' applications, current status and future recommendations for further study. (orig.)

  10. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.;

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...... for photofermentative production. Due to these constraints biological hydrogen production from biomass has so far not been considered a significant source in most scenarios of a future hydrogen-based economy. In this review we briefly summarize the current state of art of biomass-based hydrogen production and suggest...... a combination of a biorefinery for the production of multiple fuels (hydrogen, ethanol, and methane) and chemical catalytic technologies which could lead to a yield of 10-12 mol hydrogen per mol glucose derived from biological waste products. Besides the high hydrogen yield, the advantage of the suggested...

  11. Fungal protein and ethanol from lignocelluloses using Rhizopus pellets under simultaneous saccharification, filtration and fermentation (SSFF

    Directory of Open Access Journals (Sweden)

    Somayeh FazeliNejad

    2016-03-01

    Full Text Available The economic viability of the 2nd generation bioethanol production process cannot rely on a single product but on a biorefinery built around it. In this work, ethanol and fungal biomass (animal feed were produced from acid-pretreated wheat straw slurry under an innovative simultaneous saccharification, fermentation, and filtration (SSFF strategy. A membrane unit separated the solids from the liquid and the latter was converted to biomass or to both biomass and ethanol in the fermentation reactor containing Rhizopus sp. pellets. Biomass yields of up to 0.34 g/g based on the consumed monomeric sugars and acetic acid were achieved. A surplus of glucose in the feed resulted in ethanol production and reduced the biomass yield, whereas limiting glucose concentrations resulted in higher consumption of xylose and acetic acid. The specific growth rate, in the range of 0.013-0.015/h, did not appear to be influenced by the composition of the carbon source. Under anaerobic conditions, an ethanol yield of 0.40 g/g was obtained. The present strategy benefits from the easier separation of the biomass from the medium and the fungus ability to assimilate carbon residuals in comparison with when yeast is used. More specifically, it allows in-situ separation of insoluble solids leading to the production of pure fungal biomass as a value-added product.

  12. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    Science.gov (United States)

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  13. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Institute of Scientific and Technical Information of China (English)

    Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

    2011-01-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method.The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass.The product gas was a mixed gas containing 72%H2,26%CO2,1.9%CO,and a trace amount of CH4.It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%).The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O.In addition,the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  14. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Science.gov (United States)

    Li, Xing-long; Ning, Shen; Yuan, Li-xia; Li, Quan-xin

    2011-08-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  15. Methane and fertilizer production from seaweed biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  16. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes.

  17. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  18. The Development Situation of Screening Technology for Biomass Pellet Fuel%农林生物质原料筛分技术与设备发展现状

    Institute of Scientific and Technical Information of China (English)

    张妍; 赵立欣; 郭占斌; 杨宏志; 孟海波; 姚宗路

    2015-01-01

    针对目前生物质原料中杂质多、筛分设备不匹配等问题,对各类生物质原料进行分类,总结国内外筛分技术的发展现状。同时,通过对杂质的特性分析,针对目前的筛分方法、筛分机械进行相对应的应用,旨在提出一种适合我国生物质成型燃料大规模生产的筛分技术及配套设备,为生物质原料清选工艺提供技术支撑。%For the current biomass feedstock has many impurities , screening equipment does not match the supply of bio-mass feedstock and the other issues , this thesis classifies various types of biomass feedstock , summarizes screening tech-nology development at home and abroad .And through the analysis of the characteristics of impurities , for the current screening methods and screening machinery , the thesis is expected to propose a screening technology and equipment suit-able for Chinese large-scale production of biomass briquettes , to provide technical support for cleaning process .

  19. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  20. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells.

    Science.gov (United States)

    Efremenko, E N; Nikolskaya, A B; Lyagin, I V; Senko, O V; Makhlis, T A; Stepanov, N A; Maslova, O V; Mamedova, F; Varfolomeev, S D

    2012-06-01

    The purpose of this work was to study the possible use of pretreated biomass of various microalgae and cyanobacteria as substrates for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum cells immobilized into poly(vinyl alcohol) cryogel. To this end, the biochemical composition of photosynthetic microorganisms cultivated under various conditions was studied. The most efficient technique for pretreating microalgal biomass for its subsequent conversion into biofuels appeared to be thermal decomposition at 108 °C. For the first time the maximum productivity of the ABE fermentation in terms of hydrogen (8.5 mmol/L medium/day) was obtained using pretreated biomass of Nannochloropsis sp. Maximum yields of butanol and ethanol were observed with Arthrospira platensis biomass used as the substrate. Immobilized Clostridium cells were demonstrated to be suitable for multiple reuses (for a minimum of five cycles) in ABE fermentation for producing biofuels from pretreated microalgal biomass.

  1. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    Science.gov (United States)

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient.

  2. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover.

    Science.gov (United States)

    Hoover, Amber N; Tumuluru, Jaya Shankar; Teymouri, Farzaneh; Moore, Janette; Gresham, Garold

    2014-07-01

    Pelletization process variables, including grind size (4, 6mm), die speed (40, 50, 60 Hz), and preheating (none, 70°C), were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also, the durability of the pelletized AFEX corn stover was>97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6mm) had similar or lower sugar yields. Pellets generated with 4mm AFEX-treated corn stover, a 60Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.

  3. Effects of Chemical Parameters on Spirulina platensis Biomass Production: Optimized Method for Phycocyanin Extraction

    Directory of Open Access Journals (Sweden)

    B. Vasanthi

    2008-01-01

    Full Text Available The micro alga, Spirulina is a rich source of protein, which is used as a protein supplement for humans, chicks and also in aquaculture. Among the cultures, CS-1 registered maximum biomass production and S-20 showed highest biomass production among the local isolates. Optimum temperature of 35C was the best for maximum biomass production of S. platensis cultures. Among the cultures CS-1 culture, put forth maximum biomass production at 35C. The biomass production of all S. platensis cultures was maximum at pH 10.0. Among the cultures, CS-1 recorded maximum biomass at pH 10.0. S. platensis culture S-20 showed highest biomass production among the local isolates. S. platensis cultures were grown under different light wave lengths ranging from 340-700 nm and observed that it grows best in red light but later on there was no significant difference between the biomass produced under red and normal white lights. S. platensis culture CS-1 has shown the highest chlorophyll, carotenoids and phycocyanin and protein contents. When the extracted protein was resolved on a 15% SDS-PAGE gel, the cultures have polypeptide subunits ranging from the molecular weights 20 to 95 kDa. The liquid nitrogen method was found to be the best by extraction higher quantity of phycocyanin from all S. platensis cultures. Among the cultures, S. platensis culture CS-1 recorded the highest phycocyanin content and among the local isolates SM-2 showed the highest pigment content. SDS-PAGE analysis of phycocyanin pigment revealed two characteristic bands with a molecular weights of 14.3 and 20.1 kDa approximately for a and subunits.

  4. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  5. SBSTM 铬矿球团生产工艺分析%Productive Process Analysis of SBSTM Chromic-ore Pellets

    Institute of Scientific and Technical Information of China (English)

    张淑华

    2015-01-01

    SBSTM is developed by Outotec company in Finland,which is the more mature production process of producing chromite pelletizing in the world.This process has completely solved the problem of the applying of the ore fines which is bottleneck of high carbon Ferro-chrome production.SBSTM process has a great advantage and broad application prospect.%芬兰 Outotec 公司研发的 SBSTM(Steel Belt Sintering)钢带焙烧铬矿球团技术是国际上比较成熟的铬铁球团生产工艺,它彻底解决了高碳铬铁生产的瓶颈—粉矿使用问题,应用前景广阔。

  6. Genetic selection of American sycamore for biomass production in the mid-south

    Science.gov (United States)

    Land, S. B., Jr.

    1982-09-01

    Biomass prediction equations were developed to examine genetic, site, and propagule effects on above stump biomass. Accuracy and precision of subsampling procedures which utilized green weight ratios were high for stem wood and bark, slightly less for limb components, and poorest for the leaf component. The best predictor variables for stem biomass equations were DBH2, (DBH), and (DBH)2, and DBH)2 times height. Crown width, crown surface area, and (DBH)2 times the crown length/tree height ratio were more appropriate predictors for limb of leaf biomass. Specific gravity and moisture content varied within the tree, among sites, and among families within seed sources, but not among sources. Survival, biomass per tree, and biomass per hectare were lowest for trees established from seedling top cuttings, higher for top pruned seedlings, and highest for whole seedlings. Site differences were very large for biomass production, with the best site having nearly as much stem plus limb dry weight per hectare at age five as three other sites combined. Geographic seed sources from south of each planting site produced more biomass per hectare than sources from north of the site. Family differences within sources were significant, as were site-by-family interactions.

  7. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  8. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  9. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  10. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik;

    2011-01-01

    a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5–9-fold increase...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  11. Production of biomass by Spirulina at different groundwater type. Case of Ouargla-Southeast Algeria

    Science.gov (United States)

    Saggaï, Ali; Dadamoussa, Belkheir; Djaghoubi, Afaf; Bissati, Samia

    2016-07-01

    In this paper, Spirulina platensis was cultivated to estimate the biomass production with different groundwater type in Ouargla. Growth experiments were undertaken in flasks under shelter in outdoor condition. For this, the temperature, pH and salinity value was recorded between two days of growth. Biomass concentration in the culture media was calculated by measuring the DO625. The combination of the Mioplocen water with the nutriments gave the highest values of biomass concentration with avenge of 1.78 ±0.91g/l. All the three-type water supported the growth of Spirulina that appeared as good as a culture media.

  12. Effects of nurse trees, spacing, and tree species on biomass production in mixed forest plantations

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Meilby, Henrik

    2016-01-01

    Growing concern about increasing concentrations of greenhouse gases in the atmosphere, and resulting global climate change, has spurred a growing demand for renewable energy. In this study, we hypothesized that a nurse tree crop may provide additional early yields of biomass for fuel, while...... observed among the different sites (P growing seasons. Compared to pure beech stands, mixtures with beech and Japanese larch on average produced 4.4 t ha−1 yr−1 more biomass. The additional biomass production was similar to what was obtained in stands...... in the longterm leading to deciduous stands that are believed to better meet the demands for other ecosystem services. Ten different species combinations were planted, with two different stocking densities, at three different sites in Denmark. Significant differences, with regard to biomass production, were...

  13. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  14. Biomass production and nutritional value of Artemia sp. (Anostraca: Artemiidae) in Campeche, México.

    Science.gov (United States)

    Maldonado-Montiel, Teresita D N J; Rodríguez-Canché, Leticia G

    2005-01-01

    Biomass of the crustacean Artemia sp. has multiple uses. The biochemical composition and biomass production of Artemia grown from cysts produced by a native population from Real de Salinas were evaluated under laboratory conditions. Nauplii (instar I) were stocked at density of 10 nauplii/ml in 1.5 l tanks, fed with rice bran from day 2 to day 6, and with the microalgae Tetraselmis suecica from day 7 to day 15. At the end of the trial (day 15) the average length was 5.34 mm, biomass production was 15.72 g/l (wet weight), and survival was 79%. The proximal analysis and biochemical composition of Artemia biomass indicated that its nutrient percentages are closely similar to Artemia from other regions, making this species a suitable food for cultured fish and crustacean.

  15. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps...... in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal...... of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research...

  16. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  17. Exposure conditions, lung function and airway symptoms in industrial production of wood pellets. A pilot project; Exponeringsfoerhaallanden, lungfunktion och luftvaegsbesaer vid industriell produktion av traepellets. Ett pilotprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Edman, Katja; Loefstedt, Haakan; Berg, Peter; Bryngelsson, I.L.; Fedeli, Cecilia; Selden, Anders [Oerebro Univ. Hospital (Sweden). Yrkes- och miljoemedicinska kliniken; Eriksson, Kaare [Umeaa Univ. Hospital (Sweden); Holmstroem, Mats; Rask- Andersen, Anna [Uppsala Univ. Hospital (Sweden)

    2002-02-01

    The production of wood pellets is a relatively new branch of the Swedish wood industry and has increased during the last years. A pilot study was performed to investigate the prevalence of airway symptoms, lung function and exposure among all 39 men employed in industrial production of wood pellets at six companies. The study included a questionnaire, medical examination, registration of nasal-PEF (peak expiratory flow) during a week, allergy screening (Phadiatop) and lung function (spirometry) before and after work shift. The results were compared with different reference data from other Swedish studies. Exposure measurements of monoterpenes and wood dust on filter and with a data logger (DataRAM) were also performed. The study group reported a higher frequency of cough without phlegm, awakening due to breathlessness and current asthma medication compared with reference data. For five of the six participants with physician-diagnosed asthma the disease debuted before the current employment and the results did not indicate an unusual asthma morbidity. Spirometry showed lower lung function before work shift than expected. However no difference over work shift was observed. A negative and non-significant correlation was seen between time with current work task and lung function. The study group reported a higher frequency of nasal symptoms mostly blockage, sneezing and dryness compared with reference data. The registrations of nasal-PEF did not show any differences between work and spare time. The prevalence of positive Phadiatop (23 %) did not differ from reference data. No association between exposure (wood dust and monoterpenes) and acute effects on lung function was observed. The wood dust exposure (0.16-19 mg/m{sup 3}) was high and 11 of 24 measurements exceeded the present Swedish occupational exposure limit of 2 mg/m{sup 3}. Peak exposures could be identified, e.g. at cleaning of engines with compressed air, with the DataRAM. The exposure to monoterpenes (0

  18. Additives initiate selective production of chemicals from biomass pyrolysis.

    Science.gov (United States)

    Leng, Shuai; Wang, Xinde; Wang, Lei; Qiu, Huizhe; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo; Ma, Fengyun; Liu, Jingmei; Wang, Qiang

    2014-03-01

    To improve chemicals selectivity under low temperature, a new method that involves the injection of additives into biomass pyrolysis is introduced. This method allows biomass pyrolysis to achieve high selectivity to chemicals under low temperature (300°C), while nothing was obtained in typical pyrolysis under 300°C. However, by using the new method, the first liquid drop emerged at the interval between 140°C and 240°C. Adding methanol to mushroom scrap pyrolysis obtained high selectivity to acetic acid (98.33%), while adding ethyl acetate gained selectivity to methanol (65.77%) in bagasse pyrolysis and to acetone (72.51%) in corncob pyrolysis. Apart from basic chemicals, one high value-added chemical (2,3-dihydrobenzofuran) was also detected, which obtained the highest selectivity (10.33%) in corncob pyrolysis through the addition of ethyl acetate. Comparison of HZSM-5 and CaCO3 catalysis showed that benzene emerged in the liquid because of the larger degree of cracking and hydrodeoxygenation over HZSM-5.

  19. Application of sea sand in the pellet shaft furnace in the production%海砂在球团竖炉生产中的应用

    Institute of Scientific and Technical Information of China (English)

    南文哲; 徐毅; 帅博

    2014-01-01

    近年来随着钢铁行业的发展,富矿资源逐渐枯竭,而铁矿石需求却在日益增加,钢铁企业的成本面临着巨大压力,寻找低价矿成为了钢铁行业的重点。海砂储量丰富,除了含有较高的铁元素外,钒钛的含量也较高,且价格低廉。在竖炉球团生产中应用海砂矿,不但可以大幅度降低球团矿成本,其中富含的钒钛还能给高炉带来保护炉缸的效果,成为当前经济料生产条件下高炉护炉、稳定生产的必需料和急需料。%in recent years, with the development of iron and steel industry,iron ore resources are exhausted gradually, and the iron ore demand is increasing, the cost of iron and steel enterprises are faced with tremendous pressure, looking for low-cost ore became the focus of the iron and steel industry. Sand rich reserves, in addition to iron containing high, vanadium and titanium content is higher, and the price is low. Application of sand deposit in shaft furnace pelletizing production, can greatly reduce the cost of pellet, which is rich in vanadium titanium also has protection effect to the blast furnace hearth, become the current economic aggregate production conditions, protection of blast furnace,the stable production of essential materials and in urgent need of material.

  20. Influence of plant community composition on biomass production in planted grasslands.

    Science.gov (United States)

    Henschell, Max A; Webster, Christopher R; Flaspohler, David J; Fortin, Chad R

    2015-01-01

    United States energy policy mandates increased use of renewable fuels. Restoring grasslands could contribute to a portion of this requirement through biomass harvest for bioenergy use. We investigated which plant community characteristics are associated with differences in biomass yield from a range of realistic native prairie plantings (n = 11; i.e., conservation planting, restoration, and wildlife cover). Our primary goal was to understand whether patterns in plant community composition and the Floristic Quality Index (FQI) were related to productivity as evidenced by dormant season biomass yield. FQI is an objective measure of how closely a plant community represents that of a pre-European settlement community. Our research was conducted in planted fields of native tallgrass prairie species, and provided a gradient in floristic quality index, species richness, species diversity, and species evenness in south-central Wisconsin during 2008 and 2009. We used a network of 15 randomly located 1 m2 plots within each field to characterize the plant community and estimate biomass yield by clipping the plots at the end of each growing season. While plant community composition and diversity varied significantly by planting type, biomass yield did not vary significantly among planting types (ANOVA; P >0.05). Biomass yield was positively correlated with plant community evenness, richness, C4 grass cover, and floristic quality index, but negatively correlated with plant species diversity in our multi-season multiple linear mixed effects models. Concordantly, plots with biomass yield in the lowest quartile (biomass yield biomass yield > 5800 kh/ha). Our results suggest that promoting the establishment of fields with high species evenness and floristic quality may increase biomass yield, while simultaneously supporting biodiversity.

  1. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  2. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  3. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  4. Sustainable Biomass Potentials for Food-Feed-Fuels in the Future

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2012-01-01

    Biomass sources as Woodchips – Wood pellets, Straw – Bio pellets, animal manure, farm-by products and new cropping systems are integrated in our society’s needs. The mindset for shifting from fossil fuels based economies into sustainable energy economies already exist. Bioenergy utilization systems...... has for many years been forming the basis for the change together with wind and solar energy. These resources still contains great potentials for energy supply chains in increasing areas of Europe and the World. Biomass sustainability issues could be solved by developing the international...

  5. Energy biomass tree seedling production study. Fuels from woody biomass. Progress report, September 1978-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Foote, K.R.

    1980-03-01

    The research to date has centered around the establishment of baseline growing conditions for a number of species of tree seedlings, primarily deciduous hardwoods. As these baseline conditions were established for each specie, the shoot and root environments were manipulated in an attempt to establish techniques to increase seedling growth and reduce production times. Seedlings were outplanted in an attempt to establish baseline survival rates for seedlings grown in totally controlled environments. Studies to determine the optimum container for tree seedling production have been run and will continue as other containers are identified and made available. The most significant of the research results has been in the maximization of seedling growth. Seedling production times have been decreased in some species by as much as 50% under the baseline production times. Controlled environment production techniques provide for plant densities as high as 144 seedlings per square foot of growing space. Investigations of growing media indicate a significant species specific responses. Preliminary results of outplanting indicate survival rates as high as 90% plus.

  6. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  7. Optimal processing pathway for the production of biodiesel from microalgal biomass: A superstructure based approach

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case with different choices of objective functions. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed...

  8. Formic acid production from carbohydrates biomass by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J; Kishita, A; Tohji, K; Enomoto, H [Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Jin, F, E-mail: yun@bucky1.kankyo.tohoku.ac.j [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200091 (China)

    2010-03-01

    The formation of formic acid or formate salts by hydrothermal oxidation of model biomass materials (glucose, starch and cellulose) was investigated. All experiments were conducted in a batch reactor, made of SUS 316 tubing, providing an internal volume of 5.7 cm{sup 3}. A 30 wt% hydrogen peroxide aqueous solution was used as an oxidant. The experiments were carried out with temperature of 250{sup 0}C, reaction time varying from 0.5 min to 5 min, H{sub 2}O{sub 2} supply of 240%, and alkaline concentration varying from 0 to 1.25 M. Similar to glucose, in the cases of the oxidation of hydrothermal starch and cellulose, the addition of alkaline can also improve the yield of formic acid. And the yield were glucose>starch> cellulose in cases of with or without of alkaline addition.

  9. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    Science.gov (United States)

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  10. Bio-oil production from biomass via supercritical fluid extraction

    Science.gov (United States)

    Durak, Halil

    2016-04-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  11. Fresh pasta production enriched with Spirulina platensis biomass

    Directory of Open Access Journals (Sweden)

    Ailton Cesar Lemes

    2012-10-01

    Full Text Available The aim of this work was to study the enrichment of Spirulina platensis in wheat flour to prepare fresh pasta to evaluate the green color and nutritional enrichment in addition to functional properties due to the presence of the bioactive compounds in the cyanobacterium. The pastas were evaluated for the centesimal composition, microbiological contamination, sensorial acceptance and technological characteristics such as cooking time, water absorption, volume displacement and loss of solids. The superior protein contents and the satisfactory technological and sensorial attributes compared with the control with no cyanobacterium showed the usefulness of incorporating S. platensis biomass in the fresh pastas. The microbiological quality was in compliance with the legislation in force. The sensorial quality was considered satisfactory (“liked very much” and purchase intention high (“probably would buy”.

  12. Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Robert; Thyrel, Mikael; Lestander, Torbjoern A. [Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, Box 4097, SE-904 03 Umeaa (Sweden); Sjoestroem, Michael [Department of Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden)

    2009-09-15

    Sawdust of conifers as a by-product from saw mills is the most commonly used biomaterial for pellet production in Sweden today. Experiences from the biofuel pellet industry indicate that different biomaterial properties influence the final pellet quality. A systematic study was conducted where five factors were varied according to a two level fractional factorial design. The factors were: tree species (Scots pine, Norway spruce); origin of growth-place (latitudes 57 and 64 N); storage time of sawdust (0 and 140 days), moisture content (9 and 12%) and steam treatment (2 and 6 kg/h). The measured responses bulk density and mechanical durability represented the pellet quality while the press current and the fines produced in the pelletizing process were measures of the pelletizing property. The results showed that low moisture content and long storage time resulted in increased bulk densities and press currents. For mechanical durability and fines, a long storage time and intermediate moisture contents were found favourable. In addition, indications were found that the reduction of fatty and resin acids during the storage also influenced the pelletizing properties and the pellet quality. (author)

  13. DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh

    2013-12-31

    This report is the final reporting installment of the DOE project titled DEMONSTRATION OF THE VIABILITY AND EVALUATION OF PRODUCTION COSTS FOR BIOMASS-INFUSED COAL BRIQUETTES. This rerport includes a summary of the work completed to date including the experimental methods used to acheive the results, discussions, conclusions and implications of the final product delivered by the project.

  14. Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030–2050

    NARCIS (Netherlands)

    Ren, T.; Daniëls, B.; Patel, M.K.; Blok, K.

    2009-01-01

    Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 2030–20

  15. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor

    NARCIS (Netherlands)

    Tuantet, K.; Temmink, B.G.; Zeeman, G.; Janssen, M.G.J.; Wijffels, R.H.; Buisman, C.J.N.

    2014-01-01

    Due to the high nitrogen and phosphorus content, source-separated urine can serve as a major nutrient source for microalgae production. The aim of this study was to evaluate the nutrient removal rate and the biomass production rate of Chlorella sorokiniana being grown continuously in urine employing

  16. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  17. Biomass Performance : Monitoring and Control in Pharmaceutical Production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this thesis p

  18. Utilisation of biomass gasification by-products for onsite energy production.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency.

  19. Optimization of backfill pellet properties AASKAR DP2 - Laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Linus; Sanden, Torbjoern [Clay Technology AB, Lund (Sweden)

    2012-12-15

    Bentonite pellets are planned to be used as a part of the backfill in the Swedish spent nuclear fuel deep repository concept KBS-3. This report describes testing and evaluation of different backfill pellet candidates. The work completed included testing of both pellet material and pellet type. The materials tested were sourced from India (ASHA), Greece (IBECO, 2 products) and Wyoming USA (MX-80 clay). The majority of the tests were completed on the ASHA clay as well as the IBECO-RWC-BF products, with only limited testing of the others. The pellets tested were manufactured using both extrusion and roller compaction techniques and had different sizes and geometries. The following tests have been performed and are presented in this report: 1. General tests. Water content, bulk density and dry density have been determined for both the pellet filling and the individual pellets. The compressibility of the pellet filling was tested with CRS-tests and the strength of the individual pellets was tested with a special compression test. The water content varied from 11.3% to 18.7% and was highest for the extruded pellets. The dry density was somewhat higher for the roller-compacted pellets and their compressibility was lower. The strength of the individual pellets was generally higher for the extruded pellets. 2. Erosion. The pellet filling will be exposed to groundwater inflow when installed in the tunnel. This flow could possibly cause significant erosion on the pellet filling. Erosion tests have been performed with comparisons in erosion resistance made on the various material- and pellet-types. The influence of variations in water salinity and flow rates was also tested. The IBECO extruded 6- and 10- mm diameter rods and the compacted Posiva spec.-A pellet filling seem to have the lowest tendency to erode. It is also the IBECO extruded pellet filling that withstands variations in water salinity and flow rates best. 3. Water storing capacity. The pellet filling

  20. Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant

    Directory of Open Access Journals (Sweden)

    Anas Zyadin

    2015-04-01

    Full Text Available The main objectives of this socio-technical study are to investigate the Indian farmers’ biomass production capacities and their perceptions and willingness to supply their surplus biomass to fuel an envisioned biomass-based power plant in three selected Indian states: Maharashtra, Madhya Pradesh and Tamil Nadu. For doing so, 471 farmers (about one-third from each state have been interviewed in the field with info-sheet filled in by the field investigators. The farmers from all of the states appeared very much willing to sell their surplus biomass directly to a power plant. The farmers seem to depreciate the involvement of a middleman in the biomass procurement process. The farmers, however, appeared to highly appreciate a community-based association to regulate the biomass prices, with varying perceptions regarding government intervention. The majority of the farmers perceived the establishment of a biomass-based power plant in their region with positive economic outcomes. The farmers identified several barriers to supply biomass to a power plant where transportation logistics appeared to be the main barrier. The study recommends considering biomass collection, storage and transportation logistics as a fundamental segment of any envisioned investment in a biomass-based power plant. Biomass processing, such as pelletization or briquetting is recommended for efficient transportation of biomass at longer distances to reduce the transportation costs. The study further encourages the establishment of a farmers’ association aimed at collecting and selling biomass in agriculture areas predominant for small land holdings.

  1. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  2. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.

    Science.gov (United States)

    Zhu, J Y; Pan, Xuejun; Zalesny, Ronald S

    2010-07-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature.

  3. Challenges for the production of bioethanol from biomass using recombinant yeasts.

    Science.gov (United States)

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2015-01-01

    Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.

  4. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    Science.gov (United States)

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production.

  5. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  6. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  7. High-rate behaviour of iron ore pellet

    Directory of Open Access Journals (Sweden)

    Gustafsson Gustaf

    2015-01-01

    Full Text Available Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  8. Upgrading Fuel Properties of Biomass by Torrefaction

    DEFF Research Database (Denmark)

    Shang, Lei; Holm, Jens Kai

    biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels......Torrefaction is a mild thermal (200 – 300 ÛC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability...... and hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss...

  9. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  10. Oligosaccharides and monomeric carbohydrates production from olive tree pruning biomass.

    Science.gov (United States)

    Mateo, Soledad; Puentes, Juan G; Sánchez, Sebastián; Moya, Alberto J

    2013-04-02

    Using the severity factor, it has been possible to study cellulose and hemicellulose fractional conversion, sugar yields change and oligosaccharides variation through olive tree pruning biomass pretreatments with acid or liquid hot water under pressure. The temperatures tested were in the range 180-230°C, operation time varying between 0 and 30min and acid concentration used did not exceed 0.05M. Complete hemicellulose solubilization in autohydrolysis was achieved using severity factors (logR0) close to 3.9 (most sugars are like oligomers), while if sulfuric acid 0.025M is employed, this parameter could be smaller (≥3.4). With these treatments, we have obtained cellulose conversions between 30 and 42% from liquid hot water experiments, 40-51% with sulfuric acid 0.025M and 42-57% when the acid concentration was 0.05M. The best results in terms of maximum yield in total sugars, d-glucose and d-xylose, with a low amount of acetic acid and hydroxymethylfurfural, was obtained at 200°C, 0min (what means that there is no time of temperature maintenance, only heating and cooling) and H2SO4 0.025M.

  11. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata.

  12. Synergies between bio- and oil refineries for the production of fuels from biomass.

    Science.gov (United States)

    Huber, George W; Corma, Avelino

    2007-01-01

    As petroleum prices continue to increase, it is likely that biofuels will play an ever-increasing role in our energy future. The processing of biomass-derived feedstocks (including cellulosic, starch- and sugar-derived biomass, and vegetable fats) by catalytic cracking and hydrotreating is a promising alternative for the future to produce biofuels, and the existing infrastructure of petroleum refineries is well-suited for the production of biofuels, allowing us to rapidly transition to a more sustainable economy without large capital investments for new reaction equipment. This Review discusses the chemistry, catalysts, and challenges involved in the production of biofuels.

  13. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account...... the microbiology and biochemistry of the processes....

  14. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    Science.gov (United States)

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways.

  15. Development of Value-Added Products from Residual Algae to Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Craig [Sapphire Energy, San Diego, CA (United States)

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  16. Biomass production of young lodgepole pine (Pinus contorta var. latifolia stands in Latvia

    Directory of Open Access Journals (Sweden)

    Jansons A

    2013-01-01

    Full Text Available Biomass as a source of renewable energy is gaining an increasing importance in the context of emission targets set by the European Union. Large areas of abandoned agricultural land with different soils are potentially available for establishment of biomass plantations in the Baltic states. Considering soil and climatic requirements as well as traits characteristic for lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm and the scarcity of published knowledge, we assessed the above-ground biomass of Pinus contorta in comparison to that of native Scots pine (Pinus sylvestris L. and factors affecting biomass production. Data were collected in 3 experimental trials, located in two sites in central part of Latvia: Zvirgzde and Kuldiga (56°41’ N, 24°28’ E and 57°03’ N, 21°57’ E, respectively. Trials were established with density 5000 tree ha-1, using seed material from Canada (50°08’-60°15’ N, 116°25’-132°50’ W and two Pinus contorta stands with unknown origin growing in Latvia. Results reveal that absolute dry aboveground biomass of Pinus contorta reaches 114 ± 6.4 t ha-1 at age 16 on a fertile former arable land, 48 ± 3.6 and 94 ± 9.4 t ha-1 at age 22 and 25, respectively, on a sandy forest land (Vacciniosa forest type. The biomass is significantly (p < 0.01 and considerably (more than two-fold higher than that of the native Pinus sylvestris and the productivity is similar (in fertile soils or higher (on poor soils than reported for other species in energy-wood plantations. Provenance was a significant factor affecting the above-ground biomass, and the ranking of provenances did not change significantly between different soil conditions. It provides opportunities for further improvement of productivity using selection.

  17. Geographic and habitat origin influence biomass production and storage translocation in the clonal plant Aegopodium podagraria.

    Directory of Open Access Journals (Sweden)

    Tina D'Hertefeldt

    Full Text Available Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more (14C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants.

  18. Geographic and habitat origin influence biomass production and storage translocation in the clonal plant Aegopodium podagraria.

    Science.gov (United States)

    D'Hertefeldt, Tina; Eneström, Johanna M; Pettersson, Lars B

    2014-01-01

    Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more (14)C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants.

  19. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production.

    Science.gov (United States)

    González-Fernández, C; Sialve, B; Bernet, N; Steyer, J P

    2012-04-01

    Ultrasound at 20Hz was applied at different energy levels (Es) to treat Scenedesmus biomass, and organic matter solubilization, particle size distribution, cell disruption and biochemical methane potential were evaluated. An Es of 35.5 and 47.2MJ/kg resulted in floc deagglomeration but no improvement in methane production compared to untreated biomass. At an Es of 128.9, cell wall disruption was observed together with a 3.1-fold organic matter solubilization and an approximately 2-fold methane production in comparison with untreated biomass. Thermal pretreatment at 80°C caused cell wall disruption and improved anaerobic biodegradability 1.6-fold compared to untreated biomass. Since sonication caused a temperature increase in samples to as high as 85°C, it is likely that thermal effects accounted for much of the observed changes in the biomass. Given that ultrasound treatment at the highest Es studied only increased methane production by 1.2-fold over thermal treatment at 80°C, the higher energy requirement of sonication might not justify the use of this approach over thermal treatment.

  20. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    Science.gov (United States)

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil.

  1. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production.

    Science.gov (United States)

    Khan, Muhammad Imran; Lee, Moon Geon; Shin, Jin Hyuk; Kim, Jong Deog

    2017-12-01

    Microalgae are considered to be the future promising sources of biofuels and bio products. The algal carbohydrates can be fermented to bioethanol after pretreatment process. Efficient pretreatment of the biomass is one of the major requirements for commercialization of the algal based biofuels. In present study the microalga, M. aeruginsa was used for pretreatment optimization and bioethanol production. Treatment of algal biomass with CaO before acid and/or enzymatic hydrolysis enhanced the degradation of algal cells. Monomeric sugars yield was increased more than twice when biomass was pretreated with CaO. Similarly, an increase was noted in the amount of fermentable sugars when biomass was subjected to invertase saccharification after acid or lysozyme pretreatment. Highest yield of fermentable sugars (16 mM/ml) in the centrifuged algal juice was obtained. 4 Different microorganisms' species were used individually and in combination for converting centrifuged algal juice to bioethanol. Comparatively higher yield of bioethanol (60 mM/ml) was obtained when the fermenter microorganisms were used in combination. The results demonstrated that M. arginase biomass can be efficiently pretreated to get higher yield of fermentable sugars for enhanced yield of bioethanol production.

  2. Maximum hydrogen production from genetically modified microalgae biomass

    Science.gov (United States)

    Vargas, Jose; Kava, Vanessa; Ordonez, Juan

    A transient mathematical model for managing microalgae derived H2 production as a source of renewable energy is developed for a well stirred photobioreactor, PBR. The model allows for the determination of microalgae and H2 mass fractions produced by the PBR in time. A Michaelis-Menten expression is proposed for modeling the rate of H2 production, which introduces an expression to calculate the resulting effect on H2 production rate after genetically modifying the microalgae. The indirect biophotolysis process was used. Therefore, an opportunity was found to optimize the aerobic to anaerobic stages time ratio of the cycle for maximum H2 production rate, i.e., the process rhythm. A system thermodynamic optimization is conducted with the model equations to find accurately the optimal system operating rhythm for maximum H2 production rate, and how wild and genetically modified species compare to each other. The maxima found are sharp, showing up to a ~60% variation in hydrogen production rate within 2 days around the optimal rhythm, which highlights the importance of system operation in such condition. Therefore, the model is expected to be useful for design, control and optimization of H2 production. Brazilian National Council of Scientific and Technological Development, CNPq (project 482336/2012-9).

  3. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  4. Lutein production from biomass: marigold flowers versus microalgae.

    Science.gov (United States)

    Lin, Jian-Hao; Lee, Duu-Jong; Chang, Jo-Shu

    2015-05-01

    Microalgae have faster growth rates and more free lutein than marigold flowers, the current source of lutein. However, no commercial lutein production uses microalgae. This review compares lutein content, cultivation, harvesting, cell disruption, and extraction stages of lutein production using marigold flowers and those using microalgae as feedstock. The lutein production rate of microalgae is 3-6 times higher than that of marigold flowers. To produce 1 kg of pure lutein, marigolds need more land and water, but require less nutrients (N, P, K) and less energy than microalgae. Since lutein is tightly bound in microalgae and microalgae are small, cell disruption and subsequent extraction stages consume a considerable amount of energy. Research and development of affordable lutein production from microalgae are discussed.

  5. Buffers for biomass production in temperate European agriculture

    DEFF Research Database (Denmark)

    Christen, Benjamin; Dalgaard, Tommy

    2013-01-01

    , environmental pressures from intensive agriculture and policy developments. Use of conservation buffers by farmers outside of designated schemes is limited to date, but the increasing demand for bioenergy and the combination of agricultural production with conservation calls for a much wider implementation...... effective for pesticide removal and farmland biodiversity conservation with a high potential for low-input fuel, feed, or fibre production. Landscape amenities, sporting opportunities, and a display of land stewardship are additional benefits....

  6. Forest biomass density, utilization and production dynamics in a western Himalayan watershed

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar Sharma; Prem Lall Sankhayan; Ole Hofstad

    2008-01-01

    There is enough evidence to show that the forest biomass has decreased significantly in the Indian Himalayan state of Himachal Pradesh. The government has responded through restrictive measures to check this decline. Using tree biomass as proxy for degradation, we assessed the current state of biomass within dominant land use types and examined its implications for sustainability. The highest above-ground mean tree biomass density of 1158 t·ha-1 was recorded for the reserved forest followed by 728, 13, 11, 8, 5 and 3 t·ha-1 in the protected forest, fallow land, cultivated-unirrigated land, grassland, orchard land and cultivated-irrigated land respectively. Of the total accessible biomass, only 0.31% was extracted annually by the local people for fuel, fodder and other uses. Though, the current level of extraction may be sustainable in the short run, insufficient regeneration is observed for long term sustainability. Forest biomass production was simulated for the next 30 years with a logistic growth model and the relative significance of input variables in influencing system behaviour was analysed through sensitivity analysis. The model results highlighted the declining forest resources in the long run. Positive response through appropriate government policies can, however, change the scenario for the better.

  7. Production of Leuconostoc oenos Biomass under pH Control †

    Science.gov (United States)

    Champagne, Claude P.; Gardner, Nancy; Doyon, Gilles

    1989-01-01

    Leuconostoc oenos was grown on apple juice-based media. The effect of pH control on metabolism and biomass production was studied. Without pH control, L. oenos acidified the apple juice media to approximately pH 3.6. More than 75% of the malic acid was used under these conditions, but less than half of the carbohydrates was assimilated. Under pH control, biomass yields increased by 60%; most of the malic acid was used, but high levels of unfermented carbohydrates remained. The addition of tomato juice, vitamins, nucleotides, Mn+, and malic acid did not permit further increases in the cell counts; however, malic acid did induce further acidification. Growth without pH control favored a more homofermentative metabolism. Biomass production was higher in filter-sterilized apple juice media compared with that in the autoclaved media. PMID:16348025

  8. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  9. Carbon balance of rewetted and drained peat soils used for biomass production: A mesocosm study

    DEFF Research Database (Denmark)

    Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka

    2016-01-01

    Rewetting of drained peatlands has been recommended to reduce CO2 emissions and to restore the carbon sink function of peatlands. Recently, the combination of rewetting and biomass production (paludiculture) has gained interest as a possible land use option in peatlands for obtaining such benefits...... of lower CO2 emissions without losing agricultural land. The present study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different ground water levels (GWL...... closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha−1) than drained peat soils (15 Mg ha−1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than drained peat...

  10. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    Science.gov (United States)

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  11. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  12. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus

    Directory of Open Access Journals (Sweden)

    Larissa de Souza Kirsch

    Full Text Available ABSTRACT Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28 g L−1, 7.07 g L−1, and 6.99 g L−1. Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98 g L−1. The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81 g L−1 was reached in the medium formulated with 30.0 g L−1 saccharose, 2.5 g L−1 yeast extract, pH 7.0, and a speed of agitation at 180 rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.

  13. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus.

    Science.gov (United States)

    Kirsch, Larissa de Souza; de Macedo, Ana Júlia Porto; Teixeira, Maria Francisca Simas

    2016-01-01

    Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28gL(-1), 7.07gL(-1), and 6.99gL(-1). Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98gL(-1)). The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81gL(-1)) was reached in the medium formulated with 30.0gL(-1) saccharose, 2.5gL(-1) yeast extract, pH 7.0, and a speed of agitation at 180rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.

  14. Production of methanol from biomass waste via pyrolysis.

    Science.gov (United States)

    Kamarudin, S K; Shamsul, N S; Ghani, J A; Chia, S K; Liew, H S; Samsudin, A S

    2013-02-01

    The production of methanol from agricultural, forestry, livestock, poultry, and fishery waste via pyrolysis was investigated. Pyrolysis was conducted in a tube furnace at 450-500 °C. Sugarcane bagasse showed the methanol production (5.93 wt.%), followed by roots and sawdust with 4.36 and 4.22 wt.%, respectively. Animal waste offered the lowest content of methanol, as only 0.46, 0.80, and 0.61 wt.% were obtained from fishery, goat, and cow waste, respectively. It was also observed that the percentage of methanol increased with an increase in volatile compounds while the percentage of ethanol increased with the percentage of ash and fix carbon. The data indicate that, pyrolysis is a means for production of methanol and ethanol after further optimization of the process and sample treatment.

  15. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  16. Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N

    Directory of Open Access Journals (Sweden)

    Magdalena Polak-Berecka

    2011-12-01

    Full Text Available Response surface methodology (RSM was employed to study the effects of various medium components on biomass production by Lactobacillus rhamnosus E/N. This strain is commonly used in the pharmaceutical and food industries due to its beneficial effect on the human gut and general health. The best medium composition derived from RSM regression was (in g/l glucose 15.44, sodium pyruvate 3.92, meat extract 8.0, potassium phosphate 1.88, sodium acetate 4.7, and ammonium citrate 1.88. With this medium composition biomass production was 23 g/l of dry cell weight after 18 h of cultivation in bioreactor conditions, whereas on MRS the yield of biomass was 21 g/l of dry cell weight. The cost of 1 g of biomass obtained on MRS broth was calculated at the level of 0.44 € whereas on the new optimal medium it was 25% lower. It may be concluded then, that the new medium, being cheaper than the control MRS allows large scale commercial cultivation of the L. rhamnosus strain. This study is of relevance to food industry because the possibility to obtain high yield of bacterial biomass is necessary step in manufacturing of probiotic food.

  17. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    Science.gov (United States)

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m(2)/d, and between 0.5±0.1 and 2.6±1.1g/m(2)/d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m(2)/d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m(2)/d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel.

  18. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  19. Influence of temperature on biomass production of clones of Atriplex halimus

    Science.gov (United States)

    Dessena, Leonarda; Mulas, Maurizio

    2016-05-01

    A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes.

  20. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  1. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  2. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    NARCIS (Netherlands)

    Achinas, Spyridon; Euverink, Gerrit Jan Willem

    2016-01-01

    Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower v

  3. A reanalysis of North Sea plaice spawning-stock biomass using the annual egg production method

    NARCIS (Netherlands)

    Damme, van C.J.G.; Bolle, L.J.; Fossum, P.; Kraus, G.; Dickey-Collas, M.

    2009-01-01

    Uncertainty about the quality of current virtual population analysis-based stock assessment for North Sea plaice (Pleuronectes platessa) has led to various abundance indices. We compared biomass estimates from the annual egg production (AEP) method with current stock assessments based on catch-at-ag

  4. Biomass Program 2007 Program Peer Review - Biochemical and Products Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biochemical and Products Platform Review held on August 7-9, 2007 in Denver, Colorado.

  5. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Plugge, C.M.; Buisman, C.J.N.

    2011-01-01

    This research introduces an alternative mixed culture fermentation technology for anaerobic digestion to recover valuable products from low grade biomass. In this mixed culture fermentation, organic waste streams are converted to caproate and caprylate as precursors for biodiesel or chemicals. It wa

  6. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design.

    Science.gov (United States)

    Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami

    2016-07-01

    To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P biomass production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved.

  7. Radiation use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance

    Science.gov (United States)

    Drought tolerant (DT) maize (Zea mays L.) hybrids have potential to increase yield under drought conditions. However, little information is known about the physiological determinations of yield in DT hybrids. Our objective was to assess radiation use efficiency (RUE), biomass production, and yield ...

  8. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    DEFF Research Database (Denmark)

    Roed, Jørn; Andersson, Kasper Grann; Fogh, C.L.

    2000-01-01

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in aBelarussian-American-Danish collaborative project. H...

  9. Toward concise metrics for the production of chemicals from renewable biomass

    NARCIS (Netherlands)

    Sheldon, R.A.; Sanders, J.P.M.

    2015-01-01

    The development of a set of sustainability metrics for quickly evaluating the production of commodity chemicals from renewable biomass is described. The method is based on four criteria: material and energy efficiency, land use and process economics. The method will be used for comparing the sustain

  10. Analysis and optimisation of plant biomass degrading enzyme production in Aspergillus

    NARCIS (Netherlands)

    Culleton, H.M.

    2015-01-01

    Much research over the past 25 years has been applied to the development of filamentous fungi, most notably Aspergillus, as hosts for recombinant protein production. Their inherent abilities to grow at high rates and to high biomass densities and their exceptional capacity to secrete high levels of

  11. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    2006-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from o

  12. Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.

    2009-01-01

    The research objective was to determine robust hyperspectral predictors for monitoring grass/herb biomass production on a yearly basis in the Majella National Park, Italy. HyMap images were acquired over the study area on 15 July 2004 and 4 July 2005. The robustness of vegetation indices and red-edg

  13. Progress on lipid extraction from wet algal biomass for biodiesel production.

    Science.gov (United States)

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass.

  14. Intrinsic autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence.

    Science.gov (United States)

    Holland, Alexandra D; Wheeler, Dean R

    2011-05-01

    For non-inhibitory irradiances, the rate of algal biomass synthesis was modeled as the product of the algal autotrophic yield Φ(DW) and the flux of photons absorbed by the culture, as described using Beer-Lambert law. As a contrast to earlier attempts, the use of scatter-corrected extinction coefficients enabled the validation of such approach, which bypasses determination of photosynthesis-irradiance (PI) kinetic parameters. The broad misconception that PI curves, or the equivalent use of specific growth rate expressions independent of the biomass concentration, can be extended to adequately model biomass production under light-limitation is addressed. For inhibitory irradiances, a proposed mechanistic model, based on the photosynthetic units (PSU) concept, allows one to estimate a target speed νT across the photic zone in order to limit the flux of photons per cell to levels averting significant reductions in Φ(DW) . These modeled target speeds, on the order of 5-20 m s(-1) for high outdoor irradiances, call for fundamental changes in reactor design to optimize biomass productivity. The presented analysis enables a straightforward bioreactor parameterization, which, in-turn, guides the establishment of conditions ensuring maximum productivity and complete nutrients consumption. Additionally, solar and fluorescent lighting spectra were used to calculate energy to photon-counts conversion factors.

  15. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  16. Biomass torrefaction: modeling of volatile and solid product evolution kinetics.

    Science.gov (United States)

    Bates, Richard B; Ghoniem, Ahmed F

    2012-11-01

    The aim of this work is the development of a kinetics model for the evolution of the volatile and solid product composition during torrefaction conditions between 200 and 300°C. Coupled to an existing two step solid mass loss kinetics mechanism, this model describes the volatile release kinetics in terms of a set of identifiable chemical components, permitting the solid product composition to be estimated by mass conservation. Results show that most of the volatiles released during the first stage include highly oxygenated species such as water, acetic acid, and carbon dioxide, while volatiles released during the second step are composed primarily of lactic acid, methanol, and acetic acid. This kinetics model will be used in the development of a model to describe reaction energy balance and heat release dynamics.

  17. Simulation of Fuel Ethanol Production from Lignocellulosic Biomass

    Institute of Scientific and Technical Information of China (English)

    张素平; Francois Maréchal; Martin Gassner; 任铮伟; 颜涌捷; Daniel Favrat

    2009-01-01

    Models for hydrolysis, fermentation and concentration process, production and utilization of biogas as well as lignin gasification are developed to calculate the heat demand of ethanol production process and the amounts of heat and power generated from residues and wastewater of the process. For the energy analysis, all relevant information about the process streams, physical properties, and mass and energy balances are considered. Energy integration is investigated for establishing a network of facilities for heat and power generation from wastewater and residues treatment aiming at the increase of energy efficiency. Feeding the lignin to an IGCC process, the electric efficiency is increased by 4.4% compared with combustion, which leads to an overall energy efficiency of 53.8%. A detailed sensitivity analysis on energy efficiency is also carried out.

  18. Commercial production of specialty chemicals and pharmaceuticals from biomass

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, J.D. [Univ. of Mississippi, University, MS (United States)

    1993-12-31

    The chemical substances utilized in consumer products, and for pharmaceutical and agricultural uses are generally referred to as specialty chemicals. These may be flavor or fragrance substances, intermediates for synthesis of drugs or agrochemicals or the drugs or agrochemicals themselves, insecticides or insect pheromones or antifeedants, plant growth regulators, etc. These are in contrast to chemicals which are utilized in large quantities for fuels or preparation of plastics, lubricants, etc., which are usually referred to as industrial chemicals. The specific utilization of specialty chemicals is associated with a specific important physiochemical or biological property. They may possess unique properties as lubricants or waxes or have a very desirable biological activity such as a drug, agrochemical or perfume ingredient. These unique properties convey significant economic value to the specific specialty chemical. The economic commercial production of specialty chemicals commonly requires the isolation of a precursor or the specialty chemical itself from a natural source. The discovery, development and commercialization of specialty chemicals is presented and reviewed. The economic and sustainable production of specialty chemicals is discussed.

  19. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  20. Management of warm-season grass mixtures for biomass production in South Dakota USA.

    Science.gov (United States)

    Mulkey, V R; Owens, V N; Lee, D K

    2008-02-01

    Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.

  1. USE OF AGRICULTURAL WASTES FOR BIOMASS PRODUCTION OF THE PLANT GROWTH PROMOTER ACTINOBACTERIA, Streptomyces sp. MCR26

    Directory of Open Access Journals (Sweden)

    Iván Ávila-Cortes

    2014-10-01

    Full Text Available The use of agricultural wastes for plant growth promoting rhizobacteria (PGPR biomass production has not been widely explored. This study focuses on the development a culture medium for PGPR Streptomyces sp. MCR26, evaluating the influence of carnation harvest waste, yeast extract and ammonium sulfate on biomass production, as well as, the effect of biomass produced in the designed culture medium on the maintenance of PGPR MCR26 traits. The experiments were conducted by a full factorial design, varying nutritional sources concentrations, with duplicate experiments at the central point. Yeast extract and carnation harvest waste were the most influential factors, showing a positive effect on biomass production. The statistical model predicted optimal conditions for maximal biomass production at 20.0 g/L carnation harvest waste and 4.0 g/L yeast extract. Shake flask validation experiments resulted in 8.087 g/L of MCR26 biomass, 80.6% higher compared to carboxymetil cellulose (CMC broth. MCR26 biomass produced on designed culture medium enhanced hydroxamate production, and maintained phosphatases and indole-3-acetic acid synthesis. In addition, white clover inoculated plants presented higher shoot biomass accumulation compared to control treatment; nevertheless, there were no effects on seed germination. These results demonstrated that the designed culture medium effectively induced Streptomyces sp. MCR26 biomass production and maintained its plant growth promotion traits.

  2. Hydrogen production via thermal gasification of biomass in near-to-medium term

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.

    2009-09-15

    Dedicated biomass gasification technologies are presently being developed in many countries for the production of second-generation liquid biofuels. Both fluidised-bed gasification and special entrained flow systems are under intensive development. These technologies can also be used for hydrogen production, which may become an interesting alternative in replacing part of fossil fuel input in oil refineries and chemical industries. In addition, fuel cell technology is being developed for hydrogen-rich gases. New and revolutionary production methods, capable of replacing the classical process routes, can not however be foreseen to emerge in the medium-term. Also the new hydrogen separation technologies, presently under development, seem to have only limited potential to reduce the production cost of hydrogen compared to commercially available technology. However, with rising prices of fossil fuels and locally depleting natural gas reserves, gasification route is likely to gain more ground as a credible production technology for hydrogen. The global needs to cut down the CO{sub 2} emissions can also make gasification of biomass an interesting possibility. Several biomass gasification processes are presently at demonstration phase, mostly aimed for the production of liquid transportation fuels. If and when this technology will be commercialized, it could easily be adopted to the production of hydrogen. (orig.)

  3. Productivity ranges of sustainable biomass potentials from non-agricultural land

    Science.gov (United States)

    Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim

    2016-07-01

    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha-1 a-1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha-1 a-1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.

  4. Culture of Spirulina platensis in human urine for biomass production and O2 evolution

    Institute of Scientific and Technical Information of China (English)

    Feng Dao-lun; WU Zu-cheng

    2006-01-01

    Attempts were made to culture Spirulina platensis in human urine directly to achieve biomass production and O2 evolution, for potential application to nutrient regeneration and air revitalization in life support system. The culture results showed that Spirulinaplatensis grows successfully in diluted human urine, and yields maximal biomass at urine dilution ratios of 140~240.Accumulation of lipid and decreasing of protein occurred due to N deficiency. O2 release rate of Spirulina platensis in diluted human urine was higher than that in Zarrouk medium.

  5. Effects of salinity on egg and fecal pellet production, development and survival, adult sex ratio and total life span in the calanoid copepod, Acartia tonsa: a laboratory study

    Science.gov (United States)

    Shayegan, Majid; Esmaeili Fereidouni, Abolghasem; Agh, Naser; Jani Khalili, Khosrow

    2016-07-01

    The effects of salinity on the copepod, Acartia tonsa in terms of daily egg production rate (EPR), hatching success, fecal pellet production rate (FPR), naupliar development time and survival, sex ratio, and total life span were determined in laboratory conditions through three experiments. In experiment 1, EPR, hatching success, and FPR of individual females were monitored at salinities of 13, 20, 35 and 45 during short-periods (seven consecutive days). Results show EPR was affected by salinity with the highest outputs recorded at 20 and 35, respectively, which were considerably higher than those at 13 and 45. Mean FPR was also higher in 35 and 20. In experiment 2, the same parameters were evaluated over total life span of females (long-term study). The best EPR and FPR were observed in 35, which was statistically higher than at 13 and 20. In experiment 3, survival rates of early nauplii until adult stage were lowest at a salinity of 13. The development time increased with increasing of salinity. Female percentage clearly decreased with increasing salinity. Higher female percentages (56.7% and 52.2%, respectively) were significantly observed at two salinities of 13 and 20 compared to that at 35 (25%). Total longevity of females was not affected by salinity increment. Based on our results, for mass culture we recommend that a salinity of 35 be adopted due to higher reproductive performances, better feeding, and faster development of A. tonsa.

  6. Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production

    NARCIS (Netherlands)

    Hoang, T.M.C.; Eck, van E.R.H.; Bula, W.P.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2015-01-01

    Lignocellulosic biomass is addressed as potential sustainable feedstock for green fuels and chemicals. (Hemi)cellulose is the largest constituent of the material. Conversion of these polysaccharides to bio-based platform chemicals is important in green chemical/fuel production and biorefinery. Hydro

  7. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Sukumaran, Rajeev K.; Singhania, Reeta Rani; Mathew, Gincy Marina; Pandey, Ashok [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum-695 019 (India)

    2009-02-15

    A major constraint in the enzymatic saccharification of biomass for ethanol production is the cost of cellulase enzymes. Production cost of cellulases may be brought down by multifaceted approaches which include the use of cheap lignocellulosic substrates for fermentation production of the enzyme, and the use of cost efficient fermentation strategies like solid state fermentation (SSF). In the present study, cellulolytic enzymes for biomass hydrolysis were produced using solid state fermentation on wheat bran as substrate. Crude cellulase and a relatively glucose tolerant BGL were produced using fungi Trichoderma reesei RUT C30 and Aspergillus niger MTCC 7956, respectively. Saccharification of three different feed stock, i.e. sugar cane bagasse, rice straw and water hyacinth biomass was studied using the enzymes. Saccharification was performed with 50 FPU of cellulase and 10 U of {beta}-glucosidase per gram of pretreated biomass. Highest yield of reducing sugars (26.3 g/L) was obtained from rice straw followed by sugar cane bagasse (17.79 g/L). The enzymatic hydrolysate of rice straw was used as substrate for ethanol production by Saccharomyces cerevisiae. The yield of ethanol was 0.093 g per gram of pretreated rice straw. (author)

  8. Bioethanol production from Scenedesmus obliquus sugars. The influence of photobioreactors and culture conditions on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.R.; Passarinho, P.C.; Gouveia, L. [Laboratorio Nacional de Energia e Geologia (LNEG), Lisbon (Portugal). Unidade de Bioenergia

    2012-10-15

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. (orig.)

  9. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    Science.gov (United States)

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  10. Optimization of extrusion process for production of nutritious pellets Otimização do processo de extrusão para a produção de pellets nutricional

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.Neste trabalho foram elaborados pellets expandidos a partir da mistura de 50% de Amido de Batata (AB, 35% de Milho de Qualidade Protéica (MQP e 15% de Farelo de Soja (FS, utilizando extrusor de laboratório com matriz de 1,5 × 20,0 × 100,0 mm. As variáveis independentes analisadas foram: Temperatura de Extrusão (TE (75-140 °C e Umidade da Mistura (UM (16-30%. O efeito das variáveis de extrusão foram estudadas quanto ao Índice de Expansão (IE, a densidade aparente (DA, força de penetração (FP, Energia Mecânica Específica (EME, perfil de viscosidade, DSC, cristalinidade através de difração de raio X e Microscopia Eletrônica de Varredura (MEV. A PF diminuiu de 30 para 4 kgf com o aumento de ambas as variáveis independentes (TE e UM. EME foi afetada somente pela UM, diminuindo com o aumento desta variável. A regi

  11. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  12. Evaluation of some biotechnological parameters influencing the Pleurotus ostreatus biomass production by submerged cultivation

    Directory of Open Access Journals (Sweden)

    Vicenţiu-Bogdan HORINCAR

    2015-12-01

    Full Text Available The submerged culture of mushrooms represents a future for biotechnological processes at industrial level, in order to obtain biomass with economical value (food and ingredients, nutraceuticals and pharmaceuticals. Pleurotus ostreatus is well known worldwide for its culinary and medicinal value. The aim of the present study was to evaluate the most important biotechnological parameters that have influence on the biomass production of P. ostreatus, by cultivation in submerged conditions. Applying the Plackett-Burman experimental design, the significant parameters influencing the P. ostreatus biomass production were found to be the concentration of dextrose and yeast extract and time of cultivation. The best results in terms of maximising the biomass production (25.71 g·L-1 were obtained when the “+1” level of each independent variables was used in the Plackett-Burman experimental design. Analysis of variance (ANOVA exhibited a high correlation coefficient (R2 value of 0.9908, which certifies that the mathematical model was relevant for the biotechnological process.

  13. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective

    Institute of Scientific and Technical Information of China (English)

    Caitlin S.Byrt; Christopher P.L.Grof; Robert T.Furbank

    2011-01-01

    The main feedstocks for bioethanol are sugarcane (Saccharum offic-inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.

  14. Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-05-01

    Full Text Available Algae were recently considered as a promising third-generation biofuel feedstock due to their superior productivity, high oil content, and environmentally friendly nature. However, the sustainable production became the major constraint facing commercial development of algal biofuels. For this study, firstly, a factorial experimental design was used to analyze the effects of the process parameters including temperatures of 8–25 °C, light intensity of 150–900 μmol·m−2s−1, and light duration of 6–24 h on the biomass yields of local alga Chlamydomonas debaryana in swine wastewater. The results were fitted with a quadratic equation (R2 = 0.9706. The factors of temperature, light duration, the interaction of light intensity-light duration, and the quadratic effect of temperature were statistically significant. When evaluating different scenarios for the sustainable production of algal biomass and biofuels in North Carolina, US, it showed that: (a Growing C. debaryana in a 10-acre pond on swine wastewater under local weather conditions would yield algal biomass of 113 tonnes/year; (b If all swine wastewater generated in North Carolina was treated with algae, it will require 137–485 acres of ponds, yielding biomass of 5048–10,468 tonnes/year and algal oil of 1010–2094 tonnes/year. Annually, hundreds of tonnes of nitrogen and phosphorus could be removed from swine wastewater. The required area is mainly dependent on the growth rate of algal species.

  15. Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction.

    Science.gov (United States)

    Tamilarasan, K; Kavitha, S; Rajesh Banu, J; Arulazhagan, P; Yeom, Ick Tae

    2017-03-01

    In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass).

  16. THE POSSIBILITY OF USING WASTEWATER FOR THE PRODUCTION OF PLATYMONAS SUBCORDIFORMIS ALGAE BIOMASS

    Directory of Open Access Journals (Sweden)

    Magda Dudek

    2016-06-01

    Full Text Available The aim of the research was to determine the possibility of treated dairy wastewater using in the process of microalgae Platymonas subcordiformis biomass production. Researches were conducted in the laboratory scale with vertical photobioreactors using. Experiment was divided on the three variants based on the amount of wastewater introduced to culture medium. The researches proved the tested wastewater can be used in the intensive culture biomass of microalgae Platymonas subcordiformis. The highest technological effects associated with the increase in algal biomass obtained in the control sample where the concentration of algae cells at the end of the expansion process was nearly 3500 mgs.m.o./dm3. In embodiments using waste water as a component of the culture medium obtained microalgae increase over 2000 mgs.m.o./dm3.

  17. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; LeDuy, A.

    1982-08-01

    The semimicroscopic blue-green alga Spirulina maxima makes an ideal substrate for anaerobic digestion because it is easy to harvest, it can use carbon dioxide from the atmosphere as its carbon source, and its fermentability is higher than that of other small algae. Digestion experiments demonstrated that S. maxima can serve as the sole nutrient for biogas production and that municipal sewage sludge, when adapted to this new substrate, is very stable. During semicontinuous daily-fed trials under non-optimal conditions at an 0.06 lb volatile solids (VS)/ft/sup 3/ (0.97 kg VS/m/sup 3/) loading rate, 33-day retention time, and 86/sup 0/F (30/sup 0/C) digestion temperature, the daily methane yield was 4.2 CF/lb (0.26 m/sup 3//kg) VS added, which represents 47% of the maximum theoretical yield. Studies on optimizing the process are underway.

  18. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    by assessing a specific pilot-plant operated in Copenhagen, Denmark. The waste refining treatment was compared with a number of different state-of-the-art technologies such as incineration, mechanical-biological treatment and landfilling in bioreactor. The results highlighted that production of liquid...... captured during growth of the plants. This, however, neglects that using the land for energy crops implies that the same land cannot be used for other purposes, including food cropland, forestry, grassland, etc. This may induce cascading effects converting natural biomes into arable land with associated...... impacts. Waste, such as municipal solid waste, does not involve land use change impacts. However, existing and emerging waste treatment technologies offer different environmental benefits and drawbacks which should be evaluated in order to recommend appropriate technologies in selected scenarios...

  19. Eukaryotic and prokaryotic microbial communities during microalgal biomass production.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Hulatt, Chris J; Wakeman, Kathryn D; Thomas, David N; Puhakka, Jaakko A

    2012-11-01

    Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates.

  20. The biomass and aboveground net primary productivity of Schima superba-Castanopsis carlesii forests in east China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The biomass and productivity of Schima superba-Castanopsis carlesii forests in Tiantong,Zhejiang Province,were determined using overlapping quadrants and stem analyses.The total community biomass was(225.3±30.1) t hm-2,of which the aboveground parts accounted for 72.0% and the underground parts accounted for 28.0%.About 87.2% of biomass existed in the tree layer.The resprouting biomass was small,of which over 95.0% occurred in the shrub layer.The productivity of the aboveground parts of the community was(386.8±98.9) g m-2a-1,in which more than 96.0% was present at the tree level.The trunk’s contribution to productivity was the greatest,while that of leaves was the smallest.In China,the community biomass of subtropical evergreen broadleaved forests differs significantly with the age of the forest.The community biomass of the 52-year-old S.superba-C.carlesii forests in this study was lower than the average biomass of subtropical evergreen broadleaved forests in China,and was lower than the biomass of other subtropical evergreen broadleaved forests elsewhere in the world.Moreover,its productivity was lower than the model estimate,indicating that without disturbance,this community has great developmental potential in terms of community biomass and productivity.

  1. The biomass and aboveground net primary productivity of Schima superba-Castanopsis carlesii forests in east China.

    Science.gov (United States)

    Yang, TongHui; Song, Kun; Da, LiangJun; Li, XiuPeng; Wu, JianPing

    2010-07-01

    The biomass and productivity of Schima superba-Castanopsis carlesii forests in Tiantong, Zhejiang Province, were determined using overlapping quadrants and stem analyses. The total community biomass was (225.3+/-30.1) t hm(-2), of which the aboveground parts accounted for 72.0% and the underground parts accounted for 28.0%. About 87.2% of biomass existed in the tree layer. The resprouting biomass was small, of which over 95.0% occurred in the shrub layer. The productivity of the aboveground parts of the community was (386.8+/-98.9) g m(-2)a(-1), in which more than 96.0% was present at the tree level. The trunk's contribution to productivity was the greatest, while that of leaves was the smallest. In China, the community biomass of subtropical evergreen broadleaved forests differs significantly with the age of the forest. The community biomass of the 52-year-old S. superba-C. carlesii forests in this study was lower than the average biomass of subtropical evergreen broadleaved forests in China, and was lower than the biomass of other subtropical evergreen broadleaved forests elsewhere in the world. Moreover, its productivity was lower than the model estimate, indicating that without disturbance, this community has great developmental potential in terms of community biomass and productivity.

  2. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Dimitris Georgakakis

    2013-08-01

    Full Text Available In the present study the potential of bioethanol production using carbohydrate-enriched biomass of the cyanobacterium Arthrospira platensis was studied. For the saccharification of the carbohydrate-enriched biomass, four acids (H2SO4, HNO3, HCl and H3PO4 were investigated. Each acid were used at four concentrations, 2.5 N, 1 N, 0.5 N and 0.25 N, and for each acid concentration the saccharification was conducted under four temperatures (40 °C, 60 °C, 80 °C and 100 °C. Higher acid concentrations gave in general higher reducing sugars (RS yields (%, gRS/gTotal sugars with higher rates, while the increase in temperature lead to higher rates at lower acid concentration. The hydrolysates then were used as substrate for ethanolic fermentation by a salt stress-adapted Saccharomyces cerevisiae strain. The bioethanol yield (%, gEtOH/gBiomass was significantly affected by the acid concentration used for the saccharification of the carbohydrates. The highest bioethanol yields of 16.32% ± 0.90% (gEtOH/gBiomass and 16.27% ± 0.97% (gEtOH/gBiomass were obtained in hydrolysates produced with HNO3 0.5 N and H2SO4 0.5 N, respectively.

  3. Torrefaction of biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The objective of this project was to investigate and understand some of the basics of the process of torrefaction and explore the true characteristics of this new type of solid biomass fuel. Tests with torrefaction of different biomass have thus been conducted in both laboratory scale as well as bench scale investigating samples from milligram up to >100 kg. Test in TGA-FTIR and a lab scale pyro-ofen was used to understand the basic chemistry of the influence of torrefaction temperature on the kinetics of the process as well as the condensable gases leaving the process. The results reveal a process that above 250 deg. C is exothermic and that the major condensable gases consist mainly of methanol, acetic acid and water. Significant amounts of methyl-chloride were detected in the condensable gases and do thereby suggest that a certain amount of corrosive Cl could be reduced from the fuel by means of torrefaction. It was also concluded that great care has to be taken during and after production as the torrefied material was seen to self-ignite in an air environment at temperatures above 200 deg. C. The grindability of the material (energy consumption during milling) is indeed significantly improved by torrefaction and can be reduced up to 6 times compared to raw biomass. The results from test in bench scale as well as in lab scale mills suggested that in order to reach grindability similar to coal a torrefaction temperature above 240 deg. C is required for wood chips and above 290 deg. C for wood pellets. These figures will however differ with the type of biomass torrefied and the particle size of the material torrefied and milled. Moisture uptake in torrefied materials is decreased compared to raw biomass. However, due to formation of cavities in the material during torrefaction, the full effect is met first after densification. The hydrophobicity of the material increases with higher torrefaction temperature, but still a rather significant moisture uptake is

  4. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  5. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    Science.gov (United States)

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  6. Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors.

    Science.gov (United States)

    Fuentes-Grünewald, C; Garcés, E; Alacid, E; Rossi, S; Camp, J

    2013-02-01

    The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L⁻¹ day⁻¹), lipid productivity (80.7 mg lipid·L⁻¹ day⁻¹) and lipid concentration (252 mg lipid·L⁻¹) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.

  7. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.

    Science.gov (United States)

    Klassen, Viktor; Blifernez-Klassen, Olga; Hoekzema, Yoep; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    The use of alga biomass for biogas generation has been studied for over fifty years but until today, several distinct features, like inefficient degradation and low C/N ratios, limit the applicability of algal biomass for biogas production in larger scale. In this work we investigated a novel, one-stage combined cultivation/fermentation strategy including inherently progressing nitrogen starvation conditions to generate improved microalgal biomass substrates. For this strategy, comparable low amounts of nitrogen fertilizers were applied during cultivation and no additional enzymatic, chemical or physical pretreatments had to be performed. The results of this study demonstrate that progressing nitrogen limitation leads to continuously increasing C/N ratios of the biomass up to levels of 24-26 for all three tested alga strains (Chlamydomonas reinhardtii, Parachlorella kessleri and Scenedesmus obliquus). Importantly, the degradation efficiency of the algal cells increased with progressing starvation, leading to strain-specific cell disintegration efficiencies of 35%-100% during the fermentation process. Nitrogen limitation treatment resulted in a 65% increase of biogas yields for C. reinhardtii biomass (max. 698±23mL biogas g(-1) VS) when compared to replete conditions. For P. kessleri and S. obliquus, yields increased by 94% and 106% (max. 706±39mL and 586±36mL biogas g(-1) VS, respectively). From these results we conclude that this novel one-stage cultivation strategy with inherent nitrogen limitation can be used as a pretreatment for microalgal biomass generation, in order to produce accessible substrates with optimized C/N ratios for the subsequent anaerobic fermentation process, thus increasing methane production and avoiding the risk of ammonia inhibition effects within the fermenter.

  8. Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass

    Directory of Open Access Journals (Sweden)

    Lola Domnina Bote Pestaño

    2016-11-01

    Full Text Available The reserves of non-renewable energy sources such as coal, crude oil and natural gas are not limitless, they gradually get exhausted and their price continually increases. In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever increasing energy demand and to avoid dependence on crude oil. Amongst different sources of renewable energy, biomass residues hold special promise due to their inherent capability to store solar energy and amenability to subsequent conversion to convenient solid, liquid and gaseous fuels. At present, among the coconut farm wastes such as husks, shell, coir dust and coconut leaves, the latter is considered the most grossly under-utilized by in situ burning in the coconut farm as means of disposal. In order to utilize dried coconut leaves and to improve its biomass properties, this research attempts to produce solid fuel by torrefaction using dried coconut leaves for use as alternative source of energy. Torrefaction is a thermal method for the conversion of biomass operating in the low temperature range of 200oC-300oC under atmospheric conditions in absence of oxygen. Dried coconut leaves were torrefied at different feedstock conditions. The key torrefaction products were collected and analyzed. Physical and combustion characteristics of both torrefied and untorrefied biomass were investigated. Torrefaction of dried coconut leaves significantly improved the heating value compared to that of the untreated biomass.  Proximate compositions of the torrefied biomass also improved and were comparable to coal. The distribution of the products of torrefaction depends highly on the process conditions such as torrefaction temperature and residence time. Physical and combustion characteristics of torrefied biomass were superior making it more suitable for fuel applications. Article History: Received June 24th 2016; Received in revised form August 16th 2016; Accepted 27th 2016; Available

  9. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  10. Biomass and Oil Production of Green Microalgae Scenedesmus sp. Using Different Nutrients and Growth

    Directory of Open Access Journals (Sweden)

    Prof. dr. Violeta Makareviciene

    2013-01-01

    Full Text Available Biofuel is mostly produced from oleaginous crops, such as rapeseed, sunflower, soybean. The search for new technologies and new feedstock for biofuel production is becoming an increasingly important issue for researchers. Special attention is turned to the raw materials which do not compete with food industry. Microalgae ability, due to their rapid growth, to accumulate oil, to treat wastewater and waste, seems to be a very attractive new object to be used for biofuel production. In this study we have investigated different microalgae growth conditions, including both autotrophic cultivation by means of nitrogen deprivation mode and mixotrophic cultivation by applying liquid waste and technical glycerol for determining the best growth and oil production conditions. It is found that applying nitrogen deprivation mode and mixotrophic growth conditions, microalgae Scenedesmus sp. have grown faster and accumulation of their oil has increased 10.88 times compared to that under autotrophic growth conditions using the usual amount of nitrogen. The highest biomass concentration (2.16 gL-1 is obtained by adding 5 gL-1 glycerol into the growth medium, whereas the highest oil concentration (15.12 % is reached when using 10 gL-1 technical glycerol. In addition, the elemental composition of microalgae biomass has been analyzed. Results indicate that the usage of glycerol for cultivation of microalgae increases C : N ratio to optimum (19.25 for biogas production, and algae biomass could be used for this biofuel production without adding any other co-substratum. The results of our study show that addition of cheap products: liquid waste and technical glycerol can effectively adjust the composition of microalgae biomass, making it more suitable for biofuel production.DOI: http://dx.doi.org/10.5755/j01.erem.62.4.2318

  11. Formation of particulate matter monitoring during combustion of wood pellete with additives

    Science.gov (United States)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  12. Pelletizing properties of torrefied spruce

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    to moisture uptake, microbiological decay and easy to comminute into small particles. The present study focused on the pelletizing properties of spruce torrefied at 250, 275 and 300 °C. The changes in composition were characterized by infrared spectroscopy and chemical analysis. The pelletizing properties......, with hemicelluloses being most sensitive to thermal degradation. The chemical changes had a negative impact, both on the pelletizing process and the pellet properties. Torrefaction resulted in higher friction in the press channel of the pellet press and low compression strength of the pellets. Fracture surface...

  13. Tissue culture and micropropagation for forest biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Mason, E.; Maine, F.W.

    1984-09-01

    An increase in forest production will be necessary in the future when wood becomes a major renewable source of energy and chemicals along with its traditional role of fibre source. This increase could eventually by achieved be proper selection and breeding of trees. Clonal forestry by vegetative propagation of cuttings is becoming a viable alternative to a seedling-based forestry with many advantages, and cutting could be used to quickly propagate large numbers of clones of control-pollinated seedlings. Most forest trees are propagated sexually and seed orchards were started in the US and Canada in the last 40-50 years for breeding purposes. Forests could ultimately be established with improved seedlings instead of from seed with unknown genetic potential, or by natural regeneration. Micropropagation is the term used to refer to the propagation of plants raised by tissue culture methods rather than from seeds or cuttings. Many clonal plantlets could be regenerated asexually in the laboratory and eventually transplanted to permanent sites. In addition the technology could be developed to produce new variants from somatic cells. Tissue culture is a technique which may be useful for plant propagation where conventional methods are inadequate or unsuitable. However, traditional studies of field planting observed over long periods of time would still be necessary. This document has the object of informing those who may wish to know more about these techniques in relation to practical application, and require a general overview rather than experimental details, which are given in an annotated bilbiography. 274 refs., 2 figs., 1 tab.

  14. Marine biomass system: anaerobic digestion and production of methane

    Energy Technology Data Exchange (ETDEWEB)

    Haven, K.F.; Henriquez, M.; Ritschard, R.L.

    1979-04-01

    Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment de