WorldWideScience

Sample records for biomass pellet production

  1. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  2. Trial production of fuel pellet from Acacia mangium bark waste biomass

    Science.gov (United States)

    Amirta, R.; Anwar, T.; Sudrajat; Yuliansyah; Suwinarti, W.

    2018-04-01

    Fuel pellet is one of the innovation products that can be produced from various sources of biomass such as agricultural residues, forestry and also wood industries including wood bark. Herein this paper, the potential fuel pellet production using Acacia mangium bark that abundant wasted from chip mill industry was studied. Fuel pellet was produced using a modified animal feed pellet press machine equipped with rotating roller-cylinders. The international standards quality of fuel pellet such as ONORM (Austria), SS (Sweden), DIN (Germany), EN (European) and ITEBE (Italy) were used to evaluate the optimum composition of feedstock and additive used. Theresults showed the quality offuel pellet produced were good compared to commercial sawdust pellet. Mixed of Acacia bark (dust) with 10% of tapioca and 20% of glycerol (w/w) was increased the stable form of pellet and the highest heating value to reached 4,383 Kcal/kg (calorific value). Blending of Acacia bark with tapioca and glycerol was positively improved its physical, chemical and combustion properties to met the international standards requirement for export market. Based on this finding, production of fuel pellet from Acacia bark waste biomass was promising to be developed as an alternative substitution of fossil energy in the future.

  3. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  4. Production of fuel pellets made of biomass. Saett vid framstaellning av pelleterat braensle av biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Haeffner, E; Miller, A; Thrap-Olsen, O

    1986-11-17

    The pellets consists of dewatered peat mixed with milled biomass into a workable compound. The compound is led to a storage tank through which hot air from a heat exchanger is blown. The pre-dried compound then passes a pellet press. The pellets are moved to a heat insulated dryer with a perforated bottom through which hot gas is blown and when the pellets have a sufficient percentage of moisture they are cooled by blowing cool gas through the drier, thus producing durable pellets. (L.F.).

  5. Ranking of lignocellulosic biomass pellets through multicriteria modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, A.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A study was conducted in which pellets from different lignocellulosic biomass sources were ranked using a multicriteria assessment model. Five different pellet alternatives were compared based on 10 criteria. The pair-wise comparison was done in order to develop preference indices for various alternatives. The methodology used in this study was the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). The biomass included wood pellets, straw pellets, switchgrass pellets, alfalfa pellets and poultry pellets. The study considered both quantitative and qualitative criteria such as energy consumption to produce the pellets, production cost, bulk density, NOx emissions, SOx emissions, deposit formation, net calorific value, moisture content, maturity of technology, and quality of material. A sensitivity analysis was performed by changing weights of criteria and threshold values of the criteria. Different scenarios were developed for ranking cost and environmental impacts. According to preliminary results, the wood pellet is the best energy source, followed by switchgrass pellets, straw pellets, alfalfa pellets and poultry pellets.

  6. From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa

    2016-01-01

    The increasing demand for biomass pellets requires the investigation of alternative raw materials for pelletizetion. In the present paper, the pelletization process of fescue, alfalfa, sorghum, triticale, miscanthus and willow is studied to determine if results obtained in a single pellet press (...

  7. Techno-economic Assessment of Biomass Pellets for Power Generation in India

    OpenAIRE

    Purohit, P.; Chaturvedi, V.

    2016-01-01

    Biomass pellet production has increased considerably in recent years, mainly due to the demand created by policies and bioenergy-use targets in the European Union (EU). Global biomass pellet production was 24.1 million tonne (Mt) in 2014. In this study, a preliminary attempt has been made to assess the techno-economic feasibility of biomass pellets for electricity generation in India produced from biomass surplus available from agriculture and forestry/wasteland. Biomass surplus availability ...

  8. The pellet handbook: the production and thermal utilisation of pellets

    National Research Council Canada - National Science Library

    Obernberger, Ingwald; Thek, Gerold

    2010-01-01

    ...: - International overview of standards for pellets - Evaluation of raw materials and raw material potentials - Quality and properties of pellets - Technical evaluation of the pellet production process...

  9. Production of zinc pellets

    Science.gov (United States)

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  10. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  11. Optimization of a multi-parameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Stelte, Wolfgang; Posselt, Dorthe

    2011-01-01

    Pelletization of biomass residues increases the energy density, reduces storage and transportation costs and results in a homogeneous product with well-defined physical properties. However, raw materials for fuel pellet production consist of ligno-cellulosic biomass from various resources...... and error” experiments and personal experience. However in recent years the utilization of single pellet press units for testing the biomass pelletizing properties has attracted more attention. The present study outlines an approach where single pellet press testing is combined with modeling to mimic...... the pelletizing behavior of new types of biomass in a large scale pellet mill. This enables a fast estimation of key process parameters such as optimal press channel length and moisture content. Secondly, the study addresses the question of the origin of the observed relationship between pelletizing pressure...

  12. Portuguese pellets market: Analysis of the production and utilization constrains

    International Nuclear Information System (INIS)

    Monteiro, Eliseu; Mantha, Vishveshwar; Rouboa, Abel

    2012-01-01

    As opposite in Portugal, the wood pellets market is booming in Europe. In this work, possible reasons for this market behavior are foreseen according to the key indicators of biomass availability, costs and legal framework. Two major constrains are found in the Portuguese pellets market: the first one is the lack of an internal consumption, being the market based on exportations. The second one is the shortage of raw material mainly due to the competition with the biomass power plants. Therefore, the combination of the biomass power plants with pellet production plants seems to be the best option for the pellets production in the actual Portuguese scenario. The main constrains for pellets market has been to convince small-scale customers that pellets are a good alternative fuel, mainly due to the investment needed and the strong competition with natural gas. Besides some benefits in the acquisition of new equipment for renewable energy, they are insufficient to cover the huge discrepancy of the investment in pellets heating. However, pellets are already economic interesting for large utilizations. In order cover a large amount of households, additional public support is needed to cover the supplementary costs of the pellets heating systems. - Highlights: ► There is a lack of internal consumption being the pellets market based on exportation. ► The shortage of raw material is mainly due to the biomass power plants. ► Combining pellet plants with biomass power plants seems to be a wise solution. ► The tax benefits of renewable energy equipments are not enough to cover the higher investment. ► Pellets are already economic interesting for large utilizations in the Portuguese scenario.

  13. Fuel Pellets from Biomass. Processing, Bonding, Raw Materials

    DEFF Research Database (Denmark)

    Stelte, Wolfgang

    in an increasing interest in biomass densification technologies, such as pelletization and briquetting. The global pellet market has developed quickly, and strong growth is to be expected for the coming years. Due to an increasing demand for biomass, the traditionally used wood residues from sawmills and pulp...... influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet...... surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding...

  14. Fuel pellets from biomass - Processing, bonding, raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Stelte, W.

    2011-12-15

    The present study investigates several important aspects of biomass pelletization. Seven individual studies have been conducted and linked together, in order to push forward the research frontier of biomass pelletization processes. The first study was to investigate influence of the different processing parameters on the pressure built up in the press channel of a pellet mill. It showed that the major factor was the press channel length as well as temperature, moisture content, particle size and extractive content. Furthermore, extractive migration to the pellet surface at an elevated temperature played an important role. The second study presented a method of how key processing parameters can be estimated, based on a pellet model and a small number of fast and simple laboratory trials using a single pellet press. The third study investigated the bonding mechanisms within a biomass pellet, which indicate that different mechanisms are involved depending on biomass type and pelletizing conditions. Interpenetration of polymer chains and close intermolecular distance resulting in better secondary bonding were assumed to be the key factors for high mechanical properties of the formed pellets. The outcome of this study resulted in study four and five investigating the role of lignin glass transition for biomass pelletization. It was demonstrated that the softening temperature of lignin was dependent on species and moisture content. In typical processing conditions and at 8% (wt) moisture content, transitions were identified to be at approximately 53-63 deg. C for wheat straw and about 91 deg. C for spruce lignin. Furthermore, the effects of wheat straw extractives on the pelletizing properties and pellet stability were investigated. The sixth and seventh study applied the developed methodology to test the pelletizing properties of thermally pre-treated (torrefied) biomass from spruce and wheat straw. The results indicated that high torrefaction temperatures above 275 deg

  15. Microgasification cookstoves and pellet fuels from waste biomass: A ...

    African Journals Online (AJOL)

    Microgasification cookstoves and pellet fuels from waste biomass: A cost and performance comparison with charcoal and natural gas in Tanzania. ... produce too much smoke and 40% stating that controlling the air vent is too much trouble.

  16. Ranking of biomass pellets by integration of economic, environmental and technical factors

    International Nuclear Information System (INIS)

    Sultana, Arifa; Kumar, Amit

    2012-01-01

    Interest in biomass as a renewable energy source has increased recently in response to a need to reduce greenhouse gas (GHG) emissions. The objective of this study is to develop a multi-criteria assessment model and rank different biomass feedstock-based pellets, in terms of their suitability for use in large heat and power generation plants and show the importance of environmental, economical and technical factors in making decision about different pellets. Five pellet alternatives, each produced from a different sustainable biomass feedstock i.e., wood, straw, switchgrass, alfalfa and poultry litter, are ranked according to eleven criteria, using the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). Both quantitative and qualitative criteria are considered, including environmental, technical and economic factors. Three scenarios, namely base case, environmental and economic, are developed by changing the weight assigned to different criteria. In the base case scenario, equal weights are assigned to each criterion. In the economic and environmental scenarios, more weight is given to the economic and environmental factors, respectively. Based on the PROMETHEE rankings, wood pellets are the best source of energy for all scenarios followed by switchgrass, straw, poultry litter and alfalfa pellets except economic scenario, where straw pellets held higher position than switchgrass pellets. Sensitivity analysis on weights, threshold values, preference function and production cost indicate that the ranking was stable. The ranking in all scenarios remained same when qualitative criteria were omitted from the model; this indicates the stronger influence of quantitative criteria. -- Highlights: ► This study ranks the pellets produced from different biomass feedstocks. ► The ranking of the pellets is based on technical, economical and environmental factors. ► This study uses PROMETHEE method for ranking pellets based on a range of

  17. The market for fuel pellets produced from biomass and waste in the Netherlands

    International Nuclear Information System (INIS)

    Koppejan, J.; Meulman, P.D.M.

    2001-12-01

    Several initiatives are currently being developed in the Netherlands for the production of fuel pellets from waste and biomass. This report presents an overview of the current producers and (potential) users of these pellets in the Netherlands. It also outlines the Dutch and European policies and legislations concerned. Furthermore, important barriers to market development of fuel pellets are defined and future expectations are summarized. The study covers fuel pellets made from different feedstock, varying from clean biomass to waste with traces of contaminants. In each project, pellets are produced that are unique as to their product specifications, as they are usually designed for a single application. It is therefore impossible to generalize characteristics and end use. 27 refs

  18. Quality properties of fuel pellets from forest biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lehtikangas, P.

    1999-07-01

    Nine pellet assortments, made of fresh and stored sawdust, bark and logging residues (a mixture of Norway spruce and Scots pine) were tested directly after production and after 5 months of storage in large bags (volume about 1 m{sup 3} loose pellets) for moisture content, heating value and ash content. Dimensions, bulk density, density of individual pellets and durability were also determined. Moreover, sintering risk and contents of sulphur, chlorine, and lignin of fresh pellets were determined. It is concluded that bark and logging residues are suitable raw materials for pellets production, especially regarding durability and if the ash content is controlled. Pellets density had no effect on its durability, unlike lignin content which was positively correlated. The pellets had higher ash content and lower calorific heating value than the raw materials, probably due to loss of volatiles during drying. In general, the quality changes during storage were not large, but notable. The results showed that storage led to negative effects on durability, especially on pellets made of fresh materials. The average length of pellets was decreased due to breakage during storage. Microbial growth was noticed in some of the pellet assortments. Pellets made out of fresh logging residues were found to be weakest after storage. The tendency to reach the equilibrium with the ambient moisture content should be taken into consideration during production due to the risk of decreasing durability.

  19. Assessment of Biomass Pelletization Options for Greensburg, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.

    2010-05-01

    This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report.

  20. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Holm, Jens K.; Sanadi, Anand R.

    2011-01-01

    The aim of the present study was to identify the key factors affecting the pelletizing pressure in biomass pelletization processes. The impact of raw material type, pellet length, temperature, moisture content and particle size on the pressure build up in the press channel of a pellet mill...... act as lubricants, lowering the friction between the biomass and the press channel walls. The effect of moisture content on the pelletizing pressure was dependent on the raw material species. Different particle size fractions, from below 0.5 mm up to 2.8 mm diameter, were tested, and it was shown...

  1. Studies on a burner used biomass pellets as fuel. Performance of a spiral vortex pellet burner

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio

    1987-12-21

    In order to develop a small size burner with high performance using biomass pellets fuel substitute for fuel oil, the burning performance of a spiral vortex pallet burner has been studied. An experimental equipment for the pellet burning is made up of a fuel supply unit, combustion chamber and a furnace. The used woody pellet is made of mixed sawdust and bark; with water content of 10.29%, particle diameter of 5.5-9mm, length of 5-50mm, and, apparent and real specific gravities are 0.59 and 1.334 respectively. The pellets are sent to bottom of the combustion chamber, spiral vortex combustion are carried out with blown air, the ashes and unburnt residues are discharged to out of combustion chamber with spiral vortex hot gases. As the result, it was clarified that the formation of the burning layers in a burner is required to be in order of the layers of ash, oxidation, reduction and carbonization up to the upper layer for high burning performance, and the formation of the layer is influenced by the condition of sedimentation of pellets in the combustion chamber. In the meanwhile the burning performance of the burner is influenced by the quantity of blast, the rate of feeding, and by the time of pre-heating in the combustion chamber. (23 figs, 5 refs)

  2. Wood pellet production costs under Austrian and in comparison to Swedish framework conditions

    NARCIS (Netherlands)

    Obernberger, I.; Thek, G.

    2004-01-01

    Owing to the rapidly increasing importance of pellets as high-quality biomass fuel in Austria and Europe within the last years, many companies, mainly from the wood industry, are thinking of entering this market. The calculation of the production costs before starting a pellet plant is essential for

  3. Report on the survey of the commercialization of wood biomass energy. Project on the production of wood pellet fuel; 2001 nendo mokushitsu baiomasu energy jigyoka chosa hokokusho. Mokushitsu peretto nenryo seizo jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    For the purpose of regenerating forestry and contributing to the policy for prevention of global warming, a potential study was made of the commercialization of the wood pellet using low-quality wood materials such as thinnings and wood pieces from lumber mill. In the study, based on the survey of raw materials of wood pellet and the demand amount, the scale of pellet production was assumed, and subjects were arranged toward the basic design of plant, evaluation of economical efficiency and commercialization. As a result of the study, the following subjects were extracted. In the study, the supply of lumbers of 2,800 t/y and securing of demand of about 1,600 t/y were set forth as a premise, but the subject was to secure the initial demand. The pellet combustor was higher in price than the kerosene combustor, and for the imported combustion equipment, the combustion of white pellet was supposed. It is necessary to develop combustor of pellets including the bark. In the trial calculation of the unit price of heat utilization (yen/Mcal), the pellet stove was about 3.3 times as high in price as the kerosene stove. It is necessary to reduce the pellet price down to 30 yen/kg or so by decreasing the cost of pellet production. (NEDO)

  4. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  5. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  6. Validation of a multiparameter model to investigate torrefied biomass pelletization behavior

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    2017-01-01

    The present study aims to apply and validate a simple model describing the forces that are built up along the dies of a pellet press matrix to the pelletization of torrefied biomass. The model combines a theoretical background with the use of a single pellet press to describe the pelletizing...... behavior of torrefied material in an industrial scale pellet mill. Wet torrefaction and dry torrefaction pretreatments are considered in the study. Both torrefaction concepts produce a fuel with enhanced properties including a lower moisture content, higher calorific value, and better friability. The fuel...... and to avoid time consuming as well as expensive trial and error experiments....

  7. Fuel Pellets Production from Biodiesel Waste

    Directory of Open Access Journals (Sweden)

    Kawalin Chaiyaomporn

    2010-01-01

    Full Text Available This research palm fiber and palm shell were used as raw materials to produce pelletised fuel, and waste glycerol were used as adhesive to reduce biodiesel production waste. The aim of this research is to find optimum ratio of raw material (ratio of palm fiber and palm shell, raw material size distribution, adhesive temperature, and ratio of ingredients (ratio of raw material, waste glycerol, and water. The optimum ratio of pelletized fuel made only by palm fiber was 50:10:40; palm fiber, water, and waste glycerol respectively. In the best practice condition; particle size was smaller than 2 mm, adhesive glycerol was heated. From the explained optimum ratio and ingredient, pelletizing ratio was 62.6%, specific density was 982.2 kg/m3, heating value was 22.5 MJ/kg, moisture content was 5.9194%, volatile matter was 88.2573%, fix carbon content was 1.5894%, and ash content was 4.2339% which was higher than the standard. Mixing palm shell into palm fiber raw material reduced ash content of the pellets. The optimum raw material ratio, which minimizes ash content, was 80 to 20 palm fiber and palm shell respectively. Adding palm shell reduced ash content to be 2.5247% which was higher than pelletized fuel standard but followed cubed fuel standard. At this raw material ratio, pelletizing ratio was 70.5%, specific density was 774.8 kg/m3, heating value was 19.71 MJ/kg, moisture content was 9.8137%, volatile matter was 86.2259%, fix carbon content was 1.4356%, and compressive force was 4.83 N. Pelletized fuel cost at optimum condition was 1.14 baht/kg.

  8. Emission of Metals from Pelletized and Uncompressed Biomass Fuels Combustion in Rural Household Stoves in China

    Science.gov (United States)

    Zhang, Wei; Tong, Yindong; Wang, Huanhuan; Chen, Long; Ou, Langbo; Wang, Xuejun; Liu, Guohua; Zhu, Yan

    2014-07-01

    Effort of reducing CO2 emissions in developing countries may require an increasing utilization of biomass fuels. Biomass pellets seem well-suited for residential biomass markets. However, there is limited quantitative information on pollutant emissions from biomass pellets burning, especially those measured in real applications. In this study, biomass pellets and raw biomass fuels were burned in a pellet burner and a conventional stove respectively, in rural households, and metal emissions were determined. Results showed that the emission factors (EFs) ranged 3.20-5.57 (Pb), 5.20-7.58 (Cu), 0.11-0.23 (Cd), 12.67-39.00 (As), 0.59-1.31 mg/kg (Ni) for pellets, and 0.73-1.34 (Pb), 0.92-4.48 (Cu), 0.08-0.14 (Cd), 7.29-13.22 (As), 0.28-0.62 (Ni) mg/kg for raw biomass. For unit energy delivered to cooking vessels, the EFs ranged 0.42-0.77 (Pb), 0.79-1.16 (Cu), 0.01-0.03 (Cd), 1.93-5.09 (As), 0.08-0.19 mg/MJ (Ni) for pellets, and 0.30-0.56 (Pb), 0.41-1.86 (Cu), 0.04-0.06 (Cd), 3.25-5.49 (As), 0.12-0.26 (Ni) mg/MJ for raw biomass. This study found that moisture, volatile matter and modified combustion efficiency were the important factors affecting metal emissions. Comparisons of the mass-based and task-based EFs found that biomass pellets produced higher metal emissions than the same amount of raw biomass. However, metal emissions from pellets were not higher in terms of unit energy delivered.

  9. Biomass gasification for liquid fuel production

    International Nuclear Information System (INIS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-01-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis

  10. Biomass gasification for liquid fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  11. Nuclear fuel pellet production method and nuclear fuel pellet

    International Nuclear Information System (INIS)

    Yuda, Ryoichi; Ito, Ken-ichi; Masuda, Hiroshi.

    1993-01-01

    In a method of manufacturing nuclear fuel pellets by compression-molding UO 2 powders followed by sintering, a sintering agent having a composition of about 40 to 80 wt% of SiO 2 and the balance of Al 2 O 3 , a sintering agent at a ratio of 10 to 500 ppm based on the total amount of UO 2 and UO 2 powders are mixed, compression molded and then sintered at a sintering temperature of about 1500 of 1800degC. The UO 2 particles have an average grain size of about 20 to 60μm, most of the crystal grain boundary thereof is coated with a glassy or crystalline alumina silicate phase, and the porosity is about 1 to 4 vol%. With such a constitution, the sintering agent forms a single liquid phase eutectic mixture during sintering, to promote a surface reaction between nuclear fuel powders by a liquid phase sintering mechanism, increase their density and promote the crystal growth. Accordingly, it is possible to lower the softening temperature, improve the creep velocity of the pellets and improve the resistance against pellet-clad interaction. (T.M.)

  12. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  13. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    Science.gov (United States)

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  14. Mechanical Evaluation for the Quality Control of Biomass Pellets and Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Seabra da Rocha, Saulo Henrique [RWTH Aachen Univ. (Germany). KoBrA - Coking, Briquetting and Thermal Waste Treatment Group

    2006-07-15

    Biomass densification through compression machine leads to numerous benefits, such as decreased dust emission, transportation, and maintenance costs. However, if the mechanical strength of the Pellets and briquettes is not high enough, breaks and abrasion lead to low efficiency. Quality evaluation before pelleting or briquetting can avoid these problems. The most common mechanical strength evaluation methods are simple and fast, but their accuracy and precision are limited. In this paper three methods for mechanical strength evaluation are reviewed, tested and statistically compared. Compacted bodies in different dimensions of typical materials, like sawdust, bark and lignite, were produced, and tested with the mentioned methods to get different values of mechanical strength. The correlation coefficient was used to compare the accuracy and precision of those methods. The Point Load Strength method showed a linear variation error and a poor correlation coefficient value (R2 = 0.71-0.78). The Brazilian Test had a reasonably constant result, but the relative standard deviation was 22%, insufficient for a practical process optimization. The best results were produced from the Extended Planar Strength, with an excellent correlation coefficient value (R2 = 0.98). This technique will help to increase efficiency and save energy in the production process.

  15. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    Science.gov (United States)

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  16. Utilization of rapeseed pellet from fatty acid methyl esters production as an energy source.

    Science.gov (United States)

    Ciunel, Krzysztof; Klugmann-Radziemska, Ewa

    2014-01-01

    Rapeseed pellet - crushed seed residue from oil extraction is a by-product of fatty acid methyl esters production process. As other types of biomass, it can either be burned directly in furnaces or processed to increase its energetic value. Biomass is renewable, abundant and has domestic usage; the sources ofbiomass can help the world reduce its dependence on petroleum products, fossil coal and natural gas. Energetically effective utilization of rapeseed pellet could substantially improve the economic balance of an individual household in which biodiesel for fulfilling the producer's own energetic demand is obtained. In this article, the experimental results of combusting rapeseed pellet in a calorimeter, combustion in a boiler heater and the analysis of the emissions level of different pollutants in exhaust fumes during different stages of biomass boiler operation are presented. It has been proved that the pellet, a by-product of biodiesel production, is not only a valuable substitute of animal fodder, but also an excellent renewable and environmentally friendly energy source, viable for use in household tap water heating installations.

  17. Combustion properties, water absorption and grindability of raw/torrefied biomass pellets and Silantek coal

    Science.gov (United States)

    Matali, Sharmeela; Rahman, Norazah Abdul; Idris, Siti Shawaliah; Yaacob, Nurhafizah

    2017-12-01

    Torrefaction, also known as mild pyrolysis, is proven to convert raw biomass into a value-added energy commodity particularly for application in combustion and co-firing systems with improved storage and handling properties. This paper aims to compare the characteristics of Malaysian bituminous coal i.e. Silantek coal with raw and torrefied biomass pellet originated from oil palm frond and fast growing tree species, Leucaena Leucocephala. Biomass samples were initially torrefied at 300 °C for 60 minutes. Resulting torrefied biomass pellets were analysed using a number of standard fuel characterisation analyses i.e. elemental analysis, proximate analysis and calorific content (high heating values) experiments. Investigations on combustion characteristics via dynamic thermogravimetric analysis (TGA), grindability and moisture uptake tests were also performed on the torrefied biomass pellets. Better quality bio-chars were produced as compared to its raw forms and with optimal process conditions, torrefaction may potentially produces a solid fuel with combustion reactivity and porosity equivalent to raw biomass while having compatible energy density and grindability to coal.

  18. Production of pellets for nuclear fuel elements

    International Nuclear Information System (INIS)

    Butler, G.G.

    1982-01-01

    A method for producing nuclear fuel pellets each made up of a central portion and an outer annular portion surrounding the central portion, the two portions differing in composition. Such pellets are termed annular-layered pellets. The method comprises the steps of pressing powdered refractory material which has been granulated to form separately a central portion and an outer annular portion, assembling the portions together, compacting the assembly and sintering the compact. The portions are bonded together during sintering. The difference in composition may include a difference in density or isotopic enrichment as well as a chemical difference. (author)

  19. Production of hydrogen, nitrogen and argon pellets with the Moscow-Juelich pellet target

    International Nuclear Information System (INIS)

    Buescher, M.; Boukharov, A.; Semenov, A.; Gerasimov, A.; Chernetsky, V.; Fedorets, P.

    2009-01-01

    Targets of frozen droplets ("pellets") from various liquefiable gases like H 2 , D 2 , N 2 , Ne, Ar, Kr and Xe are very promising for high luminosity experiments with a 4π detector geometry at storage-rings. High effective target densities (> 10 15 atoms/cm 2 ), a small target size (⊘ ≈ 20–30 μm), a low gas load and a narrow pellet beam are the main advantages of such targets. Pioneering work on pellet targets has been made at Uppsala, Sweden. A next generation target has been built at the IKP of FZJ in collaboration with two institutes (ITEP and MPEI) from Moscow, Russia. It is a prototype for the future pellet target at the PANDA experiment at FAIR/HESR (supported by INTAS 06-1000012-8787, 2007/08) and makes use of a new cooling and liquefaction method, based on cryogenic liquids instead of cooling machines. The main advantages of this method are the vibration-free cooling and the possibility for cryogenic jet production from various gases in a wide range of temperatures. Different regimes of pellet production from H 2 , N 2 and Ar have been observed and their parameters have been measured. For the first time, mono-disperse and satellite-free droplet production was achieved for cryogenic liquids from H 2 , N 2 and Ar. (author)

  20. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems

  1. New pellet production and acceleration technologies for high speed pellet injection system 'HIPEL' in large helical device

    International Nuclear Information System (INIS)

    Viniar, I.; Sudo, S.

    1994-12-01

    New technologies of pellet production and acceleration for fueling and diagnostics purposes in large thermonuclear reactors are proposed. The technologies are intended to apply to the multiple-pellet injection system 'HIPEL' for Large Helical Device of NIFS in Japan. The pellet production technology has already been tested in a pipe-gun type pellet injector. It will realize the repeating pellet injection by means of decreasing of the pellet formation time into the pipe-gun barrel. The acceleration technology is based upon a new pump tube operation in two-stage gas gun and also upon a new conception of the allowable pressure acting on a pellet into a barrel. Some preliminary estimations have been made, and principles of a pump tube construction providing for a reliable long term operation in the repeating mode without any troubles from a piston are proposed. (author)

  2. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  3. Study on the optimization of the pellet production and on the development of a forest-wood-pellet chain

    OpenAIRE

    Sgarbossa, Andrea

    2015-01-01

    The biomass and biofuels markets have increased substantially in the last two decades, mainly driven by the national and European policy targets on green energy. The same positive trend is registered in particular for wood pellet markets. In comparison with other wooden biofuels (firewood or wood-chips) pellets have a number of positive aspects such as: - regular and optimized shape; - wide range of energetic applications (to produce thermal energy, syngas, electricity); - high so...

  4. Microgasification cookstoves and pellet fuels from waste biomass: A ...

    African Journals Online (AJOL)

    Lotter;Msola Hunter;Straub

    Biochar production averaged 59 and 29% of total fuel in the ND and Philips, respectively. Interviews of 30 ND TLUD stove users showed that 60% abandoned use within one month, 80% stating that they produce too much smoke and 40% stating that controlling the air vent is too much trouble. Seventy five percent said that ...

  5. Development of an eco- and material-efficient pellet production chain. A chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Kuokkanen, M.

    2013-06-01

    According to the EU's strategy and the corresponding Finnish national strategy on waste materials, all kinds of waste must be utilised primarily as material (reuse, recycling) and secondarily as energy, and at the lowest level of waste hierarchy is their disposal using environmentally friendly methods. Today material efficiency is an essential topic in promoting sustainable use of natural resources, industrial by-products and waste material. The present goal proposed by the EU sets the target for the total proportion of renewable energy as high as 38% by 2020 in Finland. Up to 20 million tonnes of waste wood biomass per year are left unused in Finland, mainly in the forests during forestry operations, because supply and demand do not meet. As a consequence of high heat energy prices, the looming threat of climate change, the greenhouse effect and global as well as national demands to considerably increase the proportion of renewable energy, Finland currently has a tremendous interest in increasing decentralised pellet production alongside of large-scale factories. The aim of this thesis is to promote the development of eco-, material- and cost-efficient Nordic wood-based pellet production and utilisation of pellet bio-ash by means of chemical research. Using Finnish wood (sawdust and shavings) as a model raw material, the total functionality of a pilot-scale pellet facility combined with an extensive chemical toolbox was tested in this study to promote development of an eco-, material- and cost-efficient wood-based pellet production chain. The chemical toolbox includes measurements of moisture content, density, heat value, mechanical durability and particle size distribution, TG analysis and elementary analysis, as well as new applications for pellet biodegradation using BOD OxiTop equipment and optical microscopic staining methods. To improve the quality of pellets, considering the profitability of production and occupational safety factors (wood dust

  6. Pellet production from agricultural raw materials - A systems study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel; Bernesson, Sven; Hansson, Per-Anders [Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, SE-75007 Uppsala (Sweden)

    2011-01-15

    The demand for biofuel pellets has increased considerably in recent years, causing shortage of the traditional raw materials sawdust and wood shavings. In this study, the costs and energy requirements for the production of pellets from agricultural raw materials were analysed. The materials studied were Salix, reed canary grass, hemp, straw, screenings, rape-seed meal, rape cake and distiller's waste. Four production scales were analysed, having an annual output of 80,000, 8000, 800 and 80 tonnes of pellets per year. It was concluded that the raw materials of greatest interest were Salix and reed canary grass. They had competitive raw material costs and acceptable fuel properties and could be mixed with sawdust in existing large-scale pelleting factories. Straw had low production costs but can cause serious ash-related problems and should, as also is the case for screenings, be avoided in small-scale burners. Hemp had high raw material costs and is of less commercial interest, while distiller's waste, rape-seed meal and rape cake had higher alternative values when used as protein feed. The scale of production had a crucial influence on production costs. The machinery was used much more efficiently in large-scale plants, resulting in clear cost savings. Small-scale pelleting, both static and mobile, required cheap raw materials, low labour costs and long utilisation times to be profitable. In most cases, briquetting would be more commercially viable. The energy use in manufacturing pellets from air-dried crops was generally no higher than when moist sawdust was used as the raw material. (author)

  7. Seaweed and Biomass production

    Science.gov (United States)

    Nadiradze, K. T.

    2016-02-01

    The Black Sea has a sensitive ecosystem, vulnerable to the potential impacts by climate, water quality, pollution and etc. Successfully restoring and sustaining healthy Black Sea aqua cultural farming will require concreted action by private sector, civil society, farmer organizations and other stakeholders. But to achieve agri-environmental goals at scale, well-organized policy goals, framework and strategy for Sea Agriculture Green energy, Algae Biomass, Sapropel Production, aquacultures farming are essential for Georgian Farmers. But we must recognizes the most sustainable and at least risky farming systems will be those that build in aqua cultural, environmental, and social management practices resilient to climate ch ange and other risks and shocks evident in Georgia and whole in a Black Sea Basin Countries. Black Sea has more than 600 kinds of seaweeds; these species contain biologically active substances also present in fish - vitamins and omega fatty acids. The task is to specify how Black Sea seaweeds can be used in preparing nutrition additives, medicines and cosmetic products. As elsewhere around the world, governments, civil society, and the private sector in Georgia should work together to develop and implement `Blue Economy' and Green Growth strategies to generate equitable, sustainable economic development through strengthening Sea Agriculture. We are very interested to develop Black Sea seaweed plantation ad farming for multiply purposes fo r livestock as food additives, for human as great natural source of iodine as much iodine are released by seaweeds into the atmosphere to facilitate the development of better models or aerosol formation and atmospheric chemistry. It is well known, that earth's oceans are thought to have absorbed about one quarter of the CO2 humans pumped into the atmosphere over the past 20 years. The flip side of this process is that, as they absorb co2, oceans also become more acidic with dramatic consequences for sea life

  8. Thermal and physiochemical properties of pellets with power aims made of sawmill residual product

    International Nuclear Information System (INIS)

    Casanova Treto, Pedro; Solis, Kattia; Carrillo, Tonny

    2017-01-01

    Sawmill residual product of Pylon (Hyeronima alchorneoides) and Eucalyptus (Eucalyptus spp) species was used to produce pellets under different conditions of densification. Experimental equipment was used to determine the thermal conductivity, thermal diffusivity and specific heat. Physicochemical properties of the pellets obtained under different conditions of densification, such as ash content and calorific value were determined. The content of nitrogen, chlorine and sulfur present in the material used to produce the pellets was estimated. Thermal conductivity values were determined between 0,253 W/m·K and 0,279 W/m·K; 1,748 m2 /s and 2,314 m2 /s for the thermal diffusivity, and in the case of specific heat were determined values between 3,019 kJ/kg·K and 2,183 kJ/kg·K. The high heat values was between 18 907 kJ/kg and 18 960 kJ/kg. An ash content of 1,31% was determined on a dry basis. Finally, the content of nitrogen, chlorine and sulfur determined in the residual biomass used, corresponds to 0,1129%, 0,0592 % and 0,0317%, respectively. A direct relationship between increasing the bulk density of the pellets and the thermal properties was determined. The calorific value and the ash content had a negligible effect due to the treatments applied. The estimated content of N, Cl and S corresponds to that expected in the selected biomass. Comparison of the properties of the pellets produced under the conditions studied -densification, against regulations-, showed acceptable results, entering these in terms of different categories of quality. (author) [es

  9. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  10. Emission factors from biomass burning in three types of appliances: fireplace, woodstove and pellet stove

    Science.gov (United States)

    Duarte, Márcio; Vicente, Estela; Calvo, Ana; Nunes, Teresa; Tarelho, Luis; Alves, Célia

    2014-05-01

    In the last years, the importance of biomass fuels has increased mainly for two reasons. One of them is the effort to control the emissions of greenhouse gases, and on the other hand, the increasing costs associated with fossil fuels. Besides that, biomass burning is now recognised as one of the major sources contributing to high concentrations of particulate matter, especially during winter time. Southern European countries have a lack of information regarding emission profiles from biomass burning. Because of that, in most source apportionment studies, the information used comes from northern and alpine countries, whose combustion appliances, fuels and habits are different from those in Mediterranean countries. Due to this lack of information, series of tests using different types of equipment, as well as fuels, were carried out in order to obtain emission profiles and emission factors that correspond to the reality in southern European countries. Tests involved three types of biomass appliances used in Portugal, a fireplace, a woodstove and a modern pellet stove. Emission factors (mg.kg-1 fuel, dry basis) for CO, THC and PM10 were obtained. CO emission factors ranged from 38, for pine on the woodstove, to 84 for eucalyptus in the fireplace. THC emissions were between 4 and 24, for pine in the woodstove and eucalyptus in the fireplace, respectively. PM10 emission factors were in the range from 3.99, for pine in the woodstove, to 17.3 for eucalyptus in the fireplace. On average, the emission factors obtained for the fireplace are 1.5 (CO) to 4 (THC) times higher than those of the woodstove. The fireplace has emission factors for CO, THC and PM10 10, 35 and 32 times, respectively, higher than the pellet stove.

  11. Study of production of fuel pellets for a reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Luiz F.F.; Conti, Thadeu N., E-mail: luiz.f.f.mendes@gmail.com, E-mail: tnconti@yahoo.com.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Nowadays the electrical energy was been used much on society. A method for getting electricity is through nuclear power plants, this power plant uses fission that occurs inside the UO{sub 2} pellets to generate thermal energy that will be transform into electric. The pellets production was made from enriched UF{sub 6} uses some techniques of reprocessing UF{sub 6} gas to UO{sub 2} powder. This reprocessing process done by wet route (Ammonium Diuranate ADU or Ammonium Uranium Carbonate AUC) or by dry route (Fluidized bed or GECO). With getting of UO{sub 2} powder is forwarded to metallurgy where this powder is compacted in cylindrical matrix so that powder take the desired shape, this green pellets are full of the empty spaces (porosity) for this it is sent to the sintering. The sintering consists of a joint of these particles of powders by means of the heating of this green pellets, coming arrive the melting temperature, the UO{sub 2} molecules melting each other so decrease the porosity and increase the density. For the production of fuel pellets the process all most used is wed route by means the AUC ,this process arrive created for replace the ADU because the AUC is a process where less rework for the pore geometry is required compared to DUA. The fluidized bed process is more used in small samples however, for a large amount it becomes unfeasible, moreover the dry route process require more robust materials because of the generation of HF that is highly corrosive and cannot used the UNH (uranyl nitrate hexahydrate) used for recycle materials discarded in manufacturing. (author)

  12. Study of production of fuel pellets for a reactor

    International Nuclear Information System (INIS)

    Mendes, Luiz F.F.; Conti, Thadeu N.

    2017-01-01

    Nowadays the electrical energy was been used much on society. A method for getting electricity is through nuclear power plants, this power plant uses fission that occurs inside the UO 2 pellets to generate thermal energy that will be transform into electric. The pellets production was made from enriched UF 6 uses some techniques of reprocessing UF 6 gas to UO 2 powder. This reprocessing process done by wet route (Ammonium Diuranate ADU or Ammonium Uranium Carbonate AUC) or by dry route (Fluidized bed or GECO). With getting of UO 2 powder is forwarded to metallurgy where this powder is compacted in cylindrical matrix so that powder take the desired shape, this green pellets are full of the empty spaces (porosity) for this it is sent to the sintering. The sintering consists of a joint of these particles of powders by means of the heating of this green pellets, coming arrive the melting temperature, the UO 2 molecules melting each other so decrease the porosity and increase the density. For the production of fuel pellets the process all most used is wed route by means the AUC ,this process arrive created for replace the ADU because the AUC is a process where less rework for the pore geometry is required compared to DUA. The fluidized bed process is more used in small samples however, for a large amount it becomes unfeasible, moreover the dry route process require more robust materials because of the generation of HF that is highly corrosive and cannot used the UNH (uranyl nitrate hexahydrate) used for recycle materials discarded in manufacturing. (author)

  13. Short Communication: Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Biomass Pellet Burning in a Modern Burner for Cooking in China.

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2012-12-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EF oPAHs ) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EF oPAHs for raw fuels combusted in a traditional cooking stove were also measured. EF oPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EF oPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EF oPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EF oPAHs for the pellets in mode I were significantly lower ( p < 0.05 ), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.

  14. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L.

    Energy Technology Data Exchange (ETDEWEB)

    Carone, Maria Teresa; Pantaleo, Antonio; Pellerano, Achille [Department of Engineering and Management of the Agricultural, Livestock and Forest Systems, Faculty of Agriculture, University of Bari, Via Amendola, 165/A, 70126 Bari (Italy)

    2011-01-15

    The present work aims to investigate the influence of the main process parameters (pressure and temperature) and biomass characteristics (moisture content and particle size) on some mechanical properties (density and durability) of olive tree pruning residues pellets. By means of a lab scale pellet press, able to control process parameters, the biomass, ground with three different hammer mill screen sizes (1, 2 and 4 mm) and conditioned at different moisture contents (5, 10, 15 and 20% w.b.), was pelletized at various process temperatures (60, 90, 120 and 150 C) and pressures (71, 106, 141 and 176 MPa). Compressed sample dimensions and mass were measured in order to calculate pellet density, while compressive strength tests were carried out to estimate the durability of the final biofuel. The relationships between the factor settings and the responses (density, compression strength and modulus of elasticity) were examined by univariate and multivariate statistical analysis. Temperature resulted the most important variable influencing pellet mechanical properties, followed by the initial moisture content and the particle size of the raw material. In particular, high process temperature, low moisture contents and reduced particle sizes allowed obtaining good quality pellets. The effect of compression force resulted scarcely relevant. (author)

  15. Production and ejection of solid hydrogen-isotope pellet (single pellet)

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Hasegawa, Koichi; Miura, Yukitoshi; Ishibori, Ikuo

    1986-03-01

    The pneumatic gun type pellet injector (single pellet) has been constructed, which is basic type used at ORNL. The pellet in the carrier is 1.65 mm in diameter and 1.65 mm in length, and another is 1 mmD x 1 mmL. Hydrogen pellet velocity of about 900 m/s was observed at propellant gas (He) pressure of 14 kg/cm 2 . In the injection experiment into a plasma, typical velocity is 714 ∼ 833 m/s. These values are 80 ∼ 95 % of velocity calculated from the ideal gun model. The ejected pellet size is 71 ∼ 90 % of the hole size in the carrier disk (1.65 mmD x 1.65 mmL) and 46 ∼ 56 % (1 mmD x 1 mmL). The spread in the pellet trajectories is about 26 mm in diameter at a plasma center. (author)

  16. Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2012-12-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348 ± 305 and 396 ± 387 μg kg-1 in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7 ± 49.4 and 189 ± 118 μg kg-1, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.

  17. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  18. Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

    Energy Technology Data Exchange (ETDEWEB)

    Folk, Richard L.; Govett, Robert L.

    1992-07-01

    Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

  19. Production and characterization of pellets using Avicel CL611 as spheronization aid.

    Science.gov (United States)

    Puah, Sin Yee; Yap, Hsiu Ni; Chaw, Cheng Shu

    2014-03-01

    The study looked into the feasibility of producing pellet using Avicel CL611 as spheronization aid by the extrusion/spheronization technique. Pellets were formulated to contain either 20% or 40% Avicel CL611 and lactose monohydrate as the other sole ingredient. Water is used as liquid binder. Quality of pellets and extrudates were analyzed for size distribution, shape, surface tensile strength and disintegration profile. More water was needed when higher Avicel CL611 fraction was used during the production of pellets. The pellets of larger size were obtained by increasing the water content. Pellets with aspect ratios of ∼1.1 were produced with high spheronization speed at short residence time. Higher tensile strength was achieved when increasing the water content and the fraction of Avicel CL611 during pellet production. These pellets also took longer time to disintegrate, nonetheless all the pellets disintegrated within 15 min. A positive linear relationship was obtained between the tensile strength and time for pellets to disintegrate. Strong but round pellets that disintegrate rapidly could be produced with Avicel CL611 as spheronization aid using moderately soluble compounds such as lactose.

  20. Wood pellets offer a competitive energy option in Sweden

    International Nuclear Information System (INIS)

    2001-01-01

    The market for wood pellets in Sweden grew rapidly during the 1990s and production now stands at around 550,000 tonnes/year. More efficient combustion technology, pellet transportation, pellet storage and pellet delivery have also been developed. The pellets, which are produced by some 25 plants, are used in family houses, large-scale district heating plants, and combined heat and power (CHP) plants. Most of the pellets are made from biomass resources such as forest residues and sawdust and shavings from wood mills. Pellet production, the energy content of saw mill by-products, the current market and its potential for future expansion, the way in which the pellets are used in different combustion systems, the theoretical market potential for wood pellet heating installations in small houses and the Swedish P-certificate system for the certification of pellet stoves and burners are described

  1. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  2. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  3. Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation

    International Nuclear Information System (INIS)

    McKechnie, Jon; Saville, Brad; MacLean, Heather L.

    2016-01-01

    Highlights: • Steam-treated pellets can greatly reduce greenhouse gas emissions relative to coal. • Cost advantage is seen relative to conventional pellets. • Higher pellet cost is more than balanced by reduced retrofit capital requirements. • Low capacity factors further favour steam-treated pellets over conventional pellets. - Abstract: Steam-treated pellets can help to address technical barriers that limit the uptake of pellets as a fuel for electricity generation, but there is limited understanding of the cost and environmental impacts of their production and use. This study investigates life cycle environmental (greenhouse gas (GHG) and air pollutant emissions) and financial implications of electricity generation from steam-treated pellets, including fuel cycle activities (biomass supply, pellet production, and combustion) and retrofit infrastructure to enable 100% pellet firing at a generating station that previously used coal. Models are informed by operating experience of pellet manufacturers and generating stations utilising coal, steam-treated and conventional pellets. Results are compared with conventional pellets and fossil fuels in a case study of electricity generation in northwestern Ontario, Canada. Steam-treated pellet production has similar GHG impacts to conventional pellets as their higher biomass feedstock requirement is balanced by reduced process electricity consumption. GHG reductions of more than 90% relative to coal and ∼85% relative to natural gas (excluding retrofit infrastructure) could be obtained with both pellet options. Pellets can also reduce fuel cycle air pollutant emissions relative to coal by 30% (NOx), 97% (SOx), and 75% (PM 10 ). Lesser retrofit requirements for steam-treated pellets more than compensate for marginally higher pellet production costs, resulting in lower electricity production cost compared to conventional pellets ($0.14/kW h vs. $0.16/kW h). Impacts of retrofit infrastructure become increasingly

  4. A Review on Biomass Torrefaction Process and Product Properties

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  5. Effects of carbonization conditions on properties of bamboo pellets

    Science.gov (United States)

    Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Yan Yu; Xing' e Liu

    2013-01-01

    Bamboo is a biomass material and has great potential as a bio-energy resource of the future in China. Bamboo pellets were successfully manufactured using a laboratory pellet mill in preliminary work. This study was therefore carried out to investigate the effect of carbonization conditions (temperature and time) on properties of bamboo pellets and to evaluate product...

  6. Power from Pellets Technology and Applications

    CERN Document Server

    Döring, Stefan

    2013-01-01

    This book provides a practical description of the technology of pellet production on the basis of renewable sources as well as the utilization of pellets. The author explains what kinds of biomass are usable in addition to wood, how to produce pellets and how to use pellets to produce energy. Starting with the basics of combustion, gasification and the pelletizing process, several different technologies are described. The design, planning, construction and economic efficiency are discussed as well. The appendix gives useful advice about plant concepts, calculations, addresses, conversion tables and formulas.

  7. Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning.

    Science.gov (United States)

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wei, Wen; Wang, Xilong; Liu, Wenxing; Wang, Xuejun; Masse Simonich, Staci L y

    2012-06-05

    Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.

  8. Pseudomonas sp. LMTK32 production in modified media for pelleting seeds of maca (Lepidium meyenii Walp.

    Directory of Open Access Journals (Sweden)

    Martin Guerra Lopez

    2018-05-01

    Full Text Available Biomass of Pseudomonas sp. LMTK32 was produced from modification of culture media Yeast Extract Mannitol Broth (YEMB with the aim of increasing the number of viable cells with the ability to promote the germination of maca seeds pelleted with the bacteria and reduce production costs. In the optimization process, the yeast extract and mannitol components of the LMC culture media were replaced by commercial sources of sucrose and glutamate, whose concentrations were determined in flasks by statistical design from Box-Behnken; in addition, the effect of the inoculum percentage on the time of biomass production was determined. Subsequently, it was determined at the bioreactor level that 28.57 h-1 was the adequate value of the volumetric oxygen transfer coefficient (kLa at 600 rpm, producing 1.28 x 10 11 CFU / mL. In the LMC M1 modified media, using 12.06 g / L-1 of sucrose, 11.50 g / L-1 of sodium glutamate and 10.9% of inoculant obtained 15x108 CFU / mL, increasing in 48% the number of viable cells with respect to the YEMB control treatment (7.8x10 8 CFU / mL. At the in vitro level, the pelleting of maca seeds with Pseudomonas sp. LMTK32 produced in bioreactor and in the modified media M1 favored its germination. From commercial organic substrates, efficient bacterial inoculants can be produced in the development of maca crops, without altering their ability to promote plant growth.

  9. Use of coffee (Coffea arabica pulp for the production of briquettes and pellets for heat generation

    Directory of Open Access Journals (Sweden)

    Robert Cubero-Abarca

    2014-10-01

    Full Text Available Coffee bean (Coffea arabica processing generates high amount of residues that are sources of environmental pollution. Therefore, an appropriate solution is needed. The objective of this study was to determine the potential of coffee pulp to produce briquettes and pellets. The study included pulp drying (using air, solar and hot air methods; the production of briquettes and pellets; the evaluation of their energy, physical and mechanical properties; and the evaluation of pellet quality using X-ray densitometry. The results showed that the pulp presented an initial moisture content of 90%, resulting in drying times of 699, 308 and 55 hours for air, solar and hot air drying, respectively, and the calorific values of the pellets and briquettes were 12,501 kJ kg-1 and 11,591 kJ kg-1, respectively. The ash content was 8.68% for the briquettes and 6.74% for the pellets. The density of the briquettes was 1,110 kg m-3, compared with 1,300 kg m-3 for the pellets. The apparent densities were 1,000 kg m-3 and 600 kg m-3 for the briquettes and pellets, respectively, and the water absorptions by the briquettes were 7.90% and 8.10% by the pellets. The maximum horizontal compression effort was 26.86 kg cm-2, measured in the pellets, compared with 4.52 kg cm-2 in the briquettes. The maximum horizontal load was 93.24 kg, measured in the briquettes, compared with 33.50 kg in the pellets. The value of the pellet durability test was 75.54%. X-ray densitometry showed that the pellet was uniform and a few cracks were observed on the pellet surface.

  10. Pellets for Power: sustainable biomass import from Ukraine : public final report

    NARCIS (Netherlands)

    Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P.; Sluis, van der T.; Galytska, M.; Kulyk, M.; Jamblinne, de P.; Kraisvitnii, P.; Rii, O.; Hoekstra, T.

    2013-01-01

    This project responds to the mismatch between on the one hand a growing demand for biomass on the Dutch and EU energy markets with a limited biomass potential and on the other hand large amounts of biomass and biomass potential currently underutilised in Ukraine. Ukraine itself is seen as a very

  11. Experimental studies on combustion of composite biomass pellets in fluidized bed.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2017-12-01

    This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration

  12. Production method of burnable poison incorporated fuel pellet by coating

    International Nuclear Information System (INIS)

    Naito, Naoyoshi.

    1993-01-01

    A cylindrical member is formed with an organic material which is melted, decomposed or evaporated by heating. Such organic materials include polyethylene and polyvinyl alcohol, for example. A predetermined amount of burnable poisons are homogeneously incorporated in the cylindrical member by a means, such as melting before fabricating it into a cylindrical shape. UO 2 fuel pellets are inserted to the cylindrical member and heated, to scatter only the organic materials, so that non-volatile burnable poisons are homogeneously left on the surface of the pellets. It is preferred that the cylindrical member having pellets inserted therein is inserted to a cladding tube and applied with a heat treatment. With such procedures, a UO 2 pellet is coated with burnable poisons by a convenient and compact device. In addition, grinding step after the coating is unnecessary. (I.N.)

  13. Improving the Conventional Pelletization Process to Save Energy during Biomass Densification

    Directory of Open Access Journals (Sweden)

    Zhongjia Chen

    2015-08-01

    Full Text Available A pellet mill is currently the most frequently used method for producing pellets using either a ring die or a flat die. In the densification process, a great amount of energy is required to avoid spring-back and to overcome the friction between the material and the channel surface of the die. However, extra energy is unnecessarily consumed because of friction between the roller and densified material and the pressure between the roller and die, where there are no opening channels. The aim of this work was to attempt to eliminate a portion of the frictional and compaction energy consumption based on an improved method of densification using a ring die. An upgraded pellet mill was designed and manufactured with rams on its roller. When the die and the roller rotate in a fixed transmission ratio, the rams precisely press raw material into opening channels on the die. Experimental tests on its feasibility were carried out. The results showed that the pellet mill, with this improvement, worked without wear on the surface of either the ring die or the roller; furthermore, the density and mechanical durability of pellets were the same as those produced using the traditional method.

  14. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean).

    Science.gov (United States)

    Turner, Andrew; Holmes, Luke

    2011-02-01

    The distribution, abundance and chemical characteristics of plastic production pellets on beaches of the island of Malta have been determined. Pellets were observed at all locations visited and were generally most abundant (> 1000m⁻² at the surface) on the backshores of beaches with a westerly aspect. Most pellets were disc-shaped or flattened cylinders and could be categorised as white, yellow, amber or brown. The polymeric matrix of all pellets analysed by infrared spectroscopy was polyethylene and the degree of yellowing or darkening was associated with an increase in the carbonyl index, hence extent of photo-oxidation or aging. Qualitatively, pellets are similar to those reported for other regions of the Mediterranean in surveys spanning three decades, suggesting that they are a general and persistent characteristic of the region. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Wood pellets : a worldwide fuel commodity

    International Nuclear Information System (INIS)

    Melin, S.

    2005-01-01

    Aspects of the wood pellet industry were discussed in this PowerPoint presentation. Details of wood pellets specifications were presented, and the wood pellet manufacturing process was outlined. An overview of research and development activities for wood pellets was presented, and issues concerning quality control were discussed. A chart of the effective calorific value of various fuels was provided. Data for wood pellet mill production in Canada, the United States and the European Union were provided, and various markets for Canadian wood pellets were evaluated. Residential sales as well as Canadian overseas exports were reviewed. Production revenues for British Columbia and Alberta were provided. Wood pellet heat and electricity production were discussed with reference to prefabricated boilers, stoves and fireplaces. Consumption rates, greenhouse gas (GHG) emissions, and fuel ratios for wood pellets and fossil fuels were compared. Price regulating policies for electricity and fossil fuels have prevented the domestic expansion of the wood pellet industry. There are currently no incentives for advanced biomass combustion to enter British Columbia markets, and this has led to the export of wood pellets. It was concluded that climate change mitigation policies will be a driving force behind market expansion for wood pellets. tabs., figs

  16. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Saleem S., E-mail: saleem.drera@scatec.no [Thor Energy AS, Karenslyst allé 9C, 0278 Oslo (Norway); Björk, Klara Insulander [Thor Energy AS, Karenslyst allé 9C, 0278 Oslo (Norway); Sobieska, Matylda [Institute for Energy Technology (IFE), Nuclear Materials, Os allé 5, NO-1777, Halden (Norway)

    2016-10-15

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project’s fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively. - Highlights: • High quality Ce−Th fuel production can be accomplished by utilizing powder metallurgical procedures. • Powder morphology is key to obtaining high density fuels. • Optimal pellet pressing is obtained when 3.5–4 tons of force is applied by the pellet press for powder compaction. • Pellet sintering is accomplished effectively in an Air oxidizing atmosphere. • Based on this surrogate work, expected (Th,Pu)O{sub 2} fuel density is 95.5% of theoretical density.

  17. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  18. Production of floating pellets using appropriate methods | Suleiman ...

    African Journals Online (AJOL)

    The study investigated into the use of floating materials like candle wax, yeast and baking powder to achieve pellet buoyancy. Ten diets were formulated with incorporation of floating agents; Diet I-YBCT- (yeast-baking powder in cold water -toasted), Diet II-YBCU- (yeast-baking powder in cold water -untoasted) Diet III ...

  19. Small Landowner Production of Pellets from Green, Beetle-Killed, and Burned Lodgepole Pine

    Directory of Open Access Journals (Sweden)

    Xuexian Qin

    2018-03-01

    Full Text Available To meet the growing need for raw materials to produce pellets and wood-based biofuels, trees killed by natural disturbances have increasingly been considered as potential feedstock in bioenergy development scenarios in the Western U.S. and Canada. While much research has focused on utilization of beetle-killed and fire-salvaged timber from federal lands in this region, small private landowners make up a large portion of land holdings in the Rocky Mountain Region and may also provide an important potential supply of uniform feedstock pellets in decentralized energy supply systems in the future. In this paper, we evaluated the quality of pellets produced from green, beetle-killed, and burned lodgepole pine with and without bark using a chipper, hammer mill, and pellet mill intended for use by small landowners. Results show that green, beetle-killed, and fire-salvaged lodgepole pine produced by small landowners, including material with bark, are suitable as feedstock for pellet production. Further, pellet quality can be varied through the blending of source lodgepole pine products when needed to meet pellet quality standards.

  20. 99Mo production using MoO3 pellets obtained by mechanical compression and heat treatment

    International Nuclear Information System (INIS)

    Rojas, Jorge; Mendoza, Pablo; Lopez, Alcides

    2014-01-01

    This paper shows the results of the MoO 3 pellets fabrication by mechanical compression and the heat treatment method (MCHT) in order to optimize the production of 99 Mo in the RACSO Nuclear Center. The effects of polyvinyl alcohol (PVA) as binder are assessed by heat treatment of pellets in air atmosphere, evaluating the elimination process with increasing temperature and solubility in 5N NaOH. The results show that the pellets fabrication technique is suitable because fulfills the required technical specifications, allows to irradiate 50 % more of 98 Mo mass and facilitate a safer radiological handling of the irradiated MoO 3 . (authors).

  1. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  2. Characteristics and properties of torrefied biomass pellets from Gmelina arborea and Dipterix panamensis at different times

    Directory of Open Access Journals (Sweden)

    Johanna Gaitán-Álvarez

    2016-01-01

    Full Text Available La torrefacción y peletización se han estudiado en la generación de calor a partir de residuos lignocelulósicos, para incrementar las propiedades energéticas del material. El objetivo del presente trabajo fue torrefaccionar aserrín de Gmelina arborea y Dipteryx panamensis a 200 °C en tres tiempos: 0, 15 y 20 minutos. Con las biomasas obtenidas se fabricaron pellets de 6 mm de diámetro y se evaluaron sus propiedades físicas, el poder calórico, la densidad y la propiedad mecánica de resistencia a la compresión. Ambas especies presentaron características físicas similares con respecto al diámetro (0.50 mm, longitud (21.50 mm y porcentaje de absorción de agua (6.00 %. El poder calórico aumentó de 9,749 kJ·kg-1 en la biomasa sin torrefaccionar a 18,126 kJ·kg-1 en la biomasa torrefaccionada. Los pellets de D. panamesis presentaron mayor densidad y resistencia a la compresión que los de G. arborea. Con base en los resultados, la resistencia a la compresión del pellet disminuye cuando el tiempo de torrefacción aumenta. Existe correlación positiva entre la densidad de los pellets y la resistencia a la compresión. La especie D. panamensis presenta mejor comportamiento a la torrefacción y peletización que la madera de G. arborea.

  3. Optimization of extrusion process for production of nutritious pellets

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.

  4. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  5. Lithium pellet production (LiPP): A device for the production of small spheres of lithium

    Science.gov (United States)

    Fiflis, P.; Andrucyzk, D.; Roquemore, A. L.; McGuire, M.; Curreli, D.; Ruzic, D. N.

    2013-06-01

    With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of ΔP = 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D = 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

  6. Study on the associated removal of pollutants from coal-firing flue gas using biomass activated carbon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Yuan, Wanli [Qingdao Univ., Shandong (China). Electrical and Mechanical Engineering College; Qi, Haiying [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    A pilot-scale multi-layer system was developed for the adsorption of SO{sub 2}/NO{sub x}/Hg from flue gas (real flue gases of an heating boiler house) at various operating conditions, including operating temperature and activated carbon materials. Excellent SO{sub 2}/NO{sub x}/Hg removal efficiency was achieved with the multi-layer design with carbons pellets. The SO{sub 2} removal efficiency achieved with the first layer adsorption bed clearly decreased as the operating temperature was increased due to the decrease of physisorption performance. The NO{sub x} removal efficiency measured at the second layer adsorption bed was very higher when the particle carbon impregnated with NH{sub 3}. The higher amounts of Hg absorbed by cotton-seed-skin activated carbon (CSAC) were mainly contributed by chlorinated congeners content. The simultaneously removal of SO{sub 2}/NO{sub x}/Hg was optimization characterized with different carbon layer functions. Overall, The alkali function group and chloride content in CSAC impelled not only the outstanding physisorption but also better chemisorptions. The system for simultaneously removal of multi-pollutant-gas with biomass activated carbon pellets in multi-layer reactor was achieved and the removal results indicated was strongly depended on the activated carbon material and operating temperature.

  7. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  8. Assessment of pelletized biofuels

    International Nuclear Information System (INIS)

    Samson, R.; Duxbury, P.; Drisdelle, M.; Lapointe, C.

    2000-04-01

    There has been an increased interest in the development of economical and convenient renewable energy fuels, resulting from concerns about climate change and rising oil prices. An opportunity to use agricultural land as a means of producing renewable fuels in large quantities, relying on wood and agricultural residues only has come up with recent advances in biomass feedstock development and conversion technologies. Increasing carbon storage in the landscape and displacing fossil fuels in combustion applications can be accomplished by using switchgrass and short rotation willow which abate greenhouse gas emissions. The potential of switchgrass and short rotation willow, as well as other biomass residues as new feedstocks for the pellet industry is studied in this document. Higher throughput rates are facilitated by using switchgrass, which shows potential as a pelleting feedstock. In addition, crop drying requires less energy than wood. By taking into consideration energy for switchgrass production, transportation to the conversion facility, preprocessing, pelleting, and marketing, the overall energy balance of switchgrass is 14.5:1. Research on alfalfa pelleting can be applied to switchgrass, as both exhibit a similar behaviour. The length of chop, the application of high temperature steam and the use of a die with a suitable length/diameter ratio are all factors that contribute to the successful pelleting of switchgrass. Switchgrass has a similar combustion efficiency (82 to 84 per cent) to wood (84 to 86 per cent), as determined by combustion trials conducted by the Canada Centre for Mineral and Energy Technology (CANMET) in the Dell-Point close coupled gasifier. The energy content is 96 per cent of the energy of wood pellets on a per tonne basis. Clinker formation was observed, which necessitated some adjustments of the cleaner grate settings. While stimulating rural development and export market opportunities, the high yielding closed loop biofuels show

  9. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  10. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  11. Pellet dimension checker

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1980-01-01

    A pellet dimension checker was developed for use in making nuclear-fuel pellets. This checker eliminates operator handling of the pellet but permits remote-monitoring of the operation, and is thus suitable for mass production of green fuel pellets particularly in reprocessing plants handling irradiated uranium or plutonium. It comprises a rotatable arm for transferring a pellet from a conveyor to several dimensional measuring stations and back to the conveyor if the dimensions of the pellet are within predetermined limits. If the pellet is not within the limits, the arm removes the pellet from the process stream. (DN)

  12. Health Effects of Operators in the Production of Wood Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, K.; Arvidsson, H.; Bryngelsson, I.L.; Fedeli, C. [Oerebro Univ. (Sweden). Dept. of Occupational and Environmental Medicine; Eriksson, K. [Univ. Hospital of Umeaa (Sweden). Dept. of Occupational and Environmental Medicine; Andersson, E. [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Occupational and Environmental Medicine

    2006-07-15

    The environmental and energy policy in Sweden is aiming to replace fossil energy with renewable sources such as biofuels, e.g., wood Pellets produced from shavings and sawdust of pine and spruce. Reported health effects in the wood processing industries are airway, eye and skin irritation, reduced lung function as well as eczema. The aim of our study was to investigate the prevalence of airway and skin symptoms and measure lung function in a population of pellet operators in the Swedish wood industry. Additional reported acute effects from the airways, eyes, nose and skin were recorded. From May 2004 until April 2005 50 blue-collar workers from four Swedish pellet-producing industries were investigated. The study included a questionnaire about skin and airway symptoms (n=50), acute effect questionnaire (n=67; 44 individuals) as well as a test of the lung function (spirometry) before and after work shift (n=118; 39 individuals). Acute effects questionnaire and spirometry were done one to three times per participants and for the acute effects the worker had to assess their symptoms in the airways, eyes, nose and skin between 6 and 8 times during a day. The results from the symptom questionnaires were compared with reference data from other Swedish studies and the lung function data with a European reference material. Statistical tests used were chi-2-test for the questionnaire, t-test for lung function before shift compared expected values, and for difference in lung function between before and after work shift mixed models with subjects as a random factor. No statistical significant difference was seen for the skin and airway symptoms in the questionnaire. Reported acute effects were seen especially for eye and nose symptoms (table 1). Spirometry showed significantly higher forced vital capacity (FVC; p=0.0003) and no difference in forced expiratory volume in 1 second (FEV1; p=0.08) before work shift compared to expected values. FVC was 108,1 % and FEV1 was 104

  13. Biomass productivity improvement for eastern cottonwood

    Science.gov (United States)

    Terry L. Robison; Randy J. Rousseau; Jianwei Zhang

    2006-01-01

    Eastern cottonwood ( Populus deltoides Marsh.) is grown in plantations by MeadWestvaco for use at its Wickliffe Kentucky Fine Papers Mill1. Genetic and productivity research over the past two decades have led to significant increases in biomass yield while reducing production costs.Initially, genetic research identified fast growing...

  14. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  15. Production and trading of biomass for energy - An overview of the global status

    International Nuclear Information System (INIS)

    Heinimoe, J.; Junginger, M.

    2009-01-01

    The markets for industrially used biomass for energy purposes are developing rapidly toward being international commodity markets. Determining international traded biomass volumes for energy purposes is difficult, for several reasons, such as challenges regarding the compilation of statistics on the topic. While for some markets (pellets and ethanol) separate overviews exist, no comprehensive statistics and summaries aggregating separate biomass streams are available. The aim of this paper is to summarise trade volumes for various biomasses used for energy and to review the challenges related to measurement of internationally traded volumes of biofuels. International trade of solid and liquid biofuels was estimated to be about 0.9 EJ for 2006. Indirect trade of biofuels thorough trading of industrial roundwood and material byproducts comprises the largest proportion of trading, having a share of about 0.6 EJ. The remaining amount consisted of products that are traded directly for energy purposes, with ethanol, wood pellets, and palm oil being the most important commodities. In 2004-2006, the direct trade of biofuels increased 60%, whereas indirect trade has been almost constant. When compared to current global energy use of biomass (about 50 EJ yr -1 ) and to the long-term theoretical trading potential between the major regions of the world (80-150 EJ yr -1 ), the development of international trade of biomass for energy purposes is in its initial stage, but it is expected to continue to grow rapidly. (author)

  16. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  17. EFFECT OF THE DIETARY PELLET:MEAL RATIO ON THE PRODUCTIVE PERFORMANCE OF LAYING HENS

    Directory of Open Access Journals (Sweden)

    Luis Armando Sarmiento-Franco

    2009-07-01

    Full Text Available The effect of dietary pellet:meal ratio on the performance of laying hens was evaluated using 60 Plymouth Barred Rock 30 week old hens. Hens were distributed at random to three treatments: 100:0, 75:25 and 50:50% of pellet:meal ratio in the diet along 49 days, with 20 replicates each. Final body weight of hens, polar and ecuatorial diameters of the egg, eggshell weight, eggshell thickness, and yolk colour were not different between treatments (p>0.05. However, egg production, egg weight, egg mass, food consumption, food conversion and production cost were affected by treatments (p

  18. Production of chemicals and fuels from biomass

    Science.gov (United States)

    Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John

    2018-01-23

    Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  19. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  20. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  1. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  2. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  3. Optimization of biomass and dihydroorotase (DHOase) production ...

    African Journals Online (AJOL)

    Growth conditions which maintains DHOase overproduction by Saccharomyces cerevisiae MNJ3 (pMNJ1) and allow sufficient biomass production to ensure DHoase's purification were investigated. We used as basal medium the Yeast Carbon Base (YCB; Difco), especially designed for studies of nitrogen metabolism in ...

  4. Biomass production and basic research on photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    This document is a report of the conference: research and development work in Austria, organized by Austrian ministry of science and research, the ASSA and the OMV-stock company in 1979, which took place in Vienna. The text is about the different possible forms of solar energy utilization. Broda analyses in detail the utilization and production of biomass. (nowak)

  5. Completion of UO2 pellets production and fuel rods load for the RA-8 critical facility

    International Nuclear Information System (INIS)

    Marajofsky, Adolfo; Perez, Lidia E.; Thern, Gerardo G.; Altamirano, Jorge S.; Benitez, Ana M.; Cardenas, Hugo R.; Becerra, Fabian A.; Perez, Aldo E.; Fuente, Mariano de la

    1999-01-01

    The Advanced Fuels Division produced fuel pellets of 235 U with 1.8% and 3.6% enrichment and Zry-4 cladding loads for the RA-8 reactor at Pilcaniyeu Technological Unit. For economical and availability reasons, the powder acquired was initially UO 2 with 3.4% enrichment in 235 U, therefore the 235 U powder with 1.8% enrichment was produced by mechanical mixture. The production of fuel pellets for both enrichments was carried out by cold pressing and sintering processes in reducing atmosphere. The load of Zry-4 claddings was performed manually. The production stages can be divided into setup, qualification and production. This production allows not only to fulfill satisfactorily the new fuel rods supply for the RA-8 reactor but also to count with a new equipment and skilled personnel as well as to meet quality and assurance control methods for future pilot-scale production and even new fuel elements production. (author)

  6. Biomass for rural vitality report

    International Nuclear Information System (INIS)

    McDonald, S.; DiPaolo, J.; Bryan, J.

    2009-06-01

    This report was completed by the Eastern Lake Ontario Regional Innovation Network (ELORIN) in order to identify opportunities for producing pellets from agricultural biomass in Lennox and Addington County. An agricultural profile of the county was presented. Potential feedstocks for biomass production included industrial hemp; switchgrass; short rotation crop willow; hybrid poplars; and miscanthus. Available soil survey data was combined with soil class data in order to generate maps of the total area of land available for energy crop production. The pelletizing process was described. A cost projection for 3 to 7 ton per hour pellet production facility was also presented. Potential markets for using the pellets include greenhouses, residential home heating suppliers and large industrial users. The study showed that heating just 1 per cent of Ontario's greenhouse space with switchgrass will create a demand for 15,000 tonnes of pellets. The average home requires 3 to 4 tonnes of pellets per year for heating. 3 tabs., 54 figs.

  7. Combustion of mediterranean agro-forest biomasses in small and medium scale pellet boilers: strategies for minimizing ash fusion and slagging

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Nieva, Daniel J.; Dopazo, Raquel; Ortiz, Luis [Forest Engineering Univ. School. Univ. of Vigo, Pontevedra (Spain)], e-mail: DanielJVN@gmail.com

    2012-11-01

    The slagging and fouling risk remain as important barriers that are currently limiting the use of various agricultural residues and potential energy crops feedstocks (e.g. [1-3]), which remain largely unutilized, particularly in Mediterranean countries. In this oral communication, the main results from the VI Framework European Project Domoheat on the combustion of mediterranean biomasses and its mixtures on small and medium size domestic pellet boilers, are presented, together with the goals of the ongoing VII Framework European Project AshMelT focusing on the definition of objective criteria and tests for ash slagging in domestic pellet boilers. The utilization of ash slagging indices based on ash composition and the definition of biomass mixtures based on such ash indices are presented as potentially useful tools for minimizing the occurrence of ash fusion and slagging during combustion.

  8. Production of wood pellets. Influence of additives on production, quality, storage, combustion and life cycle analysis of wood pellets; Herstellung von Holzpellets. Einfluss von Presshilfsmitteln auf Produktion, Qualitaet, Lagerung, Verbrennung sowie Energie- und Oekobilanz von Holzpellets

    Energy Technology Data Exchange (ETDEWEB)

    Hasler, P.; Nussbaumer, T. [Verenum, Zuerich (Switzerland); Buerli, J. [Buerli Pellets, Willisau (Switzerland)

    2001-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study concerning the influence of additives on the various factors related to the manufacture of wood pellets and their use. Results of tests concerning the production, storage and combustion of wood pellets with and without additives are presented. Process modifications are discussed. The report shows that for all investigated additives neither energy consumption nor pellet throughput was improved. The influence of additives on the mechanical strength of the pellets is discussed, as are the combustion characteristics of the pellets, which emit significantly lower levels of NO{sub x} and particulate matter than typical wood chips. The authors recommend the application of advanced control technology to ensure optimum combustion conditions. A life-cycle analysis is presented which shows that pellets are ecologically more favourable than wood chips. The ecological potential for improvement in the manufacturing process is discussed, including emission reductions and heat recovery.

  9. Wood pellet seminar

    International Nuclear Information System (INIS)

    Aarniala, M.; Puhakka, A.

    2001-01-01

    The objective of the wood pellet seminar, arranged by OPET Finland and North Karelia Polytechnic, was to deliver information on wood pellets, pellet burners and boilers, heating systems and building, as well as on the activities of wood energy advisors. The first day of the seminar consisted of presentations of equipment and products, and of advisory desks for builders. The second day of the seminar consisted of presentations held by wood pellet experts. Pellet markets, the economy and production, the development of the pellet markets and their problems (in Austria), the economy of heating of real estates by different fuel alternatives, the production, delivery and marketing of wood pellets, the utilization of wood pellet in different utilization sites, the use of wood pellets in detached houses, pellet burners and fireplaces, and conversion of communal real estate houses to use wood pellets were discussed in the presentations. The presentations held in the third day discussed the utilization of wood pellets in power plants, the regional promotion of the production and the use of pellets. The seminar consisted also of visits to pellet manufacturing plant and two pellet burning heating plants

  10. An Innovative Agro-Forestry Supply Chain for Residual Biomass: Physicochemical Characterisation of Biochar from Olive and Hazelnut Pellets

    Directory of Open Access Journals (Sweden)

    Ilaria Zambon

    2016-07-01

    Full Text Available Concerns about climate change and food productivity have spurred interest in biochar, a form of charred organic material typically used in agriculture to improve soil productivity and as a means of carbon sequestration. An innovative approach in agriculture is the use of agro-forestry waste for the production of soil fertilisers for agricultural purposes and as a source of energy. A common agricultural practice is to burn crop residues in the field to produce ashes that can be used as soil fertilisers. This approach is able to supply plants with certain nutrients, such as Ca, K, Mg, Na, B, S, and Mo. However, the low concentration of N and P in the ashes, together with the occasional presence of heavy metals (Ni, Pb, Cd, Se, Al, etc., has a negative effect on soil and, therefore, crop productivity. This work describes the opportunity to create an innovative supply chain from agricultural waste biomass. Olive (Olea europaea and hazelnut (Corylus avellana pruning residues represent a major component of biomass waste in the area of Viterbo (Italy. In this study, we evaluated the production of biochar from these residues. Furthermore, a physicochemical characterisation of the produced biochar was performed to assess the quality of the two biochars according to the standards of the European Biochar Certificate (EBC. The results of this study indicate the cost-effective production of high-quality biochar from olive and hazelnut biomass residues.

  11. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  12. An overview of CFD modelling of small-scale fixed-bed biomass pellet boilers with preliminary results from a simplified approach

    International Nuclear Information System (INIS)

    Chaney, Joel; Liu Hao; Li Jinxing

    2012-01-01

    Highlights: ► Overview of the overall approach of modelling fixed-bed biomass boilers in CFD. ► Bed sub-models of moisture evaporation, devolatisation and char combustion reviewed. ► A method of embedding a combustion model in discrete fuel zones within the CFD is suggested. ► Includes sample of preliminary results for a 50 kW pellet boiler. ► Clear physical trends predicted. - Abstract: The increasing global energy demand and mounting pressures for CO 2 mitigation call for increased efficient utilization of biomass, particularly for heating domestic and commercial buildings. The authors of the present paper are investigating the optimization of the combustion performance and NO x emissions of a 50 kW biomass pellet boiler fabricated by a UK manufacturer. The boiler has a number of adjustable parameters including the ratio of air flow split between the primary and secondary supplies, the orientation, height, direction and number of the secondary inlets. The optimization of these parameters provides opportunities to improve both the combustion efficiency and NO x emissions. When used carefully in conjunction with experiments, Computational Fluid Dynamics (CFD) modelling is a useful tool for rapidly and at minimum cost examining the combustion performance and emissions from a boiler with multiple variable parameters. However, modelling combustion and emissions of a small-scale biomass pellet boiler is not trivial and appropriate fixed-bed models that can be coupled with the CFD code are required. This paper reviews previous approaches specifically relevant to simulating fixed-bed biomass boilers. In the first part it considers approaches to modelling the heterogeneous solid phase and coupling this with the gas phase. The essential components of the sub-models are then overviewed. Importantly, for the optimization process a model is required that has a good balance between accuracy in predicting physical trends, with low computational run time. Finally, a

  13. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  14. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    Tomberlin, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  15. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazuei, E-mail: k-ishii@eng.hokudai.ac.jp; Furuichi, Toru

    2014-12-15

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.

  16. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    International Nuclear Information System (INIS)

    Ishii, Kazuei; Furuichi, Toru

    2014-01-01

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability

  17. Influence of grass pellet production on pyrrolizidine alkaloids occurring in Senecio aquaticus-infested grassland.

    Science.gov (United States)

    Gottschalk, Christoph; Ostertag, Johannes; Meyer, Karsten; Gehring, Klaus; Thyssen, Stefan; Gareis, Manfred

    2018-04-01

    1,2-Dehydro-pyrrolizidine alkaloids (PA) and their N-oxides (PANO) exhibit acute and chronic toxic effects on the liver and other organs and therefore are a hazard for animal and human health. In certain regions of Germany, an increasing spread of Senecio spp. (ragwort) on grassland and farmland areas has been observed during the last years leading to a PA/PANO-contamination of feed and food of animal and plant origin. This project was carried out to elucidate whether the process of grass pellet production applying hot air drying influences the content of PA and PANO. Samples of hay (n = 22) and grass pellets (n = 28) originated from naturally infested grassland (around 10% and 30% dominance of Senecio aquaticus) and from a trial plot with around 50% dominance. Grass pellets were prepared from grass originating from exactly the same plots as the hay samples. The samples were analysed by liquid chromatography-tandem mass spectrometry for PA/PANO typically produced by this weed. The results of the study revealed that PA/PANO levels (predominantly sum of senecionine, seneciphylline, erucifoline and their N-oxides) in hay ranged between 2.1 and 12.6 mg kg -1 dry matter in samples with 10% and 30% dominance of S. aquaticus, respectively. Samples from the trial plot (50% dominance) had levels of up to 52.9 mg kg -1 . Notably, the hot air drying process during the production of grass pellets did not lead to a reduction of PA/PANO levels. Instead, the levels in grass pellets with 10% and 30% S. aquaticus ranged from 3.1 to 55.1 mg kg -1 . Grass pellets from the trial plot contained up to 96.8 mg kg -1 . In conclusion, hot air drying and grass pellet production did not affect PA/PANO contents in plant material and therefore, heat-dried products cannot be regarded as safe in view of the toxic potential of 1,2-dehydro-pyrrolizidine alkaloids.

  18. By-product reuse in drinking water softening: influence of operating conditions on calcium carbonate pellet characteristics

    DEFF Research Database (Denmark)

    Tang, Camilla; Rosshaug, P. S.; Kristensen, J. B.

    both socio-economic and environmental benefits. However, optimal implementation of softening requires a holistic approach including e.g. possibilities for by-product reuse. A pellet reactor is one widely used softening technology that may produce up to 350 kg calcium carbonate pellets per 1000 m3...

  19. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the US

    NARCIS (Netherlands)

    Hoefnagels, Ric; Junginger, Martin; Faaij, Andre

    2014-01-01

    The global demand for wood pellets used for energy purposes is growing. Therefore, increased amounts of wood pellets are produced from primary forestry products, such as pulp wood. The present analysis demonstrates that substantial amounts of alternative, low-value wood resources are available that

  20. A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York.

    Science.gov (United States)

    Levy, Jonathan I; Biton, Leiran; Hopke, Philip K; Zhang, K Max; Rector, Lisa

    2017-07-01

    Biomass facilities have received increasing attention as a strategy to increase the use of renewable fuels and decrease greenhouse gas emissions from the electric generation and heating sectors, but these facilities can potentially increase local air pollution and associated health effects. Comparing the economic costs and public health benefits of alternative biomass fuel, heating technology, and pollution control technology options provides decision-makers with the necessary information to make optimal choices in a given location. For a case study of a combined heat and power biomass facility in Syracuse, New York, we used stack testing to estimate emissions of fine particulate matter (PM 2.5 ) for both the deployed technology (staged combustion pellet boiler with an electrostatic precipitator) and a conventional alternative (wood chip stoker boiler with a multicyclone). We used the atmospheric dispersion model AERMOD to calculate the contribution of either fuel-technology configuration to ambient primary PM 2.5 in a 10km×10km region surrounding the facility, and we quantified the incremental contribution to population mortality and morbidity. We assigned economic values to health outcomes and compared the health benefits of the lower-emitting technology with the incremental costs. In total, the incremental annualized cost of the lower-emitting pellet boiler was $190,000 greater, driven by a greater cost of the pellet fuel and pollution control technology, offset in part by reduced fuel storage costs. PM 2.5 emissions were a factor of 23 lower with the pellet boiler with electrostatic precipitator, with corresponding differences in contributions to ambient primary PM 2.5 concentrations. The monetary value of the public health benefits of selecting the pellet-fired boiler technology with electrostatic precipitator was $1.7 million annually, greatly exceeding the differential costs even when accounting for uncertainties. Our analyses also showed complex spatial

  1. LCA calculations on Swedish wood pellet production chains - according to the Renewable Energy Directive

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Linus; Saernholm, Erik; Gode, Jenny; Ekvall, Tomas; Rydberg, Tomas

    2009-09-15

    The study includes calculations of typical life cycle emissions of greenhouse gases for representative Swedish pellet production chains in accordance with the calculation rules in RED (Directive 2009/28/EC). The study also intends to analyse how the directive is applicable on solid biofuels in general and on wood pellet production in particular, and to identify such aspects of the methodology in RED that are associated with obscurities, problems or lead to misleading results compared to other life cycle analysis principles. The report includes a large number of alternative calculations to show how different facts, assumptions and methodological choices affect the results. This includes the effect of what fuels are used for drying, different transport distances, assumed fuel mix for purchased electricity, the variance in efficiency between the investigated plants as well as the effect of different interpretations of the RED methodology for greenhouse gas calculations

  2. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  3. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  4. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  5. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  6. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  7. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  8. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  9. Carbon savings with transatlantic trade in pellets: accounting for market-driven effects

    International Nuclear Information System (INIS)

    Wang, Weiwei; Khanna, Madhu; Dwivedi, Puneet; Abt, Robert

    2015-01-01

    Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007–2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass. (letter)

  10. Determining In Vitro Gas Production Kinetics and Methane Production of Wheat Straw and Soybean Straw Pelleted with Different Additives

    OpenAIRE

    GÜLEÇYÜZ, Emre; KILIÇ, Ünal

    2018-01-01

    In this study, it was aimed todetermine the effects of pelletting on the invitro gas productions (IVGP), invitro digestibilities and methane productions of wheat straw and soy strawpelletted with different additives such as molasses, guar meal and sepolite. Inthe study, 2x2x4 factorial experimental design was used and total 16 groups (2straws (wheat-soybean), 2 different sepiolite applications (absent-present) and4 additives (control, guar meal,molasses and guar meal +molasses) wereformed.The...

  11. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  12. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  13. Fungal biomass production from coffee pulp juice

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, R.; Calzada, F.; Herrera, R.; Rolz, C.

    1980-01-01

    Coffee pulp or skin represents about 40% of the weight of the fresh coffee fruit. It is currently a waste and its improper handling creates serious pollution problems for coffee producing countries. Mechanical pressing of the pulp will produce two fractions: coffee pulp juice (CPJ) and pressed pulp. Aspergillus oryzae, Trichoderma harzianum, Penicillium crustosum and Gliocladium deliquescens grew well in supplemented CPJ. At shake flask level the optimum initial C/N ratio was found to be in the range of 8 to 14. At this scale, biomass values of up to 50 g/l were obtained in 24 hours. Biomass production and total sugar consumption were not significantly different to all fungal species tested at the bench-scale level, even when the initial C/N ratio was varied. Best nitrogen consumption values were obtained when the initial C/N ratio was 12. Maximum specific growth rates occurred between 4-12 hours for all fungal species tested. (Refs. 8).

  14. The US pellet market

    International Nuclear Information System (INIS)

    Elliot, S.

    2007-01-01

    Bear Mountain is the largest producer of pellets, firelogs, animal beddings, and barbecue pellets in Western United States. The company's branded products are sold directly to more than 400 retail dealers. This presentation included a series of graphs depicting Bear Mountain's USA pellet sales in tons from 2002 to 2007; truckloads to various distribution areas; pellet stoves and insert units shipped from 1998 to 2006; and hearth appliance shipments from 1998 to 2006. It was noted that in the United States, 98 per cent of the pellets sold come in 40 pound bags and are delivered to retailers by truck. Space is needed for inventory purposes, as each customer may use 2 to 4 tons. The pellets are used in small ash capacity room heaters. The pellet producers buy sawdust from area mills. It was noted that the soft housing market combined with competition for pulp and paper has pinched the supply of pellets. Pellets were in short supply in the west coast during the winter of 2006-2007 and in eastern United States during the winters of 2004-2005 and 2005-2006, indicating that summer production of pellets is required in order to meet winter demand. The key demand factors for pellets include stove sales; pellet pricing; pricing of other fuels; and, weather. The key supply factors for pellets include availability of sawdust; logistics; competition; and cost. The greatest challenge facing pellet producers is the high cost of freight. It was concluded that 2008 will be another year of uncertainty for pellet producers, due to the abundant supply of pellets in the east and midwest, and stabilized alternative fuel pricing. tabs., figs

  15. Economic analysis of biomass crop production in Florida

    International Nuclear Information System (INIS)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F.

    1997-01-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  16. Economic analysis of biomass crop production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F. [University of Florida, Gainesville, FL (United States)

    1997-07-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  17. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  18. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    Science.gov (United States)

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  19. Production costs of liquid fuels from biomass

    International Nuclear Information System (INIS)

    Bridgwater, A.V.; Double, J.M.

    1994-01-01

    This project was undertaken to provide a consistent and thorough review of the full range of processes for producing liquid fuels from biomass to compare both alternative technologies and processes within those technologies in order to identify the most promising opportunities that deserve closer attention. Thermochemical conversion includes both indirect liquefaction through gasification, and direct liquefaction through pyrolysis and liquefaction in pressurized solvents. Biochemical conversion is based on a different set of feedstocks. Both acid and enzyme hydrolysis are included followed by fermentation. The liquid products considered include gasoline and diesel hydrocarbons and conventional alcohol fuels of methanol and ethanol. Results are given both as absolute fuel costs and as a comparison of estimated cost to market price. In terms of absolute fuel costs, thermochemical conversion offers the lowest cost products, with the least complex processes generally having an advantage. Biochemical routes are the least attractive. The most attractive processes from comparing production costs to product values are generally the alcohol fuels which enjoy a higher market value. (author)

  20. Relationships between biomass composition and liquid products formed via pyrolysis

    Directory of Open Access Journals (Sweden)

    Fan eLin

    2015-10-01

    Full Text Available Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability—all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models for biomass components in formation of liquid pyrolysis products: (1 as direct sources, (2 as catalysts, and (3 as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  1. Relationships between Biomass Composition and Liquid Products Formed via Pyrolysis

    International Nuclear Information System (INIS)

    Lin, Fan; Waters, Christopher L.; Mallinson, Richard G.; Lobban, Lance L.; Bartley, Laura E.

    2015-01-01

    Thermal conversion of biomass is a rapid, low-cost way to produce a dense liquid product, known as bio-oil, that can be refined to transportation fuels. However, utilization of bio-oil is challenging due to its chemical complexity, acidity, and instability – all results of the intricate nature of biomass. A clear understanding of how biomass properties impact yield and composition of thermal products will provide guidance to optimize both biomass and conditions for thermal conversion. To aid elucidation of these associations, we first describe biomass polymers, including phenolics, polysaccharides, acetyl groups, and inorganic ions, and the chemical interactions among them. We then discuss evidence for three roles (i.e., models) for biomass components in the formation of liquid pyrolysis products: (1) as direct sources, (2) as catalysts, and (3) as indirect factors whereby chemical interactions among components and/or cell wall structural features impact thermal conversion products. We highlight associations that might be utilized to optimize biomass content prior to pyrolysis, though a more detailed characterization is required to understand indirect effects. In combination with high-throughput biomass characterization techniques, this knowledge will enable identification of biomass particularly suited for biofuel production and can also guide genetic engineering of bioenergy crops to improve biomass features.

  2. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  3. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F.S. III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S.L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I.A.

    2015-01-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the

  4. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  5. Materials in Sweden for future production of fuel pellets. A review of possible materials in short- and medium long-term; Raavaror foer framtida tillverkning av braenslepellets i Sverige. En kartlaeggning av taenkbara alternativa raavaror paa kort och medellaang sikt

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Lars [Swedish National Testing and Research Inst., Boraas (Sweden)

    2003-07-01

    The use of fuel pellets, mainly produced from sawdust and shavings from the Swedish sawmill industry, has increased during the 1990s among small-scale users such as private houses as well as large-scale users such as thermal power stations. During the last years this increase has continued for small-scale use. Due to a significant increase of the pellet prices the last couple of years the increase for the large-scale users seems to have stopped. It is reasonable to believe that these higher prices depend mostly on lack of raw materials for the fuel pellet production. The greater part of sawdust from Swedish saw mills is used in the pellet industry, the board industry or as an internal fuel. It is reasonable to assume a small increase of present raw material available for pellet production without a further decrease in the use for the board industry. Another sawmill by-product, dry chips, may increase in importance as a fuel pellet raw material and give a small contribution while the green chips should be for use in the pulp industry only. If the use of fuel pellets should increase there is a need for new raw materials. In the short-term, thinning material and cull tree could be alternatives that could give pellets with similar characteristics as present fuel pellets. For large-scale consumers with greater ability to handle problems concerning ash, such as sintering and fouling, as well as particle and gaseous emissions a further choice of raw materials could be possible, such as bark, peat and logging residues. In the longer term energy crops could be used as well as lignin, derived from energy effective pulp industry and from possible large-scale production of ethanol from woody biomass. Nearly all of the different raw materials studied in this review have higher amounts of substances not desirable in combustion such as potassium, chlorine and nitrogen. However, pelletizing gives an unique opportunity to mix different raw materials and possible additives in order

  6. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  7. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  8. Effect of diverse ecological conditions on biomass production of ...

    African Journals Online (AJOL)

    Kangaroo grass native to Australia is known as the best grass to grow on different environmental and soil conditions. Biomass production of any grass is the key factor to estimate that if the grass could fulfill the animal requirements. Biomass production of kangaroo grass was estimated in this study at three growth stages on ...

  9. Biomass Energy Production in California: The Case for a Biomass Policy Initiative; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.

    2000-12-14

    During the 1980s California developed the largest and most divers biomass energy industry in the world. Biomass energy production has become an important component of the state's environmental infrastructure, diverting solid wastes from open burning and disposal in landfills to a beneficial use application.

  10. High efficiency power production from biomass and waste

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M.; Van Leijenhorst, R.J.C.; Hazewinkel, J.H.O. [ECN Biomass, Coal and Environment, Petten (Netherlands)

    2008-11-15

    Two-stage gasification allows power production from biomass and waste with high efficiency. The process involves pyrolysis at about 550C followed by heating of the pyrolysis gas to about 1300C in order to crack hydrocarbons and obtain syngas, a mixture of H2, CO, H2O and CO2. The second stage produces soot as unwanted by-product. Experimental results are reported on the suppression of soot formation in the second stage for two different fuels: beech wood pellets and Rofire pellets, made from rejects of paper recycling. Syngas obtained from these two fuels and from an industrial waste fuel has been cleaned and fed to a commercial SOFC stack for 250 hours in total. The SOFC stack showed comparable performance on real and synthetic syngas and no signs of accelerated degradation in performance over these tests. The experimental results have been used for the design and analysis of a future 25 MWth demonstration plant. As an alternative, a 2.6 MWth system was considered which uses the Green MoDem approach to convert waste fuel into bio-oil and syngas. The 25 MWth system can reach high efficiency only if char produced in the pyrolysis step is converted into additional syngas by steam gasification, and if SOFC off-gas and system waste heat are used in a steam bottoming cycle for additional power production. A net electrical efficiency of 38% is predicted. In addition, heat can be delivered with 37% efficiency. The 2.6 MWth system with only a dual fuel engine to burn bio-oil and syngas promises nearly 40% electrical efficiency plus 41% efficiency for heat production. If syngas is fed to an SOFC system and off-gas and bio-oil to a dual fuel engine, the electrical efficiency can rise to 45%. However, the efficiency for heat production drops to 15%, as waste heat from the SOFC system cannot be used effectively. The economic analysis makes clear that at -20 euro/tonne fuel, 70 euro/MWh for electricity and 7 euro/GJ for heat the 25 MWth system is not economically viable at the

  11. Sustainable biomass production for energy in Sri Lanka

    International Nuclear Information System (INIS)

    Perera, K.K.C.K.; Rathnasiri, P.G.; Sugathapala, A.G.T.

    2003-01-01

    The present study concentrates mainly on the estimation of land availability for biomass production and the estimation of sustainable biomass production potential for energy. The feasible surplus land area available for bioenergy plantation is estimated assuming two land availability scenarios (Scenarios 1 and 2) and three biomass demand scenarios (IBD Scenario, SBD Scenario and FBD Scenario). Scenario 1 assumes that 100% of the surplus area available in base year 1997 will be suitable for plantation without considering population growth and food production and that 75% of this surplus land is feasible for plantation. Scenario 2 assumes that future food requirement will grow by 20% and the potential surplus area will be reduced by that amount. The incremental biomass demand scenario (IBD Scenario) assumes that only the incremental demand for biomass in the year 2010 with respect to the base year 1997 has to be produced from new plantation. The sustainable biomass demand scenario (SBD Scenario) assumes that the total sustainable supply of biomass in 1997 is deducted from the future biomass demand in 2010 and only the balance is to be met by new plantation. The full biomass demand scenario (FBD Scenario) assumes that the entire projected biomass demand of the year 2010 needs to be produced from new plantation. The total feasible land area for the scenarios IBD-1, 1BD-2, SBD-1, SBD-2, FBD-1 and FBD-2 are approximately 0.96, 0.66, 0.80, 0.94, 0.60 and 0.30 Mha, respectively. Biomass production potential is estimated by selecting appropriate plant species, plantation spacing and productivity level. The results show that the total annual biomass production in the country could vary from 2 to 9.9 Mt. With the production option (i.e. 1.5 mx1.5 m spacing plantation with fertilizer application) giving the highest yield, the total biomass production for energy under IBD Scenario would be 9.9 Mt yr -1 for Scenario 1 and 6.7 Mt yr -1 for Scenario 2. Under SBD Scenario, the

  12. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L; Daugbjerg Jensen, P; Svane Bech, K [Danish Technological Institute (DTI), Taastrup (Denmark); and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  13. Sustainability in pelletizing iron ore through the Industrial Ecology and Cleaner Production Program

    Directory of Open Access Journals (Sweden)

    Cristiano Farias Coelho

    2013-06-01

    Full Text Available This study aims to analyze the practices of a pelletizing iron ore industry with respect to adoption of pollution prevention measures, suggested by applying the concepts of Cleaner Production and Material Flow Analysis. The technical procedure adopted was the case study, the data collection was done through direct observation, with field research and literature review. The main results were obtained from analysis of company reports available to the public, but require a more detailed quantification of data. The study concludes that the identification of environmental opportunities is possible through the proposed implementation of Cleaner Production program, which provides better results when combined with the precepts of the industrial ecology tool, the Material Flow Analysis.

  14. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  15. The regional environmental impact of biomass production

    International Nuclear Information System (INIS)

    Graham, R.L.

    1994-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  16. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  17. The effect of different nutrient sources on biomass production of ...

    African Journals Online (AJOL)

    The effect of various organic, inorganic and complex compounds on the biomass production (mycelial dry weight) of Lepiota procera, a Nigerian edible higher fungus was investigated. Among the seventeen carbon compounds tested, mannose enhanced the best biomass yield. This was followed in order by glucose, ...

  18. Fuels production by the thermochemical transformation of the biomass

    International Nuclear Information System (INIS)

    Claudet, G.

    2005-01-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  19. Influence of aeration and lighting on biomass production and protein ...

    African Journals Online (AJOL)

    The influence aeration and light intensity could have on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh is examined. Biomass, proximal composition and amino acid composition obtained from aerated cultures of the organism were compared with ...

  20. Thermodynamic evaluation of biomass-to-biofuels production systems

    NARCIS (Netherlands)

    Piekarczyk, W.; Czarnowska, L.; Ptasinski, K.J.; Stanek, W.

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like

  1. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  2. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  3. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  4. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  5. Manufacturing and characterization of molybdenum pellets used as targets for 99mTc production in cyclotron

    International Nuclear Information System (INIS)

    Cieszykowska, Izabela; Janiak, Tomasz; Barcikowski, Tadeusz; Mielcarski, Mieczysław; Mikołajczak, Renata; Choiński, Jarosław; Barlak, Marek; Kurpaska, Łukasz

    2017-01-01

    The method of 100 Mo metallic target preparation for production of 99m Tc by proton irradiation in 100 Mo(p,2 n) 99m Tc reaction was demonstrated. For this purpose, pressing of molybdenum powder into pellets and their subsequent sintering in reductive atmosphere were applied. The influence of parameters such as molybdenum mass and time of both pressing and sintering on the 100 Mo target durability was investigated. Under the optimized conditions, 100 Mo metallic pellet targets with density of 9.95±0.06 g/cm 3 were obtained. Morphology and structure of pressed pellets before and after sintering were studied by using standard optical microscope and Scanning Electron Microscope (SEM). Nanoindentation technique was used to investigate the mechanical properties such as nanohardness and Young modulus. Prepared 100 Mo pellets were successfully irradiated with protons and 99m Tc was efficiently isolated. - Highlights: • Pressing and sintering of 100 Mo powder into pellets. • Optimization of 100 Mo target manufacture process. • Determination of nanohardness of prepared 100 Mo targets. • Irradiation of self-supporting 100 Mo target in cyclotron.

  6. The scale of biomass production in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima-shi 739-8527 (Japan); Inoue, Takashi; Fukuda, Katsura [Global Warming Research Department, Mitsubishi Research Institute, Inc., 2-3-6 Ohtemachi, Chiyoda-ku, Tokyo 100-8141 (Japan); Komoto, Keiichi; Hada, Kenichiro [Renewable energy Team, Environment, Natural Resources and Energy Division, Mizuho Information and Research Institute, Inc., 2-3 Kanda-nishikicho, Chiyoda-ku, Tokyo 101-8443 (Japan); Hirata, Satoshi [Technical Institute, Kawasaki Heavy Industries, Ltd., 1-1 Kawasakicho, Akashi-shi, Hyogo 673-8666 (Japan); Minowa, Tomoaki [Biomass Recycle Research Laboratory, National Institute of Advanced and Industrial Science and Technology, 2-2-2 Hiro, Suehiro, Kure-shi, Hiroshima 737-0197 (Japan); Yamamoto, Hiromi [Socioeconomic Research Center, Central Research Institute of Electric Power Industry, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100-8126 (Japan)

    2005-11-01

    Policymakers working to introduce and promote the use of bioenergy in Japan require detailed information on the scales of the different types of biomass resources generated. In this research, the first of its type in Japan, the investigators reviewed various statistical resources to quantify the scale distribution of forest residues, waste wood from manufacturing, waste wood from construction, cattle manure, sewage sludge, night soil, household garbage, and waste food oil. As a result, the scale of biomass generation in Japan was found to be relatively small, on the average is no more than several tons in dry weight per day. (author)

  7. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  8. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  9. The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems

    International Nuclear Information System (INIS)

    Holmgren, Kristina M.; Berntsson, Thore S.; Andersson, Eva; Rydberg, Tomas

    2015-01-01

    This study analyses the impact on the GHG (greenhouse gas) emissions of the raw material supply chain, the utilisation of excess heat and CO 2 storage for a bio-SNG (biomass gasification-based synthetic natural gas) system by applying a consequential life cycle assessment approach. The impact of the biomass supply chain is analysed by assessing GHG emissions of locally produced woodchips and pellets with regional or transatlantic origin. Results show that the supply area for the gasification plant can be substantially increased with only modest increases in overall GHG emissions (3–5%) by using regionally produced pellets. The transatlantic pellet chains contribute to significantly higher GHG emissions. Utilising excess heat for power generation or steam delivery for industrial use contributes to lower emissions from the system, whereas delivery of district heating can contribute to either increased or decreased emissions. The production technology of the replaced heat and the carbon intensity of the reference power production were decisive for the benefits of the heat deliveries. Finally, the storage of CO 2 separated from the syngas upgrading and from the flue gases of the gasifier can nearly double the GHG emission reduction potential of the bio-SNG system. - Highlights: • Greenhouse gas emission evaluation of gasification-based bio-SNG system is made. • The impact of biomass supply chains and utilisation of excess heat is in focus. • Locally produced woodchips result in lowest overall greenhouse gas emissions. • Regionally produced pellets have small impact on overall greenhouse gas emissions. • Storing separated CO 2 from the bio-SNG process reduces the GHG impact significantly.

  10. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  11. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  12. Photocatalytic reforming of biomass for hydrogen production

    NARCIS (Netherlands)

    Ripken, R.M.; de Boer, V.J.H.W.; Gardeniers, J.G.E.; le Gac, S.

    2017-01-01

    Here, we describe a novel microfluidic device to determine the required bandgap for the photocatalytic reforming of biomass model substrates (ethylene glycol, glycerol, xylose and xylitol) in water. Furthermore, this device is applied to eventually elucidate the reaction mechanism of aqueous

  13. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  14. Vegetation Composition, Biomass Production, Carrying Capacity ...

    African Journals Online (AJOL)

    Acacia tortilis, Acacia nilotica, Acacia mellifera and Acacia seyal were the most dominant shrubs with scattered Caddaba rotundifolia, Caddaba furmisa, Seddera bagshawei, Tamarix nilotica, Dobera glabra and abundant Parthenium hysterophorus, Cissus rotundifolia and C. quadrangularis. The grass biomass estimated in ...

  15. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Cleijne, H.

    2000-10-01

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  16. seasonal variation of biomass and secondary production

    African Journals Online (AJOL)

    Preferred Customer

    consimilis was cultured in the laboratory to obtain life history data on duration of embryonic and post-embryonic ... medium. Laboratory duration times were close to biomass turnover rates calculated from field data ... Ethiopian lakes include the work of Seyoum. Mengistou ... water balance of this lake as the static water level.

  17. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  18. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  19. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  20. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  1. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  2. Fish pelleting

    African Journals Online (AJOL)

    PUBLICATIONS1

    fish meal pelletizing machine utilized 4kg of ingredients to produce 3.77kg pellets at an effi- ciency of .... Design and fabrication of fish meal pellet processing machine ... 53 ... horsepower for effective torque application on .... two edges were tacked with a spot weld to hold ... then welded on to the shaft making sure that the.

  3. Introducing wood pellet fuel to the UK

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, R A; Giffard, A

    2001-07-01

    Technical and non-technical issues affecting the introduction of wood pellet-fired heating to the UK were investigated with the aim of helping to establish a wood pellet industry in the UK. The project examined the growth and status of the industry in continental Europe and North America, reviewed relevant UK standards and legislation, identified markets for pellet heating in the UK, organised workshops and seminars to demonstrate pellet burning appliances, carried out a trial pelletisation of a range of biomass fuels, helped to set up demonstration installations of pellet-fired appliances, undertook a promotional campaign for wood pellet fuel and compiled resource directories for pellet fuel and pellet burning appliances in the UK. The work was completed in three phases - review, identification and commercialisation. Project outputs include UK voluntary standards for wood pellet fuel and combustion appliances, and a database of individuals with an interest in wood pellet fuel.

  4. State of the art of heat production from biomass taking into account economic and ecological aspects

    International Nuclear Information System (INIS)

    Strehler, A.

    1994-01-01

    In the range of solid fuels, the most important biomass energy carrier is wood, followed by straw and, used in single pilot and demonstration projects, so-called energy plants. Due to tax laws, plant oil and ethanol are economically more interesting as liquid fuels. In wood firing, billet wood furnaces and boilers are most common. The product range extends from chimney fireplaces to underjet boilers for timber. Incineration plants with automatic fuel metering systems require pourable bulk material such as chopped wood, chippings, sawdust, or pellets. Modern high-quality wood-fired boilers are well in creeping with the legal limit values, whereas many boilers currently in use do not meet contemporary technical standards. Furnaces for stalky material require a greater technical expenditure. Fuels with a high straw fraction pose the serious problem of emission of fire dust. Straw ash tends to produce slag and must therefore be cooled and reliably removed from the firing zone. (orig./EF) [de

  5. U.S. Pellet Industry Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corrie I. Nichol; Jacob J. Jacobsen; Richard D. Boardman

    2011-06-01

    This report is a survey of the U.S. Pellet Industry, its current capacity, economic drivers, and projected demand for biomass pellets to meet future energy consumption needs. Energy consumption in the US is projected to require an ever increasing portion of renewable energy sources including biofuels, among which are wood, and agrictulrual biomass. Goals set by federal agencies will drive an ever increasing demand for biomass. The EIA projections estimate that renewable energy produced by 2035 will be roughly 10% of all US energy consumption. Further analysis of the biofuels consumption in the US shows that of the renewable energy sources excluding biofuels, nearly 30% are wood or biomass waste. This equates to roughly 2% of the total energy consumption in the US coming from biomass in 2009, and the projections for 2035 show a strong increase in this amount. As of 2009, biomass energy production equates to roughly 2-2.5 quadrillion Btu. The EIA projections also show coal as providing 21% of energy consumed. If biomass is blended at 20% to co-fire coal plants, this will result in an additional 4 quadrillion Btu of biomass consumption. The EISA goals aim to produce 16 billion gal/year of cellulosic biofuels, and the US military has set goals for biofuels production. The Air Force has proposed to replace 50% of its domestic fuel requirements with alternative fuels from renewable sources by 2016. The Navy has likewise set a goal to provide 50% of its energy requirements from alternative sources. The Department of Energy has set similarly ambitious goals. The DOE goal is to replace 40% of 2004 gasoline use with biofuels. This equates to roughly 60 billion gal/year, of which, 45 billion gal/year would be produced from lignocellulosic resources. This would require 530 million dry tons of herbaceous and woody lignocellulosic biomass per year.

  6. Microalgal biomass production pathways: evaluation of life cycle environmental impacts.

    Science.gov (United States)

    Zaimes, George G; Khanna, Vikas

    2013-06-20

    Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of -46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae's life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae's direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Given the high variability in microalgae's energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative.

  7. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  8. Characterization of Various Biomass Feedstocks for Energy Production

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  9. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  10. Root diseases, climate change and biomass productivity

    International Nuclear Information System (INIS)

    Warren, G.R.; Cruickshank, M.

    2004-01-01

    Tree growth and yield in eastern boreal spruce fir forests are both greatly affected by root and butt rots. These pests are also prevalent in western coniferous species and boreal-sub-boreal forests. Infections are difficult to detect, but reduced growth, tree mortality, wind throw and scaled butt cull contribute to considerable forest gaps. Harvesting and stand tending practices in second growth stands are creating conditions for increased incidence. Tree stress is one of the major factors affecting the spread of root disease. It is expected that climate change will create abnormal stress conditions that will further compound the incidence of root disease. A comparison was made between natural and managed stands, including harvesting and stand practices such as commercial thinning. Studies of Douglas-fir forests in British Columbia were presented, with results indicating that managed forests contain one third to one half less carbon biomass than unmanaged forests. It was concluded that root diseases must be recognized and taken into account in order to refine and improve biomass estimates, prevent overestimation of wood supply models and avoid potential wood fibre losses. 40 refs., 2 figs.

  11. Carbothermal Reduction of Iron Ore in Its Concentrate-Agricultural Waste Pellets

    Directory of Open Access Journals (Sweden)

    Zhulin Liu

    2018-01-01

    Full Text Available Carbon-containing pellets were prepared with the carbonized product of agricultural wastes and iron concentrate, and an experimental study on the direct reduction was carried out. The experimental results demonstrated that carbon-containing pellets could be rapidly reduced at 1200 to 1300°C in 15 minutes, and the proper holding time at high temperature was 15 to 20 min. The degree of reduction gradually increased with temperature rising, and the appropriate temperature of reducing pellets was 1200°C. The weight loss rate and reduction degree of pellets increased with the rise of carbon proportion, and the relatively reasonable mole ratio of carbon to oxygen was 0.9. A higher content of carbon and an appropriate content of volatile matters in biomass char were beneficial to the reduction of pellets. The carbon-containing pellets could be reduced at high speeds in the air, but there was some reoxidization phenomenon.

  12. Phytotoxicity and Chemical Characterization of Compost Derived from Pig Slurry Solid Fraction for Organic Pellet Production

    Directory of Open Access Journals (Sweden)

    Niccolò Pampuro

    2017-11-01

    Full Text Available The phytotoxicity of four different composts obtained from pig slurry solid fraction composted by itself (SSFC and mixed with sawdust (SC, woodchips (WCC and wheat straw (WSC was tested with bioassay methods. For each compost type, the effect of water extracts of compost on seed germination and primary root growth of cress (Lepidium Sativum L. was investigated. Composts were also chemically analysed for total nitrogen, ammonium, electrical conductivity and heavy metal (Cu and Zn. The chemicals were correlated to phytotoxicity indices. The mean values of the germination index (GI obtained were 160.7, 187.9, 200.9 and 264.4 for WSC, WCC, SC and SSFC, respectively. Growth index (GrI ranged from the 229.4%, the highest value, for SSFC, followed by 201.9% for SC, and 193.1% for WCC, to the lowest value, 121.4%, for WSC. Electrical conductivity showed a significant and negative correlation with relative seed germination at the 50% and 75% concentrations. A strong positive correlation was found for water-extractable Cu with relative root growth and germination index at the 10% concentration. Water-extractable Zn showed a significant positive correlation with relative root growth and GI at the 10% concentration. These results highlighted that the four composts could be used for organic pellet production and subsequently distributed as a soil amendment with positive effects on seed germination and plant growth (GI > 80%.

  13. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  14. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology.

    Science.gov (United States)

    Maneeboon, Thanapoom; Vanichsriratana, Wirat; Pomchaitaward, Chaiyaporn; Kitpreechavanich, Vichien

    2010-05-01

    The influence of two key environmental factors, pH and oxygen transfer coefficient (k(L)a), was evaluated on the lactic acid production as the main answer and, on the size of cell pellets of the fungal strain Rhizopus oryzae KPS106, as second dependant answer by response surface methodology using a central composite design. The results of the analysis of variance and modeling demonstrated that pH and k(L)a had a significant effect on lactic acid production by this strain. However, no interaction was observed between these two experimental factors. pH and k(L)a had no significant influence on the pellet size. Optimal pH and k(L)a of the fermentation medium for lactic acid production from response surface analysis was 5.85 and of 3.6 h(-1), respectively. The predicted and experimental lactic acid maximal values were 75.4 and 72.0 g/l, respectively, with pellets of an average of 2.54 +/- 0.41 mm. Five repeated batches in series were conducted with a mean lactic acid production of 77.54 g/l. The productivity was increased from 0.75 in the first batch to 0.99 g/l h in the last fifth batch.

  15. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  16. Lab and Bench-Scale Pelletization of Torrefied Wood Chips

    DEFF Research Database (Denmark)

    Shang, Lei; Nielsen, Niels Peter K.; Stelte, Wolfgang

    2013-01-01

    Combined torrefaction and pelletization is used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. In the present study, a single-pellet press tool was used to screen for the effects of pellet die temperature, moisture cont...... of the torrefied pellets was higher and the particle size distribution after grinding the pellets was more uniform compared to conventional wood pellets....

  17. Biomass production in energy plantation of Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Gurumurti, K.

    1984-09-01

    Studies on time trends of biomass production by means of age series in energy plantations (spacing 1.3 x 1.3 m) of Prosopis juliflora is presented. The component biomass production at the age of 18, 24, 30, 36 and 48 months was determined. The results show considerable variation among the population of trees. However, distinct linear relationship between girth at breast height (GBH) and total height was discernible. The total biomass produced at 18, 24, 30, 36 and 48 months of age was 19.69, 41.39, 69.11, 114.62 and 148.63 dry tonnes per hectare, respectively. The corresponding figures for utilizable biomass (wood, bark and branch) were 14.63, 32.17, 50.59, 88.87 and 113.25 dry tonnes per hectare. At all the periods of study, branch component formed the major portion of total biomass being around 50 to 55%. Utilizable biomass was three-fourths of total biomass at all ages. The solar energy conversion efficiency ranged from 0.59% at 18 months to 1.68% at 48 months of age, the peak value being 1.87% at the age of 36 months. It is shown that the variables diameter and height can be used to reliably predict the biomass production in Prosopis juliflora with the help of the regression equations developed in the present study. It is concluded that Prosopis juliflora is an ideal candidate for energy plantations in semi arid and marginal lands, not only to meet the fuelwood demands but also to improve the soil fertility, for, this plant is a fast growing and nitrogen fixing leguminous tree.

  18. Wastewater sludge fertilization: Biomass productivity and heavy metal bioaccumulation in two Salix species grown in southern Quebec (Canada)

    International Nuclear Information System (INIS)

    Teodorescu, T.I.; Labrecque, M.; Daigle, S.; Poisson, G.

    1993-01-01

    More than other kind of trees, fast growing tree species, such as willows, can profit from sludge application. While sludges are good fertilizers, they may also contain heavy metals which could reduce productivity and cause risks to the environment. The main aims of the present research were to study: (1) the production capacity of Salix discolor and Salix viminalis when supplied with various amounts of dried and pelleted sludge; (2) the uptake, and accumulation of heavy metals. Unrooted cuttings were planted on sandy soil in large plastic pots and grown in outdoors for 20-week period. Five doses of sludge were applied: equivalent of 200 (T1), 160 (T2), 120 (T3), 80 (T4) and 40 (T5) kg N per ha. Trees which received the largest amount of sludge showed the best growth results. The stem-branch biomass was significantly higher for Salix viminalis. The relationship between the total yield biomass Y (t/ha) and the rate of fertilization X (kg N/ha) is linear. The regression equations of prediction biomass production were established as following: Salix discolor Y = 1.807 + 0.037X and Salix viminalis Y = 2.578 + 0.042X. For both species, greatest stems-branch biomass per gram of N applied were produced by treatments 1 and 2. The amount of nitrogen per leaf area (N/LA) and per leaf dry weight (N/LW), were higher for Salix viminalis which leads us believe that its photosynthetic activity was better. The transfer coefficient did not vary between the species but was significantly different for Cd and Zn. The plants were able to absorb Cd and Zn but less of Ni, Hg and Cu and Pb. It was concluded that the dried and pelleted sludge can be a good fertilizer. The treatment is beneficial when Salix discolor and particulary Salix viminalis are used as vegetation filters for wastewater sludge purification and production purposes

  19. Selection of Willows (Salix sp. for Biomass Production

    Directory of Open Access Journals (Sweden)

    Davorin Kajba

    2014-12-01

    Full Text Available Background and Purpose: Willows compared with other species are the most suitable for biomass production in short rotations because of their very abundant growth during the first years. Nowadays, in Croatia, a large number of selected and registered willow clones are available. The main objective of the research should be to find genotypes which, with minimum nutrients, will produce the maximum quantity of biomass. Material and Methods: Clonal test of the arborescent willows include the autochthonous White Willow (Salix alba, interracial hybrids of the autochthonous White Willow and the English ‘cricket’ Willow (S. alba var. calva, interspecies hybrids (S. matsudana × S. alba, as well as multispecies hybrids of willows. Average production of dry biomass (DM∙ha-1∙a-1 per hectare was estimated in regard to the clone, survival, spacing and the number of shoots per stump. Results: The highest biomass production as well as the best adaptedness and phenotypic stability on testing site was shown by clones (‘V 374’, ‘V 461’, ‘V 578’ from 15.2 - 25.0 t∙DM∙ha-1∙a-1 originated from backcross hybrid S. matsudana × (S. matsudana × S. alba and by one S. alba clone (‘V 95’, 23.1 - 25.7 t∙DM∙ha-1∙a-1. These clones are now at the stage of registration and these results indicate significant potential for further breeding aimed at biomass production in short rotations. Conclusions: Willow clones showed high biomass production on marginal sites and dry biomass could be considerably increased with the application of intensive silvicultural and agro technical measures. No nutrition or pest control measures were applied (a practice otherwise widely used in intensive cultivation system, while weed vegetation was regulated only at the earliest age.

  20. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    Royle, D.J.; Hunter, Tom; McNabb, H.S. Jr.

    1998-01-01

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  1. Biomass production and forage quality of head-smut disease ...

    African Journals Online (AJOL)

    Napier grass, commonly known as “elephant grass”, is a major feed used for dairy production by smallholder farmers in eastern and central Africa. However, the productivity of the grass in the region is threatened by stunt and head-smut diseases. The objective of this study was to determine biomass yield and forage quality ...

  2. The feasibility of biomass production for the Netherlands energy economy

    International Nuclear Information System (INIS)

    Lysen, E.H.; Daey Ouwens, C.; Van Onna, M.J.G.; Blok, K.; Okken, P.A.; Goudriaan, J.

    1992-05-01

    The title study aims at providing a reliable overview of the technical and financial parameters for the available and potential methods of energy production through biomass. In the study the production of biomass has been separated as much as possible from the transport and the conversion of energy carriers such as fuels or electricity. The assessment of the feasibility is based upon data analysis in phase A of the study and subsequent interviews with key institutes and industries in the Netherlands in phase B. The problems in agriculture and environment justify an active policy with respect to the use of biomass for the Netherlands' energy economy. The developments and the programmes in other European countries and the USA, the fact that a good infrastructure is present in the Netherlands, and the possible spin-off for developing countries justify this conclusion. It is recommended to initiate a focused national programme in the field of biomass energy, properly coordinated with the present ongoing Energy from Waste programme (EWAB) and with ongoing international programmes. The programme should encompass both research and development, as well as a few demonstration projects. Research to reduce costs of biomass is important, largely through reaching higher yields. In view of the competitive kWh costs of combined biomass gasifier/steam and gas turbines systems, based upon energy and environmental considerations, development and demonstration of this system is appropriate. 14 figs., 24 tabs., 6 app., 99 refs

  3. Biomass production and utilisation. Policy implications for LDCs

    International Nuclear Information System (INIS)

    Davidson, O.

    1997-01-01

    The importance of biomass in the energy sector of LDCs and in Africa in particular is illustrated so as to provide the background to the policy importance on the production and use of this energy source. The main areas for policy attention discussed are: biomass for power generation, biomass use in the transport sector, urban energy supply and the interactions with agricultural policies. The roles of the major institutions the government, private sector institutions, educational institutions and non-governmental organizations are identified. It is concluded that with the necessary policy shift that is being advocated, biomass can contribute to a more equitable supply of high quality and efficient energy services in the future of African countries. (K.A.)

  4. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  5. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  6. Challenges for renewable hydrogen production from biomass

    International Nuclear Information System (INIS)

    Levin, David B.; Chahine, Richard

    2010-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. (author)

  7. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  8. Ethanol production from biomass: technology and commercialisation status

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R.

    2001-06-01

    Owing to technical improvements in the processes used to produce ethanol from biomass, construction of at least two waste-to-ethanol production plants in the United States is expected to start this year. Although there are a number of robust fermentation microorganisms available, initial pretreatment of the biomass and costly cellulase enzymes remain critical targets for process and cost improvements. A highly efficient, very low-acid pretreatment process is approaching pilot testing, while research on cellulases for ethanol production is expanding at both enzyme and organism level. (Author)

  9. The production and confinement of runaway electrons with impurity ''killer'' pellets in DIII-D

    International Nuclear Information System (INIS)

    Evans, T.E.; Taylor, P.L.; Whyte, D.G.

    1998-12-01

    Prompt runaway electron bursts, generated by rapidly cooling DIII-D plasmas with argon killer pellets, are used to test a recent knock-on avalanche theory describing the growth of multi-MeV runaway electron currents during disruptions in tokamaks. Runaway current amplitudes, observed during some but not all DIII-D current quenches, are consistent with growth rates predicted by the theory assuming a pre-current quench runaway electron density of approximately 10 15 m -3 . Argon killer pellet modeling yields runaway densities of between 10 15 --10 16 m -3 in these discharges. Although knock-on avalanching appears to agree rather well with the measurements, relatively small avalanche amplification factors combined with uncertainties in the spatial distribution of pellet mass and cooling rates make it difficult to unambiguously confirm the proposed theory with existing data

  10. Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide

    Science.gov (United States)

    Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.

    2011-10-01

    The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.

  11. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  12. Method of preparing initial multilayer radioactive pellets in production of planar radioactive sources

    International Nuclear Information System (INIS)

    Stopek, K.; Satorie, Z.

    1982-01-01

    A compact radioactive foil is placed into a press mould on a thin surface layer of compacted or powder metal and is covered with powder metal. In order to achieve the required dimension and activity the radioactive foil is cut from a large sheet. The multilayer pellet is compacted and rolled using routine methods applied in powder metallurgy. This method excludes the possibility of destroying the active pellet during handling, improves its mechanical properties and is seven times less time demanding than methods used so far. (M.D.)

  13. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  14. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    Grado, S.C.; Strauss, C.H.

    1993-01-01

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L -1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  15. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  16. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  17. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  18. Biomass for rural vitality report

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.; DiPaolo, J.; Bryan, J.

    2009-06-15

    This report was completed by the Eastern Lake Ontario Regional Innovation Network (ELORIN) in order to identify opportunities for producing pellets from agricultural biomass in Lennox and Addington County. An agricultural profile of the county was presented. Potential feedstocks for biomass production included industrial hemp; switchgrass; short rotation crop willow; hybrid poplars; and miscanthus. Available soil survey data was combined with soil class data in order to generate maps of the total area of land available for energy crop production. The pelletizing process was described. A cost projection for 3 to 7 ton per hour pellet production facility was also presented. Potential markets for using the pellets include greenhouses, residential home heating suppliers and large industrial users. The study showed that heating just 1 per cent of Ontario's greenhouse space with switchgrass will create a demand for 15,000 tonnes of pellets. The average home requires 3 to 4 tonnes of pellets per year for heating. 3 tabs., 54 figs.

  19. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  20. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  1. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  2. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH, ammonium citrate and ...

  3. The characteristics of biomass production, lipid accumulation and ...

    African Journals Online (AJOL)

    Glucose was the optimal carbon source for mixotrophic cultivation of C. vulgaris and the effects of glucose content on the alga growth under mixotrophic conditions were considerable because lower glucose content (1 g/l) promoted the production of biomass and photosynthetic pigments; higher glucose contents (>5 g/l) ...

  4. Ecological impacts of biomass production at stand and landscape levels

    CSIR Research Space (South Africa)

    Du Toit, B

    2014-09-01

    Full Text Available In Chapters 4, 5 and 6 of this book, the authors discussed the production and procurement of biomass from various sources, including extensively managed systems such as woodlands, and much more intensively managed systems such as short-rotation bio...

  5. Biomass production of Lactobacillus plantarum LP02 isolated from ...

    African Journals Online (AJOL)

    The potentially hypocholesterolemic strain, designated PL02, of Lactobacillus plantarum, was isolated from infant feces. The aim of this study was to characterize and to cultivate this isolate for biomass production in a 5 L fermentor by batch or fed-batch fermentation. A modified medium composition without peptone was ...

  6. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  7. Biomass production and potential water stress increase with ...

    African Journals Online (AJOL)

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However ...

  8. Estimating annual bole biomass production using uncertainty analysis

    Science.gov (United States)

    Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell

    2007-01-01

    Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...

  9. Growth characteristics and biomass production of kenaf | Tahery ...

    African Journals Online (AJOL)

    Parameters of height, diameter and internode were measured within four to six regular intervals of 10 to 15 days, while biomass production parameters of dry one meter stalk mass (DMSM), defoliated plant mass (DPM), one meter stalk mass (MSM) and fresh plant mass (FPM) were measured at harvest time. There was no ...

  10. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet

  11. Production, use and reuse of Dutch calcite in drinking water pellet softening

    NARCIS (Netherlands)

    Palmen, LJ; Schetters, M.J.A.; van der Hoek, J.P.; Kramer, O.J.I.; Kors, L.J.; Hofs, B; Koppers, H

    2014-01-01

    In The Netherlands, 50% of the drinking water is treated with pellet softening for various reasons: i) public health (heavy metal solubility), ii) costs (warm water device maintenance, energy and soap requirement), iii) environmental benefits (energy and soap requirement) and iv) customer comfort

  12. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  13. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  14. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of Combination of Rice Straw with Alfalfa Pellet on Milk Productivity and Chewing Activity in Lactating Dairy Cows

    Directory of Open Access Journals (Sweden)

    Y. J. Na

    2014-07-01

    Full Text Available An experiment was conducted to determine the effects of diets containing coarse-texture rice straw and small particle size alfalfa pellets as a part of total mixed ration (TMR on milk productivity and chewing activity in lactating dairy cows. Sixteen multiparous Holstein dairy cows (670±21 kg body weight in mid-lactation (194.1±13.6 days in milk were randomly assigned to TMR containing 50% of timothy hay (TH or TMR containing 20% of rice straw and 30% of alfalfa pellet mixture (RSAP. Geometric mean lengths of TH and RSAP were found to be 5.8 and 3.6, respectively. Dry matter intake, milk yield and milk composition were measured. Moreover, eating and ruminating times were recorded continuously using infrared digital camcorders. Milk yield and milk composition were not detected to have significant differences between TH and RSAP. Dry matter intake (DMI did not significantly differ for cows fed with TH or RSAP. Although particle size of TH was larger than RSAP, eating, ruminating and total chewing time (min/d or min/kg of DMI on TH and RSAP were similar. Taken together, our results suggest that using a proper amount of coarse-texture rice straw with high value nutritive alfalfa pellets may stimulate chewing activity in dairy cows without decreasing milk yield and composition even though the quantity of rice straw was 40% of TH.

  16. Optimization of macronutrient kinetics for biomass production in Nostoc calcicola

    Science.gov (United States)

    Aiyer, Subramanian Seshadri C.; Akshai, A.; Kumar, B. G. Prakash; Ramachandran, S.

    2018-04-01

    To assess the feasibility of Allen and Arnon’s (AA) media addition to increase the biomass productivity, (0, 2.5, 5, 7.5 ml of 10x media concentrate - MC) was added to aerated culture every six days, in two separate conditions i.e., single harvest (SH) and continuous harvest (CH) after 15th day. Results show that with addition of 5 ml of MC produced maximum amount of biomass is 1.32 g/L and 2.88 g/L for Sh and CH respectively. These results show that with addition of 5 ml of MC to an aerated culture every six days with continuous biomass harvesting leads to maximum growth of Nostoc calcicola @25°C

  17. Algal Biomass for Bioenergy and Bioproducts Production in Biorefinery Concepts

    DEFF Research Database (Denmark)

    D'Este, Martina

    industry. The macroalgae used in this work were Laminaria digitata and Saccharina latissima, while the microalgae were Chlorella sorokiniana, Chlorella vulgaris and Chlorella protothecoides. Moreover, an evaluation of the effect of the harvesting season and location on the composition of high value...... feedstocks. Biorefinery represents an important tool towards the development of a sustainable economy. Within the biorefinery framework several bioproducts, such as food, feed and biofuels, can be produced from biomass. The specific composition of the biomass feedstock determines the potential final product...... heterotrophically in the macroalgae L. digitata hydrolyzed. The final composition of the microalgal biomass showed that the protein content was increased from 0.07 ± 0.01 gProtein gDM-1 to 0.44 ± 0.04 gProtein DM-1. The results obtained show that this solution may represent an interesting strategy to be applied...

  18. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  19. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  20. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  1. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  2. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  3. Conditions for new biofuel raw materials. Systems for small scale briquetting and pelletizing; Foerutsaettningar foer nya biobraensleraavaror. System foer smaaskalig brikettering och pelletering

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Holmgren, Kristina (The Swedish Environmental Research Institute Ltd., Stockholm (Sweden)); Rosenqvist, Haakan; Boerjesson, Paal (Environmental and Energy Systems Studies, Lund Inst. of Technology, Lund (Sweden))

    2009-01-15

    The increasing demand for biomass has driven exploitation of the most easily available and cheapest biomass resources such as sawmill waste and logging residues. More knowledge is needed about exploitation and production of potential new biomass resources, currently not used for energy production (or only to a very small extent), in order to meet the future demands from various biomass users. The project aimed to examine the conditions for use of 'new' biomass materials for heat production from technical, economic and other perspectives (price trends, attitudes etc.). More specifically, the study looked at which biomass raw materials have the best characteristics for processing into briquettes and pellets in small-scale production plants (1 000 - 10 000 tonnes fuel produced per year) situated close to the source of the raw material. The study includes a comprehensive analysis of the appropriateness of the different raw materials and a case study including cost estimates for the entire production chain for production of briquettes from reed canary grass on a chosen farm (Laattra gaard). The raw materials judged to have potential to supplement the current biomass range for heat production are willow (and to a certain extent other fast-growing hardwoods), straw and reed canary grass. In the future, other perennial grasses may be of interest. Other forestry products that may help to meet in creasing demand include logging residues, stumps and wood from thinning and precommercial thinning. The study shows that the prerequisites for processing these raw materials into briquettes and pellets in small-scale production plants are relatively good from several aspects (technology, economics, market) but are limited by the types of end user that can use that form of biomass. The study concluded that straw has a low production cost and good prerequisites as a raw material for production of fuel briquettes, fuel pellets and horse bedding pellets. However, use is

  4. On-line Biomass Estimation in a Batch Biotechnological Process: Bacillus thuringiensis δ - endotoxins production.

    OpenAIRE

    Amicarelli, Adriana

    2010-01-01

    In this Chapter it has been addressed the problem of the biomass estimation in a batch biotechnological process: the Bacillus thuringiensis (Bt) δ-endotoxins production process. Different alternatives that can be successfully used in this sense were presented. It has been exposed the design of various biomass estimators, namely: a phenomenological biomass estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a decentralized Kalman Filter, and a biomass concentration ...

  5. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  6. Production of energy pellets from wet harvested greenery; Herstellung von Energiepellets aus feucht geerntetem Gruengut

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Hoffmann, Thomas [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. ' ' Technik der Aufbereitung, Lagerung und Konservierung' ' ; Daries, Werner

    2011-07-01

    Wet harvested greenery can be processed to energy pellets to be burned or gasified for sustainable energy supply. The harvest of the forage and the preservation in plastic tubes are known processes with low energy consumption. The mechanical dewatering of the silage with screw presses requires a higher energy demand with 0.26 to 2.02 GJ/T{sub DM}. The dry matter content can be reduced with screw presses by 4 to 21 percentage points depending on the kind of forage. The drying process requires an energy demand of 4.73 to 13.7 GJ/t{sub DM}. The total energy demand of the complete processing line corresponds to 65 % of the heating value of the pellets. (orig.)

  7. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  8. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  9. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  10. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  11. Biomass storage for further energy use through biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Atem, A.D. [Instituto CEDIAC, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas - CONICET, Mendoza (Argentina); Indiveri, M.E. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Instituto de Energia, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina); Llamas, S. [Instituto de Medio Ambiente, Facultad de Ingenieria, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza (Argentina)

    2010-06-15

    The present work approaches the residual biomass conservation for later digestion in an anaerobic batch reactor. Twenty 4 L capacity PET reactors were used. A measuring device was constructed to quantify the biogas production. As substrate were used tomato wastes from local industry and rumen fluid as inoculum. Digestion start up was able to be controlled by varying the temperature, during a period of 118 days was not verified biogas production. After re-inoculated with rumen fluid stabilized for 34 days, biogas production was verified. They were obtained 0.10 m{sup 3} of biogas per kilogram of volatile solids, with 50% of methane content. (author)

  12. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  13. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  15. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  16. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  17. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  18. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2015-08-01

    Full Text Available Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 °C, 10 min biomass from West Africa, including bamboo wood, rubber wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS was only slightly lower than by the wheat straw (33.1 g/100 g TS, while the ethanol yield (16.1 g/100 g TS was higher than that of the straw (15.26 g/100 g TS. All other local biomass types studied exhibited sugar and ethanol yields below 33% and 35% of the theoretical maximum, respectively. Thus, elephant grass is a highly promising biomass source for ethanol production in Africa.

  19. proximate and ultimate analysis of fuel pellets from oil palm residues

    African Journals Online (AJOL)

    HOD

    Keywords: Oil Palm Residues, Fuel Pellets, Proximate Analysis, Ultimate Analysis. 1. INTRODUCTION ... Pelletizing of this biomass resources into pellets is a way of ensuring a ... demand for pellets [3], and alternative feed-stocks such as palm kernel ... agro-residues, selection of the best pellets has to be made based on ...

  20. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  1. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.L.N.; Gill, H.S. [Central Soil Salinity Research Inst., Haryana (India)

    1995-12-01

    Biomass shortages in developing countries require increased investigation into fast-growing, N-fixing, woody plant species. In field trials in north India, the potential of Sesbania cannabina for production of green leaf manure (biofertilizer) and firewood (woody biomass) was investigated. At 100 days after sowing (DAS), green matter was 21.5 and 9.4 Mg ha{sup -1} in the stem and the leaf. A seeding rate of 15 kg ha{sup -1} producing a population of 10{sup 5} plants per hectare was adequate. Biofertilizer potential was 124.7 N, 5.3 P, 80.7 K and 12.0 S (kg ha{sup -1}), respectively. Nodulation was profuse and effective and N fixed was nearly 122 kg ha{sup -1} at 100 DAS. At maturity, 200 DAS, woody biomass production was 19.2 Mg ha{sup -1} and growing Sesbania until this stage was no more demanding on soil nutrients than growing it for green-matter production. There was a considerable beneficial influence from growing Sesbania on soil C and N status. (Author)

  2. Biomass power production in Amazonia: Environmentally sound, economically productive

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, D.B. [National Rural Electric Cooperative Association, Washington, DC (United States); Hollomon, J.B. [Winrock International Institute for Agricultural Development, Arlington, VA (United States)

    1993-12-31

    With the support of the US Agency for International Development, the National Rural Electric Cooperative Association (NRECA) is assisting their utility counterparts in Bolivia to improve electric service in the country`s rural population. In remote areas, the cost of extending transmission lines to small communities is prohibitive, and diesel generators represent an expensive alternative, especially for baseload power. This has led to serious consideration of electric generating systems using locally available renewable resources, including biomass, hydro, wind, and solar energy. A project has recently been initiated in Riberalta, in the Amazonian region of Bolivia, to convert waste Brazil nut shells and sawmill residues to electricity. Working in tandem with diesel generators, the biomass-fired plant will produce base-load power in an integrated system that will be able to provide reliable and affordable electricity to the city. The project will allow the local rural electric cooperative to lower the price of electricity by nearly forty percent, enable the local Brazil nut industry to increase its level of mechanization, and reduce the environmental impacts of dumping waste shells around the city and in an adjacent river. The project is representative of others that will be funded in the future by NRECA/AID.

  3. Description of pelletizing facility

    Energy Technology Data Exchange (ETDEWEB)

    Vojin Cokorilo; Dinko Knezevic; Vladimir Milisavljevic [University of Belgrade, Belgrade (Serbia). Faculty of Mining and Geology

    2006-07-01

    A lot of electrical energy in Serbia was used for heating, mainly for domestics. As it is the most expensive source for heating the government announced a National Program of Energy Efficiency with only one aim, to reduce the consumption of electric energy for the heating. One of the contributions to mentioned reduction is production of coal pellets from the fine coal and its use for domestic heating but also for heating of schools, hospitals, military barracks etc. Annual production of fine coal in Serbia is 300,000 tons. The stacks of fine coal present difficulties at each deep mine because of environmental pollution, spontaneous combustion, low price, smaller market etc. To overcome the difficulties and to give the contribution to National Program of Energy Efficiency researchers from the Department of Mining Engineering, the University of Belgrade designed and realized the project of fine coal pelletizing. This paper describes technical aspect of this project. Using a CPM machine Model 7900, a laboratory facility, then a semi-industrial pelletizing facility followed by an industrial facility was set up and produced good quality pellets. The plant comprised a coal fines hopper, conveyor belt, hopper for screw conveyor, screw conveyor, continuous mixer conditioner, binder reservoir, pump and pipelines, pellet mill, product conveyor belt and product hopper. 4 refs., 3 figs., 1 tab.

  4. Method of improving the green strength of nuclear fuel pellets, and products thereof

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.

    1984-01-01

    This invention provides a method of preparing an admixture comprising a particulate material and a fugitive binder for producing green pellets free of flaws and having improved strength, comprising the steps of: a) fluidizing and agitating a mass of particulate material with a fluidized bed system; b) adding a fugitive binder to the fluidizing and agitating mass of particulate material and blending the binder with the particulate material, said fugitive binder being comprised of ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate, and mixtures thereof; c) aging the blended binder and particulate material for a period of greater than 48 hours; and d) forming the resulting aged blend by pressing into a green body

  5. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  6. Effect of policies on pellet production and forests in the U.S. South: a technical document supporting the Forest Service update of the 2010 RPA Assessment

    Science.gov (United States)

    Karen L. Abt; Robert C. Abt; Christopher S. Galik; Kenneth E. Skog

    2014-01-01

    Current policies in the European Union (EU) requiring renewable and low greenhouse gas-emitting energy are affecting wood products manufacturing and forests in the United States. These policies have led to increased U.S. pellet production and export to the EU, which has in turn affected U.S. forests and other wood products manufacturing. At this time, the primary...

  7. Pellets direct from the forest

    International Nuclear Information System (INIS)

    Keel, A.

    2006-01-01

    This article takes a look at developments in the market for wood pellets and their production from forest wood. The general situation in the booming pellets market is reviewed and the potential of this climate-neutral form of heating is discussed. Figures and prognoses on the use of wood pellets are presented. In particular, the potential for the use of forestry wood supplies to augment the use of wood wastes and sawdust from sawmills is looked at

  8. Methods for producing and using densified biomass products containing pretreated biomass fibers

    Science.gov (United States)

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  9. Analytical inventory of process variables for sustainable development of a small business for integrated production of wood pellets

    Directory of Open Access Journals (Sweden)

    Merticaru Vasile

    2017-01-01

    Full Text Available The paper presents some theoretical considerations and the related deliverable results obtained within a research approach developed for analytically inventorying the process variables for a wood pellets micro-production activity integrated with self-providing crops of energetic willow. The study is part of a larger research approach intended to accurately define the appropriate specifications for developing a sustainable small business in this area. Within the particular research approach being discussed in the paper, some conceptual models have been structured and are proposed, based on process systematic analysis, as following: a model of the research general hypotheses; a model of the general conceptual research frame; a process flow model for the considered integrated processes, respectively wood pellets micro-production and energetic willow crops; a model for sustainability groups of indicators to be considered; two models for process variables inventorying and classification, one for each of the two considered integrated processes. After the research hypotheses are simplified by considering some particular implementing conditions, a final model of the investigated variables is submitted to discussion. Some adequate conclusions revealed by the research approach, together with some directions of further research development are finally identified and presented in the paper.

  10. Opportunities for Pellet Trade - Towards a Single European Pellet Market

    International Nuclear Information System (INIS)

    Pigaht, Maurice; Janssen, Rainer; Rutz, Dominik; Boehm, Thorsten; Vasen, Norbert; Vegas, Laura; Karapanagiotis, Nicolas

    2006-01-01

    The potential for Pellets trade in Europe was researched and assessed. Such trade is of key importance for the development of a European pellet market of sufficient supply, demand, price and quality standards. Three target markets were taken as case studies for the trade assessment: Greece, Spain and Italy. All three markets stand to profit greatly from international trade. For these markets, pellet imports could supply the basis for the development of a domestic boiler market. At the same time, pellet exports would allow the planning of larger pellet production plants. Whilst these additional costs amount to some 10-20% of the Pellets price, they are financially acceptable, especially for new markets and 'peaks' in the demand/supply of established markets

  11. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  12. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    Science.gov (United States)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  13. Method for producing ethanol and co-products from cellulosic biomass

    Science.gov (United States)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  14. Benthic bacterial biomass and production in the Hudson River estuary

    International Nuclear Information System (INIS)

    Austin, H.K.; Findlay, S.E.G.

    1989-01-01

    Bacterial biomass, production, and turnover were determined for two freshwater march sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl- 3 H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8-2.8 mg C·m -2 · hour -1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl- 3 H]thymidine into DNA. Despite differences in dominant vegatation and tidal regime, bacterial biomass was similar (1 x 10 3 ± 0.08 mg C·m -2 ) in Trapa, Typha, and Nuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated with Scirpus communities along the Hudson River (0.2 x 10 3 ± 0.05 mg C·m -2 and 0.3 ± 0.23 mg C · m -2 · hour -1 , respectively)

  15. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  16. Impact of wood pellets export on the development of their production in Serbia with the effects of substituting enegry from fossil fuels and reduction of carbon dioxide emission

    Directory of Open Access Journals (Sweden)

    Glavonjić Branko

    2016-01-01

    Full Text Available The paper presents the results of researching the impact of export on the production of wood pellets as well as the situation on the market for this wood fuel in Serbia. Objective of the research was to produce scientifically and professionally founded conclusions and the related adequate recommendations to the decision makers in order to improve the situation on wood pellets market in Serbia and eliminate the existing problems which significantly burden and slow down this development. Special objective of the research was to observe the contributions of wood pellets to the mitigation of climate changes using Serbia as the example. Results of the conducted research show that the expansion of the consumption (demand increase in the European Union countries in the last fifteen years and the related increase of export from Serbia are the most significant factors which have influenced the development of wood pellets production in Serbia. Parameters of econometric model of the impact of export on the increase of production show that production increase of 1.17% can be expected with the increase of export of 1%. Thus, the number of wood pellet producers has rapidly increased in the last ten years, from 2 producers in 2006 to 52 active producers in 2016. Increase of the number of producers was also accompanied by the increase of the installed capacities. At the end of 2015, total installed capacities for wood pellet production in Serbia reached 550 thousand tons, and the realized production was 229 thousand tons, or 41.6% of the installed capacity. Consumption of wood pellets in Serbia in the last four years achieved significant increase and reached the level of 89 thousand tons in 2015. However, concerning the segment of wood pellets consumption in Serbia, the situation is still unsatisfactory despite the fact that the consumption has been increasing year after year. Average price of 1 kWh of energy from wood pellets exported from Serbia was in the

  17. Embodied HANPP. Mapping the spatial disconnect between global biomass production and consumption

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Krausmann, Fridolin; Haberl, Helmut; Lucht, Wolfgang

    2009-01-01

    Biomass trade results in a growing spatial disconnect between environmental impacts due to biomass production and the places where biomass is being consumed. The pressure on ecosystems resulting from the production of traded biomass, however, is highly variable between regions and products. We use the concept of embodied human appropriation of net primary production (HANPP) to map the spatial disconnect between net-producing and net-consuming regions. Embodied HANPP comprises total biomass withdrawals and land use induced changes in productivity resulting from the provision of biomass products. International net transfers of embodied HANPP are of global significance, amounting to 1.7 PgC/year. Sparsely populated regions are mainly net producers, densely populated regions net consumers, independent of development status. Biomass consumption and trade are expected to surge over the next decades, suggesting a need to sustainably manage supply and demand of products of ecosystems on a global level. (author)

  18. Inherent hazards, poor reporting and limited learning in the solid biomass energy sector: A case study of a wheel loader igniting wood dust, leading to fatal explosion at wood pellet manufacturer

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess; Astad, John; Nichols, Jeffrey

    2014-01-01

    are insufficiently developed and give ample room for potentially erroneous subjective individual judgment. It is a contributing factor that combustible dust, although with great hazard potential, is not classified as a dangerous substance. Accidents therefore fall outside the scope of systems designed to disseminate...... biomass, the accident investigation and any learning that subsequently took place. The paper argues that learning opportunities were missed repeatedly. Significant root causes were not identified; principles of inherent safety in design were ignored; the hazardous area classification was based on flawed...... lessons learned and prevent future accidents. More attention to safety is needed for the renewable energy and environmentally friendly biomass pellet industry also to become sustainable from a worker safety perspective....

  19. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Integrated production of lactic acid and biomass on distillery stillage.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  1. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation.

    Science.gov (United States)

    Xia, Chunjie; Wei, Wei; Hu, Bo

    2014-04-01

    Microbial oil accumulation via oleaginous fungi has some potential benefits because filamentous fungi can form pellets during cell growth and these pellets are easier to harvest from the culture broth than individual cells. This research studied the effect of various culture conditions on the pelletized cell growth of Mucor circinelloides and its lipid accumulation. The results showed that cell pelletization was positively correlated to biomass accumulation; however, pellet size was negatively correlated to the oil content of the fungal biomass, possibly due to the mass transfer barriers generated by the pellet structure. How to control the size of the pellet is the key to the success of the pelletized microbial oil accumulation process.

  2. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Meyer, Markus A; Seppelt, Ralf; Priess, Joerg A; Witing, Felix

    2016-01-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  3. Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass

    Directory of Open Access Journals (Sweden)

    I-Ching Kuan

    2018-04-01

    Full Text Available (1 Background: Lipids derived from oleaginous microbes have become promising alternative feedstocks for biodiesel. This is mainly because the lipid production rate from microbes is one to two orders of magnitude higher than those of energy crops. However, the conventional process for converting these lipids to biodiesel still requires a large amount of energy and organic solvents; (2 Methods: In this study, an oleaginous yeast, Rhodotorula glutinis, was used for direct transesterification without lipid pre-extraction to produce biodiesel, using sulfuric acid or sodium hydroxide as a catalyst. Such processes decreased the amount of energy and organic solvents required simultaneously; (3 Results: When 1 g of dry R. glutinis biomass was subject to direct transesterification in 20 mL of methanol catalyzed by 0.6 M H2SO4 at 70 °C for 20 h, the fatty acid methyl ester (FAME yield reached 111%. Using the same amount of biomass and methanol loading but catalyzed by 1 g/L NaOH at 70 °C for 10 h, the FAME yield reached 102%. The acid-catalyzed process showed a superior moisture tolerance; when the biomass contained 70% moisture, the FAME yield was 43% as opposed to 34% of the base-catalyzed counterpart; (4 Conclusions: Compared to conventional transesterification, which requires lipid pre-extraction, direct transesterification not only simplifies the process and shortens the reaction time, but also improves the FAME yield.

  4. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  5. Studies on the effectiveness of oral pellet vaccine in improving egg production and egg quality in desi chicken

    Directory of Open Access Journals (Sweden)

    T. Lurthu Reetha

    2016-08-01

    Full Text Available Aim: To study the effect of Newcastle disease (ND oral pellet vaccine in egg production and egg quality in desi chicken. Materials and Methods: The study was conducted at Veterinary University Training and Research Centre, Tiruchirapalli, Tamil Nadu. A total of 48-day-old desi chicks obtained from a private hatchery in Namakkal, Tamil Nadu, were maintained under cage system of rearing up to 52 weeks of age as per standard management practices. All the 48 chicks were divided into six groups having eight chicks in each group were subjected to different treatment regimes. All the birds were challenged at 52 weeks of age with 0.5 ml dose of 104.0 egg infectious dose 50 virulent ND field virus. 10 eggs from each group were randomly collected during the last 3 days of 8 weeks interval period from 28 to 52 weeks of age and were used to measure the egg quality parameters. The production performance of each group was assessed at 4 weeks interval period from 25 to 52 weeks of age. Results: In all the six treatment groups with respect to egg production, no significant difference (p≥0.05 was noticed from 25 to 52 weeks of age. Similarly, in egg weight, egg shape index and specific gravity, no significant difference (p≥0.05 was noticed from 28 to 52 weeks of age. Conclusion: From this study, it is concluded that the administration of ND oral pellet vaccine to desi chicken does not affect the egg production performance, egg weight, egg shape index, and specific gravity of egg.

  6. Studies on the effectiveness of oral pellet vaccine in improving egg production and egg quality in desi chicken.

    Science.gov (United States)

    Reetha, T Lurthu; Rajeswar, J Johnson; Harikrishnan, T J; Sukumar, K; Srinivasan, P; Kirubakaran, J John

    2016-08-01

    To study the effect of Newcastle disease (ND) oral pellet vaccine in egg production and egg quality in desi chicken. The study was conducted at Veterinary University Training and Research Centre, Tiruchirapalli, Tamil Nadu. A total of 48-day-old desi chicks obtained from a private hatchery in Namakkal, Tamil Nadu, were maintained under cage system of rearing up to 52 weeks of age as per standard management practices. All the 48 chicks were divided into six groups having eight chicks in each group were subjected to different treatment regimes. All the birds were challenged at 52 weeks of age with 0.5 ml dose of 10(4.0) egg infectious dose 50 virulent ND field virus. 10 eggs from each group were randomly collected during the last 3 days of 8 weeks interval period from 28 to 52 weeks of age and were used to measure the egg quality parameters. The production performance of each group was assessed at 4 weeks interval period from 25 to 52 weeks of age. In all the six treatment groups with respect to egg production, no significant difference (p≥0.05) was noticed from 25 to 52 weeks of age. Similarly, in egg weight, egg shape index and specific gravity, no significant difference (p≥0.05) was noticed from 28 to 52 weeks of age. From this study, it is concluded that the administration of ND oral pellet vaccine to desi chicken does not affect the egg production performance, egg weight, egg shape index, and specific gravity of egg.

  7. Combustion Gases And Heat Release Analysis During Flame And Flameless Combustion Of Wood Pellets

    Directory of Open Access Journals (Sweden)

    Horváth Jozef

    2015-06-01

    Full Text Available With the growing prices of fossil fuels, alternative fuels produced of biomass come to the fore. They are made of waste materials derived from the processing of wood and wood materials. The main objective of this study was to analyse the fire-technical characteristics of wood pellets. The study analysed three dust samples acquired from wood pellets made of various types of wood biomass. Wood pellet dust is produced when manipulating with pellets. During this process a potentially hazardous situations may occur. Biomass is chemically composed mostly of hemicellulose, cellulose and lignin. During straining of the biomass by heat flux, combustion initiation occurs. Also, there was a change in the composition of material throughout combustion gases production, and the amount of heat generated by a flame or flameless combustion. Measurement of fire characteristics was conducted according to ISO 5660-1 standard using a cone calorimeter. Two samples of wood pellet dust were tested under the heat flux of 35 kW.m−2 and 50 kW.m−2. The process of combustion, the time to ignition, the carbon monoxide concentration and the amount of released heat were observed.

  8. ERA-Net Evaluation of technology status for small-scale combustion of pellets from new ash rich biomasses - combustion tests in residential burners

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Johansson, Mathias; Frida Claesson

    2008-07-01

    In this project, pellets with higher ash content compared to the wood pellets used today on the Swedish market were tested in three domestic-scale burners. The tests were carried out based on EN 303-5. In the flue gas, combustion parameters as carbon monoxide, carbon dioxide, oxygen and hydro carbons were measured, and also more fuel specific parameters such as nitrogen oxides, sulphur dioxide, hydrogen chloride, total dust and particle mass- and number concentration. The dust (fly ash) and bottom ash were characterized chemically. The implications of high ash content on combustion performance are discussed in the report. Altogether five pellets with 8 mm diameter were tested: oilseed straw pellet, reed canary grass pellet (RCG), barley straw pellet, bark pellet and wood pellet. All fuels were dry ranging from 6.5-12 % moisture. The ash content varied from 0.3 weight-% dm in wood to 7.9 % in RCG. Barley straw has a noticeable low ash melting temperature, < 980 deg C, and could not be combusted in any of the burners. The nitrogen content varied nine times and sulphur more than 10 times. The chlorine content was very low in wood and bark and more than 20 times higher in oilseed and barley. The composition of inorganic species in the fuel ash was dominated by calcium, potassium and silica in wood, bark and oilseed pellet, while RCG and barley straw were dominated by silica. The three burners used were commercial and known to fulfil high quality requirements. Burner A is a pellet burner where fuel is supplied on top of the grate with no mechanical mean for moving bottom ash on the grate during combustion. Bottom ash is blown away, and any slag remaining on the grate is removed with a scrape before ignition. Burner B is an upward burning pellet burner where fuel and ash is pushed upwards and the glow bed is exposed to the surrounding combustion department. Burner C is a forward burning grain burner that pushes fuel and ash forwards, inside a cylinder. From the

  9. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  10. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  11. Design and performance of the KSC Biomass Production Chamber

    Science.gov (United States)

    Prince, Ralph P.; Knott, William M.; Sager, John C.; Hilding, Suzanne E.

    1987-01-01

    NASA's Controlled Ecological Life Support System program has instituted the Kennedy Space Center 'breadboard' project of which the Biomass Production Chamber (BPC) presently discussed is a part. The BPC is based on a modified hypobaric test vessel; its design parameters and operational parameters have been chosen in order to meet a wide range of plant-growing objectives aboard future spacecraft on long-duration missions. A control and data acquisition subsystem is used to maintain a common link between the heating, ventilation, and air conditioning system, the illumination system, the gas-circulation system, and the nutrient delivery and monitoring subsystems.

  12. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  13. Production of yeast biomass using waste Chinese cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Min Ho Choi; Yun Hee Park [Ajou Univ., Suwon (Korea). Dept. of Molecular Science and Technology

    2003-08-01

    The possibility of using waste Chinese cabbage as a substrate for microbial biomass production was investigated. Cell mass and the protein content of four species of yeast, Candida utilis, Pichia stipitis, Kluyveromyces marxianus, and Saccharomyces cerevisiae, were determined when cultured in juice extracted from cabbage waste. Compared to YM broth containing the same level of sugar, all the strains except C. utilis showed higher total protein production in cabbage juice medium (CJM). Cell mass production was lower for all four strains in heat-treated CJM than in membrane-filtered medium, and this adverse effect was pronounced when the CJM was autoclaved at 121{sup o}C for 15 min. As a source of inorganic nitrogen, only ammonium sulfate added at a concentration of 0.5 g nitrogen per liter of CJM increased cell growth. Of the seven organic nitrogen sources tested, only corn steep powder was effective in increasing cell mass (by about 11%). As a micronutrient, the addition of 0.5 mM zinc increased cell mass. The results suggest that juice from waste Chinese cabbages can be used to produce microbial biomass protein without substantial modification, after preliminary heat treatment at temperatures below those required for sterilization. (Author)

  14. Energy-Based Evaluations on Eucalyptus Biomass Production

    Directory of Open Access Journals (Sweden)

    Thiago L. Romanelli

    2012-01-01

    Full Text Available Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy for the commercial forest in the Sao Paulo, Brazil. Energy analyses and emergy synthesis were accomplished for the eucalyptus production cycles. It was determined that emergy synthesis of eucalyptus production and sensibility analysis for three scenarios to adjust soil acidity (lime, ash, and sludge. For both, energy analysis and emergy synthesis, harvesting presented the highest input demand. Results show the differences between energy analysis and emergy synthesis are in the conceptual underpinnings and accounting procedures. Both evaluations present similar trends and differ in the magnitude of the participation of an input due to its origin. For instance, inputs extracted from ores, which represent environmental contribution, are more relevant for emergy synthesis. On the other hand, inputs from industrial processes are more important for energy analysis.

  15. investigation of production conditions of ThO2-(%0-40)UO3 microspheres suitable for pellet production

    International Nuclear Information System (INIS)

    Tel, H.; Eral, M.; Altas, Y.

    1997-01-01

    The aim of the present study is to prepare homogeneous,sinterable and high density ThO 2 and thorium based (Th,U)O 2 pellets by using sol-gel transition. For the purpose to obtain of stable ThO 2 -UO 3 mixed sols suitable for gelling into crackfree microspheres, first the nitrate solutions of thorium and uranium at the different mol ratios of uranium (0, 5,10, 20, 30, 35 and 40 percent) were prepared. The sources sols used for the processes have been prepared by an ammonia addition method where starting nitrate solutions of thorium and uranium are heated and partially neutralized by aqueous ammonia under pH control at the different pH set and neutralization mode for each uranium mol ratio. Crackfree microspheres suitable for gelation were obtained by using hexone-10 % CCl 4 mixture as drop formation medium and ammonia as a gelling agent.Following the washing and aging, the formed gel microspheres were treated with IPA (isopropyl alcohol), dried at 85 o C and then heat-treated in air atmosphere at 300 o C.The dimensions, sphericity, bulk and apparent densities and specific surface area of microspheres were determined. Before the compaction the microspheres were exposed to air in a medium controlled at 30 o C and 85 % relative humidity and humidified to a moisture ratio > 18 % and then pelletized. The geometric densities of pellets were measured and then the pellets were sintered in 75 % Ar - 25 % H 2 atmosphere at 1090+-10 o C during 150 minutes

  16. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  17. Environmentally adapted energy production and working environment. Manufacture of wood pellets; Miljoeanpassad energiproduktion och arbetsmiljoe. Tillverkning av traepellets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez de Davila, Eliana

    2002-04-01

    The working environment at three wood pellet production plants was studied. Measurements were made of dust, microorganisms (bacteria and molds) and terpenes. Both stationary and personal sampling equipment were used. Dust sources and dust diffusion were mapped. Work in the raw material storage rooms and at the semi-automatic sack-filling stations can give high exposure to wood dusts (max. 4.7 mg/m{sup 3}). These high levels might cause irritations in the respiratory tract. Relatively high levels of terpenes were detected in the plant that did not dry wood shavings or sawdust. Pressing of non-dried shavings probably leads to emission of terpenes and other gaseous substances in the plant. Recommendations for improvements of the working conditions are given in the report.

  18. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  19. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  20. Long-Term Patterns in Production and Export of Fecal Pellets by Krill and Salps along the Western Antarctic Peninsula

    Science.gov (United States)

    Steinberg, D. K.; Ruck, K. E.; Cope, J. S.

    2016-02-01

    The Western Antarctic Peninsula (WAP) is one of the most rapidly warming regions on Earth, and where climate-induced changes in zooplankton abundance and species composition could dramatically affect the pelagic food web and biogeochemical cycling. We examined long-term (1993 to the present) and spatial trends in summer abundance of, and fecal pellet production (FPP) by, Antarctic krill (Euphausia superba) and gelatinous salps (Salpa thompsoni) and their relationship with physical and other environmental parameters. Zooplankton were collected as part of the Palmer, Antarctica Long-Term Ecological Research Program (PAL LTER) from the epipelagic zone in a region divided into latitudinal (North, South, and Far South) and cross-shelf (coastal, shelf, slope) sub-regions. Beginning in 2009, FPP and sinking rate experiments were conducted at representative stations along these gradients. FPP peaks occurred every 4-6 years in both species in the north and south, but alternated such that some years were characterized by high krill-mediated export, and others by high salp-mediated export. In the far south (where perennial sea ice still persists), and in both coastal and shelf sub-regions, krill FFP exceeded that of salps. Conversely, off the slope, salp FPP exceeded that of krill. Variability in krill FPP was strongly and positively influenced by primary production 2-years prior, and negatively correlated with sea surface temperature (no lag). Salp FPP was most significantly correlated with sea ice parameters, with highest FPP in years of lowest sea-ice extent, duration, and area. Warmer water and ice-free conditions favored salps over krill, which also increased overall potential export of fecal pellet carbon to depth. We discuss the implications of this potential increase in biological pump efficiency as the climate warms.

  1. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  2. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  3. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  4. Production of fermentables and biomass by six temperate fuelcrops

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Gammon, T.C.; Graves, B.

    1985-12-01

    Several potential fuelcrops have been studied individually, but relatively little work has been done to compare the various temperate species in side-by-side trials. The production has been examined of readily fermentable carbohydrates and biomass by six fuelcrop candidates: grain sorghum (Sorghum bicolor), Jerusalem articoke (Helianthus tuberosus), maize (Zea Mays), sugarbeet (Beta vulgaris), sweet potato (Ipomoea batatas) and sweet sorghum (Sorghum bicolor). A randomized complete block design with four replicates was employed at each of three locations that were somewhat diverse in soil type, elevation, growing season length, and 1980 rainfall distribution. Fermentables in the harvestable dry matter were determined colorimetrically following dilute acid plus enzymatic hydrolysis. Overall, sugarbeet was the most prolific producer of fermentables (7.4 Mg/ha); Jerusalem artichoke (5.8 Mg/ha), maize (4.8 Mg/ha) and sweet sorghum stems (5.8 Mg/ha) were statistically equivalent, while sweet potato (4.0 Mg/ha) and grain sorghum (3.8 Mg/ha) were less productive than the other candidates. The crops performed somewhat differently at each location, but the most striking site-specific differences were seen at the site with the coarsest textured soil and driest season. At that location, maize produced the least fermentables (0.6 Mg/ha). Biomass production generally reflected either the amount of time each species was actively growing or limiations to growth associated with drought. No general recommendations are made concerning a preferred temperature fuelcrop. Based on the studies, however, maize may not always be the fuelcrop of choice; others, especially sugarbeet and sweet sorghum (when harvested for grain also), may be superior to maize in productivity of fermentable substrates. 6 tabs., 13 refs.

  5. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  6. The determination of mercury content in the biomass untended for industrial power plant

    Directory of Open Access Journals (Sweden)

    Wiktor Magdalena

    2017-01-01

    Full Text Available Biomass is one of the oldest and most widely used renewable energy sources. The biomass is the whole organic matter of vegetable or animal origin which is biodegradable. Biomass includes leftovers from agricultural production, forestry residues, and industrial and municipal waste. The use of biomass in the power industry has become a standard and takes place in Poland and other European countries. This paper discusses the correlation of mercury content in different biomass types used in the power industry and in products of biomass combustion. Different biomass types, which are currently burned in a commercial power plant in Poland, were discussed. A photographic documentation of different biomass types, such as straw briquettes, wood briquettes, pellets from energy crops (sunflower husk and wood husk, wood pellets, wood chips, and agro-biomass (seeds was carried out. The presented paper discusses the results obtained for 15 biomass samples. Five selected biomass samples were burned in controlled conditions in the laboratory at the University of Silesia. The ash resulting from the combustion of five biomass samples was tested for mercury content. A total of twenty biomass samples and its combustion products were tested. Based on the obtained results, it was found that any supply of biomass, regardless of its type, is characterized by variable mercury content in dry matter. In the case of e.g. wood chips, the spread of results reaches 235.1 μm/kg (in dry matter. Meanwhile, the highest mercury content, 472.4 μm/kg (in dry matter was recorded in the biomass of straw, wood pellets, and pellets from energy crops (sunflower husk. In the case of combustion products of five selected biomass types, a three or four fold increase in the mercury content has been observed.

  7. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Science.gov (United States)

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  8. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    Science.gov (United States)

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  9. Effective production of fermentable sugars from brown macroalgae biomass.

    Science.gov (United States)

    Wang, Damao; Kim, Do Hyoung; Kim, Kyoung Heon

    2016-11-01

    Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

  10. Pinch analysis for bioethanol production process from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Fujimoto, S.; Yanagida, T.; Nakaiwa, M.; Tatsumi, H.; Minowa, T.

    2011-01-01

    Bioethanol produced from carbon neutral and renewable biomass resources is an attractive process for the mitigation of greenhouse gases from vehicle exhaust. This study investigated energy utilization during bioethanol production from lignocellulose while avoiding competition with food production from corn and considering the potential mitigation of greenhouse gases. Process design and simulations were performed for bioethanol production using concentrated sulfuric acid. Mass and heat balances were obtained by process simulations, and the heat recovery ratio was determined by pinch analysis. An energy saving of 38% was achieved. However, energy supply and demand were not effectively utilized in the temperature range from 95 to 100 o C. Therefore, a heat pump was used to improve the temperature range of efficient energy supply and demand. Results showed that the energy required for the process could be supplied by heat released during the process. Additionally, the power required was supplied by surplus power generated during the process. Thus, pinch analysis was used to improve the energy efficiency of the process. - Highlights: → Effective energy utilization of bioethanol production was studied by using pinch analysis. → It was found that energy was not effectively utilized in the temperature range from 95 to 100 o C. → Use of a heat pump was considered to improve the ineffective utilization. → Then, remarkable energy savings could be achieved by it. → Pinch analysis effectively improved the energy efficiency of the bioethanol production.

  11. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating...... in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  12. Harvesting and processing of microalgae biomass fractions for biodiesel production

    International Nuclear Information System (INIS)

    Munir, M.; Sharif, N.; Naz, S.; Saleem, F.; Manzoor, F.

    2013-01-01

    There has been a recent resurgent interest in microalgae as an oil producer for biofuel applications. An adequate supply of nutrients and carbon dioxide enables algae to successfully transform light energy of the sun into energy - rich chemical compounds through photosynthesis. A strain with high lipids, successfully grown and harvested, could provide oil for most of our process by volume, which would then provide the most profitable output. Significant advances have also been made in upstream processing to generate cellular biomass and oil. However, the process of extracting and purifying of oil from algae continues to prove a significant challenge in producing both microalgae bioproducts and biofuel, as the oil extraction from algae is relatively energy-intensive and expensive. The aim of this review is to focus on different harvesting and extraction processes of algae for biodiesel production reported within the last decade. (author)

  13. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  14. Hydrogen production from biomass tar by catalytic steam reforming

    International Nuclear Information System (INIS)

    Yoon, Sang Jun; Choi, Young-Chan; Lee, Jae-Goo

    2010-01-01

    The catalytic steam reforming of model biomass tar, toluene being a major component, was performed at various conditions of temperature, steam injection rate, catalyst size, and space time. Two kinds of nickel-based commercial catalyst, the Katalco 46-3Q and the Katalco 46-6Q, were evaluated and compared with dolomite catalyst. Production of hydrogen generally increased with reaction temperature, steam injection rate and space time and decreased with catalyst size. In particular, zirconia-promoted nickel-based catalyst, Katalco 46-6Q, showed a higher tar conversion efficiency and shows 100% conversion even relatively lower temperature conditions of 600 deg. C. Apparent activation energy was estimated to 94 and 57 kJ/mol for dolomite and nickel-based catalyst respectively.

  15. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC

    Science.gov (United States)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M.; van der Linden, Gerard C.; Schwarz, Kai-Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C.-L.; Dolstra, Oene; Donnison, Iain S.; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M.; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; van der Weijde, Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation

  16. Progress on optimizing miscanthus biomass production for the European bioeconomy: Results of the EU FP7 project OPTIMISC

    Directory of Open Access Journals (Sweden)

    Iris Lewandowski

    2016-11-01

    Full Text Available This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing fifteen diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: 1 demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; 2 characterisation of the interactions of physiological growth responses with environmental variation within and between sites; 3 quantification of biomass-quality-relevant traits; 4 abiotic stress tolerances of miscanthus genotypes; 5 selections suitable for production on marginal land; 6 field establishment methods for seeds using plugs; 7 evaluation of harvesting methods; and 8 quantification of energy used in densification (pellet technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas and

  17. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC.

    Science.gov (United States)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M; van der Linden, Gerard C; Schwarz, Kai-Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C-L; Dolstra, Oene; Donnison, Iain S; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; van der Weijde, Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation

  18. Wood pellets : is it a reliable, sustainable, green energy option?

    International Nuclear Information System (INIS)

    Swaan, J.

    2006-01-01

    The Wood Pellet Association of Canada was formerly called the BC Pellet Fuel Manufacturers Association, and was renamed and re-organized in January 2006. The association serves as an advocate for the wood pellet industry in addition to conducting research projects. This power point presentation presented an overview of the wood pellet industry in North America and Europe. Canada's 23 pellet plants currently produce just over 1,000,000 tons of wood pellets annually. Pellet producers in the United States produce approximately 800,000 tons annually for the residential bagged market. There are currently 240 pellet plants in Europe, and district heating is the largest growth market for wood pellets in Europe. British Columbia (BC) pellet producers will ship 450,000 tons to European power plants in 2005. Wood pellet specifications were presented, with details of calorific values, moisture and ash contents. An outline of wood pellet production processes was provided. New pellet plants currently under construction were reviewed. Domestic, North American and overseas exports were discussed, along with production estimates for BC for the next 5 years. A chart of world production and consumption of wood pellets between 2000 to 2010 was presented. North American wood pellet technologies were described. The impact of the pine beetle infestation in BC on the wood pellet industry was evaluated, and a worldwide wood pellet production growth forecast was presented. Issues concerning off-gassing, emissions, and torrifracation were also discussed. tabs., figs

  19. Energy wood. Part 2b: Wood pellets and pellet space-heating systems

    International Nuclear Information System (INIS)

    Nussbaumer, T.

    2002-01-01

    The paper gives an overview on pellet utilization including all relevant process steps: Potential and properties of saw dust as raw material, pellet production with drying and pelletizing, standardization of wood pellets, storage and handling of pellets, combustion of wood pellets in stoves and boilers and applications for residential heating. In comparison to other wood fuels, wood pellets show several advantages: Low water content and high heating value, high energy density, and homogeneous properties thus enabling stationary combustion conditions. However, quality control is needed to ensure constant properties of the pellets and to avoid the utilization of contaminated raw materials for the pellet production. Typical data of efficiencies and emissions of pellet stoves and boilers are given and a life cycle analysis (LCA) of wood pellets in comparison to log wood and wood chips is described. The LCA shows that wood pellets are advantageous thanks to relatively low emissions. Hence, the utilization of wood pellet is proposed as a complementary technology to the combustion of wood chips and log wood. Finally, typical fuel cost of wood pellets in Switzerland are given and compared with light fuel oil. (author)

  20. Modeling drying of iron ore pellets

    OpenAIRE

    Ljung, Anna-Lena

    2010-01-01

    Iron ore pellets are a highly refined product supplied to the steel making industry for use in blast furnaces or direct reduction processes. The use of pellets offers many advantages such as customer adopted products, transportability and mechanical strength yet the production is time and energy consuming. Being such, there is a natural driving force to enhance the pelletization in order to optimize production and improve quality. The aim with this thesis is to develop numerical models with w...

  1. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  2. Upgrading fuel properties of biomass by torrefaction

    Energy Technology Data Exchange (ETDEWEB)

    Lei Shang

    2012-12-15

    Torrefaction is a mild thermal (200 - 300 UC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability and hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss, higher heating value, better grindability, and less moisture absorption. However, severe torrefaction conditions were found not necessary in order to save energy during grinding, since strain energy and grinding energy decreased tremendously in the first 5 - 25% anhydrous weight loss. By correlating the heating value and mass loss, it was found that wheat straw contained less heating value on mass basis than the other two fuels, but the fraction of energy retained in the torrefied sample as a function of mass loss was very similar for all three biomass. Gas products formed during torrefaction of three biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels at 300 UC for 1 h were compared, and water was found to be the dominant product during torrefaction. The degradation kinetics of wheat straw was studied in TGA by applying a two-step reaction in series model and taking the mass loss during the initial heating period into account. The model and parameters were proven to be able to predict the residual mass of wheat straw in a batch scale torrefaction reactor with different heating rates well. It means the mass yield of solids

  3. Availability of biomass for energy production. GRAIN: Global Restrictions on biomass Availability for Import to the Netherlands

    International Nuclear Information System (INIS)

    Lysen, E.H.

    2000-08-01

    The report includes reports of activities that were carried out within the GRAIN project. This evaluation shows that the (technical) potential contribution of bio-energy to the future world's energy supply could be very large. In theory, energy farming on current agricultural land could contribute over 800 EJ, without jeopardising the world's food supply. Use of degraded lands may add another 150 EJ, although this contribution will largely come from crops with a low productivity. The growing demand for bio-materials may require a biomass input equivalent to 20-50 EJ, which must be grown on plantations when existing forests are not able to supply this growing demand. Organic wastes and residues could possibly supply another 40-170 EJ, with uncertain contributions from forest residues and potentially a very significant role for organic waste, especially when bio-materials are used on a larger scale. In total, the upper limit of the bio-energy potential could be over 1000 EJ per year. This is considerably more than the current global energy use of 400 EJ. However, this contribution is by no means guaranteed: crucial factors determining biomass availability for energy are: (1) Population growth and economic development; (2) The efficiency and productivity of food production systems that must be adopted worldwide and the rate of their deployment in particular in developing countries; (3) Feasibility of the use of marginal/degraded lands; (4) Productivity of forests and sustainable harvest levels; (5) The (increased) utilisation of bio-materials. Major transitions are required to exploit this bio-energy potential. It is uncertain to what extent such transitions are feasible. Depending on the factors mentioned above, the bio-energy potential could be very low as well. At regional/local level the possibilities and potential consequences of biomass production and use can vary strongly, but the insights in possible consequences are fairly limited up to now. Bio-energy offers

  4. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  5. Impact of India's watershed development programs on biomass productivity

    Science.gov (United States)

    Bhalla, R. S.; Devi Prasad, K. V.; Pelkey, Neil W.

    2013-03-01

    Watershed development (WSD) is an important and expensive rural development initiative in India. Proponents of the approach contend that treating watersheds will increase agricultural and overall biomass productivity, which in turn will reduce rural poverty. We used satellite-measured normalized differenced vegetation index as a proxy for land productivity to test this crucial contention. We compared microwatersheds that had received funding and completed watershed restoration with adjacent untreated microwatersheds in the same region. As the criteria used can influence results, we analyzed microwatersheds grouped by catchment, state, ecological region, and biogeographical zones for analysis. We also analyzed pre treatment and posttreatment changes for the same watersheds in those schemes. Our findings show that WSD has not resulted in a significant increase in productivity in treated microwatersheds at any grouping, when compared to adjacent untreated microwatershed or the same microwatershed prior to treatment. We conclude that the well-intentioned people-centric WSD efforts may be inhibited by failing to adequately address the basic geomorphology and hydraulic condition of the catchment areas at all scales.

  6. NIR Techniques Create Added Values for the Pellet and Biofuel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Lestander, Torbjoern A. [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Johnsson, Bo; Grothage, Morgan [Casco Adhesives AB, Sundsvall (Sweden)

    2006-07-15

    Pelletizing of biomass as biofuels increases energy density, improves storability and reduces transport costs. This process is a major key factor in the transition from fossil fuels to renewable biomass refined as solid biofuels. The fast growing pellet industry is today producing more than 1.2 Gg wood Pellets in Sweden - one of the leading nations to utilize bioenergy in its energy mix. The multitude of raw biomaterials available for fuel pellet production and their widely different characteristics stress the need for rapid characterization methods. A suitable technique for characterization of variation in biomaterials is near infrared (NIR) spectrometry. NIR radiation interacts with polar molecules and especially with structural groups O-H as in water, C-H as in biomass, but also with C-O bonds and C=C double bonds frequently found in biomass. Biomass contains mostly the atoms C, O and H. This means that transmittance or reflectance in the NIR wavelength region covers most of the covalent bonds in biomass, except for the C-C bonds in carbon chains. The NIR technique is also developed for on-line measurement in harsh industrial conditions. Thus, NIR techniques can be applied for on-line and real time characterization of raw biomass as well as in the refinement process of biomass into standardized solid biofuels. Spectral patterns in the NIR region contain chemical and physical information structure that together with reference parameters can be modeled by multivariate calibration methods to obtain predictions. These predictions can be presented to the operators in real time on screens as charts based on multivariate statistical process controls. This improves the possibilities to overview the raw biomass variation and to control the responses of the treatments the biomass undergo in the pelletizing process. The NIR-technique is exemplified by a 23-factorial experiment that was carried out in a pellet plant using sawdust as raw material to produce wood Pellets as

  7. Emissions from burning of softwood pellets

    International Nuclear Information System (INIS)

    Olsson, Maria; Kjaellstrand, Jennica

    2004-01-01

    Softwood pellets from three different Swedish manufacturers were burnt in laboratory scale to determine compounds emitted. The emissions were sampled on Tenax cartridges and assessed by gas chromatography and mass spectrometry. No large differences in the emissions from pellets from different manufacturers were observed. The major primary semi-volatile compounds released during flaming burning were 2-methoxyphenols from lignin. The methoxyphenols are of interest due to their antioxidant effect, which may counteract health hazards of aromatic hydrocarbons. Glowing combustion released the carcinogenic benzene as the predominant aromatic compound. However, the benzene emissions were lower than from flaming burning. To relate the results from the laboratory burnings to emissions from pellet burners and pellet stoves, chimney emissions were determined for different burning equipments. The pellet burner emitted benzene as the major aromatic compound, whereas the stove and boiler emitted phenolic antioxidants together with benzene. As the demand for pellets increases, different biomass wastes will be considered as raw materials. Ecological aspects and pollution hazards indicate that wood pellets should be used primarily for residential heating, whereas controlled large-scale combustion should be preferred for pellets made of most other types of biomass waste. (Author)

  8. The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters

    Directory of Open Access Journals (Sweden)

    Nelson Arzola

    2012-01-01

    Full Text Available Waste-to-energy represents a challenge for the oil palm industry worldwide. Bio-pellet production is an alternative way of adding value to oil palm biomass. This would mean that a product having major energy density becomes more mechanically stable and achieves better performance during combustion. This paper deals with oil palm shell pelleting; using binding agents having up to 25% mass keeping average particle size less than 1mm and moisture content up to 18.7% (d.b. were evaluated. An experimental factorial design used binding agent mass percentage, milled shell particle size and moisture content as factors. Pellet density response surfaces and durability index were obtained. Pellet performance during thermal-chemical transformation was also evaluated by using thermogravimetry equipment. The results led to technical evaluation of scale-up at industrial production level.

  9. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  10. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Steef V. [Radboud Univ., Nijmegen (Netherlands). Dept. of Environmental Science, Faculty of Science; Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Duden, Anna S. [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Junginger, Martin [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Dale, Virginia H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division, Center for BioEnergy Sustainability; van der Hilst, Floor [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences

    2016-12-29

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Per feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land

  11. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  12. Biomass production as renewable energy resource at reclaimed Serbian lignite open-cast mines

    Directory of Open Access Journals (Sweden)

    Jakovljević Milan

    2015-01-01

    Full Text Available The main goal of this paper is the overview of the scope and dynamics of biomass production as a renewable energy source for substitution of coal in the production of electrical energy in the Kolubara coal basin. In order to successfully realize this goal, it was necessary to develop a dynamic model of the process of coal production, overburden dumping and re-cultivation of dumping sites by biomass planting. The results obtained by simulation of the dynamic model of biomass production in Kolubara mine basin until year 2045 show that 6870 hectares of overburden waste dumps will be re-cultivated by biomass plantations. Biomass production modeling point out the significant benefits of biomass production by planting the willow Salix viminalis cultivated for energy purposes. Under these conditions, a 0.6 % participation of biomass at the end of the period of intensive coal production, year 2037, is achieved. With the decrease of coal production to 15 million tons per year, this percentage steeply rises to 1.4 % in 2045. This amount of equivalent tons of coal from biomass can be used for coal substitution in the production of electrical energy. [Projekat Ministarstva nauke Republike Srbije, br. TR 33039

  13. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  14. Poplar physiology and short-term biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, P.; Lannoye, R. (Universite Libre de Bruxelles (Belgium). Lab. de Physiologie Vegetale)

    1990-01-01

    This program comprised the establishment, on biochemical and physiological basis, of specific screening tests for the rapid evaluation of poplar adaptation to environmental conditions. The resistance of chloroplasts to several major environmental stresses affecting biomass production (light, heat, cold and water stress) has been assessed in leaves of five poplar (Populus sp.) clones by in vivo chlorophyll fluorescence and oxygen production measurements. These two chloroplastic activities are correlated to the photosynthetic activity of the plant and respond immediately to any changes affecting the organization and the functioning of the photosynthetic apparatus, including regulatory mechanisms. Test clones were grown as cuttings in a .80 {times} .80m planting pattern. In addition, some plants were grown hydroponically in containers under a plastic roof in controlled conditions to test their behavior toward hydric (drought), light (shadow and overlight) and temperature (cold and warm) stresses. A specific data capture system has been developed to analyze clone resistance to environmental stresses. The results indicated considerable genetic variation in tolerance of poplar clones toward environmental stresses. The application of the in vivo fluorescence method and of the photoacoustic method appears to be an easy and rapid method to estimate the reaction of poplar clones against some stresses and thus for detecting plant species adapted to environmental stresses. 59 refs., 27 figs., 5 tabs.

  15. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  16. Description of pelletizing facility

    Directory of Open Access Journals (Sweden)

    Čokorilo Vojin

    2006-01-01

    Full Text Available A lot of electrical energy in Serbia was used for heating, mainly for domes- tics. As it is the most expensive source for heating the government announced a National Program of Energy Efficiency with only one aim, to reduce the consumption of electric energy for the heating. One of the contributions to mentioned reduction is production of coal pellets from the fine coal and its use for domestic heating but also for heating of schools, hospitals, military barracks, etc. Annual production of fine coal in Serbia is 300,000 tons. The stacks of fine coal make a lot difficulties to the each mine because of environmental pollution, spontaneous combustion, low price, smaller market, etc. To prevent the difficulties and to give the contribution to National Program of Energy Efficiency researchers from the Department of Mining Engineering, University of Belgrade, designed and realized the project of fine coal pelletizing. This paper describes technical aspect of this project.

  17. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Science.gov (United States)

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  18. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  19. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  20. Advanced biomass science and technology for bio-based products: proceedings

    Science.gov (United States)

    Chung Hse; Zehui Jiang; Mon-Lin Kuo

    2009-01-01

    This book was developed from the proceedings of the Advanced Biomass Science and Technology for Bio-Based Products Symposium held in Beijing, China, May 23-25, 2007. The symposium was designed to provide a forum for researchers, producers, and consumers of biomass and bio-based products; to exchange information and ideas; and to stimulate new research and...

  1. Target-plasma production by laser irradiation of a pellet in the Baseball II-T experiment

    International Nuclear Information System (INIS)

    Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

    1977-01-01

    One way to generate a plasma target that can be used in conjunction with an injected neutral beam to initiate a high-energy plasma in a steady-state, magnetic-mirror field is by the laser irradiation of a solid pellet located within the confinement region. In the Lawrence Livermore Laboratory Baseball II-T experiment, a CO 2 laser was used to provide a two-sided irradiation of an ammonia pellet; the maximum laser intensity on the pellet was approximately 4 x 10 12 W/cm 2 . The 150-μm-dia pellets were guided to the laser focal spot in the Baseball II-T magnetic field using steering voltages controlled by a microcomputer-based system. Diagnostics showed complete ionization of the pellet, average ion energies in the keV range, synchronized triggering of the laser and the neutral beam, and rapid expansion of the plasma to a diameter that was a good match to the diameter of the neutral beam. Predictions obtained from the LASNEX code compared well with measured results. Although the laser-pellet approach was proven usable as a target-plasma startup system, it would be much more complicated and expensive than the method in which streaming plasma is used to trap the neutal beams

  2. Soil physical conditions in Nigerian savannas and biomass production

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    posed by the vast area of upland soils which are made up of coarse-textured soils and in some cases gravel and stones. Aggregates of such soils are weak, they loose productivity fast and do not retain adequate water and nutrients for sustainable production. These characteristics imply that even with the best of soil fertility amendments, soil physical conditions must be managed to achieve sustainable crop production. Plant growth had to be encouraged in the soils, such that enough biomass is produced for food and soil management. Another area which requires attention in the tropics is with regard adaptability of equipment for accurate evaluation of soil physical properties. Most commercially available equipment in the field of soil physics needs to be modified to suit the tropical environment

  3. Biomass production and water use efficiency of grassland in ...

    African Journals Online (AJOL)

    Using the results from a long-term grazing trial in the Dry Highland Sourveld of the KwaZulu-Natal province, we prepared a water use efficiency value (the ratio of the increment in annual biomass to total annual evapotranspiration) for this rangeland type. Using seasonal biomass measurements recorded between March ...

  4. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  5. Mycorrhizal Enhancement of Biomass Productivity of Big Bluestem ...

    African Journals Online (AJOL)

    The usual biomass partitioning by BB at pH=4.5 deserves further investigation. Different patterns of biomass partitioning notwithstanding, results of this study strongly suggest that BB could complement SG, the model biofuel feedstock, especially under acidic substrate conditions. Key words: Big bluestem; switchgrass; ...

  6. Assessment of the externalise of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-07-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs.

  7. Assessment of the externalities of biomass energy for electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Linares, P; Leal, J; Saez, R M

    1996-10-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turn in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO{sub 2}, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. anyway, and in spite of the uncertainty existing, these results suggest that total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author)

  8. Assessment of the externalise of biomass energy for electricity production

    International Nuclear Information System (INIS)

    Linares, P.; Leal, J.; Saez, R.M.

    1996-01-01

    This study presents a methodology for the quantification of the socioeconomic and environmental externalities of the biomass fuel cycle. It is based on the one developed by the ExternE Project of the European Commission, based in turm in the damage function approach, and which has been extended and modified for a better adaptation to biomass energy systems. The methodology has been applied to a 20 MW biomass power plant, fueled by Cynara cardunculus, in southern Spain. The externalities addressed have been macroeconomic effects, employment, CO2, fixation, erosion, and non-point source pollution. The results obtained should be considered only as subtotals, since there are still other externalities to be quantified. Anyway, and in spite of the uncertainty existing, these results suggest that the total cost (those including internal and external costs) of biomass energy are lower than those of conventional energy sources, what, if taken into account, would make biomass more competitive than it is now. (Author) 44 refs

  9. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production.

    Science.gov (United States)

    Chuppa-Tostain, Graziella; Hoarau, Julien; Watson, Marie; Adelard, Laetitia; Shum Cheong Sing, Alain; Caro, Yanis; Grondin, Isabelle; Bourven, Isabelle; Francois, Jean-Marie; Girbal-Neuhauser, Elisabeth; Petit, Thomas

    2018-01-01

    Sugarcane distillery waste water (SDW) or vinasse is the residual liquid waste generated during sugarcane molasses fermentation and alcohol distillation. Worldwide, this effluent is responsible for serious environmental issues. In Reunion Island, between 100 and 200 thousand tons of SDW are produced each year by the three local distilleries. In this study, the potential of Aspergillus niger to reduce the pollution load of SDW and to produce interesting metabolites has been investigated. The fungal biomass yield was 35 g L -1 corresponding to a yield of 0.47 g of biomass/g of vinasse without nutrient complementation. Analysis of sugar consumption indicated that mono-carbohydrates were initially released from residual polysaccharides and then gradually consumed until complete exhaustion. The high biomass yield likely arises from polysaccharides that are hydrolysed prior to be assimilated as monosaccharides and from organic acids and other complex compounds that provided additional C-sources for growth. Comparison of the size exclusion chromatography profiles of raw and pre-treated vinasse confirmed the conversion of humic- and/or phenolic-like molecules into protein-like metabolites. As a consequence, chemical oxygen demand of vinasse decreased by 53%. Interestingly, analysis of intracellular lipids of the biomass revealed high content in oleic acid and physical properties relevant for biodiesel application. The soft-rot fungus A. niger demonstrated a great ability to grow on vinasse and to degrade this complex and hostile medium. The high biomass production is accompanied by a utilization of carbon sources like residual carbohydrates, organic acids and more complex molecules such as melanoidins. We also showed that intracellular lipids from fungal biomass can efficiently be exploited into biodiesel.

  10. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol

  11. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  12. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Science.gov (United States)

    del Moral, Sandra; Núñez-López, Lizeth; Barrera-Figueroa, Blanca E.; Amaya-Delgado, Lorena

    2017-01-01

    The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass. PMID:28951875

  13. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  15. Premium Fuel Production From Mining and Timber Waste Using Advanced Separation and Pelletizing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R. Q.; Taulbee, D.; Parekh, B. K.; Tao, D.

    2005-12-05

    The Commonwealth of Kentucky is one of the leading states in the production of both coal and timber. As a result of mining and processing coal, an estimated 3 million tons of fine coal are disposed annually to waste-slurry impoundments with an additional 500 million tons stored at a number of disposal sites around the state due to past practices. Likewise, the Kentucky timber industry discards nearly 35,000 tons of sawdust on the production site due to unfavorable economics of transporting the material to industrial boilers for use as a fuel. With an average heating value of 6,700 Btu/lb, the monetary value of the energy disposed in the form of sawdust is approximately $490,000 annually. Since the two industries are typically in close proximity, one promising avenue is to selectively recover and dewater the fine-coal particles and then briquette them with sawdust to produce a high-value fuel. The benefits are i) a premium fuel product that is low in moisture and can be handled, transported, and utilized in existing infrastructure, thereby avoiding significant additional capital investment and ii) a reduction in the amount of fine-waste material produced by the two industries that must now be disposed at a significant financial and environmental price. As such, the goal of this project was to evaluate the feasibility of producing a premium fuel with a heating value greater than 10,000 Btu/lb from waste materials generated by the coal and timber industries. Laboratory and pilot-scale testing of the briquetting process indicated that the goal was successfully achieved. Low-ash briquettes containing 5% to 10% sawdust were produced with energy values that were well in excess of 12,000 Btu/lb. A major economic hurdle associated with commercially briquetting coal is binder cost. Approximately fifty binder formulations, both with and without lime, were subjected to an extensive laboratory evaluation to assess their relative technical and economical effectiveness as binding

  16. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  17. Raw materials for pellets; Rohstoffe fuer Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, H.

    2008-01-15

    In order to keep the pellet prices stable, producers look for new raw materials. Sawdust as a former basis also competes with the manufacturers of chip boards and paper. Three classes of quality are discussed by the pellet manufacturers: (a) the DINplus pellet as a premium segment for which high-quality sawdust are used; (b) a wood pellet from natural wood with varying quality for the utilization in larger plants with filters; (c) the inexpensive industrial wood pellet which deviates from the DINplus commodity regarding to the ingredients and form and could be fired in larger power stations.

  18. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  19. Avoiding tar formation in biocoke production from waste biomass

    International Nuclear Information System (INIS)

    Adrados, A.; De Marco, I.; Lopez-Urionabarrenechea, A.; Solar, J.; Caballero, B.

    2015-01-01

    This paper focuses in avoiding tar formation and in optimizing pyrolysis gas (maximizing H 2 and CO) in the production of biocoke from waste lignocellulosic biomass. In order to obtain metallurgical grade biochar (biocoke) slow heating rate and high temperature are required. Under such conditions useless pyrolysis liquids, mainly composed of water together with some heavy-sticky tars, are obtained. In order to make biocoke a cost-effective process it is necessary to optimize pyrolysis vapors avoiding tar formation and maximizing the amount and quality of both coke and gases. With this objective, in this work different heating rates (3–20 °C min −1 ) and catalysts (zeolite, Ni/CeO 2 –Al 2 O 3 ) have been tested in a two step pyrolysis process. Olive tree cuttings have been pyrolyzed in a 3.5 L batch reactor at 750 °C and the vapors generated have been thermally and catalytically treated at 900 °C in a second tubular reactor. About 25 wt.% biocoke useful as reducing agent in certain metallurgical processes, ≈57 wt.% gases with near 50 vol.% H 2 , and no tar production has been achieved when a heating rate of 3 °C min −1 and the homemade Ni/CeO 2 –Al 2 O 3 catalyst were used. - Highlights: • Metallurgical grade biochar was obtained by olive waste pyrolysis. • Low heating rates avoid tar formation and increase gas and biochar yields. • Ni/CeO 2 –Al 2 O 3 was better than HZSM5 zeolite for vapor upgrading in a second step. • Ni/CeO 2 –Al 2 O 3 and 3 °C min −1 gave the maximum H 2 , gas and biochar yields

  20. Manufacture of wood-pellets doubles. Biowatti Oy started a wood pellet plant in Turenki

    International Nuclear Information System (INIS)

    Rantanen, M.

    1999-01-01

    Wood pellets have many advantages compared to other fuels. It is longest processed biofuel with favorable energy content. It is simple to use, transport and store. Heating with wood pellets is cheaper than with light fuel oil, and approximately as cheap as utilization of heavy fuel oil, about 110 FIM/MWh. The taxable price of wood pellets is about 550 FIM/t. Stokers and American iron stoves are equally suitable for combustion of wood pellets. Chip fueled stokers are preferred in Finland, but they are also suitable for the combustion of wood pellets. Wood pellets is an environmentally friendly product, because it does not increase the CO 2 load in the atmosphere, and its sulfur and soot emissions are relatively small. The wood pelletizing plant of Biowatti Oy in Turenki was started in an old sugar mill. The Turenki sugar mill was chosen because the technology of the closed sugar factory was suitable for production of wood pellets nearly as such, and required only by slight modifications. A press, designed for briquetting of sugar beat clippings makes the pellets. The Turenki mill will double the volume of wood pellet manufacture in Finland during the next few years. At the start the annual wood pellet production will be 20 000 tons, but the environmental permit allows the production to be increased to 70 000 tons. At first the mill uses planing machine chips as a raw material in the production. It is the most suitable raw material, because it is already dry (moisture content 8-10%), and all it needs is milling and pelletizing. Another possible raw material is sawdust, which moisture content is higher than with planing machine chips. Most of the wood pellets produced are exported e.g. to Sweden, Denmark and Middle Europe. In Sweden there are over 10 000 single-family houses using wood pellets. Biowatti's largest customer is a power plant located in Stockholm, which combusts annually about 200 000 tons of wood pellets

  1. Inherent hazards, poor reporting and limited learning in the solid biomass energy sector: A case study of a wheel loader igniting wood dust, leading to fatal explosion at wood pellet manufacturer

    International Nuclear Information System (INIS)

    Hedlund, Frank Huess; Astad, John; Nichols, Jeffrey

    2014-01-01

    Large loaders are commonly used when handling solid biomass fuels. A preventable accident took place in 2010, where the malfunction of a front-end wheel loader led to a dust explosion which killed the driver and destroyed the building. The case offers an opportunity to examine the hazards of solid biomass, the accident investigation and any learning that subsequently took place. The paper argues that learning opportunities were missed repeatedly. Significant root causes were not identified; principles of inherent safety in design were ignored; the hazardous area classification was based on flawed reasoning; the ATEX assessment was inadequate as it dealt only with electrical installations, ignoring work operations; and powered industrial trucks had not been recognized as a source of ignition. Perhaps most importantly, guidelines for hazardous area classification for combustible dust are insufficiently developed and give ample room for potentially erroneous subjective individual judgment. It is a contributing factor that combustible dust, although with great hazard potential, is not classified as a dangerous substance. Accidents therefore fall outside the scope of systems designed to disseminate lessons learned and prevent future accidents. More attention to safety is needed for the renewable energy and environmentally friendly biomass pellet industry also to become sustainable from a worker safety perspective. - Highlights: • Wheel loader ignited wood dust, leading to flash fire and explosion. • ATEX assessment inadequate, dealing only with electrical installations. • Guidelines for ATEX zones for combustible dusts are insufficiently developed. • Facility exploded 2002, 2010, root causes not identified, no evidence of learning. • Future repeat explosion likely had facility not been closed down

  2. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  3. Biomass Processing using Ionic Liquids for Jet Fuel Production

    Science.gov (United States)

    2014-04-09

    either water (W) or ethanol (E) as the nonsolvent and (bottom) enzymatic hydrolysis (cellulose conversion ) of the samples. PILs for Lignin Dissolution...of lignin) with IL dissolution of biomass has been demonstrated to be a highly effective pretreatment method for the conversion of raw cornstover...into glucose—this enables the rapid conversion (hydrolysis) of the biomass , while minimizing the amount of enzyme necessary (also a crucial issue for

  4. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, R. César; Manowitz, David H.; Zhang, Xuesong

    2013-01-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environmental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government. - Highlights: ► Bioeconomic optimization model predicts how biomass production affects environment. ► Rising biomass production could impair climate and water quality. ► Environmental protection policies compared as biomass supply grows. ► Carbon price protects the environment cost-effectively as biomass supply expands

  5. NIR techniques create added values for the pellet and biofuel industry.

    Science.gov (United States)

    Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan

    2009-02-01

    A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.

  6. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and

  7. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  9. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  10. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  11. Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests

    NARCIS (Netherlands)

    Verkerk, P.J.; Mavsar, R.; Giergiczny, M.; Lindner, M.; Edwards, D.; Schelhaas, M.J.

    2014-01-01

    To develop viable strategies for intensifying the use of forest biomass and for increasing forest protection, impacts on ecosystem services need to be assessed. We investigated the biophysical and economic impacts of increased forest biomass production and biodiversity protection on forest ecosystem

  12. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  13. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. O.; Lee, J. Y.; Song, Y. S.; Shin, H. S.

    2009-04-01

    - The first year : Pre-treatment of biomass by proton beam irradiation and characterization of the pretreated biomass by IR and SEM - The second year : Strain development by proton beam irradiation for the production of cellulase and hemicellulase - The third year : Optimization of Saccharification process by cellulase and hemicellulase

  14. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming; Peng, Meng

    2015-08-01

    This study aimed at enhancing the bacterial biomass and pigments production in together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via using different photoperiods. Different light/dark cycles and light/dark cycle frequencies were examined. Results showed that PSB had the highest biomass production, COD removal and biomass yield, and light energy efficiency with light/dark cycle of 2h/1h. The corresponding biomass, COD removal and biomass yield reached 2068mg/L, 90.3%, and 0.38mg-biomass/mg-COD-removal, respectively. PSB showed higher biomass production and biomass yield with higher light/dark cycle frequency. Mechanism analysis showed within a light/dark cycle from 1h/2h to 2h/1h, the carotenoid and bacteriochlorophyll production increased with an increase in light/dark cycle. Moreover, the pigment contents were much higher with lower frequency of 2-4 times/d. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biomass and its potential for protein and amino acids : valorizing agricultural by-products

    NARCIS (Netherlands)

    Sari, Y.W.

    2015-01-01

    The use of biomass for industrial products is not new. Plants have long been used for clothes, shelter, paper, construction, adhesives, tools, and medicine. With the exploitation on fossil fuel usage in the early 20th century and development of petroleum based refinery, the use of biomass for

  16. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  17. The challenge of biomass production. Analysis of Chinnahagari and Upparahalla watersheds, Bellary District, India

    International Nuclear Information System (INIS)

    Avornyo, F.; Ballal, F.; Husseini, R.; Mysore, A.; Nabi, S.A.; Guevara, A.L.P.

    2003-01-01

    Results are presented of a field study conducted in the Chinnahagari and Upparahalla watersheds in the Karnataka state of India, with the objective of identifying the opportunities for and constraints in efforts for enhancing biomass production. The Agricultural Research for Development (ARD) procedure which is a process of integrating different perspectives of stakeholders was used for planning strategies to combat low biomass problems

  18. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, e...

  19. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  20. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  1. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation...

  2. Does species richness affect fine root biomass and production in young forest plantations?

    Science.gov (United States)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  3. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O. [Enugu State Univ. of Science and Technology (Nigeria). Faculty of Applied Natural Sciences; Okafor, M.; Ezejiofor, E. [Nnamdi Azikiwe Univ., Awka (Nigeria). Dept. of Applied Microbiology

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  4. Performance of a pellet boiler fired with agricultural fuels

    International Nuclear Information System (INIS)

    Carvalho, Lara; Wopienka, Elisabeth; Pointner, Christian; Lundgren, Joakim; Verma, Vijay Kumar; Haslinger, Walter; Schmidl, Christoph

    2013-01-01

    Highlights: ► Performance evaluation of a pellet boiler operated with different agricultural fuels. ► Agricultural fuels could be burn in the tested boiler for a certain period of time. ► All the fuels (except straw and Sorghum) satisfied the European legal requirements. ► Boilers for burning agricultural fuels should have a flexible control system. - Abstract: The increasing demand for woody biomass increases the price of this limited resource, motivating the growing interest in using woody materials of lower quality as well as non-woody biomass fuels for heat production in Europe. The challenges in using non-woody biomass as fuels are related to the variability of the chemical composition and in certain fuel properties that may induce problems during combustion. The objective of this work has been to evaluate the technical and environmental performance of a 15 kW pellet boiler when operated with different pelletized biomass fuels, namely straw (Triticum aestivum), Miscanthus (Miscanthus × giganteus), maize (Zea mays), wheat bran, vineyard pruning (from Vitis vinifera), hay, Sorghum (Sorghum bicolor) and wood (from Picea abies) with 5% rye flour. The gaseous and dust emissions as well as the boiler efficiency were investigated and compared with the legal requirements defined in the FprEN 303-5 (final draft of the European standard 303-5). It was found that the boiler control should be improved to better adapt the combustion conditions to the different properties of the agricultural fuels. Additionally, there is a need for a frequent cleaning of the heat exchangers in boilers operated with agricultural fuels to avoid efficiency drops after short term operation. All the agricultural fuels satisfied the legal requirements defined in the FprEN 303-5, with the exception of dust emissions during combustion of straw and Sorghum. Miscanthus and vineyard pruning were the best fuels tested showing comparable emission values to wood combustion

  5. Biomass production by Coffea canephora Pierre ex Froehner in two productives cycles

    International Nuclear Information System (INIS)

    Bustamante González, Carlos; Rodríguez, Maritza I.; Pérez Díaz, Alberto; Viñals, Rolando; Martín Alonso, Gloria M.; Rivera, Ramón

    2015-01-01

    In areas of the Estación Central de Investigaciones de Café y Cacao located in La Mandarina, Tercer Frente municipality, Santiago de Cuba province, and La Alcarraza, municipality Sagua de Tánamo, Holguín province, the biomass production of Coffea canephora Pierre ex Froehner var. Robusta was assessed from planting until the fourth year in both locations and after pruning until the fourth year in Alcarraza. The coffee trees were planted at 3 x 1,5 m in Cambisol under Samanea saman Jerr shade in the first town and Leucaena leucocephala Lam de Wit in the second. The biomass was separated into: leaves, branches, stems, fruits and roots. From 24 months and one year after pruning, leaflitter was collected monthly. For the study of the root system soil blocks of 25 x 25 x 25 cm were extracted, in an area formed by 1,5 m (distance to the street) and 0,75 m (between plants), centered relative to the coffee plant and up to a meter deep. The extracted soil represented ¼ of the volume occupied by the plant. The dry mass of each organ was determined. Dry matter production reached values of 25 t dry mass ha-1 regardless of the stage of the plantation. Until the fourth year the root system dominated the biomass, followed by the leaves and then the stems. The participation of the fruits in the biomass increased in the crop stage and when concluding the experiment the coffees had dedicated for its formation among the 16-20 % of the total dry mass, independently of the development cycle. (author)

  6. Burning of biomass waste

    International Nuclear Information System (INIS)

    Holm Christensen, B.; Evald, A.; Buelow, K.

    1997-01-01

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  7. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    Science.gov (United States)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  8. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200 1450 kg hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400{sup o}C. Char yield is 1418 % weight on dry basis and is of good quality consisting of 76{sup o}C with heat content 6760 kcal kg. Bio-oil includes 63% C and its heat content is 6250 kcal kg. (author)

  9. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200--1450 kg/hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400 C. Char yield is 14--18% weight on dry basis and is of good quality consisting of 76% C with heat content 6760 kcal/kg. Bio-oil includes 64% C and its heat content is 6250 kcal/kg.

  10. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  11. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite

    DEFF Research Database (Denmark)

    Ploug, H.; Iversen, M.H.; Koski, Marja

    2008-01-01

    sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d(-1) independent on diet (range: 0.08-0.21 d(-1)). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +/- 169 m d...

  12. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation

    International Nuclear Information System (INIS)

    Boerjesson, P.; Gustavsson, L.; Christersson, L.; Linder, S.

    1997-01-01

    Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO 2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr. (author)

  13. The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands

    NARCIS (Netherlands)

    Sikkema, R.|info:eu-repo/dai/nl/110609913; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Pichler, W.; Hayes, S.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2010-01-01

    The European wood pellet market is booming: concerns about climate change and renewable energy targets are predominant drivers. The aim of this analysis is to compare typical wood pellet chains from the purchase of the feedstock from sawmills to the conversion into heat or electricity. Cost

  14. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.

    Science.gov (United States)

    Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo

    2016-03-26

    The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  15. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2016-03-01

    Full Text Available The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating “greener” industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone, a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  16. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  17. 'Underutilised' agricultural land: its definitions, potential use for future biomass production and its environmental implications

    Science.gov (United States)

    Miyake, Saori; Bargiel, Damian

    2017-04-01

    A growing bioeconomy and increased demand for biomass products on food, health, fibre, industrial products and energy require land resources for feedstock production. It has resulted in significant environmental and socio-economic challenges on a global scale. As a result, consideration of such effects of land use change (LUC) from biomass production (particularly for biofuel feedstock) has emerged as an important area of policy and research, and several potential solutions have been proposed to minimise such adverse LUC effects. One of these solutions is the use of lands that are not in production or not suitable for food crop production, such as 'marginal', 'degraded', 'abandoned' and 'surplus' agricultural lands for future biomass production. The terms referring to these lands are usually associated with the potential production of 'marginal crops', which can grow in marginal conditions (e.g. poor soil fertility, low rainfall, drought) without much water and agrochemical inputs. In our research, we referred to these lands as 'underutilised' agricultural land and attempted to define them for our case study areas located in Australia and Central and Eastern Europe (CEE). Our goal is to identify lands that can be used for future biomass production and to evaluate their environmental implications, particularly impacts related to biodiversity, water and soil at a landscape scale. The identification of these lands incorporates remote sensing and spatially explicit approaches. Our findings confirmed that there was no universal or single definition of the term 'underutilised' agricultural land as the definitions significantly vary by country and region depending not only on the biophysical environment but also political, institutional and socio-economic conditions. Moreover, our results highlighted that the environmental implications of production of biomass on 'underutilised' agricultural land for biomass production are highly controversial. Thus land use change

  18. Development of Sustainable Landscape Designs for Improved Biomass Production in the U.S. Corn Belt

    Science.gov (United States)

    Bonner, Ian J.

    Demand for renewable and sustainable energy options has resulted in a significant commitment by the US Government to research pathways for fuel production from biomass. The research presented in this thesis describes one potential pathway to increase the amount of biomass available for biofuel production by integrating dedicated energy crops into agricultural fields. In the first chapter an innovative landscape design method based on subfield placement of an energy crop into row crop fields in central Iowa is used to reduce financial loss for farmers, increase and diversify biomass production, and improve soil resources. The second chapter explores how subfield management decisions may be made using high fidelity data and modeling to balance concerns of primary crop production and economics. This work provides critical forward looking support to agricultural land managers and stakeholders in the biomass and bioenergy industry for pathways to improving land stewardship and energy security.

  19. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    Science.gov (United States)

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  20. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie

    2015-01-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass...... and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined...... be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested...

  1. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw...

  2. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  3. Biomass for energy production. Economic evaluation, efficiency comparison and optimal utilization of biomass; Biomasse zur Energiegewinnung. Oekonomische Bewertung, Effizienzvergleich und optimale Biomassenutzung

    Energy Technology Data Exchange (ETDEWEB)

    Zeddies, Juergen [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Landwirtschaftliche Betriebslehre; Schoenleber, Nicole

    2015-07-01

    An optimized and/or goal-oriented use of available biomass feedstock for energetic conversion requires a detailed analysis of bioenergy production lines according to technical and economic efficiency indicators. Accordingly, relevant parameters of selected production lines supplying heat, electricity and fuel have been studied and used as data base for an optimization model. Most favorable combination of bioenergy lines considering political and economic objectives are analyzed by applying a specifically designed linear optimization model. Modeling results shall allow evaluation of political courses of action.

  4. Seagrass Biomass and Productivity in Seaweed and Non-Seaweed ...

    African Journals Online (AJOL)

    Seagrass beds are often subjected to stress resulting from natural and human activities. In this study, the shoot density, biomass and growth characteristics of Thalassia hemprichii and Enhalus acoroides were measured to assess the impact of seaweed farming activities on seagrass meadows at Marumbi, Chwaka Bay and ...

  5. Experimental study of the production of biomass by Sacharomyces ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... h-1 exceeds by far the maximum specific growth rate of the yeast under aerobic condition as obtained ... use for bread-making, a staple food for large section of ..... mental yield of biomass may be inaccurate measurement.

  6. biomass production and forage quality of head-smut disease ...

    African Journals Online (AJOL)

    ACSS

    The objective of this study was to determine biomass yield and forage quality of head- smut resistant/tolerant Napier grass .... demands deployment of suitable Napier grass cultivars, with resistance/tolerance to drought conditions .... diets need to be balanced to contain sufficient and effective NDF for healthy rumen function,.

  7. Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity.

    Science.gov (United States)

    Cai, Weiming; Dunford, Nurhan Turgut; Wang, Ning; Zhu, Songming; He, Huinong

    2016-02-01

    It has been reported in the literature that exposure of microalgae cells to audible sound could promote growth. This study examined the effect of sound waves with the frequency of 1100 Hz, 2200 Hz, and 3300 Hz to stimulate the biomass productivity of an Oklahoma native strain, Picochlorum oklahomensis (PO). The effect of the frequency of sound on biomass mass was measured. This study demonstrated that audible sound treatment of the algae cultures at 2200 Hz was the most effective in terms of biomass production and volumetric oil yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biomass production of sesbania sesban pers. On different habitats

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Pathak, P.S.; Roy, R.D.

    1983-01-01

    Three month-old seedlings of S. sesban (a shortlived medicinal shrub or small tree which can be used for fuelwood and forage) were planted at 7 sites starting in 1975. The seedlings were raised in polythene bags and planted in pits. Growth was assessed after 1.0-4.5 years by felling and measuring 3 sample trees each from 3 collar diameter (high, medium and low) groups at each site. Sites were (1) two nursery sites with optimum moisture and management conditions, assessed at 1 and 2.5 years old respectively, (2) three canal-side sites inundated for more than 8 months per year planted as blocks (assessed at 3.5 and 4.5 years) and as a single row (3.5 years), (3) a dry farm forestry site planted as a single row (assessed at 3.5 years) and (4) a moist silvopastoral site planted as a block (assessed at 3.5 years). Detailed growth and biomass data are tabulated. On the moist canal site plants were still growing at 4.5 year old (average above-ground biomass/plant 60 kg compared with 16-17 kg at 3.5 years); values were similar on the moist silvopastoral site (16 kg at 3.5 years) but lower on the dry site (6 kg at 3.5 years). On the nursery site average above-ground biomass increased from 2 kg/plant at 1 year old to 6 kg at 2.5 years. Collar diameter was linearly related to diameter at breast height and biomass, and diameter at breast height to biomass at all sites.

  9. Construction of a flexible pilot dryer for products such as biofuels and iron ore pellets; Uppbyggnad av flexibel pilottork foer produkter som biobraenslen och jaernmalmspellets

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik; Truedsson, Ida; Stenstroem, Stig

    2009-02-15

    Drying of different products is an operation that requires large amounts of energy in Sweden, a compilation from 2006 indicates a total use of over 32 TWh of thermal energy. A more energy efficient drying process can thus result in significant savings of energy for this process. The interest to use biofuels for heating purposes increases with increasing energy prices and thus also the interest to dewater and dry these products. Often an excess of low-value heat (flue gases, warm water etc.) is available and it would be desirable to use these streams for drying of different products. The goal in this project has been to carry out two subtasks: A Rebuild and modernise the old pilot dryer at the department so that it can be used for studies of drying kinetics for different products in a bed or as separate particles. B Perform a number of drying experiments with two representative bio-fuels which can be used for evaluation of different proposals for drying of these products. The results will mainly be of interest for companies handling biofuels in the forestry sector, for LKAB producing iron ore pellets and for manufacturers of industrial dryers. The constructed pilot dryer can be used for studies of drying kinetics of different types of products such as bark, wood chips, materials in the form of pellets such as iron ore pellets or wood pellets and foods. If the drying cell is designed so that fine particulate materials are not entrained with the gas flow, products such as municipal or industrial sludges can also be handled in the dryer. The results indicate specific energy use figures of between 2500 and 3000 kJ/kg evaporated water, both for different fractions of bark and independently if the origin of the bark was Vaeroe or Iggesund. The drying time to reach a dry matter content of 60 % for a bed with a thickness of 20 cm and an air velocity of 1 m/s is about 5000 seconds at an air temperature of 50 deg C. It increases to 15000 seconds to reach a dry matter content

  10. Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

    Directory of Open Access Journals (Sweden)

    Mohsen Mansouri

    2017-04-01

    Full Text Available The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ, maximum specific growth rate (μmax, and maximum cell concentration (Xmax. The low root-mean-square error (RMSE and high regression coefficients (R2 indicated that the models employed were well fitted to the experiment data and it could be regarded as enough to describe biomass production. Using statistical and physiological significance criteria, the Baranyi model was considered the most appropriate for quantifying biomass growth. The biological variables of this model are as follows: μmax=0.0309 h−1, λ=100 h, and Xmax=1.82 g/L.

  11. Optimal processing pathway for the production of biodiesel from microalgal biomass: A superstructure based approach

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass......, such as the harvesting of microalgal biomass, pretreatments including drying and cell disruption of harvested biomass, lipid extraction, transesterification, and post-transesterfication purification. The proposed model is used to find the optimal processing pathway among the large number of potential pathways that exist...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case with different choices of objective functions. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed...

  12. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Power production from biomass III. Gasification and pyrolysis R and D and D for industry

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Korhonen, M. [eds.] [VTT Energy, Espoo (Finland). New Energy Technologies

    1999-07-01

    The Seminar on Power Production from Biomass III. Gasification and Pyrolysis R and D and D for Industry, was held on 14-15 September 1998 in Espoo. The seminar was organised by VTT Energy in co-operation with the University of Groningen, EU-Thermie Programme and Technology Development Centre, Finland (Tekes). Overviews of current activities on power production from biomass and wastes in Europe and in the United States were given, and all European and U. S. demonstration projects on biomass gasification were presented. In Europe, the target is to produce additional 90 Mtoe/a of bioenergy for the market by 2010. This is a huge challenge for the bioenergy sector, including biomass production and harvesting, conversion technology, energy companies, and end users. In USA, U.S. Department of Energy is promoting the Biomass Power Programme to encourage and assist industry in the development and validation of renewable, biomass-based electricity generation systems, the objective being to double the present use of 7 000 MW biomass power by the year 2010. The new Finnish PROGAS Programme initiated by VTT was also introduced. Several gasification projects are today on the demonstration stage prior to entering the commercial level. Pyrolysis technologies are not yet on the demonstration stage on the energy market. Bio-oils can easily be transported, stored and utilised in existing boiler and diesel plants. The proceedings include the presentations given by the keynote speakers and other invited speakers, as well as some extended poster presentations. (orig.)

  14. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  15. Medium selection for exopolysaccharide and biomass production in submerged cultures of culinary-medicinal mushrooms from Turkey

    NARCIS (Netherlands)

    Kizilcik, M.; Yamaç, M.; Griensven, van L.J.L.D.

    2010-01-01

    The present study investigates the exopolysaccharide (EPS) and biomass production of 18 strains of 15 species of culinary-medicinal higher Basidiomycetes in submerged culture under four different media. Gloeophyllum abietinum and Schizophyllum commune produced the highest EPS and biomass

  16. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  17. Productivity and cost of conventional understory biomass harvesting systems

    Science.gov (United States)

    Douglas E. Miller; Thomas J. Straka; Bryce J. Stokes; William Watson

    1987-01-01

    Conventional harvesting equipment was tested for removing forest understory biomass (energywood) for use as fuel. Two types of systems were tested--a one-pass system and a two-pass system. In the one-pass system, the energywood and pulpwood were harvested simultaneously. In the two-pass system, the energywood was harvested in a first pass through the stand, and the...

  18. Methane and fertilizer production from seaweed biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  19. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  1. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  2. A review on advances of torrefaction technologies for biomass processing

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bimal; Sule, Idris; Dutta, Animesh [University of Guelph, School of Engineering, Guelph, ON (Canada)

    2012-12-15

    Torrefaction is a thermochemical pretreatment process at 200-300 C in an inert condition which transforms biomass into a relatively superior handling, milling, co-firing and clean renewable energy into solid biofuel. This increases the energy density, water resistance and grindability of biomass and makes it safe from biological degradation which ultimately makes easy and economical on transportation and storing of the torrefied products. Torrefied biomass is considered as improved version than the current wood pellet products and an environmentally friendly future alternative for coal. Torrefaction carries devolatilisation, depolymerization and carbonization of lignocellulose components and generates a brown to black solid biomass as a productive output with water, organics, lipids, alkalis, SiO{sub 2}, CO{sub 2}, CO and CH{sub 4}. During this process, 70 % of the mass is retained as a solid product, and retains 90 % of the initial energy content. The torrefied product is then shaped into pellets or briquettes that pack much more energy density than regular wood pellets. These properties minimize on the difference in combustion characteristics between biomass and coal that bring a huge possibility of direct firing of biomass in an existing coal-fired plant. Researchers are trying to find a solution to fire/co-fire torrefied biomass instead of coal in an existing coal-fired based boiler with minimum modifications and expenditures. Currently available torrefied technologies are basically designed and tested for woody biomass so further research is required to address on utilization of the agricultural biomass with technically and economically viable. This review covers the torrefaction technologies, its' applications, current status and future recommendations for further study. (orig.)

  3. The Manufacturing Process of Bamboo Pellets

    Science.gov (United States)

    Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Xing' e Liu

    2012-01-01

    Bamboo was a kind of biomass materials and had great potential as a bio-energy resource of the future in China. The physical and combustion properties of bamboo pellets were determined and the effects of moisture content (MC) and sizes of particle on these properties were investigated in this research. The results showed that MC and sizes of particle affected these...

  4. Handling system for nuclear fuel pellet inspection

    International Nuclear Information System (INIS)

    Nyman, D.H.; McLemore, D.R.; Sturges, R.H.

    1978-11-01

    HEDL is developing automated fabrication equipment for fast reactor fuel. A major inspection operation in the process is the gaging of fuel pellets. A key element in the system has been the development of a handling system that reliably moves pellets at the rate of three per second without product damage or excessive equipment wear

  5. Methane pellet moderator development

    International Nuclear Information System (INIS)

    Foster, C.A.; Schechter, D.E.; Carpenter, J.M.

    2004-01-01

    A methane pellet moderator assembly consisting of a pelletizer, a helium cooled sub-cooling tunnel, a liquid helium cooled cryogenic pellet storage hopper and a 1.5L moderator cell has been constructed for the purpose demonstrating a system for use in high-power spallation sources. (orig.)

  6. Pellet injection in WVIIA

    International Nuclear Information System (INIS)

    Renner, H.; Wuersohing, E.; Weller, A.; Jaeckel, H.; Hartfuss, H.; Hacker, H.; Ringler, H.; Buechl, K.

    1986-01-01

    The results of pellet injection experiments in the Wendelstein VII A stellarator are presented. The injector was a single shot pneumatic gun using deuterium pellets. Experiments were carried out in both ECRH and NI plasmas. Data is shown for plasma density, energy confinement, penetration depth and pellet ablation. Results are compared to a neutral gas shielding model

  7. Characterization of biomasses available in the region of North-East India for production of biofuels

    International Nuclear Information System (INIS)

    Sasmal, Soumya; Goud, Vaibhav V.; Mohanty, Kaustubha

    2012-01-01

    The lignocellulosic materials are cheap and readily available either in the form of agricultural waste or forest residues. These materials can be used as a source for energy production either in the gaseous form (CO, H 2 etc) or in liquid form (ethanol, butanol etc) to meet the rising demand of energy. The reign of lignocellulosic materials for energy production is a proven fact in this era of energy research. The present study focuses on characterization of three biomass samples namely areca nut husk (Areca catheu), moj (Albizia lucida) and bonbogori (Ziziphus rugosa), available in the region of North-East India. Physical and chemical analysis of these lignocellulosic biomass samples were performed using X-ray diffraction techniques, thermogravimetric analysis, FTIR, Raman spectroscopy and CHNSO analysis. Maximum crystalinity was observed in areca nut husk fiber (63.84%) followed by moj (46.43%) and bonbogori (42.46%). The calorific values of all the biomasses were found within the range of 17 MJ/kg to 22 MJ/kg. All these properties combined together per se shows that areca nut husk, bonbogori and moj are potential sources for biofuel production. -- Highlights: ► Non-conventional biomasses were considered in this study. ► Complete characterization of these biomasses are reported. ► Maximum crystalinity was observed in areca nut husk fiber followed by moj and bonbogori. ► Results confirmed that these biomasses can be utilized for biofuel production.

  8. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  9. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  10. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  11. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  12. Environmental assessment of energy production from waste and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tonini, D.

    2013-02-15

    composition (e.g. amount of organic and paper) and properties (e.g. LHV, water content) play a crucial role in affecting the final ranking. When assessing the environmental performance of the waste refinery, a detailed knowledge of the waste composition is recommendable as this determines the energy outputs and thereby the assessment results. The benefits offered by the waste refinery compared with incinerators and MBT plants are primarily related to the optimized electricity and phosphorous recovery. However, recovery of nutrients and phosphorous might come at the expenses of increased N-eutrophication and emissions of hazardous substances to soil. The first could be significantly mitigated by post-treating the digestate left from bioliquid digestion (e.g. composting). Compared with waste refining treatment, efficient source-segregation of the organic waste with subsequent biological processing may decrease digestate/compost contamination and recover phosphorous similarly to the waste refinery process. However, recent studies highlighted how this strategy often fails leading to high mass/energy/nutrients losses as well as to contamination of the segregated organic waste with unwanted impurities. All in all, more insight should be gained into the magnitude of iLUC impacts associated with energy crops. Their quantification is the key factor determining a beneficial or detrimental GHG performance of bioenergy systems based on energy crops. If energy crops are introduced, combined heat and power production should be prioritized based on the results of this research. Production of liquid biofuels for transport should be limited as the overall energy conversion efficiency is significantly lower thereby leading to decreased GHG performances. On this basis, recovery of energy, materials and resources from waste such as residual agricultural/forestry biomass and municipal/commercial/industrial waste should be seen as the way ahead. Highly-efficient combustion and incineration offer

  13. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  14. Biomass upgrading by torrefaction for the production of biofuels: A review

    International Nuclear Information System (INIS)

    Stelt, M.J.C. van der; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J.

    2011-01-01

    An overview of the research on biomass upgrading by torrefaction for the production of biofuels is presented. Torrefaction is a thermal conversion method of biomass in the low temperature range of 200-300 o C. Biomass is pre-treated to produce a high quality solid biofuel that can be used for combustion and gasification. In this review the characteristics of torrefaction are described and a short history of torrefaction is given. Torrefaction is based on the removal of oxygen from biomass which aims to produce a fuel with increased energy density by decomposing the reactive hemicellulose fraction. Different reaction conditions (temperature, inert gas, reaction time) and biomass resources lead to various solid, liquid and gaseous products. A short overview of the different mass and energy balances is presented. Finally, the technology options and the most promising torrefaction applications and their economic potential are described. -- Highlights: → We reviewed recent developments in biomass upgrading by torrefaction. → Torrefaction improves biomass to a high quality solid fuel. → Main advantages of torrefaction are improvement of energy density and grindability. → Further research on kinetics is recommended for design of torrefaction reactor.

  15. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  16. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  17. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.

    Science.gov (United States)

    Li, Yong; Niu, Shuli; Yu, Guirui

    2016-02-01

    Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta-analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta-analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P-induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future. © 2015 John Wiley & Sons Ltd.

  18. Pellet injector development and experiments at ORNL

    International Nuclear Information System (INIS)

    Baylor, L.R.; Argo, B.E.; Barber, G.C.; Combs, S.K.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.H.

    1993-01-01

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER)

  19. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller

    OpenAIRE

    Soons, Z.I.T.A.; IJssel, van den, J.; Pol, van der, L.A.; Straten, van, G.; Boxtel, van, A.J.B.

    2009-01-01

    Abstract This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst ...

  20. Production of bio-oil from underutilized forest biomass using an auger reactor

    Science.gov (United States)

    H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor

    2015-01-01

    Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425–500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...

  1. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  2. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  3. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production

    International Nuclear Information System (INIS)

    Dasgupta, Chitralekha Nag; Suseela, M.R.; Mandotra, S.K.; Kumar, Pankaj; Pandey, Manish K.; Toppo, Kiran; Lone, J.A.

    2015-01-01

    Highlights: • Chlorella sp. NBRI029 and Scenedesmus sp. NBRI012 shows high biomass productivity. • Scenedesmus sp. NBRI012 shows maximum H 2 evolution in 6th day of fermentation. • Residual biomass after H 2 production contains high lipid content. • Lipid extracted from the residual biomass fulfills various biodiesel properties. - Abstract: Dual application of biomass for biohydrogen and biodiesel production could be considered a feasible option for economic and sustainable energy production from microalgae. In this study, after a large screening of fresh water microalgal isolates, Scenedesmus sp. NBRI012 and Chlorella sp. NBRI029 have exhibited high biomass (1.31 ± 0.11 and 2.62 ± 0.13 g/L respectively) and lipid (244.44 ± 12.3 and 587.38 ± 20.2 mg/L respectively) yield with an organic carbon (acetate) source. Scenedesmus sp. NBRI012 has shown the highest H 2 (maximum evolution of 17.72% v/v H 2 of total gases) production; it produced H 2 continuously for seven days in sulfur-deprived TAP media. Sulfur deprivation during the H 2 production was found to increase the lipid content (410.03 ± 18.5 mg/L) of the residual biomass. Fatty acid profile of the lipid extracted from the residual biomass of Scenedesmus sp. NBRI012 has showed abundance of fatty acids with a carbon chain length of C16 and C18. Cetane number, iodine value, and saponification value of biodiesel were found suitable according to the range given by the Indian standard (IS 15607), Brazilian National Petroleum Agency (ANP255) and the European biodiesel standard EN14214

  4. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  5. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    Wilen, C.; Kurkela, E.

    1997-01-01

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW th ) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW th ) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  6. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. BioRefine. New biomass products programme 2007-2012. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, T. (ed.) [VTT Technical Research Centre of Finland, Espoo (Finland); Alakangas, E.; Holviala, N. (eds.) [VTT Technical Research Centre of Finland, Jyvaskyla (Finland)

    2012-07-01

    The focal areas of the BioRefine programme have been business development, raw materials, and product lines. The key issue in the programme has been the development of business opportunities. The other two programme areas - raw materials and product lines, including technologies and services - have always been viewed from the perspective of short, medium or long-term business activities.The programme has organised four calls for research projects. The focus of the first call was on biomass-based fuels for transport (in the autumn 2007), the second one focused on other biomass-based products like chemicals and materials (in the spring 2008), and the third one on new biomass sources and waste-based biomass, and research supporting the business development of SME companies (early in 2010). In the last call in the spring 2011, project proposals were expected to focus on the following areas: new innovative and multidisciplinary research initiatives related to biomass utilisation, small distributed biorefinery concepts, efficient and sustainable utilisation of biomass raw materials in new integrated solutions for biorefining, and new integrated solutions for the efficient utilisation of sidestreams in the biorefining value chain or in its parts. Unlike research organizations, companies have been able to apply for funding continuously from Tekes.

  8. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Liu, Tingting; McConkey, Brian; Huffman, Ted; Smith, Stephen; MacGregor, Bob; Yemshanov, Denys; Kulshreshtha, Suren

    2014-01-01

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl −1 ; carbon offset price of $50 Mg −1 CO 2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg −1 CO 2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to

  9. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  10. Neutron absorber pellets

    International Nuclear Information System (INIS)

    Radford, K.C.

    1983-01-01

    An annular burnable poison pellet of aluminium oxide - boron carbide (Al 2 O 3 - B 4 C) adapted for positioning in the annular space of concentrically disposed zircaloy tubes. Each tubular pellet is fabricated from Al 2 O 3 powders of moderate sintering activity which serves as a matrix for B 4 C medium size particle distribution. Special pellet moisture controls are incorporated in the pellet for moisture stability and the pellet is sintered in the temperature range of 1630 deg to 1650 deg C. This method of fabrication produces a pellet about 2 inch long with a wall thickness of from 0.020 inch to 0.040 inch. Fabricating each pellet to about 70% theoretical density gives an optimum compromise between fabricability, microstructure, strength and moisture absorption. (author)

  11. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  12. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  13. Pellets - A fuel with a future

    International Nuclear Information System (INIS)

    2004-01-01

    This special brochure presents a series of articles on the topic of wood pellets as a fuel of the future. Dr. Walter Steinmann, director of the Swiss Federal Office of Energy (SFOE) introduces the topic, stressing that the Swiss Confederation and the Cantons are supporting efforts to increase the sustainable use of wood fuels. Further articles take a closer look at pellets and their form. Pellets-fired heating units are introduced as a viable alternative to traditional oil-fired units. Tips are presented on the various ways of storing pellets. Quality-assurance aspects are examined and manufacturers and distributors of wood pellets are listed. A further article takes a closer look at a large Swiss manufacturer of pellets and describes the production process used as well as the logistics necessary for the transportation of raw materials and finished products. The brochure also presents a selection of pellet ovens and heating systems from various manufacturers. A further article illustrates the use of pellets as a means of heating apartment blocks built to the MINERGIE low-energy-consumption standard. In the example quoted, the classic combination of solar energy for the pre-heating of hot water and pellets for the central heating and hot water supply is used. The use of a buried spherical tank to store pellets - and thus the saving of space inside the building - is described in a further article that takes a look at the refurbishment of the heating system in a single-family home. Finally, various contributions presented at the Pellets Forum held in Berne in November 2003 are summarised in a short article

  14. Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary.

    Science.gov (United States)

    Guenther, Mariana; Araújo, Moacyr; Flores-Montes, Manuel; Gonzalez-Rodriguez, Eliane; Neumann-Leitão, Sigrid

    2015-02-28

    Size-fractioned phytoplankton (pico, nano and microplankton) biomass and production were estimated throughout a year at Recife harbor (NE Brazil), a shallow well mixed tropical hypereutrophic estuary with short residence times but restricted water renewal. Intense loads of P-PO4 (maximum 14 μM) resulted in low N:P ratios (around 2:1), high phytoplankton biomass (B=7.1-72 μg chl-a L(-1)), production (PP=10-2657 μg C L(-1) h(-1)) and photosynthetic efficiency (P(B)=0.5-45 μg C μg chl-a(-1)), but no oxygen depletion (average O2 saturation: 109.6%). Nanoplankton dominated phytoplankton biomass (66%) but micro- and nanoplankton performed equivalent primary production rates (47% each). Production-biomass models indicate an export of the exceeding microplankton biomass during most of the year, possibly through grazing. The intense and constant nutrient and organic matter loading at Recife harbor is thus supporting the high microplankton productivity that is not accumulating on the system nor contributing to oxygen depletion, but supporting the whole system's trophic web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-10-26

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

  16. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  17. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Johnson, David R.; Curtright, Aimee E.; Willis, Henry H.

    2013-01-01

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N 2 O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  18. Biomass production and nitrogen accumulation in pea, oat, and vetch green manure mixtures

    International Nuclear Information System (INIS)

    Jannink, J.L.; Liebman, M.; Merrick, L.C.

    1996-01-01

    Interest in the use of green manures has revived because of their role in improving soil quality and their beneficial N and non-N rotation effects. This study evaluated biomass production, N content, radiation interception (RI), and radiation use efficiency (RUE) of pea (Pisum sativum L.), oat (Avena sativa L.), and hairy vetch (Vicia villosa Roth) mixtures. Treatments were a three-way factorial of pea genotype ('Century' vs 'Tipu'), pea planting density (90 vs 224 kg ha -1 ), and cropping mixture (solecropped pea vs pea planted with a mixture of oat and hairy vetch). A mixture of oat and vetch without pea was also planted. Treatments were planted in early June on a Caribou gravelly loam (coarse-loamy, mixed, frigid Typic Haplorthods) in Presque Isle, ME, in 1993 and 1994. Biomass production and radiation interception were measured by repeated sampling. Mixture biomass was affected by a year x pea density interaction: respective yields for mixtures containing low-density and high-density pea were 770 and 880 g m -2 in 1993 vs 820 and 730 g m -2 in 1994. Mixture N content paralleled biomass production and averaged 209 g m -2 across all treatments. While pea sole crops did not consistently produce biomass or N equal to three-species mixtures the two-species mixture of oat and vetch did, yielding 820 g m -2 of biomass and 21.7 g m -2 of N, averaged over the 2 yr. Multiple regression showed that 61% of the variability in mixture biomass production was accounted for by a combination of early-season pea RI and midseason total mixture RUE. Economic analyses showed that rotation including these green manures may be economically competitive with a conventional rotation of barley (Hordeum vulgare L.) undersown with clover (Trifolium spp.) in a potato (Solanum tuberosum L.) production system

  19. Fresh pasta production enriched with Spirulina platensis biomass

    Directory of Open Access Journals (Sweden)

    Ailton Cesar Lemes

    2012-10-01

    Full Text Available The aim of this work was to study the enrichment of Spirulina platensis in wheat flour to prepare fresh pasta to evaluate the green color and nutritional enrichment in addition to functional properties due to the presence of the bioactive compounds in the cyanobacterium. The pastas were evaluated for the centesimal composition, microbiological contamination, sensorial acceptance and technological characteristics such as cooking time, water absorption, volume displacement and loss of solids. The superior protein contents and the satisfactory technological and sensorial attributes compared with the control with no cyanobacterium showed the usefulness of incorporating S. platensis biomass in the fresh pastas. The microbiological quality was in compliance with the legislation in force. The sensorial quality was considered satisfactory (“liked very much” and purchase intention high (“probably would buy”.

  20. Treatment of wastes from biomass used in electricity production

    International Nuclear Information System (INIS)

    Guillemes Peira, Ángel

    2015-01-01

    The main objective of this study is to find an approach for the treatment of toxic waste condensates obtained during the generation of electricity from biomass that would transform them into wastewater. Two experimental conditions have been performed using a reactor. During the first condition, potentials were applied without following a defined path to electrically calibrate the system by observing responses. In the second experimental condition and based on these previous electrical observations, the potentials were applied. This technical approach has proven suitable for condensate treatment. However, given the aggressiveness of the residue, it is necessary to use a reactor which allows reaching and maintaining the necessary electro-oxidation potential and to combine it with an electrocoagulation reactor. (author)

  1. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  2. Low cost production of perdeuterated biomass using methylotrophic yeasts

    International Nuclear Information System (INIS)

    Haon, S.; Auge, S.; Tropis, M.; Milon, A.; Lindley, N.D.

    1993-01-01

    Three strains of methylotropic yeasts, Candida boidinii, Pichia angusta (previously Hansenula polymorpha) and Pichia pastoris, were studied for their capacity to grow on methanol in deuterated media. Growth rates, determined relative to the extent of deuteration of water and/or methanol, showed that water deuteration was the major limiting factor. After adaptation to deuterium by progressive transfer through media of increasing deuteration, growth rates were diminished relative to those obtained on hydrogenated media of identical salts composition: the two Pichia species retained the highest growth rates in the full deuterated medium. Perdeuterated biomass (16 g) was obtained in a 1 liter fed-batch fermentation and the extent of deuteration of isolated ergosterol has been shown to be 97.5% by mass spectrometric analysis. (Author)

  3. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  4. Biomass production and composition of temperate and tropical maize in central Iowa

    Science.gov (United States)

    Bioethanol production in the Midwestern U.S. has largely focused on corn (Zea mays L.) grain for starch-based ethanol production. There has been growing interest in lignocellulosic biomass as a feedstock for biofuels. Because corn adapted to the tropics does not initiate senescence as early as ada...

  5. Increasing production yield of tyrosine and mevalonate through inhibition of biomass formation

    DEFF Research Database (Denmark)

    Li, Songyuan; Jendresen, Christian Bille; Nielsen, Alex Toftgaard

    2016-01-01

    , in particular, resulted in an increase in mass yield of mevalonate and tyrosine by 80% and 50%, respectively. By tracking production and biomass concentrations, it was observed that the production was maintained for more than 10 h after inhibition of cell growth, despite cell maintenance requirements...

  6. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor

    NARCIS (Netherlands)

    Tuantet, K.; Temmink, B.G.; Zeeman, G.; Janssen, M.G.J.; Wijffels, R.H.; Buisman, C.J.N.

    2014-01-01

    Due to the high nitrogen and phosphorus content, source-separated urine can serve as a major nutrient source for microalgae production. The aim of this study was to evaluate the nutrient removal rate and the biomass production rate of Chlorella sorokiniana being grown continuously in urine employing

  7. A management guide for planting and production of switchgrass as a biomass crop in Europe

    NARCIS (Netherlands)

    Elbersen, H.W.; Christian, D.G.; Bassam, N.E.; Sauerbeck, G.; Alexopoulou, E.; Sharma, N.; Piscioneri, I.

    2004-01-01

    Switchgrass is a perennial C4 grass native to North America, where it occurs naturally from 55º N latitude to deep into Mexico. It is used for soil conservation, forage production, as an ornamental grass and more recently as a biomass crop for ethanol, fibre, electricity and heat production. As

  8. Feasibility Studies for Production of Pellet Grade Concentrate from Sub Grade Iron Ore Using Multi Gravity Separator

    Science.gov (United States)

    Rao, Gottumukkala Venkateswara; Markandeya, R.; Kumar, Rajan

    2018-04-01

    An attempt has been made to utilise Sub Grade Iron Ore by producing pellet grade concentrate from Deposit 5, Bacheli Complex, Bailadila, Chhattisgarh, India. The `as received' Run of Mine (ROM) sample assayed 40.80% Fe, 40.90% SiO2. Mineralogical studies indicated that the main ore mineral is Hematite and lone gangue mineral is Quartz. Mineral liberation studies indicated that, the ore mineral Hematite and gangue mineral Quartz are getting liberated below 100 microns. The stage crushed and ground sample was subjected to concentration by using a Multi Gravity Separator (MGS). Rougher Multi Gravity Separation (MGS) experimental results were optimised to recover highest possible iron values. A concentrate of 55.80% Fe with a yield of 61.73% by weight with a recovery of 84.42% Iron values was obtained in rougher MGS concentrate. Further experiments were carried out with rougher MGS concentrate to produce a concentrate suitable for commercial grade pellet concentrate. It was proved that a concentrate assaying 66.67% Fe, 3.12% SiO2 with an yield of 45.08% by weight and with a recovery of 73.67% iron values in the concentrate.

  9. Utilisation of biomass gasification by-products for onsite energy production.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. © The Author(s) 2016.

  10. Alcohol, biomass energy: technological and economical aspects of production

    International Nuclear Information System (INIS)

    Ometto, Joao Guilherme Sabino

    1993-01-01

    This paper presents some technological and economical aspects of sugar cane and alcohol production in Brazil since 1975 until nowadays. The evolution of their production is analysed and the relationship between cost-benefit and ethanol consumption is discussed

  11. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  12. Yeast biomass production: a new approach in glucose-limited feeding strategy

    Directory of Open Access Journals (Sweden)

    Érika Durão Vieira

    2013-01-01

    Full Text Available The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  13. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis

    International Nuclear Information System (INIS)

    Phan, Binh M.Q.; Duong, Long T.; Nguyen, Viet D.; Tran, Trong B.; Nguyen, My H.H.; Nguyen, Luong H.; Nguyen, Duc A.; Luu, Loc C.

    2014-01-01

    Agricultural activities in Vietnam generate about 62 million tonnes of biomass (rice straw, rice husk, bagasse, corn cob, corn stover, etc.) annually. In this work, four different types of biomass from Vietnam, namely rice straw, rice husk, factory bagasse, and corn cob, have been studied as potential raw materials to produce bio-oil by fast pyrolysis technology. Test runs were conducted in a fluidized-bed reactor at a temperature of 500 °C and residence time less than 2 s. Size and moisture content of the feed were less than 2 mm and 2%, respectively. It was found that yields of bio-oil as a liquid product obtained from pyrolysis of these feedstocks were more than 50% and that obtained from the bagasse was the highest. Bio-oil quality from Vietnamese biomass resources satisfies ASTM D7544-12 standard for pyrolysis liquid biofuels. These results showed the potential of using biomass in Vietnam to produce bio-oil which could be directly used as a combustion fuel or upgraded into transportation fuels and chemicals. - Highlights: • Four types of Vietnamese biomass were firstly analyzed in detail. • Optimal conditions for fast pyrolysis reaction for Vietnamese biomass types. • Bio-oil product adapted to the standard specification for pyrolysis liquid biofuel

  14. Biomass performance : monitoring and control in bio-pharmaceutical production

    NARCIS (Netherlands)

    Neeleman, R.

    2002-01-01

    The primary concern in the pharmaceutical industry is not the optimisation of product yield or the reduction of manufacturing cost, but the production of a product of consistently high quality. This has resulted in 'process monitoring' becoming an integral part of process operation. In this

  15. Production and characterization of bio-oil from catalytic biomass pyrolysis

    Directory of Open Access Journals (Sweden)

    Antonakou Eleni V.

    2006-01-01

    Full Text Available Biomass flash pyrolysis is a very promising thermochemical process for the production of bio-fuels and/or chemicals. However, large-scale applications are still under careful consideration, because of the high bio-liquid upgrading cost. In this paper the production of bio-liquids from biomass flash pyrolysis in a single stage catalytic process is being investigated using a novel once through fluid bed reactor. This biomass pyrolysis unit was constructed in Chemical Process Engineering Research Institute and comprises of a catalyst regenerator, a biomass-vibrating hopper, a fluidization reactor (that consists of an injector and a riser reactor, a product stripper along with a hot cyclone and a filter housing and finally a product condensation/recovery section. The unit can process up to 20 g/min. of biomass (50-800 mm and can circulate up to 300 g/min. of catalyst or inert material. The experiments performed in the pilot plant showed that the unit operates without problems and with satisfactory mass balances in a wide range of experimental conditions both in the absence and presence of catalyst. With the incorporation of an FCC catalyst in the pyrolysis, the physical properties of the bio-oil produced changed, while more stable bio-oil was produced. .

  16. Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan

    International Nuclear Information System (INIS)

    Tabata, Tomohiro; Okuda, Takaaki

    2012-01-01

    This paper discusses the effectiveness of a woody biomass utilization system that would result in increased net energy production through wood pellet production, along with energy recovery processes as they relate to household energy demand. The direct environmental load of the system, including wood pellet production and utilization processes, was evaluated. Furthermore, the indirect load, including the economic impact of converting the existing fossil-fuel-based energy system into a woody biomass-based system, on the entire society was also evaluated. Gifu Prefecture in Japan was selected for a case study, which included a comparative evaluation of the environmental load and costs both with and without coordination with the wood pellet production process and the waste-to-energy of municipal solid waste process, using the life cycle assessment methodology. If the release of greenhouse gases from the combustion of wood pellets is included in calculations, then burning wood pellets results in unfavorable environmental consequences. However, when the reduced indirect environmental load due to the utilization of wood pellets versus petroleum is included in calculations, then favorable environmental consequences result, with a net reduction of greenhouse gases emissions by 14,060 ton-CO 2eq . -- Highlights: ► We evaluate economic and environmental impact of woody biomass utilization in household. ► Wood pellet utilization for house heating is advantageous to reduce greenhouse gas emissions. ► Reduction effect of greenhouse gas will be canceled out if carbon neutrality were considered. ► Net greenhouse gas emissions considering conversion of an ordinal energy system will be minus. ► Wood pellet utilization is advantageous not only in global warming but also for resource conservation.

  17. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  18. Controls upon biomass losses and char production from prescribed burning on UK moorland.

    Science.gov (United States)

    Worrall, Fred; Clay, Gareth D; May, Richard

    2013-05-15

    Prescribed burning is a common management technique used across many areas of the UK uplands. However, there are few data sets that assess the loss of biomass during burning and even fewer data on the effect of burning on above-ground carbon stocks and production of char. During fire the production of char occurs which represents a transfer of carbon from the short term bio-atmospheric cycle to the longer term geological cycle. However, biomass is consumed leading to the reduction in litter formation which is the principal mechanism for peat formation. This study aims to solve the problem of whether loss of biomass during a fire is ever outweighed by the production of refractory forms of carbon during the fire. This study combines both a laboratory study of char production with an assessment of biomass loss from a series of field burns from moorland in the Peak District, UK. The laboratory results show that there are significant effects due to ambient temperature but the most important control on dry mass loss is the maximum burn temperature. Burn temperature was also found to be linearly related to the production of char in the burn products. Optimisation of dry mass loss, char production and carbon content shows that the production of char from certain fires could store more carbon in the ecosystem than if there had been no fire. Field results show that approximately 75% of the biomass and carbon were lost through combustion, a figure comparable to other studies of prescribed fire in other settings. Char-C production was approximately 2.6% of the carbon consumed during the fire. This study has shown that there are conditions (fast burns at high temperatures) under which prescribed fire may increase C sequestration through char production and that these conditions are within existing management options available to practitioners. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. ORNL pellet acceleration program

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.

    1978-01-01

    The Oak Ridge National Laboratory (ORNL) pellet fueling program is centered around developing equipment to accelerate large pellets of solidified hydrogen to high speeds. This equipment will be used to experimentally determine pellet-plasma interaction physics on contemporary tokamaks. The pellet experiments performed on the Oak Ridge Tokamak (ORMAK) indicated that much larger, faster pellets would be advantageous. In order to produce and accelerate pellets of the order of 1 to 6 mm in diameter, two apparatuses have been designed and are being constructed. The first will make H 2 pellets by extruding a filament of hydrogen and mechanically chopping it into pellets. The pellets formed will be mechanically accelerated with a high speed arbor to a speed of 950 m/sec. This technique may be extended to speeds up to 5000 m/sec, which makes it a prime candidate for a reactor fueling device. In the second technique, a hydrogen pellet will be formed, loaded into a miniature rifle, and accelerated by means of high pressure hydrogen gas. This technique should be capable of speeds of the order of 1000 m/sec. While this technique does not offer the high performance of the mechanical accelerator, its relative simplicity makes it attractive for near-term experiments

  20. Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant

    Directory of Open Access Journals (Sweden)

    Anas Zyadin

    2015-04-01

    Full Text Available The main objectives of this socio-technical study are to investigate the Indian farmers’ biomass production capacities and their perceptions and willingness to supply their surplus biomass to fuel an envisioned biomass-based power plant in three selected Indian states: Maharashtra, Madhya Pradesh and Tamil Nadu. For doing so, 471 farmers (about one-third from each state have been interviewed in the field with info-sheet filled in by the field investigators. The farmers from all of the states appeared very much willing to sell their surplus biomass directly to a power plant. The farmers seem to depreciate the involvement of a middleman in the biomass procurement process. The farmers, however, appeared to highly appreciate a community-based association to regulate the biomass prices, with varying perceptions regarding government intervention. The majority of the farmers perceived the establishment of a biomass-based power plant in their region with positive economic outcomes. The farmers identified several barriers to supply biomass to a power plant where transportation logistics appeared to be the main barrier. The study recommends considering biomass collection, storage and transportation logistics as a fundamental segment of any envisioned investment in a biomass-based power plant. Biomass processing, such as pelletization or briquetting is recommended for efficient transportation of biomass at longer distances to reduce the transportation costs. The study further encourages the establishment of a farmers’ association aimed at collecting and selling biomass in agriculture areas predominant for small land holdings.

  1. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  2. Evaluating the economics of biomass energy production in the Watts Bar region

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, R.R.; English, B.C.; Bhat, M.G. [Univ. of Tennessee, Knoxville, TN (United States); Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    While the commercial potential of biofuel technology is becoming more feasible, it is not clear whether the supply of biomass feedstock will be available in competitive markets. In order to exploit the potential of biomass crops as a reliable source of biofuels, a significant commitment on the part of farmers to convert large amounts of cropland would be required. Dedicated energy crops have to compete with conventional crops which could result in significant interregional shifts in crop production. Those changes could further affect overall agricultural production, food prices, consumer spending, and government spending on farm programs. Evaluating these economic impacts provides important information for the ongoing debate. This research is a case study incorporating an existing power plant. The objective of this project is to evaluate the potential of short rotation woody crops as a fuel source in the Watts Bar facility located in eastern Tennessee. The appraisal includes estimates of environmental impacts as well as of economic feasibility. This is achieved by estimating the amounts of biomass that would be supplied at a predetermined price. By changing prices of biomass at the plant in an incremental fashion, a regional supply curve for biomass is estimated. The model incorporates current agricultural production possibilities in the region along with the proposed short rotation woody crop production activities. In order to adequately model the landscape, several variables are considered. These variables include soil type, crop production, government policy, land use conversion to crop land, and distance from the plant. Environmental issues including erosion, chemical usage, and potential leaching are also incorporated within the modeling framework; however, only estimates on erosion are available in this analysis. Output from the model provides insight on where and what types of land should shift from current land use to biomass production.

  3. Techno-economic analysis of ammonia production via integrated biomass gasification

    International Nuclear Information System (INIS)

    Andersson, Jim; Lundgren, Joakim

    2014-01-01

    Highlights: • Techno-economic results regarding biomass-based ammonia production systems. • Integration of an ammonia production process in a pulp and paper mill. • Integrated ammonia production gains higher system efficiency than stand-alone production. • The economics of an integrated production system is improved compared to stand-alone production. - Abstract: Ammonia (NH 3 ) can be produced by synthesis of nitrogen and hydrogen in the Haber–Bosch process, where the economic challenge is the hydrogen production. Currently, substantial amounts of greenhouse gases are emitted from the ammonia industry since the hydrogen production is almost exclusively based on fossil feedstocks. Hydrogen produced via gasification of lignocellulosic biomass is a more environmentally friendly alternative, but the economic performance is critical. The main objective of this work was to perform a techno-economic evaluation of ammonia production via integrated biomass gasification in an existing pulp and paper mill. The results were compared with a stand-alone production case to find potential technical and economic benefits deriving from the integration. The biomass gasifier and the subsequent NH 3 production were modelled using the commercial software Aspen Plus. A process integration model based on Mixed Integer Linear Programming (MILP) was used to analyze the effects on the overall energy system of the pulp mill. Important modelling constraints were to maintain the pulp production and the steam balance of the mill. The results showed that the process economics and energy performance are favourable for the integrated case compared to stand-alone production. The main conclusion was however that a rather high NH 3 selling price is required to make both production cases economically feasible

  4. Development Strategies for Deployment of Biomass Resources in the Production of Biomass Power: November 6, 2001--February 28, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, J.

    2004-01-01

    The study analyzes strategies for deployment of biomass resources for biopower generation. It compares biomass supply databases and the projected biopower market penetration for several alternative incentive scenarios. It analyzes the availability of biomass to meet the projected market demands and recommends future research.

  5. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Biswas, Rajib

    2013-01-01

    Based on numerous investigations on increasing the biogas yield of manure, a new concept was developed to increase the economical operation of manure based biogas plants by combining up concentration of manure with a more specific treatment of the recalcitrant lignocellulosic fiber fraction...... by implementing the treatment on the digested solid fraction. Catch crops have been identified as a sustainable co-substrate for biogas production with a high biogas potential. For exploiting this biomass for profitable biogas production, the biomass yield per hectare, harvest costs, TS concentration and specific...

  7. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  9. Characterization of biofilm-forming cyanobacteria for biomass and lipid production.

    Science.gov (United States)

    Bruno, L; Di Pippo, F; Antonaroli, S; Gismondi, A; Valentini, C; Albertano, P

    2012-11-01

    This work reports on one of the first attempts to use biofilm-forming cyanobacteria for biomass and lipid production. Three isolates of filamentous cyanobacteria were obtained from biofilms at different Italian sites and characterized by a polyphasic approach, involving microscopic observations, ecology and genetic diversity (studying the 16S rRNA gene). The isolates were grown in batch systems and in a semi-continuous flow incubator, specifically designed for biofilms development. Culture system affected biomass and lipid production, but did not influence the fatty acid profile. The composition of fatty acids was mainly palmitic acid (>50%) and less amounts of other saturated and monounsaturated fatty acids. Only two isolates contained two polyunsaturated fatty acids. Data obtained from the flow-lane incubator system would support a more economical and sustainable use of the benthic micro-organisms for biomass production. The produced lipids contained fatty acids suitable for a high-quality biodiesel production, showing high proportions of saturated and monounsaturated fatty acids. Data seem promising when taking into account the savings in cost and time derived from easy procedures for biomass harvesting, especially when being able to obtain the co-production of other valuable by-products. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  10. Production of fungal biomass protein using microfungi from winery wastewater treatment.

    Science.gov (United States)

    Zhang, Zhan Ying; Jin, Bo; Bai, Zhi Hui; Wang, Xiao Yi

    2008-06-01

    This study was carried out to investigate the production of fungal biomass protein (FBP) in treatment of winery wastewater using microfungi. Three fungal strains, Trichoderma viride WEBL0702, Aspergillus niger WEBL0901 and Aspergillus oryzae WEBL0401, were selected in terms of microbial capability for FBP production and COD reduction. T. viride appeared to be the best strain for FBP production due to high productivity and less nitrogen requirement. More than 5 g/L of fungal biomass was produced in shake fermentation using T. viride without nitrogen addition, and by A. oryzae and A. niger with addition of 0.5-1.0 g/L (NH4)2SO4. The FBP production process corresponded to 84-90% COD reduction of winery wastewater. Fungal biomass contained approximately 36% protein produced by two Aspergillus strains, while biomass produced by T. viride consisted of 19.8% protein. Kinetic study indicated that maximum fungal cell growth could be achieved in 24h for T. viride and 48 h for A. oryzae and A. niger. Current results indicated that it could be feasible to develop a biotechnological treatment process integrated with FBP production from the winery waste streams.

  11. Development of Value-Added Products from Residual Algae to Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Craig [Sapphire Energy, San Diego, CA (United States)

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  12. Biomass production of dense direct-seeded lodgepole pine (Pinus contorta) at short rotation periods

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, I.; Bergsten, U.

    2012-07-01

    Lodgepole pine (Pinus contorta) is a fast-growing species that is suitable for producing woody biomass in Nordic countries. Direct seeding of this species is cheaper than planting and creates dense, stable stands. The objective of this study was to quantify the stem volume and biomass production of direct seeded lodgepole pine stands grown under different site conditions with different stem densities, at an age that would permit extensive harvesting of biomass. A circle-plot inventory was performed in 16 of the oldest direct seeded lodgepole pine stands in mid-northern Sweden. Stemwood production of almost 200 m{sup 3}/ha was achieved on average on the best sites, rising to about 300 m{sup 3}/ha for the best circle-plots within 30 years of direct seeding despite the fact that pre-commercial thinning was made once or twice. This corresponds to 100 and 140 tons of dry weight biomass/ha, respectively. Higher stand stem densities ({>=}3000 st/ha) yielded more biomass with only slight reductions in diameter at breast height. The development of stem volume with respect to dominant height in direct seeded stands was becoming comparable to that in planted stands with similar spacing. It therefore seems that there is an unutilized potential for cost-effectively growing lodgepole pine in dense stands for biomass production after direct seeding. It may be possible to devise regimes for short(er) rotation forestry that would yield substantial amount of inexpensive biomass for biorefineries within a few decades. (orig.)

  13. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  14. Onopordum nervosum as biomass source: some aspects of its production and transformation by enzymatic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares, P; Negro, M J; Saez, R; Martin, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables; Fernandez, J [ETSIA, Madrid (Spain). Dept. de Produccion Vegetal, Botanica y Proteccion Vegetal

    1993-01-01

    Onopordum nervosum, a lignocellulosic herbaceous species of the Iberian Peninsula, has been selected as a suitable biomass source to be used in transformation processes to obtain energy or industrial products. In this work, the effectiveness of different chemical pretreatments as a preliminary step to the enzymatic hydrolysis of this lignocellulosic biomass was evaluated. In order to determine biomass productivity, field assays were carried out in 1988 and 1989 using different planting densities and evaluating the effect to top fertilization. Biomass yields between 12 and 20 t ha[sup -1] were obtained, depending on the year and the planting density assayed. No significant differences were found in production rates when top fertilization was applied. Enzymatic hydrolysis of O.nervosum using a cellulolytic complex from Trichoderma longibrachiatum QM9414, gave low yields when untreated lignocellulosic biomass was used as substrate. Among different chemical pretreatments tested, ethanol and butanol solubilizations in the presence of a basic catalyst gave the best results. For the most effective pretreatment conditions, a delignification of about 30% and a complete recovery of glucose in the treated substrate were obtained both for butanol and ethanol. The highest enzymatic hydrolysis yields were found when ethanol was used as solvent, giving a saccharification efficiency of about 66% which, compared to the 23% for the native substrate, indicates the remarkable increment in the susceptibility of the cellulose to enzyme attack effected by this pretreatment. (author)

  15. Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production

    International Nuclear Information System (INIS)

    Johnson, David R.; Willis, Henry H.; Curtright, Aimee E.; Samaras, Constantine; Skone, Timothy

    2011-01-01

    Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.

  16. Biomass feedstock production systems: economic and environmental benefits

    Science.gov (United States)

    Mark D. Coleman; John A. Stanturf

    2006-01-01

    The time is ripe for expanding bioenergy production capacity and developing a bio-based economy. Modern society has created unprecedented demands for energy and chemical products that are predominately based on geologic sources. However, there is a growing consensus that constraints on the supply of petroleum and the negative environmental consequences of burning...

  17. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  18. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus.