WorldWideScience

Sample records for biomass output rate

  1. Producer gas fuelling of a 20kW output engine by gasification of solid biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hollingdale, A C; Breag, G R; Pearce, D

    1988-11-01

    Motive power requirements in the range up to 100 kW shaft power are common in developing country processing operations. Producer gas-fuelled systems based upon a relatively cheap and simple manually operated gasifier or reactor using readily available biomass feedstock can offer in some cases an attractive alternative to fossil-fuelled power units. This bulletin outlines research and development work by the Industrial Development Department of the Overseas Development Natural Resources Institute for 20 kW shaft power output from producer gas derived from solid biomass. Biomass materials such as wood or shells can be carbonized to form charcoal or left in the natural uncarbonized state. In this work both carbonized and uncarbonized biomass fuel has been used to provide producer gas to fuel a Ford 2274E engine, an industrial version of a standard vehicle spark-ignition engine. Cross-draught and down-draught reactor designs were evaluated during trials with this engine. Also different gas cleaning and cooling arrangements were tested. Particular emphasis was placed on practical aspects of reactor/engine operation. This work follows earlier work with a 4 kW shaft power output system using charcoal-derived producer gas. (author).

  2. Magnetospheric storm dynamics in terms of energy output rate

    International Nuclear Information System (INIS)

    Prigancova, A.; Feldstein, Ya.I.

    1992-01-01

    Using hourly values of both the global magnetospheric disturbance characteristic DR, and AE index of auroral ionospheric currents during magnetic storm intervals, the energy output rate dynamics is evaluated for a magnetic storm main/recovery phase and a whole storm interval. The magnetospheric response to the solar wind energy input rate under varying interplanetary and magnetospheric conditions is considered from the temporal variability point of view. The peculiarities of the response are traced separately. As far as quantitative characteristics of energy output rate are concerned, the time dependence pattern of the ring current decay parameter is emphasized to be fairly important. It is pointed out that more insight into the plasma processes, especially at L = 3 - 5, is needed for adequate evidence of the dependence. (Author)

  3. Cut-off Grade Optimization for Maximizing the Output Rate

    Directory of Open Access Journals (Sweden)

    A. Khodayari

    2012-12-01

    Full Text Available In the open-pit mining, one of the first decisions that must be made in production planning stage, after completing the design of final pit limits, is determining of the processing plant cut-off grade. Since this grade has an essential effect on operations, choosing the optimum cut-off grade is of considerable importance. Different goals may be used for determining optimum cut-off grade. One of these goals may be maximizing the output rate (amount of product per year, which is very important, especially from marketing and market share points of view. Objective of this research is determining the optimum cut-off grade of processing plant in order to maximize output rate. For performing this optimization, an Operations Research (OR model has been developed. The object function of this model is output rate that must be maximized. This model has two operational constraints namely mining and processing restrictions. For solving the model a heuristic method has been developed. Results of research show that the optimum cut-off grade for satisfying pre-stated goal is the balancing grade of mining and processing operations, and maximum production rate is a function of the maximum capacity of processing plant and average grade of ore that according to the above optimum cut-off grade must be sent to the plant.

  4. Biomass cycles, accumulation rates and nutritional characteristics of ...

    African Journals Online (AJOL)

    Annual biomass cycles, accumulation rates and nutritional characteristics of forage and non-forage species groups were determined in the canopied and open, uncanopied subhabitats of the herbaceous layer in Burkea africana savanna. The total amount of biomass of all species over the season was significantly greater in ...

  5. Output Information Based Fault-Tolerant Iterative Learning Control for Dual-Rate Sampling Process with Disturbances and Output Delay

    Directory of Open Access Journals (Sweden)

    Hongfeng Tao

    2018-01-01

    Full Text Available For a class of single-input single-output (SISO dual-rate sampling processes with disturbances and output delay, this paper presents a robust fault-tolerant iterative learning control algorithm based on output information. Firstly, the dual-rate sampling process with output delay is transformed into discrete system in state-space model form with slow sampling rate without time delay by using lifting technology; then output information based fault-tolerant iterative learning control scheme is designed and the control process is turned into an equivalent two-dimensional (2D repetitive process. Moreover, based on the repetitive process stability theory, the sufficient conditions for the stability of system and the design method of robust controller are given in terms of linear matrix inequalities (LMIs technique. Finally, the flow control simulations of two flow tanks in series demonstrate the feasibility and effectiveness of the proposed method.

  6. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining

    Science.gov (United States)

    J.Y. Zhu; X.S. Zhuang

    2012-01-01

    There is a lack of comprehensive information in the retrievable literature on pilot scale process and energy data using promising process technologies and commercially scalable and available capital equipment for lignocellulosic biomass biorefining. This study conducted a comprehensive review of the energy efficiency of selected sugar platform biorefinery process...

  7. Devolatilization characteristics of biomass at flash heating rate

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Shuangning; Li Zhihe; Li Baoming; Yi Weiming; Bai Xueyuan [China Agricultural University, Beijing (China). College of Water Conservancy and Civil Engineering

    2006-03-15

    The devolatilization characteristics of biomass (wheat straw, coconut shell, rice husk and cotton stalk) during flash pyrolysis has been investigated on a plasma heated laminar entrained flow reactor (PHLEFR) with average heating rates of 10{sup 4} K/s. These experiments were conducted with steady temperatures between 750 and 900 K, and the particle residence time varied from about 0.115 to 0.240 s. The ash tracer method was introduced to calculate the yield of volatile products at a set temperature and the residence time. This experimental study showed that the yield of volatile products depends both on the final pyrolysis temperature and the residence time. From the results, a comparative analysis was done for the biomasses, and a one-step global model was used to simulate the flash pyrolytic process and predict the yield of volatile products during pyrolysis. The corresponding kinetic parameters of the biomasses were also analyzed and determined. These results were essential for designing a suitable pyrolysis reactor. 24 refs., 5 figs., 5 tabs.

  8. Determining appropriate feed-in tariff rates to promote biomass-to-electricity generation in Eastern Ontario, Canada

    International Nuclear Information System (INIS)

    Moore, Steven; Durant, Vincent; Mabee, Warren E.

    2013-01-01

    On-site data collection, interviews, and financial models were used to determine the feed-in tariff (FIT) rate required to encourage investment in the generation of electricity from currently unused biomass from the Eastern Ontario forest industry. A financial model was adapted and run to determine the net present value, internal rate of return, and payback period associated with a 15 MW biomass-to-electricity facility. The analysis suggests that Ontario should consider a stronger incentive than the recently-offered CDN$ 0.13 kW −1 h −1 for biomass-to-electricity. If no customer for heat generated from the plant can be found, FIT rates between CDN$ 0.17–0.22 kW −1 h −1 are necessary to achieve a 15% internal rate of return and a simple payback of approximately 5 yr; achieving a price of CDN$ 0.013 kW −1 of thermal output still requires elevated FIT rates between CDN$ 0.15–0.21 kW −1 h −1 to meet economic performance criteria. Other barriers, particularly regulations regarding the use of operating engineers in steam plants, should also be addressed to facilitate development of biomass-to-electricity. Without these changes, it is likely that biomass will be significantly under-used and will not contribute to the renewable energy goals of Ontario. - Highlights: • Economic performance of biomass-to-electricity generation in Ontario is assessed. • Feed-in tariffs needed to meet industrial payback and IRR targets are determined. • Existing feed-in tariff rates for biomass must be raised to meet industrial targets. • Incentives that adjust feedstock price might be explored to increase biomass use

  9. Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.; Grado, S.C.

    1992-01-01

    A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel

  10. Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Koller, Martin

    2007-01-01

    This paper reports on an empirical investigation about the economic and CO 2 mitigation impacts of bioenergy promotion in the Austrian federal province of Vorarlberg. We study domestic value-added, employment, and fiscal effects by means of a static input-output analysis. The bioenergy systems analysed comprise biomass district heating, pellet heating, and automated wood chip heating systems, as well as logwood stoves and boilers, ceramic stoves, and buffer storage systems. The results indicate that gross economic effects are significant, regarding both investment and operation of the systems, and that the negative economic effects caused by the displacement of conventional decentralised heating systems might be in the order of 20-40%. Finally, CO 2 mitigation effects are substantial, contributing already in 2004 around 35% of the 2010 CO 2 mitigation target of the Land Vorarlberg for all renewable energy sources

  11. A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints

    International Nuclear Information System (INIS)

    Tan, Raymond R.; Aviso, Kathleen B.; Barilea, Ivan U.; Culaba, Alvin B.; Cruz, Jose B.

    2012-01-01

    Interest in bioenergy in recent years has been stimulated by both energy security and climate change concerns. Fuels derived from agricultural crops offer the promise of reducing energy dependence for countries that have traditionally been dependent on imported energy. Nevertheless, it is evident that the potential for biomass production is heavily dependent on the availability of land and water resources. Furthermore, capacity expansion through land conversion is now known to incur a significant carbon debt that may offset any benefits in greenhouse gas reductions arising from the biofuel life cycle. Because of such constraints, there is increasing use of non-local biomass through regional trading. The main challenge in the analysis of such arrangements is that individual geographic regions have their own respective goals. This work presents a multi-region, fuzzy input–output optimization model that reflects production and consumption of bioenergy under land, water and carbon footprint constraints. To offset any local production deficits or surpluses, the model allows for trade to occur among different regions within a defined system; furthermore, importation of additional biofuel from external sources is also allowed. Two illustrative case studies are given to demonstrate the key features of the model.

  12. Biomass burning fuel consumption rates: a field measurement database

    NARCIS (Netherlands)

    van Leeuwen, T.T.; van der Werf, G.R.; Hoffmann, A.A.; Detmers, R.G.; Ruecker, G.; French, N.H.F.; Archibald, S.; Carvalho Jr., J.A.; Cook, G.D.; de Groot, J.W.; Hely, C.; Kasischke, E.S.; Kloster, S.; McCarty, J.L.; Pettinari, M.L.; Savadogo, P.

    2014-01-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions.

  13. Tracking Controller for Intrinsic Output Saturated Systems in Presence of Amplitude and Rate Input Saturations

    DEFF Research Database (Denmark)

    Chater, E.; Giri, F.; Guerrero, Josep M.

    2014-01-01

    We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...

  14. Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...

  15. A bibliographic review of public health dissemination and implementation research output and citation rates

    Directory of Open Access Journals (Sweden)

    Luke Wolfenden

    2016-12-01

    Systematic reviews, randomized controlled trials and cohort studies were the most frequently cited study designs. The study suggests that publications that had the greatest academic impact (highest citation rates made up only a small proportion of overall public health dissemination and implementation research output.

  16. Investigating the asymmetric relationship between inflation-output growth exchange rate changes

    Science.gov (United States)

    Chu, Jenq Fei; Sek, Siok Kun

    2017-08-01

    The relationship between inflation-output growth or output variation has long been studied. In this study, we extend the investigation under two exchange rate flexibility/regime in four Asian countries (Indonesia, Korea, Philippines and Thailand) that have experienced drastic exchange rate regime changes aftermath the financial crisis of 1997. These countries have switched from fixed/rigid exchange rate regime to flexible exchange rate and inflation targeting (IT) regime after the crisis. Our main objective is to compare the inflation-output trade-off relationship in the pre-IT and post-IT periods as a tool to evaluate the efficiency of monetary policy. A nonlinear autoregressive distributed lags (NARDL) model is applied to capture the asymmetric effects of exchange rate changes (increases and decreases). The data ranging from 1981M1 onwards till 2016M3. Our results show that exchange rate has asymmetric effect on inflation both short-run and long-run with larger impact in the post-IT period under flexible regime. Depreciation of exchange rate has leads to higher inflation. Furthermore, we find evidences on the relationship between inflation and growth in both short-run and long-run, but the trade-off only detected in the short run both in the pre- and post-IT periods.

  17. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  18. A bibliographic review of public health dissemination and implementation research output and citation rates.

    Science.gov (United States)

    Wolfenden, Luke; Milat, Andrew J; Lecathelinais, Christophe; Skelton, Eliza; Clinton-McHarg, Tara; Williams, Christopher; Wiggers, John; Chai, Li Kheng; Yoong, Sze Lin

    2016-12-01

    The aim of this study was to describe the research output and citation rates (academic impact) of public health dissemination and implementation research according to research design and study type. A cross sectional bibliographic study was undertaken in 2013. All original data-based studies and review articles focusing on dissemination and implementation research that had been published in 10 randomly selected public health journals in 2008 were audited. The electronic database 'Scopus' was used to calculate 5-year citation rates for all included publications. Of the 1648 publications examined, 216 were original data-based research or literature reviews focusing on dissemination and implementation research. Of these 72% were classified as descriptive/epidemiological, 26% were intervention and just 1.9% were measurement research. Cross-sectional studies were the most common study design (47%). Reviews, randomized trials, non-randomized trials and decision/cost-effectiveness studies each represented between 6 and 10% of all output. Systematic reviews, randomized controlled trials and cohort studies were the most frequently cited study designs. The study suggests that publications that had the greatest academic impact (highest citation rates) made up only a small proportion of overall public health dissemination and implementation research output.

  19. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect...

  20. Spectroscopic output of {sup 125}I and {sup 103}Pd low dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Usher-Moga, Jacqueline; Beach, Stephen M.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin--Madison, Madison, Wisconsin 53705 (United States); Global Physics Solutions, St. Joseph, Michigan 49085 (United States); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2009-01-15

    The spectroscopic output of low dose rate (LDR) brachytherapy sources is dependent on the physical design and construction of the source. Characterization of the emitted photons from 12 {sup 125}I and 3 {sup 103}Pd LDR brachytherapy source models is presented. Photon spectra, both along the transverse bisector and at several polar angles, were measured in air with a high-purity reverse electrode germanium (REGe) detector. Measured spectra were corrected to in vacuo conditions via Monte Carlo and analytical methods. The tabulated and plotted spectroscopic data provide a more complete understanding of each source model's output characteristics than can be obtained with other measurement techniques. The variation in fluorescence yield of the {sup 125}I sources containing silver caused greater differences in the emitted spectra and average energies among these seed models than was observed for the {sup 103}Pd sources or the {sup 125}I sources that do not contain silver. Angular spectroscopic data further highlighted the effects of source construction unique to each model, as well as the asymmetric output of many seeds. These data demonstrate the need for the incorporation of such physically measured output characteristics in the Monte Carlo modeling process.

  1. Calculating economy-wide energy intensity decline rate: The role of sectoral output and energy shares

    International Nuclear Information System (INIS)

    Baksi, Soham; Green, Chris

    2007-01-01

    We specify formulas for computing the rate of decline in economy-wide energy intensity by aggregating its two determinants-technical efficiency improvements in the various sectors of the economy, and shifts in economic activity among these sectors. The formulas incorporate the interdependence between sectoral shares, and establish a one-to-one relation between sectoral output and energy shares. This helps to eliminate future energy intensity decline scenarios which involve implausible values of either sectoral share. An illustrative application of the formulas is provided, using within-sector efficiency improvement estimates suggested by Lightfoot-Green and Harvey

  2. Fitting and benchmarking of Monte Carlo output parameters for iridium-192 high dose rate brachytherapy source

    International Nuclear Information System (INIS)

    Acquah, F.G.

    2011-01-01

    Brachytherapy, the use of radioactive sources for the treatment of tumours is an important tool in radiation oncology. Accurate calculations of dose delivered to malignant and normal tissues are the main responsibility of the Medical Physics staff. With the use of Treatment Planning System (TPS) computers now becoming a standard practice in the Radiation Oncology Departments, Independent calculations to certify the results of these commercial TPSs are important part of a good quality management system for brachytherapy implants. There are inherent errors in the dose distributions produced by these TPSs due to its failure to account for heterogeneity in the calculation algorithms and Monte Carlo (MC) method seems to be the panacea for these corrections. In this study, a fit functional form using MC output parameters was performed to reduce dose calculation uncertainty using the Matlab software curve fitting applications. This includes the modification of the AAPM TG-43 parameters to accommodate the new developments for a rapid brachytherapy dose rate calculation. Analytical computations were performed to hybridize the anisotropy function, F(r,θ) and radial dose function, g(r) into a single new function f(r,θ) for the Nucletron microSelectron High Dose Rate 'new or v2' (mHDRv2) 192 Ir brachytherapy source. In order to minimize computation time and to improve the accuracy of manual calculations, the dosimetry function f(r,θ) used fewer parameters and formulas for the fit. Using MC outputs as the standard, the percentage errors for the fits were calculated and used to evaluate the average and maximum uncertainties. Dose rate deviation between the MC data and fit were also quantified as errors(E), which showed minimal values. These results showed that the dosimetry parameters from this study as compared to those of MC outputs parameters were in good agreement and better than the results obtained from literature. The work confirms a lot of promise in building robust

  3. Impacts of Government Debt, the Exchange Rate and Other Macroeconomic Variables on Aggregate Output in Croatia

    Directory of Open Access Journals (Sweden)

    Yu Hsing

    2016-09-01

    Full Text Available Applying aggregate demand/aggregate supply analysis and based on a quarterly sample during 2000.Q4–2015.Q4, this paper finds that Croatia’s aggregate output is positively associated with government debt as percent of GDP during 2000.Q4–2008.Q4, real appreciation of the kuna, the real stock price, German real GDP, the real oil price and real wages and negatively influenced by government debt as percent of GDP during 2009.Q1–2015.Q4, the real lending rate and the expected inflation rate. The dynamic relationships between real GDP and government debt as percent of GDP suggest that fiscal discipline needs to be exercised in pursuing expansionary macroeconomic policy in the future.

  4. OUTPUT VOLATILITY AND EXCHANGE RATE CONSIDERATIONS UNDER INFLATION TARGETING : A REVIEW

    Directory of Open Access Journals (Sweden)

    Marjan Petreski

    2012-01-01

    Full Text Available The objective of the paper is to offer a critique on the theoretical and empirical literature on inflation targeting (IT. It seems to exist a consensus in the theoretical literature that this monetary regime reduces both inflation and output volatility, mainly through building monetary policy credibility. When the role of the exchange rate is discussed, while there are some arguments that, as an instrument, it should not be explicitly stated in the central-bank loss function, theoretical arguments and evidence are still mixed as regards the effectiveness of exchange-rate management under IT. On the empirical front, the paper concludes that despite the fact that the work on IT in the last two decades has been immense in quality and quantity, still there is no quantitatively-credible study for the developing world, let alone a study that appropriately measures the regime switch from one monetary strategy to another.

  5. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  6. Time Scale Analysis of Interest Rate Spreads and Output Using Wavelets

    Directory of Open Access Journals (Sweden)

    Marco Gallegati

    2013-04-01

    Full Text Available This paper adds to the literature on the information content of different spreads for real activity by explicitly taking into account the time scale relationship between a variety of monetary and financial indicators (real interest rate, term and credit spreads and output growth. By means of wavelet-based exploratory data analysis we obtain richer results relative to the aggregate analysis by identifying the dominant scales of variation in the data and the scales and location at which structural breaks have occurred. Moreover, using the “double residuals” regression analysis on a scale-by-scale basis, we find that changes in the spread in several markets have different information content for output at different time frames. This is consistent with the idea that allowing for different time scales of variation in the data can provide a fruitful understanding of the complex dynamics of economic relationships between variables with non-stationary or transient components, certainly richer than those obtained using standard time domain methods.

  7. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    Science.gov (United States)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  8. Multi-Output Power Converter, Operated from a Regulated Input Bus, for the Sireus Rate Sensor

    Directory of Open Access Journals (Sweden)

    Torrecilla Marcos Compadre

    2017-01-01

    Full Text Available This paper describes a DC to DC converter designed to meet the power supply requirements of the SiREUS Coarse Rate Sensor (CRS which is a 3-axis MEMS Rate Sensor (MRS that uses a resonating ring gyro and will be used in different ESA missions. The converter supplies +5V, −5V, 3.3V, 1.8V and 40V and it has been designed and prototyped by Clyde Space Ltd with the EQM and FM units being manufactured by Selex ES. The first model was designed for a 28V un-regulated bus and the second model presented here has been designed for a 50V regulated bus. PWM voltage regulation was not used because of the noise requirements and the regulated input bus allowed an unregulated power stage approach. There are also stringent volume and interface constraints, which also affected the design. For such reasons, a fixed dutycycle, quasi-resonant single-ended topology with output linear regulators has been implemented; having the advantages of providing low switching losses, low radiated and conducted noise and no over-voltage failure mode. This paper highlights the techniques used to satisfy stringent noise and protection requirements of the load.

  9. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander

    2017-01-01

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing...

  10. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Martinez-Ramos, M.; Bongers, F.

    2015-01-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity,

  11. Experimental study of liquid evaporation rate from coniferous biomass

    Directory of Open Access Journals (Sweden)

    Bulba E.E.

    2017-01-01

    Full Text Available The results of experimental studies of moisture evaporation from coniferous wood (spruce, pine are presented. The dependences of the mass evaporation rate on temperature and time are obtained. The calculation of the accommodation coefficient for the corresponding temperature ranges has been performed. The analysis of temperature regimes of drying of two typical coniferous wood species is carried out.

  12. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  13. Structural evolution of biomass char and its effect on the gasification rate

    International Nuclear Information System (INIS)

    Fatehi, Hesameddin; Bai, Xue-Song

    2017-01-01

    Highlights: • A comprehensive model was developed to describe the evolution of biomass char structure. • An effectiveness factor was used to account for the intra-particle chemical and physical processes. • The effect of the structural evolution of the multi-pore structure on biomass char reactivity was analyzed. • The multi-pore model yields results in satisfactory agreement with experiments. - Abstract: The evolution of char porous structure can affect the conversion rate of the char by affecting the intra-particle transport, especially in the zone II conversion regime. A multi-pore model based on the capillary pore theory is developed to take into account different conversion rates for pores with different radii. The model is valid for biomass chars produced under relatively low heating rates, when the original beehive structure of the biomass is not destroyed during the pyrolysis stage. The contribution of different pores with different radius is taken into account using an effectiveness factor presented for each pore radius with respect to different reactions. As the char conversion proceeds, the pore enlargement increases the contribution of micro-pores; consequently the effective surface area will increase. The increase in the effective surface area leads to an increased reactivity of char during the entire conversion process. This model is used to analyze the steam gasification process of biomass char of centimeter sizes. The results from the present multi-pore model are in better agreement with experimental data than those from a corresponding single pore model. Since the multi-pore model accommodates the detailed intra-particle transport, it is a useful basis toward developing a more predictive model for biomass char gasification.

  14. Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Gadsbøll, Rasmus; Thomsen, Jesper

    2016-01-01

    This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments......Jmol-1. The accuracy of the derived global kinetics was supported by comparing predictions to experimental results from a 15kW furnace. The work emphasizes the importance of characterizing the temperature history of the biomass particles when deriving pyrolysis kinetics. The present results indicate...

  15. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.

    Science.gov (United States)

    Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2017-11-01

    The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Attached biomass growth and substrate utilization rate in a moving bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    J. J. Marques

    2008-12-01

    Full Text Available A moving bed bioreactor containing cubes of polyether foam immersed in a synthetic wastewater (an aqueous mixture of meat extract, yeast extract, dextrose, meat peptone, ammonium chloride, potassium chloride, sodium chloride, sodium bicarbonate, potassium mono-hydrogen-phosphate and magnesium sulphate was used to evaluate bacterial growth and biomass yield parameters based on Monod's equation. The wastewater was supplied in the bottom of the equipment flowing ascending in parallel with a diffused air current that provided the mixing of the reactor content. Suspended and attached biomass concentration was measured through gravimetric methods. Good agreement was found between experimental kinetic parameters values and those obtained by other researchers. The only significant difference was the high global biomass content about 2 times the values obtained in conventional processes, providing high performance with volumetric loading rates up to 5.5 kg COD/m³/d.

  17. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  18. An ultra-low power output capacitor-less low-dropout regulator with slew-rate-enhanced circuit

    Science.gov (United States)

    Cheng, Xin; Zhang, Yu; Xie, Guangjun; Yang, Yizhong; Zhang, Zhang

    2018-03-01

    An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE) circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA. The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV. Moreover, the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively. Project supported by the National Natural Science Foundation of China (Nos. 61401137, 61404043, 61674049).

  19. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  20. Effects of an oil price rise on inflation, output, and the exchange rate in the case of subsidization policy

    Energy Technology Data Exchange (ETDEWEB)

    Zandi, F R

    1982-01-01

    Since the Organization of Petroleum Exporting Countries raised the price of oil by 400% in 1974, the theory of supply inflation has received a great deal of attention. This study analyses the short and long run effects of an oil price rise on output, inflation, and the exchange rate. The study also analyses dynamic adjustments to the oil price rise in cases where oil-price subsidies are provided and where no subsidies are provided. In the no-subsidy case it is shown that the oil price rise can be inflationary or deflationary. The implications of the policy of subsidizing the price of oil is highlighted by taking account of a government budget constraint which in turn leads to the possibility of monetization as a source of financing the deficit, and thereby to higher output relative to the no subsidy case. As to the price level, the possibility is illustrated that subsidization can actually be more inflationary. The important element giving rise to the above possibility is the subsidy induced increase in the money supply. Exchange-rate flexibility is shown not to insulate the domestic price level against an oil price rise. In the long run the rate of inflation and exchange-rate variations are determined by the rate of growth of the money supply. The dynamic adjustment path of price and output is shown to be determined by the rate of adjustment of inflationary expectations.

  1. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  2. Reducing the rate of carbon dioxide buildup with biomass fuel under climate change

    International Nuclear Information System (INIS)

    Peart, R.; Curry, R.; Jones, J.; Boote, K.; Allen, L.

    1993-01-01

    The authors have been working for several years on estimating, through crop simulation and crop growth chamber experiments, the changes in yield and in irrigation demand which would be brought about by a doubling of atmospheric greenhouse gases, given the results of three General Circulation Models (GCM) that simulate the climate change that would be expected. They are now beginning to study the impact this might have in relation to biomass fuels. An important question is the effect of the changed climate on crop production, would the increased carbon dioxide concentration outweigh the negative climate change effects on crop yields? Results are quite variable due to different climate change effects at different locations and the differences in historical weather and in soils in different locations. However, on balance, climate change would result in reduced yields of the crops we studied, soybean, maize and peanut. However, US production of these crops could be maintained or increased by the use of irrigation on more acres. Irrigated crops, in general, would have increased yields under climate change because of the increased photosynthetic efficiency with higher carbon dioxide levels. Results on net remediation of carbon dioxide buildup by the use of biomass fuel rather than fossil fuel are not completed, but previous work has shown that Midwest non-irrigated maize production provides much more equivalent biomass energy than is required for its production. The studies with soybean show a ratio of equivalent energy output in the seed to energy used in producing the crop ranging from 4 to almost 9 under climate change

  3. The Effect of CO2 Injection on Macroalgae Gelidium latifolium Biomass Growth Rate and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Mujizat Kawaroe

    2016-06-01

    Full Text Available There are many species of macroalga grow in marine ecosystem and potentially as raw material for bioethanol resource. Bioethanol is a conversion result of carbohydrate, one of macroalgae biomass content. The exploration of macroalgae require information about  growth rate ability to determine availability in the nature. This research analyze growth rate and carbohydrate content of marine macroalga Gelidium latifolium on cultivation using varied injection of carbon dioxide and aeration. The treatments were control (K, 2000 cc CO2 injection and aeration (P1, 3000 cc CO2 injection and aeration (P2, 2000 cc CO2 injection without aeration (P3, and 3000 cc CO2 injection without aeration (P4. Samples weight were 3 gram in early cultivation on laboratorium scale for 42 days observation. The results showed that the daily growth rate Gelidium latifolium during the study ranged from 0.02-1.06%. The highest daily growth rate was 1.06±0.14% (P2. Carbohydrate yield was 18.23% in early cultivation then 19.40% (K and P2, 20.40% (P1, 16.87% (K3, and 16.40% (P4 after cultivation. The high of carbohydrates value may not guarantee the sustainable Gelidium latifolium biomass utilization as raw material for bioethanol production because of the low growth rate, thus it is necessary to modified and encourage cultivation method effectively. Keywords: CO2 injection, growth rate, carbohydrate, macroalgae, Gelidium latifolium

  4. Tourism, real output and real effective exchange rate in Malaysia: a view from rolling sub-samples

    OpenAIRE

    Tang, Chor Foon

    2011-01-01

    The objective of this study is to examine the tourism-growth nexus for Malaysia with the cointegration and Granger causality tests. This study covers the monthly data from January 1989 to May 2010. The Johansen’s cointegration and the residuals-based test for cointegration with regime shift consistently suggest that tourist arrivals, real output, and real effective exchange rate in Malaysia are cointegrated. In terms of Granger causality, this study finds different sources of causality. In th...

  5. Biomass Gasification. The characteristics of technology development and the rate of learning

    Energy Technology Data Exchange (ETDEWEB)

    Dorca Duch, Andreu; Huertas Bermejo, Javier

    2008-09-15

    Gasification is considered one of the most promising technologies in biomass applications. The higher efficiency compared to boiler power systems, the perspectives in fuel synthesis and its environmental friendly features are some examples of its potential. Biomass gasification has evolved since its first applications, but it has not been possible to reach a solid commercial stage, except during periods of crises and only for some specific applications. Meanwhile, other gasification technologies, fed by fossil fuels, are currently widely used on industrial scales. This thesis aims to analyze the knowledge development and diffusion patterns of the biomass gasification technology since 1970s in Austria, Finland, Germany and Sweden. Additionally, it seeks to identify the factors that strengthen and weaken the learning process. Finally, the concept of learning curve will be used to numerically assess the rate of learning in small scale biomass gasification for electricity generation. The feasibility of various future scenarios will be evaluated in order to know what is the likelihood for the technology to become competitive in the short term. To do so, the historical evolution of biomass gasification in Austria, Finland, Germany and Sweden has been analyzed. These countries have been selected due to the increasing number of ongoing projects and initiatives since 1970. Subsequently, the development of this technology has been encouraged by two historical facts. Initially, the price of fossil fuels grew in 1973 and 1979 enhancing the interest for biomass gasification as a future alternative. Afterwards, the willingness, shown by the mentioned countries, to reduce greenhouse gases emissions following the Kyoto protocol has revived the interest in biomass gasification. However, none of these two events has driven this technology sufficiently to achieve a sustainable commercial status. In addition, small and large scale projects have followed different development processes

  6. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    DEFF Research Database (Denmark)

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...

  7. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-08-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1 Tg C from cell counts and to 89 (43–150 Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2

  8. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    Science.gov (United States)

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  9. Sponge biomass and bioerosion rates increase under ocean warming and acidification.

    Science.gov (United States)

    Fang, James K H; Mello-Athayde, Matheus A; Schönberg, Christine H L; Kline, David I; Hoegh-Guldberg, Ove; Dove, Sophie

    2013-12-01

    The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2 ) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre-industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre-industrial scenario, and decreased towards the two future scenarios with sponge replicates under the 'business-as-usual' CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future. © 2013 John Wiley & Sons Ltd.

  10. Changes in respiration rates and biomass attributes of epilithon due to extended exposure to zinc

    International Nuclear Information System (INIS)

    Colwell, F.S.

    1986-01-01

    The purpose of this research was to determine the influence of extended dosing of zinc on the carbon cycling and biomass characteristics of freshwater epilithon. Experiments were conducted in artificial streams continuously dosed with 0.00, 0.05, or 1.00 mg Zn liter -1 for 20 to 30 days during summer and fall, 1984 and 1985. Repeated measurement of epilithon structure and function included estimates of 14 C-glucose respiration, 14 C-glutamate respiration, O 2 and CO 2 flux rates, ash-free dry weight (AFDW), protein, carbohydrate, and algal pigment concentrations, and total and zinc-tolerant colony forming units. An increase in epilithic glucose respiration per unit biomass consistently occurred 5 to 10 days after dosing with 1.0 mg Zn liter -1 was started. At the same time significantly lower epilithon biomass occurred in the high dosed streams relative to controls in 3 out of 4 studies. Although algal pigment concentrations were lowest in the high dose streams at the midpoint of the studies, the chlorophyll a-to-pheophytin a ratio remained high, indicating that the minimal algal population was not senescing in situ. After 30 days, the epilithon dosed with 1.0 mg Zn liter -1 had higher AFDW, protein, and carbohydrate concentrations than the other treatments. The development of unique epilithon communities that are acclimated to prolonged zinc exposure is evident in the eventual recolonization of the artificial surfaces, glucose respiration rates that are comparable to controls, and presence of zinc-tolerant heterotrophs

  11. New constraints in absorptive capacity and the optimum rate of petroleum output

    Energy Technology Data Exchange (ETDEWEB)

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)

  12. Pyrolysis of Algal Biomass Obtained from High-Rate Algae Ponds Applied to Wastewater Treatment

    International Nuclear Information System (INIS)

    Vargas e Silva, Fernanda; Monteggia, Luiz Olinto

    2015-01-01

    This work presents the results of the pyrolysis of algal biomass obtained from high-rate algae ponds treating sewage. The two high-rate algae ponds (HRAP) were built and operated at the São João Navegantes Wastewater Treatment Plant. The HRAP A was fed with raw sewage while the HRAP B was fed with effluent from an upflow anaerobic sludge blanket (UASB) reactor. The HRAP B provided higher productivity, presenting total solids concentration of 487.3 mg/l and chlorophyll a of 7735 mg/l. The algal productivity in the average depth was measured at 41.8 g·m −2 day −1 in pond A and at 47.1 g·m −2 day −1 in pond B. Algae obtained from the HRAP B were separated by the process of coagulation/flocculation and sedimentation. In the presence of alum, a separation efficiency in the range of 97% solid removal was obtained. After centrifugation the biomass was dried and comminuted. The biofuel production experiments were conducted via pyrolysis in a tubular quartz glass reactor which was inserted in a furnace for external heating. The tests were carried out in an inert nitrogen atmosphere at a flow rate of 60 ml/min. The system was operated at 400, 500, and 600°C in order to determine the influence of temperature on the obtained fractional yields. The studies showed that the pyrolysis product yield was influenced by temperature, with a maximum liquid phase (bio-oil and water) production rate of 44% at 500°C, 45% for char and around 11% for gas.

  13. PYROLYSIS OF ALGAL BIOMASS OBTAINED FROM HIGH RATE ALGAE PONDS APPLIED TO WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Fernanda eVargas E Silva

    2015-06-01

    Full Text Available This work presents the results of the pyrolysis of algal biomass obtained from high rate algae ponds treating sewage. The two high-rate algae ponds (HRAP were built and operated at the São João Navegantes Wastewater Treatment Plant. The HRAP A was fed with raw sewage while the HRAP B was fed with effluent from an Upflow Anaerobic Sludge Blanket (UASB reactor. The HRAP B provided higher productivity, presenting total solids concentration of 487.3mg/l and chlorophyll a of 7735mg/l. The algal productivity in the average depth was measured at 41,8 gm-2day-1 in pond A and at 47.1 gm-2day-1 in pond B. Algae obtained from the HRAP B were separated by the process of coagulation/flocculation and sedimentation. In the presence of alum, a separation efficiency in the range of 97% solids removal was obtained. After centrifugation the biomass was dried and comminuted. The biofuel production experiments were conducted via pyrolysis in a tubular quartz glass reactor which was inserted in a furnace for external heating. The tests were carried out in an inert nitrogen atmosphere at a flow rate of 60ml/min. The system was operated at 400°C, 500°C and 600°C in order to determine the influence of temperature on the obtained fractional yields. The studies showed that the pyrolysis product yield was influenced by temperature, with a maximum liquid phase (bio-oil and water production rate of 44% at 500°C, 45% for char and around 11% for gas.

  14. Pyrolysis of Algal Biomass Obtained from High-Rate Algae Ponds Applied to Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vargas e Silva, Fernanda, E-mail: fervs@globo.com; Monteggia, Luiz Olinto [Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2015-06-30

    This work presents the results of the pyrolysis of algal biomass obtained from high-rate algae ponds treating sewage. The two high-rate algae ponds (HRAP) were built and operated at the São João Navegantes Wastewater Treatment Plant. The HRAP A was fed with raw sewage while the HRAP B was fed with effluent from an upflow anaerobic sludge blanket (UASB) reactor. The HRAP B provided higher productivity, presenting total solids concentration of 487.3 mg/l and chlorophyll a of 7735 mg/l. The algal productivity in the average depth was measured at 41.8 g·m{sup −2} day{sup −1} in pond A and at 47.1 g·m{sup −2} day{sup −1} in pond B. Algae obtained from the HRAP B were separated by the process of coagulation/flocculation and sedimentation. In the presence of alum, a separation efficiency in the range of 97% solid removal was obtained. After centrifugation the biomass was dried and comminuted. The biofuel production experiments were conducted via pyrolysis in a tubular quartz glass reactor which was inserted in a furnace for external heating. The tests were carried out in an inert nitrogen atmosphere at a flow rate of 60 ml/min. The system was operated at 400, 500, and 600°C in order to determine the influence of temperature on the obtained fractional yields. The studies showed that the pyrolysis product yield was influenced by temperature, with a maximum liquid phase (bio-oil and water) production rate of 44% at 500°C, 45% for char and around 11% for gas.

  15. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  16. Biomass characterization by dielectric monitoring of viability and oxygen uptake rate measurements in a novel membrane bioreactor.

    Science.gov (United States)

    Shariati, Farshid Pajoum; Heran, Marc; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza; Sarzana, Gabriele; Ghommidh, Charles; Grasmick, Alain

    2013-07-01

    The application of permittivity and oxygen uptake rate (OUR) as biological process control parameters in a wastewater treatment system was evaluated. Experiments were carried out in a novel airlift oxidation ditch membrane bioreactor under different organic loading rates (OLR). Permittivity as representative of activated sludge viability was measured by a capacitive on-line sensor. OUR was also measured as a representative for respirometric activity. Results showed that the biomass concentration increases with OLR and all biomass related measurements and simulators such as MLSS, permittivity, OUR, ASM1 and ASM3 almost follow the same increasing trends. The viability of biomass decreased when the OLR was reduced from 5 to 4 kg COD m(-3)d(-1). During decreasing of OLR, biomass related parameters generally decreased but not in a similar manner. Also, protein concentration in the system during OLR decreasing changed inversely with the activated sludge viability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  18. The possibility to increase the rated output as a result of index tests performed in Iron Gates II- Romania

    Science.gov (United States)

    Novac, D.; Pantelimon, D.; Popescu, E.

    2010-08-01

    The Index Tests have been used for many years to obtain the optimized cam corellation between wicket gates and runner blades for double regulated turbines (Kaplan, bulb). The cam is based on homologous model tests and is verified by site measurements, as model tests generally do not reproduce the exact intake configuration. Index Tests have also a considerable importance for checking of the relative efficiency curve of all type of turbines and can demonstrate if the prototype efficiency curve at plant condition has the shape expected from the test of the homologues model. During the Index Tests measurements the influence of all losses at multiple points of turbine operation can be proved. This publication deals with an overview on the Index Tests made after modernization of large bulb units in Iron Gates II - Romania. These field tests, together with the comparative, fully homologous tests for the new hydraulic shape of the runner blades have confirmed the smooth operational behavior and the guaranteed performance. Over the whole "guaranteed operating range" for H = 8m, the characteristic of the Kaplan curve (enveloping curve to the proppeler curves), agreed very well to the predicted efficiency curve from the hydraulic prototype hill chart. The new cam correlation have been determined for different head and realised in the governor, normally based on model tests. The guaranteed, maximum turbine output for H = 7,8m is specified with 32, 5 MW. The maximum measured turbine output during the Index Tests on cam operation was 35,704 MW at the net head of 7,836 m. This coresponds to 35,458 MW for the specified head H= 7, 8 m. All these important improvements ensure a significant increase of annual energy production without any change of the civil construction and without increasing the runner diameter. Also the possibility to increase the turbine rated output is evident.

  19. The possibility to increase the rated output as a result of index tests performed in Iron Gates II- Romania

    International Nuclear Information System (INIS)

    Novac, D; Pantelimon, D; Popescu, E

    2010-01-01

    The Index Tests have been used for many years to obtain the optimized cam correlation between wicket gates and runner blades for double regulated turbines (Kaplan, bulb). The cam is based on homologous model tests and is verified by site measurements, as model tests generally do not reproduce the exact intake configuration. Index Tests have also a considerable importance for checking of the relative efficiency curve of all type of turbines and can demonstrate if the prototype efficiency curve at plant condition has the shape expected from the test of the homologues model. During the Index Tests measurements the influence of all losses at multiple points of turbine operation can be proved. This publication deals with an overview on the Index Tests made after modernization of large bulb units in Iron Gates II - Romania. These field tests, together with the comparative, fully homologous tests for the new hydraulic shape of the runner blades have confirmed the smooth operational behavior and the guaranteed performance. Over the whole 'guaranteed operating range' for H = 8m, the characteristic of the Kaplan curve (enveloping curve to the propeller curves), agreed very well to the predicted efficiency curve from the hydraulic prototype hill chart. The new cam correlation have been determined for different head and realised in the governor, normally based on model tests. The guaranteed, maximum turbine output for H = 7,8m is specified with 32, 5 MW. The maximum measured turbine output during the Index Tests on cam operation was 35,704 MW at the net head of 7,836 m. This corresponds to 35,458 MW for the specified head H= 7, 8 m. All these important improvements ensure a significant increase of annual energy production without any change of the civil construction and without increasing the runner diameter. Also the possibility to increase the turbine rated output is evident.

  20. The possibility to increase the rated output as a result of index tests performed in Iron Gates II- Romania

    Energy Technology Data Exchange (ETDEWEB)

    Novac, D; Pantelimon, D [Hidroelectrica - SH Portile de Fier, Str. I.G. Bibicescu Nr.2, Drobeta Turnu Severin, RO - 220103 (Romania); Popescu, E, E-mail: dragos.novac@hidroelectrica.r [Hidroelectrica Bucuresti, Str. C-tin Nacu Nr.3, Bucuresti, RO - 020995 (Romania)

    2010-08-15

    The Index Tests have been used for many years to obtain the optimized cam correlation between wicket gates and runner blades for double regulated turbines (Kaplan, bulb). The cam is based on homologous model tests and is verified by site measurements, as model tests generally do not reproduce the exact intake configuration. Index Tests have also a considerable importance for checking of the relative efficiency curve of all type of turbines and can demonstrate if the prototype efficiency curve at plant condition has the shape expected from the test of the homologues model. During the Index Tests measurements the influence of all losses at multiple points of turbine operation can be proved. This publication deals with an overview on the Index Tests made after modernization of large bulb units in Iron Gates II - Romania. These field tests, together with the comparative, fully homologous tests for the new hydraulic shape of the runner blades have confirmed the smooth operational behavior and the guaranteed performance. Over the whole 'guaranteed operating range' for H = 8m, the characteristic of the Kaplan curve (enveloping curve to the propeller curves), agreed very well to the predicted efficiency curve from the hydraulic prototype hill chart. The new cam correlation have been determined for different head and realised in the governor, normally based on model tests. The guaranteed, maximum turbine output for H = 7,8m is specified with 32, 5 MW. The maximum measured turbine output during the Index Tests on cam operation was 35,704 MW at the net head of 7,836 m. This corresponds to 35,458 MW for the specified head H= 7, 8 m. All these important improvements ensure a significant increase of annual energy production without any change of the civil construction and without increasing the runner diameter. Also the possibility to increase the turbine rated output is evident.

  1. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Science.gov (United States)

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  2. A transimpedance CMOS multichannel amplifier with a 50 Ω-wide output range buffer for high counting rate applications

    International Nuclear Information System (INIS)

    Haralabidis, N.; Loukas, D.; Misiakos, K.; Katsafouros, S.

    1997-01-01

    A fast transimpedance multichannel amplifier has been designed, fabricated in CMOS 1.2-microm technology and tested. Each channel consists of a current sensitive preamplifier followed by a voltage amplification stage and an on-chip buffer able to drive 50 Ω loads with an output range of ±800 mV. Measured peaking time at the output is 40 ns and the circuit recovers to baseline in 90 ns. This results in a counting capability of more than 10 7 hits/s. Signals of both polarities can be handled. The first two stages consume a total of 2 mW per channel and the 50 Ω buffer consumes another 17 mW. The equivalent noise charge (ENC) is 1,100 e - rms with a slope of 40e - /pF. The IC is intended for use in gas and solid-state detectors with high particle rate and extensive charge release as in high energy calorimetry

  3. Noise activated bistable sensor based on chaotic system with output defined by temporal coding and firing rate.

    Science.gov (United States)

    Korneta, Wojciech; Gomes, Iacyel

    2017-11-01

    Traditional bistable sensors use external bias signal to drive its response between states and their detection strategy is based on the output power spectral density or the residence time difference (RTD) in two sensor states. Recently, the noise activated nonlinear dynamic sensors driven only by noise based on RTD technique have been proposed. Here, we present experimental results of dc voltage measurements by noise-driven bistable sensor based on electronic Chua's circuit operating in a chaotic regime where two single scroll attractors coexist. The output of the sensor is quantified by the proportion of the time the sensor stays in one state to the total observation time and by the spike-count rate with spikes defined by crossings between attractors. The relationship between the stimuli and particular observable for different noise intensities is obtained, the usefulness of each coding scheme is discussed, and the optimal noise intensity for detection is indicated. It is shown that the obtained relationship is the same for any observation time when population coding is used. The optimal time window for both detection and the number of units in population coding is found. Our results may be useful for analyses and understanding of the neural activity and in designing bistable storage elements at length scales where thermal fluctuations drastically increase and the effect of noise must be taken into consideration.

  4. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  5. The ecological effects of different loading rates of metalaxyl on microbial biomass in unplanted and planted soils under field conditions

    Directory of Open Access Journals (Sweden)

    M. Mansourzadeh

    2016-05-01

    Full Text Available Fungicides are most widely used pesticides in Iran and the world. Application of fungicides may affect the populations and activity of soil microorganisms, particularly fungi, with a consequence for soil fertility and crop growth. In the current study, the effects of different levels of metalaxyl on soil microbial biomass carbon (C and nitrogen (N, microbial biomass C/N ratio and metabolic quotient under field conditions were assessed. Two levels of metalaxyl (30 and 60 kg.ha-1 were applied in planted soils with corn and unplanted calcareous soils, using a split-plots experiment in a completely randomized design with three replications. The C and N contents in soil microbial biomass as well as metabolic quotient were measured at 30 and 90 days after the onset of the experiment. Results showed that in cultivated soils metalaxyl application at 30 kg.ha-1 increased (15-80% significantly (p≤0.01 the amounts of microbial biomass C and N at both intervals (except microbial biomass C at 90 days compared to the control soil (0 kg.ha-1, while in uncultivated soils both microbial biomass C and N reduced by almost 1-34%. Microbial biomass C/N ratios in unplanted soils decreased (15 and 53% with increasing loading rates of metalaxyl, without a clear effect in cultivated soils. On the other hand, metabolic quotient values reduced (48% at 30 and 60 kg.ha-1 metalaxyl in corn-cultivated soils when compared to untreated soils while in uncultivated soils metalaxyl rate at 30 kg.a-1 had the greatest values at 30 days, and increased with increasing the levels of metalaxyl at 90 days. In summary, application of metalaxyl can either reduce or increase soil biological indices, and the direction and changes are depended upon the application rate of metalaxyl, time elapsed since metalaxyl application and the presence or absence of plant.

  6. Assessment of interchangeability rate between 2 methods of measurements: An example with a cardiac output comparison study.

    Science.gov (United States)

    Lorne, Emmanuel; Diouf, Momar; de Wilde, Robert B P; Fischer, Marc-Olivier

    2018-02-01

    The Bland-Altman (BA) and percentage error (PE) methods have been previously described to assess the agreement between 2 methods of medical or laboratory measurements. This type of approach raises several problems: the BA methodology constitutes a subjective approach to interchangeability, whereas the PE approach does not take into account the distribution of values over a range. We describe a new methodology that defines an interchangeability rate between 2 methods of measurement and cutoff values that determine the range of interchangeable values. We used a simulated data and a previously published data set to demonstrate the concept of the method. The interchangeability rate of 5 different cardiac output (CO) pulse contour techniques (Wesseling method, LiDCO, PiCCO, Hemac method, and Modelflow) was calculated, in comparison with the reference pulmonary artery thermodilution CO using our new method. In our example, Modelflow with a good interchangeability rate of 93% and a cutoff value of 4.8 L min, was found to be interchangeable with the thermodilution method for >95% of measurements. Modelflow had a higher interchangeability rate compared to Hemac (93% vs 86%; P = .022) or other monitors (Wesseling cZ = 76%, LiDCO = 73%, and PiCCO = 62%; P < .0001). Simulated data and reanalysis of a data set comparing 5 CO monitors against thermodilution CO showed that, depending on the repeatability of the reference method, the interchangeability rate combined with a cutoff value could be used to define the range of values over which interchangeability remains acceptable.

  7. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  8. International hedging under concurrent risks of input/output prices and exchange rate : The case of Korean oil refinery

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W C; Kim, S D [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-11-01

    This study develops an international hedging model which accounts for the multiple risks of input and output prices and exchange rates. Considering a fixed production technology, we formulize simultaneous minimum variance hedge ratios, which reflects inter correlations among prices. To utilize the dynamic nature of prices, time-varying conditional procedures are specified to estimate the relevant variance and covariance matrix. The time-varying representations of the variance and covariance matrix are statistically appropriate, in general. The separate hedge ratios are similar to the simultaneous hedge ratios for alternative procedures. The ex post hedging effectiveness indicate that there are substantial reduction in the variance of returns for all the procedures. The contribution of foreign currency futures is minimal due to the low correlation between commodities and exchange rates. Based on the traditional definition of hedging effectiveness, the time-varying conditional procedure provide little gain to the hedgers over a constant procedure in terms of the mean and the variance reduction. However, the performance of conditional procedures could be improved by accounting for the potential problems: mis specification problem, inappropriate definition of hedging effectiveness, and conflicts between theoretical derivation and estimation of hedge ratios. (author). 39 refs., 6 tabs.

  9. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NARCIS (Netherlands)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2012-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked

  10. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NARCIS (Netherlands)

    Werf, van der G.R.; Peters, W.; Leeuwen, van T.T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked

  11. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Scripps Research Inst., La Jolla, CA (United States); Hazen, Samuel [Scripps Research Inst., San Diego, CA (United States); Mullet, John [Texas A & M Univ., College Station, TX (United States)

    2017-11-22

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield.

  12. Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion?

    Science.gov (United States)

    Bentley, Robert F; Jones, Joshua H; Hirai, Daniel M; Zelt, Joel T; Giles, Matthew D; Raleigh, James P; Quadrilatero, Joe; Gurd, Brendon J; Neder, J Alberto; Tschakovsky, Michael E

    2018-01-01

    Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy. Cardiac output (Q˙ L/min; inert gas rebreathe), oxygen uptake (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps saturation (near infrared spectroscopy) and exercise tolerance (6-20; Borg Scale RPE) were measured. The Q˙-V˙O2 relationship from 40 to 160 W was used to partition individuals post hoc into higher (n = 10; 6.3 ± 0.4) versus lower (n = 10; 3.7 ± 0.4, P exercise (all P > 0.4). Lower cardiac responders had greater leg (P = 0.027) and whole body (P = 0.03) RPE only at 185 W, but this represented a higher %peak V˙O2 in lower cardiac responders (87 ± 15% vs. 66 ± 12%, P = 0.005). Substantially lower Q˙-V˙O2 in the lower responder group did not result in altered RPE or exercising muscle deoxygenation. This suggests substantial recruitment of blood flow redistribution in the lower responder group as part of protecting matching of exercising muscle oxygen delivery to demand. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Brix, Hans

    2010-01-01

    The effects of inorganic nitrogen (N) source (NH4+, NO3- or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g-1 d-1), biomass allocation...

  14. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes.

    Science.gov (United States)

    Serejo, Mayara L; Posadas, Esther; Boncz, Marc A; Blanco, Saúl; García-Encina, Pedro; Muñoz, Raúl

    2015-03-03

    The influence of biogas flow rate (0, 0.3, 0.6, and 1.2 m(3) m(-2) h(-1)) on the elemental and macromolecular composition of the algal-bacterial biomass produced from biogas upgrading in a 180 L photobioreactor interconnected to a 2.5 L external bubbled absorption column was investigated using diluted anaerobically digested vinasse as cultivation medium. The influence of the external liquid recirculation/biogas ratio (0.5 biogas, was also evaluated. A L/G ratio of 10 was considered optimum to support CO2 and H2S removals of 80% and 100%, respectively, at all biogas flow rates tested. Biomass productivity increased at increasing biogas flow rate, with a maximum of 12 ± 1 g m(-2) d(-1) at 1.2 m(3) m(-2) h(-1), while the C, N, and P biomass content remained constant at 49 ± 2%, 9 ± 0%, and 1 ± 0%, respectively, over the 175 days of experimentation. The high carbohydrate contents (60-76%), inversely correlated to biogas flow rates, would allow the production of ≈100 L of ethanol per 1000 m(3) of biogas upgraded under a biorefinery process approach.

  15. Sunn Hemp Biomass and Nitrogen Production for Different Planting Dates and Seeding Rates

    Science.gov (United States)

    Elevated nitrogen (N) fertilizer costs have renewed interest in alternative N sources, such as legumes. Sunn hemp (Crotalaria juncea L.) is a tropical legume capable of producing considerable biomass in a short period of time. A randomized complete block design with a split-plot restriction and fou...

  16. Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point.

    Science.gov (United States)

    Thorenz, Ute R; Kundel, Michael; Müller, Lars; Hoffmann, Thorsten

    2012-11-01

    In this work, we describe a simple diffusion capillary device for the generation of various organic test gases. Using a set of basic equations the output rate of the test gas devices can easily be predicted only based on the molecular formula and the boiling point of the compounds of interest. Since these parameters are easily accessible for a large number of potential analytes, even for those compounds which are typically not listed in physico-chemical handbooks or internet databases, the adjustment of the test gas source to the concentration range required for the individual analytical application is straightforward. The agreement of the predicted and measured values is shown to be valid for different groups of chemicals, such as halocarbons, alkanes, alkenes, and aromatic compounds and for different dimensions of the diffusion capillaries. The limits of the predictability of the output rates are explored and observed to result in an underprediction of the output rates when very thin capillaries are used. It is demonstrated that pressure variations are responsible for the observed deviation of the output rates. To overcome the influence of pressure variations and at the same time to establish a suitable test gas source for highly volatile compounds, also the usability of permeation sources is explored, for example for the generation of molecular bromine test gases.

  17. Factors affecting fall down rates of dead aspen (Populus tremuloides) biomass following severe drought in west-central Canada.

    Science.gov (United States)

    Ted Hogg, Edward H; Michaelian, Michael

    2015-05-01

    Increases in mortality of trembling aspen (Populus tremuloides Michx.) have been recorded across large areas of western North America following recent periods of exceptionally severe drought. The resultant increase in standing, dead tree biomass represents a significant potential source of carbon emissions to the atmosphere, but the timing of emissions is partially driven by dead-wood dynamics which include the fall down and breakage of dead aspen stems. The rate at which dead trees fall to the ground also strongly influences the period over which forest dieback episodes can be detected by aerial surveys or satellite remote sensing observations. Over a 12-year period (2000-2012), we monitored the annual status of 1010 aspen trees that died during and following a severe regional drought within 25 study areas across west-central Canada. Observations of stem fall down and breakage (snapping) were used to estimate woody biomass transfer from standing to downed dead wood as a function of years since tree death. For the region as a whole, we estimated that >80% of standing dead aspen biomass had fallen after 10 years. Overall, the rate of fall down was minimal during the year following stem death, but thereafter fall rates followed a negative exponential equation with k = 0.20 per year. However, there was high between-site variation in the rate of fall down (k = 0.08-0.37 per year). The analysis showed that fall down rates were positively correlated with stand age, site windiness, and the incidence of decay fungi (Phellinus tremulae (Bond.) Bond. and Boris.) and wood-boring insects. These factors are thus likely to influence the rate of carbon emissions from dead trees following periods of climate-related forest die-off episodes. © 2014 Her Majesty the Queen in Right of Canada Global Change Biology © 2014 John Wiley & Sons Ltd Reproduced with the permission of the Minister of Natural Resources Canada.

  18. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple

    Directory of Open Access Journals (Sweden)

    Tina Schäfer

    2012-01-01

    Full Text Available This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF. We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova and transgenic lines (M9/T386 and M9/T389 were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.

  19. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  20. Structural evolution of biomass char and its effect on the gasification rate

    DEFF Research Database (Denmark)

    Fatehi, Hesameddin; Bai, Xue Song

    2017-01-01

    The evolution of char porous structure can affect the conversion rate of the char by affecting the intra-particle transport, especially in the zone II conversion regime. A multi-pore model based on the capillary pore theory is developed to take into account different conversion rates for pores wi...

  1. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  2. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.

    Science.gov (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan

    2016-01-01

    Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution

  3. Seasonal variations in abundance, biomass and grazing rates of microzooplankton in a tropical monsoonal estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gauns, M.; Mochemadkar, S.; Patil, S.; Pratihary, A.K.; Naqvi, S.W.A.; Madhupratap, M.

    Seasonal abundance, composition and grazing rates of microzooplankton (20–200 µm) in the Zuari estuary were investigated to evaluate their importance in food web dynamics of a tropical monsoonal estuary. Average abundances of microzooplankton...

  4. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total

  5. Non-invasive Estimation of Metabolic Uptake Rate of Glucose using F18-FDG PET and Linear Transformation of Outputs

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Reichkendler, M.; Auerback, P.

    For quantitative analysis and kinetic modeling of dynamic PET-data an input function is needed. Normally this is obtained by arterial blood sampling, potentially an unpleasant experience for the patient and laborious for the staff. Aim: To validate methods for determination of the metabolic uptake...... rate (Km) of glucose from dynamic FDG-PET scans using Image Derived Input Functions (IDIF) without blood sampling. Method: We performed 24 dynamic FDG-PET scans of the thigh of 14 healthy young male volunteers during a hyperinsulinemic isoglycemic clamp. Ten of the subjects were scanned twice 11 weeks...... artery diameter in the material, the method should also be applicable to women and people of other ages, but used with caution in the elderly due to variance in intramuscular adipose distribution. If only Km and no other kinetic parameters are needed, the described method with transformation...

  6. Distribution of stable and radioactive metals among the biomass compartments of the macrophytes of the Yenisei river and estimation of the dose rate

    International Nuclear Information System (INIS)

    Zotina, T.A.; Bolsunovskiy, A.Ya.; Sukovatyj, A.G.

    2008-01-01

    Artificial radioactive metals are annually detected in the biomass of submerged macrophytes in the zone radioactive contamination of the Yenisei river. It has been shown by other authors that metals are not uniformly distributed in the biomass of aquatic macrophytes. In this research the distribution of stable and radioactive isotopes of metals was investigated among the biomass compartments of the macrophytes from the Yenisei river with chemical fractionation technique. Dose rates from the intra- and extracellular radionuclides have been estimated. According to the data obtained the distribution of metals among intra- and extracellular compartments was different. The major portion of Co, Mn and Zn was accumulated in the biomass in more mobile form, than Cr and Fe. Artificial radioactive isotopes were detected in the same compartments as stable metals. Essential portion of artificial radionuclides and stable metals was detected in the particles of seston, attached to the surface of the macrophytes.

  7. Probe Measurements of Ash Deposit Formation Rate and Shedding in a Biomass Suspension-Fired boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension-fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share...

  8. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Kropat, Janette; Hong-Hermesdorf, Anne; Casero, David; Ent, Petr; Castruita, Madeli; Pellegrini, Matteo; Merchant, Sabeeha S; Malasarn, Davin

    2011-06-01

    Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner's supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni²⁺-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni²⁺ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology. © 2011 The Authors

  9. Biomass,litterfall and decomposition rates for the fringed Rhizophora mangle forest lining the Bon Accord Lagoon,Tobago

    Directory of Open Access Journals (Sweden)

    Rahanna A Juman

    2005-05-01

    Full Text Available The mangrove forest that fringes the Bon Accord Lagoon measures 0.8 km² and is dominated by red mangrove (Rhizophora mangle .This forest forms the landward boundary of the Buccoo Reef Marine Park in Southwest Tobago,and is part of a mangrove-seagrass-coral reef continuum.Biomass and productivity,as indicated by litterfall rates,were measured in seven 0.01 ha monospecific plots from February 1998 to February 1999,and decomposition rates were determined. Red mangrove above-ground biomass ranged between 2.0 and 25.9 kg (dry wt.m-2 .Mean biomass was 14.1 ±8.1 kg (dry wt.m-2 yielding a standing crop of 11 318 ±6 488 t. Litterfall rate varied spatially and seasonally.It peaked from May to August (4.2-4.3 g dry wt.m-2 d-1 and was lowest from October to December (2.3-2.8 g dry wt.m-2 d-1 .Mean annual litterfall rate was 3.4 ±0.9 g dry wt.m-2 d-1 .Leaf degradation rates ranged from 0.3%loss d-1 in the upper intertidal zone to 1%loss d-1 at a lower intertidal site flooded by sewage effluent.Mean degradation rate was 0.4 ±1%loss d-1 .The swamp produces 2.8 t dry wt.of litterfall and 12 kg dry wt.of decomposed leaf material daily.Biomass and litterfall rates in Bon Accord Lagoon were compared to five similar sites that also participate in the Caribbean Coastal Marine Productivity Programme (CARICOMP.The Bon Accord Lagoon mangrove swamp is a highly productive fringed-forest that contributes to the overall productivity of the mangrove-seagrass-reef complex.El manglar que bordea la laguna de Bon Accord mide 0.8 km² y predomina el mangle rojo (Rhizophora mangle .Este manglar es el límite terrestre del Parque Nacional Buccoo Reef en el suroeste de Tobago,y es parte de un continuo de mangles-pastos-arrecifes.En este trabajo se midió la biomasa y productividad,mediante la caída de hojas,y las tasas de descomposición en siete parcelas monoespecíficas de 0.01 ha,de febrero 1998 a febrero 1999.La biomasa sobre el suelo del mangle rojo se registró entre 2

  10. Effect of solar radiation on the lipid characterization of biomass cultivated in high-rate algal ponds using domestic sewage.

    Science.gov (United States)

    Assemany, Paula Peixoto; Calijuri, Maria Lúcia; Santiago, Anibal da Fonseca; do Couto, Eduardo de Aguiar; Leite, Mauricio de Oliveira; Sierra, Jose Jovanny Bermudez

    2014-01-01

    The objective of this paper is to compare the lipid content and composition ofbiomass produced by a consortium of microalgae and bacteria, cultivated under different solar radiation intensities and tropical conditions in pilot-scale high-rate ponds (HRPs) using domestic sewage as culture medium. The treatment system consisted of an upflow anaerobic sludge blanket reactor followed by UV disinfection and six HRPs covered with shading screens that blocked 9%, 18%, 30%, 60% and 80% of the solar radiation. The total lipid content does not vary significantly among the units, showing a medium value of 9.5%. The results show that blocking over 30% of the solar radiation has a negative effect on the lipid productivity. The units with no shading and with 30% and 60% of solar radiation blocking have statistically significant lipid productivities, varying from 0.92 to 0.96 gm(-2) day(-1). Besides radiation, other variables such as volatile suspended solids and chlorophyll-a are able to explain the lipid accumulation. The lipid profile has a predominance of C16, C18:1 and C18:3 acids. The unsaturation of fatty acids increases with the reduction in solar radiation. On the other hand, the effect of polyunsaturation is not observed, which is probably due to the presence of a complex and diverse biomass.

  11. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    Science.gov (United States)

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  12. Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times

    Directory of Open Access Journals (Sweden)

    Johanna Gaitán-Álvarez

    2018-03-01

    Full Text Available We evaluated the thermogravimetric and devolatilization rates of hemicellulose and cellulose, and the calorimetric behavior of the torrefied biomass, of five tropical woody species (Cupressus lusitanica, Dipteryx panamensis, Gmelina arborea, Tectona grandis and Vochysia ferruginea, at three temperatures (TT and three torrefaction times (tT using a thermogravimetric analyzer. Through a multivariate analysis of principal components (MAPC, the most appropriate torrefaction conditions for the different types of woody biomass were identified. The thermogravimetric analysis-derivative thermogravimetry (TGA-DTG analysis showed that a higher percentage of the hemicellulose component of the biomass degrades, followed by cellulose, so that the hemicellulose energy of activation (Ea was less than that of cellulose. With an increase in TT and tT, the Ea for hemicellulose decreased but increased for cellulose. The calorimetric analyses showed that hemicellulose is the least stable component in the torrefied biomass under severe torrefaction conditions, and cellulose is more thermally stable in torrefied biomass. From the MAPC results, the best torrefaction conditions for calorimetric analyses were at 200 and 225 °C after 8, 10, and 12 min, for light and middle torrefaction, respectively, for the five woody species.

  13. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  14. The effect of endogenously released glucose, insulin, glucagon-like peptide 1, ghrelin on cardiac output, heart rate, stroke volume, and blood pressure.

    Science.gov (United States)

    Hlebowicz, Joanna; Lindstedt, Sandra; Björgell, Ola; Dencker, Magnus

    2011-12-29

    Ingestion of a meal increases the blood flow to the gastrointestinal organs and affects the heart rate (HR), blood pressure and cardiac output (CO), although the mechanisms are not known. The aim of this study was to evaluate the effect of endogenously released glucose, insulin, glucagon-like peptide 1 (GLP-1), ghrelin on CO, HR, stroke volume (SV), and blood pressure. Eleven healthy men and twelve healthy women ((mean ± SEM) aged: 26 ± 0.2 y; body mass index: 21.8 ± 0.1 kg/m(2))) were included in this study. The CO, HR, SV, systolic and diastolic blood pressure, antral area, gastric emptying rate, and glucose, insulin, GLP-1 and ghrelin levels were measured. The CO and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting in both men and women (P blood pressure (P = 0.021, r = -0.681), and the change in SV (P = 0.008, r = -0.748) relative to the fasting in men. The insulin 0-30 min AUC was significantly correlated to the CO 0-30 min AUC (P = 0.002, r = 0.814) in men. Significant correlations were also found between the 0-120 min ghrelin and HR AUCs (P = 0.007, r = 0.966) in men. No statistically significant correlations were seen in women. Physiological changes in the levels of glucose, insulin, GLP-1 and ghrelin may influence the activity of the heart and the blood pressure. There may also be gender-related differences in the haemodynamic responses to postprandial changes in hormone levels. The results of this study show that subjects should not eat immediately prior to, or during, the evaluation of cardiovascular interventions as postprandial affects may affect the results, leading to erroneous interpretation of the cardiovascular effects of the primary intervention. NCT01027507.

  15. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent.

    Science.gov (United States)

    Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro

    2018-02-01

    To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Science.gov (United States)

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  17. Planting date and seeding rate effects on sunn hemp biomass and nitrogen production for a winter cover crop

    Science.gov (United States)

    Sunn hemp (Crotalaria juncea L.) is a tropical legume that produces plant biomass and nitrogen (N) quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a subsequent rye (Secale cereale L.) wi...

  18. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    Science.gov (United States)

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  19. The effect of endogenously released glucose, insulin, glucagon-like peptide 1, ghrelin on cardiac output, heart rate, stroke volume, and blood pressure

    Directory of Open Access Journals (Sweden)

    Hlebowicz Joanna

    2011-12-01

    Full Text Available Abstract Background Ingestion of a meal increases the blood flow to the gastrointestinal organs and affects the heart rate (HR, blood pressure and cardiac output (CO, although the mechanisms are not known. The aim of this study was to evaluate the effect of endogenously released glucose, insulin, glucagon-like peptide 1 (GLP-1, ghrelin on CO, HR, stroke volume (SV, and blood pressure. Methods Eleven healthy men and twelve healthy women ((mean ± SEM aged: 26 ± 0.2 y; body mass index: 21.8 ± 0.1 kg/m2 were included in this study. The CO, HR, SV, systolic and diastolic blood pressure, antral area, gastric emptying rate, and glucose, insulin, GLP-1 and ghrelin levels were measured. Results The CO and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting in both men and women (P P = 0.015, r = 0.946, and between ghrelin levels and HR (P = 0.013, r = 0.951 at 110 min. Significant correlations were also found between the change in glucose level at 30 min and the change in systolic blood pressure (P = 0.021, r = -0.681, and the change in SV (P = 0.008, r = -0.748 relative to the fasting in men. The insulin 0-30 min AUC was significantly correlated to the CO 0-30 min AUC (P = 0.002, r = 0.814 in men. Significant correlations were also found between the 0-120 min ghrelin and HR AUCs (P = 0.007, r = 0.966 in men. No statistically significant correlations were seen in women. Conclusions Physiological changes in the levels of glucose, insulin, GLP-1 and ghrelin may influence the activity of the heart and the blood pressure. There may also be gender-related differences in the haemodynamic responses to postprandial changes in hormone levels. The results of this study show that subjects should not eat immediately prior to, or during, the evaluation of cardiovascular interventions as postprandial affects may affect the results, leading to erroneous interpretation of the cardiovascular effects of the

  20. Biomass, productivity and relative rate of photosynthesis of sphagnum at different water levels on a South Swedish peat bog

    International Nuclear Information System (INIS)

    Wallen, B.; Falkengren-Grerup, U.; Malmer, N.

    1988-01-01

    The distribution pattern of Spaghnum species on bogs follows a hummock-hollow gradient. S. Sect. Acutifolia (that is in this study S. Fuscum and S. rubellum combined) dominates hummock tops, ca 20 cm above the maximum water level with a green biomass of 50 g m --2 , S. magellanicum dominates at a lower level, about 5 cm above the water level with a green biomass of 75 g m -2 and S. cuspidatum dominates in the wettest hollows with a green biomass of about 50 g m -2 . In situ measurements of length growth of S. Sect. Acutifolia and S. magelanicum using a 14 CO 2 -labelling technique during three consecutive years, revealed an unexpectedly high between-year variation in length growth of 7-23 mm yr -1 , and 16-22 mm yr -1 , respectively. Consequently the dominating producer in the transition between hummock and hollow changes from year to year, probably depending on climatic conditions. In vitro experiments on the effects of different water levels of 2, 5, 10 and 20 cm below the moss surface, on photosynthetic activity of S. Sect. Acutifolia and S. magellanicum, measured by a second 14 CO 2 -technique, indicate optimal conditions for S. magellanicum at 10 cm above water level, and for S. Sect, Acutofolia at 20 cm above water level. Differences in capillary water transport capability between the species are more important than the sensitivity of photosynthesis to water stress in explaining field patterns of productivity and distribution

  1. Intelligent Control Framework for the Feeding System in the Biomass Power Plant

    Directory of Open Access Journals (Sweden)

    Sun Jin

    2015-01-01

    Full Text Available This paper proposes an intelligent control framework for biomass drying process with flue gases based on FLC (fuzzy logic controller and CAN (Controller Area Network bus. In the operation of a biomass drying process, in order to get the biomass with the set-point low moisture content dried by waste high temperature flue gases, it is necessary to intelligent control for the biomass flow rate. Use of an experiment with varied materials at different initial moisture contents enables acquisition of the biomass flow rates as initial setting values. Set the error between actual straw moisture content and set-point, and rate of change of error as two inputs. the biomass flow rate can be acquired by the fuzzy logic computing as the output. Since the length of dryer is more than twenty meters, the integration by the CAN bus can ensure real-time reliable data acquisition and processing. The control framework for biomass drying process can be applied to a variety of biomass, such as, cotton stalk, corn stalk, rice straw, wheat straw, sugar cane. It has strong potential for practical applications because of its advantages on intelligent providing the set-point low moisture content of biomass feedstock for power generation equipment.

  2. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  3. The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Eid, Ebrahem M; Alrumman, Sulaiman A; El-Bebany, Ahmed F; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F

    2017-07-01

    When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg -1 ) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg -1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg -1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal. Graphical Abstract The effects of different sewage sludge amendment rates on the heavy

  4. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    Science.gov (United States)

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Science.gov (United States)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4-27.9% of non-methane organic compounds (NMOCs) and ~ 21% of organic aerosol (mass basis) suggests that they impacted secondary formation of ozone (O3), aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13-195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC results also

  6. GDP Growth, Potential Output, and Output Gaps in Mexico

    OpenAIRE

    Ebrima A Faal

    2005-01-01

    This paper analyzes the sources of Mexico's economic growth since the 1960s and compares various decompositions of historical growth into its trend and cyclical components. The role of the implied output gaps in the inflationary process is then assessed. Looking ahead, the paper presents medium-term paths for GDP based on alternative assumptions for productivity growth rates. The results indicate that the most important factor underlying the slowdown in output growth was a decline in trend to...

  7. Establishment of Alleycropped Hybrid Aspen “Crandon” in Central Iowa, USA: Effects of Topographic Position and Fertilizer Rate on Aboveground Biomass Production and Allocation

    Directory of Open Access Journals (Sweden)

    Richard B. Hall

    2013-07-01

    Full Text Available Hybrid poplars have demonstrated high productivity as short rotation woody crops (SRWC in the Midwest USA, and the hybrid aspen “Crandon” (Populus alba L. × P. grandidenta Michx. has exhibited particularly promising yields on marginal lands. However, a key obstacle for wider deployment is the lack of economic returns early in the rotation. Alleycropping has the potential to address this issue, especially when paired with crops such as winter triticale which complete their growth cycle early in the summer and therefore are expected to exert minimal competition on establishing trees. In addition, well-placed fertilizer in low rates at planting has the potential to improve tree establishment and shorten the rotation, which is also economically desirable. To test the potential productivity of “Crandon” alleycropped with winter triticale, plots were established on five topographic positions with four different rates of fertilizer placed in the planting hole. Trees were then harvested from the plots after each of the first three growing seasons. Fertilization resulted in significant increases in branch, stem, and total aboveground biomass across all years, whereas the effects of topographic position varied by year. Allocation between branches and stems was found to be primarily a function of total aboveground biomass.

  8. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  9. A comparison of the hourly output between the Ambu® Smart-Infuser™ Pain Pump and the On-Q Pump® with Select-A-Flow™ Variable Rate Controller with standard and overfill volumes.

    Science.gov (United States)

    Iliev, Peter; Bhalla, Tarun; Tobias, Joseph D

    2016-04-01

    The Ambu Smart-Infuser Pain Pump and the On-Q Pump with Select-a-Flow Variable Rate Controller are elastomeric devices with a flow regulator that controls the rate of infusion of a local anesthetic agent through a peripheral catheter. As a safety evaluation, we evaluated the infusion characteristics of these two devices when filled with manufacturer recommended standard volumes and when overfilled with a volume 50% in excess of that which is recommended. Nineteen disposable devices from the two manufacturers were used in this study. Nine were filled with 0.9% normal saline according to the respective manufacturers' recommendations (four Ambu pumps were filled with 650 ml and five On-Q pumps were filled with 550 ml) and 10 devices were 150% overfilled (five Ambu pumps were filled with 975 ml and five On-Q pumps were filled with 825 ml). All of the devices were set to infuse at 10 ml · h(-1) at room temperature (21°C) for 12 h. The fluid delivered during each 2-h period was measured using a graduated column. The On-Q pump (in the settings of normal fill and 150% overfill) delivered a significantly higher output per hour than the set rate during the first 8 h, while the Ambu pump delivered a value close to the set rate of 10 ml · h(-1). No significant difference in the hourly delivered output was noted for either device when comparing the normal fill to the 150% overfill groups. This investigation demonstrates that no change in the hourly output occurs with overfilling of these home infusion devices. However, as noted previously, the hourly output from the On-Q device is significantly higher than the set rate during the initial 8 h of infusion which could have potential clinical implications. © 2016 John Wiley & Sons Ltd.

  10. [Effects of different application rates of calcium cyanamide on soil microbial biomass and enzyme activity in cucumber continuous cropping].

    Science.gov (United States)

    Zhang, Xue-peng; Ning, Tang-yuan; Yang, Yan; Sun, Tao; Zhang, Shu-min; Wang, Bin

    2015-10-01

    A 2-year field experiment was conducted to study the effects of CaCN2 combined with cucumber straw retention on soil microbial biomass carbon (SMBC) , soil microbial biomass nitrogen (SMBN) and soil enzyme activities under cucumber continuous cropping system. Four treatments were used in this study as follows: CK (null CaCN2), CaCN2-90 (1350 kg CaCN2 . hm-2) CaCN2-60 (900 kg CaCN2 . hm-2), CaCN2-30 (450 kg CaCN2 . hm-2). The results indicated that, compared with the other treatments, CaCN2-90 treatment significantly decreased SMBC in 0-10 cm soil layer at seedling stage, but increased SMBC in 0-20 cm soil layer after early-fruit stage. Compared with CK, CaCN2 increased SMBC in 0-20 cm soil layer at late-fruit stage, and increased SMBN in 0-10 cm soil layer at mid- and late-fruit stages, however there was no significant trend among CaCN2 treatments in the first year (2012), while in the second year (2013) SMBN increased with the increasing CaCN2 amount after mid-fruit stage. CaCN2 increased straw decaying and nutrients releasing, and also increased soil organic matter. Furthermore, the CaCN2-90 could accelerate straw decomposition. Compared with CK, CaCN2 effectively increased soil urease, catalase and polyphenol oxidase activity. The soil urease activity increased while the polyphenol oxidase activity decreased with the increase of CaCN2, and CaCN2-60 could significantly improve catalase activity. Soil organic matter, urease activity and catalase activity had significant positive correlations with SMBC and SMBN. However, polyphenol oxidase activity was negatively correlated to SMBC and SMBN. Our findings indicated that CaCN2 application at 900 kg . hm-2 combined with cucumber straw retention could effectively improve soil environment, alleviating the soil obstacles under the cucumber continuous cropping system.

  11. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  12. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    International Nuclear Information System (INIS)

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-01-01

    Highlights: ► Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. ► System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m 3 d) −1 were analyzed. ► A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and HRT of 15d. ► With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. ► The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2–8.0 kg volatile solid (VS) (m 3 d) −1 , with VS reduction rates of 61.7–69.9%, and volumetric biogas production of 0.89–5.28 m 3 (m 3 d) −1 . A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m 3 d) −1 . This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  13. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The economic and financial crisis has not brought solid biomass energy growth to a standstill. Primary energy production in the European Union member states increased in 2008 by 2,3%, which represents a gain of 1,5% million tonnes of oil equivalent over 2007. This growth was particularly marked in electricity production which increased output by 10,8% over 2007, an additional 5,6 TWh. (A.L.B.)

  14. Biomass co-firing for Delta Electricity

    International Nuclear Information System (INIS)

    Anon

    2014-01-01

    Electricity generator Delta Electricity has implemented a biomass co-firing program at its Vales Point power station on the Central Coast to reduce its reliance on coal and emissions of CO 2 . The program comprises two parts: direct co-firing with coal of up to 5% biomass; and development of Continuous Biomass Converter (CBC) technology with the Crucible Group to remove technology constraints and enable much higher rates of biomass co-firing. It is talking industrial scale tests. Delta increased biomass co-firing in 2013/14 to 32,000 tonnes, up from just 3,000 tonnes the previous year, and conducted biochar co-firing trials at a rate equivalent to 400,000 tonnes per annum to demonstrate the potential of CBC technology. It reduced CO 2 emissions in 2013/14 by more than 32,000 tonnes. 'Legislation and regulations define biomass as renewable,' said Delta Electricity sustainability manager Justin Flood. 'By preferring biomass over coal, the carbon in the coal is not burnt and remains locked up.' One biomass source is wood waste that would normally go to landfill, but the primary driver of Delta's recent increase in co-firing is sawmill residues. 'Previously there was a higher value market for the residues for paper pulp. However, when that market evaporated the timber industry was left with a sizable problem in terms of what to do with its residues and the loss of revenue,' said Flood. The way greenhouse gas accounting is conducted in Australia, with carbon emissions based on site activities, makes it difficult to undertake a life cycle assessment of the program. 'However, some of the international studies looking at this issue have concluded that the net carbon emissions of the biomass system are significantly lower than the coal system because of the uptake of carbon during biomass growth,' said Flood. Delta identified two challenges, sourcing the feedstock and that biomass conversion to electricity is slightly less

  15. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  16. Unit 16 - Output

    OpenAIRE

    Unit 16, CC in GIS; Star, Jeffrey L.

    1990-01-01

    This unit discusses issues related to GIS output, including the different types of output possible and the hardware for producing each. It describes text, graphic and digital data that can be generated by a GIS as well as line printers, dot matrix printers/plotters, pen plotters, optical scanners and cathode ray tubes (CRTs) as technologies for generating the output.

  17. Biomass for green cement

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, R. [Lafarge Canada Inc., Calgary, AB (Canada)

    2006-07-01

    Lafarge examined the use of waste biomass products in its building materials and provided background information on its operations. Cement kiln infrastructure was described in terms of providing access to shipping, rail and highways; conveying and off-loading equipment; having large storage facilities; and, offering continuous monitoring and stack testing. The presentation identified the advantages and disadvantages of a few different biomass cases such as coal; scrap tires; non-recyclable household waste; and processed biomass. A chart representing landfill diversion rates was presented and the presentation concluded with a discussion of energy recovery and recycling. 1 tab., figs.

  18. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations

    NARCIS (Netherlands)

    Besson, M.; Aubin, J.; Komen, H.; Poelman, M.; Quillet, E.; Vandeputte, M.; Arendonk, Van J.A.M.; Boer, De I.J.M.

    2016-01-01

    Today, fish farming faces an increasing demand in fish products, but also various environmental challenges. Genetic improvement in growth rate and feed conversion ratio is known to be an efficient way to increase production and increase efficiency in fish farming. The environmental consequences

  19. New approach to exploit optimally the PV array output energy by maximizing the discharge rate of a directly-coupled photovoltaic water pumping system (DC/PVPS)

    International Nuclear Information System (INIS)

    Boutelhig, Azzedine; Hadj Arab, Amar; Hanini, Salah

    2016-01-01

    Highlights: • Mismatches on a designed d-c PV pumping system have been highlighted. • A new approach predicting the maximal discharge has been developed. • The approach has been discussed versus its linearity coefficient. • The approach effectiveness has been investigated and approved. • Theoretical and experimental obtained values have been compared and approved. - Abstract: A directly-coupled photovoltaic water pumping system (DC/PVPS) is generally designed by considering the worst month conditions on lowest daylight-hours, the maximum monthly daily required water volume and tank to store the excess water. In case of absence of hydraulic storage (water tank) or it is not enough dimensioned, the extra amount of pumped water is lost or is not reasonably used, when the system is operated on full daylight-hour. Beside that the extra amount of energy, which might be produced by the PV generator, is not exploited, when the system is operated only during a specified period-time needed to satisfy the demand. Beyond the accurate design that satisfying the end-user, a new approach has been developed as target to exploit maximally the PV array energy production, by maximizing the discharge rate of the system. The methodology consists of approaching maximally the demanded energy to the supplied energy on full operating day. Based on the demand/supply energy condition, the approach has been developed, upon the PV array and the pump performance models. The issued approach predicts the maximum delivery capacity of the system on monthly daily water volumes versus the monthly daily averages of solar irradiation, previously recorded. Its efficacy has been investigated and discussed according to the estimated and experimental values of its linearity coefficient, following the characterization tests of a designed system, carried out at our pumping test facility in Ghardaia (Algeria). The new theoretically and experimentally obtained flow-rates fit well, except

  20. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  1. Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes

    Science.gov (United States)

    Liu, Shaobo; Zhao, Yang; Zhang, Baihui; Xia, Hui; Zhou, Jianfei; Xie, Wenke; Li, Hongjian

    2018-03-01

    Hierarchical nano-micro carbon spheres@rice straw-derived porous carbon composites are successfully synthesized by the in situ decoration of the porous carbon with carbon spheres from glucose under the assistance of cetyltrimethyl ammonium bromide micelles and further activated by KOH. The scanning electron microscope images clearly show the carbon spheres disperse homogeneously and orderly onto the surface and in the inner macropores of the porous carbon. The diameter of the carbon spheres varies from 475 nm to 1.6 μm, which can be easily controlled by introducing extra inducing agent. The optimal composites exhibit a large specific surface area (1122 m2 g-1), rich content of oxygen (14.2 wt %), and tunable hierarchical porous structure. When used as supercapacitor electrodes, the novel composites with abundant fruits present a high specific capacitance of 337 F g-1 at 1 A g-1, excellent rate retention of 83% from 1 to 20 A g-1 and a good cycling stability with 96% capacitance retention after 10000 cycles. In this strategy, the thought of shared ion-buffering reservoirs is proposed and the mutual promotion effects between the carbon spheres and porous carbon in the composites are also practically demonstrated to contribute the enhanced electrochemical performances.

  2. Input-output supervisor

    International Nuclear Information System (INIS)

    Dupuy, R.

    1970-01-01

    The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr

  3. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    Across the range of renewable energy resources, bioenergy is probably the most complex, as using biomass to support energy services ties into a number of fields; climate change, food production, rural development, biodiversity and environmental protection. Biomass offer several options...... for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...... the undesirable impacts of bioenergy done wrong. However, doing bioenergy right is a significant challenge due to the ties into other fields of society. Fundamentally plant biomass is temporary storage of solar radiation energy and chemically bound energy from nutrients. Bioenergy is a tool to harness solar...

  4. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  5. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  6. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Shuman, J K; Shugart, H H

    2009-01-01

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  7. The impacts of regulation via the allowed rate of return constraint on social welfare, input choices, and level of output in the privately-owned electric utilities in the United States

    International Nuclear Information System (INIS)

    Phongam, S.

    1990-01-01

    This study analyzes the effect of change in price elasticity of demand for electricity on social welfare, allowed rate of return, and marginal revenue product of each input used to produce electricity. Price elasticities of demand for electricity in residential, commercial, and industrial sectors are compared as well as total demand in 1987. Also compared are these price elasticities between 1982 and 1987. Several conclusions are: (1) There is an overcapitalization in privately-owned electric utilities because at the chosen level of output, marginal revenue product of capital is less than its price. (2) Elastic demand for electricity will improve values of social welfare and marginal revenue product of inputs. (3) Tightening allowed rate of return will increase the amount of capital and labor usages, but decrease fuel, output, and social welfare. (4) Both residential and industrial demand for electricity are elastic, but commercial demand is inelastic. (5) By making comparison of price elasticity of demand between 1982 and 1987, it shows that price elasticity of demand for electricity in residential, industrial, and total demand are increasing. However, for the commercial sector, the price elasticity is decreasing somewhat

  8. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  9. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  10. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics.

    Science.gov (United States)

    Franco-Vidal, Leticia; Morán, Xosé Anxelu G

    2011-02-01

    Specific growth rates of heterotrophic bacterioplankton have been frequently estimated from in situ bacterial production (BP) to biomass (BB) ratios, using a series of assumptions that may result in serious discrepancies with values obtained from predator-free cultures. Here, we used both types of approaches together with a comprehensive assessment of single-cell physiological characteristics (membrane integrity, nucleic acid content, and active respiration) of coastal bacterioplankton during a complete annual cycle (February 2007-January 2008) in the southern Bay of Biscay off Xixón, Spain. Both leucine and thymidine incorporation rates were used in conjunction with empirical tracer to carbon or cells conversion factors (eCFs) to accurately derive BP. Leu and TdR incorporation rates covaried year-round, as did the corresponding eCFs at 0 and 50 m depth. eCFs peaked in autumn, with mean annual values close to the theoretical ones (3.4 kg C mol Leu(-1) and 2.0 × 10(18) cells mol TdR(-1)). Bacterial abundance (0.2-1.5 × 10(6) cells L(-1)) showed a bimodal distribution with maxima in May and October and minima in March. Live (membrane-intact) cells dominated year-round (79-97%), with high nucleic acid cells (42-88%) and actively respiring bacteria (CTC+, 1-16%) showing distinct surface maxima in April and July, respectively. BB (557-1,558 mg C m(-2)) and BP (7-139 mg C m(-2) day(-1)) presented two distinct peaks in spring and autumn, both of similar size due to a strong upwelling event observed in September. Specific growth rates (0.35-3.8 day(-1)) were one order of magnitude higher in predator-free incubations than bacterial turnover rates derived from integrated BP:BB ratios (0.01-0.16 and 0.01-0.09 day(-1), for Leu and TdR, respectively) and were not correlated, probably due to a significant contribution of low activity cells to total standing stocks. The Leu:TdR molar ratio averaged for the water column (6.6-25.5) decreased significantly with higher integrated

  11. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  12. The Influence of Stress Treatments on the Microbial Biomass and the Rate of Decomposition of Humified Matter in Soils Containing Different Amounts of Clay

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1983-01-01

    originating from straw. The addition of unlabeled glucose accelerated the evolution of labeled CO2-C in all 4 soils. The size of the effect on CO2 evolution and on the biomass was similar to that of air-drying. Grinding killed a larger percentage of the biomass in the sandy soil than in the soils with a high...... with CHCl3 mainly consists of dormant organisms. CO2 production, the biological activity, was related to the amount of available organic material and not the size of the biomass....

  13. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  14. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.

    Science.gov (United States)

    Majerczak, J; Szkutnik, Z; Karasinski, J; Duda, K; Kolodziejski, L; Zoladz, J A

    2006-06-01

    The aim of this study was to examine the relationship between the content of various types of myosin heavy chain isoforms (MyHC) in the vastus lateralis muscle and pulmonary oxygen uptake during moderate power output incremental exercise, performed at low and at high pedalling rates. Twenty one male subjects (mean +/- SD) aged 24.1 +/- 2.8 years; body mass 72.9 +/- 7.2 kg; height 179.1 +/- 4.8 cm; BMI 22.69 +/- 1.89 kg.m(-2); VO2max 50.6 +/- 5.3 ml.kg.min(-1), participated in this study. On separate days, they performed two incremental exercise tests at 60 rev.min(-1) and at 120 rev.min(-1), until exhaustion. Gas exchange variables were measured continuously breath by breath. Blood samples were taken for measurements of plasma lactate concentration prior to the exercise test and at the end of each step of the incremental exercise. Muscle biopsies were taken from the vastus lateralis muscle, using Bergström needle, and they were analysed for the content of MyHC I and MyHC II using SDS--PAGE and two groups (n=7, each) were selected: group H with the highest content of MyHC II (60.7 % +/- 10.5 %) and group L with the lowest content of MyHC II (27.6 % +/- 6.1 %). We have found that during incremental exercise at the power output between 30-120 W, performed at 60 rev.min(-1), oxygen uptake in the group H was significantly greater than in the group L (ANCOVA, p=0.003, upward shift of the intercept in VO2/power output relationship). During cycling at the same power output but at 120 rev.min(-1), the oxygen uptake was also higher in the group H, when compared to the group L (i.e. upward shift of the intercept in VO2/power output relationship, ANCOVA, p=0.002). Moreover, the increase in pedalling rate from 60 to 120 rev.min(-1) was accompanied by a significantly higher increase of oxygen cost of cycling and by a significantly higher plasma lactate concentration in subjects from group H. We concluded that the muscle mechanical efficiency, expressed by the VO2/PO ratio

  15. Output hardcopy devices

    CERN Document Server

    Durbeck, Robert

    1988-01-01

    Output Hardcopy Devices provides a technical summary of computer output hardcopy devices such as plotters, computer output printers, and CRT generated hardcopy. Important related technical areas such as papers, ribbons and inks, color techniques, controllers, and character fonts are also covered. Emphasis is on techniques primarily associated with printing, as well as the plotting capabilities of printing devices that can be effectively used for computer graphics in addition to their various printing functions. Comprised of 19 chapters, this volume begins with an introduction to vector and ras

  16. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas.

    Science.gov (United States)

    Cheng, Jun; Guo, Wangbiao; Ameer Ali, Kubar; Ye, Qing; Jin, Guiyong; Qiao, Zhanshan

    2018-08-01

    The helix pitch and trichome length of Spirulina sp. were promoted to improve the biomass harvesting efficiency and CO 2 fixation rate in 660 m 2 raceway ponds aerated with food-grade CO 2 purified from a coal chemical flue gas. The CO 2 fixation rate was improved with increased trichome length of the Spirulina sp. in a raceway pond with double paddlewheels, baffles, and CO 2 aerators (DBA raceway pond). The trichome length has increased by 33.3 μm, and CO 2 fixation rate has increased by 42.3% and peaked to 51.3 g/m 2 /d in a DBA raceway pond. Biomass harvesting efficiency was increased with increased helix pitch. When the day-average greenhouse temperature was 33 °C and day-average sunlight intensity was 72,100 lu×, the helix pitch of Spirulina sp. was increased to 56.2 μm. Hence the biomass harvesting efficiency was maximized to 75.6% and biomass actual yield was increased to 35.9 kg in a DBA raceway pond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. WRF Model Output

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains WRF model output. There are three months of data: July 2012, July 2013, and January 2013. For each month, several simulations were made: A...

  18. VMS forms Output Tables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These output tables contain parsed and format validated data from the various VMS forms that are sent from any given vessel, while at sea, from the VMS devices on...

  19. Governmentally amplified output volatility

    Science.gov (United States)

    Funashima, Yoshito

    2016-11-01

    Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.

  20. CMAQ Model Output

    Data.gov (United States)

    U.S. Environmental Protection Agency — CMAQ and CMAQ-VBS model output. This dataset is not publicly accessible because: Files too large. It can be accessed through the following means: via EPA's NCC tape...

  1. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  2. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  3. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K; Keraenen, H [Enviropower Inc., Espoo (Finland)

    1997-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  4. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  5. Monsoon-induced changes in the size-fractionated phytoplankton biomass and production rate in the estuarine and coastal waters of southwest coast of India.

    Science.gov (United States)

    Madhu, N V; Jyothibabu, R; Balachandran, K K

    2010-07-01

    Changes in the autotrophic pico- (0.2-2 microm), nano- (2-20 microm), and microplankton (>20 microm) biomass (chlorophyll a) and primary production were measured in the estuarine and coastal waters off Cochin, southwest coast of India during the onset and establishment of a monsoon. During this period, the estuary was dominated by nutrient-rich freshwater, whereas the coastal waters were characterized with higher salinity values (>30 psu) and less nutrients. The average surface chlorophyll a concentrations and primary production rates were higher in the estuary (average 13.7 mg m(-3) and 432 mgC m(-3) day(-1)) as compared to the coastal waters (5.3 mg m(-3) and 224 mgC m(-3) day(-1)). The nanoplankton community formed the major fraction of chlorophyll a and primary production, both in the estuary (average 85 +/- SD 8.3% and 81.2 +/- SD 3.2%) and the coastal waters (average 73.2 +/- SD 17.2% and 81.9 +/- 15.7%). Nanoplankton had the maximum photosynthetic efficiency in the coastal waters (average 4.8 +/- SD 3.9 mgC mgChl a m(-3) h(-1)), whereas in the estuary, the microplankton had higher photosynthetic efficiency (average 7.4 +/- 7 mgC mgChl a m(-3) h(-1)). The heavy cloud cover and increased water column turbidity not only limit the growth of large-sized phytoplankton in the Cochin estuary and coastal waters but also support the proliferation of nanoplankton community during the monsoon season, even though large variation in nanoplankton chlorophyll a and production exists between these two areas.

  6. Oil output's changing fortunes

    International Nuclear Information System (INIS)

    Eldridge, D.

    1994-01-01

    The Petroleum Economist, previously the Petroleum Press Service, has been making annual surveys of output levels of petroleum in all the oil-producing countries since its founding in 1934. This article documents trends and changes in the major oil-producing countries output from 1934 until the present. This analysis is linked with the political and historical events accompanying these changes, notably the growth of Middle Eastern oil production, the North Sea finds and most recently, Iraq's invasion of Kuwait in 1990. (UK)

  7. Cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Andreja Möller Petrun

    2014-02-01

    Full Text Available In recent years, developments in the measuring of cardiac output and other haemodynamic variables are focused on the so-called minimally invasive methods. The aim of these methods is to simplify the management of high-risk and haemodynamically unstable patients. Due to the need of invasive approach and the possibility of serious complications the use of pulmonary artery catheter has decreased. This article describes the methods for measuring cardiac output, which are based on volume measurement (Fick method, indicator dilution method, pulse wave analysis, Doppler effect, and electrical bioimpedance.

  8. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  9. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  10. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  11. AUTOMATIC BIOMASS BOILER WITH AN EXTERNAL THERMOELECTRIC GENERATOR

    OpenAIRE

    Marian Brázdil; Ladislav Šnajdárek; Petr Kracík; Jirí Pospíšil

    2014-01-01

    This paper presents the design and test results of an external thermoelectric generator that utilizes the waste heat from a small-scale domestic biomass boiler with nominal rated heat output of 25 kW. The low-temperature Bi2Te3 generator based on thermoelectric modules has the potential to recover waste heat from gas combustion products as effective energy. The small-scale generator is constructed from independent segments. Measurements have shown that up to 11 W of electricity can be generat...

  12. Improvement in low-temperature and instantaneous high-rate output performance of Al-free AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery: Effect of thermodynamic and kinetic regulation via partial Mn substituting

    Science.gov (United States)

    Zhou, Wanhai; Zhu, Ding; Tang, Zhengyao; Wu, Chaoling; Huang, Liwu; Ma, Zhewen; Chen, Yungui

    2017-03-01

    A series of Al-free Mn-modified AB5-type hydrogen storage alloys have been designed and the effects of thermodynamic stability and electrochemical kinetics on electrochemical performance via Mn substituting have been investigated. Compared with high-Al alloys, the Al-free alloys in this study have better low-temperature performance and instantaneous high-rate output because of the higher surface catalytic ability. After partial substitution of Ni by Mn, both the hydrogen desorption capacity and plateau pressure decrease, and correspondingly results in an improved thermodynamic stability which is adverse to low-temperature delivery. Additionally, with the improvement of charge acceptance ability and anti-corrosion property via Mn substitution, the room-temperature discharge capacity and cycling stability increase slightly. However, Mn adversely affects the electrochemical kinetics and deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability, leading to the drop of low-temperature dischargeability, high-rate dischargeability and peak power (Ppeak). Based on the thermodynamic and kinetic regulation and overall electrochemical properties, the optimal composition is obtained when x = 0.2, the discharge capacity is 243.6 mAh g-1 at -40 °C with 60 mA g-1, and the Ppeak attains to 969.6 W kg-1 at -40 °C.

  13. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  14. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  15. Influence of harvest managements on biomass nutrient concentrations and removal rates of festulolium and tall fescue from a poorly drained nutrient-rich fen peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Lærke, Poul Erik

    2017-01-01

    This study was designed to show the effects of harvest time and frequency on biomass nutrient concentrations (total ash, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn) as well as total nutrient removal potential by festulolium and tall fescue cultivated on a nutrient-rich fen peatland. The harvest managemen...

  16. Studies of biomass devolatilization rates in fixed and fluidized beds; Estudo das taxas de devolatilizacao de biomassa em leito fixo e leito fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, C G; Peel, B R [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica; Santos, F.J. dos [UNESP, Rio Claro, SP (Brazil). Inst. de Fisica

    1991-12-31

    Devolatilization time of biomass is studied in this work. In a laboratory scale fluidized bed and in a tubular furnace, samples of eucalyptus, peroba and bagasse were burned. Volatile matter burnout time were determined by visual observations (author). 7 refs., 4 figs., 7 tabs.

  17. Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure

    Science.gov (United States)

    Carlos A. Gonzalez-Benecke; Eric J. Jokela; Wendell P. Cropper; Rosvel Bracho; Daniel J. Leduc

    2014-01-01

    The forest simulation model, 3-PG, has been widely applied as a useful tool for predicting growth of forest species in many countries. The model has the capability to estimate the effects of management, climate and site characteristics on many stand attributes using easily available data. Currently, there is an increasing interest in estimating biomass and assessing...

  18. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  19. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  20. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  1. Transporter engineering in biomass utilization by yeast.

    Science.gov (United States)

    Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko

    2017-11-01

    Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  3. Estimation of international output-energy relation. Effects of alternative output measures

    International Nuclear Information System (INIS)

    Shrestha, R.M.

    2000-01-01

    This paper analyzes the output-energy relationship with alternative measures of output and energy. Our analysis rejects the hypothesis of non-diminishing returns to energy consumption when GDP at purchasing power parities is used as the output measure unlike the case with GNP at market exchange rates. This finding also holds when energy input includes the usage of both commercial and traditional fuels. 13 refs

  4. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  5. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  6. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  7. Washington State biomass data book

    International Nuclear Information System (INIS)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs

  8. Explaining output volatility: The case of taxation

    DEFF Research Database (Denmark)

    Posch, Olaf

    the second moment of output growth rates without (long-run) effects on the first moment. Taking the model to the data, we exploit observed heterogeneity patterns to estimate effects of tax rates on macro volatility using panel estimation, explicitly modeling the unobserved variance process. We find a strong......This paper studies the effects of taxation on output volatility in OECD countries to shed light on the sources of observed heterogeneity over time and across countries. To this end, we derive tax effects on macro aggregates in a stochastic neoclassical model. As a result, taxes are shown to affect...... positive effects....

  9. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of fertility, weed density and crop competition on biomass partitioning in Centaurea cyanus L.

    Directory of Open Access Journals (Sweden)

    Łukasz Chachulski

    2014-01-01

    Full Text Available The influence of environmental factors on biomass partitioning of annual arable weed Centaurea cyanus was analysed. We investigated the effect of fertilisation, density and competition with the winter rye crop on the reproductive investment. Three fertiliser treatments and three density levels were applied. In Centaurea cyanus differences in the pattern of biomass allocation to reproduction are related to plant size. The relationship between reproductive and vegetative mass is close to linear. It is consistent with the model of linear size-dependent reproductive output. In Centaurea cyanus this model worked well for size differences that have been generated by interspecific competition, nutrients supply and density. Our data support the hypothesis that plastic changes in relationship between vegetative and generative biomass are environmentally-induced. Significantly different relationship between vegetative and reproductive biomass were detected among populations growing at different density and fertility levels. The fertilisation with mineral fertiliser and manure resulted in an increase of generative biomass allocated to flowerheads and a decrease of reproductive effort. Generative dry weight increased more rapidly with plant size in higher densities of population and at lower fertility levels. The experiment showed that the rate of weight allocated to reproductive structures was bigger under the pressure of competition with cereal crop. At low fertility level and high density, when the individuals were small, generative biomass increased faster with plant size. The production of seeds was not directly dependent on biomass allocated into total reproductive structures. At low level, of nutrient supply C. cyanus gave more offspring per gram of its biomass. We discuss the results in context of life-history theory. From the strategic point of view, size-dependent variation in reproductive effort and in efficiency of reproduction can be

  11. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  12. Cardiac output during exercise

    DEFF Research Database (Denmark)

    Siebenmann, C; Rasmussen, P.; Sørensen, H.

    2015-01-01

    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from...... the right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported...... a progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0...

  13. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  14. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  15. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  16. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  17. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ΔHCN/ΔCO emission ratio, however, is fairly consistent at 0.9 ± 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of

  18. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  19. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    Science.gov (United States)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  20. Inverter communications using output signal

    Science.gov (United States)

    Chapman, Patrick L.

    2017-02-07

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  1. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  2. Some metals in aboveground biomass of Scots pine in Lithuania

    DEFF Research Database (Denmark)

    Varnagiryte-Kabašinskiene, Iveta; Armolaitis, Kestutis; Stupak, Inge

    2014-01-01

    with stemwood and living branches. However, metal export with aboveground biomass represented relatively small proportion of metals in mineral sandy soil. The annual inputs of Fe and Zn with atmospheric deposition were over 10 times higher than the mean annual removals with total aboveground biomass....... The content of metals in forest biomass fuel ash was relatively small to compare with their total removals. The findings of this study have an important implications for future practice, i.e. the recommended maximum forest biomass fuel ash dose for the compensating fertilising could be increased with respect...... to balanced output - input in Lithuania....

  3. Performance Evaluation of a Lithium-Chloride Absorption Refrigeration and an Assessment of Its Suitability for Biomass Waste Heat

    Directory of Open Access Journals (Sweden)

    Sacha Oberweis

    2012-10-01

    Full Text Available This paper presents a computer model that will evaluate the performance of a thermo-chemical accumulator. The model is based on operational data such as temperatures and flow rates. The ultimate goal for this model is to estimate the coefficient of performance (COP of this unit when run on hot water from biomass combustion as the heat source. The outputs of the model are verified by comparing the simulation of the actual machine with published experimental data. The computed results for cooling COP are within 10% of the measured data. The simulations are all run for heat load temperatures varying between 80 °C and 110 °C. As expected, simulation results showed an increase in COP with increased heat source temperatures. The results demonstrate that the potential of combined solar and biomass combustion as a heat source for absorption cooling/heating in climates with low solar radiation can be coupled with biomass waste.

  4. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature.

    Science.gov (United States)

    Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M

    2017-01-01

    Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.

  5. Enhanced performance CCD output amplifier

    Science.gov (United States)

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  6. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  7. Peripheral vasodilatation determines cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Bada, A A; Svendsen, J H; Secher, N H

    2012-01-01

    In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral...... arterial ATP infusion at rest. Exercise and ATP infusion increased cardiac output, leg blood flow and vascular conductance (P heart rate by up to 54 beats min(−1), cardiac output did not change in any of the three...... demonstrate that the elevated cardiac output during steady-state exercise is regulated by the increase in skeletal muscle blood flow and venous return to the heart, whereas the increase in heart rate appears to be secondary to the regulation of cardiac output....

  8. Thermodynamic simulation of a multi-step externally fired gas turbine powered by biomass

    International Nuclear Information System (INIS)

    Durante, A.; Pena-Vergara, G.; Curto-Risso, P.L.; Medina, A.; Calvo Hernández, A.

    2017-01-01

    Highlights: • A realistic model for an EFGT fueled with solid biomass is presented. • Detailed submodels for the HTHE and the chemical reactions are incorporated. • An arbitrary number of compression and expansion stages is considered. • Model validation leads to good agreement with experimental results. • A layout with two-stage compression leads to good efficiencies and power output. - Abstract: A thermodynamic model for a realistic Brayton cycle, working as an externally fired gas turbine fueled with biomass is presented. The use of an external combustion chamber, allows to burn dirty fuels to preheat pure air, which is the working fluid for the turbine. It also avoids direct contact of ashes with the turbine blades, resulting in a higher life cycle for the turbine. The model incorporates a high temperature heat exchanger and an arbitrary number of turbines and compressors, with the corresponding number of intercoolers and reheaters. It considers irreversibilities such as non-isentropic compressions and expansions, and pressure losses in heat input and release. The composition and temperature of the combustion gases, as well as the variable flow rate of air and combustion gases, are calculated for specific biomasses. The numerical model for a single stage configuration has been validated by comparing its predictions with the data sheets of two commercial turbines. Results are in good agreement. Curves on the dependence of thermal efficiency and power output with the overall pressure ratio will be shown for several plant configurations with variable number of compression/expansion stages. Also the influence of different types of biomasses and their moisture will be analyzed on parameters such as fuel consumption and exhaust gases temperature. For a single step plant layout fueled with eucalyptus wood an efficiency of 23% is predicted, whereas for a configuration with two compressors and one turbine efficiency increases up to 25%. But it is remarkable

  9. AUTOMATIC BIOMASS BOILER WITH AN EXTERNAL THERMOELECTRIC GENERATOR

    Directory of Open Access Journals (Sweden)

    Marian Brázdil

    2014-02-01

    Full Text Available This paper presents the design and test results of an external thermoelectric generator that utilizes the waste heat from a small-scale domestic biomass boiler with nominal rated heat output of 25 kW. The low-temperature Bi2Te3 generator based on thermoelectric modules has the potential to recover waste heat from gas combustion products as effective energy. The small-scale generator is constructed from independent segments. Measurements have shown that up to 11 W of electricity can be generated by one segment. Higher output power can be achieved by linking thermoelectric segments. The maximum output power is given by the dew point of the flue gas. The electrical energy that is generated can be used, e.g., for power supply or for charging batteries. In the near future, thermoelectric generators could completely eliminate the dependence an automated domestic boiler system on the power supply from the electricity grid, and could ensure comfortable operation in the event of an unexpected power grid failure.

  10. Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates

    KAUST Repository

    Al-Hafedh, Yousef S.; Alam, Aftab; Buschmann, Alejandro H.

    2014-01-01

    Growth, production and biofiltration rates of seaweed, Ulva lactuca were investigated at two stocking densities (3 kg and 6 kg m-2) and two effluent flow rates (5.4 and 10.8 m3 day-1) to optimize an integrated mariculture system at Saudi Red Sea coast. effluents from fish-rearing tank, stocked with 200 kg fish (Oreochromis spilurus), fed to six seaweed tanks via sedimentation tank. Fish growth (weight gain 1.75 g fish day-1), net production (NP, 10.16 kg m-3) and survival (94.24%) were within acceptable limits. Ulva showed significantly higher (F = 62.62, d.f. 3, 35; P < 0.0001) specific growth rates at lower density compared with higher density and under high flow versus low flow (SGR = 5.78% vs. 2.55% at lower flow and 10.60% vs. 6.26% at higher flow). Biomass yield of Ulva at low- and high-stocking densities (111.11 and 83.2 g wet wt m-2 day-1, respectively) at low flow and (267.44 and 244.19 g wet wt m-2 day-1, respectively) at high flow show that high flow rate and lower density favoured growth. Removal rates of total ammonia nitrogen (TAN) (0.26-0.31 g m-2 day-1) and phosphate phosphorus (0.32-0.41 g m-2 day-1) by U. lactuca were not significantly different (F = 1.9, d.f. 3, 59; P = 0.1394 for TAN and F = 0.29, d.f. 3, 59; P = 0.8324 for phosphates) at both the flow rates and stocking densities. Results show that the effluent flow rate has significant impact over the performance of the seaweed than stocking density.

  11. Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates

    KAUST Repository

    Al-Hafedh, Yousef S.

    2014-03-19

    Growth, production and biofiltration rates of seaweed, Ulva lactuca were investigated at two stocking densities (3 kg and 6 kg m-2) and two effluent flow rates (5.4 and 10.8 m3 day-1) to optimize an integrated mariculture system at Saudi Red Sea coast. effluents from fish-rearing tank, stocked with 200 kg fish (Oreochromis spilurus), fed to six seaweed tanks via sedimentation tank. Fish growth (weight gain 1.75 g fish day-1), net production (NP, 10.16 kg m-3) and survival (94.24%) were within acceptable limits. Ulva showed significantly higher (F = 62.62, d.f. 3, 35; P < 0.0001) specific growth rates at lower density compared with higher density and under high flow versus low flow (SGR = 5.78% vs. 2.55% at lower flow and 10.60% vs. 6.26% at higher flow). Biomass yield of Ulva at low- and high-stocking densities (111.11 and 83.2 g wet wt m-2 day-1, respectively) at low flow and (267.44 and 244.19 g wet wt m-2 day-1, respectively) at high flow show that high flow rate and lower density favoured growth. Removal rates of total ammonia nitrogen (TAN) (0.26-0.31 g m-2 day-1) and phosphate phosphorus (0.32-0.41 g m-2 day-1) by U. lactuca were not significantly different (F = 1.9, d.f. 3, 59; P = 0.1394 for TAN and F = 0.29, d.f. 3, 59; P = 0.8324 for phosphates) at both the flow rates and stocking densities. Results show that the effluent flow rate has significant impact over the performance of the seaweed than stocking density.

  12. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling

    NARCIS (Netherlands)

    Zotarelli, L.; Scholberg, J.M.S.; Dukes, M.D.; Munoz-Carpena, R.; Icerman, J.

    2009-01-01

    Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation

  13. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  14. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  15. Biomass harvesting in Eucalyptus plantations in Western Australia ...

    African Journals Online (AJOL)

    Australia is at an early stage of exploring the use of forest biomass to generate energy. This study evaluated the biomass yield and the productivity rates of equipment for harvesting biomass in a poor-quality eucalypt plantation. The operation consisted of a tracked feller-buncher, grapple skidder and mobile chipper.

  16. Technoeconomic assessment of biomass to energy

    International Nuclear Information System (INIS)

    Mitchell, C.P.; Watters, M.P.

    1995-01-01

    A spreadsheet-based decision support system has been developed that allows easy evaluation of integrated biomass to electricity and biomass to ethanol systems. The Bioenergy Assessment Model (BEAM) has been developed to allow the techno-economic assessment of biomass to electricity and biomass to ethanol schemes, including investigation of the interfacing issues. Technical and economic parameters can be assessed for a variety of feedstocks, conversion technologies and generating cycles. Production modules are currently available for biomass supply from short rotation coppice and conventional forestry relevant to conditions and practices in NW Europe. The biomass conversion modules include pre-treatment (reception, storage, handling, comminution, screening and drying); atmospheric gasification (generic gasifier, wet gas scrubbing, dual fuel engine); pressure gasification (generic gasifier, hot gas filtration, gas turbine combined cycle); fast pyrolysis for liquid bio-fuel-oil (pyrolyser, oil storage, pilot-injected diesel engine); combustion (fluid bed combuster steam turbine), conventional acid hydrolysis fermentation and the NREL SSF process to ethanol. In addition there is a further module which can be used to examine the collection, mass burn and generation of electricity from MSW. BEAM has been used, and the results presented in this paper, to determine the costs of generating bio-electricity from short rotation coppice and conventional forestry over a range of power outputs and for each conversion technology. Alternative feedstock supply strategies have been examined and relations drawn between delivered feedstock cost and cost of electricity. (author)

  17. Study of the Apparent Kinetics of Biomass Gasification Using High-Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Alevanau, Aliaksandr

    2010-10-15

    Among the latest achievements in gasification technology, one may list the development of a method to preheat gasification agents using switched ceramic honey combs. The best output from this technology is achieved with use of water steam as a gasification agent, which is heated up to 1600 deg C. The application of these temperatures with steam as a gasification agent provides a cleaner syngas (no nitrogen from air, cracked tars) and the ash melts into easily utilised glass-like sludge. High hydrogen content in output gas is also favourable for end-user applications.Among the other advantages of this technology is the presumable application of fixed-bed-type reactors fed by separately produced and preheated steam. This construction assumes relatively high steam flow rates to deliver the heat needed for endothermic reactions involving biomass. The biomass is to be heated uniformly and evenly in the volume of the whole reactor, providing easier and simpler control and operation in comparison to other types of reactors. To provide potential constructors and exploiters of these reactors with the kinetic data needed for the calculations of vital parameters for both reactor construction and exploitation, basic experimental research of high-temperature steam gasification of four types of industrially produced biomass has been conducted.Kinetic data have been obtained for straw and wood pellets, wood-chip charcoal and compressed charcoal of mixed origin

  18. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  19. Simulated biomass, environmental impacts and best management practices for long-term switchgrass systems in a semi-arid region

    International Nuclear Information System (INIS)

    Wang, Limei; Qian, Yaling; Brummer, Joe E.; Zheng, Jiyong; Wilhelm, Sarah; Parton, William J.

    2015-01-01

    Long-term information on switchgrass (Panicum virgatum L.) as a biomass energy crop grown on marginally saline soil and the associated impacts on soil carbon (C) and nitrogen (N) dynamics, greenhouse gas (GHG) emissions, and best management practices (BMPs) are limited. In this study, we employed the DAYCENT model, based on a 4-year switchgrass field experiment, to evaluate the long-term biomass yield potential and environmental impacts, and further to develop BMPs for switchgrass in a semi-arid region. The model showed that long-term (14-year) annual mean biomass yields were 9.6 and 5.2 Mg ha −1 for irrigated and rainfed switchgrass systems, respectively. The simulated biomass yields correlated well with field-measured biomass with r 2 values of 0.99 and 0.89 for irrigated and rainfed systems, respectively. Soil organic carbon (SOC) and soil total nitrogen (STN) accumulated rapidly after switchgrass establishment, with mean accrual rates of 0.99–1.13 Mg C ha −1  yr −1 and 0.04–0.08 Mg N ha −1  yr −1 , respectively. Based on the outputs of numerous long-term model simulations with variable irrigation water supplies and N rates, the irrigation regime and N rate with the highest yield to input ratio were chosen as BMPs. The DAYCENT model predicted-BMP was irrigating every 14 days at 70% potential evapotranspiration combined with an N rate of 67 kg ha −1  yr −1 . Switchgrass established and produced biomass reasonably well in this semi-arid region; however, appropriate irrigation and N fertilization were needed for optimal biomass yield. Switchgrass had a great potential to sequester C into soils with low N 2 O emissions while supplying significant quantities of biomass for biofuel synthesis. - Highlights: • The DAYCENT model reliably simulated the growth of switchgrass on marginal land. • Long-term biomass and environmental impacts were simulated using the DAYCENT model. • Switchgrass produced biomass well on marginal land, but

  20. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  1. Multiple output timing and trigger generator

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  2. Output

    DEFF Research Database (Denmark)

    Mehlsen, Camilla

    2010-01-01

    Hvad får vi egentlig ud af internationale komparative undersøgelser som PISA, PIRLS og TIMSS? Hvordan påvirker de dansk uddannelsespolitik? Asterisk har talt med tre forskere med ekspertise på området.......Hvad får vi egentlig ud af internationale komparative undersøgelser som PISA, PIRLS og TIMSS? Hvordan påvirker de dansk uddannelsespolitik? Asterisk har talt med tre forskere med ekspertise på området....

  3. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed

  4. Market dynamics of biomass fuel in California

    International Nuclear Information System (INIS)

    Delaney, W.F.; Zane, G.A.

    1991-01-01

    The California market for biomass fuel purchased by independent power producers has grown substantially since 1980. The PURPA legislation that based power purchase rates upon the 'avoided cost' of public utilities resulted in construction of nearly 900 Megawatts of capacity coming online by 1991. Until 1987, most powerplants were co-sited at sawmills and burned sawmill residue. By 1990 the installed capacity of stand-alone powerplants exceeded the capacity co-sited at wood products industry facilities. The 1991 demand for biomass fuel is estimated as 6,400,000 BDT. The 1991 market value of most biomass fuel delivered to powerplants is from $34 to $47 per BDT. Biomass fuel is now obtained from forest chips, agriculture residue and urban wood waste. The proportion of biomass fuel from the wood products industry is expected to decline and non-traditional fuels are expected to increase in availability

  5. Static viscoelasticity of biomass polyethylene composites

    Directory of Open Access Journals (Sweden)

    Keyan Yang

    Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation

  6. Solid biomass barometer - EurObserv'ER - November 2010

    International Nuclear Information System (INIS)

    2010-11-01

    solid biomass leaves the other renewable energy sources standing in terms of use and potential. Primary energy output from solid biomass combustion rose in 2009 yet again to a new height of 72.8 Mtoe, which equates to a 3.6% increase on 2008. The reason for this exploit, which prevailed over the tight economic context, is the resolve made by many countries to rely on this energy to achieve their European electricity or heat production target levels

  7. Redesign lifts prep output 288%

    Energy Technology Data Exchange (ETDEWEB)

    Hamric, J

    1987-02-01

    This paper outlines the application of engineering creativity and how it brought output at an Ohio coal preparation plant up from 12,500 tpd to nearly four times that figure, 48,610 tpd. By streamlining the conveyor systems, removing surplus belt length and repositioning subplants the whole operation was able to run far more efficiently with a greater output. Various other alterations including the raw material supply and management and operating practices were also undertaken to provide a test for the achievements possible with such reorganization. The new developments have been in the following fields: fine coal cleaning, heavy media cyclones, feeders, bins, filter presses, dewatering equipment and settling tanks. Output is now limited only by the reduced demand by the Gavin power station nearby.

  8. Period meter output in response to terminated ramps of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J D [Dynamics Group, Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-07-15

    The time behaviour of the period meter output has been determined for a range of total reactivity injections and reactivity rates. Some results which are directly applicable to graphite gas cooled reactors are given. (author)

  9. New Sufficient LMI Conditions for Static Output Stabilization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher

    2014-01-01

    This paper presents new linear matrix inequality conditions to the static output feedback stabilization problem. Although the conditions are only sufficient, numerical experiments show excellent success rates in finding a stabilizing controller....

  10. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  11. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  12. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  13. Sustainability considerations for electricity generation from biomass

    International Nuclear Information System (INIS)

    Evans, Annette; Strezov, Vladimir; Evans, Tim J.

    2010-01-01

    The sustainability of electricity generation from biomass has been assessed in this work according to the key indicators of price, efficiency, greenhouse gas emissions, availability, limitations, land use, water use and social impacts. Biomass produced electricity generally provides favourable price, efficiency, emissions, availability and limitations but often has unfavorably high land and water usage as well as social impacts. The type and growing location of the biomass source are paramount to its sustainability. Hardy crops grown on unused or marginal land and waste products are more sustainable than dedicated energy crops grown on food producing land using high rates of fertilisers. (author)

  14. Process for treating biomass

    Science.gov (United States)

    Campbell, Timothy J.; Teymouri, Farzaneh

    2018-04-10

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  15. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  16. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  17. World Input-Output Network.

    Directory of Open Access Journals (Sweden)

    Federica Cerina

    Full Text Available Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD is one of the first efforts to construct the global multi-regional input-output (GMRIO tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.

  18. Remote input/output station

    CERN Multimedia

    1972-01-01

    A general view of the remote input/output station installed in building 112 (ISR) and used for submitting jobs to the CDC 6500 and 6600. The card reader on the left and the line printer on the right are operated by programmers on a self-service basis.

  19. Compact Circuit Preprocesses Accelerometer Output

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  20. Integrated Biorefinery for Conversion of Biomass to Ethanol, Synthesis Gas, and Heat

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gerson [Abengoa Bioenergy, Hugoton, KS (United States)

    2017-06-20

    Goal of the project was to Design, build and operate a commercial scale bioethanol facility that uses sustainable biomass feedstock, drastically reduces greenhouse gas (GHG) emissions while achieving output production, yield and cost targets.

  1. Biomass energy development

    International Nuclear Information System (INIS)

    Ng'eny-Mengech, A.

    1990-01-01

    This paper deals more specifically with biomethanation process and non conventional sources of biomass energy such as water hyacinths and vegetable oil hydrocarbon fuels. It highlights socioeconomic issues in biomass energy production and use. The paper also contains greater details on chemical conversion methods and processes of commercial ethanol and methanol production. (author). 291 refs., 6 tabs

  2. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  3. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  4. World wide biomass resources

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2012-01-01

    In a wide variety of scenarios, policy strategies, and studies that address the future world energy demand and the reduction of greenhouse gas emissions, biomass is considered to play a major role as renewable energy carrier. Over the past decades, the modern use of biomass has increased

  5. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  6. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  7. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  8. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  9. UFO - The Universal FEYNRULES Output

    Science.gov (United States)

    Degrande, Céline; Duhr, Claude; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

    2012-06-01

    We present a new model format for automatized matrix-element generators, the so-called Universal FEYNRULES Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a PYTHON module that can easily be linked to other computer codes. We then describe an interface for the MATHEMATICA package FEYNRULES that allows for an automatic output of models in the UFO format.

  10. Aggregate Supply and Potential Output

    OpenAIRE

    Razin, Assaf

    2004-01-01

    The New-Keynesian aggregate supply derives from micro-foundations an inflation-dynamics model very much like the tradition in the monetary literature. Inflation is primarily affected by: (i) economic slack; (ii) expectations; (iii) supply shocks; and (iv) inflation persistence. This paper extends the New Keynesian aggregate supply relationship to include also fluctuations in potential output, as an additional determinant of the relationship. Implications for monetary rules and to the estimati...

  11. Cooled solar PV panels for output energy efficiency optimisation

    International Nuclear Information System (INIS)

    Peng, Zhijun; Herfatmanesh, Mohammad R.; Liu, Yiming

    2017-01-01

    Highlights: • Effects of cooling on solar PV performance have been experimentally investigated. • As a solar panel is cooled down, the electric output can have significant increase. • A cooled solar PV system has been proposed for resident application. • Life cycle assessment suggests the cost payback time of cooled PV can be reduced. - Abstract: As working temperature plays a critical role in influencing solar PV’s electrical output and efficacy, it is necessary to examine possible way for maintaining the appropriate temperature for solar panels. This research is aiming to investigate practical effects of solar PV surface temperature on output performance, in particular efficiency. Experimental works were carried out under different radiation condition for exploring the variation of the output voltage, current, output power and efficiency. After that, the cooling test was conducted to find how much efficiency improvement can be achieved with the cooling condition. As test results show the efficiency of solar PV can have an increasing rate of 47% with the cooled condition, a cooling system is proposed for possible system setup of residential solar PV application. The system performance and life cycle assessment suggest that the annual PV electric output efficiencies can increase up to 35%, and the annual total system energy efficiency including electric output and hot water energy output can increase up to 107%. The cost payback time can be reduced to 12.1 years, compared to 15 years of the baseline of a similar system without cooling sub-system.

  12. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  13. TG-FTIR analysis of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Bassilakis, R.; Carangelo, R.M.; Wojtowicz, M.A. [Advanced Fuel Research Inc., Hartford, CT (United States)

    2001-10-09

    A great need exists for comprehensive biomass-pyrolysis models that could predict yields and evolution patterns of selected volatile products as a function of feedstock characteristics and process conditions. A thermogravimetric analyzer coupled with Fourier transform infrared analysis of evolving products (TG-FTIR) can provide useful input to such models in the form of kinetic information obtained under low heating rate conditions. In this work, robust TG-FTIR quantification routes were developed for infrared analysis of volatile products relevant to biomass pyrolysis. The analysis was applied to wheat straw, three types of tobacco (Burley, Oriental, and Bright) and three biomass model compounds (xylan, chlorogenic acid, and D-glucose). Product yields were compared with literature data, and species potentially quantifiable by FT-IR are reviewed. Product-evolution patterns are reported for all seven biomass samples. 41 refs., 7 figs., 2 tabs.

  14. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  15. Effect of surface fouling on the output of PV panels

    Science.gov (United States)

    Zhang, Zele

    2018-04-01

    Surface fouling on the photovoltaic system caused by the output of a certain impact, therefore, it is very important to explore the effect of fouling on its contribution. Through the use of photovoltaic panels to collect Baoding area under different weather output data, and the collected data for comparative analysis, obtained under different environments on the impact of its contribution. It is concluded that the output of the photovoltaic cells will decrease, and the power drop rate will stabilize after three or four days. The effect of fouling on the fog haze and low temperature is more obvious.

  16. Does Black’s Hypothesis for Output Variability Hold for Mexico?

    OpenAIRE

    Macri, Joseph; Sinha, Dipendra

    2007-01-01

    Using two data series, namely GDP and the index of industrial production, we study the relationship between output variability and the growth rate of output. Ng-Perron unit root test shows that the growth rate of GDP is non-stationary but the growth rate of industrial output is stationary. Thus, we use the ARCH-M model for the monthly data of industrial output. A number of specifications (with and without a dummy variable) are used. In all cases, the results show that output variability has a...

  17. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  18. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  19. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  20. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  1. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  2. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  3. Judicial Influence on Policy Outputs?

    DEFF Research Database (Denmark)

    Martinsen, Dorte Sindbjerg

    2015-01-01

    to override unwanted jurisprudence. In this debate, the Court of Justice of the European Union (CJEU) has become famous for its central and occasionally controversial role in European integration. This article examines to what extent and under which conditions judicial decisions influence European Union (EU......) social policy outputs. A taxonomy of judicial influence is constructed, and expectations of institutional and political conditions on judicial influence are presented. The analysis draws on an extensive novel data set and examines judicial influence on EU social policies over time, that is, between 1958...

  4. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days

    International Nuclear Information System (INIS)

    Rosa, José M. de la; Paneque, Marina; Miller, Ana Z.; Knicker, Heike

    2014-01-01

    Three pyrolysis biochars (B1: wood, B2: paper-sludge, B3: sewage-sludge) and one kiln-biochar (B4: grapevine wood) were characterized by determining different chemical and physical properties which were related to the germination rates and to the plant biomass production during a pot experiment of 79 days in which a Calcic Cambisol from SW Spain was amended with 10, 20 and 40 t ha −1 of the four biochars. Biochar 1, B2 and B4 revealed comparable elemental composition, pH, water holding capacity and ash content. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by 13 C solid-state NMR spectroscopy. The FT-IR spectra confirmed the aromaticity of all the biochars as well as several specific differences in their composition. The FESEM-EDS distinguished compositional and structural differences of the studied biochars such as macropores on the surface of B1, collapsed structures in B2, high amount of mineral deposits (rich in Al, Si, Ca and Fe) and organic phases in B3 and vessel structures for B4. Biochar amendment improved germination rates and soil fertility (excepting for B4), and had no negative pH impact on the already alkaline soil. Application of B3, the richest in minerals and nitrogen, resulted in the highest soil fertility. In this case, increase of the dose went along with an enhancement of plant production. Considering costs due to production and transport of biochar, for all used chars with the exception of B3, the application of 10 t ha −1 turned out as the most efficient for the crop and soil used in the present incubation experiment. - Highlights: • Turning organic waste into biochar to improve soil fertility of calcic Cambisols. • Kiln wood biochar resulted in low water retention capacity and specific surface area. • Feedstock drives the differences in the composition and functionalities of biochars. • 10 t biochar ha –1 was the most efficient dose for improving soil fertility

  5. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, José M. de la, E-mail: jmrosa@irnase.csic.es [Instituto de Recursos Naturales Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes, 10, 41012 Seville (Spain); Paneque, Marina [Instituto de Recursos Naturales Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes, 10, 41012 Seville (Spain); Miller, Ana Z. [Instituto de Recursos Naturales Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes, 10, 41012 Seville (Spain); CEPGIST/CERENA, Instituto Superior Técnico, Universidade de Lisboa. Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Knicker, Heike [Instituto de Recursos Naturales Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes, 10, 41012 Seville (Spain)

    2014-11-15

    Three pyrolysis biochars (B1: wood, B2: paper-sludge, B3: sewage-sludge) and one kiln-biochar (B4: grapevine wood) were characterized by determining different chemical and physical properties which were related to the germination rates and to the plant biomass production during a pot experiment of 79 days in which a Calcic Cambisol from SW Spain was amended with 10, 20 and 40 t ha{sup −1} of the four biochars. Biochar 1, B2 and B4 revealed comparable elemental composition, pH, water holding capacity and ash content. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by {sup 13}C solid-state NMR spectroscopy. The FT-IR spectra confirmed the aromaticity of all the biochars as well as several specific differences in their composition. The FESEM-EDS distinguished compositional and structural differences of the studied biochars such as macropores on the surface of B1, collapsed structures in B2, high amount of mineral deposits (rich in Al, Si, Ca and Fe) and organic phases in B3 and vessel structures for B4. Biochar amendment improved germination rates and soil fertility (excepting for B4), and had no negative pH impact on the already alkaline soil. Application of B3, the richest in minerals and nitrogen, resulted in the highest soil fertility. In this case, increase of the dose went along with an enhancement of plant production. Considering costs due to production and transport of biochar, for all used chars with the exception of B3, the application of 10 t ha{sup −1} turned out as the most efficient for the crop and soil used in the present incubation experiment. - Highlights: • Turning organic waste into biochar to improve soil fertility of calcic Cambisols. • Kiln wood biochar resulted in low water retention capacity and specific surface area. • Feedstock drives the differences in the composition and functionalities of biochars. • 10 t biochar ha{sup –1} was the most efficient dose for improving soil fertility.

  6. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related...... to thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... of these activities has been fruitful. The two- stage gasifier was developed for gasification aiming at decentralised cogeneration of heat and power. The development ranged from lap-top scale equipment to a fully automatic plant with more than 2000 hours of operation. Compared to most other gasification processes...

  7. Biomass_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biomass data found in this data set are broken into four regions of the Northeast US Continental Shelf Large Marine Ecosystem: Gulf of Maine, Georges Bank,...

  8. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  9. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  10. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  11. User assessment of smoke-dispersion models for wildland biomass burning.

    Science.gov (United States)

    Steve Breyfogle; Sue A. Ferguson

    1996-01-01

    Several smoke-dispersion models, which currently are available for modeling smoke from biomass burns, were evaluated for ease of use, availability of input data, and output data format. The input and output components of all models are listed, and differences in model physics are discussed. Each model was installed and run on a personal computer with a simple-case...

  12. Biomass-based gasifiers for internal combustion (IC) engines—A ...

    Indian Academy of Sciences (India)

    biomass is converted into a combustible producer gas. ..... with gasification efficiency, increased with the increase in gas flow rate. .... Livingston W R 2007 Report on Biomass ash characteristics and behaviour in combustion, gasification.

  13. Thin disk laser with unstable resonator and reduced output coupler

    Science.gov (United States)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  14. Integration of TMVA Output into Jupyter notebooks

    CERN Document Server

    Saliji, Albulena

    2016-01-01

    The purpose of this report is to describe the work that I have been doing during these past eight weeks as a Summer Student at CERN. The task which was assigned to me had to do with the integration of TMVA Output into Jupyter notebooks. In order to integrate the TMVA Output into the Jupyter notebook, first, improvement of the TMVA Output in the terminal was required. Once the output was improved, it needed to be transformed into HTML output and at the end it would be possible to integrate that output into the Jupyter notebook.

  15. Biomass pyrolysis for chemicals

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.

    2011-07-15

    The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for materials and energy where biomass provides the only renewable source for chemicals. In a biorefinery, biomass is converted via different technologies into heat, power and various products. Here, pyrolysis (thermal degradation without added oxygen) of lignocellulosic biomass can play an important role, because it leads to an array of useful chemicals. Examples are furfural and acetic acid from hemicellulose, levoglucosan from cellulose and phenols and biochar from lignin. Since the three major biomass polymers hemicellulose, cellulose and lignin possess dissimilar thermal stabilities and reactivities, type and amount of degradation products are tunable by proper selection of the pyrolysis conditions. To determine if step-wise pyrolysis would be suitable for the production of chemicals, staged degasification of lignocellulosic biomass was studied. Due to limited yields, a hot pressurized water pre-treatment (aquathermolysis) followed by pyrolysis was subsequently developed as an improved version of a staged approach to produce furfural and levoglucosan from the carbohydrate fraction of the biomass. Lignin is the only renewable source for aromatic chemicals. Lignocellulosic biorefineries for bio-ethanol produce lignin as major by-product. The pyrolysis of side-streams into valuable chemicals is of prime importance for a profitable biorefinery. To determine the added-value of lignin side-streams other than their use as fuel for power, application research including techno-economic analysis is required. In this thesis, the pyrolytic valorisation of lignin into phenols and biochar was investigated and proven possible.

  16. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  17. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  18. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  19. Solid biomass barometer 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The winter of 2011 was exceptionally mild, even in Northern Europe, with unusually warm temperatures. As a result the demand for firewood and solid biomass fuel was low. The European Union's primary energy production from solid biomass contracted by 2.9% slipping to 78.8 Mtoe. The first 4 countries are Germany (11.690 Mtoe), France (9.223 Mtoe), Sweden (8.165 Mtoe) and Finland (7.476 Mtoe) and when the production is relative to the population the first 4 countries become: Finland (1.391 toe/inhab.), Sweden (0.867 toe/inhab.), Latvia (0.784 toe/inhab.) and Estonia (0.644 toe/inhab.). Solid biomass electricity production continued to grow, driven by the additional take-up of biomass co-firing, to reach 72.800 TWh at the end of 2011, it means +2.6% compared to 2010. The energy policy of various states concerning solid biomass is analyzed

  20. Burning of biomass waste

    International Nuclear Information System (INIS)

    Holm Christensen, B.; Evald, A.; Buelow, K.

    1997-01-01

    The amounts of waste wood from the Danish wood processing industry available for the energy market has been made. Furthermore a statement of residues based on biomass, including waste wood, used in 84 plants has been made. The 84 plants represent a large part of the group of purchasers of biomass. A list of biomass fuel types being used or being potential fuels in the future has been made. Conditions in design of plants of importance for the environmental impact and possibility of changing between different biomass fuels are illustrated through interview of the 84 plants. Emissions from firing with different types of residues based on biomass are illustrated by means of different investigations described in the literature of the composition of fuels, of measured emissions from small scale plants and full scale plants, and of mass balance investigations where all incoming and outgoing streams are analysed. An estimate of emissions from chosen fuels from the list of types of fuels is given. Of these fuels can be mentioned residues from particle board production with respectively 9% and 1% glue, wood pellets containing binding material with sulphur and residues from olive production. (LN)

  1. Structural and Compositional Transformations of Biomass Chars during Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    In this work the physical and chemical transformations of biomass chars during fast pyrolysis, considered as a 2nd stage of combustion, has been investigated. Seven biomasses containing different amount of ash and organic components were reacted at up to 1673 K with high heating rates in a wire...

  2. Optimizing microwave photodetection: input-output theory

    Science.gov (United States)

    Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.

    2018-04-01

    High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.

  3. Probabilistic Output Analysis by Program Manipulation

    DEFF Research Database (Denmark)

    Rosendahl, Mads; Kirkeby, Maja Hanne

    2015-01-01

    The aim of a probabilistic output analysis is to derive a probability distribution of possible output values for a program from a probability distribution of its input. We present a method for performing static output analysis, based on program transformation techniques. It generates a probability...

  4. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  5. Biomass Deconstruction and Recalcitrance

    DEFF Research Database (Denmark)

    Zhang, Heng

    This thesis is about the use of an agricultural residue as a feedstock for fermentable sugars to be used for second generation (2G) bioethanol. The main focus of this thesis work is upon the recalcitrance of different anatomical fractions of wheat straw. Biomass recalcitrance is a collective...... of lignocellulosic biomass’ degradability, a high throughput screening (HTS) platform was developed for combined thermochemical pretreatment and enzymatic degradation in Copenhagen laboratory during this thesis work. The platform integrates an automatized biomass grinding and dispensing system, a pressurized heating...... system, a plate incubator and a high performance liquid chromatography (HPLC) system. In comparison with the reported HTS platforms, the Copenhagen platform is featured by the fully automatic biomass sample preparation system, the bench-scale hydrothermal pretreatment setup, and precise sugar measurement...

  6. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  7. Northeast Regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  8. Northeast Regional Biomass Program

    International Nuclear Information System (INIS)

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ''Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory

  9. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  10. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  11. seasonal variation of biomass and secondary production

    African Journals Online (AJOL)

    Preferred Customer

    consimilis was cultured in the laboratory to obtain life history data on duration of embryonic and post-embryonic ... medium. Laboratory duration times were close to biomass turnover rates calculated from field data ... Ethiopian lakes include the work of Seyoum. Mengistou ... water balance of this lake as the static water level.

  12. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  13. Model output: fact or artefact?

    Science.gov (United States)

    Melsen, Lieke

    2015-04-01

    As a third-year PhD-student, I relatively recently entered the wonderful world of scientific Hydrology. A science that has many pillars that directly impact society, for example with the prediction of hydrological extremes (both floods and drought), climate change, applications in agriculture, nature conservation, drinking water supply, etcetera. Despite its demonstrable societal relevance, hydrology is often seen as a science between two stools. Like Klemeš (1986) stated: "By their academic background, hydrologists are foresters, geographers, electrical engineers, geologists, system analysts, physicists, mathematicians, botanists, and most often civil engineers." Sometimes it seems that the engineering genes are still present in current hydrological sciences, and this results in pragmatic rather than scientific approaches for some of the current problems and challenges we have in hydrology. Here, I refer to the uncertainty in hydrological modelling that is often neglected. For over thirty years, uncertainty in hydrological models has been extensively discussed and studied. But it is not difficult to find peer-reviewed articles in which it is implicitly assumed that model simulations represent the truth rather than a conceptualization of reality. For instance in trend studies, where data is extrapolated 100 years ahead. Of course one can use different forcing datasets to estimate the uncertainty of the input data, but how to prevent that the output is not a model artefact, caused by the model structure? Or how about impact studies, e.g. of a dam impacting river flow. Measurements are often available for the period after dam construction, so models are used to simulate river flow before dam construction. Both are compared in order to qualify the effect of the dam. But on what basis can we tell that the model tells us the truth? Model validation is common nowadays, but validation only (comparing observations with model output) is not sufficient to assume that a

  14. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  15. Biomass living energy

    International Nuclear Information System (INIS)

    2005-01-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  16. Biomass stoves in dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo

    and analyzed in this session. Experimental results regarding the performance of biomass combustion stoves and the effects of real-life practices in terms of thermal efficiency, particulate and gaseous emissions will be addressed. This research is based on the development of a new testing approach that combines...... laboratory and field measurements established in the context of the implications of the upcoming eco-design directive. The communication will cover technical aspects concerning the operating performance of different types of biomass stoves and building envelopes, in order to map the ongoing opportunities...

  17. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  18. Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior

    Science.gov (United States)

    Barter, Joseph W.; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A.; Bartholomew, Ryan A.

    2015-01-01

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  19. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  20. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  1. PREVIMER : Meteorological inputs and outputs

    Science.gov (United States)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  2. The 'icon' of output efficiency

    International Nuclear Information System (INIS)

    Bligh, L.N.; Evans, S.G.; Larcos, G.; Gruenewald, S.M.

    1999-01-01

    Full text: Output efficiency (OE) is a well-validated parameter used in the assessment of hydronephrosis. Current analysis on Microdelta appears to produce few low OE values and occasional inability to produce a result. We sought an OE program which gave a reliable response over the full range of values. The aims of this study were to determine: (1) whether OE results are comparable between two computer systems; (2) a normal range for OE on an ICON; (3) inter-observer reproducibility; and (4) the correlation between the two programs and the residual cortical activity ratio (RCA), an index which assesses tracer washout from the 20 min cortical activity/peak cortical activity. Accordingly, two blinded medical radiation scientists reviewed 41 kidneys (26 native, 15 transplant) and calculated OE for each kidney on the ICON and Microdelta computers The OE on the Microdelta and the ICON had good correspondence (r = 0.6%, SEE = 6.2). The extrapolated normal range for ICON OE was 69-92% (mean 80.9%). The inter-observer reproducibility on the ICON was excellent with a CV of 8.7%. ICON OE and RCA had a strong correlation (r = - 0.77, SEE = 0.09), compared with a weaker correlation for the Microdelta (r = 0.47, SEE = 0.13). Processing on the ICON was almost half that of the Microdelta at 4 min compared with 7 min. We conclude that OE generated by these computer programs has good correlation, an established normal range, excellent interobserver reproducibility, but differing correlation with RCA. The response of the ICON program to low ranges of OE is being investigated further

  3. Solid biomass barometer - EurObserv'ER - November 2011

    International Nuclear Information System (INIS)

    2011-11-01

    The european Union Member states' political resolve to develop the energy potential of solid biomass has started to pay off, as in 2010 there were clear signs that growth of primary energy production had quickened pace. The output figure rose to 79.3 Mtoe in 2010, which is 8% up on 2009 and deserves comparison with the previous year's 4% rise (from 70.6 Mtoe in 2008). The trend, which was driven deeper by Europe's particularly cold winter of 2009- 2010, demonstrates that the economic downturn failed to scuttle the Member states' efforts to structure the solid biomass sector

  4. Biomass Conversion Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-05

    To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today’s vehicles and infrastructure.

  5. Energy from aquatic biomass

    International Nuclear Information System (INIS)

    Aresta, M.; Dibenedetto, A.

    2009-01-01

    Aquatic biomass is considered as a second (or third) generation option for the production of bio fuels. The best utilization for energy purposes is not its direct combustion. Several technologies are available for the extraction of compounds that may find application for the production of gaseous fuels (biogas, dihydrogen) or liquid fuels (ethanol, bio oil, biodiesel). [it

  6. Activated carbon from biomass

    Science.gov (United States)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  7. Pyrolysis of chitin biomass

    DEFF Research Database (Denmark)

    Qiao, Yan; Chen, Shuai; Liu, Ying

    2015-01-01

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model...

  8. The UK biomass industry

    International Nuclear Information System (INIS)

    Billins, P.

    1998-01-01

    A brief review is given of the development of the biomass industry in the UK. Topics covered include poultry litter generation of electricity, gasification plants fuelled by short-rotation coppice, on-farm anaerobic digestion and specialized combustion systems, e.g. straw, wood and other agricultural wastes. (UK)

  9. A review on advances of torrefaction technologies for biomass processing

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bimal; Sule, Idris; Dutta, Animesh [University of Guelph, School of Engineering, Guelph, ON (Canada)

    2012-12-15

    Torrefaction is a thermochemical pretreatment process at 200-300 C in an inert condition which transforms biomass into a relatively superior handling, milling, co-firing and clean renewable energy into solid biofuel. This increases the energy density, water resistance and grindability of biomass and makes it safe from biological degradation which ultimately makes easy and economical on transportation and storing of the torrefied products. Torrefied biomass is considered as improved version than the current wood pellet products and an environmentally friendly future alternative for coal. Torrefaction carries devolatilisation, depolymerization and carbonization of lignocellulose components and generates a brown to black solid biomass as a productive output with water, organics, lipids, alkalis, SiO{sub 2}, CO{sub 2}, CO and CH{sub 4}. During this process, 70 % of the mass is retained as a solid product, and retains 90 % of the initial energy content. The torrefied product is then shaped into pellets or briquettes that pack much more energy density than regular wood pellets. These properties minimize on the difference in combustion characteristics between biomass and coal that bring a huge possibility of direct firing of biomass in an existing coal-fired plant. Researchers are trying to find a solution to fire/co-fire torrefied biomass instead of coal in an existing coal-fired based boiler with minimum modifications and expenditures. Currently available torrefied technologies are basically designed and tested for woody biomass so further research is required to address on utilization of the agricultural biomass with technically and economically viable. This review covers the torrefaction technologies, its' applications, current status and future recommendations for further study. (orig.)

  10. Biomass energy: Another driver of land acquisitions?

    Energy Technology Data Exchange (ETDEWEB)

    Cotula, Lorenzo; Finnegan, Lynn; MacQueen, Duncan

    2011-08-15

    As governments in the global North look to diversify their economies away from fossil fuel and mitigate climate change, plans for biomass energy are growing fast. These are fuelling a sharp rise in the demand for wood, which, for some countries, could outstrip domestic supply capacity by as much as 600 per cent. It is becoming clear that although these countries will initially look to tap the temperate woodlands of developed countries, there are significant growth rate advantages that may lead them to turn to the tropics and sub-tropics to fill their biomass gap in the near future. Already there is evidence of foreign investors acquiring land in Africa, South America and Southeast Asia to establish tree plantations for biomass energy. If left unchecked, these trends could increase pressures on land access and food security in some of the world's poorest countries and communities.

  11. Torrefaction of biomass for power production

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti

    In order to increase the share of biomass for sustainable energy production, it will be an advantage to utilize fuels as straw, wood and waste on large suspension fired boilers. On a European scale, currently large straw resources are available that are not fully utilized for energy production...... rates, relatively low superheater temperatures have to be applied, which in turn lower the power efficiency. The idea for this Ph.D. project is to develop a biomass pretreatment method that could provide the heating value of the fuel for the boiler, but in a way such that the fuel is easily pulverized.......D. thesis focus on the following subjects: 1) the development of experimental procedures for a novel laboratory scale reactor (simultaneous torrefaction and grinding) and a study on the torrefaction of straw and wood; 2) study the influence of biomass chemical properties such as ash content, ash composition...

  12. Measurement of Cardiac Output by Constant Injection of Radioactive Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kishon, Y.; Avasthey, P.; Barnett, A.; Shillingford, J. P. [MRC Cardiovascular Research Unit and Department of Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom)

    1971-02-15

    The method of determining cardiac output by the injection of {sup 133}Xe solution has been initially tested in a suitable hydrodynamic model, simulating the cardiovascular system. The indicator was infused in a constant rate into a ''pre-ventricular'' site through a fine polyethylene tubing, and samples were taken from a ''post-ventricular'' site through similar tubing. Specific activity was determined with the use of a universal well-type scintillation counter and output values were derived from the dilutional factor of the specific activity and the rate of the infusion. Good correlation with direct output measurements were demonstrated over a wide range of outputs, stroke volumes and end-diastolic volumes. The method remained valid when either the ''pre-ventricular'' or the ''post-ventricular'' valve was made incompetent. The method was then evaluated in anaesthetized dogs and cardiac output determinations were compared with those obtained by the Fick and dye-dilution techniques. The indicator was injected into the right atrium, and samples were obtained from the pulmonary artery through similar tubings. The method was found to be reliable over a wide range of cardiac outputs (drugs- and bleeding-induced) and in the presence of severe tricuspid incompetence (performed by a valvotome). Finally, the technique was used in six patients, both at rest and after exercise, and the cardiac output values were compared with those obtained by the Fick and the photoelectric-earpiece dye-dilution techniques. It is concluded that, provided the appropriate speed of injection (about 1.5 - 3.5 {mu}Ci/sec) and the time of sampling is carefully observed, good correlation between the method under investigation and other conventional methods could be shown. This method is more convenient for repeated determinations, simpler to perform and final values are obtained almost immediately. (author)

  13. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  14. Independent System Operators and Biomass Power

    International Nuclear Information System (INIS)

    Porter, Kevin L.

    1999-01-01

    Since the Federal Energy Regulatory Commission issued its landmark open access transmission rule in 1996, the idea of creating and establishing independent system operators (ISOs) has gained momentum. ISOs may help combine individual utility transmission systems into more regional transmission networks, which ultimately will allow biomass companies to transmit power over longer distances while paying a single transmission rate. To the extent that ISOs are combined or operated with power exchanges, however, biomass companies will likely face even more competitive market pressures. Few operators have experience with ISOs and power exchanges, but preliminary results show that short-term electricity market prices are probably too low for most biomass companies to compete against. Without policy measures, biomass companies may have to pursue strategic opportunities with short-term, spot-market sales; direct bilateral sales to customers; alternative power exchanges; and perhaps a ''green'' power market and sales to ancillary service markets. In addition, prices will likely be more volatile in a restructured market so biomass generators should be selling during those times

  15. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  16. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  17. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  18. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  19. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  20. Bank output measurement in the euro area : A modified approach

    NARCIS (Netherlands)

    Colangelo, A.; Inklaar, R.

    Banks do not charge explicit fees for many of the services they provide, bundling the service payment with the offered interest rates. This output therefore has to be imputed using estimates of the opportunity cost of funds. We argue that rather than using the single short-term, low-risk interest

  1. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  2. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  3. Bioethanol and power from integrated second generation biomass: A Monte Carlo simulation

    International Nuclear Information System (INIS)

    Osaki, Márcia R.; Seleghim, Paulo

    2017-01-01

    Highlights: • The impacts of integrating new sugarcane conversion using bagasse and straw. • Industrial conversion of sugarcane into energy carriers: ethanol and electricity. • A reference sugarcane industrial was simulated by the Monte Carlo method. • Simultaneously optimal ethanol production and electricity generation occur at low burning bagasse rates. - Abstract: The main objective of this work is to assess the impacts of integrating new biomass conversion technologies into an existing sugarcane industrial processing plant in terms of its multi-objective optimal operating conditions. A typical sugarcane mill is identified and a second generation ethanol production pathway is incorporated to give the operator the possibility of controlling the ratio between the rates of burning bagasse and straw (sugarcane tops and leaves) to their second generation processing to achieve optimal ethanol and electricity outputs. A set of equations describing the associated conversion unit operations and chemical reactions is simulated by the Monte Carlo method and the corresponding operating envelope is constructed and statistically analyzed. These equations permit to calculate ethanol production and electricity generation in terms of a virtually infinite number of scenarios characterized by two controlled variables (burning bagasse and straw mass flow rates) and several uncontrolled variables (biomass composition, cellulose, hemicelluloses and lignin yields, fermentation efficiencies, etc.). Results reveal that the input variables have specific statistical characteristics when the corresponding operating states lay near the maximum energy limit (Pareto frontier). For example, since the objectives being optimized are intrinsically antagonistic, i.e. the increase of one dictates the decrease of the other, it is better to convert bagasse to ethanol via second generation pathway because of the high energy requirements of its dewatering prior to combustion and low heat

  4. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  5. Multi-functional biomass systems

    NARCIS (Netherlands)

    Dornburg, Veronika

    2004-01-01

    Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share of biomass applications in Europe is their often-high production costs, among others due to the relatively low availability of

  6. Original Research Maternal biomass smoke exposure and birth ...

    African Journals Online (AJOL)

    Maternal biomass smoke exposure and birth weight in Malawi 160. © 2017 The College of .... have high population overall rates of household air pollution. The Cooking and ..... Wood smoke exposure, poverty and impaired lung function in ...

  7. Energy and output dynamics in Bangladesh

    International Nuclear Information System (INIS)

    Paul, Biru Paksha; Uddin, Gazi Salah

    2011-01-01

    The relationship between energy consumption and output is still ambiguous in the existing literature. The economy of Bangladesh, having spectacular output growth and rising energy demand as well as energy efficiency in recent decades, can be an ideal case for examining energy-output dynamics. We find that while fluctuations in energy consumption do not affect output fluctuations, movements in output inversely affect movements in energy use. The results of Granger causality tests in this respect are consistent with those of innovative accounting that includes variance decompositions and impulse responses. Autoregressive distributed lag models also suggest a role of output in Bangladesh's energy use. Hence, the findings of this study have policy implications for other developing nations where measures for energy conservation and efficiency can be relevant in policymaking.

  8. Theoretical analysis of magnetic sensor output voltage

    International Nuclear Information System (INIS)

    Liu Haishun; Dun Chaochao; Dou Linming; Yang Weiming

    2011-01-01

    The output voltage is an important parameter to determine the stress state in magnetic stress measurement, the relationship between the output voltage and the difference in the principal stresses was investigated by a comprehensive application of magnetic circuit theory, magnetization theory, stress analysis as well as the law of electromagnetic induction, and a corresponding quantitative equation was derived. It is drawn that the output voltage is proportional to the difference in the principal stresses, and related to the angle between the principal stress and the direction of the sensor. This investigation provides a theoretical basis for the principle stresses measurement by output voltage. - Research highlights: → A comprehensive investigation of magnetic stress signal. → Derived a quantitative equation about output voltage and the principal stresses. → The output voltage is proportional to the difference of the principal stresses. → Provide a theoretical basis for the principle stresses measurement.

  9. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    Science.gov (United States)

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov (United States)

    Biomass Compositional Analysis Laboratory Procedures Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass

  11. Biomass Data | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Data Biomass Data These datasets detail the biomass resources available in the United Coverage File Last Updated Metadata Biomethane Zip 72.2 MB 10/30/2014 Biomethane.xml Solid Biomass Zip 69.5

  12. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  13. Output Control Using Feedforward And Cascade Controllers

    Science.gov (United States)

    Seraji, Homayoun

    1990-01-01

    Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.

  14. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy

    International Nuclear Information System (INIS)

    Chiang, Kung-Yuh; Chien, Kuang-Li; Lu, Cheng-Han

    2012-01-01

    Highlights: ► Biomass with higher volatile matter content has a higher carbon conversion rate. ► Applying the suitable pretreatment techniques that will enhance the bioenergy yield. ► The ratio of H 2 O/fixed carbon is a critical factor for enhancing the energy conversion. -- Abstract: This study investigated the characteristics of 26 varieties of biomass produced from forestry, agriculture, municipality, and industry in Taiwan to test their applicability in thermal conversion technologies and evaluation of enhanced energy efficiency. Understanding the reactivity of the tested biomass, the cluster analysis was also used in this research to classify into characteristics groups of biomass. This research also evaluated the feasibility of energy application of tested biomass by comparing it to the physicochemical properties of various coals used in Taiwan’s power plants. The experimental results indicated that the volatile matter content of the all tested biomass was 60% and above. It can be concluded that the higher carbon conversion rate will occur in the thermal conversion process of all tested biomass. Based on the results of lower heating value (LHV) of MSW and non-hazardous industrial sludge, the LHV was lower than other tested biomass that was between 1000 and 1800 kcal/kg. This is due to the higher moisture content of MSW and sludge that resulted in the lower LHV. Besides, the LHV of other tested biomass and their derived fuels was similar to the tested coal. However, the energy densities of woody and agricultural waste were smaller than that of the coal because the bulky densities of woody and agricultural wastes were low. That is, the energy utilization efficiency of woody and agricultural waste was relatively low. To improve the energy density of tested biomass, appropriate pre-treatment technologies, such as shredding, pelletizing or torrefied technologies can be applied, that will enhance the energy utilization efficiency of all tested biomass.

  15. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The European (EU 25) wish to substitute solid biomass origin energy consumption (principally wood and wood waste, but also straw, crop harvest residues, vegetal and animal waste) for a part of that of fossil fuel origin (petrol, gas and coal) is beginning to pay off. 58,7 million tons oil equivalent (Mtoe) of solid biomass was produced in 2005, i.e. a 3.1 Mtoe increase with respect to 2004. Production of primary energy coming from direct combustion of renewable municipal solid waste in incineration plants should also be added on to this figure. The 0,2 Mtoe increase in this production with respect to 2004 brings valorization of this type of waste up to 5,3 Mtoe in 2005. (author)

  16. Biomass goes to waste

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. (CPL Scientific Ltd., Newbury (United Kingdom))

    1994-08-01

    Currently the two most suitable words to describe the biomass energy industry are waste and recycling. However, there are several ways of looking at this. The first is a literal one. This reflects the current changes which are taking place in waste treatment as a consequence of new environmental initiatives. These are predicted to intensify as and when new Community Directives come into force through national legislation within the European Union (EU). At the same time biomass, in the true sense, both goes to waste as crops are not used and generates waste in terms of resources as uneconomic ventures are funded for political reasons. The net result is a depleted industry, in some sectors, and one based on false hopes in others. At the same time there is also some clarity emerging in respect of end use, with most activities focussing on decentralised electricity generation and the formation of liquid transport fuels. (Author)

  17. Biomass Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Biomass Maps Biomass Maps These maps illustrate the biomass resource in the United States by county . Biomass feedstock data are analyzed both statistically and graphically using a geographic information Data Science Team. Solid Biomass Resources Map of Total Biomass Resources in the United States Solid

  18. BIOMASS newsletter. No. 7

    International Nuclear Information System (INIS)

    Torres, Carlos

    1999-06-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  19. BIOMASS newsletter. No. 8

    International Nuclear Information System (INIS)

    Torres, Carlos

    2000-01-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  20. BIOMASS newsletter. No. 6

    International Nuclear Information System (INIS)

    Torres, Carlos

    1999-01-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  1. BIOMASS newsletter. No. 5

    International Nuclear Information System (INIS)

    Torres, Carlos

    1998-07-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  2. BIOMASS newsletter. No. 2

    International Nuclear Information System (INIS)

    Torres, Carlos

    1996-12-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  3. BIOMASS newsletter. No. 3

    International Nuclear Information System (INIS)

    Torres, Carlos

    1997-07-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  4. BIOMASS newsletter. No. 4

    International Nuclear Information System (INIS)

    Torres, Carlos

    1998-01-01

    The International Atomic Energy Agency Programme on Biosphere Modelling and Assessment (BIOMASS) Newsletter has been launched with general objectives of providing an international focal point in the area of biosphere assessment modelling, developing methods for analysis of radionuclide transfer in the biosphere for use in radiological assessment, improving modelling methods, and developing international consensus on biosphere modelling philosophies, approaches and parameter values. The main themes included in the Newsletter include radioactive waste disposal (reference biosphere), environmental releases and biosphere processes

  5. Biomass for electricity

    International Nuclear Information System (INIS)

    Barbucci, P.; Neri, G.; Trebbi, G.

    1995-01-01

    This paper describes the activities carried out at ENEL-Thermal research center to develop technologies suitable to convert biomass into power with high conversion efficiency: a demonstration project, Energy Farm, to build an Integrated Gasification Combined Cycle (IGCC) plant fed by wood chips; a demonstration plant for converting wood chips into oil by thermal conversion (pyrolysis oil); combustion tests of different oils produced by thermal conversion. 3 figs., 1 tab

  6. Hydrolysis of biomass material

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  7. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  8. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G.; Cuna, D.

    2001-01-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220 0 C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw [it

  9. DIST/AVC Out-Put Definition.

    Science.gov (United States)

    Wilkinson, Gene L.

    The first stage of development of a management information system for DIST/AVC (Division of Instructional Technology/Audio-Visual Center) is the definition of out-put units. Some constraints on the definition of output units are: 1) they should reflect goals of the organization, 2) they should reflect organizational structure and procedures, and…

  10. Fast multi-output relevance vector regression

    OpenAIRE

    Ha, Youngmin

    2017-01-01

    This paper aims to decrease the time complexity of multi-output relevance vector regression from O(VM^3) to O(V^3+M^3), where V is the number of output dimensions, M is the number of basis functions, and V

  11. Early-Transition Output Decline Revisited

    Directory of Open Access Journals (Sweden)

    Crt Kostevc

    2016-05-01

    Full Text Available In this paper we revisit the issue of aggregate output decline that took place in the early transition period. We propose an alternative explanation of output decline that is applicable to Central- and Eastern-European countries. In the first part of the paper we develop a simple dynamic general equilibrium model that builds on work by Gomulka and Lane (2001. In particular, we consider price liberalization, interpreted as elimination of distortionary taxation, as a trigger of the output decline. We show that price liberalization in interaction with heterogeneous adjustment costs and non-employment benefits lead to aggregate output decline and surge in wage inequality. While these patterns are consistent with actual dynamics in CEE countries, this model cannot generate output decline in all sectors. Instead sectors that were initially taxed even exhibit output growth. Thus, in the second part we consider an alternative general equilibrium model with only one production sector and two types of labor and distortion in a form of wage compression during the socialist era. The trigger for labor mobility and consequently output decline is wage liberalization. Assuming heterogeneity of workers in terms of adjustment costs and non-employment benefits can explain output decline in all industries.

  12. Assessing the psychological factors predicting workers' output ...

    African Journals Online (AJOL)

    The study investigated job security, communication skills, interpersonal relationship and emotional intelligence as correlates of workers' output among local government employees in Oyo State. The research adopted descriptive design of an expose facto type. The research instruments used includes Workers' output scale, ...

  13. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  14. Forecasting timber, biomass, and tree carbon pools with the output of state and transition models

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2012-01-01

    The Integrated Landscape Assessment Project (ILAP) uses spatial vegetation data and state and transition models (STM) to forecast future vegetation conditions and the interacting effects of natural disturbances and management activities. Results from ILAP will help land managers, planners, and policymakers evaluate management strategies that reduce fire risk, improve...

  15. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    Science.gov (United States)

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  16. Decomposition of fresh and anaerobically digested plant biomass in soil

    International Nuclear Information System (INIS)

    Moorhead, K.K.; Graetz, D.A.; Reddy, K.R.

    1987-01-01

    Using water hyacinth [Eichhornia crassipes (Mart.) Solms] for waste water renovation produces biomass that must be disposed of. This biomass may be anaerobically digested to produce CH 4 or added to soil directly as an amendment. In this study, fresh and anaerobically digested water hyacinth biomass, with either low or high N tissue content, were added to soil to evaluate C and N mineralization characteristics. The plant biomass was labeled with 15 N before digestion. The fresh plant biomass and digested biomass sludge were freeze-dried and ground to pass a 0.84-mm sieve. The materials were thoroughly mixed with a Kindrick fine sand at a rate of 5 g kg -1 soil and incubated for 90 d at 27 0 C at a moisture content adjusted to 0.01 MPa. Decomposition was evaluated by CO 2 evolution and 15 N mineralization. After 90 d, approximately 20% of the added C of the digested sludges had evolved as CO 2 compared to 39 and 50% of the added C of the fresh plant biomass with a low and high N content, respectively. First-order kinetics were used to describe decomposition stages. Mineralization of organic 15 N to 15 NO 3 - -N accounted for 8% of applied N for both digested sludges at 90 d. Nitrogen mineralization accounted for 3 and 33% of the applied organic N for fresh plant biomass with a low and high N content, respectively

  17. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  18. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  19. Permitting a biomass-fired power plant in California -- A case study

    International Nuclear Information System (INIS)

    Reisman, J.I.; Needham, G.A.

    1995-01-01

    This paper describes the process of preparing an air permit application for a proposed biomass-fired power plant. The plant is designed to produce a net electric power output of 16 megawatts (MW) for sale to Pacific Gas and Electric Company. The biomass fuel will consist of urban wood waste, construction wood waste, and waste from agricultural products, such as tree prunings and fruit pits. The site is located in an industrial park in Soledad, California

  20. Renewable energy--traditional biomass vs. modern biomass

    International Nuclear Information System (INIS)

    Goldemberg, Jose; Teixeira Coelho, Suani

    2004-01-01

    Renewable energy is basic to reduce poverty and to allow sustainable development. However, the concept of renewable energy must be carefully established, particularly in the case of biomass. This paper analyses the sustainability of biomass, comparing the so-called 'traditional' and 'modern' biomass, and discusses the need for statistical information, which will allow the elaboration of scenarios relevant to renewable energy targets in the world

  1. High Output Piezo/Triboelectric Hybrid Generator

    Science.gov (United States)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA.cm-2, and average power density of ~4.44 mW.cm-2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  2. High Output Piezo/Triboelectric Hybrid Generator

    Science.gov (United States)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-01-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA·cm−2, and average power density of ~4.44 mW·cm−2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics. PMID:25791299

  3. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    Science.gov (United States)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  4. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Primary energy production from solid biomass (wood, wood waste and other solid vegetal and animal materials) reached 62,4 million tons oil equivalent (Mtoe) in 2006, i-e 3,1 more than in 2005. The primary energy coming from the direct combustion of renewable origin solid urban waste in incineration unit scan also be added to this figure. In 2006 this represented a production of 5,3 Mtoe, i-e 0,1 Mtoe more than in 2005. (author)

  5. Ecosystems and biomass energy

    International Nuclear Information System (INIS)

    Trossero, M.A.

    1995-01-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world's primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  6. Ecosystems and biomass energy

    Energy Technology Data Exchange (ETDEWEB)

    Trossero, M A [Food and Agriculture Organization of the United Nations (FAO), Rome (Italy)

    1995-12-01

    Biomass, particularly fuelwood and charcoal, is one of the main sources of fuel to meet the energy needs of traditional, commercial and industrial activities in developing countries. While it satisfies only about 14% of the world`s primary energy needs, in some countries it satisfies up to 80% of those needs. As a result of population growth, urbanization, economic reforms, restructuring and new development targets in most of these countries, new forms of energy and a more intensive use of energy are expected for the years ahead. This additional demand for energy will be met mainly by hydroelectricity, coal and fossil fuels. However, where biomass is available or can be planted, bio fuels can be converted into new forms of energy (electricity and power) and energy carriers (liquid and gaseous fuels) to meet not only the energy needs of the modem sectors but also to maintain a sustainable supply to traditional users. In fact, FAO estimates that biomass could provide nearly three times more energy than it does without affecting the current supply of other commodities and goods such as food, fodder, fuel, timber and non-wood fuel products. The benefits derived from the utilization of biomass as a source of energy are twofold: (a) the task of supplying bio fuels can help to attract new investment, create new employment and income opportunities in rural areas, raise the value of natural resources and preserve the environment and (b) new forms of energy and energy carriers could foster increased production and productivity at the rural and community level, particularly in remote areas where conventional fuels are not easily available at affordable prices. Bioenergy can be easily developed in modular and decentralized schemes and offers many advantages. It could be an inexpensive source of energy, even at present energy prices, and it requires less capital investment for its implementation than alternative solutions. However, there are many disadvantages, too. For

  7. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  8. Biomass Energy Generation Project

    Energy Technology Data Exchange (ETDEWEB)

    Olthoff, Edward [Cedar Falls Utilities, Cedar Falls, IA (United States)

    2017-05-15

    The Municipal Electric Utility of the City of Cedar Falls (dba Cedar Fals Utilities or CFU) received a congressionally directed grant funded through DOE-EERE to run three short (4 hour) duration test burns and one long (10 days) duration test burn to test the viability of renewable fuels in Streeter Station Boiler #6, a stoker coal fired electric generation unit. The long test burn was intended to test supply chain assumptions, optimize boiler combustion and assess the effects of a longer duration burn of biomass on the boiler.

  9. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  10. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France

    International Nuclear Information System (INIS)

    Gandois, L.; Nicolas, M.; VanderHeijden, G.; Probst, A.

    2010-01-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (> 95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands.

  11. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  12. Biomass in Latin America -- overview

    International Nuclear Information System (INIS)

    Park, W.R.

    1993-01-01

    The paper discusses the interest of the Organization of American States as a participant in this hemispheric conference on biomass, provides an introduction to the Latin American experience in biomass energy through open-quotes snapshotsclose quotes of various country activities, and concludes with a discussion of four conditions that form strong incentives for new north/south and south/north ventures in the biomass energy and chemical arena in this hemisphere

  13. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    Science.gov (United States)

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Energy from biomass: An overview

    International Nuclear Information System (INIS)

    Van der Toorn, L.J.; Elliott, T.P.

    1992-01-01

    Attention is paid to the effect of the use of energy from biomass on the greenhouse effect. An overview is given of the aspects of forest plantation, carbon dioxide fixation and energy from biomass, in particular with regard to the potential impact of the use of biomass energy on the speed of accumulation of carbon in the atmosphere. A simple model of the carbon cycle to illustrate the geochemical, biological and antropogenic characteristics of the cycle is presented and briefly discussed. Biomass, which is appropriate for energy applications, can be subdivided into three categories: polysaccharides, vegetable oils, and lignocellulosis. The costs for the latter are discussed. Three important options to use biomass as a commercial energy source are solid fuels, liquid fuels, and power generation. For each option the value of energy (on a large-scale level) is compared to the costs of several types of biomass. Recent evaluation of new techniques show that small biomass conversion plants can realize an electricity efficiency of 40%, with capitalized costs far below comparable conventional biomass conversion plants. One of the policy instruments to stimulate the use of biomass as an energy source is the carbon levy, in which the assumed external costs to reduce carbon dioxide emission are expressed. Political and administrative feasibility are important factors in the decision making with regard to carbon storage and energy plantations. 6 figs

  15. Biomass for energy. Danish solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Information is given on a number of typical and recently established plants of all types and sizes, for converting the main Danish biomass resources (manures, straw and wood derived from agricultural activities and forestry)into energy. Danish biomass resources and energy and environmental policies are described. In Denmark there is a very wide range of technologies for converting biomass into energy, and these are clarified. In addition, performance data from a number of plants fuelled with biomass fuels are presented. The course of further developments within this field is suggested. The text is illustrated with a considerable number of coloured photographs and also with graphs and diagrams. (ARW)

  16. Pipelines : moving biomass and energy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2006-07-01

    Moving biomass and energy through pipelines was presented. Field sourced biomass utilization for fuel was discussed in terms of competing cost factors; economies of scale; and differing fuel plant sizes. The cost versus scale in a bioenergy facility was illustrated in chart format. The transportation cost of biomass was presented as it is a major component of total biomass processing cost and is in the typical range of 25-45 per cent of total processing costs for truck transport of biomass. Issues in large scale biomass utilization, scale effects in transportation, and components of transport cost were identified. Other topics related to transportation issues included approaches to pipeline transport; cost of wood chips in pipeline transport; and distance variable cost of transporting wood chips by pipeline. Practical applications were also offered. In addition, the presentation provided and illustrated a model for an ethanol plant supplied by truck transport as well as a sample configuration for 19 truck based ethanol plants versus one large facility supplied by truck plus 18 pipelines. Last, pipeline transport of bio-oil and pipeline transport of syngas was discussed. It was concluded that pipeline transport can help in reducing congestion issues in large scale biomass utilization and that it can offer a means to achieve large plant size. Some current research at the University of Alberta on pipeline transport of raw biomass, bio-oil and hydrogen production from biomass for oil sands and pipeline transport was also presented. tabs., figs.

  17. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Johansson, J.; Lundqvist, U.

    1999-01-01

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  18. Energy Efficiency of Biogas Produced from Different Biomass Sources

    International Nuclear Information System (INIS)

    Begum, Shahida; Nazri, A H

    2013-01-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  19. Liquid fuel from biomass

    International Nuclear Information System (INIS)

    Breinholt, T.; Gylling, M.; Parsby, M.; Meyer Henius, U.; Sander Nielsen, B.

    1992-09-01

    Various options for Danish production of liquid motor fuels from biomass have been studied in the context of the impact of EEC new common agricultural policy on prices and production quantities of crops, processes and production economy, restraints concerning present and future markets in Denmark, environmental aspects, in particular substitution of fossil fuels in the overall production and end-use, revenue loss required to assure competition with fossil fuels and national competence in business, industry and research. The options studied are rapeseed oil and derivates, ethanol, methanol and other thermo-chemical conversion products. The study shows that the combination of fuel production and co-generation of heat and electricity carried out with energy efficiency and utilization of surplus electricity is important for the economics under Danish conditions. Considering all aspects, ethanol production seems most favorable but in the long term, pyrolyses with catalytic cracking could be an interesting option. The cheapest source of biomass in Denmark is straw, where a considerable amount of the surplus could be used. Whole crop harvested wheat on land otherwise set aside to be fallow could also be an important source for ethanol production. Most of the options contribute favorably to reductions of fossil fuel consumption, but variations are large and the substitution factor is to a great extent dependent on the individual case. (AB) (32 refs.)

  20. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  1. Biomass and territory

    International Nuclear Information System (INIS)

    Leca, Christel; Regnier, Yannick; Couturier, Christian; Cousin, Stephane; Defaye, Serge; Jilek, Wolfgang; Merle, Sophie; Le Treis, Marc; Jacques, Dominique; Gauthier, Alice; Formerg, Thomas; Duffes, Thomas; Bellanger, Delphine; Nguyen, Elodie

    2012-01-01

    As the biomass sector is growing, several questions are raised regarding the durability of the use of wood as energy source: risk of forest over-exploitation, impact of particles on health, oversized projects without any relationship with local interests, controversy on carbon assessment, massive imports of pellets without real guarantee of durability. A first article addresses the role of French local communities, and identifies six main regions with different characteristics. The example of the Austrian region of Styria is discussed where the share of renewable energies has reached 26,5% (61% of biomass including paper mill wastes). Opportunities and limitations of the development of the agro-fuel sector are briefly discussed. The case of the city of Aubenas is commented (heat network supplied by wood). The issue of short circuit supply is discussed. Other articles outline how air quality is an asset for wood energy, discuss which kind of wood is adapted to an environment-friendly heating, the need to promote wood energy, the importance of the empowerment of local communities, the perspective of a new law on heat, the need to review mechanisms supporting cogeneration, and the role of the French rural network (Reseau Rural Francais) to support rural actors of the wood energy sector

  2. Recall Latencies, Confidence, and Output Positions of True and False Memories: Implications for Recall and Metamemory Theories

    Science.gov (United States)

    Jou, Jerwen

    2008-01-01

    Recall latency, recall accuracy rate, and recall confidence were examined in free recall as a function of recall output serial position using a modified Deese-Roediger-McDermott paradigm to test a strength-based theory against the dual-retrieval process theory of recall output sequence. The strength theory predicts the item output sequence to be…

  3. Farm-Level Determinants of output Commercialization:

    African Journals Online (AJOL)

    MARC-AB

    Ethiopian Institute of Agricultural Research. አኀፅሮተ- ... haricot bean output commercialization among smallholder farmers in moisture-stress areas of ..... the American Agricultural Economics Association Annual Meeting, Orlando, Florida, July.

  4. Endogenous Money, Output and Prices in India

    OpenAIRE

    Das, Rituparna

    2009-01-01

    This paper proposes to quantify the macroeconometric relationships among the variables broad money, lending by banks, price, and output in India using simultaneous equations system keeping in view the issue of endogeneity.

  5. Scintillation camera with improved output means

    International Nuclear Information System (INIS)

    Lange, K.; Wiesen, E.J.; Woronowicz, E.M.

    1978-01-01

    In a scintillation camera system, the output pulse signals from an array of photomultiplier tubes are coupled to the inputs of individual preamplifiers. The preamplifier output signals are coupled to circuitry for computing the x and y coordinates of the scintillations. A cathode ray oscilloscope is used to form an image corresponding with the pattern in which radiation is emitted by a body. Means for improving the uniformity and resolution of the scintillations are provided. The means comprise biasing means coupled to the outputs of selected preamplifiers so that output signals below a predetermined amplitude are not suppressed and signals falling within increasing ranges of amplitudes are increasingly suppressed. In effect, the biasing means make the preamplifiers non-linear for selected signal levels

  6. Input-output rearrangement of isolated converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Kovacevic, Milovan; Mønster, Jakob Døllner

    2015-01-01

    This paper presents a new way of rearranging the input and output of isolated converters. The new arrangement posses several advantages, as increased voltage range, higher power handling capabilities, reduced voltage stress and improved efficiency, for applications where galvanic isolation...

  7. Multiple Input - Multiple Output (MIMO) SAR

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort will research and implement advanced Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) techniques which have the potential to improve...

  8. Evaluation of scientific output in Dentistry in Spanish Universities.

    Science.gov (United States)

    De la Flor-Martínez, M; Galindo-Moreno, P; Sánchez-Fernández, E; Abadal, E; Cobo, M-J; Herrera-Viedma, E

    2017-07-01

    The aim of this study was to assess the scientific output of Spanish universities that offer a bachelor's degree in dentistry through the use of various bibliometric indicators. A total of 21 universities offered a bachelor's degree in dentistry in academic year 2016-2017. The search for papers published by authors associated with these institutions was carried out using the selection of journals listed in the Journal Citation Reports (JCR) and the Web of Knowledge database for the period 1986-2017. On the basis of these data, we determined the output, the h-, g- and hg-indexes, the most productive authors, international collaborations, and the most relevant journals. Public universities obtained better results than private universities. The University of Valencia was ranked first, followed by the Complutense University of Madrid and the University of Granada. The most productive author was José Vicente Bagán, but the author with the highest h-index was Mariano Sanz and Manuel Toledado. The universities with the greatest output and highest citation rates had more international collaborations. The most developed fields in Spanish universities were Oral surgery, Oral medicine and Dental materials. The universities had different models of production. At universities such as Barcelona or Valencia, the production was focused on very few departments and authors. At the other extreme, the University of Granada had various sources of research and authors, which meant that its output and citation rate could increase more. University faculties must provide suitable academic and research training, and therefore must be assessed using objective criteria and bibliometric tools. Although the number of university schools and faculties that teach dentistry has increased, and particularly the number of private universities, there is no correlation between their quality and output and the number of places offered on their courses.

  9. Vegetal and animal biomass; Les biomasses vegetales et animales

    Energy Technology Data Exchange (ETDEWEB)

    Combarnous, M. [Bordeaux-1 Univ., Lab. Energetique et Phenomenes de Transfert, UMR CNRS ENSAM, 33 - Talence (France)

    2005-07-01

    This presentation concerns all types of biomass of the earth and the seas and the relative implicit consumptions. After an evaluation of the food needs of the human being, the author discusses the solar energy conversion, the energetic flux devoted to the agriculture production, the food chain and the biomass. (A.L.B.)

  10. Detailed modelling of biomass pyrolysis: biomass structure and composition

    International Nuclear Information System (INIS)

    Hugony, F.; Migliavacca, G.; Faravelli, T.; Ranzi, E.

    2007-01-01

    The research routes followed in the field of numerical modelling development for biomass devolatilization are here summarised. In this first paper a wide introduction concerning the description of the chemical nature of the main classes of compounds which constitute biomasses is reported, it is the starting point for the subsequent description of the developed models, described in the companion paper [it

  11. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  12. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  13. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  14. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  15. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  16. Biomass Scenario Model | Energy Analysis | NREL

    Science.gov (United States)

    Biomass Scenario Model Biomass Scenario Model The Biomass Scenario Model (BSM) is a unique range of lignocellulosic biomass feedstocks into biofuels. Over the past 25 years, the corn ethanol plant matter (lignocellulosic biomass) to fermentable sugars for the production of fuel ethanol

  17. Biomass Energy | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Biomass Energy Biomass Energy Biomass from local sources can be key to a campus climate action plan biomass may fit into your campus climate action plan. Campus Options Considerations Sample Project Related biomass fuels for energy does not add to the net amount of carbon in the atmosphere. This is because the

  18. Market power and output-based refunding of environmental policy revenues

    International Nuclear Information System (INIS)

    Fischer, Carolyn

    2011-01-01

    Output-based refunding of environmental policy revenues combines a tax on emissions with a production subsidy, typically in a revenue-neutral fashion. With imperfect competition, subsidies can alleviate output underprovision. However, when market shares are significant, endogenous refunding reduces abatement incentives and the marginal net tax or subsidy. If market shares differ, marginal abatement costs will not be equalized, and production is shifted among participants. In an asymmetric Cournot duopoly, endogenous refunding leads to higher output, emissions, and overall costs compared with a fixed rebate program targeting the same emissions intensity. These results hold whether emissions rates are determined simultaneously with output or strategically in a two-stage model. (author)

  19. Nonlinear observer output-feedback MPC treatment scheduling for HIV

    Directory of Open Access Journals (Sweden)

    Zurakowski Ryan

    2011-05-01

    Full Text Available Abstract Background Mathematical models of the immune response to the Human Immunodeficiency Virus demonstrate the potential for dynamic schedules of Highly Active Anti-Retroviral Therapy to enhance Cytotoxic Lymphocyte-mediated control of HIV infection. Methods In previous work we have developed a model predictive control (MPC based method for determining optimal treatment interruption schedules for this purpose. In this paper, we introduce a nonlinear observer for the HIV-immune response system and an integrated output-feedback MPC approach for implementing the treatment interruption scheduling algorithm using the easily available viral load measurements. We use Monte-Carlo approaches to test robustness of the algorithm. Results The nonlinear observer shows robust state tracking while preserving state positivity both for continuous and discrete measurements. The integrated output-feedback MPC algorithm stabilizes the desired steady-state. Monte-Carlo testing shows significant robustness to modeling error, with 90% success rates in stabilizing the desired steady-state with 15% variance from nominal on all model parameters. Conclusions The possibility of enhancing immune responsiveness to HIV through dynamic scheduling of treatment is exciting. Output-feedback Model Predictive Control is uniquely well-suited to solutions of these types of problems. The unique constraints of state positivity and very slow sampling are addressable by using a special-purpose nonlinear state estimator, as described in this paper. This shows the possibility of using output-feedback MPC-based algorithms for this purpose.

  20. Interactions between crop biomass and development of foliar diseases in winter wheat and the potential to graduate the fungicide dose according to crop biomass

    DEFF Research Database (Denmark)

    Jensen, Peter Kryger; Jørgensen, Lise Nistrup

    2016-01-01

    dose. The study was carried out investigating fungicide dose response controlling foliar diseases in winter wheat at three biomass densities obtained growing the crop at three nitrogen levels and using variable seed rates. Further the field experiments included three fungicide dose rates at each...... biomass level, an untreated control, and 75%, 50% and 33% of the recommended fungicide dose rate and the experiments were replicated for three years. Crop biomass had a significant influence on occurrence of septoria and yellow rust with greater disease severity at increasing crop biomass. In two of three...... years, the interaction of crop biomass and fungicide dose rate had a significant influence on disease severity indicating a biomassdependent dose response. The interaction occurred in the two years with high yield potential in combination with severe disease attack. If the variation in crop density...

  1. Forestland owners’ willingness to consider multiple ways of supplying biomass simultaneously: Implications for biofuel incentive policies

    International Nuclear Information System (INIS)

    Wolde, Bernabas; Lal, Pankaj; Burli, Pralhad

    2017-01-01

    Because socioeconomic based approaches account for relevant limiting and motivating factors, they provide a more realistic measurement of forestland owners’ willingness to supply biomass for bioenergy production- information useful to policy makers in setting production targets and in designing relevant incentive programs. Although forestland owners can supply biomass using different means, including supplying biomass from existing stands and changing land use to establish feedstock plantation, among others, previous studies mostly focus only on a given way of supplying biomass at a time. This produces incomplete information that adversely affects its use. By presenting survey takers in Virginia and Texas three different ways of supplying biomass at the same time, we determine forestland owners’ willingness to consider multiple ways of supplying biomass simultaneously and identify the factors that predict such behavior, assess overlap in forestland owners across the different ways of supplying biomass, and assess if and how respondents’ forest management plans and sustainability concerns correspond with their supply decision. Our results show a higher and more articulated rate of willingness to supply biomass than reported in previous studies. The results also suggest that opportunities exist for synergizing programs that incentivize disparate ways of supplying biomass. - Highlights: • Forestland owners are more willing to supply biomass than previous estimated. • Forestland owners will consider multiple ways of supplying biomass simultaneously. • Socioeconomics, sustainability concerns, and management plans predict this behavior. • Incentive programs can target multiple means of supplying biomass simultaneously. • Considerable mismatches exist between the suppliers’ preferences and existing policies.

  2. Modeling of Combined Heat and Power Plant Based on a Multi-Stage Gasifier and Internal Combustion Engines of Various Power Outputs

    Science.gov (United States)

    Khudyakova, G. I.; Kozlov, A. N.; Svishchev, D. A.

    2017-11-01

    The paper is concerned with an integrated system of internal combustion engine and mini combined heat and power plant (ICE-CHP). The system is based on multi-stage wood biomass gasification. The use of producer gas in the system affects negatively the internal combustion engine performance and, therefore, reduces the efficiency of the ICE-CHP plant. A mathematical model of an internal combustion engine running on low-calorie producer gas was developed using an overview of Russian and foreign manufacturers of reciprocating units, that was made in the research. A thermal calculation was done for four-stroke gas engines of different rated power outputs (30, 100 and 250 kW), running on producer gas (CO2 - 10.2, CO - 45.8, N2 - 38.8%). Thermal calculation demonstrates that the engine exhaust gas temperature reaches 500 - 600°C at the rated power level and with the lower engine power, the temperature gets higher. For example, for an internal combustion engine power of 1000 kW the temperature of exhaust gases equals 400°C. A comparison of the efficiency of engine operation on natural gas and producer gas shows that with the use of producer gas the power output declines from 300 to 250 kWe. The reduction in the effective efficiency in this case makes up 2%. The measures are proposed to upgrade the internal combustion engine to enable it to run on low-calorie producer gas.

  3. OUT Success Stories: Biomass Gasifiers

    International Nuclear Information System (INIS)

    Jones, J.

    2000-01-01

    The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation

  4. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  5. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  6. Forest biomass-based energy

    Science.gov (United States)

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  7. Refining fast pyrolysis of biomass

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria

    2011-01-01

    Pyrolysis oil produced from biomass is a promising renewable alternative to crude oil. Such pyrolysis oil has transportation, storage, and processing benefits, none of which are offered by the bulky, inhomogeneous solid biomass from which it originates. However, pyrolysis oil has both a different

  8. Woody biomass logistics [Chapter 14

    Science.gov (United States)

    Robert Keefe; Nathaniel Anderson; John Hogland; Ken Muhlenfeld

    2014-01-01

    The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material is often quite low, sometimes near zero. However, the cost of harvesting, collection, processing, storage, and transportation from the harvest site to end...

  9. Biomass plantations - energy farming

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.

    1981-02-01

    Mounting oil import bills in India are restricting her development programmes by forcing the cutting down of the import of other essential items. But the countries of the tropics have abundant sunlight and vast tracts of arable wastelands. Energy farming is proposed in the shape of energy plantations through forestry or energy cropping through agricultural media, to provide power fuels for transport and the industries and also to provide fuelwoods for the domestic sector. Short rotation cultivation is discussed and results are given of two main species that are being tried, ipil-ipil and Casuarina. Evaluations are made on the use of various crops such as sugar cane, cassava and kenaf as fuel crops together with hydrocarbon plants and aquatic biomass. (Refs. 20)

  10. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    Holm-Nielsen, J.B.; Huntingford, S.; Halberg, N.

    1993-03-01

    The aim was to show the agricultural advantages of farmers being in connection with Communal Biogas Plant. Whether a more environmentally protectire distribution of plant nutrients from animal manure takes place through a biogas plants distribution system, whether the nitrogen in the digested slurry is better utilized and whether the connection results in slurry transportation-time reduction, are discussed. The average amount of nitrogen from animal manure used per hectare was reduced. The area of manure distribution was larger. The nitrogen efficiency was increased when using digested slurry and purchase of N mineral fertilizer decreased, resulting in considerable reduction in nitrogen leaching. The amount of slurry delivered to the local storage tanks was approximately 45 per cent of the total amount treated on the biogas plant. Conditions of manure transport improved greatly as this was now the responsibility of the communal biomass conversion plant administrators. (AB) (24 refs.)

  11. The survival strategy of the soil microbial biomass

    Science.gov (United States)

    Brookes, Philip; Kemmitt, Sarah; Dungait, Jennifer; Xu, Jianming

    2014-05-01

    The soil microbial biomass (biomass) is defined as the sum of the masses of all soil microorganisms > 5000 µm3 (e.g. fungi, bacteria, protozoa, yeasts, actinomycetes and algae). Typically comprising about 1 to 3 % of total soil organic matter (SOM), the biomass might be though to live in a highly substrate-rich environment. However, the SOM is, normally, only exceedingly slowly available to the biomass. However the biomass can survive for months or even years on this meagre energy source. Not surprisingly, therefore, the biomass exhibits many features typical of a dormant or resting population. These include a very low rate of basal and specific respiration, a slow rate of cell division (about once every six months on average) and slow turnover rate. These are clearly adaptations to existing in an environment where substrate availability is very low. Yet, paradoxically, the biomass, in soils worldwide, has an adenosine triphosphate (ATP) concentration (around 10 to 12 µmol ATP g-1 biomass C), and an Adenylate Energy Charge (AEC = [(ATP) + (0.5 ADP)]/[(ATP)+(ADP) + (AMP)]) which are typical of microorganisms growing exponentially in a chemostat. This sets us several questions. Firstly, under the condition of extremely limited substrate availability in soil, why does the biomass not mainly exist as spores, becoming active, by increasing both its ATP concentration and AEC, when substrate (plant and animal residues) becomes available? We surmise that a spore strategy may put organisms at a competitive disadvantage, compared to others which are prepared to invest energy, maintaining high ATP and ATP, to take advantage of a 'food event' as soon as it becomes available. Secondly, since SOM is available (although only very slowly) to the biomass, why have some groups not evolved the ability to mineralize it faster, obtain more energy, and so gain a competitive advantage? We believe that the reason why organisms do not use this strategy is, simply, that they cannot. Our

  12. Biomass as a modern fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.

    1994-01-01

    Case studies are presented for several developed and developing countries. Constraints involved in modernising biomass energy and the potential for turning them into entrepreneurial opportunities are discussed. It is concluded that the long term impacts of biomass programmes and projects depend mainly on ensuring sustainability, flexibility and replicability while taking account of local conditions and providing multiple benefits. Implementation of biomass projects requires governmental policy initiatives that will internalise the external economic, social and environmental costs of conventional fuel sources so that biomass fuels can become competitive on a ''level playing field''. Policies are also required to encourage R and D and commercialisation of biomass energy programs in close co-ordination with the private sector. (author)

  13. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  14. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  15. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  16. Plasma electrolytic liquefaction of cellulosic biomass

    Science.gov (United States)

    Dingliang, TANG; Xianhui, ZHANG; Si-ze, YANG

    2018-04-01

    In this paper, the rapid liquefaction of a corncob was achieved by plasma electrolysis, providing a new method for cellulosic biomass liquefaction. The liquefaction rate of the corncob was 95% after 5 min with polyethylene glycol and glycerol as the liquefying agent. The experiments not only showed that H+ ions catalyzed the liquefaction of the corncob, but also that using accelerated H+ ions, which were accelerated by an electric field, could effectively improve the liquefaction efficiency. There was an obvious discharge phenomenon, in which the generated radicals efficiently heated the solution and liquefied the biomass, in the process of plasma electrolytic liquefaction. Finally, the optimum parameters of the corncob liquefaction were obtained by experimentation, and the liquefaction products were analyzed.

  17. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    Science.gov (United States)

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  18. Treatment of biomass to obtain fermentable sugars

    Science.gov (United States)

    Dunson, Jr., James B.; Tucker, Melvin [Lakewood, CO; Elander, Richard [Evergreen, CO; Hennessey, Susan M [Avondale, PA

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  19. A review of biomass energy potential

    International Nuclear Information System (INIS)

    Hoi Why Kong.

    1995-01-01

    This article reviews some recent development in biomass utilisation systems in Malaysia. The technology reviewed are direct combustion of biomass , wood briquetting technology, pyrolysis of biomass and gasification of wood in Malaysia

  20. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  1. Residual gravimetric method to measure nebulizer output.

    Science.gov (United States)

    Vecellio None, Laurent; Grimbert, Daniel; Bordenave, Joelle; Benoit, Guy; Furet, Yves; Fauroux, Brigitte; Boissinot, Eric; De Monte, Michele; Lemarié, Etienne; Diot, Patrice

    2004-01-01

    The aim of this study was to assess a residual gravimetric method based on weighing dry filters to measure the aerosol output of nebulizers. This residual gravimetric method was compared to assay methods based on spectrophotometric measurement of terbutaline (Bricanyl, Astra Zeneca, France), high-performance liquid chromatography (HPLC) measurement of tobramycin (Tobi, Chiron, U.S.A.), and electrochemical measurements of NaF (as defined by the European standard). Two breath-enhanced jet nebulizers, one standard jet nebulizer, and one ultrasonic nebulizer were tested. Output produced by the residual gravimetric method was calculated by weighing the filters both before and after aerosol collection and by filter drying corrected by the proportion of drug contained in total solute mass. Output produced by the electrochemical, spectrophotometric, and HPLC methods was determined after assaying the drug extraction filter. The results demonstrated a strong correlation between the residual gravimetric method (x axis) and assay methods (y axis) in terms of drug mass output (y = 1.00 x -0.02, r(2) = 0.99, n = 27). We conclude that a residual gravimetric method based on dry filters, when validated for a particular agent, is an accurate way of measuring aerosol output.

  2. Output characteristics of Stirling thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong; Zhao Liang

    2008-01-01

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE

  3. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  4. Determining the confidence levels of sensor outputs using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Broten, G S; Wood, H C [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Electrical Engineering

    1996-12-31

    This paper describes an approach for determining the confidence level of a sensor output using multi-sensor arrays, sensor fusion and artificial neural networks. The authors have shown in previous work that sensor fusion and artificial neural networks can be used to learn the relationships between the outputs of an array of simulated partially selective sensors and the individual analyte concentrations in a mixture of analyses. Other researchers have shown that an array of partially selective sensors can be used to determine the individual gas concentrations in a gaseous mixture. The research reported in this paper shows that it is possible to extract confidence level information from an array of partially selective sensors using artificial neural networks. The confidence level of a sensor output is defined as a numeric value, ranging from 0% to 100%, that indicates the confidence associated with a output of a given sensor. A three layer back-propagation neural network was trained on a subset of the sensor confidence level space, and was tested for its ability to generalize, where the confidence level space is defined as all possible deviations from the correct sensor output. A learning rate of 0.1 was used and no momentum terms were used in the neural network. This research has shown that an artificial neural network can accurately estimate the confidence level of individual sensors in an array of partially selective sensors. This research has also shown that the neural network`s ability to determine the confidence level is influenced by the complexity of the sensor`s response and that the neural network is able to estimate the confidence levels even if more than one sensor is in error. The fundamentals behind this research could be applied to other configurations besides arrays of partially selective sensors, such as an array of sensors separated spatially. An example of such a configuration could be an array of temperature sensors in a tank that is not in

  5. Catalytic routes from biomass to fuels

    DEFF Research Database (Denmark)

    Riisager, Anders

    2014-01-01

    chain unaffected. This presentation will survey the status of biofuels production from different sources, and discuss the sustainability of making transportation fuels from biomass. Furthermore, recently developed chemocatalytic technologies that allow efficient conversion of lignocellulosic biomass...... the chemical industry to find new feasible chemocatalytic routes to convert the components of lignocellulosic plant biomass (green biomass) as well as aquatic biomass (blue biomass) into potential platform chemicals that can replace the fossil based chemicals in order to leave the chemical supply and value...

  6. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  7. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  8. Problems in Modelling Charge Output Accelerometers

    Directory of Open Access Journals (Sweden)

    Tomczyk Krzysztof

    2016-12-01

    Full Text Available The paper presents major issues associated with the problem of modelling change output accelerometers. The presented solutions are based on the weighted least squares (WLS method using transformation of the complex frequency response of the sensors. The main assumptions of the WLS method and a mathematical model of charge output accelerometers are presented in first two sections of this paper. In the next sections applying the WLS method to estimation of the accelerometer model parameters is discussed and the associated uncertainties are determined. Finally, the results of modelling a PCB357B73 charge output accelerometer are analysed in the last section of this paper. All calculations were executed using the MathCad software program. The main stages of these calculations are presented in Appendices A−E.

  9. Output power analyses for the thermodynamic cycles of thermal power plants

    International Nuclear Information System (INIS)

    Sun Chen; Cheng Xue-Tao; Liang Xin-Gang

    2014-01-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. (general)

  10. Nitrogen utilization and biomass yield in trickle bed air biofilters.

    Science.gov (United States)

    Kim, Daekeun; Sorial, George A

    2010-10-15

    Nitrogen utilization and subsequent biomass yield were investigated in four independent lab-scale trickle bed air biofilters (TBABs) fed with different VOCs substrate. The VOCs considered were two aromatic (toluene, styrene) and two oxygenated (methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK)). Long-term observations of TBABs performances show that more nitrogen was required to sustain high VOC removal, but the one fed with a high loading of VOC utilized much more nitrogen for sustaining biomass yield. The ratio N(consumption)/N(growth) was an effective indicator in evaluating nitrogen utilization in the system. Substrate VOC availability in the system was significant in determining nitrogen utilization and biomass yield. VOC substrate availability in the TBAB system was effectively identified by using maximum practical concentrations in the biofilm. Biomass yield coefficient, which was driven from the regression analysis between CO(2) production rate and substrate consumption rate, was effective in evaluating the TBAB performance with respect to nitrogen utilization and VOC removal. Biomass yield coefficients (g biomass/g substrate, dry weight basis) were observed to be 0.668, 0.642, 0.737, and 0.939 for toluene, styrene, MEK, and MIBK, respectively. 2010 Elsevier B.V. All rights reserved.

  11. Reliability and Energy Output of Bifacial Modules

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.B.; Jansen, M.J.; Dekker, N.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-06-15

    Although flash tests under standard test conditions yields lower power due to transmittance of the back sheet, bifacial modules are expected to outperform their monofacial equivalents in terms of yearly energy output in the field. We compare flash tests for bifacial modules with and without a light scattering panel directly behind the modules: 3% more power output is obtained. We also report on the damp-heat reliability of modules with transparent back sheet. Finally we will present the results of an outdoor study comparing modules with transparent back sheet and modules with state-of-the-art AR coating on the front glass.

  12. The light output of BGO crystals

    International Nuclear Information System (INIS)

    Gong Zhufang; Ma Wengan; Lin Zhirong; Wang Zhaomin; Xu Zhizong; Fan Yangmei

    1987-01-01

    The dependence of light output on the surface treatment of BGO crystals has been tested. The results of experiments and Monte Carlo calculation indicate that for a tapered BGO crystal the best way to improve the uniformity and the energy resolution and to obtain higher light output is roughing the surface coupled to photomultiplier tube. The authors also observed that different wrapping method can effect its uniformity and resolutoin. Monte Carlo calculation indicates that the higher one of the 'double peaks' is the photoelectron peak of γ rays

  13. Characteristic analysis of a polarization output coupling Porro prism resonator

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-02-01

    An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.

  14. Environmental risk assessments for transgenic crops producing output trait enzymes

    Science.gov (United States)

    Tuttle, Ann; Shore, Scott; Stone, Terry

    2009-01-01

    The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes. PMID:19924556

  15. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  16. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  17. Sustainability of biomass for cofiring

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    There are many items to include when considering the sustainability of biomass for cofiring, and some of them are hard to quantify. The focus of this report is on the greenhouse gas emission aspects of sustainability. The reduction of greenhouse gas emissions achieved by substituting biomass for coal depends on a number of factors such as the nature of the fossil fuel reference system, the source of the biomass, and how it is produced. Relevant issues in biomass production include the energy balance, the greenhouse gas balance, land use change, non-CO2 greenhouse gas emission from soils, changes to soil organic carbon, and the timing of emissions and removal of CO2 which relates to the scale of biomass production. Certification of sustainable biomass is slow to emerge at the national and international level, so various organisations are developing and using their own standards for sustainable production. The EU does not yet have sustainability standards for solid biomass, but the UK and Belgium have developed their own.

  18. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    1997-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from

  19. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Science.gov (United States)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  20. Investigation of biomasses and chars obtained from pyrolysis of different biomasses with solid-state 13C and 23Na nuclear magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Link, S.; Arvelakis, S.; Spliethoff, H.; Waard, de P.; Samoson, A.

    2008-01-01

    A number of biomass samples (reed, pine pellets, Douglas fir wood chips, wheat straw, peach stones, and olive residue), pretreated biomass samples (leached wheat straw, leached peach stones, and leached olive residue), as well as their chars obtained by pyrolysis using different heating rates (5,

  1. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Science.gov (United States)

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  2. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Directory of Open Access Journals (Sweden)

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  3. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  4. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  5. Plankton composition and biomass development

    DEFF Research Database (Denmark)

    Jakobsen, H.H.; Jepsen, P.M.; Blanda, E.

    2016-01-01

    Plankton food web dynamics were studied during a complete production season in a semi-intensive land-based facility for rearing of turbot (Scophthalmus maximus) larvae. The production season was divided into three production cycles of 3–5 weeks. Phytoplankton biomass (using chlorophyll a as biomass...... proxy) peaked in each production cycle. However, the maximum biomass decreased from spring (18 μg chlorophyll a L−1) to fall (ca. 7 μg chlorophyll a L−1), simultaneous with a decline in the concentration of dissolved nitrogen in the inoculating water. During the three production cycles, we observed...

  6. Bearings for the biomass boom

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Duncan

    2011-03-15

    Biomass energy is booming –– more than two billion people depend on biomass for their energy and the International Energy Agency predicts that biomass' share of the global energy supply will treble by 2050. But in many developing countries it is still regarded as a traditional and dirty solution that is often criminalised, unsustainable and poorly paid. A more sophisticated approach that legalises and secures sustainable production by and for local people could help improve energy security, cut carbon emissions, protect forests and reduce poverty.

  7. Liquid biofuels from blue biomass

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Jensen, Annette Eva; Bangsø Nielsen, Henrik

    2011-01-01

    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth...... medium, light as energy source and they capture CO2 for the synthesis of new organic material, thus can grow on non-agricultural land, without increasing food prices, or using fresh water. Due to all these advantages in addition to very high biomass yield with high carbohydrate content, macroalgaes can...

  8. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  9. Biomass catalysis and solvents; Biomasse catalyse et solvants

    Energy Technology Data Exchange (ETDEWEB)

    Pioch, D [CIRAD-AMIS, programme Agro-Alimentaire, 34 - Montpellier (France); Pouilloux, Y; Barrault, J [Centre National de la Recherche Scientifique (CNRS UMR 6503), ESIP, Lab. de Catalyse en Chimie Organique, 86 - Poitiers (France); and others

    2000-07-01

    How to develop new technics and products and at the same time to respect the environment? The biomass seems to be an interesting domain in this framework and this document allows the selection of performing products obtain by biomass. Among these products the solvents economic and environmental advantages or consequences are discussed. A great part is also devoted to the voc emissions, bound to the solvents.

  10. Feasibility of Biomass Biodrying for Gasification Process

    Science.gov (United States)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004

  11. Energy from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K.J. (Tate and Lyle, Ltd., Reading, England); Vlitos, A.J.; Coombs, J.

    1983-09-01

    The most-abundant biomass is wood, of which cellulose is a major component. Burning releases directly as heat, solar energy which has been stored in the wood as a result of the process of photosynthesis. It is also possible to convert cellulose to simple sugars which may be fermented to ethanol, a more convenient source of energy as a fuel for internal combustion engines; alternatively, wood may be gasified at high temperature in the presence of steam. The resulting synthesis gas can be catalytically converted into methanol. Neither route to a liquid fuel from cellulosic residues has yet been proved economically feasible. However, alcoholic fermentation of sugar, or glucose obtained by the hydrolysis of starch may provide a commercially viable process for the production of fuel alcohol. Both sugar and starch are agricultural food products which are obtained from cane sugar, maize and cassava. Other sources of fermentable sugars and starch include pineapple, sweet sorghum, sago palm, yams and other root crops. The energy input required to grow and process agricultural products may be greater than the energy yield in the form of anhydrous fermentation alcohol. As a consequence, only sugar cane and possibly sweet sorghum can be regarded as giving a net positive energy yield. Maize and, on a more-limited scale, cassava, may provide a viable process, given an additional source of low-grade energy, as is evident from the successful exploitation of these crops for fuel-alcohol production in the US and Brazil. 31 references, 12 figures, 3 tables.

  12. France looks to biomass

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-22

    France's Solar Energy Commission has announced a series of measures it is backing to increase the country's production of energy from biomass. Following consultations on suitable equipment, it has decided to go ahead with experiments of 15 systems designed to produce methane from animal wastes. Its eventual target is the production of between 1 million and 1.5 million tons per year of oil equivalent (toe) from this source. Secondly, it has launched a tender for the supply of domestic and industrial heating equipment capable of functioning on straw. It has calculated that the amount of straw available for this end use is in the region of 6 million ton per year, equivalent to about 2 million tons per year toe. Finally, tests are to be carried out in 14 different areas to determine the best variety of Jerusalem artichoke for the production of ethanol. Together with the Institut Francais du Petrole the Commission is building a demonstration unit for the production of acetone/butyric acid by fermentation of sugars from Jerusamlem artichoke and beet roots.

  13. Sorghums: viable biomass candidates

    Energy Technology Data Exchange (ETDEWEB)

    McClure, T A; Arthur, M F; Kresovich, S; Scantland, D A

    1980-01-01

    Agronomic studies conducted at Battelle's Columbus Division to evaluate biomass and sugar yields of sweet sorghum are described and the major findings are summarized. Development opportunities for using sorghum cultivars as a large-scale energy crop are discussed. With presently available cultivars, sweet sorghum should produce 3500 to 4000 liters ethanol per hectare from the fermentable sugars alone. Conversion of the stalk fibers into alcohol could increase production by another 1600 to 1900 liters per hectare with existing cultivars. These yields are approximately 30 to 40% greater per hectare than would be obtained from above average yields of grain and stalk fiber with corn. There is reason to believe, that with hybrid sweet sorghum, these yields could be further increased by as much as 30%. Diminishing land availability for agricultural crops necessitates that maximum yields be obtained. Over the next decade, imaginative technological innovations in sorghum harvesting, processing, and crop preservation, coupled with plant breeding research should help this crop realize its full potential as a renewable resource for energy production.

  14. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  15. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  16. Output formatting in Apple-Soft Basic

    International Nuclear Information System (INIS)

    Navale, A.S.

    1987-01-01

    Personal computers are being used extensively in various fields. BASIC is a very popular and widely used language in personal computers. Apple computer is one of the popular machines used for scientific and engineering applications. Presenting output from computers in a neat and easy to read form is very important. Languages like FORTRAN have utility command 'FORMAT' which takes care of the formatting of the output in user-defined form. In some versions of BASIC a PRINT USING facility is available but it is not as powerful as the FORTRAN statement 'FORMAT'. Applesoft basic does not have even this PRINT USING command. Programmers have to write their own program segments to handle output formatting in Applesoft BASIC. Generally, such user written programs are of limited use as they cannot be used easily with other programs. A general purpose and easily transportable subroutine in Applesoft BASIC is presented here for handling output formatting in user-defined structure. The subroutine is nearly as powerful as the FORMAT statement in FORTRAN. It can also be used in other versions of BASIC with very little modifications. 3 tables, 4 refs. (author)

  17. On output regulation for linear systems

    NARCIS (Netherlands)

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    For both continuous- and discrete-time systems, we revisit the output regulation problem for linear systems. We generalize the problem formulation in order • to expand the class of reference or disturbance signals, • to utilize the derivative or feedforward information of reference signals whenever

  18. Fast Output-sensitive Matrix Multiplication

    DEFF Research Database (Denmark)

    Jacob, Riko; Stöckel, Morten

    2015-01-01

    We consider the problem of multiplying two $U \\times U$ matrices $A$ and $C$ of elements from a field $\\F$. We present a new randomized algorithm that can use the known fast square matrix multiplication algorithms to perform fewer arithmetic operations than the current state of the art for output...

  19. Predicting Color Output of Additive Manufactured Parts

    DEFF Research Database (Denmark)

    Eiríksson, Eyþór Rúnar; Pedersen, David Bue; Aanæs, Henrik

    2015-01-01

    In this paper we address the colorimetric performance of a multicolor additive manufacturing process. A method on how to measure and characterize color performance of said process is presented. Furthermore, a method on predicting the color output is demonstrated, allowing for previsualization...

  20. What shapes output of policy reform?

    DEFF Research Database (Denmark)

    Carlsen, Kirsten

    This thesis deals with the factors shaping forest policy output during the stages implementation and bases its main message on empirical findings from the forestry sector in Ghana. Policy and institutional factors are important underlying causes for deforestation, especially in the tropics. Fores...

  1. Monetary policy and regional output in Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Rockenbach da Silva Guimarães

    2014-03-01

    Full Text Available This work presents an analysis of whether the effects of the Brazilian monetary policy on regional outputs are symmetric. The strategy developed combines the techniques of principal component analysis (PCA to decompose the variables that measure regional economic activity into common and region-specific components and vector autoregressions (VAR to observe the behavior of these variables in response to monetary policy shocks. The common component responds to monetary policy as expected. Additionally, the idiosyncratic components of the regions showed no impact of monetary policy. The main finding of this paper is that the monetary policy responses on regional output are symmetrical when the regional output decomposition is performed, and the responses are asymmetrical when this decomposition is not performed. Therefore, performing the regional output decomposition corroborates the economic intuition that monetary policy has no impact on region-specific issues. Once monetary policy affects the common component of the regional economic activity and does not impact its idiosyncratic components, it can be considered symmetrical.

  2. Comparison of cardiac output measurement techniques

    DEFF Research Database (Denmark)

    Espersen, K; Jensen, E W; Rosenborg, D

    1995-01-01

    Simultaneously measured cardiac output obtained by thermodilution (TD), transcutaneous suprasternal ultrasonic Doppler (DOP), CO2-rebreathing (CR) and the direct Fick method (FI) were compared in eleven healthy subjects in a supine position (SU), a sitting position (SI), and during sitting exercise...

  3. Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation.

    Science.gov (United States)

    Chen, Yingquan; Yang, Haiping; Yang, Qing; Hao, Hongmeng; Zhu, Bo; Chen, Hanping

    2014-03-01

    This study investigated the properties of corn stalk and cotton stalk after torrefaction, and the effects of torrefaction on product properties obtained under the optimal condition of biomass pyrolysis polygeneration. The color of the torrefied biomass chars darkened, and the grindability was upgraded, with finer particles formed and grinding energy consumption reduced. The moisture and oxygen content significantly decreased whereas the carbon content increased considerably. It was found that torrefaction had different effects on the char, liquid oil and biogas from biomass pyrolysis polygeneration. Compared to raw straws, the output of chars from pyrolysis of torrefied straws increased and the quality of chars as a solid fuel had no significant change, while the output of liquid oil and biogas decreased. The liquid oil contained more concentrated phenols with less water content below 40wt.%, and the biogas contained more concentrated H2 and CH4 with higher LHV up to 15MJ/nm(3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Power output of field-based downhill mountain biking.

    Science.gov (United States)

    Hurst, Howard Thomas; Atkins, Stephen

    2006-10-01

    The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.

  5. ROE Carbon Storage - Forest Biomass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area....

  6. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  7. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  8. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  9. Experiences with biomass in Denmark

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Bolwig, Simon; Solér, Ola

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...... with biomass use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement....

  10. Improved biomass Injera stove- Mirte

    International Nuclear Information System (INIS)

    Bess, M.; Kenna, J.

    1994-01-01

    The status report of 1994 - 1995 shows as the need to design an improved biomass stove for Injera was recognized. The marketing began in mid-1994 with a Mirte which showed even higher efficiencies in laboratory, using 50 percent less woody biomass than the open fire. By early 1994 several hundreds Mirte stoves had been sold in Addis Ababa at non-subsidized prices. The Mirte is currently produced on a large-scale by building materials companies. 3 figs. 1 tab

  11. Solid biomass barometer - EurObserv'ER - December 2013

    International Nuclear Information System (INIS)

    2013-12-01

    Primary energy production from solid biomass is back on the road to growth, which according to EurObserv'ER stood at about 5.4% between 2011 and 2012. Output rose to 82.3 million tons of oil equivalent, which is a 4.2 Mtoe improvement on 2011, whose exceptionally mild winter put paid to the sector's uninterrupted rise since 1999. This growth was enjoyed by all the solid biomass energy application sectors. Heat sales to heating networks increased 12.9% to 7.9 Mtoe in 2012 while electricity production, boosted by coal-fired power station conversions, gained 7.8% to produce 79.5 TWh

  12. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    Energy Technology Data Exchange (ETDEWEB)

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  13. Solid biomass barometer - EurObserv'ER - December 2015

    International Nuclear Information System (INIS)

    2015-12-01

    The European Reanalysis and Observations for Monitoring (EURO4M) project experts report that the year 2014 was unusually hot on the European continent, with the highest temperatures on record, following on from 2013 whose winter conditions were also exceptionally mild, and ahead of 2015 which is also set to be very warm. This situation led to a fall in solid biomass consumption for heating across the European Union. In 2014 electricity output increased by 4.5% on its 2013 level to 84.8 TWh, as the vagaries of climate have less impact on demand and it was also boosted by the expansion of biomass cogeneration and new coal-fired power plant conversions

  14. Biogas from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Berglund Odhner, Peter; Schabbauer, Anna [Grontmij AB, Stockholm (Sweden); Sarvari Horvath, Ilona; Mohseni Kabir, Maryam [Hoegskolan i Boraas, Boraas (Sweden)

    2012-01-15

    Grontmij AB has cooperated with the University of Boraas to evaluate the technological and economical possibilities for biogas production from substrates containing lignocellulose, such as forest residues, straw and paper. The state of knowledge regarding biogas production from cellulosic biomass has been summarized. The research in the field has been described, especially focusing on pretreatment methods and their results on increased gas yields. An investigation concerning commercially available pretreatment methods and the cost of these technologies has been performed. An economic evaluation of biogas production from lignocellulosic materials has provided answers to questions regarding the profitability of these processes. Pretreatment with steam explosion was economically evaluated for three feedstocks - wood, straw and paper - and a combination of steam explosion and addition of NaOH for paper. The presented costs pertain to costs for the pretreatment step as it, in this study, was assumed that the pretreatment would be added to an existing plant and the lignocellulosic substrates would be part of a co-digestion process. The results of the investigation indicate that it is difficult to provide a positive net result when comparing the cost of pretreatment versus the gas yield (value) for two of the feedstocks - forest residues and straw. This is mainly due to the high cost of the raw material. For forest residues the steam pretreatment cost exceeded the gas yield by over 50 %, mainly due to the high cost of the raw material. For straw, the production cost was similar to the value of the gas. Paper showed the best economic result. The gas yield (value) for paper exceeded the pretreatment cost by 15 %, which makes it interesting to study paper further.

  15. The impact of monetary policy on output and inflation in India: A frequency domain analysis

    Directory of Open Access Journals (Sweden)

    Salunkhe Bhavesh

    2017-01-01

    Full Text Available In the recent past, several attempts by the RBI to control inflation through tight monetary policy have ended up slowing the growth process, thereby provoking prolonged discussion among academics and policymakers about the efficacy of monetary policy in India. Against this backdrop, the present study attempts to estimate the causal relationship between monetary policy and its final objectives; i.e., growth, and controlling inflation in India. The methodological tool used is testing for Granger Causality in the frequency domain as developed by Lemmens et al. (2008, and monetary policy has been proxied by the weighted average call money rate. In view of the fact that output gap is one of the determinants of future inflation, an attempt has also been made to study the causal relationship between output gap and inflation. The results of empirical estimation show a bi-directional causality between policy rate and inflation and between policy rate and output, which implies that the monetary authorities in India were equally concerned about inflation and output growth when determining policy. Furthermore, any attempt to control inflation affects output with the same or even greater magnitude than inflation, thereby damaging the growth process. The relationship between output gap and inflation was found to be positive, as reported in earlier studies for India. Furthermore, the output gap causes inflation only in the short-tomediumrun.

  16. COA based robust output feedback UPFC controller design

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-12-15

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  17. Biomass and Solar Technologies Lauded | News | NREL

    Science.gov (United States)

    4 » Biomass and Solar Technologies Lauded News Release: Biomass and Solar Technologies Lauded July security and reduce our reliance on foreign sources of oil." The Enzymatic Hydrolysis of Biomass Cellulose to Sugars technology is expected to allow a wide range of biomass resources to be used to produce

  18. Energy from biomass and wastes 15

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    This proceedings is contains 63 papers on the utilization of biomass as an energy source and as a source for materials. The specific topics discussed include: environmental issues, biomass production, biomass pretreatment and processing, chemicals and other products from biomass, fuel ethanol, thermal liquefaction, thermal gasification, combustion and power generation, and national programs. Individual papers are indexed separately

  19. Energy biomass and environment. The French programme

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The main themes of the french program for energy from biomass are presented: agriculture and forest products (short rotation plantations, waste products, etc.), enhancement of the biomass production, mobilization of biomass resources, biomass processing technics (biofuels, combustion processes, biotechnologies); vulgarization for diffusion of technics from laboratories to industry or domestic sectors.

  20. Stable current outputs and phytate degradation by yeast-based biofuel cell.

    Science.gov (United States)

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2014-09-01

    In this paper, we report for the first time that Candida melibiosica 2491 yeast strain expresses enhanced phytase activity when used as a biocatalyst in biofuel cells. The polarization also results in an increase of the yeast biomass. Higher steady-state electrical outputs, assigned to earlier production of an endogenous mediator, were achieved at continuous polarization under constant load. The obtained results prove that the C. melibiosica yeast-based biofuel cell could be used for simultaneous electricity generation and phytate bioremediation. In addition, the higher phytase activity obtained by interruptive polarization suggests a new method for increasing the phytase yield from microorganisms. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  2. Demographic controls of aboveground forest biomass across North America.

    Science.gov (United States)

    Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W

    2016-04-01

    Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.

  3. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  4. Cardiac output measurement instruments controlled by microprocessors

    International Nuclear Information System (INIS)

    Spector, M.; Barritault, L.; Boeri, C.; Fauchet, M.; Gambini, D.; Vernejoul, P. de

    The nuclear medicine and biophysics laboratory of the Necker-Enfants malades University Hospital Centre has built a microprocessor controlled Cardiac flowmetre. The principle of the cardiac output measurement from a radiocardiogram is well established. After injection of a radioactive indicator upstream from the heart cavities the dilution curve is obtained by the use of a gamma-ray precordial detector. This curve normally displays two peaks due to passage of the indicator into the right and left sides of the heart respectively. The output is then obtained from the stewart Hamilton principle once recirculation is eliminated. The graphic method used for the calculation however is long and tedious. The decreasing fraction of the dilution curve is projected in logarithmic space in order to eliminate recirculation by determining the mean straight line from which the decreasing exponential is obtained. The principle of the use of microprocessors is explained (electronics, logics) [fr

  5. Ethanol, biomass and enzyme production for whey waste abatement

    Energy Technology Data Exchange (ETDEWEB)

    Maiorella, B L; Castillo, F J

    1984-08-01

    Methods of ethanol, biomass, and lactase production are evaluated for the treatment of whey waste. These processes can all reduce the whey BOD load of 35,000 ppm by at least 90%. Plant designs are evaluated at the scale of 25,000 l whey per day, corresponding to the output of a typical independent cheese factory. Ethanol production is the most practical of the alternatives evaluated and the waste treatment would add 7.3 US cents per kilogramme to the cost of cheese manufacture. 57 references.

  6. Unregulated heat output of a storage heater

    OpenAIRE

    Lysak, Oleg Віталійович

    2017-01-01

    In the article the factors determining the heat transfer between the outer surfaces of a storage heater and the ambient air. This heat exchange is unregulated, and its definition is a precondition for assessing heat output range of this type of units. It was made the analysis of the literature on choosing insulating materials for each of the external surfaces of storage heaters: in foreign literature, there are recommendations on the use of various types of insulation depending on the type of...

  7. Computing multiple-output regression quantile regions

    Czech Academy of Sciences Publication Activity Database

    Paindaveine, D.; Šiman, Miroslav

    2012-01-01

    Roč. 56, č. 4 (2012), s. 840-853 ISSN 0167-9473 R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : halfspace depth * multiple-output regression * parametric linear programming * quantile regression Subject RIV: BA - General Mathematics Impact factor: 1.304, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf

  8. Galois connection for multiple-output operations

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2018-01-01

    Roč. 79 (2018), č. článku 17. ISSN 0002-5240 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : clones and coclones * Galois connection * multiple-output operations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.625, year: 2016 https://link.springer.com/ article /10.1007%2Fs00012-018-0499-7

  9. Carnot efficiency at divergent power output

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2017-05-01

    The widely debated feasibility of thermodynamic machines achieving Carnot efficiency at finite power has been convincingly dismissed. Yet, the common wisdom that efficiency can only be optimal in the limit of infinitely slow processes overlooks the dual scenario of infinitely fast processes. We corroborate that efficient engines at divergent power output are not theoretically impossible, framing our claims within the theory of Stochastic Thermodynamics. We inspect the case of an electronic quantum dot coupled to three particle reservoirs to illustrate the physical rationale.

  10. Galois connection for multiple-output operations

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2018-01-01

    Roč. 79, č. 2 (2018), č. článku 17. ISSN 0002-5240 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : clones and coclones * Galois connection * multiple-output operations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.625, year: 2016 https://link.springer.com/article/10.1007%2Fs00012-018-0499-7

  11. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  12. Burst firing enhances neural output correlation

    Directory of Open Access Journals (Sweden)

    Ho Ka eChan

    2016-05-01

    Full Text Available Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making significant simplifications on neural dynamics. Temporal correlation between inputs that arises from synaptic filtering, for instance, is often ignored when assuming that an input spike can at most generate one output spike. Through numerical simulations of a pair of leaky integrate-and-fire (LIF neurons receiving correlated inputs, we demonstrate that neurons in the presence of synaptic filtering by slow synapses exhibit strong output correlations. We then show that burst firing plays a central role in enhancing output correlations, which can explain the above-mentioned observation because synaptic filtering induces bursting. The observed changes of correlations are mostly on a long time scale. Our results suggest that other features affecting the prevalence of neural burst firing in biological neurons, e.g., adaptive spiking mechanisms, may play an important role in modulating the overall level of correlations in neural networks.

  13. Multi-model MPC with output feedback

    Directory of Open Access Journals (Sweden)

    J. M. Perez

    2014-03-01

    Full Text Available In this work, a new formulation is presented for the model predictive control (MPC of a process system that is represented by a finite set of models, each one corresponding to a different operating point. The general case is considered of systems with stable and integrating outputs in closed-loop with output feedback. For this purpose, the controller is based on a non-minimal order model where the state is built with the measured outputs and the manipulated inputs of the control system. Therefore, the state can be considered as perfectly known and, consequently, there is no need to include a state observer in the control loop. This property of the proposed modeling approach is convenient to extend previous stability results of the closed loop system with robust MPC controllers based on state feedback. The controller proposed here is based on the solution of two optimization problems that are solved sequentially at the same time step. The method is illustrated with a simulated example of the process industry. The rigorous simulation of the control of an adiabatic flash of a multi-component hydrocarbon mixture illustrates the application of the robust controller. The dynamic simulation of this process is performed using EMSO - Environment Model Simulation and Optimization. Finally, a comparison with a linear MPC using a single model is presented.

  14. Solar Power Station Output Inverter Control Design

    Directory of Open Access Journals (Sweden)

    J. Bauer

    2011-04-01

    Full Text Available The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system can be used as a generator and it shall deliver energy to the supply network. Each type of the application has different requirements on the converter and its control algorithm. But for all of them the one thing is common – the maximal efficiency. The paper focuses on design and simulation of the low power inverter that acts as output part of the whole converter. In the paper the design of the control algorithm of the inverter for both types of inverter application – for islanding mode and for operation on the supply grid – is discussed. Attention is also paid to the design of the output filter that should reduce negative side effects of the converter on the supply network.

  15. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  16. Materials Problems and Solutions in Biomass fired plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Cofiring of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw fired......Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable...... fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can...

  17. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants......Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel...... resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly...

  18. Seaweed and Biomass production

    Science.gov (United States)

    Nadiradze, K. T.

    2016-02-01

    The Black Sea has a sensitive ecosystem, vulnerable to the potential impacts by climate, water quality, pollution and etc. Successfully restoring and sustaining healthy Black Sea aqua cultural farming will require concreted action by private sector, civil society, farmer organizations and other stakeholders. But to achieve agri-environmental goals at scale, well-organized policy goals, framework and strategy for Sea Agriculture Green energy, Algae Biomass, Sapropel Production, aquacultures farming are essential for Georgian Farmers. But we must recognizes the most sustainable and at least risky farming systems will be those that build in aqua cultural, environmental, and social management practices resilient to climate ch ange and other risks and shocks evident in Georgia and whole in a Black Sea Basin Countries. Black Sea has more than 600 kinds of seaweeds; these species contain biologically active substances also present in fish - vitamins and omega fatty acids. The task is to specify how Black Sea seaweeds can be used in preparing nutrition additives, medicines and cosmetic products. As elsewhere around the world, governments, civil society, and the private sector in Georgia should work together to develop and implement `Blue Economy' and Green Growth strategies to generate equitable, sustainable economic development through strengthening Sea Agriculture. We are very interested to develop Black Sea seaweed plantation ad farming for multiply purposes fo r livestock as food additives, for human as great natural source of iodine as much iodine are released by seaweeds into the atmosphere to facilitate the development of better models or aerosol formation and atmospheric chemistry. It is well known, that earth's oceans are thought to have absorbed about one quarter of the CO2 humans pumped into the atmosphere over the past 20 years. The flip side of this process is that, as they absorb co2, oceans also become more acidic with dramatic consequences for sea life

  19. Total output operation chart optimization of cascade reservoirs and its application

    International Nuclear Information System (INIS)

    Jiang, Zhiqiang; Ji, Changming; Sun, Ping; Wang, Liping; Zhang, Yanke

    2014-01-01

    Highlights: • We propose a new double nested model for cascade reservoirs operation optimization. • We use two methods to extract the output distribution ratio. • The adopted two methods perform better than the widely used methods at present. • Stepwise regression method performs better than mean value method on the whole. - Abstract: With the rapid development of cascade hydropower stations in recent decades, the cascade system composed of multiple reservoirs needs unified operation and management. However, the output distribution problem has not yet been solved reasonably when the total output of cascade system obtained, which makes the full utilization of hydropower resources in cascade reservoirs very difficult. Discriminant criterion method is a traditional and common method to solve the output distribution problem at present, but some shortcomings cannot be ignored in the practical application. In response to the above concern, this paper proposes a new total output operation chart optimization model and a new optimal output distribution model, the two models constitute to a double nested model with the goal of maximizing power generation. This paper takes the cascade reservoirs of Li Xianjiang River in China as an instance to obtain the optimal total output operation chart by the proposed double nested model and the 43 years historical runoff data, progressive searching method and progressive optimality algorithm are used in solving the model. In order to take the obtained total output operation chart into practical operation, mean value method and stepwise regression method are adopted to extract the output distribution ratios on the basis of the optimal simulation intermediate data. By comparing with discriminant criterion method and conventional method, the combined utilization of total output operation chart and output distribution ratios presents better performance in terms of power generation and assurance rate, which proves it is an effective

  20. Port Graham Community Building Biomass Heating Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Patrick [Port Graham Village Corporation, Anchorage, AK (United States); Sink, Charles [Chugachmiut, Anchorage, Alaska (United States)

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to

  1. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

    Science.gov (United States)

    Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco

    2016-12-01

    We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

  2. Biomass combustion for greenhouse carbon dioxide enrichment

    International Nuclear Information System (INIS)

    Roy, Yves; Lefsrud, Mark; Orsat, Valerie; Filion, Francis; Bouchard, Julien; Nguyen, Quoc; Dion, Louis-Martin; Glover, Antony; Madadian, Edris; Lee, Camilo Perez

    2014-01-01

    Greenhouses in northern climates have a significant heat requirement that is mainly supplied by non-renewable fuels such as heating oil and natural gas. This project's goal was the development of an improved biomass furnace able to recover the heat and the CO 2 available in the flue gas and use them in the greenhouse. A flue gas purification system was designed, constructed and installed on the chimney of a wood pellet furnace (SBI Caddy Alterna). The purification system consists of a rigid box air filter (MERV rating 14, 0.3 μm pores) followed by two sets of heating elements and a catalytic converter. The air filter removes the particulates present in the flue gas while the heating elements and catalysers transform the noxious gases into less harmful gases. Gas analysis was sampled at different locations in the system using a TESTO 335 flue gas analyzer. The purification system reduces CO concentrations from 1100 cm 3  m −3 to less than 1 cm 3  m −3 NO x from 70 to 5.5 cm 3  m −3 SO 2 from 19 cm 3  m −3 to less than 1 cm 3  m −3 and trapped particulates down to 0.3 μm with an efficiency greater than 95%. These results are satisfactory since they ensure human and plant safety after dilution into the ambient air of the greenhouse. The recuperation of the flue gas has several obvious benefits since it increases the heat usability per unit biomass and it greatly improves the CO 2 recovery of biomass heating systems for the benefit of greenhouse grown plants. - Highlights: • Biomass furnace shows high potential for greenhouse carbon dioxide enrichment. • Flue gas recuperation significantly increases the thermal efficiency of a furnace. • Catalytic converter can reduce CO and NOx below humans and plants exposure limit. • Particulates control is essential to maintain the efficiency of the catalytic conversion. • CO 2 recovery from biomass heating systems reduces farmer's reliance on fossil fuel

  3. Upgrading fuel properties of biomass by torrefaction

    Energy Technology Data Exchange (ETDEWEB)

    Lei Shang

    2012-12-15

    Torrefaction is a mild thermal (200 - 300 UC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability and hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss, higher heating value, better grindability, and less moisture absorption. However, severe torrefaction conditions were found not necessary in order to save energy during grinding, since strain energy and grinding energy decreased tremendously in the first 5 - 25% anhydrous weight loss. By correlating the heating value and mass loss, it was found that wheat straw contained less heating value on mass basis than the other two fuels, but the fraction of energy retained in the torrefied sample as a function of mass loss was very similar for all three biomass. Gas products formed during torrefaction of three biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels at 300 UC for 1 h were compared, and water was found to be the dominant product during torrefaction. The degradation kinetics of wheat straw was studied in TGA by applying a two-step reaction in series model and taking the mass loss during the initial heating period into account. The model and parameters were proven to be able to predict the residual mass of wheat straw in a batch scale torrefaction reactor with different heating rates well. It means the mass yield of solids

  4. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  5. The Use of Fire Radiative Power to Estimate the Biomass Consumption Coefficient for Temperate Grasslands in the Atlantic Forest Biome

    Directory of Open Access Journals (Sweden)

    Bibiana Salvador Cabral da Costa

    Full Text Available Abstract Every year, many active fire spots are identified in the satellite images of the southern Brazilian grasslands in the Atlantic Forest biome and Pampa biome. Fire Radiative Power (FRP is a technique that uses remotely sensed data to quantify burned biomass. FRP measures the radiant energy released per time unit by burning vegetation. This study aims to use satellite and field data to estimate the biomass consumption rate and the biomass consumption coefficient for the southern Brazilian grasslands. Three fire points were identified in satellite FRP products. These data were combined with field data, collected through literature review, to calculate the biomass consumption coefficient. The type of vegetation is an important variable in the estimation of the biomass consumption coefficient. The biomass consumption rate was estimated to be 2.237 kg s-1 for the southern Brazilian grasslands in Atlantic Forest biome, and the biomass consumption coefficient was estimated to be 0.242 kg MJ-1.

  6. Biomass burning: A significant source of nutrients for Andean rainforests

    Science.gov (United States)

    Fabian, P. F.; Rollenbeck, R.; University Of Marburg, Germany

    2010-12-01

    Regular rain and fogwater sampling in the Podocarpus National Park,on the humid eastern slopes of the Ecuadorian Andes,has been carried out since 2002.The samples,accumulated over about 1-week intervals,were analysed for pH,conductivity,and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO4 2-, NO3-, PO4 3- ).Annual deposition rates of these ions which, due to poor acidic soils with low mineralization rates,constitute the dominant nutrient supply to the mountaineous rainforests, and major ion sources could be determined using back trajectories,along with satellite data. While most of the Na, Cl, and K as well as Ca and Mg input was found to originate from natural oceanic and desert dust sources,respectively (P.Fabian et al.,Adv.Geosci.22,85-94, 2009), NO3, NH4, and about 90% of SO4 (about 10 % is from active volcanoes) are almost entirely due to anthropogenic sources,most likely biomass burning. Industrial and transportation emissions and other pollutants,however,act in a similar way as the precursors produced by biomass burning.For quantifying the impacts of biomass burning vs. those of anthropogenic sources other than biomass burning we used recently established emission inventories,along with simplified model calculations on back trajectories.First results yielding significant contributions of biomass burning will be discussed.

  7. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  8. Biomass of cocoa and sugarcane

    Science.gov (United States)

    Siswanto; Sumanto; Hartati, R. S.; Prastowo, B.

    2017-05-01

    The role of the agricultural sector is very important as the upstream addressing downstream sectors and national energy needs. The agricultural sector itself is also highly dependent on the availability of energy. Evolving from it then it must be policies and strategies for agricultural development Indonesia to forward particularly agriculture as producers as well as users of biomass energy or bioenergy for national development including agriculture balance with agriculture and food production. Exports of biomass unbridled currently include preceded by ignorance, indifference and the lack of scientific data and potential tree industry in the country. This requires adequate scientific supporting data. This study is necessary because currently there are insufficient data on the potential of biomass, including tree biomasanya detailing the benefits of bioenergy, feed and food is very necessary as a basis for future policy. Measurement of the main estate plants biomass such as cocoa and sugarcane be done in 2015. Measurements were also conducted on its lignocellulose content. Tree biomass sugarcane potential measured consist of leaves, stems and roots, with the weight mostly located on the stem. Nevertheless, not all the potential of the stem is a good raw material for bioethanol. For cocoa turned out leaves more prospective because of its adequate hemicellulose content. For sugarcane, leaf buds contain a good indicator of digestion of feed making it more suitable for feed.

  9. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  10. Energy from biomass and waste

    International Nuclear Information System (INIS)

    Faaij, A.P.C.

    1997-01-01

    Chapter 2 deals with the characteristics and current availability of biomass residues and waste streams in the Dutch context and evaluates to what extent they are suited for conversion to energy, in particular by means of gasification. In Chapter 3 the technical and economic aspects of gasification of both wastes and clean biomass for electricity production are investigated. The performance of the system is evaluated by means of ASPEN plus modelling. Performance is simulated for a wide range of potential biofuels to assess the sensitivity of the system to the fuel composition. An economic evaluation is made based on component data and on a chain analysis that includes the costs of the biofuels and logistics. Chapter 4 evaluates the final waste treatment system in the Netherlands. It investigates to what extent changes in waste production and the implementation of new waste treatment technologies can atfect the energy production and final waste treatment costs. Chapter 5 focuses on long-range developments with respect to land use in the Netherlands. Chapter 6 addresses costs and benefits of the biomass fuel cycle and focuses especially on the external costs of biomass-based electricity production. A comparison is made with coal-based electricity production. Various methods are used to quantify those costs. Both environmental externalities (such as emissions) and indirect socio-economic effects are analysed. Attention will be given to uncertainties in the outcomes and the implications of the results for the economic feasibility of the production of electricity trom biomass in the Dutch context. refs

  11. Biomass living energy; Biomasse l'energie vivante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Any energy source originating from organic matter is biomass, which even today is the basic source of energy for more than a quarter of humanity. Best known for its combustible properties, biomass is also used to produce biofuels. This information sheet provides also information on the electricity storage from micro-condensers to hydroelectric dams, how to save energy facing the increasing of oil prices and supply uncertainties, the renewable energies initiatives of Cork (Ireland) and the Switzerland european energy hub. (A.L.B.)

  12. Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes.

    Science.gov (United States)

    Corton, J; Donnison, I S; Patel, M; Bühle, L; Hodgson, E; Wachendorf, M; Bridgwater, A; Allison, G; Fraser, M D

    2016-09-01

    Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush ( Juncus effuses ) and bracken ( Pteridium aquilinum ) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 10 5  tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

  13. MTBE BIODEGRADATION IN A GRAVITY FLOW, HIGH-BIOMASS RETAINING BIOREACTOR

    Science.gov (United States)

    The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Ci...

  14. Emissions of carbon, nitrogen, and sulfur from biomass burning in Nigeria

    International Nuclear Information System (INIS)

    Akeredolu, F.; Isichei, A.O.

    1991-01-01

    The atmospheric implications of the effects of burning of vegetation in Nigeria are discussed. The following topics are explored: the extent of biomass burning by geographical area; estimates of emission rates of carbon, nitrogen and sulfur; and the impact on biogeochemical cycling of elements. The results suggest that biomass burning generates a measurable impact on the cycling of carbon and nitrogen

  15. Biomass Production and Nitrogen Recovery after Fertilization of Young Loblolly Pines

    Science.gov (United States)

    J. B. Baker; G. L. Switzer; L. E. Nelson

    1974-01-01

    Ammonium nitrate applied at rates of 112 and 224 kg of N/ha in successive years to different areas of a young loblolly pine (Pinus taeda L.) plantation increased aboveground biomass by 25% and N accumulation by 30%. Fertilization at plantation age 3 resulted in significantly greater biomass and N accumulations in the pine; fertilization at age 4...

  16. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  17. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  18. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  19. Determining the confidence levels of sensor outputs using neural networks

    International Nuclear Information System (INIS)

    Broten, G.S.; Wood, H.C.

    1995-01-01

    This paper describes an approach for determining the confidence level of a sensor output using multi-sensor arrays, sensor fusion and artificial neural networks. The authors have shown in previous work that sensor fusion and artificial neural networks can be used to learn the relationships between the outputs of an array of simulated partially selective sensors and the individual analyte concentrations in a mixture of analyses. Other researchers have shown that an array of partially selective sensors can be used to determine the individual gas concentrations in a gaseous mixture. The research reported in this paper shows that it is possible to extract confidence level information from an array of partially selective sensors using artificial neural networks. The confidence level of a sensor output is defined as a numeric value, ranging from 0% to 100%, that indicates the confidence associated with a output of a given sensor. A three layer back-propagation neural network was trained on a subset of the sensor confidence level space, and was tested for its ability to generalize, where the confidence level space is defined as all possible deviations from the correct sensor output. A learning rate of 0.1 was used and no momentum terms were used in the neural network. This research has shown that an artificial neural network can accurately estimate the confidence level of individual sensors in an array of partially selective sensors. This research has also shown that the neural network's ability to determine the confidence level is influenced by the complexity of the sensor's response and that the neural network is able to estimate the confidence levels even if more than one sensor is in error. The fundamentals behind this research could be applied to other configurations besides arrays of partially selective sensors, such as an array of sensors separated spatially. An example of such a configuration could be an array of temperature sensors in a tank that is not in

  20. Estimation of Potential GDP and output Gap. Comparative Perspective

    Directory of Open Access Journals (Sweden)

    Dorin Măntescu

    2014-08-01

    Full Text Available The purpose of the analysis is to assess the impact of the crisis on the potential output and output gaps, to study their evolution by using a comparative approach for a sample of EU countries that were in majority included recently in financial assistance and macroeconomic adjustment programmes. The potential GDP growth rates calculated using the Cobb Douglas production function and Hodrick-Prescott methodology, decelerated substantially across the board in the countries studied once the international economic and financial crisis hit, recording even negative rates of growth in Cyprus, Greece, Portugal, Italy and Spain. In addition to the specific factors that characterise each country, there is a series of common features that will affect the developments of the potential GDP on a long-term basis, such as the increase of global risk aversion correlated with the reduction of the banking exposures, the slow economic recovery in the EU, and last but not least the incoming ageing process, which will exert an additional negative impact on the growth potential of the EU member states. The article makes a series of economic policy recommendations to promote key measures aiming to increase the flexibility of the goods, services, and labour markets, to improve the prioritisation of public expenditures especially capital spending, and to improve the management of the public assets including real estate and public buildings by promoting a mix of measures including privatisation, monetisation and a wider involvement of the private sector in their management.