WorldWideScience

Sample records for biomass litter dynamics

  1. 高山森林凋落物分解过程中的微生物生物量动态%Dynamics of microbial biomass during litter decomposition in the alpine forest

    Institute of Scientific and Technical Information of China (English)

    周晓庆; 吴福忠; 杨万勤; 朱剑霄

    2011-01-01

    凋落物分解过程中的微生物生物量动态对于深入了解森林凋落物分解机理具有重要意义.为了解高山森林典型树种凋落物分解过程中的微生物生物量特征,采用凋落物分解袋法,研究了土壤冻结期(3月)、融冻期(4-5月)、生长季节(5-10月)和冻结初期(11月)红桦(Betula albosinensi)、岷江冷杉(Abies faxoniana)和粗枝云杉(Picea asperata)凋落物分解过程的微生物生物量C(MBC)、微生物生物量N(MBN)和微生物生物量P(MBP)动态.4个关键时期,凋落物的MBC、MBN以生长季节最高,但非生长季节的3个关键时期也检测出较高的MBC、MBN.在融冻期结束后,3类凋落物分解过程中MBC和MBN均出现爆发性增长.然而,MBP在生长季节中期(8月)、完全冻结期(3月)和冻结初期(11月)均相对较低,但在融冻期和生长季节后期(9月)相对较高.另外,红桦凋落物的MBC、MBN和MBP含量均高于岷江冷杉和粗枝云杉凋落物(除4月粗枝云杉凋落物MBP异常升高外).这些结果为更加清晰地认识高寒森林凋落物分解过程及机理,以及进一步理解陆地生态系统结构和功能提供了一定基础数据.%Microorganism plays an irreplaceable role in litter decomposition , and the dynamics of microbial activity in litters is of ecological significance in understanding the mechanism of litter decomposition. Microbial biomass serves their important statuses as a sensitive bio indicator of microbial activity in respond to environmental change. Seasonal freezing and thawing is one of the most significant environmental changes in many high latitude/altitude areas such as in alpine regions. The significant temperature fluctuations with related freezing , thawing and freeze thaw cycles could exhibit a strong effect on microbial biomass during litter decomposition in the cold season. As yet, more attentions have been given to the growing season, only a few studies have focused on litter decomposition and the

  2. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  3. PAHs in decaying Quercus ilex leaf litter: mutual effects on litter decomposition and PAH dynamics.

    Science.gov (United States)

    De Nicola, F; Baldantoni, D; Alfani, A

    2014-11-01

    The investigation of the relationships between litter decomposition and polycyclic aromatic hydrocarbons (PAHs) is important to shed light not only on the effects of these pollutants on fundamental ecosystem processes, such as litter decomposition, but also on the degradation of these pollutants by soil microbial community. This allows to understand the effect of atmospheric PAH contamination on soil PAH content via litterfall. At this aim, we studied mass and PAH dynamics of Quercus ilex leaf litters collected from urban, industrial and remote sites, incubated in mesocosms under controlled conditions for 361d. The results highlighted a litter decomposition rate of leaves sampled in urban>industrial>remote sites; the faster decomposition of litter of the urban site is also related to the low C/N ratio of the leaves. The PAHs showed concentrations at the beginning of the incubation of 887, 650 and 143 ng g(-1)d.w., respectively in leaf litters from urban, industrial and remote sites. The PAHs in litter decreased along the time, with the same trend observed for mass litter, showing the highest decrease at 361 d for the urban leaf litter. Anyway, PAH dynamics in all the litters exhibited two phases of loss, separated by a PAH increase observed at 246 d and mainly linked to benzo[e]pyrene.

  4. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  5. Litter Dynamics of Three Subalpine Forests in Western Sichuan

    Institute of Scientific and Technical Information of China (English)

    YANG Wan-Qin; WANG Kai-Yun; S. KELLOM(A)KI; GONG He-De

    2005-01-01

    Litter production, components and dynamics were investigated and forest floor litter was quantified throughout a whole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF), in Western Sichuan, China, in order to understand the key factors that influenced litter production and dynamics. Litterfall in the three forests consisted mainly of leaves, woody litter, reproductive organs and moss. Contribution of leaf litter to the total litterfall was significantly (P < 0.05) greater than that of woody litter, reproductive organs or moss. Regardless of the stands, litterfall exhibited a marked monthly variation with the maximum litterfall peaks occurring in October,with smaller peaks occurring in February for SF and FF, and May for BF. The analysis indicated that tree species,stand density, leaf area index (LAI), stand basal area and stand age were the key factors determining litter production.Meanwhile tree species and phenology controlled the litter dynamics, with wind and snow modifying the litter components and dynamics.

  6. Leaf litter dynamics and litter consumption in two temperate South Australian mangrove forests

    Science.gov (United States)

    Imgraben, Sarah; Dittmann, Sabine

    2008-02-01

    The dynamics and consumption of mangrove litter were investigated in two temperate Avicennia marina dominated forests in South Australia in order to compare production and fate of leaf litter with records from tropical and temperate mangroves. Litterfall was measured using traps over four months in the summer of 2004/2005. Average amount of litter was 2.1 and 3.2 g dwt m - 2 d - 1 , respectively, at the two study sites. Leaves accounted for most of the litterfall, followed by propagules and wood. Litterfall varied over time, and depending on the site and inundation time. The standing stock of leaf litter on the forest floor amounted to 15.5 g m - 2 dwt in March 2005. Decomposition determined by litter bags suggested that leaves lost ˜ 50% of their weight in the first two weeks of exposure, with little further weight loss over longer exposure times. Leaf consumption was investigated with a series of laboratory experiments, using the grapsid crab Helograpsus haswellianus, two snail species ( Salinator fragilis and Austrocochlea concamerata) and the polychaete Neanthes vaalii as potential consumers. There was no consumption of new leaves, and the only significant consumption of aged leaves was found for female H. haswellianus. H. haswellianus consumed 0.1 g dwt d - 1 of senescent leaves in the experiment, equivalent to 0.18 g m - 2 d - 1 in the field (average crab density 1.8 ind m - 2 ), or 9.4% of the average daily leaf litterfall. Experiments with propagules revealed no significant consumption by the crabs. High decomposition and low consumption rates of crabs account for the high accumulation and possible export of leaf litter from these mangroves. Leaf litter availability is not a limiting factor for invertebrate consumers in these temperate mangrove forests, and the low consumption rates imply a major difference in the fate of leaf litter between tropical and temperate mangrove systems.

  7. Rainfall interception by bracken litter — Relationship between biomass, storage and drainage rate

    Science.gov (United States)

    Pitman, John Iain

    A rainfall simulator was used to investigate the relationship between canopy storage, C, and drainage rate, Ds, of bracken litter. Measured maximum storage, Cmax, for the litter was 4.84 mm kg -1 m -2, and litter storage capacity, Cmin, 1.67 mm kg -1 m -2. Drainage rate Ds and C were found to be related by the function: D s= eK(C-C min) -1 Optimisation of this function for K accounted for 96% of the variation between Ds and C. Comparison of the values of K and Cmin with those reported previously showed that K was a simple function of Cmin for both bracken litter and bracken fronds: lnK=1.268(±0.024)-0.664(±0.023) lnC min R 2=0.991, n=9 Because K is predictable from values of Cmin, determined from the leaf area index or biomass (kg m -2), eqn. (1) has wide applicability to both bracken litter and bracken frond drainage rates. The importance of litter storage capacity is also discussed. Pitman, 1989.

  8. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and

  9. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  10. Natural regeneration of Pinus pinea L. in Tunisia as influenced by canopy cover, litter biomass and understorey vegetation

    OpenAIRE

    Adili, B.; El Aouni, M.H.; Garchi, S.; Balandier, P.

    2009-01-01

    International audience Pinus pinea is one of the most valuable species used in Tunisia in the reforestation program. This species is shade-intolerant and hence needs light to correctly regenerate. It is also influenced by the understorey vegetation and the litter biomass, both also correlated to light availability. To quantify the importance of these different factors, the natural regeneration and evolution of the biomass of understorey vegetation and litter were studied in artificial fore...

  11. Litter mesofauna seasonal dynamics of anthropogenically transformed ecosystems in Dniprodzerzhinsk city

    Directory of Open Access Journals (Sweden)

    K. O. Moroz

    2011-05-01

    Full Text Available Peculiarities of formation and seasonal dynamics of litter invertebrates fauna in the territories under technogenic load of metallurgical and by-product coke industry are investigated. Features of the seasonal fluctuations of number, species quantity, taxonomic and functional structure of litter mesofauna are revealed. The dynamics analysis of the biodiversity of litter arthropods communities is carried out.

  12. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition

    Institute of Scientific and Technical Information of China (English)

    DENG Xiao-wen; LIU Ying; HAN Shi-jie

    2009-01-01

    The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg·ha-1yr-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dissolved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52·78% of added N was retained in the litter. The percentage of N retention was positively correlated (R2=0.91, p<0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.

  13. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  14. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.

    Science.gov (United States)

    Barros, Diana; Oliveira, Patrícia; Pascoal, Cláudia; Cássio, Fernanda

    2016-09-15

    Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene. PMID:27186876

  15. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    Science.gov (United States)

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition

  16. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality. PMID:27236291

  17. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest.

    Science.gov (United States)

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year.

  18. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li

    2016-01-01

    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  19. Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter

    Science.gov (United States)

    Stohlgren, Thomas J.

    1988-01-01

    The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.

  20. Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.

    Directory of Open Access Journals (Sweden)

    Heraldo L Vasconcelos

    Full Text Available Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover. Although these effects were transitory, there is evidence that the increasingly prevalent fire

  1. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.

    Science.gov (United States)

    Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene

  2. The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.

    Directory of Open Access Journals (Sweden)

    Mark A Genung

    Full Text Available Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N and phosphorous (P dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N, IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be

  3. Response of tree biomass and wood litter to disturbance in a Central Amazon forest.

    Science.gov (United States)

    Chambers, Jeffrey Q; Higuchi, Niro; Teixeira, Liliane M; dos Santos, Joaquim; Laurance, Susan G; Trumbore, Susan E

    2004-12-01

    We developed an individual-based stochastic-empirical model to simulate the carbon dynamics of live and dead trees in a Central Amazon forest near Manaus, Brazil. The model is based on analyses of extensive field studies carried out on permanent forest inventory plots, and syntheses of published studies. New analyses included: (1) growth suppression of small trees, (2) maximum size (trunk base diameter) for 220 tree species, (3) the relationship between growth rate and wood density, and (4) the growth response of surviving trees to catastrophic mortality (from logging). The model simulates a forest inventory plot, and tracks recruitment, growth, and mortality of live trees, decomposition of dead trees (coarse litter), and how these processes vary with changing environmental conditions. Model predictions were tested against aggregated field data, and also compared with independent measurements including maximum tree age and coarse litter standing stocks. Spatial analyses demonstrated that a plot size of approximately 10 ha was required to accurately measure wood (live and dead) carbon balance. With the model accurately predicting relevant pools and fluxes, a number of model experiments were performed to predict forest carbon balance response to perturbations including: (1) increased productivity due to CO2 fertilization, (2) a single semi-catastrophic (10%) mortality event, (3) increased recruitment and mortality (turnover) rates, and (4) the combined effects of increased turnover, increased tree growth rates, and decreased mean wood density of new recruits. Results demonstrated that carbon accumulation over the past few decades observed on tropical forest inventory plots (approximately 0.5 Mg C ha(-1) year(-1)) is not likely caused by CO2 fertilization. A maximum 25% increase in woody tissue productivity with a doubling of atmospheric CO2 only resulted in an accumulation rate of 0.05 Mg C ha(-1) year(-1) for the period 1980-2020 for a Central Amazon forest, or an

  4. Total biomass and essential oil composition of Ocimum gratissimum L. in response to broiler litter and phosphorus

    Directory of Open Access Journals (Sweden)

    S.M. PESSOA

    2015-03-01

    Full Text Available The aim of this experiment was to evaluate the biomass yield and chemical composition of the essential oil of clove basil in response to doses of broiler litter (0, 5, 10, 15 and 20 t ha-1 added in presence of triple superphosphate (200 kg ha-1 or without it. Before the first harvest, the height of the plants increased significantly (34.42 cm when 15 tonnes ha-1 broiler litter were added to the soil. However, after resprouting, the plant heights ranged only as a function of the vegetative cycle, with maximum height (76.0 cm observed at 60 days. Phosphate fertilization also significantly influenced the leaf area (1.771 cm2 plant-1 during the first harvest. The fresh weight of leaves increased linearly in response to the addition of broiler litter (20 ton ha-1 with maximum yields of 1,709 and 7,140 kg ha-1 during the first harvest and regrowth, respectively. On average, the oil content of the leaves was 0.7%, with maximum performance (3.8 L ha-1 when 20 tonnes ha-1 of broiler litter were added on the soil. Eugenol was found to be the major compound of the essential oil (71.65%.

  5. Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem

    Directory of Open Access Journals (Sweden)

    Kai Yue

    2016-08-01

    Full Text Available To investigate the dynamics and relative drivers of cellulose degradation during litter decomposition, a field experiment was conducted in three individual ecosystems (i.e., forest floor, stream, and riparian zone of an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana that had varying initial litter chemical traits were placed separately in litterbags and then incubated on the soil surface of forest floor plots or in the water of the stream and riparian zone plots. Litterbags were retrieved five times each year during the two-year experiment, with nine replicates each time for each treatment. The results suggested that foliar litter lost 32.2%–89.2% of the initial dry mass depending on litter species and ecosystem type after two-year’s incubation. The cellulose lost 60.1%–96.8% of the initial mass with degradation rate in the order of stream > riparian zone > forest floor. Substantial cellulose degradation occurred at the very beginning (i.e., in the first pre-freezing period of litter decomposition. Litter initial concentrations of phosphorus (P and lignin were found to be the dominant chemical traits controlling cellulose degradation regardless of ecosystems type. The local-scale environmental factors such as temperature, pH, and nutrient availability were important moderators of cellulose degradation rate. Although the effects of common litter chemical traits (e.g., P and lignin concentrations on cellulose degradation across different individual ecosystems were identified, local-scale environmental factors such as temperature and nutrient availability were found to be of great importance for cellulose degradation. These results indicated that local-scale environmental factors should be considered apart from litter quality for generating a reliable predictive framework for the drivers

  6. Ecological process of leaf litter decomposition in tropical rainforest in Xishuangbanna, southwest China. Ⅲ. Enzyme dynamics

    Institute of Scientific and Technical Information of China (English)

    Ruiqing ZHANG; Zhenjun SUN; Chong WANG; Tangyu YUAN

    2009-01-01

    We tested the dynamics of nine enzymes during leaf litter decomposition in Xishuangbanna tropical rain-forest both in the field and laboratory to explore the response of enzyme dynamics to decomposition under different food-web structures. We used coarse and fine (1 mm and 100 μm mesh size, respectively) litterbags in the field to create different food-web structures during litter decomposition. Most soil macrofauna such as nematodes could access only the coarse mesh litterbags, leaving only microbiota, such as mites, in the fine mesh litterbags. In the laboratory, sterilization and inoculation were adopted to investigate different enzyme dynamics with nematodes or only microbiota participating in litter decomposition.Invertase and amylase increased more for shorter food webs at the early stages of decomposition, while activities of endocellulase, β-glucosidase, xylanase and polypheno-loxydase increased to their maxima at the later stages, but greater increase occurred with extended food webs.Invertase and amylase had negative relationships and endocellulase, β-glucosidase, xylanase and polyphenolox-ydase had positive relationships with litter decomposition (mass loss). The activities of enzymes responded to the process of litter decomposition. Invertase and amylase played key roles for microbiota utilizing the substrates at early stages of decomposition, while endocellulase, β-glucosidase, xylanase and polyphenoloxydase worked on the further decay of recalcitrant compounds at later stages.All enzymes related to carbon decay acted as effective indicators of litter decomposition. The decomposition of plant organic matter was essentially an enzymatic process.

  7. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  8. Carbon stock in Kolli forests, Eastern Ghats (India with emphasis on aboveground biomass, litter, woody debris and soils

    Directory of Open Access Journals (Sweden)

    Mohanraj R

    2011-04-01

    Full Text Available The efficacy of tropical forest sinks in India continues to diminish in spite of several conservation efforts carried out at both governmental and non-governmental level. Lack of proper periodical and complete spatial inventory of carbon stock in India is a disturbing aspect at this aim. Carbon stock assessments are available only for few patches of Western Ghats of India, while assessment is almost negligible for Eastern Ghats. This paper focuses on estimation of existing carbon stock in the above ground biomass, litter, debris and soils (up to 30 cm of different forest types of Kolli forest, located in Eastern Ghats of Tamilnadu, India (78°20’ to 78°30’E Long and 11°10’ to 11°30’ N Lat, within an area of 503 km2. Floristic diversity of Kolli hills is rich of endemisms and includes about 150 tree species. To estimate the carbon stock, about 26 quadrates of 25 X 25 m size were established. The organic carbon content of forest soil varied from 1.71 to 12.59%. The total carbon stock of soil, surface litter, coarse wood debris and total above ground biomass were estimated as 5.54, 0.034, 0.001 and 4.49 Tg C, respectively.

  9. Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs

    Science.gov (United States)

    Fan, Zhaosheng; Liang, Chao

    2015-04-01

    Soil organic carbon (SOC) plays an important role in the global carbon cycle. However, it remains largely unknown how plant litter inputs impact magnitude, composition and source configuration of the SOC stocks over long term through microbial catabolism and anabolism, mostly due to uncoupled research on litter decomposition and SOC formation. This limits our ability to predict soil system responses to changes in land-use and climate. Here, we examine how microbes act as a valve controlling carbon sequestrated from plant litters versus released to the atmosphere in natural ecosystems amended with plant litters varying in quantity and quality. We find that litter quality - not quantity - regulates long-term SOC dynamics under different plausible scenarios. Long-term changes in bulk SOC stock occur only when the quality of carbon inputs causes asynchronous change in a microbial physiological trait, defined as ``microbial biosynthesis acceleration'' (MBA). This is the first theoretical demonstration that the response of the SOC stocks to litter inputs is critically determined by the microbial physiology. Our work suggests that total SOC at an equilibrium state may be an intrinsic property of a given ecosystem, which ultimately is controlled by the asynchronous MBA between microbial functional groups.

  10. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  11. Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins

    NARCIS (Netherlands)

    P. Kraal; K.G.J. Nierop; J. Kaal; A. Tietema

    2009-01-01

    We investigated the carbon (C) mineralisation and nitrogen (N) dynamics in litter from a Corsican pine forest in response to individual and combined additions of aluminium (M), condensed tannin (extracted from fresh Corsican pine needles) and hydrolysable tannin (commercial tannic acid). Production

  12. Litter dynamics and phenology of Melaleuca quinquenervia in south Florida

    OpenAIRE

    Van, T. K.; Rayachhetry, M. B.; Center, T.D.; Pratt, P.D.

    2002-01-01

    We monitored litterfall biomass at six different sites of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forested wetlands in South Florida from July 1997 to June 1999. Annual litterfall of melaleuca varied between sites from 6.5 to 9.9 t dry wt ha(-1) yr(1) over the two-year period. Litterfall was significantly higher (p < 0.0001) in scasonally flooded habitats (9.3 t ha(-1) yr(1)) than in non-flooded (7.5 t ha(-1) yr(1)) and permanently flooded habitats (8.0 t ha(-1) yr(1)). Leaf fal...

  13. Leaf Litter Decomposition and Nutrient Dynamics Associated with Common Horticultural Cropland Agroforest Tree Species of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Hasanuzzaman

    2014-01-01

    Full Text Available Mangifera indica, Zizyphus jujuba, Litchi chinensis, and Artocarpus heterophyllus are the most common cropland agroforest horticultural tree species of Bangladesh. This study focused on leaf litter decomposition and nutrient (N, P, and K dynamics during the decomposition process. This experiment was conducted for 180 days by using litter bag technique during dry and wet seasons. Mass loss was the highest (49% and 57% for A. heterophyllus and the lowest (25% was found for L. chinensis. The highest initial rates (0.75% and 2.35%/day of decomposition were observed for Z. jujuba and the lowest (0.50% and 0.79%/day for L. chinensis. The highest decay constant was observed for A. heterophyllus (2.14 and 2.34 and the lowest (0.88 and 0.94 for L. chinensis. Leaf litter of all the studied species showed a similar pattern (K > N > P of nutrient release during the decomposition process. Zizyphus jujuba showed comparatively higher return of N, P, and K than others. However, a significant (P<0.05 higher amount of mass loss, rate of decomposition, decay constant, and amount of nutrient return from leaf litter were observed during the wet season.

  14. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    DEFF Research Database (Denmark)

    Roed, Jørn; Andersson, Kasper Grann; Fogh, C.L.;

    2000-01-01

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in aBelarussian-American-Danish collaborative project. H...

  15. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    International Nuclear Information System (INIS)

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in a Belarussian-American-Danish collaborative project. Here the total radiological impact of the scheme is considered. This means that not only the dose reductive effect of the forest decontamination is taken into account, but also the possible adverse health effects in connection with the much needed bio-energy production. This report presents the results of an in-country, commercial-scale investigation of the effect of a baghouse filter in retaining contaminants so that they are not released to the atmosphere in the biomass energy production process. Approximately 99,5 % of the activity of a commercially representative, dust-laden boiler flue gas was removed from the stream by using a combination of a cyclone and a baghouse filter. (au)

  16. Dynamics of Litter Decomposition, Microbiota Populations, and Nutrient Movement Following Nitrogen and Phosphorus Additions to a Deciduous Forest Stand

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M.

    2002-10-29

    The objective of this study was quantification of the dynamics of litter decomposition, microbiota populations, and nutrient movement in response to nitrogen and phosphorus additions to a deciduous forest stand. Nitrogen (urea) was applied at rates of 0, 550, and 1100 kg/ha in combination with phosphorus (concentrated superphosphate) at rates of 0, 275, and 550 kg/ha. Total loss of organic material from white oak, red maple, and black gum litter bags over a 16-month period was 34, 35, and 45%, respectively. Phosphorus treatment retarded weight loss from litter bags of all species. Weight loss for the 0-, 275-, and 55-kg/ha levels of phosphorus averaged 23, 20, and 19% for white oak; 26, 25, and 25% for red maple; 29, 27 and 26% for black gum. Weight losses were increased by a small amount (1 to 2%) or not at all by nitrogen treatment. The NP interfaction weight loss means were intermediate to the main treatment means. The increase in decomposition associated with nitrogen was offset by the decrease associated with phosphorus. Litter and soil bacterial populations were significantly increased by nitrogen additions, while litter and soil fungi did not respond to nitrogen. Soil fungal populations were increased by phosphorus addition, while litter bacterial populations were reduced. Litter fungi and soil bacteria did not respond to phosphorus. Combined additions of nitrogen and phosphorus increased bacterial populations, though not as much as nitrogen alone. There was a good correlation (r = 0.70) between bacterial population and litter weight loss.

  17. Dynamics of zoomicrobial complexes upon decomposition of plant litter in spruce forests of the southern taiga

    Science.gov (United States)

    Rakhleeva, A. A.; Semenova, T. A.; Striganova, B. R.; Terekhova, V. A.

    2011-01-01

    Comparative studies of the composition and abundance of soil-dwelling invertebrates (microarthropods, nematodes, and testate amoebas) and micromycetes in the course of leaf and needle litter decomposition were conducted in two types of spruce forests on white-podzolic and brown forest soils in a field experiment. The analysis of the destruction dynamics has revealed a correlation between the rate of the litter mass loss and the abundance of microarthropods and testate amoebas in the decomposing plant residues. The highest amplitude of the seasonal fluctuations in the number of invertebrates was found for the micromycetes and nematodes as compared to that for the testate amoebas and microarthropods. In the complexes of micromycetes and invertebrates, changes in the dominants were revealed at the different stages of the decomposition. The litter's composition was found to be the main factor affecting the composition and abundance of the zoomicrobial complex of the destroyers. The type of biogeocenosis less influenced the abundance of pedobionts, but it determined their taxonomic composition to a greater extent. A significant inverse correlation was revealed between the number of micromycetes and that of small soil invertebrates.

  18. Dynamics of phosphorus and nitrogen through litter fall and decomposition in a tropical mangrove forest.

    Science.gov (United States)

    Ramos e Silva, Carlos A; Oliveira, Sérgio R; Rêgo, Ronaldo D P; Mozeto, Antonio A

    2007-10-01

    Distribution, dynamics and mass budget of phosphorus and nitrogen in a red mangrove forest were studied in the Potengi mangrove forest in northern Brazil (lat. 5 degrees 42' and 5 degrees 53'S, long. 35 degrees 5' and 35 degrees 25'W). Tidal hydrology, net primary productivity, leaf litter decomposition rate and standing stock of leaf litter in a red mangrove forest were measured. The results showed that the main reservoir for total P and total N was the sediment with 309 kg ha(-1) and 4619 kg ha(-1) (77% and 95% of the total P and N content in the mangrove forest), respectively, for the two elements. Total P and total N in Rhizophora mangle trees accounted for 145+/-14 kg ha(-1) and 216+/-23 kg ha(-1) (23% and 5% of the total P and N in the mangrove forest). The estimated average export rates for P and N through leaf litter are 0.5 kg ha(-1)yr(-1) and 1.6 kg ha(-1)yr(-1) respectively. Our measurements support previous results in concluding that mangrove forests efficiently retain P and N. PMID:17599404

  19. Carbon dynamics in peatlands under changing hydrology. Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates

    Energy Technology Data Exchange (ETDEWEB)

    Strakova, P.

    2010-07-01

    production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models. (orig.)

  20. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    Science.gov (United States)

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink. PMID:12549558

  1. Population dynamics and intra-litter transmission patterns of Isospora suis in suckling piglets under on-farm conditions

    DEFF Research Database (Denmark)

    Sotiraki, S.; Roepstorff, A.; Nielsen, J.P.;

    2008-01-01

    The aim of this study was to investigate the intra-litter infection dynamics of Isospora suis under natural conditions, and to study any association between parasite transmission and the contamination level of the farrowing pen by applying different interventions in order to reduce the transmissi...... + the first piglets found to excrete I. suis oocysts in each pen were removed from the pen, and...

  2. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Science.gov (United States)

    Esperschütz, J.; Zimmermann, C.; Dümig, A.; Welzl, G.; Buegger, F.; Elmer, M.; Munch, J. C.; Schloter, M.

    2013-07-01

    In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany). Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L.) were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1-4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity)

  3. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2013-07-01

    Full Text Available In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1–4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity

  4. On the role of bulk properties and fuel species on the burning dynamics of pine forest litters

    OpenAIRE

    SIMEONI, A.; Bartoli, P.; Torero, J L; Santoni, P.-A.

    2011-01-01

    This work aims to characterize pine needles as a fuel for a better understanding of the burning dynamics of forest floor fuels in wildland fires. Three Mediterranean species of pine have been studied: Pinus halepensis, Pinus pinaster and Pinus laricio. These species have been chosen because they present close but slightly different physical and chemical properties. The study focuses on the influence of the bulk and particle properties on the burning dynamics of pine needles litters. The perme...

  5. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2012-10-01

    Full Text Available In initial ecosystems concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degraders' food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this regions' dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, mainly the amount of N stored in the litter material and its bioavailability for the degradation process and the development of microbial communities in the detritusphere and bulk soil. Whereas the degradation process of the L. corniculatus litter which had a low C/N ratio was fast and most pronounced changes in the microbial community structure were observed 1–4 weeks after litter addition, the degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred at between 4 and 30 weeks after litter addition to the soil. However for both litter materials a clear indication for the importance of fungi for the degradation process was observed both on the abundance level as well as on the level of 13C incorporation (activity.

  6. [Composition and seasonal dynamics of litter falls in a broad-leaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountains, Northeast China].

    Science.gov (United States)

    Yuan, Zuo-qiang; Li, Bu-hang; Bai, Xue-jiao; Lin, Fei; Shi, Shuai; Ye, Ji; Wang, Xu-gao; Hao, Zhan-qing

    2010-09-01

    In order to understand the composition and spatiotemporal dynamics of the litter falls at community level in a broad-leaved Korean pine mixed forest in Changbai Mountains, litter falls were collected from 150 containers in a 25 hm2 permanent plot in 2008. The leaf litters in the containers were from 35 tree species, accounting for 67.3% of the total number (52) of the tree species with DBH > or =1 cm in the plot. The litter falls had a weight 29.39 kg, equivalent to 3918.4 kg x hm(-2) among which, broad leaves, miscellany, needle leaves, and branches occupied 61.7%, 18.0%, 11.7%, and 8.6%, respectively. About 83.8% of the broad leaves were from Tilia amurensis, Fraxinus mandshurica, Quercus mongolica, Acer mono, and Ulmus japonica. The litter falls showed an evident seasonal dynamics, with the peaks occurred from 13 September to 10 October, e.g., the litter falls from T. amurensis and Pinus koraiensis peaked in 13-26 September, while those from Q. mongolica, U. japonica, and A. pseudo-sieboldianum peaked in 27 September to 10 October. There was a great difference in the mass of the litter falls among the containers, e.g., with 150-200 g litters in 68 containers and >500 g litters in 1 container. The species number of the litter falls in a container was 18 in maximum, and was 12 in common (32 containers). Litter falls mass was positively proportional to the sum of the basal area at breast height of parent trees in the plot, and the amount of the litter falls in the containers was related with the locations of the containers, exhibiting an evident spatial heterogeneity in the plot. PMID:21265134

  7. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Aimee T [ORNL; Chapman, Samantha K. [Smithsonian Environmental Research Center, Edgewater, MD; Whitham, Thomas G [Northern Arizona University; Hart, Stephen C [Northern Arizona University; Koch, George W [Northern Arizona University

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  8. Herbivory, litter and soil disturbance as determinants of vegetation dynamics during early old-field succession under set-aside.

    Science.gov (United States)

    Wilby, A; Brow, V K

    2001-04-01

    Early-successional old fields are a major component of the European landscape. While a range of factors governing vegetation development in old fields has been identified, empirical and theoretical studies have tended to concentrate on plant competition as the dominant driving force behind succession. We studied the influence of three little researched, yet inter-related, factors on the early stages of an old-field succession: litter cover, soil disturbance and herbivory. Physical and chemical techniques were used to exclude large vertebrates and insects from experimental plots. These treatments had little effect on plant recruitment. A litter-removal experiment, nested within the exclusion treatments, revealed a significant inhibition of forb seedling germination by litter cover. However, the majority of seedlings died during the first month following emergence, whether or not litter was removed. A second experiment, involving the factorial combination of mollusc exclusion and soil disturbance, revealed that the response to disturbance was dependent on life-history characteristics of the plants. However, the dominant factor regulating community composition was seedling herbivory by molluscs. Molluscs caused high rates of forb seedling mortality and promoted the transition from a forb-dominated, to a grass-dominated community. Herbivory is often assumed to influence plant community dynamics through effects on competitive interactions. However, direct effects of herbivory, on the survival of seedlings, may be a significant factor structuring plant communities in ruderal, or other annual dominated systems. PMID:24577658

  9. Nutrients dynamics of co-composting poultry litter with fast food wastes

    International Nuclear Information System (INIS)

    Co-composting of poultry litter (PL) and fast food waste (FFW) in different combinations was carried out to explore the nutrient dynamics. The PL and FFW were co-composted in pits of dimensions 2 m*2 m*1.5 m (L*W*D) in ratios of 100:0, 75:25, 50:50, 25:75 and 0:100, respectively, for a period of 105 days. Co-composts of PL and FFW in a 50:50 ratio yielded highest total nitrogen (3.63%), total phosphorus (0.81%), and total potassium (3.40%) levels in the mature compost after 105 days of composting period. Carbon to nitrogen ratio for this combination was 18.33, which is suitable for safe land application. Present study identified PL and FFW co-composting in equal proportions yields maximum N, P and K levels with suitable C:N ratio which may be applied to soils to meet crop nutrient demands and enhanced agricultural productivity. (author)

  10. Temporal dynamics of and effects of an ice storm on litter production in an evergreen broad-leaved forest in Gutianshan National Nature Reserve

    OpenAIRE

    Lei Zhang; Xiaohe Wang; Xiangcheng Mi; Jianhua Chen; Mingjian Yu

    2011-01-01

    To study litter production, composition, temporal dynamics, and the effects of an ice storm on litter production in a 24-ha evergreen broad-leaved forest dynamic plot in Gutianshan National Nature Reserve, Zhejiang, we set up 169 seed traps, and collected litterfall weekly from October 2006 to December 2009. Total annual litter production in 2007 and 2009 was 532.05 g/m2 and 375.17 g/m2, respectively. We attribute the remarkable drop in production due to an ice storm in February 2008. Leaves,...

  11. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests

    Institute of Scientific and Technical Information of China (English)

    LIU Qiang; PENG Shaolin; BI Hua; ZHANG Hongyi; LI Zhi'an; MA Wenhui; LI Niya

    2006-01-01

    In order to explore the release of nutrients and the effects of global warming on the decomposition rate of forest litter,an experiment is designed to reciprocally decompose forest foliar litter in two sites across climatic zones:Mt.Jianfengling in Hainan Province in the tropics and Mt.Dinghushan in Guangdong Province in the subtropics.The two sites have similar altitudes,soil types,annual mean rainfall and seasonality of dry and wet.The main difference between these two sites is the annual mean temperature with the difference of 3.7℃.Foliar litters of 10 native dominant tree species have been collected respectively from the two sites and divided into single-species litter and mixed litter.They are decomposed reciprocally in the two sites.The results indicate that litter decomposes in the tropical site 1.36-3.06 times more rapidly than in the subtropical site.Apparent Q10,calculated on the basis of the temperature difference between the two sites,ranges from 3.7 to 7.5.The return amount of N,P and C will increase by 32.42,1.033 and 741.1 kg/hm2,respectively in Mt.Dinghushan in the first year's litter decomposition under the prevailing temperature condition.Only in Mt.Dinghushan is the correlation between decomposition rate constant and initial litter quality high and significant in the ratio of lignin to N,lignin,the ratio of lignin to E HLQ and C.This is not the case at Mt.Jianfengling.

  12. Litter production, decomposition and nutrient mineralization dynamics of Ochlandra setigera:A rare bamboo species of Nilgiri Biosphere Re-serve, India

    Institute of Scientific and Technical Information of China (English)

    Kuruvilla Thomas; C.M. Jijeesh; K.K. Seethalakshmi

    2014-01-01

    Litter production, decomposition and nutrient release dynam-ics of Ochlandra setigera, a rare endemic bamboo species of Nilgiri biosphere were studied during 2011-2012 using the standard litter bag technique. Annual litter production was 1.981 t∙ha-1 and was continuous throughout the year with monthly variations. Litterfall followed a tri-phasic pattern with two major peaks in November, 2011 and January, 2012 and a minor peak in July, 2011. The rate of decomposition in O. setigera was a good fit to the exponential decay model of Olson (1963). Litter quality and climatic conditions of the study site (maximum tem-perature, monthly rainfall and relative humidity) influenced the rate of decomposition. Nutrient release from the decomposing litter mass was in rank order N=Mg>K=Ca>P. Nutrient release from litter was con-tinuous and it was in synchrony with growth of new culms. Study of litter dynamics is needed before introduction of a bamboo species into degraded or marginal lands or Agroforestry systems.

  13. Studies on Material Cycling in Evergreen Broad-Leaved Forest Ecosystem in Hangzhou:Ⅱ.Dynamics and Decomposition Characteristics of Litter

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    Through the long-term plot study on the litter and its decomposition in the evergreen broad-leaved forest ecosystem in Hangzhou for more than two years,it was resulted that the annual litter production was 5.85 t ha-1,most of which was the fallen leave (79.5 percent) and the withered branches and fruits were far less (7.1 and 13.4 percents respectively).The dynamics of the fallen litter was shown as a curve of two-peak pattern which appeared in April and September each year.The half-life of the litter was 1.59 years.The decay rate of the litter attenuted as an exponential function.The annual amount of the nutrient returned to the ground through the litter was as large as 223.69kg ha-1.The total current amount of the litter on the ground was 7.47t ha-1.The decay rate in the first half of a year was 45.18 percent.This ecosystem remained in the stage of litter increasing with time.

  14. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium Biomassa e atividade microbiana da serapilheira durante o desenvolvimento inicial de plantios puros e mistos de Eucalyptus grandis e Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  15. The influence of litter composition across the litter–soil interface on mass loss, nitrogen dynamics and the decomposer community

    Science.gov (United States)

    Many studies have investigated the influence of plant litter species composition on decomposition, but results have been context-dependent. Litter and soil are considered to constitute a decomposition continuum, but whether litter and soil ecosystems respond to litter identity an...

  16. Dynamic of Grassland Biomass in Different Degenerative Stages

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; LIU Shuzhen; ZHOU Wei

    2006-01-01

    The dynamics of plant community and above- and belowground biomass of the different degenerative stages was researched of Kobresia humlis meadows of Nakchu prefecture in Tibet Autonomous Region. The results indicated that the aggravation of the degree of deterioration of alpine meadow is, the lower the vegetation coverage, percentage of excellent forage, and biodiversity are. The total aboveground biomass is highest in the lightly degraded stages while it is lowest in the extremely degraded stages. With the aggravation of degradation, the aboveground biomass of forbs increases while that of Cyperaceae decreases. We found that the belowground biomass was mostly distributed in the 0-10 cm soil depth in the alpine meadow with a "T"-shape distribution feature, and with the acceleration of deterioration, the numbers of roots becomes less and less. Meanwhile, the above- and belowground biomass of the different degraded communities was significantly correlated(r=0.963). There is an obvious positive correlation with the above- and belowground biomass in different degenerative stages, and their ratio increased with the aggravation of degradation.

  17. Decomposition dynamics of mixed litter in a seasonally flooded forest near the Orinoco river

    Science.gov (United States)

    Bastianoni, Alessia; Chacón, Noemí; Méndez, Carlos L.; Flores, Saúl

    2015-04-01

    We evaluated the decomposition of a litter mixture in the seasonally flooded forest of a tributary of the Orinoco river. This mixture was prepared using three litter species, based on the litter fall rate observed over a complete hydro-period (2012-2013). The mixture loading ratio was 0.46 of Pouteria orinocoensis (Sapotaceae), 0.38 of Alibertia latifolia (Rubiaceae) and 0.16 of Acosmium nitens (Fabaceae). The initial chemical composition of each single litter species was also determined. Litterbags (20 × 20 cm, 2 mm opening) containing either each single species or the mixture, were deployed on the flooded forest soil and sampled after 30, 240, 270, 300 and 330 days. There were differences in initial total N and P concentrations, with A. nitens (AN) showing the highest nutrient concentrations (%NAN = 1.86 ± 0.19; %PAN = 0.058 ± 0.008) and P. orinocoensis (PO) and A. latifolia (AL) the lowest (%NPO = 0.92 ± 0.06; %NAL = 1.04 ± 0.04; %PPO = 0.029 ± 0.005; %PAL = 0.032 ± 0.001). Litter from AN showed the greatest mass loss (55%) and fastest decomposition rate (k = 0.00185 ± 0.00028) while litter from AL and the mixture showed the smallest mass loss (24% and 27% respectively) and the slowest decomposition rate (kAL = 0.00078 ± 0.00012 and kMIX = 0.00077 ± 0.00006). Decomposition rates were significantly and positively correlated with initial N (r = 0.556, p < 0.05) and P concentrations (r = 0.482, p < 0.05). Nevertheless, there were no significant differences between the expected decomposition rate and the observed decomposition rate of the mixture (additive response). To test the nature of the additivity, an enhancement factor (f) on decomposition rates for each single species was calculated. The species with the highest and smallest value of f were AN and AL, respectively. The fact that two out of the three species had values significantly different from 1, suggests that the additivity detected in our mixture was a consequence of the counterbalancing of

  18. Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates

    Science.gov (United States)

    Stohlgren, Thomas J.

    1988-01-01

    Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).

  19. Dynamics and Relationships of Ca,Mg,Fe in Litter,Soil Fauna and Soil in Pinus koraiensis-Broadleaf Mixed Forest

    Institute of Scientific and Technical Information of China (English)

    SONG Bo; YIN Xiuqin; ZHANG Yu; DONG Weihua

    2008-01-01

    The Liangshui Natural Reserve in Heilongjiang Province of China was selected as the study area.The authors collected the samples of forest litter (Tilia amurensis,Fraxinus mandshurica,Pinus koraiensis,Acer mono,Betula costata,and mixed litter),soil in humus horizon (0-5cm) and soil horizon (5-20cm),and soil macrofauna (Oligochaeta,Geophiloporpha and Juliformia) from 2001 to 2002.The role of soil macrofauna in the material cycle was analyzed through comparing the macro-element contents among various parts of the subsystems and using enrichment index (EI).The results indicate that dynamic changes of various litters are very complicated.The contents of Fe in each kind of litter increase firstly,and then decrease in the study period.The changes of macro-element contents are greater in the broad-leaf litter than in the coniferous litter,and the mixed litter is in the middle level,but the differences among them are not significant.The contents of Mg and Fe in humus are higher than those in soil,but the contents of Ca in soil are higher than that in humus.The dynamic changes of macro-element contents in soil and soil fauna are not consistent with those in litter.The diplopod presented obvious enrichment of Ca and Mg (EI>1),but it does not significantly enrich Fe.Earthworm has a stronger enrichment ability of Fe than diplopod and scolopendra,but EI<1.Soil fauna can make great influences on the material cycle of the subsystems.

  20. Integration of biomass data in the dynamic vegetation model ORCHIDEE

    Science.gov (United States)

    Delbart, N.; Viovy, N.; Ciais, P.; Le Toan, T.

    2009-04-01

    Dynamic vegetation models (DVMs) are aimed at estimating exchanges between the terrestrial vegetated surface and the atmosphere, and the spatial distribution of natural vegetation types. For this purpose, DVMs use the climatic data alone to feed the vegetation process equations. As dynamic models, they can also give predictions under the current and the future climatic conditions. However, they currently lack accuracy in locating carbon stocks, sinks and sources, and in getting the correct magnitude. Consequently they have been essentially used to compare the vegetation responses under different scenarii. The assimilation of external data such as remote sensing data has been shown to improve the simulations. For example, the land cover maps are used to force the correct distribution of plant functional types (PFTs), and the leaf area index data is used to force the photosynthesis processes. This study concerns the integration of biomass data within the DVM ORCHIDEE. The objective here is to have the living carbon stocks with the correct magnitude and the correct location. Carbon stocks depend on interplay of carbon assimilated by photosynthesis, and carbon lost by respiration, mortality and disturbance. Biomass data can therefore be used as one essential constraint on this interplay. In this study, we use a large database provided by in-situ measurements of carbon stocks and carbon fluxes of old growth forests to constraint this interplay. For each PFT, we first adjust the simulated photosynthesis by reducing the mean error with the in situ measurements. Then we proceed similarly to adjust the autotrophic respiration. We then compare the biomass measured, and adjust the mortality processes in the model. Second, when processes are adjusted for each PFT to minimize the mean error on the carbon stock, biomass measurements can be assimilated. This assimilation is based on the hypothesis that the main variable explaining the biomass level at a given location is the age

  1. Molecular markers indicate different dynamics of leaves and roots during litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Palviainen, Marjo; Kalbitz, Karsten

    2010-05-01

    Up to now there is only a poor understanding of the sources contributing to organic carbon in forest soils, especially the contribution of leaves and roots. Studies of the last 2 decades have shown that methods like pyrolysis and CuO oxidation are suitable tools to trace back the main contributors of organic matter in water, sediments and soils. Lignin derived monomers, extractable lipids, cutin and suberin derived compounds have been used frequently for identification of plant material. However, for the selection of suitable biomarker the decomposition patterns and stability of these compounds are of high importance but they are only poorly understood. In this study we focused on following questions: (I) Which compounds are characteristic to identify certain plant parts and plant species? (II) How stable are these compounds during the first 3 years of litter decomposition? We studied the chemical composition of samples from a 3-year litterbag decomposition experiment with roots and leaves of spruce, pine and birch which was done in Finland. Additionally to mass loss, carbon and nitrogen contents, free lipids were extracted; by alkaline hydrolysis non extractable lipids were gained. The extracts were analyzed afterwards by GC-MS, the insoluble residues were analyzed by curie-point Pyrolysis GC-MS. In addition to the identification and quantification of a variety of different compounds and compound ratios we used statistical classification methods to get deeper insights into the patterns of leaf and root-derived biomarkers during litter decomposition. The mass loss was largely different between the litter species and we always observed larger mass loss for leaf-derived litter in comparison to root derived litter. This trend was also observed by molecular analysis. The increase of the ratio of vanillic acid to vanillin was correlated to the mass loss of the samples over time. This shows that the degree of decomposition of plant material was linked with the degree of

  2. Test of validity of a dynamic soil carbon model using data from leaf litter decomposition in a West African tropical forest

    Directory of Open Access Journals (Sweden)

    G. H. S. Guendehou

    2013-05-01

    Full Text Available We evaluated the applicability of the dynamic soil carbon model Yasso07 in tropical conditions in West Africa by simulating the litter decomposition process using as required input into the model litter mass, litter quality, temperature and precipitation collected during a litterbag experiment. The experiment was conducted over a six-month period on leaf litter of five dominant tree species, namely Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense and Diospyros mespiliformis in a semi-deciduous vertisol forest in Southern Benin. Since the predictions of Yasso07 were not consistent with the observations on mass loss and chemical composition of litter, Yasso07 was fitted to the dataset composed of global data and the new experimental data from Benin. The re-parameterized versions of Yasso07 had a good predictive ability and refined the applicability of the model in Benin to estimate soil carbon stocks, its changes and CO2 emissions from heterotrophic respiration as main outputs of the model. The findings of this research support the hypothesis that the high variation of litter quality observed in the tropics is a major driver of the decomposition and needs to be accounted in the model parameterization.

  3. Effects of the decomposition of poplar and aider mixed leaf litters on soil microbial biomass%杨树和桤木落叶混合分解对土壤微生物生物量的影响

    Institute of Scientific and Technical Information of China (English)

    陈琴; 方升佐; 田野

    2012-01-01

    通过室内培养,研究了杨树和江南桤木落叶混合分解过程中两种落叶的混合比例及落叶添加方式对土壤微生物生物量的影响.结果表明:落叶混合比例对土壤微生物生物量碳(MBC)、氮(MBN)均有显著的影响.培养30 d,江南桤木落叶比例为50%以上的土壤MBC和MBN显著高于纯杨树落叶处理及对照;75 d时,江南桤木落叶比例≥40%的土壤MBC和≥30%的土壤MBN均显著高于纯杨树落叶处理及对照;135 d后,江南桤木落叶比例≥20%的土壤MBC和≥40%的土壤MBN均显著高于纯杨树落叶处理及对照.不同混合比例的土壤MBC/MBN无显著差异,总体呈前期增长后期下降的变化趋势.杨树和江南桤木落叶混合分解对土壤MBC和MBN有显著的协同促进作用.在整个培养过程中,落叶添加方式对土壤MBC、MBN和MBC/MBN无显著影响.%An incubation test was conducted to study the effects of the decomposition of poplar and trabeculate alder leaf litters with different mixed ratios and under different application ways on soil microbial biomass carbon (MBC) and nitrogen (MBN). The mixed ratio of the litters had significant effects on soil MBC and MBN. On the 30th day of incubation, soil MBC and MBN were significantly higher in the treatments with ≥50% of alder litter than in the treatment with poplar litter only and the control. On the 75th day of incubation, the soil MBC in the treatments with ≥40% of alder litter and the soil MBN in the treatments with ≥30% of alder litter were significantly greater than those in the treatment with poplar litter only and the control. After 135 days incubation, soil MBC and MBN were significant higher in the treatments with ≥20% and ≥40% of alder litter than in the treatment with poplar litter only and the control, respectively. There was no significant difference in the soil MBC/MBN between the treatments with different mixed ratios of poplar and alder leaf litters and the

  4. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B [Los Alamos National Laboratory; Christensen, Candace [Los Alamos National Laboratory; Jennings, Terry L [Los Alamos National Laboratory; Jaros, Christopher L [Los Alamos National Laboratory; Wykoff, David S [Los Alamos National Laboratory; Crowell, Kelly J [Los Alamos National Laboratory; Shuman, Rob [URS

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and

  5. 中亚热带四种森林凋落物及碳氮贮量比较%Litter biomass and its carbon and nitrogen storage in four subtropical forests in central Southern China

    Institute of Scientific and Technical Information of China (English)

    路翔; 项文化; 任辉; 彭长辉

    2012-01-01

    在湖南省长沙县大山冲省级森林公园内,选择立地条件基本一致的4种森林类型为研究对象,于2011年12月(凋落物高峰期)对森林凋落物现存量及其碳、氮贮量进行调查.结果表明:4种森林凋落物现存量大小依次为青冈-石栎林(12.04±3.60)t·hm-2>马尾松-石栎林(11.65±2.15) t·hm-2>南酸枣林(9.12±2.30)t·hm-2>杉木林(8.92±1.80)t·hm-2;凋落叶在凋落物未分解层中所占比例最高,凋落果在4种林分中比例最小(<5%),凋落物各分解亚层现存量规律性不明显;4种森林凋落物C含量的变化范围为177.90 ~ 581.34 g·kg-1,N含量的变化范围为5.18~15.48 g· kg-1,C含量变化随凋落物分解程度的加深而下降,且变化极显著( P<0.0001);凋落物半分解层和已分解层现存量在总凋落物现存量中所占比例与C/N呈负相关;4种森林凋落物C贮量为3.37 ~ 5.69t·hm-2,N贮量为81.52 ~152.18 kg·hm-2;马尾松-石栎针阔叶混交林由于凋落物分解较慢,凋落物现存量较大,林下凋落物层C、N贮量最高.%Four subtropical forests with similar site conditions in the hilly area of Dashanchong Forest Park in central Hunan Province of China were selected to compare the existing litter biomass and its carbon (C) and nitrogen (N) storage. The litters were collected in the peak time of litter-fall. Among the four forests, Cyclobalanopsis glauca-Lithocarpus glaber mixed forest had the highest litter biomass (12. 04 ± 3. 60 t · hm-2) , followed by Pinus massoniana-L. glaber mixed forest (11. 65±2. 15 t · hm ) , Choerospondias axillaris forest (9. 12±2. 30 t · hm-2) , and Cunninghamia lanceolata plantation (8. 92±1. 80 t · hm-2 ). In litter layer, leaf litter had the largest proportion, while fruit litter had the smallest one ( <5% ). No significant differences were observed in the amounts of the litters with different decomposition degrees. The C concentration of the litters in the four

  6. Dynamics of carbon, biomass, and structure in two Amazonian forests

    Science.gov (United States)

    Pyle, Elizabeth Hammond; Santoni, Gregory W.; Nascimento, Henrique E. M.; Hutyra, Lucy R.; Vieira, Simone; Curran, Daniel J.; van Haren, Joost; Saleska, Scott R.; Chow, V. Y.; Carmago, Plinio B.; Laurance, William F.; Wofsy, Steven C.

    2008-11-01

    Amazon forests are potentially globally significant sources or sinks for atmospheric carbon dioxide. In this study, we characterize the spatial trends in carbon storage and fluxes in both live and dead biomass (necromass) in two Amazonian forests, the Biological Dynamic of Forest Fragments Project (BDFFP), near Manaus, Amazonas, and the Tapajós National Forest (TNF) near Santarém, Pará. We assessed coarse woody debris (CWD) stocks, tree growth, mortality, and recruitment in ground-based plots distributed across the terra firme forest at both sites. Carbon dynamics were similar within each site, but differed significantly between the sites. The BDFFP and the TNF held comparable live biomass (167 +/- 7.6 MgC.ha-1 versus 149 +/- 6.0 MgC.ha-1, respectively), but stocks of CWD were 2.5 times larger at TNF (16.2 +/- 1.5 MgC.ha-1 at BDFFP, versus 40.1 +/- 3.9 MgC.ha-1 at TNF). A model of current forest dynamics suggests that the BDFFP was close to carbon balance, and its size class structure approximated a steady state. The TNF, by contrast, showed rapid carbon accrual to live biomass (3.24 +/- 0.22 MgC.ha-1.a-1 in TNF, 2.59 +/- 0.16 MgC.ha-1.a-1 in BDFFP), which was more than offset by losses from large stocks of CWD, as well as ongoing shifts of biomass among size classes. This pattern in the TNF suggests recovery from a significant disturbance. The net loss of carbon from the TNF will likely last 10-15 years after the initial disturbance (controlled by the rate of decay of coarse woody debris), followed by uptake of carbon as the forest size class structure and composition continue to shift. The frequency and longevity of forests showing such disequilibruim dynamics within the larger matrix of the Amazon remains an essential question to understanding Amazonian carbon balance.

  7. Dynamics of Technological Innovation Systems. The Case of Biomass Energy

    International Nuclear Information System (INIS)

    The starting point is that the current energy system largely depends on fossil fuels. This phenomenon, which is labelled as carbon lock-in, causes a long breakthrough period for renewable energy. The most suitable theoretical approach to analyse the development, diffusion and implementation of emergent technologies, such as renewable energy, is the Technological Innovation Systems' (TIS) perspective. This approach focuses on a particular technology and includes all those factors (institutions, actors, and networks) that influence its development. Recent research has identified several so-called System Functions that need to be fulfilled for a TIS to support successfully the evolution of a technology. In this paper we will use the following set of System Functions: F1: Entrepreneurial Activities, F2: Knowledge Development (learning), F3: Knowledge Diffusion through Networks, F4: Guidance of the Search, F5: Market Formation, F6: Resources Mobilisation, F7: Counteracting Resistance to Change (also Support from Advocacy Coalitions). By focusing on the System Functions the key processes that occur in a system which influence the development, diffusion and implementation of that technology will be identified and insight will be gained in the system dynamics. The System Functions are not independent but interact and influence each other. The nature of interactions whether they are positive or negative will influence the performance of the system respectively. Positive System Function fulfilment can lead to positive, i.e. virtuous cycles of processes that strengthen each other and lead to the building up of momentum that creates a process of creative destruction within the incumbent system. According to the same reasoning, a system in decline is characterised by one or more vicious cycles, where the System Functions interact and reinforce each other in a negative way. The results from the case studies showed that different functional patterns occurred for the Biomass

  8. Simulated browsing affects leaf shedding phenology and litter quality of oak and birch saplings.

    Science.gov (United States)

    Palacio, S; Hester, A J; Maestro, M; Millard, P

    2013-04-01

    Herbivore effects on leaf litter can have a strong impact on ecosystem nutrient cycling. Although such effects are well described for insect herbivory, research on the impacts of browsing by mammalian herbivores on leaf litter dynamics and nutrient cycling has been more limited, particularly at the level of the individual plant. Clipping treatments (66% shoot removal twice, plus unclipped) were applied to analyse the effect of browsing on the phenology (start date and pattern of leaf shedding) and leaf litter quality (nitrogen (N), soluble sugars, starch and total non-structural carbohydrate concentrations, plus C : N ratios) of Betula pubescens Ehrh. and Quercus petraea [Matt.] Liebl. saplings. Clipping decreased leaf litter biomass and delayed leaf senescence and shedding, but did not change the phenological timing of litterfall between senescence and shedding. The quality of leaf litter of both species was increased by simulated browsing, through an increase in N and carbohydrate concentrations (mainly soluble sugars) and a decreased C : N ratio. This is the first evidence we are aware of that browsing may cause changes in leaf shedding phenology, delaying the process without altering its pattern. Our results also indicate that simulated browsing increases the quality of leaf litter. However, the potential positive effect of browsing on N cycling through litter quality may be offset by its negative impact on the amount of N shed per tree.

  9. Herbicide effects on leaf litter decomposition processes in an oak--hickory forest

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, M.R.; Shure, D.J.

    1979-02-01

    Herbicide treatments (2,4,5-Trichlorophenoxyacetic acid) of 0.225 g/m/sup 2/ and 2.250 g/m/sup 2/ were applied in a Latin square design to the forest floor of an oak--hickory forest in Georgia. White oak (Quercus alba) leaf litter decomposition and litter and soil microarthropod populations were studied in control and treated areas. Weight loss of natural white oak leaf litter averaged 35% for the 1st yr and reached 67% after 2 yr. Litter decomposition rates were similar in control and treated areas. However, white oak leaves defoliated through stem injections lost 59% of their biomass in 1 yr. Decomposition was increased because of initially higher N levels and a lower C:N ratio in defoliated leaf tissue. Herbicide spray treatment increased microarthropod densities for up to 8 mo after application. The herbicide spray apparently influenced springtail and mite reproductive activity in treated areas. The increases in soil and litter microarthropod densities were not sufficient to affect leaf litter weight losses. Repeated defoliation of plant communities and the resulting increased decomposition rates could cause imbalances in litter dynamics and cycling processes. Changes in the timing of annual littefall and the rates of nutrient release may thus lead to soil desiccation and the depletion of available nutrient pools.

  10. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    OpenAIRE

    Jaeeun Sohng; Ah Reum Han; Mi-Ae Jeong; Yunmi Park; Byung Bae Park; Pil Sun Park

    2014-01-01

    Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica), Korean pine (Pinus koraiensis), and their mixed leaf l...

  11. Simulation of the biomass dynamics of Masson pine forest under different management

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-lian; WANG Kai-yun; LIU Xin-wei; PENG Shao-lin

    2006-01-01

    TREE submodel affiliated with TREEDYN was used to simulate biomass dynamics of Masson pine (Pinus massoniana) forest under different managements (including thinning, clear cutting, combining thinning with clear cutting). The purpose was to represent biomass dynamics involved in its development, which can provide scientific arguments for management of Masson pine forest. The results showed the scenario that 10% or 20% of biomass of the previous year was thinned every five years from 15 to 40 years made total biomass of pine forest increase slowly and it took more time to reach a mature community; If clear cutting and thinning were combined, the case C (clear cutting at 20 years of forest age, thinning 50% of remaining biomass at 30 years of forest age, and thinning 50% of remaining biomass again at 40 years of forest age) was the best scenario which can accelerate speed of development of Masson pine forest and gained better economic values.

  12. Dynamics of pruning waste and spent horse litter co-composting as determined by chemical parameters.

    Science.gov (United States)

    Benito, Marta; Masaguer, Alberto; Moliner, Ana; Hontoria, Chiquinquirá; Almorox, Javier

    2009-01-01

    Co-composting of pruning waste and horse manure was monitored by different parameters. A windrow composting pile, having the dimensions 2.5m (height) x 30m (length) was established. The maturation of pruning waste and horse manure compost was accompanied by a decline in NH(4)(+)-N concentration, water soluble C and an increase in NO(3)(-)-N content. Organic matter (OM) content during composting followed a first-order kinetic equation. This result was in agreement with the microbiological activity measured by the CO(2) respiration during the process. The correlation at a high level of probability found between the OM loss and CO(2) evolution showed that both parameters could be used to indicate the degree of OM degradation that is the maturity and stability phases of the compost studied. Humification parameters data from the organic matter fractionation did not show a clear tendency during the composting time, suggesting that these parameters are not suitable for evaluating the dynamics of the process.

  13. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    Science.gov (United States)

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180

  14. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    Science.gov (United States)

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude). PMID:26087933

  15. DYNAMICS OF ALGAE NUMBER AND BIOMASS OF STEPPE BIOGEOCOENOSES AND AGROCOENOSES IN KHERSON REGION

    Directory of Open Access Journals (Sweden)

    Shcherbina V.V.

    2011-12-01

    Full Text Available Characteristics of daily dynamics of seaweeds abundance and biomass were determined for steppe biogeocoenosis and agrocoenosis of Biosphere reserve “Askaniya-Nova” in spring of 2011. Fluctuation ranges in seaweeds abundance and biomass have been registered.Analyzing the indices of total number and algae biomass in studied biogeocoenoses it should be noted that the maximal values of alga number in virgin soil steppe exceeded minimal in 3,3 times; biomasses - in 2,1. For virgin soil steppe of post-fire-induced development the relation between maximum and minimal value of total number of algae was up to 2,1; biomass - 2,4. For agrocoenosis we noted the largest ranges in variation of number and biomass. In conditions of dry-land arable land the maximum values of total number of alga exceeded minimal in 21,9 times; biomasses - in 8,7; for irrigated arable land - in 12,5 and 5,6 respectively.In soil samples, selected within the limits of virgin soil biogeocoenoses of biosphere reserve “Askania-Nova” and agrocoenosis of dry-land and irrigated arable land in biosphere reserve by direct count, the algae species of Bacillariophyta, Cyanophyta, Chlorophyta, Xanthophyta and Eustigmatophyta have been found. The largest contribution to number and biomass of algae belonged to Bacillariophyta. The number and biomass of agrocoenosis algae is more dynamic feature, than for algae of virgin soil biogeocoenoses.

  16. Biomass valorisation, a new dynamics for French agriculture. Colloquium proceedings

    International Nuclear Information System (INIS)

    This document brings together the summary of the presentations given at this colloquium on French agriculture and biomass valorisation and the slides of the available presentations as well. The colloquium started with the opening talk by D. Bussereau (Ministry of agriculture and fisheries) who presented an international overview of biomass activities. The colloquium was divided in two parts with presentations and round-tables: 1 - the post-petroleum era: energy context and raw materials market (P. Chalmin, Cyclope); first round-table on biofuels today and tomorrow; back to the basics (C. Roy); 2 - Biomass and industry: second round-table on cellulose - an oldie promised to a bright future; status of biomass valorisation (M. Pappalardo, ADEME); third round-table: the boom of green chemistry; closing talk by C. Roy. Sixteen presentations (slides) are attached to the document: 1 - Opening talk (D. Bussereau, Ministry of agriculture and fisheries); 2 - Biomass, agriculture, forestry and climate, some basics (C. Roy); 3 - Role of biomass in the fight against climate change and in supplies diversification (M. Pappalardo, Ademe); 4 - The 2005/2006 shock on world markets: energy and raw materials (P. Chalmin, Cyclope); 5 - Actions in the energy domain (A. Chosson, CLCV); 6 - Ethanol production (A. Jeanroy); 7 - The 'biofuels' commitment of PSA Peugeot Citroen car maker (Beatrice Perrier-Maurer, PSA); 8 - Bio-diesel development (Bernard Nicol, Diester Industrie); 9 - First round-table on biofuels today and tomorrow: biofuels and conventional fuels - for an harmonious development of resources and outlets (J.B. Sigaud, Petroleum and Engines School); 10 - Agriculture biomass: source of cellulose (C. Burren, Ungrains, Arvalis); 11 - Electrical and thermal valorisations of biomass (C. Jurczak, MINEFI/DGEMP); 12 - Some elements of thought on new uses of biomass as 'material' (Jacques Sturm, Afocel) 13 - Presentation of Agrice (Agriculture for chemistry and energy) research

  17. Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil.

    Science.gov (United States)

    Nunes, F P; Garcia, Q S

    2015-05-01

    The study of litter decomposition and nutrient cycling is essential to know native forests structure and functioning. Mathematical models can help to understand the local and temporal litter fall variations and their environmental variables relationships. The objective of this study was test the adequacy of mathematical models for leaf litter decomposition in the Atlantic Forest in southeastern Brazil. We study four native forest sites in Parque Estadual do Rio Doce, a Biosphere Reserve of the Atlantic, which were installed 200 bags of litter decomposing with 20 × 20 cm nylon screen of 2 mm, with 10 grams of litter. Monthly from 09/2007 to 04/2009, 10 litterbags were removed for determination of the mass loss. We compared 3 nonlinear models: 1 - Olson Exponential Model (1963), which considers the constant K, 2 - Model proposed by Fountain and Schowalter (2004), 3 - Model proposed by Coelho and Borges (2005), which considers the variable K through QMR, SQR, SQTC, DMA and Test F. The Fountain and Schowalter (2004) model was inappropriate for this study by overestimating decomposition rate. The decay curve analysis showed that the model with the variable K was more appropriate, although the values of QMR and DMA revealed no significant difference (p > 0.05) between the models. The analysis showed a better adjustment of DMA using K variable, reinforced by the values of the adjustment coefficient (R2). However, convergence problems were observed in this model for estimate study areas outliers, which did not occur with K constant model. This problem can be related to the non-linear fit of mass/time values to K variable generated. The model with K constant shown to be adequate to describe curve decomposition for separately areas and best adjustability without convergence problems. The results demonstrated the adequacy of Olson model to estimate tropical forest litter decomposition. Although use of reduced number of parameters equaling the steps of the decomposition

  18. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  19. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    Science.gov (United States)

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. PMID:27288197

  20. Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands.

    Directory of Open Access Journals (Sweden)

    Penelope J Mograbi

    Full Text Available Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha(-1 on gabbro geology sites to 27 Mg ha(-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10-14% p.a. were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3 m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands

  1. Suspension Dynamics of Liquefied Lignocellulosic Biomass in Pipeflow using Echo Particle Image Velocimetry

    Science.gov (United States)

    Demarchi, Nicholas; White, Christopher

    2015-11-01

    Echo particle image velocimetry (EPIV) is used to acquire planar fields of velocity in pipeflow of liquefied biomass. The biomass used is acid washed corn stover liquefied by enzymatic hydrolysis. The liquefaction process produces a complex multiphase fluid suspension with a microstructure consisting of insoluble solid particles dispersed within a continuous liquid phase. The solid particles are generally heavier than the liquid phase, non-spherical, and distributed over a wide range of aspect ratios and sizes. Batches of liquefied biomass are produced at incremental mass loadings doubling from 1.5% to 12%. The rheology, microstructure, and solid particle settling velocities of the liquefied biomass as a function of mass loading is first quantified. Next, EPIV is used to measure and quantify the flow dynamics of liquefied biomass suspensions under laminar pressure driven pipeflow conditions. Finally, Information gathered from the experimental data is used to simulate particle settling rates and predict the particle physics under the same pipeflow conditions.?

  2. Dynamics, aboveground biomass and composition on permanent plots, Tambopata National Reserve. Madre de Dios, Peru

    Directory of Open Access Journals (Sweden)

    Nadir C. Pallqui

    2014-12-01

    Full Text Available In this study we evaluated the floristic composition and changes in stored biomass and dynamics over time in 9 permanent plots monitored by RAINFOR (Amazon Forest Inventory Network and located in the lowland Amazon rainforest of the Tambopata National Reserve. Data were acquired in the field using the standardized methodology of RAINFOR. The biomass was estimated using the equation for tropical moist forests of Chave et al. (2005. Biomass dynamics were analyzed, in three separated periods from 2003 to 2011. 64 families, 219 genera and 531 species were recorded. The tree floristic composition is very similar in all plots except for one swamp plot, although but it is also evident that two slightly different forest communities exist in the rest of landscape, apparently related to the age of the ancient river terraces in the area. Mortality and recruitment of individuals averaged 2.12 ± 0.52% and 1.92 ± 0.49%, respectively. The turnover rate is 2.02% per year. Aboveground biomass stored in these forests averages 296.2 ± 33.9 t ha-1. The biomass dynamics show a total net gain of 1.96, 1.69 and –1.23 t ha-1 for period respectively. Prior to the drought of 2010 a change in biomass was found 1.88 t ha-1 yr-1 and post drought was -0.18 t ha-1 yr-1 on average, though the difference is not significant. Demographic analysis suggests a dynamic equilibrium in the plots. The negative balance of biomass observed for the period 2008 – 2011 may be due to the drought of 2010, in which half of the monitored plots experienced negative net biomass change due to mortality of individuals selectively affecting the floristic composition.

  3. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  4. DYNAMICS OF LITTER DECOMPOSITION AND SEASONAL DYNAMICS OF PHOSPHORUS IN DECOMPOSED RESIDUA OF Calamagrotis augustifolia IN THE WETLAND OF THE SANJIANG PLAIN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    During the period of May to October in 1999, systematical studies were given to the rate of decomposition of Calamagrostis angustifolia litter, the phosphorus content and weight in decomposed residua of litter, and phosphorus content in the corresponding soil in the Sanjiang Plain. At the same time, the simulation models were listed in the paper.The results showed that the rate of weight lost of decomposition of Calamagrostis angustifolia litter is 29. 80% and the maximum of daily rate of weight lost is 0.25%, which appeared in July. The change trend of phosphorus content and weight in the decomposed residua of litter is to reduce with the decomposing process, when it comes to the day of 157,the decrement amount of the both were respectively 57.69mg/kg and 1. 6199mg, which were 72. 80% and 76.30% of its previous amount. In addition, there is a polynomial minus correlationship of phosphorus content between the variation in corresponding soil and the decomposed residua of litter at the corresponding period. The study will be helpful to further understand the process and mechanism of biochemical cycling of nutrient elements in wetland ecosystems, in addition, it will also be helpful to the restoration and rebuilding of retrogressive wetlands and reasonable development and utilization of wetlands in the Sanjiang Plain.

  5. Annual and diurnal african biomass burning temporal dynamics

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2009-05-01

    Full Text Available Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near

  6. Carbon input belowground is the major C flux contributing to leaf litter mass loss

    DEFF Research Database (Denmark)

    Rubino, Mauro; Dungait; Evershed;

    2010-01-01

    due to the occurrence of many different processes contributing to litter biomass loss. With the aim of quantifying different fluxes of C lost by leaf litter decomposition, a field experiment was performed at a short rotation coppice poplar plantation in central Italy. Populus nigra leaf litter...

  7. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  8. Study of the dynamics of Zn, Fe, and Cu in the soil-plant system during leaf litter decomposition using isotopic compositions

    Science.gov (United States)

    Pichat, S.; Fekiacova, Z.

    2013-12-01

    Litter decomposition is a key process in the cycle of the elements in the soil-plant system. We have investigated the dynamics of three essential micronutrients (Zn, Fe, and Cu) in the vegetal cover, litter, organic horizons, and upper soil horizon (0-2 and 5-10 cm) using both element concentrations and isotopic compositions. The study was conducted on the O3HP (Oak Observatory at the Haute-Provence Observatory) experimental field site in southern France. O3HP is located far from pollution sources. It has been a fallow land for 70 years with the tree cover represented mainly by oak trees (Quercus pubescens). The soil is a thin layer of Calcisol developed under Mediterranean climate. The area has been subdivided in four zones as a function of plant cover. The results for two of these zones, dominated by respectively Poaceae and Genista hispanica, are reported here. We found that the concentrations of the three elements increase from the Ol to the Of horizon. Copper concentration in the Of horizon is close to that of the soil, whereas it is lower for Fe and Zn. For isotopic compositions, the behavior of the three elements is, however, different, which suggests different processes of redistribution for these elements. An enrichment in light Fe isotopes was observed from the Ol to the Of horizon, the latter having an isotopic composition similar to that of the soil. Zinc isotopic compositions are also similar in the Of horizon and the soil but they are isotopically heavier than in the Ol horizon. For Cu, the O horizons are isotopically heavier than the soil, with Of being the heaviest horizon. In addition, for Cu and Zn, the profiles in the O-horizons in the Poaceae-dominated and Genista hispanica-dominated areas are similar but their values are offset, suggesting an influence of the vegetal cover. The increase in concentration for Cu, Zn and Fe with age/depth in the O horizons is in agreement with what is commonly observed in litter-bag experiments, e.g. 1,2. Two

  9. Marine Anthropogenic Litter

    OpenAIRE

    Bergmann, Melanie; Gutow, Lars; Klages, Michael

    2015-01-01

    This book describes how manmade litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers co...

  10. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.; Tucker, M. P.; Baker, J. O.; Harris, M.; Luo, Y. H.; Xu, Q.; Himmel, M. E.; Ding, S. Y.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  11. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  12. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  13. Forest Biomass, Carbon Stocks, and Macrofungal Dynamics: A Case Study in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carlos Rojas

    2014-01-01

    Full Text Available There are few published studies providing information about macrofungal biology in a context of forest dynamics in tropical areas. For this study, a characterization of above-ground standing tree biomass and carbon stocks was performed for four different forest subtypes within two life zones in Costa Rica. Fungal productivity and reproductive success were estimated and analyzed in the context of the forest systems studied and results showed fungal dynamics to be a complex and challenging topic. In the present study, fungal productivity was higher in forest patches with more tree density but independent from life zones, whereas fungal biomass was higher in premontane areas with ectomycorrhizal dominant trees. Even though some observed patterns could be explained in terms of climatic differences and biotic relationships, the high fungal productivity observed in dry forests was an interesting finding and represents a topic for further studies.

  14. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest;

    2015-01-01

    Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...... for the enzymatic hydrolysis process. Several by-products are also formed, which disturb and act as inhibitors downstream. The objective of this study is to formulate and validate a large scale hydrothermal pretreatment dynamic model based on mass and energy balances, together with a complex conversion mechanism...... and kinetics. The study includes a comprehensive sensitivity and uncertainty analysis, with parameter estimation from real-data in the 178-185° range. To highlight the application utility of the model, a state estimator for biomass composition is developed. The predictions capture well the dynamic trends...

  15. Myxomycetes of the litter

    Directory of Open Access Journals (Sweden)

    Wanda Stojakowska

    2014-08-01

    Full Text Available The litter is a useful substratum for developmen t of the Myxomycetes. On the basis of our own observations and literature data 50 species of the slime molds were found occuring on litter. Species from the order Physarales (33 species are dominant.

  16. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions : a test of the PEG model

    OpenAIRE

    Straile, Dietmar

    2015-01-01

    1. The model of the International Society of Limnology (SIL) Plankton Ecology working group (hereafter the PEG model) is a verbal model describing the patterns and driving factors of seasonal phytoplankton and zooplankton succession in oligotrophic and eutrophic lakes (Sommer et al., 1986). Despite being a citation classic, tests of the PEG model with respect to differences in zooplankton biomass dynamics between oligotrophic and eutrophic lakes are lacking.2. Here, I use the long-term data f...

  17. Seasonal Dynamics and Biomass of Mixotrophic Flagellate Dinobryon sertularia Ehrenberg (Chrysophyceae) in Derbent Reservoir (Samsun, Turkey)

    OpenAIRE

    TAŞ, Beyhan; Gönülol, Arif; TAŞ, Erol

    2010-01-01

    Mixotrophic protists, combining both heterotrophy and phototrophy, are found abundantly in eutrophic waters. Dinobryon sertularia Ehr. from Chrysophyceae (golden algae) are mixotrophic organisms often make up blooms and colony in pools, lakes and dam reservoirs. This study was carried out in Derbent Dam Lake in the Middle Black Sea Region. Seasonal dynamics and biomass of D. sertularia were investigated at four stations between February 2001 and July 2002. D. sertularia consisted of 47-60...

  18. Typhoon enhancement of N and P release from litter and changes in the litter N:P ratio in a subtropical tidal wetland

    Science.gov (United States)

    Wang, Weiqi; Sardans, Jordi; Tong, Chuan; Wang, Chun; Ouyang, Linmei; Bartrons, Mireia; Peñuelas, Josep

    2016-01-01

    Litter production and decomposition are key processes controlling the capacity of wetland to store and cycle carbon (C) and nutrients. Typhoons deposit large amounts of green and semi-green (between green and withered) plant tissues and withered litter (normal litter) on wetland soils, generating a pulse of litter production. Climatic models project an increase in typhoon intensity and frequency. Elucidating the impacts of typhoons on C, N and P cycles and storage capacities in subtropical and tropical wetland areas is thus important. We analyzed the patterns and changes of litter decomposition after a typhoon in the Minjiang River estuary in southeastern China. Green litter decomposed the fastest, and the loss of mass did not differ significantly between semi-green litter, withered litter and mixed litter (all soil litter after a typhoon). During the decomposition process the remaining green litter had the highest, and withered litter the lowest N and P concentrations. The biomass loss rate of litter during the studied period was related to the initial litter N and P concentrations. Remaining litter generally increased its N:P ratio during decomposition. The ratio of the released N and P was consequently lower than the initial N:P ratio in all litter types. The typhoon enhanced the release of C, N and P from the litter (884, 12.3 and 6 kg ha-1, respectively) by 264 days after the typhoon. The soil was accordingly enriched with organic matter and nutrients for several months, which should favor microbial growth rates (higher C, N and P availability and lower C:nutrient and N:P ratios) and increase the rates of C and nutrient cycling. If the frequency and/or intensity of typhoons increase, a constant increase in the release of N and P to the soil with lower N:P ratios could change the N and P cycles in wetlands and provide better conditions for the spread of fast-growing species.

  19. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    Science.gov (United States)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  20. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-09-30

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  1. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  2. Short-term dynamics of intertidal microphytobenthic biomass. Mathematical modelling [La dynamique a court terme de la biomasse du microphytobenthos intertidal. Formalisation mathematique

    Science.gov (United States)

    Guarini, J.-M.; Gros, P.; Blanchard, G.F.; Bacher, C.

    1999-01-01

    We formulate a deterministic mathematical model to describe the dynamics of the microphytobenthos of intertidal mudflats. It is 'minimal' because it only takes into account the essential processes governing the functioning of the system: the autotrophic production, the active upward and downward migrations of epipelic microalgae, the saturation of the mud surface by a biofilm of diatoms and the global net loss rates of biomass. According to the photic environment of the benthic diatoms inhabiting intertidal mudflats, and to their migration rhythm, the model is composed of two sub-systems of ordinary differential equations; they describe the simultaneous evolution of the biomass 'S' concentrated in the mud surface biofilm - the photic layer - and of the biomass 'F' diluted in the topmost centimetre of the mud - the aphotic layer. Qualitatively, the model solutions agree fairly well with the in situ observed dynamics of the S + F biomass. The study of the mathematical properties of the model, under some simplifying assumptions, shows the convergence of solutions to a stable cyclic equilibrium, whatever the frequencies of the physical synchronizers of the production. The sensitivity analysis reveals the necessity of a better knowledge of the processes of biomass losses, which so far are uncertain, and may further vary in space and time.

  3. Environmentally friendly animal litter

    Science.gov (United States)

    Chett, Boxley; McKelvie, Jessica

    2013-08-20

    A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  4. Biomass dynamics of Quercus aliena var.acutesrata Community on Mountain Xiaolong in Gansu Province,China

    Institute of Scientific and Technical Information of China (English)

    Suo Anning; Ju Tianzhen; Zhang Junhua; Ge Jianping

    2006-01-01

    The dynamics of tree layer biomass was studied by combining 35 sample plots of field census with biomass model estimation in a natural Quercus aliena var.acutesrata community on Mountain Xiaolong in Gansu Province,China.The tree layer biomass of Quercus aliena var.acutesrata community was 183 660 kg/ha,in which the slow growth group accounted for 64.89% of the total biomass.The fast-medium growth group accounted for 33.40% and the coniferous group accounted for 1.38%.The organs biomass was found to be in the following order:trunk>root>branch>leaf.The total biomass accumulated with the development of the community.The total biomass and the biomass of the organs were highest in the mature community and became stable as the community developed.The relative growth rate of organs was in the following order:trunk>branch>root>leaf.The biomass ratio of the slow growth group trees tended to increase and the fast-medium group trees tended to decrease as the community developed,which was reveresed in the decline development stage.The biomass of the coniferous group was very small throughout the development process.

  5. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica.

    Science.gov (United States)

    Barrientos, Zaidett

    2012-09-01

    Little is known about how restoration strategies affect aspects like leaf litter's quantity, depth and humidity. I analyzed leaf litter's quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Rio Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010) in each habitat; humidity was measured in 439g samples (average), depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (mean=73.2), followed by secondary forest (mean=63.3) and cypress plantation (mean=52.9) (Kruskall-Wallis=77.93, n=232, p=0.00). In the primary (Kruskal-Wallis=31.63, n=78, p<0.001) and secondary (Kruskal-Wallis=11.79, n=75, p=0.008) forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001) and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001) leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter's structure in different ecosystems though the year. September 01.

  6. Changes in Amazonian forest biomass, dynamics, and composition, 1980-2002

    Science.gov (United States)

    Phillips, Oliver L.; Higuchi, Niro; Vieira, Simone; Baker, Timothy R.; Chao, Kuo-Jung; Lewis, Simon L.

    Long-term, on-the-ground monitoring of forest plots distributed across Amazonia provides a powerful means to quantify stocks and fluxes of biomass and biodiversity. Here we examine the evidence for concerted changes in the structure, dynamics, and functional composition of old-growth Amazonian forests over recent decades. Mature forests have, as a whole, gained biomass and undergone accelerated growth and dynamics, but questions remain as to the long-term persistence of these changes. Because forest growth on average exceeds mortality, intact Amazonian forests have been functioning as a carbon sink. We estimate a net biomass increase in trees ≥10 cm diameter of 0.62 ± 0.23 t C ha-1 a-1 through the late twentieth century. If representative of the wider forest landscape, this translates into a sink in South American old-growth forest of at least 0.49 ± 0.18 Pg C a-1. If other biomass and necromass components also increased proportionally, the estimated South American old-growth forest sink is 0.79 ± 0.29 Pg C a-1, before allowing for possible gains in soil carbon. If tropical forests elsewhere are behaving similarly, the old-growth biomass forest sink would be 1.60 ± 0.58 Pg C a-1. This bottom-up estimate of the carbon balance of tropical forests is preliminary, pending syntheses of detailed biometric studies across the other tropical continents. There is also some evidence for recent changes in the functional composition (biodiversity) of Amazonian forest, but the evidence is less comprehensive than that for changes in structure and dynamics. The most likely driver(s) of changes are recent increases in the supply of resources such as atmospheric carbon dioxide, which would increase net primary productivity, increasing tree growth and recruitment, and, in turn, mortality. In the future the growth response of remaining undisturbed Amazonian forests is likely to saturate, and there is a risk of these ecosystems transitioning from sink to source driven by higher

  7. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    Science.gov (United States)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed

  8. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    Science.gov (United States)

    Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín; Alvain, Séverine; Aumont, Olivier; Bopp, Laurent; Chollet, Sophie; Enright, Clare; Franklin, Daniel J.; Geider, Richard J.; Harrison, Sandy P.; Hirst, Andrew G.; Larsen, Stuart; Legendre, Louis; Platt, Trevor; Prentice, I. Colin; Rivkin, Richard B.; Sailley, Sévrine; Sathyendranath, Shubha; Stephens, Nick; Vogt, Meike; Vallina, Sergio M.

    2016-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  9. Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China.

    Science.gov (United States)

    Zhao, Lei; Hu, Ya-Lin; Lin, Gui-Gang; Gao, Yong-chao; Fang, Yun-Ting; Zeng, De-Hui

    2013-01-01

    Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica) and a poplar (Populus × xiaozhuanica) plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems. PMID:24143184

  10. Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China.

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    Full Text Available Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica and a poplar (Populus × xiaozhuanica plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.

  11. Effect of Long—Term Straw Incorporation on Soil Microbial Biomass and C and N Dynamics

    Institute of Scientific and Technical Information of China (English)

    SHENRENFANG; P.C.BROOKES; 等

    1997-01-01

    A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents,C and N dynamics in both Rothamsted and Woburn soils.The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments,and followed the sequence in treatments of straw chopped and incorporated into 10 cm(CI10)>straw burnt and incorporated into 10 cm(BI10)>staw chopped and incorporated into 20 cm(CI20)>straw burnt and incorporated into 20 cm(BI20).Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content ,Carbon dioxide evolution rates(CO2-C,μg(g.d)-1)decreased rapidly in the first two weeks' incubation,then decreased more slowly,The initial K2SO4-extractable NH4-N and NO33-N contents were low and similar in all the treatments,and all increased gradually with the incubation time ,However,net N immobiliztion was oberved in chopped treatments for Rothamsted soils durig the first 4 weeks ,Nevertheless,more N mineralization occurred in Treatment CI10 than any other treatment at the end of incubation for both soils .The Woburn soils ,could more easily suffer from the leaching of nitrate because the soils were more pemeable and more N was mineralized during the incubation compared to the Rothamsted soils.

  12. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia.

    Science.gov (United States)

    Tláskal, Vojtěch; Voříšková, Jana; Baldrian, Petr

    2016-11-01

    The decomposition of dead plant biomass contributes to the carbon cycle and is one of the key processes in temperate forests. While fungi in litter decomposition drive the chemical changes occurring in litter, the bacterial community appears to be important as well, especially later in the decomposition process when its abundance increases. In this paper, we describe the bacterial community composition in live Quercus petraea leaves and during the subsequent two years of litter decomposition. Members of the classes Alpha-, Beta- and Gammaproteobacteria and the phyla Actinobacteria, Bacteroidetes and Acidobacteria were dominant throughout the experiment. Bacteria present in the oak phyllosphere were rapidly replaced by other taxa after leaf senescence. There were dynamic successive changes in community composition, in which the early-stage (months 2-4), mid-stage (months 6-8) and late-stage (months 10-24) decomposer communities could be distinguished, and the diversity increased with time. Bacteria associated with dead fungal mycelium were important during initial decomposition, with sequence relative abundances of up to 40% of the total bacterial community in months 2 and 4 when the highest fungal biomass was observed. Cellulose-decomposing bacteria were less frequent, with abundance ranging from 4% to 15%. The bacterial community dynamics reflects changes in the availability of possible resources either of the plant or microbial origin. PMID:27543318

  13. Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Mahmood Hossain; Mohammad Raqibul Hasan Siddique; Md. Saidur Rahman; Md. Zaber Hossain; Md. Mahedi Hasan

    2011-01-01

    Azadirachta indica A.Juss,Dalbergia sissoo Roxb.,and Melia azedarach L.are little studied species in nutrient return capabilities from leaf litter decomposition to maintenance of the soil fertility despite their importance in agroforestry practices of Bangladesh.A leaf litter decomposition experiment was conducted using a litterbag technique to assess the nutrient return efficiency of these species.The decomposition rate of leaf liter was highest for M.azedarach and lowest for D.sissoo.Rainfall and temperature of study sites showed a significant (p<0.05) positive relationship with the rate of leaf litter decomposition.The highest decay constant was observed for M.azedarach (6.67).Nitrogen and Phosphorus concentration in leaf litter showed a decreased trend sharply at the end of the first month,whereas rapid decrease of Potassium concentration was reported within 10 days.Conversely,higher concentration of nutrient was observed at the later stages of decomposition.All three species showed a similar pattern of nutrient release (K > N> P) during the decomposition process of leaf litter.Among the studied species,D.sissoo was best in terms of N and P return and A.indica was best in terms of K return.

  14. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis.

    Science.gov (United States)

    McDaniel, M D; Tiemann, L K; Grandy, A S

    2014-04-01

    Our increasing dependence on a small number of agricultural crops, such as corn, is leading to reductions in agricultural biodiversity. Reductions in the number of crops in rotation or the replacement of rotations by monocultures are responsible for this loss of biodiversity. The belowground implications of simplifying agricultural plant communities remain unresolved; however, agroecosystem sustainability will be severely compromised if reductions in biodiversity reduce soil C and N concentrations, alter microbial communities, and degrade soil ecosystem functions as reported in natural communities. We conducted a meta-analysis of 122 studies to examine crop rotation effects on total soil C and N concentrations, and the faster cycling microbial biomass C and N pools that play key roles in soil nutrient cycling and physical processes such as aggregate formation. We specifically examined how rotation crop type and management practices influence C and N dynamics in different climates and soil types. We found that adding one or more crops in rotation to a monoculture increased total soil C by 3.6% and total N by 5.3%, but when rotations included a cover crop (i.e., crops that are not harvested but produced to enrich the soil and capture inorganic N), total C increased by 8.5% and total N 12.8%. Rotations substantially increased the soil microbial biomass C (20.7%) and N (26.1%) pools, and these overwhelming effects on microbial biomass were not moderated by crop type or management practices. Crop rotations, especially those that include cover crops, sustain soil quality and productivity by enhancing soil C, N, and microbial biomass, making them a cornerstone for sustainable agroecosystems.

  15. Negative and positive interactions among plants: effects of competitors and litter on seedling emergence and growth of forest and grassland species.

    Science.gov (United States)

    Loydi, A; Donath, T W; Otte, A; Eckstein, R L

    2015-05-01

    Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co-occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ.

  16. Dynamic Biogas Upgrading for Integration of Renewable Energy from Wind, Biomass and Solar

    DEFF Research Database (Denmark)

    Jurgensen, Lars

    The Sabatier process is investigated as a storage scheme for renewable energy. Hydrogen derived from fluctuating renewable energy sources like wind and solar is converted to methane by the hydrogenation/methanation of carbon oxides. Biogas from anaerobic digestion is considered in this study...... as a high concentrated source of carbon dioxide. By using the Sabatier process, the CO2 content of the biogas is converted to CH4, which is a new upgrading process for biogas. By switching between (i) this upgrading process during periods of extensive electricity production from wind and solar, and (ii......) combined heat and power production from biogas during periods of electricity demand, bioenergy utilization becomes a dynamic process. In such a process scheme, biomass, wind, and solar could be integrated in a local context. This thesis aims to demonstrate the feasibility of the dynamic biogas upgrading...

  17. Dynamics of Microbial Biomass in a Rainfed Soil Under Wheat Cultivation

    Institute of Scientific and Technical Information of China (English)

    M. AKMAL; K. S.KHAN; XU Jian-Ming

    2004-01-01

    A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot-1), 3) farmyard manure (FYM, 110 g pot-1), 4)poultry manure (PM, 110 g pot-1), 5) FYM (110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 6) poultry manure (PM, 110 g pot-1) + NPK (0.44-0.26-0.18 g pot-1), 7) FYM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot-1) + NPK(S) (0.44-0.26-0.18 g pot-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures + NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures + NPK(S) treatments. In the FYM + NPK(S) and PM + NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop.

  18. Dynamics of plant litter of typical steppe under enclosure management in Inner Mongolia Autonomous Region%典型草原封育过程中植物凋落物的变化动态

    Institute of Scientific and Technical Information of China (English)

    阚雨晨; 王堃; 王宇通; 黄欣颖; 邵新庆

    2011-01-01

    A field experiment was conducted in a degraded area of typical steppe ecotype in Balinyou Banner, Inner Mongolia Autonomous Region,China to reveal the dynamics of plant litter, using direct collection. The result show that the plant litter shows an increasing trend in different enclosed sucession process,the litter in the first 10 year is the highest. Litter nutrients,in different years, there were significant differences. Carbon content of maximum 1 year fencing,fencing a minimum of 10 years, and nitrogen is based on 4 years of enclosure was the highest content of fencing a minimum 1 year, they were significantly different among. Carbon and nitrogen ratio increases with the enclosure years showed decrease.%以内蒙古巴林右旗退化草原为研究对象,采用直接收集的方法,研究各种围封条件下,退化草原在自然演替过程中土壤凋落物的变化动态。结果表明:典型草原在封育演替过程中,凋落物呈增加的趋势,以封育10年的凋落物量最高;凋落物的养分,不同年限之间均存在显著差异,其中碳素含量以封育1年的最高,封育10年的最低,氮素则是以封育4年的含量最高,封育1年的含量最低;C/N比值随封育年限的增加呈现降低的趋势。

  19. The Experimental Control of Littering

    Science.gov (United States)

    Clark, Roger N.; And Others

    1972-01-01

    Behavior, incentives, and education programs were researched as factors relating to littering. Experiments in theaters, forest campgrounds, and hiking and dispersed car camping areas indicate incentive systems are necessary and feasible for curbing litter problems. (BL)

  20. Forest based biomass for energy in Uganda: Stakeholder dynamics in feedstock production

    International Nuclear Information System (INIS)

    Insufficient energy supply and low levels of development are closely linked. Both are major issues in Uganda where growing demand cannot be met by overstretched infrastructure and the majority still rely on traditional biomass use. Uganda's renewable energy policy focuses on decentralised sources including modern biomass. In this paper, stakeholder dynamics and potential socio-economic impacts of eight modern bioenergy feedstock production models in Uganda are considered, and key considerations for future planning provided. For these models the main distinctions were land ownership (communal or private) and feedstock type (by-product or plantation). Key social issues varied by value chain (corporate, government or farmer/NGO), and what production arrangement was in place (produced for own use or sale). Small, privately owned production models can be profitable but are unlikely to benefit landless poor and, if repeated without strategic planning, could result in resource depletion. Larger projects can have greater financial benefits, though may have longer term natural resource impacts felt by adjacent communities. Bioenergy initiatives which allow the rural poor to participate through having a collaborative stake, rather than receiving information, and provide opportunities for the landless are most likely to result in socio-economic rural development to meet policy goals. The structured approach to understanding stakeholder dynamics used was found to be robust and sufficiently adaptable to provide meaningful analysis. In conclusion; local, context-specific planning and assessment for bioenergy projects, where all stakeholders have the opportunity to be collaborators in the process throughout its full lifecycle, is required to achieve rural development objectives. -- Highlights: • Stakeholder dynamics and socio-economics in 8 Ugandan bioenergy projects considered. • Key distinctions were ownership, feedstock, value chain and production arrangement. • Small

  1. Large litter sizes

    DEFF Research Database (Denmark)

    Sandøe, Peter; Rutherford, K.M.D.; Berg, Peer

    2012-01-01

    This paper presents some key results and conclusions from a review (Rutherford et al. 2011) undertaken regarding the ethical and welfare implications of breeding for large litter size in the domestic pig and about different ways of dealing with these implications. Focus is primarily on the direct...

  2. Pattern and dynamics of biomass stock in old growth forests: The role of habitat and tree size

    Science.gov (United States)

    Yuan, Zuoqiang; Gazol, Antonio; Wang, Xugao; Lin, Fei; Ye, Ji; Zhang, Zhaochen; Suo, YanYan; Kuang, Xu; Wang, Yunyun; Jia, Shihong; Hao, Zhanqing

    2016-08-01

    Forest ecosystems play a fundamental role in the global carbon cycle. However, how stand-level changes in tree age and structure influence biomass stock and dynamics in old-growth forests is a question that remains unclear. In this study, we quantified the aboveground biomass (AGB) standing stock, the coarse woody productivity (CWP), and the change in biomass over ten years (2004-2014) in a 25 ha unmanaged broad-leaved Korean pine mixed forest in northeastern China. In addition, we quantified how AGB stock and change (tree growth, recruitment and mortality) estimations are influenced by the variation in habitat heterogeneity, tree size structure and subplot size. Our analysis indicated that Changbai forest had AGB of 265.4 Mg ha-1 in 2004, and gained1.36 Mg ha-1 y-1 between 2004 and 2014. Despite recruitment having better performance in nutrient rich habitat, we found that there is a directional tree growth trend independent of habitat heterogeneity for available nutrients in this old growth forest. The observed increases in AGB stock (∼70%) are mainly attributed to the growth of intermediate size trees (30-70 cm DBH), indicating that this forest is still reaching its mature stage. Meanwhile, we indicated that biomass loss due to mortality reduces living biomass, not increment, may be the primary factor to affect forest biomass dynamics in this area. Also, spatial variation in forest dynamics is large for small sizes (i.e. coefficient of variation in 20 × 20 m subplots is 53.2%), and more than 90 percent of the inherent variability of these coefficients was predicted by a simple model including plot size. Our result provides a mean by which to estimate within-plot variability at a local scale before inferring any directional change in forest dynamics at a regional scale, and information about the variability of forest structure and dynamics are fundamental to design effective sampling strategies in future study.

  3. Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets

    Directory of Open Access Journals (Sweden)

    Florian Siegert

    2013-05-01

    Full Text Available Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks projects, which require an accurate monitoring of their carbon stocks or aboveground biomass (AGB. Our study objective was to evaluate multi-temporal LiDAR measurements of a tropical forested peatland area in Central Kalimantan on Borneo. Canopy height and AGB dynamics were quantified with a special focus on unaffected, selective logged and burned forests. More than 11,000 ha were surveyed with airborne LiDAR in 2007 and 2011. In a first step, the comparability of these datasets was examined and canopy height models were created. Novel AGB regression models were developed on the basis of field inventory measurements and LiDAR derived height histograms for 2007 (r2 = 0.77, n = 79 and 2011 (r2 = 0.81, n = 53, taking the different point densities into account. Changes in peat swamp forests were identified by analyzing multispectral imagery. Unaffected forests accumulated on average 20 t/ha AGB with a canopy height increase of 2.3 m over the four year time period. Selective logged forests experienced an average AGB loss of 55 t/ha within 30 m and 42 t/ha within 50 m of detected logging trails, although the mean canopy height increased by 0.5 m and 1.0 m, respectively. Burned forests lost 92% of the initial biomass. These results demonstrate the great potential of repetitive airborne LiDAR surveys to precisely quantify even small scale AGB and canopy height dynamics in remote tropical forests, thereby featuring the needs of REDD+.

  4. Demonstration of a Small Modular BioPower System Using Poultry Litter

    Energy Technology Data Exchange (ETDEWEB)

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.

  5. Demonstration of a Small Modular BioPower System Using Poultry Litter; FINAL

    International Nuclear Information System (INIS)

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricty and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter

  6. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica

    Science.gov (United States)

    Dubayah, R. O.; Sheldon, S. L.; Clark, D. B.; Hofton, M. A.; Blair, J. B.; Hurtt, G. C.; Chazdon, R. L.

    2010-06-01

    In this paper we present the results of an experiment to measure forest structure and biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica using a medium resolution lidar. Our main objective was to observe changes in forest canopy height, related height metrics, and biomass, and from these map sources and sinks of carbon across the landscape. The Laser Vegetation Imaging Sensor (LVIS) measured canopy structure over La Selva in 1998 and again in 2005. Changes in waveform metrics were related to field-derived changes in estimated aboveground biomass from a series of old growth and secondary forest plots. Pairwise comparisons of nearly coincident lidar footprints between years showed canopy top height changes that coincided with expected changes based on land cover types. Old growth forests had a net loss in height of -0.33 m, while secondary forests had net gain of 2.08 m. Multiple linear regression was used to relate lidar metrics with biomass changes for combined old growth and secondary forest plots, giving an r2 of 0.65 and an RSE of 10.5 Mg/ha, but both parametric and bootstrapped confidence intervals were wide, suggesting weaker model performance. The plot level relationships were then used to map biomass changes across La Selva using LVIS at a 1 ha scale. The spatial patterns of biomass changes matched expected patterns given the distribution of land cover types at La Selva, with secondary forests showing a gain of 25 Mg/ha and old growth forests showing little change (2 Mg/ha). Prediction intervals were calculated to assess uncertainty for each 1 ha cell to ascertain whether the data and methods used could confidently estimate the sign (source or sink) of the biomass changes. The resulting map showed most of the old growth areas as neutral (no net biomass change), with widely scattered and isolated sources and sinks. Secondary forests in contrast were mostly sinks or neutral, but were never sources. By quantifying both the

  7. Space-time dynamics of fine root biomass of six forests in the Maoershan forest region,northeast China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Biao; ZHU Shengying; MAO Zijun; WANG Xiuwei; ZHAO Xizhu; SUN Yuanfa

    2007-01-01

    The Maoershan forestry centre is situated in the Zhangguangcai Mountain of the Changbai mountain range.The main forest types in the Maoershan region are plantation (Pinus sylvestris var.mongolica,Pinus koraiensis and Larix gmelinii) and natural secondary forests (Fraxinus mandshurica,Quercus mongolica and Populus davidiana).Fine roots have enormous surface areas,growing and turning over quickly,which plays an important role in terms of substance cycling and energy flow in the forest ecosystem.This study deals with the dynamics of live,dead,and total fine roots (≤ mm) biomass in the 0-30 cm soil layer using the soil core method.Differences between the six stands in the Maoershan region showed the following results:1) the fine root biomass in the various stands showed obvious differences.The total fine root biomass of six stands from high to low were F.mandshurica (1,030.0 g/m2) > Q.mongolica (973.4 g/m2) > Pinus koraiensis (780.9 g/m2) >L.gmelinii (718.2 g/m2) > Populusdavidiana(709.1 g/m2) > Pinus sylvestris var.mongolica (470.4 g/m2);2) except for L.gmelinii,the development of live fine root biomass agreed with the trend of total fine root biomass.The maximum biomass of live fine roots in Pinus koraiensis or L.gmelinii stand appeared in May,others in June;in the F.mandshurica stand,the minimum biomass of live fine roots occurred in September,others in July or August;3) the proportions of dead fine root biomass varied in different stands;4) the vertical distribution of fine roots was affected by temperature,water,and nutrients;the proportion of fine root biomass was concentrated in the 0-10 cm soil layer.The fine root biomass of six stands in the 0-10 cm soil layer was over 40% of the total fine root biomass;this proportion was 60.3% in F.mandshurica. Space-time dynamics of the various stands had different characteristics.When investigating the substance cycling and energy flows of all forest ecosystems,we should consider the characteristics of

  8. Litter fall dynamics of restored mangroves (Rhizophora mucronata Lamk. and Sonneratia alba Sm.) in Kenya

    OpenAIRE

    Wang'ondu, V.W.; Bosire, O; Kairo, G; Kinyamario, I; Mwaura, B; Dahdouh-Guebas, F.; N. Koedam

    2014-01-01

    Mangrove forests are active carbon sinks and important for nutrient cycling in coastal ecosystems. Restoration of degraded mangrove habitats enhances return of ecosystem goods and services, including carbon sequestration. Our objective was to assess the restoration of primary productivity of reforested mangrove stands in comparison with natural reference stands in Gazi Bay, Kenya. Litter fall data were collected in nine Rhizophora mucronata and Sonneratia alba monospecific stands by use of li...

  9. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    OpenAIRE

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs...

  10. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    Science.gov (United States)

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future

  11. Spatial and temporal dynamics of phytoplankton and bacterioplankton biomass in Sanya Bay, northern South China Sea

    Institute of Scientific and Technical Information of China (English)

    ZHOU Weihua; LI Tao; XU Jirong; WANG Hankui; CAI Chuanghua; DONG Junde; ZHANG Si

    2009-01-01

    The composition of phytoplankton and the dynamics of phytoplankton and bacterioplankton biomass (PB and BB, respectively) of Sanya Bay, South China Sea, were determined. A total of 168 species (67 genera) phytoplankton were identified, including Bacillariophyta (diatom, 128 species), Pyrrophyta (35 species), Cyanophyta (3 species), and Chrysophyta (2 species). Annual average abundance of phytoplankton was 1.2 × 107 cells/m3, with the highest abundance in autumn, and the lowest in summer. Annual average diversity index (H′) and evenness (J) values were 3.86 and 0.70, respectively. Average chlorophyll a was 2.5 mg/m3, and the average PB was 124 mg C/m3, with the highest value in autumn. Surface PB was higher than the bottom, except for summer. Annual mean bacterioplankton abundance and BB were 6.9 × 1011 cells/m3 and 13.8 mg C/m3, respectively. The highest BB was found in summer, followed by winter, spring, and autumn. Surface BB was higher than bottom all year round. The spatial distribution patterns of PB and BB were very similar with the highest biomass in the estuary and decreasing seaward, primarily due to terrestrial input from the Sanya River and influx of oceanic water. The main factor influencing on PB and BB was DIN, with other factors such as temperature, which was above 22℃ throughout the year, having a negligible impact. The correlation between BB and PB was significant (P < 0.01). The annual average ratio of BB/PB was 0.12 (0.06--0.15). Phytoplankton primary production was one of the most important factors in controlling the distribution of bacterioplankton.

  12. Phytoplankton biomass dynamics and environmental variables around the Rocas Atoll Biological Reserve, South Atlantic

    Directory of Open Access Journals (Sweden)

    Marina Cavalcanti Jales

    2015-12-01

    Full Text Available Abstract The Rocas Atoll Biological Reserve is located in the Atlantic Ocean, at 3º 51' S and 33º 49' W. It lies 143 nautical miles from the City of Natal, Rio Grande do Norte (Brazil. The purpose of this study was to analyze the hydrology, water masses, currents and chlorophyll a content to determine the dynamics of phytoplankton biomass around the Rocas Atoll. Samples were collected in July 2010 in the area around the Atoll, using the Research Vessel Cruzeiro do Sul of the Brazilian Navy. Two transects were established according to the surface currents, one of which at the southeast of the Atoll (SE and the other at norwest (NW. Three collection points were determined on each of these transects. Samples were collected at different depths (surface and DCM - Deep Chlorophyll Maximum and different times (day and night. According to PCA (Principal Component Analysis, the nutrients analyzed, DIN (dissolved inorganic nitrogen, DIP (dissolved inorganic phosphorus and silicate, were inversely correlated with temperature and dissolved oxygen. Most environmental variables showed a significant increase due to the turbulence on the Northwest transect. There was an increase in the concentration of chlorophyll a and nutrients when the temperature and oxygen in the mixed layer was reduced due to the influence of the SACW (South Atlantic Central Water. Despite the increase observed in some variables such as nutrient salts and chlorophyll a, the temperature in the mixed layer attained a mean value of 23.23 ºC due to the predominance of Tropical Water. The increase of the phytoplankton biomass on the NW transect was, therefore, caused by the "island effect" and not by upwelling.

  13. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  14. The synergistic use of models and observations: understanding the mechanisms behind observed biomass dynamics at 14 Amazonian field sites and the implications for future biomass change

    Science.gov (United States)

    Levine, N. M.; Galbraith, D.; Christoffersen, B. J.; Imbuzeiro, H. A.; Restrepo-Coupe, N.; Malhi, Y.; Saleska, S. R.; Costa, M. H.; Phillips, O.; Andrade, A.; Moorcroft, P. R.

    2011-12-01

    The Amazonian rainforests play a vital role in global water, energy and carbon cycling. The sensitivity of this system to natural and anthropogenic disturbances therefore has important implications for the global climate. Some global models have predicted large-scale forest dieback and the savannization of Amazonia over the next century [Meehl et al., 2007]. While several studies have demonstrated the sensitivity of dynamic global vegetation models to changes in temperature, precipitation, and dry season length [e.g. Galbraith et al., 2010; Good et al., 2011], the ability of these models to accurately reproduce ecosystem dynamics of present-day transitional or low biomass tropical forests has not been demonstrated. A model-data intercomparison was conducted with four state-of-the-art terrestrial ecosystem models to evaluate the ability of these models to accurately represent structure, function, and long-term biomass dynamics over a range of Amazonian ecosystems. Each modeling group conducted a series of simulations for 14 sites including mature forest, transitional forest, savannah, and agricultural/pasture sites. All models were run using standard physical parameters and the same initialization procedure. Model results were compared against forest inventory and dendrometer data in addition to flux tower measurements. While the models compared well against field observations for the mature forest sites, significant differences were observed between predicted and measured ecosystem structure and dynamics for the transitional forest and savannah sites. The length of the dry season and soil sand content were good predictors of model performance. In addition, for the big leaf models, model performance was highest for sites dominated by late successional trees and lowest for sites with predominantly early and mid-successional trees. This study provides insight into tropical forest function and sensitivity to environmental conditions that will aid in predictions of the

  15. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005

    International Nuclear Information System (INIS)

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as 13C for carbon, based on the use of enriched or depleted 13C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on these experiments, the

  16. Effects of natural and anthropogenic processes in the distribution of marine litter in the deep Mediterranean Sea

    Science.gov (United States)

    Ramirez-Llodra, Eva; De Mol, Ben; Company, Joan B.; Coll, Marta; Sardà, Francesc

    2013-11-01

    The distribution, type and quantity of marine litter accumulated on the bathyal and abyssal Mediterranean seafloor has been studied in the framework of the Spanish national projects PROMETEO and DOS MARES and the ESF-EuroDEEP project BIOFUN. Litter was collected with an otter trawl and Agassiz trawl while sampling for megafauna on the Blanes canyon and adjacent slope (Catalan margin, north-western Mediterranean) between 900 and 2700 m depth, and on the western, central and eastern Mediterranean basins at 1200, 2000 and 3000 m depth. All litter was sorted into 8 categories (hard plastic, soft plastic, glass, metal, clinker, fabric, longlines and fishing nets) and weighed. The distribution of litter was analysed in relation to depth, geographic area and natural (bathymetry, currents and rivers) and anthropogenic (population density and shipping routes) processes. The most abundant litter types were plastic, glass, metal and clinker. Lost or discarded fishing gear was also commonly found. On the Catalan margin, although the data indicated an accumulation of litter with increasing depth, mean weight was not significantly different between depths or between the open slope and the canyon. We propose that litter accumulated in the canyon, with high proportions of plastics, has predominantly a coastal origin, while litter collected on the open slope, dominated by heavy litter, is mostly ship-originated, especially at sites under major shipping routes. Along the trans-Mediterranean transect, although a higher amount of litter seemed to be found on the Western Mediterranean, differences of mean weight were not significant between the 3 geographic areas and the 3 depths. Here, the shallower sites, also closer to the coast, had a higher proportion of plastics than the deeper sites, which had a higher proportion of heavy litter and were often affected by shipping routes. The weight of litter was also compared to biomass of megafauna from the same samples. On the Blanes slope

  17. Study on Dynamic Status of Litter Decomposition and Nutrients of Typical Desert Plants%典型荒漠植物凋落物分解及养分动态研究

    Institute of Scientific and Technical Information of China (English)

    赵红梅; 黄刚; 马健; 李彦; 范连连; 周丽

    2012-01-01

    As one of the most important ecosystem processes, litter decomposition is closely related to plant nutri- ents, ecosystem productivity and carbon and nutrient cycling, particularly to soil organic carbon pool-size and its stabilization. During last decades, numerous studies on litter decomposition in moist environment was conducted However, there was few information about litter decomposition in arid area. Litter decomposition in arid area is dif- ferent from that in moist environment owing to severe natural climate, such as sporadic rainfall, intense solar radia- tion, long-term drought and serious water loss and soil erosion. In recent studies, it was found that there is a dis- crepancy between simulated decomposition rates and measured ones in arid area. It is considered that ephemeral plants are important for net primary productivity in some deserts, and particularly for soil carbon input. The aims of this study are to investigate the dynamic status of litter decomposition of three typical desert species. Litter bag method was used to investigate the decomposition rate and nutrient release of roots, stems and leaves of Eremurus inderiensis, Erodium oxyrrhynchum and Seriphidium santolinum. Mass loss curves of leaves, stems and roots of these species were well described by an exponential decay model. Mass loss rates of leaves and roots of E. inderien- sis, leaves, stems and roots of E. oxyrrhynchum, stems and roots of S. santolinum were 41.96% , 81.94% , 42.18% , 29.32%, 47.02% , 20.66% and 20.71% respectively. During the 364-day decomposition in field, the decomposition rates were different from different species litters, and they were in an order of roots 〉 leaves of E. inderiensis, roots 〉 leaves 〉 stems of E. oxyrrhynchum and roots 〉 stems of S. santolinum. N and P release was observed throughout the decomposition process, N and P contents in litters were negatively correlated with mass loss. In addition, decomposition rate was significantly different

  18. Microbial utilization of litter carbon under the effect of extreme weather events

    Science.gov (United States)

    Heinrich, Steffen; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Climate change is expected to not only lead to an increase of average annual temperature but also to increase the frequency of extreme meteorological events. For example, extreme summer-droughts followed by heavy rainfall events are likely to increase. This may change SOM quality, composition, microbial community functioning and thus C turnover in temperate forest ecosystems. Therefore, we performed a tracer experiment in the "Fichtelgebirge" (Northern Bavaria) to verify the influence of strong drying followed by intensive rewetting on the microbial community structure and decomposition of litter-derived 13C by individual microbial groups. In 2010, sheltered plots with artificially simulated drought, those with additional irrigation and control sites under natural conditions were established at a Norway spruce forest. At each plot, we added 13C enriched spruce litter to simulate annual litter fall. Thereafter, we assessed the effect of extreme weather events on microbial community structure by phospholipid fatty acid (PLFA) analysis. In addition, we analyzed the 13C incorporation into bulk soil, microbial biomass and PLFA of the organic horizon and the mineral soil up to 10 cm. Additionally respired CO2 was quantified by closed chambers. Drought reduced the microbial biomass only in the organic horizon, while in the mineral soil the microbial abundance did not decrease compared to the control and irrigated plots. The decrease in microbial biomass in the organic horizon of the drought plots resulted also in a strongly reduced incorporation of litter derived C: Incorporation of litter 13C was a magnitude of three lower in the drought plots compared to the control and irrigation plots. Furthermore, after the drought period of 90 days the proportion of 13C in CO2 from soil respiration was reduced by about 95% on the drought plots compared to the control and irrigated plots. This is in agreement with the reduced degradation of litter derived C and thus a reduced C

  19. Combining MSS and AVHRR imagery to assess vegetation biomass and dynamics in an arid pastoral ecosystem, Turkana District, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.E.; Swift, D.M.; Hart, T.C.; Dick, O.B.

    1987-07-01

    Landsat multi-spectral scanner (MSS) imagery was used to develop a vegetation type-biomass map of the 84,000 Km/sup 2/ Turkana District, Kenya. NOAA satellite advanced very high resolution radiometry (AVHRR) imagery was overlaid on the MSS map to trace the seasonal and annual dynamics of vegetation communities used by Turkana pastoral nomads, 1981-1984. Four regions (sub-sectional territories) were compared with respect to peak herbaceous biomass, woody canopy cover, and seasonal fluxes in total green biomass. Results demonstrated major variations among regions and between wet and dry season ranges within regions. Pastoral land use patterns appear to minimize effects of seasonal vegetation fluxes on livestock herds.

  20. Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    Science.gov (United States)

    Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

    2008-05-01

    This is the first estimation on carbon dynamics in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in Central Southern America. In four 1-ha plots in stands characterized by the pioneer species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height, DBH) have been performed and converted to predictions of AGWB by five different allometric models using two or three predicting parameters (DBH, tree height, wood density). Best prediction has been achieved using allometric equations with three independent variables. Carbon stocks (50% of AGWB) vary from 7.4 to 100.9 Mg C ha-1 between the four stands. Carbon sequestration differs 0.50-4.24 Mg C ha-1 yr-1 estimated by two growth models derived from tree-ring analysis describing the relationships between age and DBH for V. divergens and other tree species. We find a close correlation between estimated tree age and C-stock, C-sequestration and C-turnover (mean residence of C in AGWB).

  1. Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    J. Schöngart

    2008-05-01

    Full Text Available This is the first estimation on carbon dynamics in the aboveground coarse wood biomass (AGWB of wetland forests in the Pantanal, located in Central Southern America. In four 1-ha plots in stands characterized by the pioneer species Vochysia divergens Pohl (Vochysiaceae forest inventories (trees ≥10 cm diameter at breast height, DBH have been performed and converted to predictions of AGWB by five different allometric models using two or three predicting parameters (DBH, tree height, wood density. Best prediction has been achieved using allometric equations with three independent variables. Carbon stocks (50% of AGWB vary from 7.4 to 100.9 Mg C ha−1 between the four stands. Carbon sequestration differs 0.50–4.24 Mg C ha−1 yr−1 estimated by two growth models derived from tree-ring analysis describing the relationships between age and DBH for V. divergens and other tree species. We find a close correlation between estimated tree age and C-stock, C-sequestration and C-turnover (mean residence of C in AGWB.

  2. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques.

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    Full Text Available Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well.

  3. Effects of the 2006 El Nino on Tropospheric Ozone and Carbon Monoxide: Implications for Dynamics and Biomass Burning

    Science.gov (United States)

    Chandra, S.; Ziemke, J. R.; Duncan, B. N.; Diehl, t. L.

    2008-01-01

    We have studied the effects of the 2006 El Nino on tropospheric O3 and CO at tropical and sub-tropical latitudes measured from the OMI and MLS instruments on the Aura satellite. The 2006 El Nino-induced drought allowed forest fires set to clear land to burn out of control during October and November in the Indonesian region. The effects of these fires are clearly seen in the enhancement of GO concentration measured from the MLS instrument. We have used a global model of atmospheric chemistry and transport (GMI CTM) to quantify the relative irrrportance of biomass burning and large scale transport: in producing observed changes in tropospheric O3 and CO . The model results show that during October and November both biomass burning and meteorological changes contributed almost equally to the observed increase in tropospheric O3 in the Indonesian region. The biomass component was 4-6 DU but it was limited to the Indonesian region where the fires were most intense, The dynamical component was 4-8 DU but it covered a much larger area in the Indian Ocean extending from South East Asia in the north to western Australia in the south. By December 2006, the effect of biomass taming was reduced to zero and the obsemed changes in tropospheric O3 were mostly due to dynamical effects. The model results show an increase of 2-3% in the global burden of tropospheric ozone. In comparison, the global burdean of CO increased by 8-12%.

  4. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors.

    Science.gov (United States)

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S

    2015-12-01

    This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.

  5. Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems.

    Science.gov (United States)

    Sheffer, Efrat; Canham, Charles D; Kigel, Jaime; Perevolotsky, Avi

    2015-04-01

    Species affect the dynamics of litter decay through the intrinsic properties of their litter, but also by influencing the environmental conditions imposed by their canopy, roots, and litter layers. We examined how human-induced changes in the relative abundances of two dominant Mediterranean trees-Pinus halepensis and Quercus calliprinos-impact leaf litter decomposition. A reciprocal transplant experiment tested decomposition of pine, oak, and mixed leaf litter in oak woodland and pine forest ecosystems with different relative abundances of pine and oak. Using likelihood methods, we tested the importance and magnitude of the environmental effects of local species abundance, litter layer composition, and soil properties on litter mass loss. Oak litter decomposition was slower than pine, and had an antagonistic effect on mixed litter decay. These results differ from other reported pine-oak associations, and are probably associated with a higher content of tannins and phenols in oak compared to pine litter in our study sites. The environmental effects of the two species were opposite to their litter decomposition dynamics. An increased proportion of pine in the oak woodlands and a higher content of pine needles in the litter layer of pine forests reduced decay rates. The presence of more oak and broadleaf litter in the litter layer accelerated decomposition in pine forests. Our results highlight the importance of considering multidimensional species effects mediated by both chemical and physical properties, and imply that man-made changes in the composition and configuration of plant communities may result in complex unpredicted consequences to ecosystem biogeochemistry. PMID:25680333

  6. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics.

    Science.gov (United States)

    Kauffman, J Boone; Hughes, R Flint; Heider, Chris

    2009-07-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate

  7. Habitat, food, and climate affecting leaf litter anuran assemblages in an Atlantic Forest remnant

    Science.gov (United States)

    Rievers, Camila Rabelo; Pires, Maria Rita Silvério; Eterovick, Paula Cabral

    2014-07-01

    Leaf litter anuran assemblages include both species that have terrestrial development and species that, during the breeding season, aggregate around bodies of water where their tadpoles develop. The resources used by these two groups in the leaf litter are likely to differ, as well as their sampled species richness, abundance and biomass as resource availability changes. We conducted a 12-month survey of leaf litter anuran assemblages at three forest areas in the largest Atlantic Forest remnant in the state of Minas Gerais in southeastern Brazil. Each month we estimated, based on capture rates, anuran species richness, abundance, and biomass as assemblage descriptors. We also measured variables that could potentially affect these descriptors in space and time: invertebrate litter fauna (abundance and richness of taxa), leaf litter biomass, and microclimatic conditions (air humidity, air and soil temperature, soil water content, and rainfall). We tested for differences in these variables among areas. We used general linear models to search for the variables that best explained variation in anuran abundance (based on capture rates) throughout the year. We analyzed species with terrestrial development (TD) and with aquatic larvae (AL) separately. We recorded 326 anurans of 15 species. Sampled anuran abundance (correlated to species richness and biomass) was explained by air humidity and/or invertebrate abundance for species with TD, and by soil water content or air humidity and leaf litter biomass for species with AL. The variability in the results of studies on leaf litter frogs that try to find variables to explain changes in community descriptors may be due to spatial variation of resources among areas and also to the fact that TD and AL species are frequently analyzed together, when in fact they are likely to show different responses to resources present in the leaf litter habitat, reflected on capture rates.

  8. Temporal dynamics and spatial heterogeneity of microalgal biomass in recently reclaimed intertidal flats of the Saemangeum area, Korea

    Science.gov (United States)

    Kwon, Bong-Oh; Lee, Yeonjung; Park, Jinsoon; Ryu, Jongseong; Hong, Seongjin; Son, SeungHyun; Lee, Shing Yip; Nam, Jungho; Koh, Chul-Hwan; Khim, Jong Seong

    2016-10-01

    Trophodynamics of intertidal mudflats are significantly driven by microphytobenthos (MPB) production but spatial and temporal dynamics of this production source is poorly known. To understand the temporal dynamics and spatial heterogeneity of intertidal MPB, benthic chlorophyll a, phaeopigments, and sediment properties were determined in Gyehwa (sandy) and Gwanghwal (muddy) tidal flats of Saemangeum area over a year at 97 stations. This study set out to: (i) characterize the spatial-temporal patterns in MPB biomass on a year-round basis, (ii) identify the abiotic and biotic factors associated with MPB distributions, (iii) investigate the use of satellite-derived chlorophyll a data and verify with in field measurements, and (iv) determine minimum required sample size for in situ biomass measurement. Concentrations of benthic chlorophyll a and phaeopigments were greater in winter and spring with a high magnitude of variance than in summer and fall at both areas. Benthic chlorophyll a and phaeopigments tended to decrease approaching lower tidal zone, being associated with the corresponding decrease in shore level and/or exposure duration. Compared to available data on macrozoobenthos distribution, the spatial variation of microalgal biomass seems to be attributed to distribution of deposit-feeders. A significant positive correlation (p design for spatio-temporal mapping of MPB should consider the sampling season and/or abiotic and biotic features of study area. Overall, spatio-temporal dynamics of intertidal MPB seem to be influenced by a combination of abiotic and biotic factors.

  9. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    Directory of Open Access Journals (Sweden)

    M. Zhong

    2013-08-01

    Full Text Available Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC was measured over the course of photooxidation using a UV–visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm of OC increased by 11–54% (except high RH in the morning and then gradually decreased by 19–68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs, rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8–9 h sunlight exposure compared to fresh wood burning OC.

  10. Five years of ozonesoundings from the central Himalayas: role of dynamical processes and biomass burning

    Science.gov (United States)

    Naja, Manish; Bhardhwaj, Piyush; Lal, Shyam; Venkataramani, Sethuram; Kumar, Rajesh

    2016-04-01

    Higher water vapour, intense solar radiation and increasing levels of trace species over the tropical Asia are making this region more complex for understanding the physical, dynamical and chemical process over here. One of the most populated regions (The Indo-Gangetic Plain, IGP) of the world and a variety of anthropogenic and biogenic emission sources are also housing in the foothill of one of the pristine region, i.e. Himalaya. Uplifting and transport of polluted air-masses to the higher heights is a major concern in the South Asia. However, observations of vertical distribution of ozone, and other trace gases including water vapour, aerosols and meteorological parameters are very limited in South Asia. In view of this, an observational facility was setup at ARIES, Nainital (29.4N, 79.5E; 1950 m) in the central Himalayas. Regular, once in a week, balloon borne measurements of ozone, RH, temperature and GPS winds are being made since January 2011. Surface observations of different trace gases (Ozone, CO, NO, NOy, light NMHCs, SO2, CO2 and other GHGs) and aerosols are also being made at this site. Here, we present five years of ozonesoundings observations. A strong seasonal cycle in the lower tropospheric ozone with highest values during spring (~ 100 ppbv) and lowest during summer-monsoon (20-40 ppbv) is discerned. Elevated ozone levels (~120 ppbv) were observed in the middle-upper troposphere along with very high wind speed (~50 m/s) which indicates the role of dynamics in bringing ozone rich air from higher altitude. The signatures of ozone downward transport have also been noticed in TES water vapour and PV. In contrast, such influence is seen to be weaker in the eastern part of the Himalayas. A very clear enhancement (20-30 ppbv) in the lower tropospheric ozone is seen that is induced by the biomass burning. Further analysis of these observations with the help of air trajectories and satellite data will be presented.

  11. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    Science.gov (United States)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in

  12. Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States.

    Science.gov (United States)

    Vanderwel, Mark C; Coomes, David A; Purves, Drew W

    2013-05-01

    The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1-5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on

  13. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  14. Forest biomass density, utilization and production dynamics in a western Himalayan watershed

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar Sharma; Prem Lall Sankhayan; Ole Hofstad

    2008-01-01

    There is enough evidence to show that the forest biomass has decreased significantly in the Indian Himalayan state of Himachal Pradesh. The government has responded through restrictive measures to check this decline. Using tree biomass as proxy for degradation, we assessed the current state of biomass within dominant land use types and examined its implications for sustainability. The highest above-ground mean tree biomass density of 1158 t·ha-1 was recorded for the reserved forest followed by 728, 13, 11, 8, 5 and 3 t·ha-1 in the protected forest, fallow land, cultivated-unirrigated land, grassland, orchard land and cultivated-irrigated land respectively. Of the total accessible biomass, only 0.31% was extracted annually by the local people for fuel, fodder and other uses. Though, the current level of extraction may be sustainable in the short run, insufficient regeneration is observed for long term sustainability. Forest biomass production was simulated for the next 30 years with a logistic growth model and the relative significance of input variables in influencing system behaviour was analysed through sensitivity analysis. The model results highlighted the declining forest resources in the long run. Positive response through appropriate government policies can, however, change the scenario for the better.

  15. Linking Predation Risk, Herbivore Physiological Stress and Microbial Decomposition of Plant Litter

    OpenAIRE

    Schmitz, Oswald J; Bradford, Mark A.; Strickland, Michael S.; Hawlena, Dror

    2013-01-01

    The quantity and quality of detritus entering the soil determines the rate of decomposition by microbial communities as well as recycle rates of nitrogen (N) and carbon (C) sequestration1,2. Plant litter comprises the majority of detritus3, and so it is assumed that decomposition is only marginally influenced by biomass inputs from animals such as herbivores and carnivores4,5. However, carnivores may influence microbial decomposition of plant litter via a chain of interactions in which predat...

  16. Empirical Constraints on Water Stress-induced Tree Mortality and its Impacts on Forest Biomass Dynamics in Western North America

    Science.gov (United States)

    Hember, R. A.; Kurz, W.; Coops, N. C.

    2015-12-01

    It is widely appreciated that forest biomass dynamics do not follow smooth sigmoidal age response functions, yet accounting for realistic overshoot-and-collapse cycles remains a big challenge. Here, millions of observations of vital status at permanent sample plots from Canada and the U.S. were used to predict probability of tree mortality (Pm) based on segmented logistic regression functions of xylem water potential (WPX) derived from a simplified model of plant water transport for dominant boreal and temperate North American tree species. First, we demonstrate that hydraulic limits are clearly detectable from the increase of Pm at the lowest levels of WPX and that the relationship is strongly defined by increasing vulnerability (decreasing WPX) as tree height (h) increases. Second, we demonstrate the implications of representing water stress-induced mortality on regional simulations of net ecosystem biomass production (NEBP), drawing on examples of specific collapse events where we have observations of NEBP for comparison. Simulations suggest that extreme surface energy balance anomalies during 1981 and 1998 triggered catastrophic levels of mortality in regions of western North America. Yet, simulations may still greatly underestimate the impact of these collapse events if associations exist between WPX and insect outbreaks. Nevertheless, the models suggest that a combination of size-dependent hydraulic limits and low-frequency variability in the surface energy balance conspire to produce overshoot-and-collapse cycles that strongly shaped biomass dynamics in western North America over recent decades.

  17. Environmentally-friendly animal litter

    Science.gov (United States)

    Boxley, Chett; McKelvie, Jessica

    2012-08-28

    An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  18. Environmentally-friendly animal litter

    Energy Technology Data Exchange (ETDEWEB)

    Boxley, Chett; McKelvie, Jessica

    2013-09-03

    An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.

  19. Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation

    Science.gov (United States)

    Mincheva, T.; Barni, E.; Varese, G. C.; Brusa, G.; Cerabolini, B.; Siniscalco, C.

    2014-01-01

    Fallopia japonica succeeds in invading different ecosystems likely because of its huge biomass production. This biomass is characterized by low nutritional quality and low decomposition rates but knowledge on whether these features are correlated to microbial decomposers is still lacking. The aims of this work were: i) to determine litter decomposition rates of native grassland vegetation and F. japonica under different conditions in a year-round experiment; ii) to evaluate litter quality and/or site effect on the decomposition of the invader and native vegetation and iii) to characterize mycoflora isolated from F. japonica and native vegetation litter. The results showed that F. japonica litter decomposes 3-4 times slower than that of native grassland, mainly due to its low N content and consequently high C/N ratio both in leaves and stems. As decomposition proceeds C/N in F. japonica litter decreases to values approaching those of the grassland litter. Site had no effect on the decomposition rates of F. japonica and grassland litter. Total fungal load and composition differed between F. japonica and native litter, and also varied across sites. These results indicate that the successful invasive plant F. japonica affects the structure and functions of the invaded ecosystem through a huge production of low quality, slow-decomposing litter that selects saprotrophic fungi.

  20. The biomass production and nutrient content of roselle leaves grown with poultry litter and Organosuper®=Produção de biomassa e teor de nutrientes em folhas de rosela cultivada com cama-de-frango e Organosuper®

    Directory of Open Access Journals (Sweden)

    André Trento Luciano

    2012-04-01

    Full Text Available The objective of this study was to evaluate the effects of poultry litter and Organosuper® with three modes of application on the biomass production and nutrient content of the leaves of roselle plants. The treatments in each crop cycle were in a factorial arrangement, 2 x 3 + 1, composed of a control and combinations of the two organic fertilizers (poultry litter (10 ton. ha-1 and Organosuper® (10 ton. ha-1 and the three application modes (surface, incorporated and surface + incorporated, in a randomized block design with four replicates. In the surface + incorporated mode, the organic fertilizers were applied as 5 ton. ha-1 surface and 5 ton. ha-1 incorporated. The highest productions of fresh and dry weight and number of calyxes were obtained for poultry litter in surface (10,776, 1,239 and 3,980,602 kg ha-1, respectively and Organosuper® incorporated (11,372, 1,308 and 4,405,075 kg ha-1, respectively in the agricultural year 2009/2010. The increases in the fresh and dry weights of the calyxes, leaves, stems and roots, number of calyxes, leaf area and fibers in the agricultural year 2008/2009 in the poultry litter treatments. Nutrients concentrations in the dry weight of the roselle leaves were not affected by the organic fertilizer type or by the mode of application.O objetivo deste trabalho foi avaliar o efeito da cama-de-frango e do Organosuper® sob três modos de aplicação na produção de biomassa e nos teores de nutrientes nas folhas de plantas de rosela. Os tratamentos em cada ciclo de cultivo foram arranjados como fatorial 2 x 3 + 1, sendo constituídos pelas combinações de dois compostos orgânicos cama-de-frango (10 t ha-1 e Organosuper® (10 t ha-1 e três modos de aplicação (cobertura, incorporada e cobertura + incorporada mais a testemunha, no delineamento experimental de blocos casualizados, com quatro repetições. As maiores produções de massas frescas e secas de cálices e o número de cálices foram obtidos para

  1. Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

    Directory of Open Access Journals (Sweden)

    Laura J Vimmerstedt

    Full Text Available The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets include the need for infrastructure for distribution and

  2. Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

    Science.gov (United States)

    Vimmerstedt, Laura J; Bush, Brian; Peterson, Steve

    2012-01-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  3. Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

    Science.gov (United States)

    Vimmerstedt, Laura J; Bush, Brian; Peterson, Steve

    2012-01-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  4. Den litterære blog

    DEFF Research Database (Denmark)

    Serup, Martin Glaz; Kromann, Thomas Hvid

    2012-01-01

    Hvad er en litterær blog og hvordan arbejder den som en aktiv del af den litterære offentlighed.......Hvad er en litterær blog og hvordan arbejder den som en aktiv del af den litterære offentlighed....

  5. Threshold Level of Harvested Litter Input for Carbon Sequestration by Bioenergy Crops

    Science.gov (United States)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.

    2013-12-01

    Due to the increase in the demands for bioenergy, considerable areas in the Midwestern United States could be converted into croplands for second generation bioenergy, such as the cultivation of miscanthus and switchgrass. Study on the effect of the expansion of these crops on soil carbon and nitrogen dynamics is integral to understanding their long-term environmental impacts. In this study, we focus on a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation on the below-ground dynamics of carbon and nitrogen. Fate of soil carbon and nitrogen is sensitive to harvest litter treatments and residue quality. Therefore, we attempt to address how different amounts of harvested biomass inputs into the soil impact the evolution of organic carbon and inorganic nitrogen in the subsurface. We use Precision Agricultural Landscape Modeling System, version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained from 10 years of atmospheric data recorded at both the study site and Willard Airport. Comparisons of model results against observations of drainage, ammonium and nitrate loads in tile drainage, nitrogen mineralization, nitrification, and litterfall in 2011 reveal the ability of the model to accurately capture the ecohydrology, as well as the carbon and nitrogen dynamics at the study site. The results obtained here highlight that there is a critical return of biomass to the soil when harvested for miscanthus (15% of aboveground biomass), and switchgrass (25%) after which the accumulation of carbon in the soil is significantly enhanced and nitrogen leaching is reduced, unlike corn-corn-soybean rotation. The main factor

  6. Biomass Productivity Dynamics Monitoring and its Drivers in Sahelian Croplands and Rangelands to Support Food Security Policies

    Science.gov (United States)

    Leroux, L.

    2015-12-01

    Since the Sahelian population livelihood relies mainly on agropastoral activities, accurate information on biomass productivity dynamics and the underlying drivers are needed to manage a wide range of issues such as food security. This study aims to contribute to a better understanding of these drivers in rangeland and cropland, both at the Sahel and local scales (an agropastoral site in South-West Niger). At the Sahel scale, the MODIS Land Cover product was used to extract cropland and rangeland pixels. By analyzing MODIS NDVI trends together with TRMM3B43 annual rainfall (2000-2010), we developed a new classification scheme allowing to identify areas of persistent decline/improvement in biomass productivity and to separate rainfall-driven dynamics from other factors. The results showed an overall increase of productivity in the rangeland, and both an improvement and a degradation in the cropland. We found strong evidence that the increase in biomass productivity was generally linked to increasing rainfall, while the decrease could be attributed chiefly to other factors exclusively or to a combination of both climate- and human-induced factors (see the attached Figure). At the Niger site scale, biomass trends have been put in relation with a set of potential drivers via a RandomForest model, to define which were the explanatory factors of the observed trends. The factor set covered 5 categories: climate, natural constraints, demography, physical accessibility and land cover changes. We highlighted that tiger bushes areas were particularly prone to pressure due to overgrazing and overexploitation of wood, while positive trends were mainly observed near rivers and in fossil valleys where new agricultural practices might have been promoted. The approach developped here could help to delineate areas with decrease in crop and grassland production and thus to assess the vulnerability of the population, but also to target zones with good potential for planning long

  7. Planktivores and plankton dynamics : effects of fish biomass and planktivore type

    OpenAIRE

    Lazzaro, Xavier; Drenner, R.W.; Stein, R.A.; Durward Smith, J.

    1992-01-01

    Les auteurs ont quantifié les incidences de la biomasse et du type de planctophage dans le cadre d'une étude expérimentale en mésocosmes. Cette étude était conçue en fonction d'un plan factoriel d'expérience combinant cinq niveaux de biomasse de poisson (de O, à 75 g/m3) avec deux types de planctophage, soit l'alose à gésier (#Dorosoma cepedianum$), un filtreur, et le crapet arlequin (#Lepomis macrochirus$), un chasseur visuel. Une augmentation de la biomasse de poisson était accompagnée d'un...

  8. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Gaspare Cesarano

    Full Text Available Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  9. Regional modelling of Saharan dust and biomass-burning smoke. Part 2: Direct radiative forcing and atmospheric dynamic response

    Energy Technology Data Exchange (ETDEWEB)

    Heinold, Bernd (Leibniz Inst. for Tropospheric Research, Leipzig (Germany); School of Earth and Environment, Univ. of Leeds, Leeds (United Kingdom)), e-mail: b.heinold@leeds.ac.uk; Tegen, Ina (Leibniz Inst. for Tropospheric Research, Leipzig (Germany)); Bauer, Stefan; Wendisch, Manfred (Leipzig Inst. for Meteorology, Univ. of Leipzig, Leipzig (Germany))

    2011-09-15

    The direct radiative forcing and dynamic atmospheric response due to Saharan dust and biomass-burning aerosol particles are presented for a case study during the SAMUM-2 field campaign in January and February 2008. The regional model system COSMO-MUSCAT is used. It allows online interaction of the computed dust and smoke load with the solar and terrestrial radiation and with the model dynamics. Model results of upward solar irradiances are evaluated against airborne radiation measurements in the Cape Verde region. The comparison shows a good agreement for the case of dust and smoke mixture. Dust and smoke particles influence the atmospheric dynamics by changing the radiative heating rates. The related pressure perturbations modify local and synoptic scale air-flow patterns. In the radiative feedback simulations, the Hadley circulation is enhanced and convergence zones occur along the Guinea coast. Thus, the smoke particles spread more than 5 deg further north and the equatorward transport is reduced. Within the convergence zones, Saharan dust and biomass-burning material are more effectively advected towards the Cape Verdes. Given the model uncertainties, the agreement between the modelled and observed aerosol distribution is locally improved when aerosol-radiation interaction is considered

  10. High litter moisture content suppresses litter ammonia volatilization.

    Science.gov (United States)

    Miles, D M; Rowe, D E; Cathcart, T C

    2011-07-01

    With global food demand expected to increase by 100% in the next 50 yr, urgency to combine comprehensive strategies for sustainable, efficacious, and environmentally sensible agronomic practices has never been greater. One effort for US meat bird management is to reduce NH(3) volatilization from litter to create a better growing environment for the birds, improve production efficiency, retain N in litter for fertilizer value, and negate the detrimental environmental impacts of NH(3) loss to the air. To derive the fundamental effects of temperature and moisture on litter NH(3) volatilization over the range of conditions found in commercial houses, experiments were conducted using commercial broiler litter that had moisture contents of approximately 20 to 55% while controlling temperatures ranging from 18.3 to 40.6°C. Litter samples (100 g) were placed in 1-L containers that received humidified air at approximately 113 mL/min. Volatilized NH(3) in exhaust air was captured in H(3)BO(3) traps. Ammonia loss (log(10) transformation) was modeled via an equation using linear coefficients for temperature and moisture, an interaction term for temperature × moisture, and a quadratic term for moisture. The surface responses resembled parabolic cylinders, indicating a critical moisture level at which NH(3) no longer increases but is diminished as moisture continues to increase. The critical moisture level lies between 37.4 and 51.1% litter moisture, depending on the temperature. An increase in temperature consistently increased NH(3) generation. When the temperature extremes were compared, the maximum NH(3) was up to 7 times greater at 40.6 vs. 18.3°C. The upper moisture limit at which NH(3) release is maximized and subsequently arrested as moisture continues to increase had not been defined previously for commercial broiler litter. The poultry industry and researchers can use these results as a decision tool to enable management strategies that limit NH(3) production. PMID

  11. INFLUENCE OF VEGETATIONAL COVER ON POPULATION DYNAMICS AND BIOMASS OF A MEGASCOLOCID EARTHWORM LENNOGASTER PUSILLUS(STEPHENSON)

    OpenAIRE

    M. P. SINHA; D K Gupta; AKANKSHA SINGH; SWETA MALANI; MADHU PANDEY; MRIDULA KUMARI

    2007-01-01

    The influence of vegetational cover on earthworm population dynamics and biomass of Lenogaster pusillus(Stephenson) a megascolocid endemic earthworm has been studied in three tropical forests of Shorea robusta Roxb.ex. Gaertn.f., Acacia auriculaeformis A.Cunn. ex. Benth and Eucalyptus citriodora Hook near Bero area, Ranchi. The maximum and minimum density(No m-2) of the worm varied from 415 + 53.19 to 75 + 18.70 in the forest of S.robusta, from 745 + 82.28 to 75 + 27.38 in A.auriculaeofrmis w...

  12. INFLUENCE OF VEGETATIONAL COVER ON POPULATION DYNAMICS AND BIOMASS OF A MEGASCOLOCID EARTHWORM LENNOGASTER PUSILLUS(STEPHENSON

    Directory of Open Access Journals (Sweden)

    M.P.SINHA

    2007-01-01

    Full Text Available The influence of vegetational cover on earthworm population dynamics and biomass of Lenogaster pusillus(Stephenson a megascolocid endemic earthworm has been studied in three tropical forests of Shorea robusta Roxb.ex. Gaertn.f., Acacia auriculaeformis A.Cunn. ex. Benth and Eucalyptus citriodora Hook near Bero area, Ranchi. The maximum and minimum density(No m-2 of the worm varied from 415 + 53.19 to 75 + 18.70 in the forest of S.robusta, from 745 + 82.28 to 75 + 27.38 in A.auriculaeofrmis while from 598 + 25.10 to 35 + 19.49 in E.citriodora respectively with a variation in biomass as g dry wt m-2 of the species from 0.31 + 0.1 to 2.65 + 0.38, from 0.41 + 0.17 to 5.34 + 0.86 and from 0.19 + 0.1 to 3.72 + 0.24 respectively. The variation in population density and biomass of L.pusillus in three forest types was statistically (two ways ANOVA significant, reflecting the influence of above ground biodiversity on earthworms (F = 9.903; df = 2,36; p < 0.001 and F = 8.133; df = 2,36; p < 0.005 respectively.The paper deals with the significance of vegetational cover on the worm and its size class.

  13. Acúmulo de Nutrientes na Biomassa e na Serapilheira de Eucalyptus grandis em Função da Aplicação de Lixo Urbano e de Nutrientes Minerais Nutrient Accumulation in Eucalyptus grandis Biomass and Litter Using Urban Waste and Mineral Fertilizer

    Directory of Open Access Journals (Sweden)

    Guilherme de Castro Andrade

    2011-03-01

     growing on Neossolo Quartzarênico, analyzing nutrient contents in the litter and in the above ground biomass of trees at 86 months old. The results showed that those plots that received organic wastes presented biomass increments of 36.9 % and largest contents of N, P, K and Ca, 86 months after the establishment. After harvesting, largest nutrient pools remained on those same plots (18 % to 49 %, contributing significantly to maintain forest productivity. This study emphasized also the importance of keeping tree bark on site. Debarking tree on field accounted to an average of about 32 % of total nutrients present in the above ground biomass of the trees. Large quantity of nutrients in the canopy tree and litter highlights the importance to conserve this organic matter to contribute to the sustainability of the forest productivity. 

  • Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  • Improving basic and translational science by accounting for litter-to-litter variation in animal models

    OpenAIRE

    Lazic, Stanley E.; Essioux, Laurent

    2012-01-01

    Background Animals from the same litter are often more alike compared with animals from different litters. This litter-to-litter variation, or “litter effects”, can influence the results in addition to the experimental factors of interest. Furthermore, sometimes an experimental treatment can only be applied to whole litters rather than to individual offspring. An example is the valproic acid (VPA) model of autism, where VPA is administered to pregnant females thereby inducing the disease phen...

  • Contribution of leaf and needle litter to whole ecosystem BVOC fluxes

    Science.gov (United States)

    Greenberg, J. P.; Asensio, D.; Turnipseed, A.; Guenther, A. B.; Karl, T.; Gochis, D.

    2012-11-01

    Biogenic volatile organic compound (BVOC) emissions come from a variety of sources, including living above-ground foliar biomass and microbial decomposition of dead organic matter at the soil surface (litter and soil organic matter). There are, however, few reports that quantify the contributions of each component. Measurements of emission fluxes are now made above the vegetation canopy, but these include contributions from all sources. BVOC emission models currently include detailed parameterization of the emissions from foliar biomass but do not have an equally descriptive treatment of emissions from litter or other sources. We present here results of laboratory and field experiments to characterize the major parameters that control emissions from litter. Litter emissions are exponentially dependent on temperature. The moisture content of the litter plays a minor role, except during and immediately following rain events. The percentage of carbon readily available for microbial and other decomposition processes decreases with litter age. These 3 variables are combined in a model to explain over 50% of the variance of individual BVOC emission fluxes measured. The modeled results of litter emissions were compared with above-canopy fluxes. Litter emissions constituted less than 1% of above-canopy emissions for all BVOCs measured. A comparison of terpene oil pools in litter and live needles with above-canopy fluxes suggests that there may be another canopy terpene source in addition to needle storage or that some terpene emissions may be light-dependent. Ground enclosure measurements indicated that compensation point concentrations of BVOCs (equilibrium between BVOC emission and deposition) were usually higher than ambient air concentrations at the temperature of the measurements.

  • Effects of snow condition on microbial respiration of Scots pine needle litter in a boreal forest

    Science.gov (United States)

    Ohnuki, Masataka; Domisch, Timo; Dannoura, Masako; Ataka, Mioko; Finér, Leena; Repo, Tapani; Osawa, Akira

    2016-04-01

    Climate warming scenarios predict decreasing snow depths and increasing winter precipitation in boreal forests ("rain on snow"). I These conditions may affect the decomposition and the microbial respiration of leaf litter, contributing a major part of tree litters, To understand how different snow conditions during winter would affect the microbial respiration of Scots pine needle litter in a boreal forest, we conducted a laboratory experiment using needle litter of two age classes (newly dropped and older litter). The experiment simulated four different winter treatments, followed by spring and early summer : (1) ambient snow cover (SNOW), (2) Compressed snow and ice encasement (ICE), (3) frozen flood (FLOOD) and (4) no snow cover at all (NO SNOW). The experiment was carried out in four walk-in dasotrons (n=3) with soil temperatures of -2° C and air temperatures of 2° C during winter and increased to 15° C and 20° C during spring, respectively . Needle litter samples were collected three times (prior to the winter, just after winter and at the end of the experiment). We evaluated the microbial respiration from the litter at several temperatures (-5° C, 0° C, 5° C and 12° C), the SIR index (an index estimating the microbial biomass), and the C/N ratio .And we calculated Q10 value (index of microbial respiration activity) using microbial respiration data. We found significant differences in microbial respiration between the newly dropped and older litter at the beginning and at the end of the experiment. However, there were no significant differences in Q10 value and the SIR (index of microbial biomass) between the different winter treatments. All samples showed decrease of microbial activity with time. Finally, we conclude that the winter snow conditions with mild air temperatures as used in our experiment, are not detrimentally affecting the Scots pine needle litter decomposition and its respiration.

  • Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    Science.gov (United States)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for

  • Facilitative and Inhibitory Effect of Litter on Seedling Emergence and Early Growth of Six Herbaceous Species in an Early Successional Old Field Ecosystem

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2014-01-01

    Full Text Available In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m−2, litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland.

  • Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi- Temporal LiDAR Datasets

    OpenAIRE

    Florian Siegert; Juilson Jubanski; Sandra Englhart

    2013-01-01

    Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks) projects, which require an accurate monitoring of their carbon stocks or aboveground biomass (AGB). Our study o...

    1. Estimating litter carbon stocks on forest land in the United States.

      Science.gov (United States)

      Domke, Grant M; Perry, Charles H; Walters, Brian F; Woodall, Christopher W; Russell, Matthew B; Smith, James E

      2016-07-01

      Forest ecosystems are the largest terrestrial carbon sink on earth, with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5% of all forest ecosystem carbon stocks worldwide. Given the cost and time required to measure litter attributes, many of the signatory nations to the United Nations Framework Convention on Climate Change report estimates of litter carbon stocks and stock changes using default values from the Intergovernmental Panel on Climate Change or country-specific models. In the United States, the country-specific model used to predict litter C stocks is sensitive to attributes on each plot in the national forest inventory, but these predictions are not associated with the litter samples collected over the last decade in the national forest inventory. Here we present, for the first time, estimates of litter carbon obtained using more than 5000 field measurements from the national forest inventory of the United States. The field-based estimates mark a 44% reduction (2081±77Tg) in litter carbon stocks nationally when compared to country-specific model predictions reported in previous United Framework Convention on Climate Change submissions. Our work suggests that Intergovernmental Panel on Climate Change defaults and country-specific models used to estimate litter carbon in temperate forest ecosystems may grossly overestimate the contribution of this pool in national carbon budgets. PMID:27017077

    2. Litter Inputs and Soil Aggregation in Midwestern Biofuel Crops

      Science.gov (United States)

      Kantola, I. B.; Masters, M. D.; Smyth, E. M.; DeLucia, E. H.

      2014-12-01

      Perennial C4 grasses represent alternatives to corn for the production of ethanol because of low management costs and high biomass production. To evaluate the effects of perennial grasses on the agricultural soils of the Midwest, native switchgrass and a sterile hybrid of the Asian grass Miscanthus were planted at the University of Illinois Energy Farm in 2008. Through five years of growth, above and belowground plant biomass, litter, and soil were compared with soils in plots growing a corn-corn-soy rotation typical of the area. Above- and belowground plant biomass in Miscanthus and switchgrass averaged higher than corn/soy following two years of perennial establishment, with belowground biomass exceeding corn/soy by approximately 5-fold in the year after establishment (2010) and 25-fold by 2012. Measurements of root distribution and turnover rates indicate that roots are the primary contribution of new carbon to soils under perennial crops. Physical fractionation of the soils into water stable aggregates showed 4-14% increases in macroaggregate fractions under perennial crops; the large aggregates are adhered together by organic material and indicative of the increased presence of labile carbon forms like plant roots, fungi, and plant and microbial exudates. Carbon and nitrogen analyses of the fractions show that while overall carbon has not increased significantly in whole soil, soils under perennial grasses are concentrating carbon by 5-17% in the macroaggregates after just 5 years. Native switchgrass roots (buried) and litter (surface-applied) decompose faster than Miscanthus roots and litter, but slower than corn roots and litter buried to simulate incorporation by tillage. Switchgrass soil shows the highest degree of macroaggregate formation, pointing to a high rate of litter and root decomposition and incorporation into soil structure. While macroaggregates are relatively labile soil structures compared to microaggregates and free silt and clay, they offer

    3. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

      Directory of Open Access Journals (Sweden)

      Shu Liao

      Full Text Available Dissolved organic carbon (DOC and total dissolved nitrogen (TDN are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage and the growing season (early and late. After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

    4. Influences of leaf litter replacement on soil biochemical characteristics of main planted forests in Qinling Mountains of China

      Institute of Scientific and Technical Information of China (English)

      Zengwen LIU; Erjun DUAN; Wenjun GAO

      2009-01-01

      Long-term continuous growth of the same tree species in planted pure forest will lead to soil polarization and degradation. Mixed forestation or litter replacement between different needle- and broad-leaved forests are effective measures, except fertilization, to control soil polarization according to the mutual compensation principle of different tree species. Through a two-year leaf litter replacement experiment in 4 typical planted pure forests of Larix kaempferi, Pinus tabulaeformis, Catalpa fargesii and Quercus aliena var. acuteserrata in Qinling Mountains of China, influences of leaf litter replacement on soil biochemical characteristics and their interspecific relationships were studied and main conclusions were reached as follows. (1) Annual leaf litter decomposition rate of broadleaved forests was 33.70% higher than those of needleleaved forests and increased by 8.35%-12.15% when needle-leaved litter was replaced with broad-leaved forests, whereas it decreased by 5.38%-9.49% when broad-leaved litter was replaced with needle-leaved forests. (2) Leaf litter replacement between needle- and broad-leaved forests popularly raised the contents of organic C, available N, P and K in soil, whose content increments in the needle-leaved forests (8.70%-35.84%) were obviously more than those in the broad-leaved forests (3.73%-10.44%), and in the former, the content increments after replacement with the litter of Catalpa fargesii (24.63%-35.84%) were more than those after replacement with the litter ofQuercus aliena var. acuteserrata (8.70% 28.15%). Furthermore, the litter replacement was found to make the soil pH of needle-leaved forests developed from light-acid to neutral. (3) Litter replacement of the needleleaved forests with the broad-leaved litter popularly raised enzyme activities, amounts of microorganisms and contents of micro-biomass C and N in soil, the increments of which after replacement with the litter of Catalpa fargesii were also more than those after

    5. Alterações na biomassa e na atividade microbiana da serapilheira e do solo, em decorrência da substituição de cobertura florestal nativa por plantações de eucalipto, em diferentes sítios da Região Sudeste do Brasil Microbial biomass and activity in soil and forest litter of eucalyptus plantations and native vegetation in Southeastern Brazil

      Directory of Open Access Journals (Sweden)

      Emanuela Forestieri da Gama-Rodrigues

      2008-08-01

      caused by management techniques. In this study, these characteristics were used to evaluate changes in forest litter and soil where the native forest was replaced by eucalyptus plantations in four southeastern areas of Brazil. The amounts of forest litter were higher in eucalyptus stands than in the native forest due to the higher C:N ratio of the material. The impact of the conversion of native forest into eucalyptus stands on soil and forest floor properties varied in the site-specific characteristics analyzed. Differences between the contents of microbial biomass C and N in eucalypt and native vegetation were more frequently observed in the soil than in forest litter. Forest litter microbial biomass represented a larger reservoir of C and N than soil microbial biomass, representing a relevant component for C and N cycling in these ecosystems.

    6. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

      DEFF Research Database (Denmark)

      Rinnan, Riikka; Michelsen, Anders; Baath, Erland;

      2007-01-01

      was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon...... the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate...... warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming...

    7. Mapping litter decomposition by remote-detected indicators

      Directory of Open Access Journals (Sweden)

      L. Rossi

      2006-06-01

      Full Text Available Leaf litter decomposition is a key process for the functioning of natural ecosystems. An important limiting factor for this process is detritus availability, which we have estimated by remote sensed indices of canopy green biomass (NDVI. Here, we describe the use of multivariate geostatistical analysis to couple in situ measures with hyper-spectral and multi-spectral remote-sensed data for producing maps of litter decomposition. A direct relationship between the decomposition rates in four different CORINE habitats and NDVI, calculated at different scales from Landsat ETM+ multi-spectral data and MIVIS hyper-spectral data was found. Variogram analysis was used to evaluate the spatial properties of each single variable and their common interaction. Co-variogram and co-kriging analysis of the two variables turned out to be an effective approach for decomposition mapping from remote-sensed spatial explicit data.

    8. Biomass valorisation, a new dynamics for French agriculture. Colloquium proceedings; La valorisation de la biomasse, une nouvelle dynamique pour l'agriculture francaise. Actes du colloque

      Energy Technology Data Exchange (ETDEWEB)

      NONE

      2006-04-15

      This document brings together the summary of the presentations given at this colloquium on French agriculture and biomass valorisation and the slides of the available presentations as well. The colloquium started with the opening talk by D. Bussereau (Ministry of agriculture and fisheries) who presented an international overview of biomass activities. The colloquium was divided in two parts with presentations and round-tables: 1 - the post-petroleum era: energy context and raw materials market (P. Chalmin, Cyclope); first round-table on biofuels today and tomorrow; back to the basics (C. Roy); 2 - Biomass and industry: second round-table on cellulose - an oldie promised to a bright future; status of biomass valorisation (M. Pappalardo, ADEME); third round-table: the boom of green chemistry; closing talk by C. Roy. Sixteen presentations (slides) are attached to the document: 1 - Opening talk (D. Bussereau, Ministry of agriculture and fisheries); 2 - Biomass, agriculture, forestry and climate, some basics (C. Roy); 3 - Role of biomass in the fight against climate change and in supplies diversification (M. Pappalardo, Ademe); 4 - The 2005/2006 shock on world markets: energy and raw materials (P. Chalmin, Cyclope); 5 - Actions in the energy domain (A. Chosson, CLCV); 6 - Ethanol production (A. Jeanroy); 7 - The 'biofuels' commitment of PSA Peugeot Citroen car maker (Beatrice Perrier-Maurer, PSA); 8 - Bio-diesel development (Bernard Nicol, Diester Industrie); 9 - First round-table on biofuels today and tomorrow: biofuels and conventional fuels - for an harmonious development of resources and outlets (J.B. Sigaud, Petroleum and Engines School); 10 - Agriculture biomass: source of cellulose (C. Burren, Ungrains, Arvalis); 11 - Electrical and thermal valorisations of biomass (C. Jurczak, MINEFI/DGEMP); 12 - Some elements of thought on new uses of biomass as 'material' (Jacques Sturm, Afocel) 13 - Presentation of Agrice (Agriculture for chemistry and

    9. Marine Litter as Habitat and Dispersal Vector

      OpenAIRE

      Kiessling, Tim; Gutow, Lars; THIEL Martin

      2015-01-01

      Floating anthropogenic litter provides habitat for a diverse community of marine organisms. A total of 387 taxa, including pro- and eukaryotic micro-organisms, seaweeds and invertebrates, have been found rafting on floating litter in all major oceanic regions. Among the invertebrates, species of bryozoans, crustaceans, molluscs and cnidarians are most frequently reported as rafters on marine litter. Microorganisms are also ubiquitous on marine litter although the composition of the microbial ...

    10. The effects of fire severity on macroinvertebrate detritivores and leaf litter decomposition.

      Directory of Open Access Journals (Sweden)

      Sebastian Buckingham

      Full Text Available High severity wildfire events are a feature of forests globally and are likely to be more prevalent with climate change. As a disturbance process, fire has the potential to change important ecological functions, such as decomposition, through its impact on biodiversity. Despite the recognised importance of decomposition in terms of fuel loads and energy flow, little is known about the post-fire effects of fire severity on decomposition by litter-dwelling macroinvertebrate detritivores. We tested the hypotheses that: 1 increasing fire severity is associated with decreased rates of leaf litter decomposition by macroinvertebrate detritivores; and 2 the abundance and biomass of macroinvertebrate detritivores decreases with increasing fire severity, while body size increases. We used a litterbag experiment at long-unburnt, ground-burnt and crown-burnt sites (n = 7 for all treatments to test the effect of fire severity on: a macroinvertebrate-driven break-down of litter fuel loads; and b the size and abundance of macroinvertebrate detritivores three years after fire. Microhabitat conditions differed among fire severity classes. Macroinvertebrate exclusion reduced litter decomposition by 34.7%. Macroinvertebrate detritivores were larger and less abundant following higher severity fires, possibly as a result of fire-induced changes in habitat structure. Opposing effects of fire severity on macroinvertebrate abundance and body size resulted in both similar detritivore biomass and, most interestingly, no differences in leaf litter decomposition under different fire severities. This suggests that the diversity of macroinvertebrates enhances functional resilience of litter decomposition to fire and that litter-breakdown is not inhibited within three years following a high severity fire in this forest type and where recolonisation sources are readily available. We found no support for the hypothesis that high severity fires reduce litter decomposition and

    11. The effects of fire severity on macroinvertebrate detritivores and leaf litter decomposition.

      Science.gov (United States)

      Buckingham, Sebastian; Murphy, Nick; Gibb, Heloise

      2015-01-01

      High severity wildfire events are a feature of forests globally and are likely to be more prevalent with climate change. As a disturbance process, fire has the potential to change important ecological functions, such as decomposition, through its impact on biodiversity. Despite the recognised importance of decomposition in terms of fuel loads and energy flow, little is known about the post-fire effects of fire severity on decomposition by litter-dwelling macroinvertebrate detritivores. We tested the hypotheses that: 1) increasing fire severity is associated with decreased rates of leaf litter decomposition by macroinvertebrate detritivores; and 2) the abundance and biomass of macroinvertebrate detritivores decreases with increasing fire severity, while body size increases. We used a litterbag experiment at long-unburnt, ground-burnt and crown-burnt sites (n = 7 for all treatments) to test the effect of fire severity on: a) macroinvertebrate-driven break-down of litter fuel loads; and b) the size and abundance of macroinvertebrate detritivores three years after fire. Microhabitat conditions differed among fire severity classes. Macroinvertebrate exclusion reduced litter decomposition by 34.7%. Macroinvertebrate detritivores were larger and less abundant following higher severity fires, possibly as a result of fire-induced changes in habitat structure. Opposing effects of fire severity on macroinvertebrate abundance and body size resulted in both similar detritivore biomass and, most interestingly, no differences in leaf litter decomposition under different fire severities. This suggests that the diversity of macroinvertebrates enhances functional resilience of litter decomposition to fire and that litter-breakdown is not inhibited within three years following a high severity fire in this forest type and where recolonisation sources are readily available. We found no support for the hypothesis that high severity fires reduce litter decomposition and therefore

    12. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh

      DEFF Research Database (Denmark)

      Flury, Sabine; Gessner, Mark

      2011-01-01

      Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions...... of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles...... obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had...

    13. Data on litter quality of host grass plants with and without fungal endophytes

      OpenAIRE

      Gundel, P.E.; Helander, M.; Garibaldi, L.A.; Vázquez-de-Aldana, B.R.; Zabalgogeazcoa, I.; Saikkonen, K.

      2016-01-01

      Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis) affected by the symbiosis with fungal endophytes (Epichloë...

    14. Estimating a Demand Function for Poultry Litter

      OpenAIRE

      Carreira, Rita I.; Goodwin, Harold L., Jr.

      2006-01-01

      Excess poultry litter could be a sustainable source of crop nutrients outside of nutrient-saturated regions if crop farmers are willing to utilize it. Using nearly 150 observations of actual poultry litter purchases in Oklahoma, Arkansas, and Missouri we estimate a demand function for poultry litter produced in northwest Arkansas.

    15. Poultry Industry Trends for Litter Utilization

      Science.gov (United States)

      Broiler litter utilization falls primarily into two broad categories, as fertilizer or in litter-to-energy processes. Without economic, environmentally sound litter uses, potential or real regional litigation may force alternative management that can be detrimental to the grower’s bottom line as wel...

    16. Influence of packaging design on littering behavior

      NARCIS (Netherlands)

      Wever, R.

      2006-01-01

      Litter is an environmental and social problem that is closely related to packaging. Many attempts have been made to reduce litter. So far these attempts have mainly focused on influencing littering behavior either through general campaigns or through manipulating the environment. The latter might be

    17. 秦皇岛海滨林场主要林分凋落物量及其季节动态%Composition and Seasonal Dynamics of Litter Falls of Major Forest Stands in Qinhuangdao Seaside Forest Farm

      Institute of Scientific and Technical Information of China (English)

      谭海霞

      2011-01-01

      [目的]了解秦皇岛海滨林场主要林分凋落物的凋落量、组成及凋落节律.[方法]每月月底收集凋落物,按组分称量其干质量,计算林地的凋落量,分析其凋落节律.[结果]3种林分的年凋落量分别为刺槐林(3.411 t/hm2)、加杨林(2.680 t/hm2)、黑松林(1.823t/hm2);刺槐、加杨、黑松3种林分凋落物组成中落叶占绝对优势,分别占凋落物总量的72.97%、77.43%、83.21%;3种林分总凋落物量的月变化呈单峰模式,凋落物各组分动态表现出一定的节律,3种林分的落叶量均在10月出现峰值,落枝量主要集中在冬春季节,刺槐林落花量主要集中在4和5月,而落果量则集中在10月,加杨林落花量主要集中在3和4月,而落果量则集中在5月.[结论]该研究为人工林的合理经营、树种合理配置提供依据.%[Objective] The aim of the study was to understand the amount and rhythm of litter falls in three major forest stands in Qinhuangd ao seaside forest farm. [Method] At the end of each month ,the litter falls were collected and dry masses were weighed, it was to obtain the amount and rhythm of litter falls in three major forest stands. [ Result ] The annual litter production was in the sequence of R. Pseudoacacia (3.411 t/hm2), P. Canadensis (2.680 t/hm2), P. Thunbergii (1.823 t/hm2) ; The litter production of leaves of three forests(I·. Pseudoaca cia; P. Canadensis; P. Thunbergii)occupied a higher percentage in the annual total litter production than that of other components, leaf litter production accounted for 72.97% , 77.43% , 83.21% of the total amount of litter respectively. The litter falls showed evident seasonal dy namics, pattern of monthly variation of the annual littermass followed unimodal in the three forests, leaf-litter peaked in October, twig-litter peaked in winter and spring; Flower-litter from R. Pseudoacacia peaked in April to May, while fruit-litter peaked in September; Flower-litter from P. Canadensis

    18. Relocation of carbon from decomposition of {sup 14}C-labelled needle and fine root litter in peat soil

      Energy Technology Data Exchange (ETDEWEB)

      Domish, T.; Laine, J.; Laiho, R. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Karsisto, M. [Finnish Forest Research Inst. (Finland). Dept. of Forest Ecology

      1996-12-31

      Drainage of peatlands promotes a shift of biomass and production from the ground vegetation to the trees. Thus, the above-ground (e.g. needles) and below-ground (roots) litter production of trees increases. Fine roots in particular are an important factor in the carbon and nutrient cycle in forest ecosystems. A major part of the annual net primary production of trees may be allocated below ground, the relative proportion being smaller on fertile sites than on less fertile ones. For modelling the carbon balance of drained peatlands, it is important to know the fate of carbon from newly introduced and decomposing litter. Newly added and fertilised tree litter material may be decomposed at a rate different than litter from the ground vegetation. The objectives of this study are to study the pathways of decomposing litter carbon in peat soil and to evaluate the use of the litterbag method in a controlled environment. (9 refs.)

    19. Meta-analysis as a tool to study crop productivity response to poultry litter application

      Science.gov (United States)

      Extensive research on the use of poultry litter (PL) under different agricultural practices in the USA has shown both negative and positive effects on crop productivity (either yield or aboveground biomass). However, these experimental results are substantially dependent on the experimental set-up, ...

    20. Annual litter fall in an intact mixed dipterocarp forest of Brunei Darussalam

      Science.gov (United States)

      Roh, Yujin; Lee, Jongyeol; Lee, Sohye; Abu Salim, Kamariah; Davies, Stuart James; Son, Yowhan

      2016-04-01

      Estimating litter dynamics in an intact tropical forests is important for understanding tropical forests. Litter fall varies with seasonality, forest type or species composition, forest age, soil water retention, and soil fertility. These parameters are known to be strongly affected by elevation. The objective of this study was to estimate annual litter fall along a relative elevation in an intact mixed dipterocarp forest of Brunei Darussalam. This study was conducted in the Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Five 0.36 ha plots were established within the permanent 25 ha UBD-CTFS plot. The plots were divided into three groups by relative elevation of the site: 1) high (N = 1), 2) middle (N = 2) and 3) low (N = 2). In January 2015, nine litter traps were installed in each plot and falling litter was collected every month from February to November, 2015. The collected litter was separated into leaves and other materials, and then weighed after drying at 80oC. The average annual litter fall in this site was 8.70 ± 0.16 Mg ha-1 yr-1, and this was within the range reported in previous studies which were conducted in tropical forests. Litter fall at high, middle and low plots was 9.09 ± 0.46, 8.90 ± 0.29 and 8.06 ± 0.29 Mg ha-1 yr-1, respectively. Litter fall was not significantly different among the groups (P>0.05). The results of regression analysis showed that litter fall was not significantly increased with altitude. We suppose that litter fall may be relatively constant in this site. *Supported by research grants from the Korea Forest Service (S121314L130100)

    1. DETERMINATION OF PARTICLE DENSITY BY MERCURY POROSIMETRY FOR BIOMASS FLUID DYNAMIC STUDY IN MOVING BEDS

      Directory of Open Access Journals (Sweden)

      Juan F. Saldarriaga

      2014-06-01

      Full Text Available Determination of the particle density is required to address the hydrodynamic study of a moving bed contactor. The measurement of this parameter is complicated when particles are irregularly shaped. In this study, two different techniques were use: compaction by mechanical compression and an alternative proposal, which contemplates the potential of mercury porosimetry for determining the surface and structural properties. It was observed that the results obtained by compacting in all cases are higher than expected. However, the values obtained by mercury porosimetry are more consistent with expected values. For example in the sawdust valued at 500kg/m3, very similar to the value of the original wood (502kg/m3. Values obtained by this procedure adequately represent the relationship between mass and volume of the particle and therefore are valid for hydrodynamic characterization of the biomass.

    2. Fine root longevity and carbon input into soil from below- and aboveground litter in climatically contrasting forests

      OpenAIRE

      Leppalammi-Kujansuu, Jaana; Aro, Lasse; Salemaa, Maija; Hansson, Karna; Kleja, Dan Berggren; Helmisaari, Helja-Sisko

      2014-01-01

      The major part of carbon (C) flow into forest soil consists of continually renewed fine roots and aboveground litterfall. We studied the belowground C input from the fine root litter of trees and understorey vegetation in relation to their aboveground litterfall in two Norway spruce (Picea abies L) stands located in northern and southern Finland. The production of fine roots was estimated by using turnover and biomass data from minirhizotrons and soil cores. The foliage litter production of t...

    3. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

      Directory of Open Access Journals (Sweden)

      A. R. Smith

      2011-02-01

      Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

    4. The abiotic litter decomposition in the drylands

      Science.gov (United States)

      Lee, H.; Throop, H.; Rahn, T. A.

      2009-12-01

      The decomposition of litter is an important ecosystem function that controls carbon and nutrient cycling, which is well understood from the relationship between temperature and moisture. However, the decomposition in the arid and semiarid environments (hereafter drylands) is relatively poorly predicted due to several abiotic factors such as the effect of ultraviolet radiation and physical mixing of fallen litter with soil. The relative magnitude of these abiotic factors to ecosystem scale litter decomposition is still in debate. Here, we examine the effect of two major abiotic factors in the drylands litter decomposition by conducting a controlled laboratory study using plant litter and soil collected from Sonoran and Chihuahuan desert areas. The first part of the experiment focused on the effect of soil-litter mixing. We established a complete block design of three levels of soil and litter mixing (no mixing, light soil-litter mixing, and complete soil-litter mixing) in combination with three levels of soil moisture (1%, 2%, and 6% volumetric water content) using 2g of two most dominant species litter, grass and mesquite, and 50g of air-dried soils in 500ml mason jar and incubated them under 25C. We measured CO2 fluxes from these soil-litter incubations and harvested the soil and litter at 0, 1, 2, 4, 8, and 16 weeks and analyzed them of carbon and nitrogen content as well as the actual mass loss in the litter. The second part of the experiment focused on the effect of ultraviolet radiation. We established short-term litter incubation on a quartz chamber and used different temperature, moisture, and minerals to find the mechanism of photodegradation of litter. We measured CO2 fluxes from the litter incubation under ultraviolet radiation and also measured 13CO2 from these emissions. We were able to detect changes in the rate of carbon mineralization as a result of our treatments in the first week of soil-litter mixing experiment. The carbon mineralization rate was

    5. Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass

      International Nuclear Information System (INIS)

      Based on the integration of biosorption and membrane-separation, a novel biosorption membrane with good mechanical property was prepared by immobilizing Penicillium biomass with cross-linked chitosan on fabric. The ability of the low cost biosorption membrane to remove Cu(II) ions from a solution was studied through batch and continuous experiments. Langmuir adsorption isotherm models were found to accurately fit the batch experimental data (R2 > 0.99) indicating that sorption was of monolayer-mode. The uptake of Cu(II) could reach 38 mg/g at its initial concentration of 200 mg/L in the solution. Continuous biosorption was investigated in a column and the effects of the height, flow rate and initial concentration of Cu(II) were studied. The Bed Depth Service Time model (BDST) was applied to simulate column adsorption data. The breakthrough time at different flow rates and initial concentrations was accurately predicted by the model (error < 8%). The uptake of Cu(II) could reach 38.3 mg/g at height 30 cm, flow rate 5 mL/min, initial concentration of Cu(II) 200 mg/L. The biosorption membrane was regenerated by washing with 0.05 mol/L solution of HCl, and breakthrough curves remained fairly unchanged after 10 cycles of adsorption-desorption.

    6. The cryptofauna of Zostera marina (L.): Abundance, biomass and population dynamics

      Science.gov (United States)

      Pihl Baden, Susanne

      Cryptofauna (epifauna passing a 2-mm but retained on a 0.2-mm mesh sieve) of Zostera marina on the Swedish west coast (58°N, 11°E) is dominated by crustaceans, mainly detritivorous tube-building amphipods and harpacticoids. Abundance and biomass of amphipods in two relatively unpolluted Z. marina beds were higher than any data from the literature, with maximum abundance of 80·10 3 ind·m -2 and 1 g AFDW·m -2 bottom. This is at least partly due to the small mesh size used in this investigation. The recruitment of the crustaceans started in late June and was continuous through the rest of the season, whereas the recruitment of the molluscs peaked in late June and July. In a Z. marina bed (Rixö) located 2 km from an oil refinery, the seasonal abundance of amphipods was 15% of the abundance in the other beds, whereas the remaining fauna had about the same density. In Rixö the percentage of female amphipod with empty brood pouches increased during the season. It is suggested that low abundances and fecundity of amphipods in Rixö could result from oil pollution.

    7. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

      Energy Technology Data Exchange (ETDEWEB)

      Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

      2009-11-15

      Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

    8. Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass

      Energy Technology Data Exchange (ETDEWEB)

      Zhang, Xin [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China); Su, Haijia, E-mail: suhj@mail.buct.edu.cn [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China); Tan, Tianwei; Xiao, Gang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China)

      2011-10-15

      Based on the integration of biosorption and membrane-separation, a novel biosorption membrane with good mechanical property was prepared by immobilizing Penicillium biomass with cross-linked chitosan on fabric. The ability of the low cost biosorption membrane to remove Cu(II) ions from a solution was studied through batch and continuous experiments. Langmuir adsorption isotherm models were found to accurately fit the batch experimental data (R{sup 2} > 0.99) indicating that sorption was of monolayer-mode. The uptake of Cu(II) could reach 38 mg/g at its initial concentration of 200 mg/L in the solution. Continuous biosorption was investigated in a column and the effects of the height, flow rate and initial concentration of Cu(II) were studied. The Bed Depth Service Time model (BDST) was applied to simulate column adsorption data. The breakthrough time at different flow rates and initial concentrations was accurately predicted by the model (error < 8%). The uptake of Cu(II) could reach 38.3 mg/g at height 30 cm, flow rate 5 mL/min, initial concentration of Cu(II) 200 mg/L. The biosorption membrane was regenerated by washing with 0.05 mol/L solution of HCl, and breakthrough curves remained fairly unchanged after 10 cycles of adsorption-desorption.

    9. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

      Science.gov (United States)

      García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

      2013-08-01

      Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models.

    10. Effect of poultry litter biochar on Saccharomyces cerevisiae growth and ethanol production from steam-exploded poplar and corn stover

      Science.gov (United States)

      Diallo, Oumou

      The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.

    11. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model

      Directory of Open Access Journals (Sweden)

      N. Delbart

      2010-10-01

      Full Text Available Dynamic Vegetation Models (DVMs simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the Above Ground Woody Biomass (AGWB and the above ground woody Net Primary Productivity (NPPAGW simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW. We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes.

      Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

    12. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forests: results from a Dynamic Vegetation Model

      Directory of Open Access Journals (Sweden)

      N. Delbart

      2010-04-01

      Full Text Available Dynamic Vegetation Models (DVMs simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the above ground woody biomass (AGWB and the above ground woody Net Primary Productivity (NPPAGW simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW. We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes.

      Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

    13. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

      Directory of Open Access Journals (Sweden)

      K. G. Schulz

      2013-01-01

      Full Text Available Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2, have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in Kongsfjorden on the west coast of Spitsbergen (Norway, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a, peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured as high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2-related shifts in nutrient flow into different phytoplankton groups (mainly dinoflagellates, prasinophytes and haptophytes could have consequences for future organic matter flow to higher trophic levels and export production, with consequences

    14. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

      Directory of Open Access Journals (Sweden)

      K. G. Schulz

      2012-09-01

      Full Text Available Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2, have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a, peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric

    15. Marine litter prediction by artificial intelligence

      International Nuclear Information System (INIS)

      Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems

    16. Detritivores enhance the mobilization of 137Cs from leaf-litter

      International Nuclear Information System (INIS)

      nursery experiment, komatsuna (Brassica rapa var. pervidis) was utilized. Seed of komatsuna was planted on the contaminated leaf litter and the litter with larvae excreta. The 137Cs concentrations were compared between these treatments. For the 10 days of feeding, beetle larvae finely shredded the leaf litter to particles. The 137Cs contamination of the treatment leaf litter was about 10% higher in deionised water wash and about 20% higher in KCl wash compared with control litters. The results of nursery experiment will be reported also. These results revealed a significant but limited role of detritivore arthropods in the dynamics of 137Cs transfer in forest ecosystems. (authors)

    17. Detritivores enhance the mobilization of {sup 137}Cs from leaf-litter

      Energy Technology Data Exchange (ETDEWEB)

      Murakami, Masashi; Suzuki, Takahiro [Community Ecology Lab., Biology Course, Faculty of Science, Chiba University, Chiba, 263-8522 (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Ohte, Nobuhito [Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 (Japan)

      2014-07-01

      by germanium detectors (Seiko EG and G). As a nursery experiment, komatsuna (Brassica rapa var. pervidis) was utilized. Seed of komatsuna was planted on the contaminated leaf litter and the litter with larvae excreta. The {sup 137}Cs concentrations were compared between these treatments. For the 10 days of feeding, beetle larvae finely shredded the leaf litter to particles. The {sup 137}Cs contamination of the treatment leaf litter was about 10% higher in deionised water wash and about 20% higher in KCl wash compared with control litters. The results of nursery experiment will be reported also. These results revealed a significant but limited role of detritivore arthropods in the dynamics of {sup 137}Cs transfer in forest ecosystems. (authors)

    18. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel

      DEFF Research Database (Denmark)

      Tian, Feng; Brandt, Martin; Liu, Yi Y.;

      2016-01-01

      , the seasonal metrics showing the highest degree of explained variance differ between the two data sources. While the observations in October (period of in situ data collection) perform best for VOD (r2 = 0.88), the small growing season integral (sensitive to recurrent vegetation) have the highest correlations......Monitoring long-term biomass dynamics in drylands is of great importance for many environmental applications including land degradation and global carbon cycle modeling. Biomass has extensively been estimated based on the normalized difference vegetation index (NDVI) as a measure of the vegetation...

    19. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

      Directory of Open Access Journals (Sweden)

      A. V. Ivanov

      2015-10-01

      Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

    20. Seasonal variation in biomass at the tropical rainforest of Western Ghats, Kodayar, Tamilnadu

      Directory of Open Access Journals (Sweden)

      J Geetha Jhansi Rani

      2014-12-01

      Full Text Available A field study was conducted in Kodayar to study the seasonal variation in biomass. The study revealed that there is much difference in the biomass during different seasons. The live shoot biomass in comparatively lesser during winter and its showed negative correlation with rainfall. The standard dead biomass is maximum during summer and no standing dead is recorded during certain months of post monsoon season. Litter biomass is maximum during summer and minimum during winter season. The litter biomass depends upon the canopy cover. During summer canopy cover is less, whereas during winter and monsoon season there is closed canopy. Below ground biomass showed negative correlation with air temperature. Variation in below ground biomass is influenced by species composition, nutrient availability and rate of rainfall. Total biomass is maximum during summer and minimum during rainy season. Light availability and soil moisture had a significant effect on total biomass.

    1. Dynamics of carbon storage in the woody biomass of northern forests

      Science.gov (United States)

      Dong, Jiarui

      2002-09-01

      Part of the puzzle of greenhouse gases and climate change is determining where carbon dioxide (CO2) is absorbed, and what causes a region to become a "carbon sink". Analyses of atmospheric CO2 concentration changes indicate a carbon sink of about 1 to 2 billion tons on land in the northerly regions. Elsewhere the land is suggested to be neutral, which implies that emissions of another 1.5 billion tons of carbon a year from cutting and burning of tropical forests are nearly balanced by sinks of similar magnitude there. The geographical detail of the land carbon sink has, however, remained elusive. Forest greenness observations from sensors on National Oceanic and Atmospheric Administration satellites were combined with wood volume data from forest inventories to produce relatively high resolution maps of carbon stocks in about 15 million square kilometers of northern forests, roughly above the 30th parallel. Comparison of carbon stock maps from the late 1990s and early 1980s identifies where forests were storing carbon and where they were losing carbon. Results indicate that about 61 billion tons of carbon is contained in the wood of these northern forests. Further, the analysis indicates that forests in Europe, Russia and America have been storing nearly 700 million metric tons of carbon a year, or about 12% of annual global carbon emissions from industrial activities, during the 1980s and 1990s. American forests absorbed 120 million tons of carbon a year, which is about 11% of the USA's annual emissions. With the exception of some Canadian boreal forests, which were found to be losing carbon, most northern forests were storing carbon. Russia, the country with the most forests, accounted for almost 40 percent of the biomass carbon sink. This study has important scientific, economic and policy implications. The scientific implication is that it deconstructs the mystery of the land carbon sink by providing geographically detailed maps of forest carbon pools, sources

    2. Responses of litter invertebrate communities to litter manipulation in a Japanese conifer plantation

      Science.gov (United States)

      Yoshida, Tomohiro; Takito, Yuki; Soga, Masashi; Hijii, Naoki

      2013-08-01

      We examined how the litter invertebrate communities were affected by the temporal changes in the mass and structural complexity of the litter resources by adding and removing litter on the forest floor of a temperate conifer plantation (Cryptomeria japonica) in Japan. We showed that litter mass and depth in the litter-addition (L+) plots changed rapidly into a steady-state condition similar to those in the control plots, mainly due to accelerated decomposition processes during the rainy season. Higher area-based densities of litter invertebrates in the L+ plots, similar mass-based densities between the L+ and control plots, and significant positive correlations between litter mass and the number of individuals implied that the abundance of litter invertebrates would be governed by litter mass rather than by the litter depth. Many litter invertebrates including detritivores were collected even in the litter-removal (L-) area. The relative abundances of invertebrate predators collecting pitfall traps were higher in the L- plots and lower in the L+ plots compared to those in the control plots, whereas those collecting Tullgren funnels were higher in the L+ plots than in the control plots. In the L+ plots, the range of variation in the community compositions among the samples decreased significantly over time in response to a drastic decrease in litter mass, in contrast to the control plots, which showed a relatively constant community composition during the study period. Our litter manipulation experiment reveals some of the mechanisms responsible for maintaining an equilibrium state of forest-floor litter mass and for the responses of litter invertebrate communities to temporal changes in the litter.

    3. Experimental study of terrestrial plant litter interaction with aqueous solutions

      Science.gov (United States)

      Fraysse, F.; Pokrovsky, O. S.; Meunier, J.-D.

      2010-01-01

      Quantification of silicon and calcium recycling by plants is hampered by the lack of physico-chemical data on reactivity of plant litter in soil environments. We applied a laboratory experimental approach for determining the silica and calcium release rates from litter of typical temperate and boreal plants: pine ( Pinus laricio), birch ( Betula pubescens), larch ( Larix gmelinii), elm ( Ulmus laevis Pall.), tree fern ( Dicksonia squarrosa), and horsetail (Equisetum arvense) in 0.01 M NaCl solutions, pH of 2-10 and temperature equals to 5, 25 and 40 °C. Open system, mixed-flow reactors equipped with dialysis compartment and batch reactors were used. Comparative measurements were performed on intact larch needles and samples grounded during different time, sterilized or not and with addition or not of sodium azide in order to account for the effect of surface to mass ratio and possible microbiological activity on the litter dissolution rates. Litter degradation results suggest that the silica release rate is independent on dissolved organic carbon release (cell breakdown) which implies the presence of phytoliths in a pure "inorganic" pool not complexed with organic matter. Calcium and DOC are released at the very first stage of litter dissolution while Si concentration increases gradually suggesting the presence of Ca and Si in two different pools. The dry-weight normalized dissolution rate at circum-neutral pH range (approx. 1-10 μmol/g DW/day) is 2 orders of magnitude higher than the rates of Si release from common soil minerals (kaolinite, smectite, illite). Minimal Ca release rates evaluated from batch and mixed-flow reactors are comparable with those of most reactive soil minerals such as calcite and apatite, and several orders of magnitude higher than the dissolution rates of major rock-forming silicates (feldspars, pyroxenes). The activation energy for Si liberation from plant litter is approx. 50 kJ/mol which is comparable with that of surface

    4. Belowground carbon pools and dynamics in China's warm temperate and sub-tropical deciduous forests

      Directory of Open Access Journals (Sweden)

      C. W. Xiao

      2009-07-01

      Full Text Available We report the first estimates of pools and dynamics of microbes, roots, plant litter and soil organic carbon (SOC in three dominant types of China's vast deciduous forest area: Betula platyphylla, Quercus liaotungensis, and Quercus aliena varacuteserrata. Organic matter degradation rates overshadowed litter inputs as the main determinant of the soil carbon stocks. Across the three forests, rates of litter decomposition were also indicative for turnover rates of SOC. Litter and SOC decay was faster in the sub-tropical than in the warm-temperate forests. Among the latter, SOC turnover was highest in the forest producing the higher-quality litter. Microbial biomass was, as expected, correlated with SOC content. Microbial activity, in contrast, was highest at the sub-tropical forest, despite the lower SOC availability, lower fraction of labile SOC, and lower soil microbial biomass. These results may contribute to increased understanding of controls over belowground carbon cycling in deciduous forests.

    5. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

      Science.gov (United States)

      Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

      2016-09-01

      The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.

    6. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

      Science.gov (United States)

      Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

      2016-09-01

      The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. PMID:27233094

    7. Seasonal variation in biomass at the tropical rainforest of Western Ghats, Kodayar, Tamilnadu

      OpenAIRE

      J Geetha Jhansi Rani; Kailash Paliwal

      2014-01-01

      A field study was conducted in Kodayar to study the seasonal variation in biomass. The study revealed that there is much difference in the biomass during different seasons. The live shoot biomass in comparatively lesser during winter and its showed negative correlation with rainfall. The standard dead biomass is maximum during summer and no standing dead is recorded during certain months of post monsoon season. Litter biomass is maximum during summer and minimum during winter season. The litt...

    8. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

      Science.gov (United States)

      The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

    9. Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondo‸nia, Brazil during SCAR-B

      Science.gov (United States)

      Guild, Liane S.; Kauffman, J. Boone; Ellingson, Lisa J.; Cummings, Dian L.; Castro, Elmar A.; Babbitt, Ron E.; Ward, Darold E.

      1998-12-01

      Burning of slashed tropical forests and pastures is among the most significant global sources of atmospheric emissions, yet the composition of the fuels and fires that creates these emissions is not well characterized. As part of the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment, we measured total aboveground biomass (TAGB) as well as carbon, nitrogen, and sulfur pools in one cattle pasture and two slashed primary forests in Rondônia, Brazil. These pools were measured before and immediately after fires. From these data, we calculated the quantities of biomass and elements lost to the atmosphere during biomass burning. Prefire biomass in the pasture was 66 Mg ha-1; fire consumed 31% of this mass. Woody debris from the forest that occupied this site 12 years previously comprised 81% of the pasture prefire TAGB. Elemental inputs into the atmosphere (site losses) from the pasture fire were 9 Mg C ha-1, 88 kg N ha-1, and 5 kg S ha-1. Combining previous studies with this one, we calculate that the mean TAGB of Amazonian pastures is 74 Mg ha-1 with a mean combustion factor of 46%. Mean nutrient losses from pasture fires in Amazonia are 14 Mg C ha-1, 199 kg N ha-1, and 16 kg S ha-1. The TAGB of the two slashed primary forests before fire was 355 and 399 Mg ha-1 and following fire was 188 and 185 Mg ha-1 (i.e., a combustion factor of 47 and 54%), respectively. Combining this study with other studies of Amazon slashed primary forests, we calculate that the mean TAGB is 349 Mg ha-1 and the mean combustion factor is 48%. Total elemental losses arising from the primary forest slash fires in this study were notably higher than losses from the pasture site: 79 and 102 Mg C ha-1; 1019 and 1196 kg N ha-1; and 87 and 96 kg S ha-1. From this study combined with previous research in Rondônia and Pará, we calculate that mean nutrient losses from primary forest slash fires are 88 Mg C ha-1, 1181 kg N ha-1, and 107 kg S ha-1. As rates of deforestation are remaining high in

    10. Cigarette Litter: Smokers’ Attitudes and Behaviors

      Directory of Open Access Journals (Sweden)

      Julia C. Cartwright

      2012-06-01

      Full Text Available Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers’ littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers’ knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000 were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05. The majority (74.1% of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7% reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66 and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32. Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94. Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic

    11. Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF

      Directory of Open Access Journals (Sweden)

      Laura Silva

      2015-11-01

      Full Text Available The experiment evaluates the food production and water treatment of TAN, NO2−–N, NO3−–N, and PO43− in two aquaponics systems using the dynamic root floating technique (DRF. A separate recirculation aquaculture system (RAS was used as a control. The fish cultured was Nile tilapia (Oreochromis niloticus. The hydroponic culture in one treatment (PAK was pak choy (Brassica chinensis, and in the other (COR coriander (Coriandrum sativum. Initial and final weights were determined for the fish culture. Final edible fresh weight was determined for the hydroponic plant culture. TAN, NO2−–N, NO3−–N, and PO43− were measured in fish culture and hydroponic culture once a week at two times, morning (9:00 a.m. and afternoon (3:00 p.m.. The fish biomass production was not different in any treatment (p > 0.05 and the total plant yield was greater (p < 0.05 in PAK than in COR. For the hydroponic culture in the a.m., the PO43− was lower (p < 0.05 in the PAK treatment than in COR, and in the p.m. NO3−–N and PO43− were lower (p < 0.05 in PAK than in COR. The PAK treatment demonstrated higher food production and water treatment efficiency than the other two treatments.

    12. Phosphate/Zinc Interaction Analysis in Two Lettuce Varieties Reveals Contrasting Effects on Biomass, Photosynthesis, and Dynamics of Pi Transport

      Directory of Open Access Journals (Sweden)

      Nadia Bouain

      2014-01-01

      Full Text Available Inorganic phosphate (Pi and Zinc (Zn are essential nutrients for normal plant growth. Interaction between these elements has been observed in many crop plants. Despite its agronomic importance, the biological significance and genetic basis of this interaction remain largely unknown. Here we examined the Pi/Zn interaction in two lettuce (Lactuca sativa varieties, namely, “Paris Island Cos” and “Kordaat.” The effects of variation in Pi and Zn supply were assessed on biomass and photosynthesis for each variety. Paris Island Cos displayed better growth and photosynthesis compared to Kordaat under all the conditions tested. Correlation analysis was performed to determine the interconnectivity between Pi and Zn intracellular contents in both varieties. Paris Island Cos showed a strong negative correlation between the accumulation levels of Pi and Zn in shoots and roots. However, no relation was observed for Kordaat. The increase of Zn concentration in the medium causes a decrease in dynamics of Pi transport in Paris Island Cos, but not in Kordaat plants. Taken together, results revealed a contrasting behavior between the two lettuce varieties in terms of the coregulation of Pi and Zn homeostasis and provided evidence in favor of a genetic basis for the interconnection of these two elements.

    13. The Influence of the 2006 Indonesian Biomass Burning Aerosols on Tropical Dynamics Studied with the GEOS-5 AGCM

      Science.gov (United States)

      Ott, Lesley; Duncan, Bryan; Pawson, Steven; Colarco, Peter; Chin, Mian; Randles, Cynthia; Diehl, Thomas; Nielsen, Eric

      2009-01-01

      The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or 50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere.

    14. Biomass Scenario Model

      Energy Technology Data Exchange (ETDEWEB)

      2015-09-01

      The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

    15. [Forest biomass carbon storage and its dynamics in Tanjiang River basin].

      Science.gov (United States)

      Yang, Kun; Guan, Dongsheng; Zhou, Chunhua

      2006-09-01

      Based on an improved estimation method of forest carbon storage and the inventory of forest resources, this paper estimated the forest carbon storage and its dynamic changes in Tanjiang River basin, and analyzed the relationships of the carbon storage and its density with the increase of population density and GDP during the urbanization in 1990-2001. The results showed that the forest carbon storage in Tanjiang River basin increased from 5.906 x 10(6) t in 1990 to 7.852 x 10(6) t in 2001, with an annual average accumulation amount of 0.18 x 10(6) t or an annual average accumulation rate of 3.05%, and playing a role of carbon sink. The rapid increase of population density and GDP didn't influence the increase of forest carbon storage and density, but the development of forestry was far lower than that of economy. To have a better service function of forest ecosystem in the process of urbanization, and to promote the sustainable development of regional ecological environment, the key point is the reasonable coordination of forestry management with the development of economy. PMID:17147160

    16. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.

      Science.gov (United States)

      Xia, Mengxue; Talhelm, Alan F; Pregitzer, Kurt S

      2015-11-01

      Most studies of forest litter dynamics examine the biochemical characteristics and decomposition of leaf litter, but fine roots are also a large source of litter in forests. We quantified the concentrations of eight biochemical fractions and nitrogen (N) in leaf litter and fine roots at four sugar maple (Acer saccharum)-dominated hardwood forests in the north-central United States. We combined these results with litter production data to estimate ecosystem biochemical fluxes to soil. We also compared how leaf litter and fine root biochemistry responded to long-term simulated N deposition. Compared with leaf litter, fine roots contained 2.9-fold higher acid-insoluble fraction (AIF) and 2.3-fold more condensed tannins; both are relatively difficult to decompose. Comparatively, leaf litter had greater quantities of more labile components: nonstructural carbohydrates, cellulose and soluble phenolics. At an ecosystem scale, fine roots contributed over two-thirds of the fluxes of AIF and condensed tannins to soil. Fine root biochemistry was also less responsive than leaf litter to long-term simulated N deposition. Fine roots were the dominant source of difficult-to-decompose plant carbon fractions entering the soil at our four study sites. Based on our synthesis of the literature, this pattern appears to be widespread in boreal and temperate forests.

    17. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode

      International Nuclear Information System (INIS)

      Batch and dynamic flow biosorption studies were carried out using the waste biomass entrapped in silica-gel matrix for the removal of nickel(II) ions from synthetic solutions and real wastewater. Batch biosorption conditions were examined with respect to initial pH, S/L ratio, contact time, and initial nickel ion concentration. Zeta potential measurements showed that immobilized biosorbent was negatively charged in the pH range of 3.0-8.0. The immobilized biomass was found to possess relatively high biosorption capacity (98.01 mg g-1), and biosorption equilibrium was established in a short time of operation (5 min). The equilibrium data were followed by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Scanning electron microscope analysis was used to screen the changes on the surface structure of the waste biomass after immobilization and nickel(II) biosorption. Sorbent-sorbate interactions were confirmed by Fourier transform infrared spectroscopy. The applicability of sorbent system was investigated in a continuous mode, and column studies were performed under different flow rate, column size, and biosorbent dosage. Also, the proposed sorbent system was successfully used to remove the nickel ions from industrial wastewater in dynamic flow treatment mode. The results showed that silica-immobilized waste biomass was a low-cost promising sorbent for sequester of nickel(II) ions from synthetic and real wastewater

    18. SOA Formation Potential of Emissions from Soil and Leaf Litter

      Science.gov (United States)

      Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

      2013-12-01

      In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be

    19. Mineralisation, leaching and stabilisation of 13C-labelled leaf and twig litter in a beech forest soil

      Directory of Open Access Journals (Sweden)

      F. Hagedorn

      2011-02-01

      Full Text Available Very few field studies have quantified the different pathways of C loss from decomposing litter even though this is essential to better understand long-term dynamics of C stocks in soils. Using 13C-labelled leaf (isotope ratio (δ13C = −40.8‰ and twig litter (δ13C = −38.4‰, we tracked down the litter-derived C in the soil respiration, in the dissolved organic C (DOC and in the soil organic matter of a beech forest in the Swiss Jura. After one year of decomposition, mass loss in the litter layer was almost twice as great for leaves as it was for twigs (75% vs. 40%. This difference was not the result of a slow mineralisation of the woody litter, but primarily of the only slight incorporation of twig-derived C into mineral soils. The C mineralisation rates of the twig litter were only slightly lower than those of the leaf litter (10–35%, in particular after the loss of the readily available litter fraction. However, the leaching of DOC from twigs amounted only to half of that from leaves. Tracing the litter-derived DOC showed that DOC from both litter types was mostly retained (88–96% and stabilised in the top centimetres of the mineral soil. In the soil organic C at 0–2 cm depth, we recovered 8% of the initial leaf C, but only 4% of the twig C. Moreover, the 13C mass balance suggested that a substantial fraction of the leaf material (~30% was transported via soil fauna to soil depths below 2 cm, while the twig litter mainly decomposed in situ on the soil surface, probably due to its rigid structure and low nutritional value. In summary, our study shows that decaying twigs are rapidly mineralised, but seem to be clearly less important for the C storage in this beech forest soils than leaf litter.

    20. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

      Science.gov (United States)

      Carrera, Analía Lorena; Bertiller, Mónica Beatriz

      2013-01-15

      The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

    1. Cigarette litter: smokers' attitudes and behaviors.

      Science.gov (United States)

      Rath, Jessica M; Rubenstein, Rebecca A; Curry, Laurel E; Shank, Sarah E; Cartwright, Julia C

      2012-06-01

      Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers' littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers' knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000) were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7%) reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66) and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32). Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94). Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic waste and are harmful when disposed of improperly.

    2. Biomass structure of soil mesofauna under conditions of dynamics of vegetation diversity of floodplain meadows in the southeast of Belarus

      Directory of Open Access Journals (Sweden)

      V. N. Veremeev

      2009-10-01

      Full Text Available Comparative data on structure and biomass of soil mesofauna depending on a biodiversity of vegetation of inundated meadows under conditions of anthropogenic influence are presented. By augmentation of vegetation diversity on meadows there is a tendency of increse of a biomass of soil invertebrates.

    3. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.

      Science.gov (United States)

      Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz

      2016-07-01

      Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of

    4. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.

      Science.gov (United States)

      Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz

      2016-07-01

      Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of

    5. Effect of thatch on water-soluble phosphorus of pasture soil fertilized with broiler litter

      Institute of Scientific and Technical Information of China (English)

      2002-01-01

      The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 t@hm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kg@hm-2) of the cores with the thatch layer was higher than that (20 kg@hm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.

    6. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响%Effects of forest gap on hemicellulose dynamics during foliar litter decomposition in an subal-pine forest

      Institute of Scientific and Technical Information of China (English)

      李晗; 吴福忠; 杨万勤; 徐李亚; 倪祥银; 何洁; 胡义

      2015-01-01

      亚高山森林林窗可能通过改变冬季雪被格局和生长季水热环境影响林窗内凋落物中半纤维素的分解动态,但目前对此还缺乏研究。采用凋落物分解袋法,以亚高山森林5种典型物种岷江冷杉(Abies faxoniana)、红桦(Betula albosinensis)、四川红杉(Larix mastersiana)、方枝柏(Sabina saltuaria)和高山杜鹃(Rhododendron lapponicum)凋落物为研究对象,研究雪被形成期、雪被覆盖期、雪被融化期和生长季节从林窗中心、林冠林窗、扩展林窗到郁闭林下物种凋落物的半纤维素变化特征。经历一年分解后,5种凋落物的半纤维素均呈现净累积现象。针、阔叶凋落物半纤维素分别在雪被覆盖期和融化期表现出相对较高的损失率。在雪被覆盖期和融化期,凋落物半纤维素在林窗中心和林冠林窗具有相对较高的损失率;而在生长季节,林窗中心呈现相对较低的凋落物半纤维素累积率。统计分析结果表明凋落物分解过程中半纤维素损失率与环境因子和凋落物质量因子均显著相关。这些结果表明亚高山森林林窗对凋落物分解过程中半纤维素损失率具有显著影响,分别促进了半纤维素在冬季的损失以及抑制了半纤维素在生长季节的累积,意味着亚高山森林林窗的形成有利于凋落物半纤维素的降解。%Aims As part of fiber structures, the hemicellulose degrades and transforms during foliar litter decomposition along with other components of leaf tissue. Forest gaps and crown canopies may regulate hemicellulose dynamics during foliar litter decomposition by redistributing winter snow cover and altering the temperature, precipitation and solar radiation during the growing season, but little information is available concerning those effects and the consequences. Therefore, our objective was to study the effects of forest gap on hemicellulose dynamics during foliar litter decomposition in an subalpine

    7. Biomass boilers

      OpenAIRE

      Nahodil, Jiří

      2011-01-01

      Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

    8. Evolutionary Position and Leaf Toughness Control Chemical Transformation of Litter, and Drought Reinforces This Control: Evidence from a Common Garden Experiment across 48 Species.

      Science.gov (United States)

      Pan, Xu; Song, Yao-Bin; Jiang, Can; Liu, Guo-Fang; Ye, Xue-Hua; Xie, Xiu-Fang; Hu, Yu-Kun; Zhao, Wei-Wei; Cui, Lijuan; Cornelissen, Johannes H C; Dong, Ming; Prinzing, Andreas

      2015-01-01

      Plant leaf litter is an important source of soil chemicals that are essential for the ecosystem and changes in leaf litter chemical traits during decomposition will determine the availability of multiple chemical elements recycling in the ecosystem. However, it is unclear whether the changes in litter chemical traits during decomposition and their similarities across species can be predicted, respectively, using other leaf traits or using the phylogenetic relatedness of the litter species. Here we examined the fragmentation levels, mass losses, and the changes of 10 litter chemical traits during 1-yr decomposition under different environmental conditions (within/above surrounding litter layer) for 48 temperate tree species and related them to an important leaf functional trait, i.e. leaf toughness. Leaf toughness could predict the changes well in terms of amounts, but poorly in terms of concentrations. Changes of 7 out of 10 litter chemical traits during decomposition showed a significant phylogenetic signal notably when litter was exposed above surrounding litter. These phylogenetic signals in element dynamics were stronger than those of initial elementary composition. Overall, relatively hard-to-measure ecosystem processes like element dynamics during decomposition could be partly predicted simply from phylogenies and leaf toughness measures. We suggest that the strong phylogenetic signals in chemical ecosystem functioning of species may reflect the concerted control by multiple moderately conserved traits, notably if interacting biota suffer microclimatic stress and spatial isolation from ambient litter.

    9. Evolutionary Position and Leaf Toughness Control Chemical Transformation of Litter, and Drought Reinforces This Control: Evidence from a Common Garden Experiment across 48 Species.

      Directory of Open Access Journals (Sweden)

      Xu Pan

      Full Text Available Plant leaf litter is an important source of soil chemicals that are essential for the ecosystem and changes in leaf litter chemical traits during decomposition will determine the availability of multiple chemical elements recycling in the ecosystem. However, it is unclear whether the changes in litter chemical traits during decomposition and their similarities across species can be predicted, respectively, using other leaf traits or using the phylogenetic relatedness of the litter species. Here we examined the fragmentation levels, mass losses, and the changes of 10 litter chemical traits during 1-yr decomposition under different environmental conditions (within/above surrounding litter layer for 48 temperate tree species and related them to an important leaf functional trait, i.e. leaf toughness. Leaf toughness could predict the changes well in terms of amounts, but poorly in terms of concentrations. Changes of 7 out of 10 litter chemical traits during decomposition showed a significant phylogenetic signal notably when litter was exposed above surrounding litter. These phylogenetic signals in element dynamics were stronger than those of initial elementary composition. Overall, relatively hard-to-measure ecosystem processes like element dynamics during decomposition could be partly predicted simply from phylogenies and leaf toughness measures. We suggest that the strong phylogenetic signals in chemical ecosystem functioning of species may reflect the concerted control by multiple moderately conserved traits, notably if interacting biota suffer microclimatic stress and spatial isolation from ambient litter.

    10. Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation

      Institute of Scientific and Technical Information of China (English)

      CHENG Yunhuan; HAN Youzhi; WANG Qingcheng; WANG Zhengquan

      2006-01-01

      Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine

    11. The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile.

      Directory of Open Access Journals (Sweden)

      Rocio Urrutia-Jalabert

      Full Text Available Old-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP, carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1 and 448-517 Mg C ha(-1 in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1 year(-1 in AC and 2.22-2.54 Mg C ha(-1 year(-1 in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1 year(-1 in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.

    12. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition.

      Science.gov (United States)

      Manna, M C; Jha, S; Ghosh, P K; Acharya, C L

      2003-07-01

      An experiment was conducted during 1998-1999, in a deciduous forest located in the semi-arid tropics of central India, to evaluate the suitability of different forest litters as food material for the tropical epigeic earthworms i.e. Eisenia fetida (Savigny), Perionyx excavatus (Perrier) and Dicogaster bolaui (michaelsen). The aim was to examine the influence of these earthworms on the decomposition processes of three types of forest litters i.e. Tectona grandis (teak), Madhuca indica (mahua) and Butea monosperma (palas), on the maintenance of quality in a vermicomposting system, and to assess the effect of applications of in situ prepared vermicomposts on the growth of forest trees. The results indicated that T. grandis litter was the most suitable food material for the earthworms possibly because it contained high reserves of mineral nutrients. Comparisons of the survival and reproduction rates of the three epigeic earthworm species indicated that a higher reproduction rate was maintained for E. fetida compared to P. excavatus and D. bolaui in the decomposition of these forest litters. The rates of growth and population increases of E. fetida approximately doubled after 12 weeks of litter decomposition. The litter decomposition process was associated strongly with the quality of the materials and their chemical composition. Irrespective of earthworm inoculations, the levels of available nutrient such as NH(4)-N, NO(3)-N, available P and K increased significantly (pM. indica litter compost>B. monosperma litter compost. The mature decomposed litter had lower C/N ratios (11.3-24.8:1), water-soluble carbon (0.30-0.58%), water-soluble carbohydrates (0.35-0.71%) and larger cation exchange capacity/total organic carbon ratios than the values in the parent forest litter. The lignin content increased with maturation with a concomitant decrease in cellulose resulting in higher lignin/cellulose ratios. Application of all three vermicomposts to forest trees significantly

    13. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

      Science.gov (United States)

      Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

      2016-08-01

      The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems. PMID:27273089

    14. Treatment of broiler litter with organic acids.

      Science.gov (United States)

      Ivanov, I E

      2001-04-01

      Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

    15. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China

      DEFF Research Database (Denmark)

      Chen, Hao; Gurmesa, Geshere A.; Liu, Lei;

      2014-01-01

      Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter...... decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8......% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can...

    16. Morphogenetic Litter Types of Bog Spruce Forests

      OpenAIRE

      T. T. Efremova; A. F. Avrova; S. P. Efremov

      2015-01-01

      For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss)-hypnum spruce forest can be characterized as medium thickness (9–17 cm) with high storage of organic matter (77–99 t/ha), which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, w...

    17. Community structure and estimated contribution of primary consumers (Nematodes and Copepods) of decomposing plant litter (Juncus roemerianus and Rhizophora mangle) in South Florida

      Energy Technology Data Exchange (ETDEWEB)

      Fell, J.W.; Cefalu, R.

      1984-01-01

      The paper discusses the meiofauna associated with decomposing leaf litter from two species of coastal marshland plants: the black needle rush, Juncus roemerianus and the red mangrove, Rhizophora mangle. The following aspects were investigated: (1) types of meiofauna present, especially nematodes; (2) changes in meiofaunal community structures with regard to season, station location, and type of plant litter; (3) amount of nematode and copepod biomass present on the decomposing plant litter; and (4) an estimation of the possible role of the nematodes in the decomposition process. 28 references, 5 figures, 9 tables. (ACR)

    18. Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.

      Science.gov (United States)

      Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C

      2013-10-01

      Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these

    19. Data on litter quality of host grass plants with and without fungal endophytes

      Directory of Open Access Journals (Sweden)

      P.E. Gundel

      2016-06-01

      Full Text Available Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively. Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin×endophyte]. This data can be potentially used in other studies which, by means of ‘data reanalyzing’ or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article “Role of foliar fungal endophytes on litter decomposition among species and population origins” (Gundel et al., In preparation [1].

    20. Data on litter quality of host grass plants with and without fungal endophytes.

      Science.gov (United States)

      Gundel, P E; Helander, M; Garibaldi, L A; Vázquez-de-Aldana, B R; Zabalgogeazcoa, I; Saikkonen, K

      2016-06-01

      Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis) affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively). Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin)×endophyte]. This data can be potentially used in other studies which, by means of 'data reanalyzing' or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article "Role of foliar fungal endophytes on litter decomposition among species and population origins" (Gundel et al., In preparation) [1]. PMID:27182541

    1. An Approach to Litter Generation and Littering Practices in a Mexico City Neighborhood

      Directory of Open Access Journals (Sweden)

      Cecilia E. Muñoz-Cadena

      2012-08-01

      Full Text Available Urban litter is generated by human societies everywhere. Some litter is recyclable waste. In this study, the acronym RMSW is used to refer to recyclable municipal solid waste generated in streets. Public attitude towards RMSW generation, generators’ perceptions, and quantification of RMSW in streets were examined in a Mexico City neighborhood, where litter presence causes major environmental problems affecting the population year after year. Interviews with neighborhood residents and item counts were carried out from 2010 to 2011. In all, 58% of interviewees reported generating RMSW at variable frequencies while 42% said they did not generate this kind of waste. Laziness, lack of vigilance by municipal authorities, no litter bins in streets, and imitation were the main causes identified by interviewees as reasons for littering. Potential litter generators may be of any age, educational level or income. Interviewees’ perception of RMSW generation was compared with item counts in the neighborhood studied.

    2. Emissions and Furnace Gas Temperature for Electricity Generation Via Co-Firing of Coal and Biomass

      OpenAIRE

      Shoaib Mehmood; Bale Reddy; Marc Rosen

      2015-01-01

      The emissions of carbon dioxide and nitrogen and sulphur oxides for electricity generation with coal and biomass co-firing are investigated and the furnace gas temperature assessed. The study uses simulation and considers fuel combinations based on two coals (bituminous coal, lignite) and four types of biomass (rice husk, sawdust, chicken litter, refused derived fuel). With increasing biomass, net CO2 emissions are seen to decline significantly for all types of selected biomass, while gross c...

    3. Biomass pretreatment

      Science.gov (United States)

      Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

      2013-05-21

      A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

    4. How Far Can Poultry Litter Go? A New Technology for Litter Transport

      OpenAIRE

      Carreira, Rita I.; Young, Kenneth B.; Goodwin, Harold L., Jr.; Wailes, Eric J.

      2007-01-01

      Exporting northwest Arkansas excess turkey and broiler litter to partially fertilize nutrient-deficient cropland in eastern Arkansas can be more cost effective than to supply all crop nutrients with chemical fertilizer only, given current high fertilizer prices. Cost savings are greater if litter is baled in ultraviolet resistant plastic and transported via truck, since backhaul opportunities reduce truck rates, or alternatively, if raw litter is shipped via a truck-barge combination. Rice is...

    5. Multi-functional biomass systems

      Energy Technology Data Exchange (ETDEWEB)

      Dornburg, V.

      2004-12-01

      The central research question of this thesis is: What is the potential of multi-functional biomass systems to improve the costs and the land use efficiency of saving non-renewable energy consumption and reducing GHG (greenhouse gases) emissions in quantitative terms? Therefore, in the following chapters the performance of multi-functional biomass systems is quantified. Biomass system costs are investigated from a societal perspective using e.g. low discount rates. A main focus will be on the review of methodologies for accounting GHG emissions, non-renewable energy consumption, agricultural land use and costs as well as the adaptation of these methodologies to special aspects of multifunctional biomass use. The analysis of the potential benefits of multi-functional biomass systems is carried out by several case studies of biomass systems including various waste treatment technologies for the short term that appeared promising after a first review. Because at present the shift of biomass production to more favourable areas seems to be an alternative for more efficient biomass systems, these case studies are situated in Europe and concentrate on Poland in order to investigate the potential of biomass production in the new EU-member states of Central Eastern Europe. In Chapter 2 of this thesis, the concept of multi-product use and its potential impacts on fuel costs of bioenergy and GHG emission reduction per area of agricultural land use are investigated. Especially, the relation between the economic value and the specific GHG emission reduction of a possible material application and the potential benefits of multiproduct use is analysed. Material uses regarded for multi-product use are the use of wheat grains for food, wheat straw for animal litter, hemp bark fibres for reinforced composites, hemp core fibres for animal litter, hemp seeds for food and cosmetics and poplar wood chips for pulp. For energy uses parts of the crops are used as solid fuel for electricity

    6. Arst on patsiendi poolel / Galina Litter

      Index Scriptorium Estoniae

      Litter, Galina

      2006-01-01

      Naistearst Galina Litter seadusest, mis lubab alaealistel ilma vanema nõusolekuta aborti teha. Vastus artiklile : Varro Vooglaid. Vanemate vastutus - kas reaalne või paljasõnaline? // Õpetajate Leht (2006) 13. okt., lk. 1, 7

    7. Ecological relations between mangrove leaf litter and the spatial distribution of the gastropod Melampus coffeus in a fringe mangrove forest

      Directory of Open Access Journals (Sweden)

      Diva S. Tavares

      2015-03-01

      Full Text Available Leaf litter represents a food source to many organisms that may directly contribute to organic matter decomposition. In addition, the physical presence of these vegetal detritus contributes for the modification of some environmental areas and produce microhabitats that may act as a refuge against predators and desiccation for many animals. The pulmonate gastropod Melampus coffeus (Linnaeus, 1758 (Ellobiidae is a very common specie in Atlantic Coast mangrove forests and feeds on fallen mangrove leaves. It was hypothesized that the spatial distribution of Melampus coffeus is directly affected by mangrove leaf litter biomass deposition. Thus, this research aimed at evaluating the spatial distribution of these gastropods in relation to the biomass of mangrove leaf litter through a twelve-month period. The study area was established in the middle estuary of Pacoti River, state of Ceará, Brazil where two adjacent zones with different topographic profiles were determined. Samples of Melampus coffeus and leaf litter were collected monthly, throughout a year, from the mangrove ground surface. The results indicated that the presence of twigs in mangrove litter favor the occupation by smaller individuals of M. coffeus, probably because smaller individuals are more susceptible to predator attacks and desiccation than larger ones, and twigs and branches may provide a safe microhabitat.

    8. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

      OpenAIRE

      Kerry D. Woods

      2014-01-01

      Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equ...

    9. Can't See the Wood for the Litter: Evaluation of Litter Behavior Modification in a Forest

      Science.gov (United States)

      Lindemann-Matthies, Petra; Bonigk, Isabel; Benkowitz, Dorothee

      2012-01-01

      This study investigated elementary school children's (n = 171) litter behavior during guided forest tours following two different treatments. Four classes received a verbal appeal not to litter in the forest, while another four classes received both a verbal appeal and a demonstration of the desired litter behavior (picking up litter, putting it…

    10. GASIFICATION BASED BIOMASS CO-FIRING

      Energy Technology Data Exchange (ETDEWEB)

      Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

      2003-01-01

      Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate

    11. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

      International Nuclear Information System (INIS)

      Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m2·g-1) is used to convert dry leaf litter biomass (g .m-2) into leaf area per ground unit area (m2·m-2). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m2) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm2·g-1. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA and leaf area had

    12. Water addition, evaporation and water holding capacity of poultry litter.

      Science.gov (United States)

      Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

      2015-12-15

      Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis.

    13. [Seasonal release characteristics of Ca, Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest].

      Science.gov (United States)

      Ma, Zhi-liang; Gao, Shun; Yang, Wan-qin; Wu, Fu-zhong

      2015-10-01

      Seasonal release dynamics of Ca, Mg and Mn during decomposition of foliar litter of Pinus massoniana, Cryptomeria fortunei, Cunninghamia lanceolata, Cinnamomum camphora, Toona ciliate, and Quercus acutissima were investigated in subtropical evergreen broad-leaved forest employing the method of litterbag. After one-year decomposition, the release rates of Ca, Mg and Mn in foliar litter of the studied tree species ranged from -13.8% to 92.3%, from 4.0% to 64.8%, and from 41.6% to 81.1%, respectively. Ca dynamics in foliar litter of P. massoniana, C. camphora exhibited the pattern of accumulating early and releasing later, while that of the other four tree species showed direct release. Similarly, the dynamics of Mg released from foliar litter of C. camphora showed the pattern of accumulating early and then releasing, while that of the other five tree species exhibited continuous release. Meanwhile, the dynamics of Mn released from foliar litter of C. fortunei and T. ciliate exhibited early accumulation, and subsequent release, while that of the other four tree species showed continuous release. The releases of Ca, Mg and Mn in foliar litter were greatly influenced by seasonal rainfall, and varied with tree species. Furthermore, the rates and amounts of Ca, Mg and Mn released from foliar litter were higher in rainy season than in dry season. In conclusion, the initial nutrient concentrations and precipitation were two key factors influencing the release dynamics of Ca, Mg and Mn during decomposition of foliar litter in the subtropical evergreen broad-leaved forest. PMID:26995897

    14. EFFECTS OF SOIL FAUNA ON LITTER DECOMPOSITION

      Institute of Scientific and Technical Information of China (English)

      2001-01-01

      Forest litter is the physical makeup part of forest ecosystem. The rate of decomposition of forest litter is low in temperate and cool temperate zones. There is important significance to search and utilize the function of soil animals, in order to probe the material circulation and energy flow in forest ecosystem. We selected three kinds of mesh bag with different mesh size, in which, large pore mesh bag is large enough to permit the activities of all kinds of soil animals, medium mesh bag is designed to exclude the function of soil macrofauna, while small mesh bag is small enough to exclude the effects of any kind of soil animals as far as possible. The decomposition time is three years. The studying results show that: the decomposing speed of the bags with big meshes, under functions of all kinds of soil animals, faster than the bags with medium meshes, under functions of medium and small soil animals, as well as the bags with small meshes that excluding all possibility of functions of soil animals; in the process of decomposition of litter, relationship of the litter lost weight with number of soil animals is not obvious clearly; the degree of functions of soil animals to soft litter higher than hard litter; according to the analysis of diversity index, no regular changes will happen to the diversity of soil animals as the time of decomposing samples lengthen.

    15. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

      Science.gov (United States)

      Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

      2011-05-01

      The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

    16. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

      Science.gov (United States)

      Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

      2014-12-01

      Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

    17. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem

      DEFF Research Database (Denmark)

      Rinnan, Riikka; Michelsen, Anders; Jonasson, Sven Evert

      2008-01-01

      on the soil ecosystem of a subarctic heath in a 7-year-long field experiment. Fine root biomass, dissolved organic carbon (DOC) and total C concentration increased in response to warming, which probably was a result of the increased vegetation cover. Litter addition increased the concentration of inorganic P...... in the uppermost 5 cm soil, while decreasing the pool of total P per unit area of the organic profile and having no significant effects on N concentrations or pools. Microbial biomass C and N were unaffected by the treatments, while the microbial biomass P increased significantly with litter addition. Soil...... of the combined treatment was also clearly different from the control based on a near-infrared reflectance (NIR) spectroscopic analysis, implying that the treatment altered the composition of soil organic matter. However, it appears that the biological processes and the microbial community composition responded...

    18. Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem

      NARCIS (Netherlands)

      Boer, de W.F.

      2000-01-01

      The input of organic matter and nutrients produced by mangrove and seagrass vegetation in the intertidal bay on Inhaca island, Mozambique, was estimated. Mean mangrove tree height was 2.20 m, diameter at breast height was 6.4 cm and density was 6047 trees per hectare. Above-ground biomass of mangrov

    19. Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone

      OpenAIRE

      V. V. Brygadyrenko

      2016-01-01

      The litter in a forest ecosystem acts as a trophic substrate, and at the same time it is the environment for litter invertebrates. But despite this fact, there has been very little research conducted on the influence of litter thickness on the structure of litter macrofauna. The litter of steppe forests contains most types of integrated communities of forest ecosystems. This means that its thickness cannot avoid playing a significant role in the functioning of the ecosystem. Following to the ...

    20. 凋落物和积雪覆盖对低温季节西南亚高山森林表层土壤脲酶动态的影响%Impacts of Litter and Snow Cover on Topsoil Urease Activity Dynamics of Subalpine Forest in Southwestern China in the Cold Season

      Institute of Scientific and Technical Information of China (English)

      马丽红; 黄雪菊; 秦纪洪; 孙辉; 李沙

      2013-01-01

      土壤脲酶(URE)活性易受到温度、地表覆盖(凋落物和积雪覆盖)、土壤水热动态等的影响,是常用的表征土壤中有机态氮转化与矿化状况的生物活性的指标之一.为探索凋落物和积雪覆盖对低温季节川西亚高山森林土壤脲酶活性的影响,以低温季节亚高山针叶林均质化土壤为研究对象,采用4种不同覆盖处理(裸露地表、凋落物覆盖、积雪覆盖、凋落物和积雪同时覆盖)进行原位培养,对各处理在低温季节(11月至翌年5月)表层(0-10 cm)和下层(10-20 cm)土壤进行采样并分析其脲酶活性动态.结果表明:(1)川西亚高山森林土壤脲酶活性在低温季节仍相对较高;整体呈现出先增高,随后急剧降低,到低温末期达到峰值的变化趋势.(2)整个低温季节凋落物和积雪对URE活性的影响均达到极显著水平,凋落物和积雪两因素之间存在显著的交互作用.凋落物和积雪覆盖动态格局深刻影响着亚高山森林的生态过程,亚高山森林高海拔土壤脲酶活性可以作为低温季节高海拔生态系统环境变化的一个短期响应特征.%Urease activity is often used as one of biochemical indices to assess soil organic nitrogen transformation and mineralization because of its vulnerability and sensitivity to soil temperature, surface cover, moisture dynamics. In order to determine impacts of litter and snow cover on topsoil urease activity dynamics of subalpine forest in southwestern China in the cold season, based on homogenized soil columns incubated in situ under four treatments (i. e. , bare soil without snowcover, bare soil with snowcover. litter without snow-cover, and litter with snowcover), soil of 0-10 cm and 10-20 cm layers of the four treatments were sampled in October, December, January, February, March and May, respectively, and their urease activities were analyzed. The results showed that: (1) urease activities were relatively higher in subalpine forest

    1. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005; Biodegradation des litieres et sequestration du carbone dans les ecosystemes cultives et perennes. Rapport final des travaux Avril 2005

      Energy Technology Data Exchange (ETDEWEB)

      Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie Laon-Reims-Mons (France); Balesdent, J. [CNRS-CEA-Univ.de la Mediterranee, UMR 6191, Lab. d' Ecologie Microbienne de la Rhizosphere, 13 - Saint Paul lez Durance (France); Dambrine, E.; Zeller, B. [Institut National de Recherches Agronomiques (INRA), Unite Biogeochimie des Ecosystemes Forestiers, 54 - Nancy (France); Loiseau, P.; Personeni, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie, 63 - Clermont-Ferrand (France)

      2002-07-01

      The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as {sup 13}C for carbon, based on the use of enriched or depleted {sup 13}C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on

    2. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.

      Science.gov (United States)

      Moser, Gerald; Schuldt, Bernhard; Hertel, Dietrich; Horna, Viviana; Coners, Heinz; Barus, Henry; Leuschner, Christoph

      2014-05-01

      Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood

    3. 雨雪冰冻灾害后粤北森林各林型凋落物动态%Litter dynamics in different forest types suffered an extreme ice storm in the subtropical region, southern China

      Institute of Scientific and Technical Information of China (English)

      徐雅雯; 朱丽蓉; 吴可可; 周志平; 彭少麟

      2011-01-01

      为了考察中国亚热带不同森林类型对雨雪冰冻灾害的响应模式,以粤北天井山3种代表性的林型一针叶林、阔叶林和混交林为对象,于不同森林类型中比较受损森林与未受损森林在凋落物年产量、成分及月际动态方面的差异,从而在凋落物水平上反映不同森林类型在雨雪冰冻灾害后的早期恢复力.研究结果表明,灾后针叶林、阔叶林和混交林的年凋落量分别为0.52、3.21、1.37 t·hm2,比未受损的同种森林类型年凋落量显著减少,减少程度分别为87.89%、53.46%、76.78%.由此可以看出阔叶林的植被恢复情况最好,说明在凋落物水平上,其灾后恢复的早期阶段恢复力最强.在凋落物成分方面,灾后各森林类型叶凋落物所占比例显著增加,枝凋落物所占比例则显著减少.受损针叶林和阔叶林的凋落物月动态与未受损森林基本一致,但其波动幅度较小;在混交林中,受损和未受损森林其凋落量的季节动态模式则表现出不一致性且为不规则型.根据研究结果,建议在亚热带地区优先考虑种植阔叶林以促进受损森林在类似雨雪冰冻灾害的极端天气后的恢复.%To understand the responses pattern of subtropical forests recovered from the damage of ice storm happened in southern China during Jan to Feb in 2008, we take three different forests, including coniferous forest, mixed forest and broad-leaf forest located in Tianjing Mountain, as a case to compare their differences in annual litter production, component and seasonal fluctuation in undamaged and damaged plots in each forest type and access their recuperability at the early stage of natural recovery. It is indicated that the annual input of litter in the damaged forests was up to 0.52 t·hm-1, 3.21 t·hm-2 and 1.37 t·hm-2 in coniferous forest, broad-leaved forest and mixed forest, respectively. Compared with the normal annual amount of litter in subtropical forest of

    4. Litter layer influence on the thermal regime of a sandy soil under a pine forest in mediterranean Portugal

      OpenAIRE

      Andrade, José; Abreu, Francisco

      2004-01-01

      Decomposition of needle litter is a relevant process in applied ecology, namely in the nutrient dynamics of forested ecosystems. Soil temperature strongly influences soil microbian activity. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured at several depths down to 16 cm, with and without litter layer. Daily cycles were analysed by means of Fourier series. Daily cycles were studied based on data from four days defined according to soil water content....

    5. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review

      Directory of Open Access Journals (Sweden)

      Zhao Chen

      2014-01-01

      Full Text Available Chicken litter or chicken litter-based organic fertilizers are usually recycled into the soil to improve the structure and fertility of agricultural land. As an important source of nutrients for crop production, chicken litter may also contain a variety of human pathogens that can threaten humans who consume the contaminated food or water. Composting can inactivate pathogens while creating a soil amendment beneficial for application to arable agricultural land. Some foodborne pathogens may have the potential to survive for long periods of time in raw chicken litter or its composted products after land application, and a small population of pathogenic cells may even regrow to high levels when the conditions are favorable for growth. Thermal processing is a good choice for inactivating pathogens in chicken litter or chicken litter-based organic fertilizers prior to land application. However, some populations may become acclimatized to a hostile environment during build-up or composting and develop heat resistance through cross-protection during subsequent high temperature treatment. Therefore, this paper reviews currently available information on the microbiological safety of chicken litter or chicken litter-based organic fertilizers, and discusses about further research on developing novel and effective disinfection techniques, including physical, chemical, and biological treatments, as an alternative to current methods.

    6. Analysis of litter size and average litter weight in pigs using a recursive model

      DEFF Research Database (Denmark)

      Varona, Luis; Sorensen, Daniel; Thompson, Robin

      2007-01-01

      An analysis of litter size and average piglet weight at birth in Landrace and Yorkshire using a standard two-trait mixed model (SMM) and a recursive mixed model (RMM) is presented. The RMM establishes a one-way link from litter size to average piglet weight. It is shown that there is a one-to-one...

    7. Litter NSV; marine litter monitoring by northern fulmars (a pilot study)

      NARCIS (Netherlands)

      Franeker, van J.A.; Meijboom, A.

      2002-01-01

      The northern fulmar is a seabird known to consume litter such as plastic. The Dutch government has asked for an investigation of the possibility to use stomach contents of beach-washed fulmars as a monitoring tool for the abundance of marine litter inthe North Sea. Such monitoring is of importance i

    8. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils

      Science.gov (United States)

      Wang, Qingkui; He, Tongxin; Liu, Jing

      2016-01-01

      Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding 13C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, response of the temperature sensitivity (Q10) of SOM decomposition to the increase in litter input was investigated. The temperature dependences of priming effect (PE) and soil microbial community were analyzed. The Q10 for CF soil significantly decreased from 2.41 in no-litter treatment to 2.05 in litter-added treatment and for BF soil from 2.14 to 1.82, suggesting that litter addition decreases the Q10. PE in the CF soil was 24.9% at 20 °C and 6.2% at 30 °C, and in the BF soil the PE was 8.8% at 20 °C and −7.0% at 30 °C, suggesting that PE decreases with increasing temperature. Relative PE was positively related to the concentrations of Gram-negative bacterial and fungal PLFAs. This study moves a step forward in understanding warming effect on forest carbon cycling by highlighting interaction effect of litter input and warming on soil carbon cycling. PMID:27644258

    9. Non-additive effects of litter diversity on greenhouse gas emissions from alpine steppe soil in Northern Tibet.

      Science.gov (United States)

      Chen, Youchao; Sun, Jian; Xie, Fangting; Yan, Yan; Wang, Xiaodan; Cheng, Genwei; Lu, Xuyang

      2015-12-04

      While litter decomposition is a fundamental ecological process, previous studies have mainly focused on the decay of single species. In this study, we conducted a litter-mixing experiment to investigate litter diversity effects on greenhouse gas (GHG) emissions from an alpine steppe soil in Northern Tibet. Significant non-additive effects of litter diversity on GHG dynamics can be detected; these non-additive effects were the result of species composition rather than species richness. Synergistic effects were frequent for CO2 and N2O emissions, as they were found to occur in 70.5% and 47.1% of total cases, respectively; antagonistic effects on CH4 uptake predominated in 60.3% of the cases examined. The degree of synergism and antagonism may be significantly impacted by litter chemical traits, such as lignin and N, lignin:N ratio, and total phenols during decomposition (P effects changed over incubation time. Our study provides an opportunity to gain insight into the relationship between litter diversity and soil ecological processes. The results indicate that higher plant diversity may generally enhance CO2 and N2O emissions while inhibiting CH4 uptake; meanwhile, the direction and strength of non-additive effects appear to be related to litter chemical traits.

    10. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils.

      Science.gov (United States)

      Wang, Qingkui; He, Tongxin; Liu, Jing

      2016-01-01

      Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding (13)C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, response of the temperature sensitivity (Q10) of SOM decomposition to the increase in litter input was investigated. The temperature dependences of priming effect (PE) and soil microbial community were analyzed. The Q10 for CF soil significantly decreased from 2.41 in no-litter treatment to 2.05 in litter-added treatment and for BF soil from 2.14 to 1.82, suggesting that litter addition decreases the Q10. PE in the CF soil was 24.9% at 20 °C and 6.2% at 30 °C, and in the BF soil the PE was 8.8% at 20 °C and -7.0% at 30 °C, suggesting that PE decreases with increasing temperature. Relative PE was positively related to the concentrations of Gram-negative bacterial and fungal PLFAs. This study moves a step forward in understanding warming effect on forest carbon cycling by highlighting interaction effect of litter input and warming on soil carbon cycling. PMID:27644258

    11. Effects of forest fragmentation and habitat degradation on West African leaf-litter frogs

      NARCIS (Netherlands)

      A. Hillers; M. Veith; M.-O. Rödel

      2008-01-01

      Habitat degradation alters the dynamics and composition of anuran assemblages in tropical forests. The effects of forest fragmentation on the composition of anuran assemblages are so far poorly known. We studied the joint influence of forest fragmentation and degradation on leaf-litter frogs. We spe

    12. Conservative species drive biomass productivity in tropical dry forests

      NARCIS (Netherlands)

      Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der Masha T.; Lohbeck, Madelon; Poorter, Lourens

      2016-01-01

      Forests account for a substantial part of the terrestrial biomass storage and productivity. To better understand forest productivity, we need to disentangle the processes underlying net biomass change. We tested how above-ground net biomass change and its underlying biomass dynamics (biomass recr

    13. Effects of litter position on mass loss and nitrogen release in the semiarid Patagonian steppe

      Science.gov (United States)

      Austin, A. T.

      2007-05-01

      The patchy distribution of vegetation in arid and semiarid ecosystems results in a mosaic of microsites of soil properties and variable abiotic conditions, including the well-documented "islands of fertility", low nutrient conditions in exposed bare soil and large amounts of standing dead material. I evaluated the relative importance of litter position on mass loss and nutrient release in a variety of realistic litter positions both in vegetated, unvegetated, aerial and buried microsites in a natural semiarid steppe in Patagonia, Argentina. Position demonstrated a highly significant effect on mass loss for all litter types (P<0.0001), but surprisingly, the fastest decomposition occurred in litter that was suspended in aerial positions or buried (k=0.25 and 0.32 year-1, respectively), intermediate values for mass loss of litter in bare soil and in shrub removal patches (k=0.21 and 0.24 year-1, respectively), and markedly slowest decomposition occurring under shrub patches (k = 0.018 year-1). In contrast, nutrient release showed a very different pattern with nutrient immobilization occurring only in shrub and buried microsites while all other positions demonstrated a gradual decrease in nitrogen over time. These results support the idea that abiotic photodegradation may be an important driver affecting carbon losses in litter in positions exposed to solar radiation, while nutrient dynamics appear to be largely biotically mediated and concentrated in photoprotected areas where biotic activity dominates. Global change may differentially affect carbon and nutrient turnover due to the relative importance of abiotic and biotic factors affecting litter decomposition in semiarid ecosystems.

    14. Changes in tundra vascular plant biomass over thirty years at Imnavait Creek, Alaska, and current ecosystem C and N dynamics.

      Science.gov (United States)

      Bret-Harte, M. S.; Shaver, G. R.; Euskirchen, E. S.; Huebner, D. C.; Drew, J. W.; Cherry, J. E.; Edgar, C.

      2015-12-01

      Understanding the magnitude of, and controls over, carbon fluxes in arctic ecosystems is essential for accurate assessment and prediction of their responses to climate change. In 2013, we harvested vegetation and soils in the most common plant community types in source areas for fluxes measured by eddy covariance towers located in three representative Alaska tundra ecosystems along a toposequence (a ridge site of heath tundra and moist non-acidic tundra, a mid-slope site of moist acidic tussock tundra, and a valley bottom site of wet sedge tundra and moist acidic tussock tundra) at Imnavait Creek, Alaska. This harvest sought to relate biomass, production, composition, and C and N stocks in soil and vegetation, to estimates of net ecosystem CO2 exchange obtained by micrometeorological methods. Soil C and N stocks in the seasonally unfrozen soil layer were greatest in the wet sedge community, and least in the heath community. In contrast, moist acidic tussock tundra at the valley bottom site had the highest C and N stocks in vascular plant biomass, while nearby wet sedge tundra had the lowest. Overall, soil C:N ratio was highest in moist acidic tussock tundra at the mid-slope site. Aboveground biomass of vascular plants in moist acidic tundra at the mid-slope site was nearly three times higher than that measured thirty years earlier in vegetation harvests of nearby areas at Imnavait Creek. Other harvests from sites near Toolik Field Station suggest that vascular plant biomass in moist acidic tundra has increased in multiple sites over this time period. Increased biomass in the mid-1990s corresponds with a switch from mostly negative to mostly positive spatially-averaged air temperature anomalies in the climate record. All our sites have been annual net sources of CO2 to the atmosphere over nine years of measurement, but in the last two years, the valley bottom site has been a particularly strong source, due to CO2 losses in fall and winter that correspond with a

    15. UVB Exposure Does Not Accelerate Rates of Litter Decomposition in a Semiarid Riparian Ecosystem

      Science.gov (United States)

      Uselman, S. M.; Snyder, K. A.; Blank, R. R.; Jones, T. J.

      2010-12-01

      Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium

    16. Natural zeolites in diet or litter of broilers.

      Science.gov (United States)

      Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

      2016-04-01

      This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter. PMID:26879673

    17. [Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest].

      Science.gov (United States)

      Wang, Ning; Wang, Mei-ju; Li, Shi-lan; Wang, Nan-nan; Feng, Fu-juan; Han, Shi-jie

      2015-05-01

      Broadleaved Korean pine mixed forest is the zonal climax vegetation in Northeast China and it plays a significant role in maintaining the ecological security. Changbai Mountains is a suitable region to study the positive and negative feedback mechanisms of temperate forest for precipitation variation. This study analyzed responses of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN) to precipitation variation (± 30%) in original broadleaved Korean pine mixed forest of Changbai Mountains. The results showed that, during the growing seasons (from May to September), the averages of SMBC and SMBN were 879.09 and 100.03 mg · kg(-1), respectively. Moreover, both of these two parameters gradually decreased with the soil depth. The contents of SMBC and SMBN all increased with the increasing precipitation, and the changes of SMBC and SMBN in the 0-5 cm soil layer were stronger than in the 5-10 cm soil layer. The value of SMBC/SMBN declined with the increase of precipitation. The precipitation variation significantly influenced the means of SMBC and SMBN. Compared with precipitation reduction, precipitation enhancement affected the indices much significantly. Both SMBC and SMBN showed similar seasonal patterns, which were the lowest in May, and after that, they increased and then decreased and increased again, showing 1-2 peaks in the growing season. However, the value and occurring time of the peaks varied with the precipitation and soil layer, and the seasonal variations of SMBC and SMBN in the 0-5 cm soil layer were higher than in the 5-10 cm soil layer. SMBC and SMBN had significant positive correlation with organic matter and total nitrogen content. The variances of soil physical and chemical properties caused by precipitation variation were closely related with the difference in spatial-temporal patterns of the soil microbial biomass in the forest. In conclusion, the precipitation variations could cause the change of the soil microbial

    18. Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows

      Institute of Scientific and Technical Information of China (English)

      ZHANG Tian; ZHAO Ke-bin; WANG Li-xian; WANG Li-gang; SHI Hui-bi; YAN Hua; ZHANG Long-chao; LIU Xin; PU Lei; LIANG Jing; ZHANG Yue-bo

      2016-01-01

      Litter uniformity, which is usualy represented by within-litter weight coefifcient of variation at birth (CVB), could inlfuence litter performance of sows and the proiftability of pig enterprises. The objective of this study was to characterize CVB and its effect on other reproductive traits in Large White sows. Genetic parameters and genetic correlation of the reproductive traits, including CVB, within-litter weight coefifcient of variation at three weeks (CVT), total number born (TNB), number born alive (NBA), number born dead (NBD), gestation length (GL), piglet mortality at birth (M0), piglet mortality at three weeks (M3), total litter weight at birth (TLW0), and total litter weight at three weeks (TLW3) were estimated for 2032 Large White litters. The effects of parity and classiifed litter size on CVB, CVT, TNB, NBA, NBD, GL, M0, M3, TLW0, and TLW3 were also estimated. The heritabilities of these reproductive traits ranged from 0.06 to 0.17, with the lowest heritability for CVB and the highest heritability for TLW0. Phenotypic and genetic correlations between these reproductive traits were low to highly positive and negative (ranging from −0.03 to 0.93, and −0.53 to 0.93, respectively). The genetic correlations between TNB and CVB, and between M0 and CVB were 0.32 and 0.29, respectively. In addition, CVB was signiifcantly inlfuenced by parity and litter size class (P<0.05). Al the results suggest that piglet uniformity should be maintained in pig production practices and pig breeding programs.

    19. LITTER AND MACRONUTRIENT DEPOSITION IN A STAND OF BLACK WATTLE (Acacia mearnsii De Wild. IN THE STATE OF RIO GRANDE DO SUL, BRAZIL

      Directory of Open Access Journals (Sweden)

      Márcio Viera

      2010-08-01

      Full Text Available This study evaluated litter and macronutrient deposition in a six year-old black wattle (Acacia mearnsii De Wild. stand, in Butia-RS. Five plots (18mx24m of litter were systematically allocated, each one with four trap collectors of 1 m2. The litter intercepted was collected monthly between January 2002 and December 2003. After collection, litter was divided into leaves, flowers, fruits and caterpillar (Adeloneivaia subangulata feces, oven dried, weighed, milled and analyzed for N, P, K, Ca and Mg contents. The average annual litter deposition reached 4.32 Mg ha-1, and was composed of 75.5, 11.1, 11.2 and 2.2% of leaves, flowers, fruits and feces, respectively. Litter deposition was more concentrated in the spring. The higher deposition of nutrients was through the leaf fraction, which contributed annually with a great amount of litter biomass, although not showing the highest nutrient concentrations. The supply of total amount of macronutrients to the soil was of 74.8 of N, 26.8 of K, 23.1 of Ca, 7.9 of Mg and 2.4 of P (kg ha-1.

    20. Emissions and Furnace Gas Temperature for Electricity Generation Via Co-Firing of Coal and Biomass

      Directory of Open Access Journals (Sweden)

      Shoaib Mehmood

      2015-12-01

      Full Text Available The emissions of carbon dioxide and nitrogen and sulphur oxides for electricity generation with coal and biomass co-firing are investigated and the furnace gas temperature assessed. The study uses simulation and considers fuel combinations based on two coals (bituminous coal, lignite and four types of biomass (rice husk, sawdust, chicken litter, refused derived fuel. With increasing biomass, net CO2 emissions are seen to decline significantly for all types of selected biomass, while gross carbon dioxide emissions increase for all blends except bituminous coal/refuse derived fuel, lignite/chicken litter and lignite/refuse derived fuel. The reductions in emissions of nitrogen and sulphur oxides are dependent on the contents of nitrogen and sulphur in the biomass. The results also show for all fuel combinations that increasing the biomass proportion decreases the furnace exit gas temperature.

    1. [Seasonal dynamics of algae species composition and biomass in the coastal ice of Kandalaksha Bay, the White Sea].

      Science.gov (United States)

      2012-01-01

      Ice algae were investigated in January - April in Velikaya Salma Sound (1997), Kandalaksha Inlet (2002), and Chupa Inlet (2003) of Kandalaksha Bay, the White Sea. In total, 146 taxa were found. By species number, diatoms predominated. The highest species richness was observed in Velikaya Salma Sound (108 taxa), the lowest--in Kandalarsha Inlet (51 taxa). Between the three regions, algae species composition differed significantly from each other (with similarity measured by Shimkevich-Simpson index being on the level of 0.61-0.63). Total ice algae biomass varied substantially over time and space. In all the regions it increased during ice season: in Velikaya Salma Sound from 0.08 to 4.10 mg C/m2 in Kandalaksha Inlet from 0.38 to 89 mg C/m2, in Chupa Inlet from 1.72 to 64.70 mg C/m2. Species composition of those algae contributing to biomass value to the greatest extent varied over time and space, within each region, and between the regions. Among dominating species not only ice-neritic algae (Nitzschia frigida, Pauliella taeniata, Entomoneis kjellmanii, E. paludosa, and others), but also neritic (Thalassiosira gravida, T. nordenskioeldii) and littoral ones (Amphora laevis and other) were registered. In Chupa Inlet, at sites affected by river discharge, freshwater cyanobacteria Gomphosphaeria lacustris and chlorophyte Ulothrix implexa dominated. In one case the dominating species was found to be snow algae Rhaphidonema nivale. PMID:23330401

    2. Biomass dynamics and 137Cs cycling in floating-leaved macrophytes in a nuclear-contaminated aquatic ecosystem

      International Nuclear Information System (INIS)

      The purpose of these studies was to provide system-wide estimates of quantities of radioactive 137Cs cycling through above-sediment biomass of dominant macrophyte species during a growing season in Pond B, an abandoned cooling reservoir on the Department of Energy's Savannah River Plant, SC. Three floating-leaved species comprised 50-60% of plant standing crop in this softwater system and were the subject of production studies stratified by water depth. Turnover rates for leaf/petiole biomass averaged 2%, 3% and 5% day-1 and 5.9, 7.4 and 14.7 yr-1 for Nymphaea odorata, Brasenia schreberi, and Nymphoides cordata, respectively. Turnover rates varied by season, water depth, and levels of herbivory, depending on species. 137Cs concentrations in plants did not different significantly by water depth, but were higher in petioles than in leaves. Transplant experiments determined that 137Cs was absorbed readily from the water column, and not from sediments, by all three species

    3. Biomass energy

      International Nuclear Information System (INIS)

      Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

    4. Litter decomposition in burned corsican pine stands in Turkey

      OpenAIRE

      Küçük, Mehmet; Sağlam, Bülent; Dinç, Musa; Duman, Ahmet

      2014-01-01

      This study was carried out to determine the effects of forest fire on litter decomposition in Corsican pine (P. nigra) stands. The study is located in Vezirkopru Forest area in Samsun, Turkey. We made measurements of litter decomposition in 80 to 100 years old stands subjected to prescribed burning. Measurements were made between November, 2013 and October, 2014. 20x20 cm litter bags were placed on soil surface and collected in July and October. Sampling time had significant effect on litter...

    5. White popular (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

      Energy Technology Data Exchange (ETDEWEB)

      Ciadamidaro, L.; Madejon, P.; Cabrera, F.; Madejon, E.

      2014-06-01

      Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health. Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH 2.66) and a non-contaminated soil (RHU pH 7.19). Materials and methods: Soil samples were placed in 2,000 cm{sup 3} microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH{sub 4}{sup 4}+-N) and nitrate (NO{sub 3}{sup -} -N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl{sub 2}) were determined at different times of incubation. Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO{sub 3} –-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH{sub 4}{sup +}-N and NO{sub 3}{sup -} -N, microbial biomass N and protease activity. Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle. (Author)

    6. Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change?

      Science.gov (United States)

      van Geffen, Koert G; Berg, Matty P; Aerts, Rien

      2011-12-01

      As a result of low decomposition rates, high-latitude ecosystems store large amounts of carbon. Litter decomposition in these ecosystems is constrained by harsh abiotic conditions, but also by the absence of macro-detritivores. We have studied the potential effects of their climate change-driven northward range expansion on the decomposition of two contrasting subarctic litter types. Litter of Alnus incana and Betula pubescens was incubated in microcosms together with monocultures and all possible combinations of three functionally different macro-detritivores (the earthworm Lumbricus rubellus, isopod Oniscus asellus, and millipede Julus scandinavius). Our results show that these macro-detritivores stimulated decomposition, especially of the high-quality A. incana litter and that the macro-detritivores tested differed in their decomposition-stimulating effects, with earthworms having the largest influence. Decomposition processes increased with increasing number of macro-detritivore species, and positive net diveristy effects occurred in several macro-detritivore treatments. However, after correction for macro-detritivore biomass, all interspecific differences in macro-detritivore effects, as well as the positive effects of species number on subarctic litter decomposition disappeared. The net diversity effects also appeared to be driven by variation in biomass, with a possible exception of net diversity effects in mass loss. Based on these results, we conclude that the expected climate change-induced range expansion of macro-detritivores into subarctic regions is likely to result in accelerated decomposition rates. Our results also indicate that the magnitude of macro-detritivore effects on subarctic decomposition will mainly depend on macro-detritivore biomass, rather than on macro-detritivore species number or identity.

    7. Impact of the Alaskan Stream flow on surface water dynamics, temperature, ice extent, plankton biomass, and walleye pollock stocks in the eastern Okhotsk Sea

      Science.gov (United States)

      Prants, S. V.; Andreev, A. G.; Budyansky, M. V.; Uleysky, M. Yu.

      2015-11-01

      Year-to-year changes of the Alaskan Stream surface flow, forming the northern boundary of the western subarctic cyclonic gyre in the Pacific, impact the dynamics of water in the eastern Okhotsk Sea. It is shown by Lagrangian simulation of transport of the Alaskan Stream waters in 20 year-long AVISO velocity field and direct computation of the corresponding fluxes that an intensification/weakening of the Alaskan Stream current leads to increased/decreased northward fluxes in the areas of the Krusenstern and Fourth Kuril straits connected the Okhotsk Sea with the Pacific Ocean. Enhancement of the Alaskan Stream flux is accompanied by an increase in water temperature and decreasing ice area in the Okhotsk Sea in winter. The Alaskan Stream surface flux is shown to be negatively correlated with satellite-derived chlorophyll-a concentration in May from r = - 0.68 to - 0.73 in 1998-2013 and with winter-spring biomass of large-sized zooplankton with r = - 0.70 in 1995-2012. It is positively correlated with winter-spring biomass of small- and medium-sized zooplankton in the eastern Okhotsk Sea with r = 0.74 in 1995-2012.

    8. A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition

      Science.gov (United States)

      Tang, J. Y.; Riley, W. J.

      2013-12-01

      substrates. We then applied the EC and ECA kinetics to a guild based C-only microbial litter decomposition model and found that both approaches successfully simulated the commonly observed (i) two-phase temporal evolution of the decomposition dynamics; (ii) final asymptotic convergence of the lignocellulose index to a constant that depends on initial litter chemistry and microbial community structure; and (iii) microbial biomass proportion of total organic biomass (litter plus microbes). In contrast, the MM kinetics failed to realistically predict these metrics. We therefore conclude that the ECA kinetics are more robust than the MM kinetics in representing complex microbial, C substrate, and mineral surface interactions. Finally, we discuss how these concepts can be applied to other consumer-substrate networks.

    9. A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition

      Directory of Open Access Journals (Sweden)

      J. Y. Tang

      2013-06-01

      multiple substrates. We then applied the EC and ECA kinetics to a guild based C-only microbial litter decomposition model and found that both approaches successfully simulated the commonly observed (i two-phase temporal evolution of the decomposition dynamics; (ii final asymptotic convergence of the lignocellulose index to a constant that depends on initial litter chemistry and microbial community structure; and (iii microbial biomass proportion of total organic biomass (litter plus microbes. In contrast, the MM kinetics failed to realistically predict these metrics. We therefore conclude that the ECA kinetics is more robust than the MM kinetics in representing complex microbial, C substrate, and mineral surface interactions. Finally, we discuss how these concepts can be applied to other consumer-substrate networks.

    10. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.

      Science.gov (United States)

      Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey; Garnier-Laplace, Jacqueline; Adam-Guillermin, Christelle

      2016-08-15

      The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes.

    11. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.

      Science.gov (United States)

      Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey; Garnier-Laplace, Jacqueline; Adam-Guillermin, Christelle

      2016-08-15

      The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. PMID:27110974

    12. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

      Directory of Open Access Journals (Sweden)

      Krystal de Alcantara Notaro

      2014-04-01

      Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

    13. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

      OpenAIRE

      Marc A. Rosen; Shoaib Mehmood; Bale V. Reddy

      2012-01-01

      The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel) and two coals (bituminous coal and lignite) are considered. Key system performance parameters are evaluated for various fuel combina...

    14. Current status on marine litter indicators in Nordic waters

      DEFF Research Database (Denmark)

      Strand, Jakob; Tairova, Zhanna; Magnusson, Kerstin;

      Status for project on Marine litter in the Nordic waters. This includes a review of Nordic studies on marine litter indicators. Various studies as part of either research or existing monitoring have provided information on occurrence of marine litter in Nordic waters from Baltic Sea to the Arctic....

    15. Long-term litter decomposition controlled by manganese redox cycling.

      Science.gov (United States)

      Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

      2015-09-22

      Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates. PMID:26372954

    16. Dynamics of Vegetation Biomass Along the Chronosequence in Hailuogou Glacier Retreated Area, Mt. Gongga%贡嘎山海螺沟冰川退缩区原生演替序列植被生物量动态

      Institute of Scientific and Technical Information of China (English)

      杨丹丹; 罗辑; 佘佳; 唐荣贵

      2015-01-01

      In order to better understand the vegetation biomass changes and distribution characteristics of different components along time, seven sampling plots (S0~S7) representing different succession stages (bare land, 17 years, 35 years, 49 years,56 years,85 years and 125 years) were chosen through investigation of the 125-year-old chronosequence in Hailuogou glacier retreated area, Mt. Gongga. Results showed that stand age and plantation types were two main factors leading to biomass change. Total living biomass of the vegetation and biomass of the tree layer both presented an exponential growth pattern along time, separately ranged from 10.195 Mg·hm-2 to 366.122 Mg·hm-2, from 9.162 Mg·hm-2 to 332.461 Mg·hm-2. Tree layer contributed most to the total living biomass, which accounted for more than 89.871 percent during all stages; in contrast, biomass of the other layers only had little influence on the total biomass and showed a tendency of shrub layer > ground cover > the herb layer. What’s more, these underwood layers were more affected by the community environment. Biomass of the coarse woody debris and annual leaves litter also accumulated during the succession chronosequence, biomass of the coarse woody debris increase to the peak at S5, where the mixed broadleaf-conifer forest was growing while the biomass of the annual leaves litter fitted well with the exponential growth model during the whole succession chronosequence. In the former 60 years of succession, biomass of the tree layer mainly came from deciduous broad-leaf species such as Salix rehderana, Hippophae rhamnoides and Populus purdomii, in the last 60 years of succession, evergreen coniferous trees, for instance, Abies fabri and Picea brachytyla contributed most to the total layer biomass (>93.070%). As for biomass allocation related to various organs, the trunk occupied the greatest proportion of the tree layer, which made up 56.388%~72.658% of the total biomass,branch and roots came secondly

    17. Biomass recalcitrance

      DEFF Research Database (Denmark)

      Felby, Claus

      2009-01-01

      , to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...... of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options. "Biomass Recalcitrance" is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology.......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...

    18. Biomass [updated

      Energy Technology Data Exchange (ETDEWEB)

      Turhollow Jr, Anthony F [ORNL

      2016-01-01

      Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

    19. Ecological restoration of litter in mined areas

      Science.gov (United States)

      Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro

      2016-04-01

      The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.

    20. Arsenic speciation and reactivity in poultry litter

      Science.gov (United States)

      Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

      2003-01-01

      Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (amendment effects on As contamination in surrounding soilwater environments.

    1. Ballonnen in zee = balloons as marine litter

      NARCIS (Netherlands)

      Franeker, van J.A.

      2008-01-01

      Releasing balloons seems harmless. However, remains of balloons, especially valves and ribbons are becoming a common and persistent type of marine litter found on beaches. Following Dutch Queens day 2007, large numbers of Dutch balloons were found in Normandy, France. Animals may become entangled in

    2. Morphogenetic Litter Types of Bog Spruce Forests

      Directory of Open Access Journals (Sweden)

      T. T. Efremova

      2015-02-01

      Full Text Available For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss-hypnum spruce forest can be characterized as medium thickness (9–17 cm with high storage of organic matter (77–99 t/ha, which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, which depend on the content of mineral inclusions in organogenic substrate and the degree of its drainage. The differentiation of litter subhorizons was performed, visual diagnostic indicators of fermentative layers were characterized, and additional (indexes to indicate their specificity were developed. Peat- and peaty-fermentative, humified-fermentative and (black mold humus-fermentative layers were selected. Peat- and peaty-fermentative layers are characterized by content of platy peat macroaggregates of coarse vegetable composition, the presence of abundant fungal mycelium and soil animals are the primary decomposers – myriopoda, gastropoda mollusks. Humified-fermentative layers are identified by including the newly formed amorphous humus-like substances, nutty-granular structural parts of humus nature and soil animals’ humificators – enchytraeids and earthworms. (Black mold humus-fermentative layers are diagnosed by indicators with similar humified-fermentative, but differ from them in clay-humus composition of nutty-granular blue-grey parts. The nomenclature and classification of moss litter were developed on the basis of their diagnostic characteristics of fermentative layers – peat, peaty, reduced peaty, (black mold humus-peaty, reduced (black mold humus-peaty. Using the method of discriminant analysis, we revealed that the physical-chemical properties, mainly percentage of ash and decomposition degree of plant substrate, objectively

    3. Litter NSV; marine litter monitoring by northern fulmars (a pilot study)

      OpenAIRE

      Franeker, van, JJ Hans; Meijboom, A.

      2002-01-01

      The northern fulmar is a seabird known to consume litter such as plastic. The Dutch government has asked for an investigation of the possibility to use stomach contents of beach-washed fulmars as a monitoring tool for the abundance of marine litter inthe North Sea. Such monitoring is of importance in view of the implementation of the EU directive on port reception facilities and the development of ecological quality objectives by ICES and OSPAR.

    4. Population dynamics in a 6-year old coppice culture of poplar. I. Clonal differences in stool mortality, shoot dynamics and shoot diameter distribution in relation to biomass production

      International Nuclear Information System (INIS)

      Poplar trees have the capacity to regrow a number of shoots after being coppiced. In April 1996, a high density field trial with 17 different poplar (Populus) clones was established in Boom (Belgium) on a former waste disposal site. At the end of the establishment year (December 1996), all plants were cut back to a height of 5 cm to create a coppice culture. Four years after the first coppicing in January 2001, the stand was cut back again. During 6 years (1996-2001), shoot diameters and number of stools and shoots were assessed every year for all clones. Before the second coppicing, biomass production of all clones was estimated. Significant clonal differences were found in stool mortality, number of shoots per stool and biomass production. After 6 years (December 2001), stool mortality averaged 7-65%. After the first coppicing (1997), the average number of shoots ranged between three and seven shoots per stool; after the second coppicing, the average number of shoots ranged between 8 and 19 shoots per stool. During the 4 years following the first coppicing, shoot density decreased exponentially, leaving mostly one or two dominant shoots per stool by the end of 2000. The other shoots had no significant influence on stool dry mass, since most of the surviving shoots were suppressed and small and made little contribution to total dry mass. The diameter of the dominant shoot(s) was the most important determinant of stool dry mass. Mean annual biomass production ranged from 2 to 11 Mg ha-1

    5. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest.

      Science.gov (United States)

      Dore, Sabina; Fry, Danny L; Collins, Brandon M; Vargas, Rodrigo; York, Robert A; Stephens, Scott L

      2016-01-01

      Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60-70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related

    6. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest.

      Directory of Open Access Journals (Sweden)

      Sabina Dore

      Full Text Available Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass, and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%. Soil carbon content (upper 15 cm was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60-70% but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25% by thinning and reduced (12% by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and

    7. Biomass power; Biomasse-Energie

      Energy Technology Data Exchange (ETDEWEB)

      Woergetter, M.

      2003-07-01

      The author reports about use of biomass in Austria and Bavaria: power generation, production of biodiesel, bioethanol, energy efficiency of small biomass furnaces. (uke) [German] Bioenergie wird von breiten Kreisen als wichtiger Ansatz in Richtung einer nachhaltigen Entwicklung in Europa gesehen. Die Herausforderung liegt dabei im neuen Herangehen an Entscheidungen; Dimensionen der Wirtschaft, der Umwelt und der Gesellschaft sind dabei zu beruecksichtigen. Bioenergie ist somit keine reine Frage der Umwelt, sondern zielt auf den Umbau unseres Systems in Richtung Nachhaltigkeit. (orig.)

    8. 甜槠凋落叶分解中土壤节肢动物群落结构动态及其对森林片段化的响应%Dynamics of soil arthropod community structure and its responses to forest fragmentation during the decomposition of Castanopsis eyrei leaf litter

      Institute of Scientific and Technical Information of China (English)

      罗媛媛; 袁金凤; 沈国春; 赵谷风; 于明坚

      2011-01-01

      选取浙、闽、赣交界山地5个不同的常绿阔叶林群落(1处连续森林和4处片段化森林),对优势种甜槠凋落叶分解过程中土壤节肢动物动态进行了研究.5个研究样地共获得土壤节肢动物899头,分属9纲25目,其中鳞翅目占个体总数的10%以上,为优势类群;膜翅目、弹尾目、双翅目、前气门亚目和地蜈蚣目为常见类群.凋落叶分解速率与土壤节肢动物的类群数、个体数随季节动态呈现相一致的变化趋势.8月凋落物分解最快,土壤节肢动物类群和个体数最多;而4至6月和12月情况与之相反.片段化森林和连续森林在土壤节肢动物的类群数、个体数和物种多样性方面均显示出差异,面积效应和边缘效应在其中都起了一定的作用.%Five evergreen broad-leaved forests (one continuous forest and four fragmented forests)in the mountain areas in the juncture of Zhejiang, Fujian, and Jiangxi Provinces, East China were selected as test objects to study the dynamics of soil arthropod community structure and its responses to forest fragmentation during the decomposition of dominant tree species Castanopsis eyrei leaf litter. A total of 899 soil arthropods were collected, belonging to 9 classes and 25 orders. Lepidoptera was the dominant taxon, accounting for 10% of the individual, while Hymenoptera, Collembola,Diptera, Prostigmata, and Geophilomorpha were the common taxa. The decomposition rate of C.eyrei leaf litter was the highest in August and lower in April-June and December, which was in accordance with the seasonal dynamics of the taxa number and individual number of soil arthropods.Meanwhile, the taxa number, individual number, and species diversity of soil arthropods differed between continuous forest and fragmented forests, suggesting that both area effect and edge effect affected the dynamics of soil arthropod community structure during the decomposition of C. eyrei leaf litter.

    9. Subtidal littering: Indirect effects on soft substratum macrofauna?

      Directory of Open Access Journals (Sweden)

      I. AKOUMIANAKI

      2012-12-01

      Full Text Available Changes in macrofauna community structure, abundance and species richness were examined both before and one year after the deployment of plastic and glass bottles at littered (litter density: 16 items / 100 m2 and non-littered (control surfaces at three unimpacted coastal areas of the western Saronikos Gulf (Greece. In parallel, LOI% at the adjacent sediments and changes in the composition of feeding types of the megaepifauna that colonized the litter were examined across treatments. Significant changes in macrofauna community structure were demonstrated between before and after littering. At only one of the sites was there detected a significant difference in macrofauna community structure between control and littered plots after littering. This difference was linked with a significant increase in the abundance of opportunistic polychaete species and LOI% levels in the sediment surface due to the entrapment of macrophytal debris within the littered surface. The study did not show a consistent direct response of macroinfauna community to litter and the associated megafauna. Unlike the megafauna attracted by litter items, soft-substratum macrofauna is less responsive to the addition of novel hard substrates in adjacent sediments. Alternatively, it could be that the impact of littering with small items triggers a macrofauna response detectable in the long-run.

    10. Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone

      Directory of Open Access Journals (Sweden)

      V. V. Brygadyrenko

      2016-02-01

      Full Text Available The litter in a forest ecosystem acts as a trophic substrate, and at the same time it is the environment for litter invertebrates. But despite this fact, there has been very little research conducted on the influence of litter thickness on the structure of litter macrofauna. The litter of steppe forests contains most types of integrated communities of forest ecosystems. This means that its thickness cannot avoid playing a significant role in the functioning of the ecosystem. Following to the standard methodologies, Invertebrates were collected using pit-fall traps in deciduous forests of Nikolaev, Zaporizhzhya, Dnipropetrovsk, Donetsk and Kharkiv oblasts, which are characterized by different types of geomorphological profile, different moisture conditions, soil salinity, tree crown and herbaceous vegetation density, soil texture and other factors. The total number of macrofauna increases in conditions where litter thickness exceeds40 mmin comparison with forest ecosystems with fragmented and average capacity litter. The number of litter macrofauna species also increases from 11–23 to 38 species on average when litter thickness increases to more than40 mm. The Shannon and Pielou diversity indexes show no definite tendencies to change in relation to changing degrees of litter thickness. At sites of greater thickness of the litter layer, the corresponding increase in the absolute number of litter mesofauna invertebrates is mostly due to saprophages, and the increase the number of species – due to zoophages. The optimum structure of domination was observed at sites with maximum thickness of litter. The proportion of large species shows no statistically significant change in relation to variations in litter thickness. The qualitative compound of the fauna at sites with thick litter changes mainly due to an increase in the number of Carabidae species.

    11. Positive reinforcement of litter removal in the natural environment12

      Science.gov (United States)

      Powers, Richard B.; Osborne, J. Grayson; Anderson, Emmett G.

      1973-01-01

      Litter is an especially large and costly problem in unsupervised high-use recreational areas. This study investigated procedures to induce visitors to remove litter from an unsupervised U.S. Forest Service area in which signs attached to two litter stations instructed people to pick up and deposit litter. A small sum of money or chances on a larger sum given for participation usually resulted in more bags of litter being picked up per week. Although only a small proportion of the area's users participated in the project, ground surveys indicated the areas sampled were somewhat freer of litter during the payment condition. The results suggest that small monetary rewards may be a promising approach to litter control in unsupervised as well as supervised areas. ImagesFig. 2 PMID:16795442

    12. Microelement contents of litter, soil fauna and soil in Pinus koralensis and mixed broad-leaved forest

      Institute of Scientific and Technical Information of China (English)

      LI Jinxia; YIN Xiuqin; DONG Weihua

      2007-01-01

      The Mn,Zn and Cu contents of litter,soil fauna and soil in Pinus koraiensis and mixed broad-leaved forest in Liangshui Nature Reserve of Xiaoxing'an Mountains were analyzed in this paper,results showed that the tested microelement contents in the litter,soil fauna and soil followed the order:Mn>Zn>Cu,but varied with environmental components,for Mn the order is soil>litter>soil fauna,for Zn is soil fauna>litter and soil,and for Cu is soil fauna>soil>litter.The change range of the tested microelement contents in litter was larger in broad-leaved forest than those in coniferous forest.Different soil fauna differed in their microelementenrichment capability,the highest content of Mn,Zn and Cu existed in earthworm,centipede and diplopod,respectively.The contents of the tested microelements in soil fauna had significant correlations with their environmental background values,litter decomposition rate,food habit of soil fauna,and its absorbing selectively and enrichment to microelements.The microelements contained in 5-20 cm soil horizon were more than those in 0-5 cm humus layer,and their dynamics differed in various horizons.

    13. Energy flow between litter of Puccinellia tenuiflora community and soil microorganisms in Songnen Grassland in Northeast China

      Institute of Scientific and Technical Information of China (English)

      2002-01-01

      The energy flow process between litter of Puccinellia tenuiflora community and soil microorganisms has been studied and a compartment model established to discuss the characteristics and function of microorganism during decomposing litter. The results show that during the process of energy flow through microorganism, the energy input is 1357.84 kJ@ m-2@a-1; the energy absorbed by microorganism is 733.97 kJ@ m-2@ a-1, in which up to 552. 29 kJ@m 2. a-1 energy is consumed for respiration and the energy about 181.23 kJ@ m-2@ a-1 is formed for microorganism biomass. 95 % of the litter accumulated on the ground annually would be decomposed in 1.85 years and the decomposition index is 1.93. The mathematical model of the energy x 1 ( t ) absorbed by microorganism of the year was described as x1(t) = 733.97 - 0.82e 1.85t and the model of the energy x2(t) formed for microorganism biomass of the year is expressed as x2 (t) = 181.23 - 0.37e-1.85t + 0.005e- 4.0st. The equilibrium state of the energy absorbed by microorganism is 733.97 kJ@m-2@a-1 and the equilibrium state of the energy formed for microorganism biomass is 181.23 kJ@m-2@a-1.

    14. Free atmospheric CO2 enrichment increased above ground biomass but did not affec symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

      NARCIS (Netherlands)

      Hoosbeek, M.R.; Lukac, M.; Velthorst, E.J.; Smith, A.R.; Godbold, D.

      2011-01-01

      Through increases in net primary production (NPP), elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests ca

    15. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

      Science.gov (United States)

      Yadav, Anoop; Suthar, S; Garg, V K

      2015-10-01

      This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system. PMID:25982984

    16. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

      Science.gov (United States)

      Yadav, Anoop; Suthar, S; Garg, V K

      2015-10-01

      This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system.

    17. Biomass potential

      Energy Technology Data Exchange (ETDEWEB)

      Asplund, D. [VTT Energy, Espoo (Finland)

      1996-12-31

      Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

    18. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

      Science.gov (United States)

      Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

      2003-01-01

      Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

    19. Biomass IGCC

      Energy Technology Data Exchange (ETDEWEB)

      Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

      1996-12-31

      Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

    20. How does litter cover, litter diversity and fauna affect sediment discharge and runoff?

      Science.gov (United States)

      Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

      2013-04-01

      Litter cover plays a major role in soil erosion processes. It is known that litter cover reduces erosivity of raindrops, decreases sediment discharge and lowers runoff volume compared to bare ground. However, in the context of biodiversity, the composition of litter cover, its effect on sediment discharge and runoff volume and their influence on soil erosion have not yet been analyzed in detail. Focusing on initial soil erosion (splash), our experimental design is designated to get a better understanding of these mechanisms. The experiments were carried out within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" in subtropical China. The "New Integrated Litter Experiment (NILEx)" used as platform combining different subprojects of BEF-China dealing with "decomposition and nutrient cycling", "mechanisms of soil erosion" and "functional effects of herbivores, predators and saproxylics" in one experiment. In NILEx, 96 40cm x 40cm runoff plots on two hill slopes inside a castanea molissima forest plantation have been installed and filled with seven different types of litter cover. 16 one-species plots, 24 two-species plots, 4 four-species plots and 4 bare ground plots have been set up, each replicated once. We prepared 48 Plots with traps (Renner solution) for soil macrofauna (diplopods and collembola), so half of the plots were kept free from fauna while the other half was accessible for fauna. Rainfall was generated artificially by using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Our experiments included two runs of 20 minutes duration each, both conducted at two different time steps (summer 2012 and autumn 2012). Runoff volume and sediment discharge were measured every 5 minutes during one rainfall run. Litter coverage and litter mass were recorded at the beginning (summer 2012) and at the end of the experiment (autumn 2012). Our results show that sediment discharge as well as runoff volume decreases

    1. Weaning and separation stress: maternal motivation decreases with litter age and litter size in farmed mink

      DEFF Research Database (Denmark)

      Malmkvist, Jens; Sørensen, Dennis Dam; Larsen, Torben;

      2016-01-01

      The optimal timing of separating the mink dam from the litter is suggested to be a balance between the partly conflicting needs of the mother and the kits. Early removal of the dam or partial removal of the litter may protect the dam against exhaustion. Little is, however, known about dam stress ...... motivation. These factors should, therefore, be taken into account for determining the optimal separation time on mink farms....... and maternal motivation around the time of weaning and separation. Therefore, we investigated effects of separating the dam from the litter using brown first-parity farm mink dams (n = 374) taken away from the litter either day 49 ± 1 (7w, n = 185) or day 56 ± 1 (8w, n = 189) after birth. The aim...... was to investigate whether the dams experienced stress/had a different motivation to be reunited with the litter after7 and 8 weeks, estimated by non-invasive determination of cortisol (FCM: Faecal Cortisol Metabolites)and dam behaviour including calls the first week after separation (D0: Day of removal, D1: next...

    2. Technical Note: Enhanced reactivity of nitrogenous organohalogen formation from plant litter to bacteria

      Directory of Open Access Journals (Sweden)

      J. J. Wang

      2012-06-01

      Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on Earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, increasing reactivity for nitrogenous organohalogen yield was observed with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

    3. Contribution of litter and tree diameter increment in the eastern Amazon rainforest

      Science.gov (United States)

      Camargo, P. B.; Ferreira, M.; De Oliveira, R., Jr.; Saleska, S. R.; Alves, L. F.

      2013-12-01

      Tropical forests have a great importance in the global carbon cycle, especially with regard to biomass. Some models predict that these forests can be vulnerable to carbon loss due to global warming-induced drought increases, while others contradict this theory. So, it is necessary to assess changes in carbon storage over time to better understand the future trends of this scenario. In this sense, this work has as its main objective the evaluation of tree diameter increment and the amount of litter, in a region of the eastern Amazon rainforest. 1000 dendometric trees bands were installed in different taxonomic families and size classes over four transects represent 4 ha each, as well as 60 collectors (litter traps). The trees of the forest had a higher growth in November and a smaller diameter increment in the month of September. The trees of the size class 55-90 cm were the most grown up followed by class > 90 cm trees. A likely factor that drove this episode was the height of the canopy of these trees. Pearson's correlation analysis showed correlation of 55-90 cm class with temperature and precipitation. The production of litter has an average production within the range found in the literature between 200 and 1700 kg.ha.ano-1. Further studies are needed in order to understand more clearly, what are the key factors that drive or limit the growth of tree species in the Amazon.

    4. Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF)

      OpenAIRE

      Laura Silva; Eucario Gasca-Leyva; Edgardo Escalante; Kevin M Fitzsimmons; David Valdés Lozano

      2015-01-01

      The experiment evaluates the food production and water treatment of TAN, NO2−–N, NO3−–N, and PO43− in two aquaponics systems using the dynamic root floating technique (DRF). A separate recirculation aquaculture system (RAS) was used as a control. The fish cultured was Nile tilapia (Oreochromis niloticus). The hydroponic culture in one treatment (PAK) was pak choy (Brassica chinensis,) and in the other (COR) coriander (Coriandrum sativum). Initial and final weights were determined for the fis...

    5. The effects of UV radiation, litter chemistry, and drought on desert litter decomposition

      Science.gov (United States)

      Lee, H.; Nieto, B.; Hewins, D. B.; Barnes, P. W.; McDowell, N. G.; Pockman, W.; Rahn, T.; Throop, H. L.

      2011-12-01

      Recent studies suggest that photodegradation by solar UV radiation can be a major driver of litter decomposition in dryland ecosystems. The importance of photodegradation in litter decomposition appears to decline with precipitation, suggesting that the relative importance of photodegradation may increase given current projections of future increases in drought severity in the southwestern USA. Several previous studies indicate that UV-B radiation (280-320 nm) is the most effective waveband in breaking chemical bonds forming organic material, but whether UV-B exposure may facilitate subsequent decomposition by microbes (i.e., photo-priming) has received little attention. In this study, we tested the effects of pre-exposure UV radiation (photo-priming), litter chemistry (lignin and cellulose content and nitrogen content), and drought on the rate of litter decomposition in a semi-arid ecosystem. To understand the effects of UV radiation on litter decomposition, we pre-exposed litter to three radiation treatments: control (no radiation), UV-A+visible, UV-A+UV-B+visible. Litter was exposed to the equivalent of three months' solar radiation of southern New Mexico prior to microbial decomposition. There were three litter types: basswood sheets (high lignin content), pure cellulose filter paper, and mesquite (Prosopis glandulosa) leaflets. Following radiation treatment, litter was placed in mesh litterbags that were buried within a large-scale precipitation manipulation experiment at the Sevilleta Long-Term Ecological Research site: control (ambient precipitation), elevated precipitation (x2 ambient precipitation), and drought (x0.5 ambient precipitation). We collected a subset of bags at 0, 1, 3, and 6 months and measured mass remaining and carbon (C) and nitrogen (N) content. After 6 months, mass remaining of filter paper and basswood sheets did not differ from the initial mass, but mesquite mass remaining declined over 30%. The pre-exposure UV effects had minimal

    6. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

      Science.gov (United States)

      Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

      2016-01-15

      Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability.

    7. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

      Science.gov (United States)

      Portillo-Estrada, Miguel; Pihlatie, Mari; Korhonen, Janne F. J.; Levula, Janne; Frumau, Arnoud K. F.; Ibrom, Andreas; Lembrechts, Jonas J.; Morillas, Lourdes; Horváth, László; Jones, Stephanie K.; Niinemets, Ülo

      2016-03-01

      Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6-11.4 °C in annual temperature 511-878 mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (Mr). Mr and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.

    8. Effects of increased biomass removal on the biogeochemistry of two Norwegian forest ecosystems

      Science.gov (United States)

      Lange, H.; Clarke, N.; Kjønaas, O. J.; Aas, W.; Andreassen, K.; Børja, I.; Bratli, H.; Eich-Greatorex, S.; Eldhuset, T.; Holt-Hanssen, K.

      2009-04-01

      Increased removal of biomass from forested ecosystems for use as an alternative source of energy is an option in several countries. E.g., it is planned to double the use of bioenergy from all sources until 2020 in Norway. A large fraction of this increase is coming from forest resources, e.g. by removing harvest residues like branches and tops. This removal will reduce the supply of nutrients and organic matter to the forest soil, and may in the longer term increase the risk for future nutrient imbalance, soil erosion on steep slopes, reduced forest production, and changes in biodiversity and ground vegetation species composition. However, field experiments so far have found contrasting results in this respect. Soil effects of increased biomass removal will be closely related to soil organic matter (SOM) dynamics, litter quality, and turnover rates. Harvest intensity may affect the decomposition of existing SOM as well as the build-up of new SOM from litter and forest residues, by changing factors like soil temperature and moisture as well as amount and type of litter input. Changes in input of litter with different nutrient concentrations and decomposition patterns along with changes in SOM decomposition will affect the total storage of carbon, nitrogen and other vital nutrients in the soil. In the context of a Norwegian research project started in 2009, we will quantify how different harvesting regimes lead to different C addition to soil, and determine which factors have the greatest effect on decomposition of SOM under different environmental conditions. Two Norway spruce forest ecosystems will be investigated, one in eastern and one in western Norway, representing different climatic conditions and landscape types. At each location, two treatment regimes will be tested: (1) conventional harvesting (CH), with residues left on-site, and (2) aboveground whole-tree harvest (WTH), with branches, needles, and tops removed. Input of different forest residues will be

    9. The importance of litter for interactions between terrestrial plants and invertebrates

      OpenAIRE

      Gelfgren, Maria

      2010-01-01

      According to the exploitation ecosystem hypothesis (EEH), terrestrial ecosystems are characterized by well defined trophic levels and strong trophic interactions with community level tropic cascades. In unproductive terrestrial habitats as tundra heaths, the energy shunt from litter and apparent competition between herbivores and detritivores are expected to be important for the structure and dynamics of the invertebrate community. The aim of this study was to test this hypothesis by investig...

    10. The emissions from a space-heating biomass stove

      Energy Technology Data Exchange (ETDEWEB)

      Koyuncu, T.; Pinar, Y. [Agricultural Machinery Department, Agricultural Faculty, Ondokuz Mayis University, 55139, Samsun (Turkey)

      2007-01-15

      In this paper, the flue gas emissions of carbon monoxide (CO), nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}) and soot from an improved space-heating biomass stove and thermal efficiency of the stove have been investigated. Various biomass fuels such as firewood, wood shavings, hazelnut shell, walnut shell, peanut shell, seed shell of apricot (sweet and hot seed type), kernel removed corncob, wheat stalk litter (for cattle and sheep pen), cornhusk and maize stalk litter (for cattle pen) and charcoal were burned in the same space-heating biomass stove. Flue gas emissions were recorded during the combustion period at intervals of 5min. It was seen from the results that the flue gas emissions have different values depending on the characteristics of biomass fuels. Charcoal is the most appropriate biomass fuel for use in the space-heating biomass stoves because its combustion emits less smoke and the thermal efficiency of the stove is approximately 46%. (author)

    11. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest.

      Directory of Open Access Journals (Sweden)

      Jie He

      Full Text Available The release of heavy metals (such as Pb and Cd from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons.Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia, Masters larch (Larix mastersiana, Mingjiang fir (Abies faxoniana, Alpine azalea (Rhododendron lapponicum, Red birch (Betula albosinensis and Mourning cypress (Sabina saltuaria, was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4.Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze-thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the

    12. Global distribution, composition and abundance of marine litter

      OpenAIRE

      Galgani, F.; G. Hanke; Maes, T

      2015-01-01

      Marine debris is commonly observed everywhere in the oceans. Litter enters the seas from both land-based sources, from ships and other installations at sea, from point and diffuse sources, and can travel long distances before being stranded. Plastics typically constitute the most important part of marine litter sometimes accounting for up to 100 % of floating litter. On beaches, most studies have demonstrated densities in the 1 item m-2 range except for very high concentrations because of loc...

    13. Phosphorus 32 cycling in the root-litter mat of Pernambuco atlantic coastal forest, Brazil

      International Nuclear Information System (INIS)

      We propose a compartmental model to describe P cycling in the root-litter mat and surface mineral soil of an Atlantic coastal forest. Considerable amounts of P accumulate in this root-litter mat, relative to available P in the underlying mineral soil. We studied the mechanisms responsible for P retention five days after addition of sup(32)P on the surface of the 02 horizon. Total sup(31)P and sup(32)P were determined in leaves, humus, mineral soil and roots. In addition, we determined sup(31)P and sup(32)P in the solution and microbial biomass of the humus material. Fluxes of sup(31)P were obtained from published data and from experimental results of sup(32)P distribution among compartments. The main fluxes taking P out from the soils solution were uptake by the microbial biomass and sorption by the humus (12.9 e 5.2 mg P m sup(-2) week sup(-1), respectively), while the mean flux into the roots was 3.1 mg P m sup(-2) week sup(-1). The main compartment responsible for P accumulation was the humus+fragments, which had the highest P content (61% of total P in the forest floor) and the longest turnover time (15.5 months). (author)

    14. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.

      Science.gov (United States)

      Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Sagarduy, Mikel; Pozo, Jesús

      2015-01-15

      Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can

    15. Biomass shock pretreatment

      Energy Technology Data Exchange (ETDEWEB)

      Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

      2014-07-01

      Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

    16. Electrifying biomass

      International Nuclear Information System (INIS)

      British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

    17. Habitat structure alters top-down control in litter communities.

      Science.gov (United States)

      Kalinkat, Gregor; Brose, Ulrich; Rall, Björn Christian

      2013-07-01

      The question whether top-down or bottom-up forces dominate trophic relationships, energy flow, and abundances within food webs has fuelled much ecological research with particular focus on soil litter ecosystems. Because litter simultaneously provides habitat structure and a basal resource, disentangling direct trophic and indirect non-trophic effects on different trophic levels remains challenging. Here, we focussed on short-term per capita interaction strengths of generalist predators (centipedes) on their microbi-detritivore prey (springtails) and addressed how the habitat structuring effects of the leaf litter modifies this interaction. We performed a series of laboratory functional response experiments where four levels of habitat structure were constructed by adding different amounts of leaf litter to the experimental arenas. We found that increased leaf litter reduced the consumption rate of the predator. We interpreted this as a dilution effect of the augmented habitat size provided by the increasing leaf litter surface available to the species. Dilution of the prey population decreased encounter rates, whereas the capture success was not affected. Interestingly, our results imply that top-down control by centipedes decreased with increasing resource supply for the microbi-detritivore prey (i.e. the leaf litter that simultaneously provides habitat structure). Therefore, effective top-down control of predators on microbi-detritvore populations seems unlikely in litter-rich ecosystems due to the non-trophic, habitat-structuring effect of the basal litter resource. PMID:23188055

    18. Soil Biota and Litter Decay in High Arctic Ecosystems

      Science.gov (United States)

      González, G.; Rivera, F.; Makarova, O.; Gould, W. A.

      2006-12-01

      Frost heave action contributes to the formation of non-sorted circles in the High Arctic. Non-sorted circles tend to heave more than the surrounding tundra due to deeper thaw and the formation of ice lenses. Thus, the geomorphology, soils and vegetation on the centers of the patterned-ground feature (non-sorted circles) as compared to the surrounding soils (inter-circles) can be different. We established a decomposition experiment to look at in situ decay rates of the most dominant graminoid species on non-sorted circles and adjacent inter-circle soils along a climatic gradient in the Canadian High Arctic as a component of a larger study looking at the biocomplexity of small-featured patterned ground ecosystems. Additionally, we investigated variation in soil chemical properties and biota, including soil microarthropods and microbial composition and biomass, as they relate to climate, topographic position, and litter decay rates. Our three sites locations, from coldest to warmest, are Isachsen, Ellef Ringnes Island (ER), NU (bioclimatic subzone A); Mould Bay (MB), Prince Patrick Island, NT (bioclimatic subzone B), and Green Cabin (GC), Aulavik National Park, Thomsen River, Banks Island, NT (bioclimatic subzone C). Our sample design included the selection of 15 non-sorted circles and adjacent inter-circle areas within the zonal vegetation at each site (a total of 90 sites), and a second set of 3 non-sorted circles and adjacent inter-circle areas in dry, mesic and wet tundra at each of the sites. Soil invertebrates were sampled at each site using both pitfall traps, soil microbial biomass was determined using substrate induced respiration and bacterial populations were determined using the most probable number method. Decomposition rates were measured using litterbags and as the percent of mass remaining of Carex misandra, Luzula nivalis and Alopecuris alpinus in GC, MB and ER, respectively. Our findings indicate these graminoid species decayed significantly over

    19. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

      Science.gov (United States)

      Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

      2013-04-01

      Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

    20. Fenbendazole treatment and litter size in rats.

      Science.gov (United States)

      Johnston, Nancy A; Bieszczak, Jeremiah R; Verhulst, Steven; Disney, Kimberly E; Montgomery, Kyle E; Toth, Linda A

      2006-11-01

      Fenbendazole is commonly used in laboratory animal medicine as an anthelmintic for elimination of pinworms. It is generally regarded as a safe drug with minimal side effects. In our facility, 2 breeding colonies of rats were treated with fenbendazole to eliminate pinworms. Analysis of the breeding records revealed that feeding Sprague-Dawley rats a diet containing fenbendazole on a continuous basis for 7 consecutive weeks was associated with a significant reduction in litter size. Although the mechanism underlying this effect is unknown, the finding prompts caution when using fenbendazole to treat valuable breeding colonies or strains that are poor breeders.

    1. Fate of mercury in tree litter during decomposition

      Directory of Open Access Journals (Sweden)

      A. K. Pokharel

      2011-09-01

      Full Text Available We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C mass and concentration, mercury (Hg mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months, which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss, although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (<0.22 ng Hg g−1 dry mass and decreased with increasing stage of decomposition for all litter types. Our results indicate potentially large gaseous emissions, or re-emissions, of Hg originally associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

    2. Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China.

      Directory of Open Access Journals (Sweden)

      Wenfa Xiao

      Full Text Available To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010-Jan. 2012 in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m(-2 s(-1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%-45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old, but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling.

    3. Dominance in vertebrate broods and litters.

      Science.gov (United States)

      Drummond, Hugh

      2006-03-01

      Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as "aggression-submission," "aggression-resistance," "aggression-aggression," "aggression-avoidance," "rotating dominance," and "flock dominance." These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the "site-specific dominance" (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. PMID:16602272

    4. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

      Energy Technology Data Exchange (ETDEWEB)

      Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake [Dept. of Forest Soi ls, Swedish Univ. of Agricultural Sciences (Sweden); Hyvoenen, Riitta [Dept. of Eco logy, Swedish Univ. of Agricultural Sciences (Sweden)

      2007-04-15

      Forsmark sites, the N return in litterfall varied between 1.1 and 2.6 gdw/m{sup 2}/yr, the lower figure for site F3 and the higher for site F2. At site F1, about 1.7 gdw N/m{sup 2}/yr was deposited. The decomposition of the individual site litters was monitored over two years in field studies and the decomposition was predicted for up to 10 years using a dynamic decomposition model. At all three sites in the Forsmark area, the spruce needle litter lost around 33% in mass during the first year and after two years the cumulative mass loss amounted to 45%. The alder leaf litter decomposed more rapidly and lost 60% of mass during the first year and had reached a cumulative mass loss of 73% after two years. Generally, minor differences were noted in the decomposition pattern for the spruce and pine needles at sites within the Oskarshamn area. According to the model predictions, after 10 years about 80% of the initial mass was decomposed from needle litters and oak leaves but over 90% of the initial mass of alder leaves was decomposed. Mineralisation of N started immediately from alder leaves, and proceeded at a rapid rate during the first five months, after which it slowed down markedly. Due to its fast initial mineralisation, the alder litter lost about half its original amount of N during these first months. There was also generally a small loss of N from the other litter types during the first months but this loss was minor and never exceeded 10% of the initial N amount in the litter. The first phase of N loss was generally followed by short irregular periods when N was immobilised. Generally, 80-90% of the initial N amount still remained in the coniferous and oak litters after two years of decomposition (100% in the pine needles) whereas alder leaves had lost 60% of their N. The release of phosphorus (P) started immediately from all litter types and was most rapid from the alder leaf litter, which lost about 60% of its initial amount during the first five months. The other

    5. Effect of invader litter chemistries on soil organic matter compositions: consequences of Polygonum cuspidatum and Pueraria lobata invasions

      Science.gov (United States)

      Tharayil, N.; Tamura, M.

      2012-12-01

      Carbon fixation during photosynthesis forms the precursor of all organic carbon in soil and the predominant source of energy that drives soil microbial processes; hence the molecular identity of the fixed carbon could influence the formation of soil organic matter (SOM). Due to their high resource acquisition and resource use efficiencies, some invasive plants can input disproportionately high quantities of litter that are qualitatively distinctive, and this could influence the accrual of organic carbon and overall carbon cycling in invaded habitats. Hence, we hypothesized that invasive plants with unique litter chemistries would significantly influence the overall carbon cycling in the invaded soils. We tested this hypothesis by comparing plants exhibiting recalcitrant vs. labile litter chemistries using japanese knotweed (Polygonum cuspidatum) and kudzu (Pueraria lobata), respectively. Japanese knotweed produces low litter abundant in polyphenols which selectively hinders microbially mediated decomposition and re-synthesis; whereas kudzu produces low C:N, high quality litter that can stimulate microbial decomposition. Soil samples were collected at 5-cm intervals and from inside and outside 15 to 20 year old stands of the invasive species. The novelty of our study was that both of our study species were invading into soils of contrasting substrate qualities relative to the invading litter quality. The molecular composition of carbon in the soils and the degradation stage of the SOM were assessed with a biomarker approach using gas chromatography-mass spectrometry to determine the source of biomolecules (plant or microbes). Stability of SOM fractions was assessed through oxidation with hydrogen peroxide, serving as a proxy of biological degradation, followed by stable isotope analysis. Fungal communities dominated the uppermost soils under knotweed whereas kudzu litter suppressed fungal biomass in the top 10-cm. In constrast, increase in active microbial biomass C

    6. The emission of volatile compounds from leaf litter

      NARCIS (Netherlands)

      Derendorp, L.

      2012-01-01

      Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the e

    7. Analysis of litter mesofauna of Poltava region forest ecosystems

      Directory of Open Access Journals (Sweden)

      O. S. Komarov

      2007-08-01

      Full Text Available On the basis of research of litter mesofauna of 48 forest biogeocenoses the regularities of invertebrate communities formation on the species and families levels are determined. The degree of similarity of test plots are analysed by taxonomic structure of the communities. The factors of the litter invertebrate communities formation in forest ecosystems of the Poltava region are revealed.

    8. Litter ammonia losses amplified by higher air flow rates

      Science.gov (United States)

      ABSTRACT Broiler litter utilization has largely been associated with land application as fertilizer. Reducing ammonia (NH3) released from litter enhances its fertilizer value and negates detrimental impacts to the environment. A laboratory study was conducted to quantify the effect of air flow var...

    9. Litter in submarine canyons off the west coast of Portugal

      Science.gov (United States)

      Mordecai, Gideon; Tyler, Paul A.; Masson, Douglas G.; Huvenne, Veerle A. I.

      2011-12-01

      Marine litter is of global concern and is present in all the world's oceans, including deep benthic habitats where the extent of the problem is still largely unknown. Litter abundance and composition were investigated using video footage and still images from 16 Remotely Operated Vehicle (ROV) dives in Lisbon, Setúbal, Cascais and Nazaré Canyons located west of Portugal. Litter was most abundant at sites closest to the coastline and population centres, suggesting the majority of the litter was land sourced. Plastic was the dominant type of debris, followed by fishing gear. Standardised mean abundance was 1100 litter items km -2, but was as high as 6600 litter items km -2 in canyons close to Lisbon. Although all anthropogenic material may be harmful to biota, debris was also used as a habitat by some macro-invertebrates. Litter composition and abundance observed in the canyons of the Portuguese margin were comparable to those seen in other deep sea areas around the world. Accumulation of litter in the deep sea is a consequence of human activities both on land and at sea. This needs to be taken into account in future policy decisions regarding marine pollution.

    10. Leaf litter ecological fate in the Schelde estuary in Belgium

      Institute of Scientific and Technical Information of China (English)

      2002-01-01

      Two dominant species of Willow (Salix triandra) and Reed(Phragmites australis) along the Schelde estuary (in Belgium) wereselected in this research. The pigments of higher plant was used asbiomarkers, the decomposition process of the two species werestudied after they fall into the Schelde estuary. After statisticalanalysis (Spearman rank order correlation, p<0.05), the results hasshown the decomposition dynamics pattern of the pigments, and thewillow showed different pattern in comparing with the reed, eg.Chlorophyll-a decomposition dynamics for willow is: y1 = 12196x2 -175895x + 1E + 06 + k, R2 = 0.5706 while for reed is: y2 = -37878x2+ 229782x + 734282 + k, R2 = 0.9065. The precise time of the leaflitter spent in the water was also calculated as were less than 24days, 24-37 days, longer than 37 days (willow) and less than 24days, longer than 24 days (reed), the leaf litter fate of the two -Process, Institute of Applied Ecology, Chinese Academy of Sciencesdominant species in the Schelde estuary was also compared.

    11. Marine litter in bottom trawls off the Portuguese coast.

      Science.gov (United States)

      Neves, Diogo; Sobral, Paula; Pereira, Tânia

      2015-10-15

      Benthic marine litter along the Portuguese coast, was recorded in 14 trips on stern trawlers covering a distance of 2117 km and an area of 56.2 km(2), average depth range 90-349 m. 2034 items of marine litter were registered, 76% were plastics and 38.6% were originated from fishing related activities. Plastic was present in all the trawls and had the highest average density of all litter categories, 50 items km(-2). The highest density of marine litter (178.9 ± 64.0 items km(-2)) was found in the proximity of the Tagus river mouth, probably related to the high population density in the Lisbon metropolitan area. This study highlights the need to raise fishermen awareness for the adoption of good environmental practices that will contribute to the reduction of marine litter. PMID:26231069

    12. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.

      Science.gov (United States)

      Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale

      2015-02-01

      In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass.

    13. The role of biomass in climate change mitigation : Assessing the long-term dynamics of bioenergy and biochemicals in the land and energy systems

      OpenAIRE

      Daioglou, V.

      2016-01-01

      Scientific literature addressing climate change mitigation options have highlighted the potentially important role of biomass as a substitute for fossil fuels in the provision of energy and materials. However significant uncertainties remain concerning the drivers and constraints of the available biomass, the overall greenhouse gas (GHG) benefit, and the most effective supply and demand chains. This thesis builds on the IMAGE integrated assessment model in order to improve the representation ...

    14. Eutrophication modulates plant-litter diversity effects on litter decomposition in streams

      OpenAIRE

      Fernandes, Eva Lima; Fernandes, Isabel; Pereira, Ana; Geraldes, Paulo; Cássio, Fernanda; Pascoal, Cláudia

      2015-01-01

      Freshwater ecosystems are severely impacted by changes in riparian vegetation and eutrophication, but their interactive effects on litter decomposition and associated biota remain poorly understood. We placed 5 leaf species in coarse-mesh bags alone or in mixtures and immersed them in 6 low-order streams along a eutrophication gradient. Fungal and invertebrate assemblages were mainly structured by stream eutrophication. The quality of leaf species also structured fungal assemblages, whereas t...

    15. Carbon pools and temporal dynamics along a rotation period in sessile oak dominated high forest and coppice with standards stands

      Science.gov (United States)

      Bruckman, V. J.; Yan, S.; Hochbichler, E.; Glatzel, G.

      2012-04-01

      Carbon pools in two Quercus petraea (sessile oak) dominated chronosequences under different forest management (high forest and coppice with standards) were investigated. The objective was to study temporal carbon dynamics, in particular carbon sequestration in the soil and woody biomass production, in common forest management systems in eastern Austria along with stand development. The chronosequence approach was used to substitute time-for-space to enable coverage of a full rotation period in each system. Carbon content was determined in the following compartments: aboveground biomass, litter, soil to a depth of 50 cm, living root biomass and decomposing residues in the mineral soil horizons. Biomass carbon pools, except fine roots and residues, were estimated using species-specific allometric functions. Total carbon pools were on average 143 Mg ha-1 in the high forest stand (HF) and 213 Mg ha-1 in the coppice with standards stand (CS). The mean share of the total organic carbon pool (TOC) which is soil organic carbon (SOC) differs only marginally between HF (43.4%) and CS (42.1%), indicating the dominance of site factors, particularly climate, in controlling this ratio. While there was no significant change in O-layer and SOC stores over stand development, we found clear relationships between living biomass (aboveground and belowground) pools and C:N ratio in topsoil horizons with stand age. SOC pools seem to be very stable and an impact of silvicultural interventions was not detected with the applied method. Rapid decomposition and mineralization of litter, indicated by low O-horizon pools with wide C:N ratios of residual woody debris at the end of the vegetation period, suggests high rates of turnover in this fraction. CS, in contrast to HF benefits from rapid resprouting after coppicing and hence seems less vulnerable to conditions of low rainfall and drying topsoil. Keywords: carbon dynamics; soil carbon; chronosequence; Quercus petraea; coppice; high forest

    16. Littered cigarette butts as a source of nicotine in urban waters

      Science.gov (United States)

      Roder Green, Amy L.; Putschew, Anke; Nehls, Thomas

      2014-11-01

      The effect of nicotine from littered cigarette butts on the quality of urban water resources has yet to be investigated. This two-part study addresses the spatial variation, seasonal dynamics and average residence time of littered cigarette butts in public space, as well as the release of nicotine from cigarette butts to run-off in urban areas during its residence time. Thereby, we tested two typical situations: release to standing water in a puddle and release during alternating rainfall and drying. The study took place in Berlin, Germany, a city which completely relies on its own water resources to meet its drinking water demand. Nine typical sites located in a central district, each divided into 20 plots were studied during five sampling periods between May 2012 and February 2013. The nicotine release from standardized cigarette butts prepared with a smoking machine was examined in batch and rainfall experiments. Littered cigarette butts are unevenly distributed among both sites and plots. The average butt concentration was 2.7 m-2 (SD = 0.6 m-2, N = 862); the maximum plot concentration was 48.8 butts m-2. This heterogeneity is caused by preferential littering (gastronomy, entrances, bus stops), redistribution processes such as litter removal (gastronomy, shop owners), and the increased accumulation in plots protected from mechanized street sweeping (tree pits, bicycle stands). No significant seasonal variation of cigarette butt accumulation was observed. On average, cigarette butt accumulation is characterized by a 6 days cadence due to the rhythm and effectiveness of street sweeping (mean weekly butt accumulation rate = 0.18 m-2 d-1; SD = 0.15 m-1). Once the butt is exposed to standing water, elution of nicotine occurs rapidly. Standardized butts released 7.3 mg g-1 nicotine in a batch experiment (equivalent to 2.5 mg L-1), 50% of which occurred within the first 27 min. In the rainfall experiment, the cumulative nicotine release from fifteen consecutive

    17. Biomass torrefaction mill

      Science.gov (United States)

      Sprouse, Kenneth M.

      2016-05-17

      A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

    18. Energy from Biomass for Conversion of Biomass

      Science.gov (United States)

      Abolins, J.; Gravitis, J.

      2009-01-01

      Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

    19. Aerial environment and deep litter temperature in a swine building

      Directory of Open Access Journals (Sweden)

      Francine Aparecida Sousa

      2014-10-01

      Full Text Available This study objective was to assess the air quality by measuring gas concentrations, and assess the surface and inside temperatures of deep litter materials in a finishing swine building. The experiment was conducted during the months of June and July. It was compared three treatments: deep litter composed of shaving woods + sugarcane bagasse (M + B, deep litter composed of sugarcane bagasse (BAG and deep litter consisting of shaving woods (MAR. The installation stalls had a concrete floor under the deep litter. Measurements of instantaneous concentrations of ammonia, NH3 (ppm, carbon dioxide (CO2 ppm and carbon monoxide (CO, ppm at the level of the animals were taken. Data relating to surface temperature and inside the deep litter for swine were collected at three different points within the stalls (center, in the frontal region and background of the stalls. It was observed that the "MAR" deep litter showed the highest average concentration of NH3 (2.88 ppm. The "BAG" deep litter showed the lowest values of NH3 for all time intervals evaluated. In the morning period was observed significant differences for all treatments. The highest CO2 concentration (1530 ppm was observed in treatment "BAG" at 11 h 30 min. The surface temperatures of deep beddings showed no significant differences between the sampling points. The temperature inside the deep litter at the front of the stall treatment was higher (M + B when compared to treatment (ABG and (MAR. The concentration of CO, CO2 and NH3, measured, gases not reached levels that could cause harm to the health of animals.

    20. Fate of mercury in tree litter during decomposition

      Directory of Open Access Journals (Sweden)

      A. K. Pokharel

      2011-03-01

      Full Text Available We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C mass and concentration, mercury (Hg mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23% of initial mass after 18 months, which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48% to 63% Hg loss per unit dry mass loss, although one species showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64% compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field. Solubility of Hg, assessed by exposure of Hg to water upon harvest, was very low (< 0.22 ng Hg g−1 dry mass and decreased with increasing stage of decomposition for all litter types. Our results indicate large gaseous emissions, or re-emissions, of Hg originally associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by sorption of Hg – such as from atmospheric deposition – with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition – suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

    1. Best Available Techniques (BAT) in solid biomass fuel processing, handling, storage and production of pellets from biomass

      Energy Technology Data Exchange (ETDEWEB)

      Lindberg, J.P.; Tana, J. [AaF-Industri Ab, Stockholm (Sweden)

      2012-09-15

      With the increasing use of biomass fuels the varieties of sources for biomass have expanded to almost all possible combustible matter with biological origin. The increasing scale in solid biomass fuel production and utilization at the combustion plants of the wide variety of biomass fuels have contributed to littering, dust, odor and noise emissions of the production chain. The report aims to provide information for operators, environmental consultants and competent environmental authorities on what is considered BAT, as defined in the IPPC directive (2008/1/EC), in biomass processing and handling as well as the production of pellets from biomass. The project gives a brief description of commonly used solid biomass fuels and the processes, handling and storage of these biomasses in the Nordic countries covering processes from production site to the point of use. Environmental emissions, sources of waste and other relevant environmental aspects from commonly used processes, included raw material and energy use, chemical use and emissions to soil are also included in the report. (Author)

    2. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

      International Nuclear Information System (INIS)

      between 1.1 and 2.6 gdw/m2/yr, the lower figure for site F3 and the higher for site F2. At site F1, about 1.7 gdw N/m2/yr was deposited. The decomposition of the individual site litters was monitored over two years in field studies and the decomposition was predicted for up to 10 years using a dynamic decomposition model. At all three sites in the Forsmark area, the spruce needle litter lost around 33% in mass during the first year and after two years the cumulative mass loss amounted to 45%. The alder leaf litter decomposed more rapidly and lost 60% of mass during the first year and had reached a cumulative mass loss of 73% after two years. Generally, minor differences were noted in the decomposition pattern for the spruce and pine needles at sites within the Oskarshamn area. According to the model predictions, after 10 years about 80% of the initial mass was decomposed from needle litters and oak leaves but over 90% of the initial mass of alder leaves was decomposed. Mineralisation of N started immediately from alder leaves, and proceeded at a rapid rate during the first five months, after which it slowed down markedly. Due to its fast initial mineralisation, the alder litter lost about half its original amount of N during these first months. There was also generally a small loss of N from the other litter types during the first months but this loss was minor and never exceeded 10% of the initial N amount in the litter. The first phase of N loss was generally followed by short irregular periods when N was immobilised. Generally, 80-90% of the initial N amount still remained in the coniferous and oak litters after two years of decomposition (100% in the pine needles) whereas alder leaves had lost 60% of their N. The release of phosphorus (P) started immediately from all litter types and was most rapid from the alder leaf litter, which lost about 60% of its initial amount during the first five months. The other litter types generally lost around 10-20% within the same

    3. Cotton response to poultry litter applied by subsurface banding relative to surface broadcasting

      Science.gov (United States)

      Dry poultry litter is typically land-applied by surface broadcasting, a practice that exposes certain litter nutrients to volatilization loss. Applying litter with a new, experimental implement that places the litter in narrow bands below the soil surface may reduce or eliminate such losses but has...

    4. Greenhouse gas and ammonia emission from a litter-windrowing in bird houses

      Science.gov (United States)

      One of emerging poultry manure management practices is in house windrowing to disinfect the litter. With this practice, growers windrow the litter in broiler houses between flocks, usually for 2 weeks. This results in high litter temperatures that can reduce pathogens in the litter. However, this p...

    5. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

      Science.gov (United States)

      Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia

      2016-08-01

      In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability. PMID:27521943

    6. Soil Microbial Biomass Dynamics and Influence Factors in Larix gmelinii Forest in Daxing' an Mountains%兴安落叶松林土壤微生物生物量季节动态及影响因素

      Institute of Scientific and Technical Information of China (English)

      邸雪颖; 耿莹莹; 孙龙; 胡海清

      2012-01-01

      The seasonal dynamics of soil microbial biomass carbon and nitrogen in a Larix gmelinii forest in Tahe Forestry Bureau of Daxing' an Mountains were studied by using the chloroform fumigation extraction method. The relationships between soil microbial biomass dynamics and environmental factors were also analyzed. Results showed that the microbial biomass carbon ranged from 70.02 to 1 065.38 mg · kg-1, and the microbial biomass nitrogen from 15.63 to 75.18 mg · kg-1 in larch forest. The microbial biomass carbon and nitrogen basically showed an upward trend from May to June and a downward trend from June to August, and reached the maximum value in September, then began to decline, which exhibited a seasonal variation pattern with 1 -2 peaks. Pearson correlation analysis indicated that the microbial biomass carbon was significantly correlated with microbial biomass nitrogen( P<0. 05). The microbial biomass carbon was negatively correlated with soil temperature(P<0.05), and positively correlated with soil organic content and soil total nitrogen(P<0.01). The microbial biomass nitrogen was positively correlated with soil organic content and soil total nitrogen ( P<0.01).%应用氯仿熏蒸浸提法测定了大兴安岭塔河地区兴安落叶松林(Larix gmelinii Rupr.)土壤微生物生物量碳(Cm)和微生物量氮(Nm)的季节动态变化,并研究了其与土壤养分因子和土壤环境因子的关系.结果表明:兴安落叶松林的Cm的变化范围为70.02 ~1 065.38 mg·kg-1,其Nm的变化范围依次为:15.63 ~75.18 mg· kg-1.Cm和Nm基本于5-6月呈上升趋势、6-8月呈下降趋势,9月又达到一个最大值,之后开始下降,其中出现1~2个峰值的季节变化格局.Pearson相关分析表明,Cm与Nm呈显著相关(P<0.05),Cm与土壤温度(Ts)呈显著负相关(P<0.05),Cm与土壤有机碳(Cs.o)和土壤全氮(NT)呈极显著正相关(P<0.O1).Nm与土壤有机碳(Cs.o)和土壤全氮(NT)呈极显著正相关(P<0.01).

    7. Assessing the Effect of Leaf Litter Diversity on the Decomposition and Associated Diversity of Fungal Assemblages

      Directory of Open Access Journals (Sweden)

      Jing Gao

      2015-07-01

      Full Text Available Although the effect of litter mixture on decomposition has been well documented, few studies have examined the relationships between richness and relative abundance of leaf species in litter mixture and changes in universal fungal communities during the decomposition process in temperate forests. In this study, we used the litterbag method and included three leaf litter species, i.e., aspen (Populus davidiana Dode, birch (Betula platyphylla Sukaczev and oak (Quercus mongolica Fischer ex Ledebour, to investigate the mass loss rate and diversity of universal fungal communities in each litter treatment, which were sampled in situ after 180, 240, 300 and 360 days of decomposition (between 2012 and 2013 in broadleaved mixed forests in Chinese temperate forests. Eight mixture proportions were examined: pure aspen litter (10A, pure birch litter (10B, pure oak litter (10O, 50% aspen litter mixed with 50% birch litter (5A:5B, 50% aspen litter mixed with 50% oak (5A:5O, 50% birch litter mixed with 50% oak litter (5B:5O, 10% birch litter mixed with 80% aspen litter and 10% oak litter (1B:8A:1O, 30% birch litter mixed with 40% aspen litter and 30% oak litter (3B:4A:3O. Over 360 days of decomposition, approximately 46.6%, 43.6%, 28.0%, 54.4%, 40.2%, 39.5%, 54.5% and 49.46% of litter mass was lost from 10A, 10B, 10O, 5A:5B, 5A:5O, 5B:5O, 1B:8A:1O and 3B:4A:3O, respectively. In addition, the number of fungal denaturing gradient gel electrophoresis (DGGE bands showed a positive correlation with mass loss rate, indicating a positive feedback between leaf litter decomposition and universal fungal communities in the leaf litter. The results revealed that the 5A:5B, 1B:8A:1O and 3B:4A:3O litter mixtures had a synergistic effect on the litter mixture, while the 5A:5O and 5B:5O litter mixtures had a nearly neutral effect on the litter mixture. Thus, leaf litter species composition and relative abundance seem to be more important than leaf litter richness in driving

    8. Litter fall and energy flux in a mangrove ecosystem

      Digital Repository Service at National Institute of Oceanography (India)

      Wafar, S.; Untawale, A.G.; Wafar, M.V.M.

      of C, N and P fluxes from the decomposing mangrove litter with phytoplankton, bacterial and secondary production in the estuarine waters showed that mangrove production is important mainly for the C budget of the Estuaries and in sustaining...

    9. Interactions between hyphosphere-associated bacteria and the fungus Cladosporium herbarum on aquatic leaf litter.

      Science.gov (United States)

      Baschien, Christiane; Rode, Georg; Böckelmann, Uta; Götz, Peter; Szewzyk, Ulrich

      2009-10-01

      We investigated microbial interactions of aquatic bacteria associated with hyphae (the hyphosphere) of freshwater fungi on leaf litter. Bacteria were isolated directly from the hyphae of fungi from sedimented leaves of a small stream in the National Park "Lower Oder," Germany. To investigate interactions, bacteria and fungi were pairwise co-cultivated on leaf-extract medium and in microcosms loaded with leaves. The performance of fungi and bacteria was monitored by measuring growth, enzyme production, and respiration of mono- and co-cultures. Growth inhibition of the fungus Cladosporium herbarum by Ralstonia pickettii was detected on leaf extract agar plates. In microcosms, the presence of Chryseobacterium sp. lowered the exocellulase, endocellulase, and cellobiase activity of the fungus. Additionally, the conversion of leaf material into microbial biomass was retarded in co-cultures. The respiration of the fungus was uninfluenced by the presence of the bacterium.

    10. SLAUGHTERING TRAITS OF PIGS REARED CONVENTIONALLY AND ON DEEP LITTER

      Directory of Open Access Journals (Sweden)

      Gordana Kralik

      2005-12-01

      Full Text Available The aim of this research was to compare slaughtering traits of two pig genotypes when reared in two different ways, and to determine the influence of pig housing on carcass characteristics and muscle tissue quality. The research was carried out on 68 fattening pigs of both sex, divided into two groups: the first group was kept on deep litter, and the second one was housed in flat deck pens without deep litter. Each group consisted of pigs of two genotypes, i.e. three-way crossbreeds of Large White and German Landrace (LW x GL in the dam line and of German Landrace and Pietrain (P in the sire line. At the end of the experiment, pigs were slaughtered and the following values were determined: the pH45 and pH24 values, electric conductivity values (EC45, EC24, the “a” and “b” carcass length, loin values and the values of backfat and muscle thickness, aiming to evaluate the share of muscular tissue in carcass by applying the two-points method. Pigs reared on deep litter had statistically significantly smaller live weights (P<0.05 and warm carcass weights in comparison to pigs reared on flat deck without deep litter. Pigs crossed with Pietrain, which were kept without deep litter had significantly thicker muscles than the ones crossed with German Landrace, kept on deep litter (P<0.05. Fattening pigs of both genotypes, reared without deep litter, had significantly smaller pH45 values in loins and in MLD, when compared to pigs crossed with Pietrain and kept on deep litter (P<0.05. The influence of genotype was statistically significant for the EC45 value in loin, as well as for the muscle thickness and percentage share of muscular tissue (P<0.05. Interaction between the way of fattening and genotype did not have any effect on carcass and meat quality.

    11. Nutrient Availability from Poultry Litter Co-Products

      OpenAIRE

      Middleton, Amanda Jo

      2015-01-01

      Phosphorus (P) is a nutrient of concern in the Chesapeake Bay watershed due to nutrient imbalances in areas with confined animal feeding operations. By converting poultry litter to an ash via thermal conversion, nutrients are concentrated and are economical to ship out of nutrient surplus watersheds to nutrient deficient regions, such as the corn-belt. We initiated incubation and field studies on sandy loam soils to test P and potassium (K) availability from poultry litter ash (PLA). Four PLA...

    12. Biomass treatment method

      Science.gov (United States)

      Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

      2010-10-26

      A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

    13. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

      Science.gov (United States)

      Fatoyinbo, Temilola E.

      2010-01-01

      Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation

    14. Technical Note: Reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria

      Directory of Open Access Journals (Sweden)

      J. J. Wang

      2012-10-01

      Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

    15. Consequences of biodiversity loss for litter decomposition across biomes.

      Science.gov (United States)

      Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

      2014-05-01

      The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.

    16. Evidence for extraintestinal growth of bacteroidales originating from poultry litter.

      Science.gov (United States)

      Weidhaas, Jennifer; Mantha, Sirisha; Hair, Elliott; Nayak, Bina; Harwood, Valerie J

      2015-01-01

      Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml(-1) and 2 log gene copies g litter(-1) under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results. PMID:25326306

    17. Avian pneumovirus and its survival in poultry litter.

      Science.gov (United States)

      Velayudhan, Binu T; Lopes, Vanessa C; Noll, Sally L; Halvorson, David A; Nagaraja, Kakambi V

      2003-01-01

      The survival of avian pneumovirus (APV) in turkey litter was studied at different temperature (room temperature, [approximately 22-25 C], 8 C, and -12 C) conditions. Built-up turkey litter from a turkey breeder farm known to be free of APV was obtained and was divided into two portions. One portion was sterilized by autoclaving and the other portion was kept nonautoclaved. Both samples were inoculated with a Vero cell-propagated Minnesota isolate of APV subtype C (APV/MN2A) with a titer of 10(5) 50% tissue culture infective dose at 1% level. These samples were then stored at three different temperatures: -12 C, 8 C, and room temperature (20-25 C). The samples were tested for the presence of viral RNA by reverse transcriptase-polymerase chain reaction and for the presence of live virus by virus isolation in Vero cells at the intervals of 1, 2, 3, 7, 14, 30, 60, and 90 days. Our studies revealed the presence of APV RNA even after 90 days in the autoclaved litter samples kept at -12 C and at 8 C. The virus was isolated from the autoclaved litter kept at -12 C up to 60 days. From the nonautoclaved litter, viral RNA was detected up to 60 days and virus was isolated up to 14days. The present study indicated that APV could survive in built-up turkey litter up to 60 days postinoculation at a temperature of-12 C.

    18. Litter size variation in Polish selected small dog breeds

      Directory of Open Access Journals (Sweden)

      Małgorzata Goleman

      2015-08-01

      Full Text Available In breeders’ general opinion small breed females produce less numerous litters. The aim of the study was to analyse the litter size and the frequency of the gender ratio in selected small dog breeds in view of their popularity in Poland. The data set comprised information on 639 litters (in total 2578 puppies of eight breeds, which were born between January 2003 and end December 2014. The results were statistically analysed using statistical program SPSS 20.0. Medium-size litters were observed in the analysed small dog breeds (4.034±0.1. Comparison of the selected breeds of the Fédération Cynologique Internationale (FCI Groups showed that the mean litter size in Group IX was higher (4.36±0.08 than that in Group III (3.87±0.14 and the differences were statistically significant. The study has confirmed the hypothesis that larger females produce more numerous litters, but there are large intra-individual variations in the number of pups born in individual breeds. Additionally, the gender ratio in the puppies born in the analysed breeds was equal, despite the fluctuations in the individual breeds.

    19. Consequences of biodiversity loss for litter decomposition across biomes.

      Science.gov (United States)

      Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

      2014-05-01

      The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales. PMID:24805346

    20. Litter mercury deposition in the Amazonian rainforest.

      Science.gov (United States)

      Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

      2015-11-01

      The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha(-1) y(-1). Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g(-1) was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m(-2) yr(-1). This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. PMID:26312742

    1. [Effects of Eucalyptus grandis leaf litter at its early stage of decomposition on the growth and photosynthetic characteristics of Cichorium intybus].

      Science.gov (United States)

      Wu, Xiu-Hua; Li, Yi-Qiao; Hu, Ting-Xing; Chen, Bao-Jun; Yang, Yong-Gui; Chen, Hong; Hu, Hong-Ling

      2013-07-01

      From March to May, 2010, a pot experiment was conducted to investigate the effects of Eucalyptus grandis leaf litter at its early stage of decomposition on the growth and photosynthetic characteristics of Cichorium intybus. Four treatments with different application rate of the leaf litter, i.e., 0 g x pot(-1) (CK), 30 g x pot(-1) (A1), 60 g x pot(-1) (A2), and 90 g x pot(-1) (A3), were installed. Each pot contained 12 kg soil mixed with the leaf litter, and then, C. intybus was sown. The growth indicators of the C. intybus were measured at the 30, 45, 60, and 75 d after sowing, and the photosynthetic characteristics of the C. intybus in treatment A3 were studied after the seedlings third leaf fully expanded. At each measured time, the biomass accumulation and leaf area growth of C. intybus in treatments A1, A2, and A3 were inhibited significantly. At the early stage of the leaf litter decomposition, the synthesis of photosynthetic pigments of the C. intybus seedlings was inhibited significantly, and the inhibition effect was getting stronger with the increasing amount of the leaf litter addition. The diurnal change of the seedlings photosynthetic rate in all treatments showed a bimodal curve with midday depression, the stomatal conductance and water use efficiency had the same variation trend with the net photosynthetic rate, and the total diurnal photosynthesis decreased in the order of CK > A1 > A2 > A3. The GC-MS analysis showed there were 33 kinds of small molecule compounds released gradually with the decomposition of the leaf litter, among which, allelopathic substance terpenoid dominated. PMID:24175509

    2. Activity of soil microbial biomass altered by land use in the southwestern Amazon

      Directory of Open Access Journals (Sweden)

      André Mancebo Mazzetto

      2016-03-01

      Full Text Available ABSTRACT The increasing demand for food creates environmental problems, mainly due to the removal of native vegetation cover for agriculture expansion in Brazil. These changes in land use lead to changes in the soil organic matter dynamics. Microorganisms represent the most biological and physiological diversity in soil, as well as are responsible for more than 95% of the decomposition and nutrient cycling processes. The objective in this research was to check if there is difference of patterns in activity of soil microbial biomass under varied natural vegetation, pastures in use and agricultural systems recently established. The area covered by this study corresponds to the states of Rondônia and Mato Grosso. Canonical variate analysis was used in physical, chemical and microbiological factors in each ecoregion and land use, looking for patterns and variables that can differentiate them. The native areas showed distinct patterns in the dynamics of microbiological attributes mainly related to the amount of litter in each biome studied. For the disturbed areas, there were similar results between pastures and native areas, significantly different from the results obtained in agricultural areas, which, due to differences in management and kind of cultures analyzed, showed a great variability in the final result. The results support the recommendation for use of microbiological attributes as indicators of land use change, combined with chemical and physical factors of the soil.

    3. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

      Science.gov (United States)

      Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

      2016-05-15

      The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment.

    4. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

      Science.gov (United States)

      Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

      2016-05-15

      The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment. PMID:26990075

    5. Density and Biomass Dynamics of Hippophae rhamnoides L.subsp.sinensis Population in Mu Us Sandland%毛乌素沙地中国沙棘种群数量动态研究

      Institute of Scientific and Technical Information of China (English)

      李根前; 赵粉侠; 李秀寨; 韦宇

      2004-01-01

      Based on the measurement of all individuals of population at different successional stage and following excavation of clones, the density and biomass dynamics of Hippophae rhamnoides L. subsp, sinensis population in Mu Us sandland were analyzed with the methods of plots arranged with age and reverse age class addition(RAA). The main results were as follows:(1)The density of clone population increased with the population growth before 5-year-old. The population biomass accumulating also increased by Logistic equation in the period of age structure of population developed from increasing type to mid-decreasing type.Then they tended to be decrease. While the population density, population biomass augmented again with the emergence of gap regeneration, and the dominant status of H.rhamnoides L.subsp, sinensis population and the stability of the community were maintained. (2)The decrease process of density of daughter ramets population lagged behind that of mother ramets population,and the numerical ratio of daughter ramets population within the population gradually enlarged. As the population thinned, the composition of population changed from more clones with less daughter ramets to less clones with more daughter ramets and the genetic diversity of population reduced. (3)The prosperous stage of biomass accumulation appeared from 8-year-old to 16-year-old and its peak appeared at 12-year-old. And the relationship between the individual mean weight and population density could be expressed by the law of power-3/2 in the period of age structure of population developed from stable type to decreasing type.

    6. Effects of litter quality and climate change along an elevational gradient on litter decomposition of subalpine forests, Eastern Tibetan Plateau, China

      Institute of Scientific and Technical Information of China (English)

      Zhenfeng Xu; Jianxiao Zhu; Fuzhong Wu; Yang Liu; Bo Tan; Wanqin Yang

      2016-01-01

      Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes. Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a 2-year-long litter decomposition experiment along an ele-vational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce (Picea asperata Mast.), red birch (Betula albosi-nensis Burk.), and minjiang fir (Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant (k) values of red birch were significantly higher than those of the needle litters. However, mass losses between ele-vations did not differ significantly for any litter type. During the winter, lost mass contributed 18.3–28.8% of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition peri-ods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition. Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.

    7. Development of piglets raised in a new multi-litter housing system vs. conventional single-litter housing until 9 weeks of age

      NARCIS (Netherlands)

      Nieuwamerongen, van S.E.; Soede, N.M.; Peet-Schwering, van der C.M.C.; Kemp, B.; Bolhuis, J.E.

      2015-01-01

      This study compared the development until 9 wk of age of piglets raised in either a multi-litter (ML) system or a conventional single-litter (SL) system. The ML system consisted of a multi-suckling system with 5 sows and their litters before weaning, followed by housing in a pen with enrichment in a

    8. Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice

      Directory of Open Access Journals (Sweden)

      Salgado Concepción

      2006-09-01

      Full Text Available Abstract The aim of this research was to explore the genetic parameters associated with environmental variability for litter size (LS, litter weight (LW and mean individual birth weight (IW in mice before canalisation. The analyses were conducted on an experimental mice population designed to reduce environmental variability for LS. The analysed database included 1976 records for LW and IW and 4129 records for LS. The total number of individuals included in the analysed pedigree was 3997. Heritabilities estimated for the traits under an initial exploratory approach varied from 0.099 to 0.101 for LS, from 0.112 to 0.148 for LW and from 0.028 to 0.033 for IW. The means of the posterior distribution of the heritability under a Bayesian approach were the following: 0.10 (LS, 0.13 (LW and 0.03 (IW. In general, the heritabilities estimated under the initial exploratory approach for the environmental variability of the analysed traits were low. Genetic correlations estimated between the trait and its variability reached values of -0.929 (LS, -0.815 (LW and 0.969 (IW. The results presented here for the first time in mice may suggest a genetic basis for variability of the evaluated traits, thus opening the possibility to be implemented in selection schemes.

    9. Predicting Biomass and Species Composition in the Siberian Boreal Forest Using a New Spatially-Explicit Vegetation Dynamics Model: Model Development, Calibration, and Climate Sensitivity Analysis.

      Science.gov (United States)

      Brazhnik, K.; Shugart, H. H., Jr.

      2014-12-01

      Circumpolar boreal forests contain one third of the terrestrial carbon stores, and it has been shown that they are already affected by climate change. As temperature and precipitation regimes shift, the total biomass and species composition may change in ways that promote further warming on the regional level through atmosphere-vegetation feedbacks. Changes in vegetation cover and the resulting atmosphere-vegetation feedbacks may be the determining factors in how regional terrestrial carbon stores change with climate change. This project reports on the development of a new spatially-explicit individual-based gap model SibBorK that can be utilized to investigate the potential changes in biomass and species composition in the Siberian boreal forest over the coming decades and centuries. SibBorK tracks the establishment, growth, and mortality of individual trees on 0.01-ha plots within a 9-ha simulation area. The new model is based on the principles of the ZELIG vegetation model, implemented in Python to facilitate interface with geographic information systems for explicit modeling of vegetation across artificial and real terrain. SibBorK was trained on modal (actual) regional forestry yield tables for southern taiga region of central Siberia. The model was calibrated and tested against the regional forestry yield tables, and further tested against an independent dataset from a forest inventory. Model comparisons were made on monospecies and mixed species stands, and included the evaluation of total stand biomass, species-specific biomass, species composition, and stem density based on site index and terrain elevation. Additionally, species distribution along altitudinal gradients and total biomass for specific locations was independently tested against other published forest inventory values. SibBorK is particularly good at predicting biomass and species composition on poor soils, with Orlov site indices III-V, which dominate the Siberian landscape. Herein, Sib

    10. Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system.

      Science.gov (United States)

      Fonte, Steven J; Six, Johan

      2010-06-01

      The development of sustainable agricultural systems depends in part upon improved management of non-crop species to enhance the overall functioning and provision of services by agroecosystems. To address this need, our research examined the role of earthworms and litter management on nutrient dynamics, soil organic matter (SOM) stabilization, and crop growth in the Quesungual agroforestry system of western Honduras. Field mesocosms were established with two earthworm treatments (0 vs. 8 Pontoscolex corethrurus individuals per mesocosm) and four litter quality treatments: (1) low-quality Zea mays, (2) high-quality Diphysa robinioides, (3) a mixture of low- and high-quality litters, and (4) a control with no organic residues applied. Mesocosms included a single Z. mays plant and additions of 15N-labeled inorganic nitrogen. At maize harvest, surface soils (0-15 cm) in the mesocosms were sampled to determine total and available P as well as the distribution of C, N, and 15N among different aggregate-associated SOM pools. Maize plants were divided into grain and non-grain components and analyzed for total P, N, and 15N. Earthworm additions improved soil structure as demonstrated by a 10% increase in mean weight diameter and higher C and N storage within large macro-aggregates (>2000 microm). A corresponding 17% increase in C contained in micro-aggregates within the macro-aggregates indicates that earthworms enhance the stabilization of SOM in these soils; however, this effect only occurred when organic residues were applied. Earthworms also decreased available P and total soil P, indicating that earthworms may facilitate the loss of labile P added to this system. Earthworms decreased the recovery of fertilizer-derived N in the soil but increased the uptake of 15N by maize by 7%. Litter treatments yielded minimal effects on soil properties and plant growth. Our results indicate that the application of litter inputs and proper management of earthworm populations can have

    11. Geochemical fate of arsenic in swine litter

      Science.gov (United States)

      Quazi, S.; Makris, K.; Sarkar, D.; Datta, R.; Punamiya, P.

      2007-12-01

      Swine diet is often supplemented by organoarsenicals, such as roxarsone to treat diseases and to promote growth. Recent data reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in unprotected lagoons in concentrated animal feeding operations (CAFOs). However, serious environmental health risk may arise upon significant arsenic (As) release into solution. The problem may be exacerbated under certain environmental conditions where organoarsenicals, such as roxarsone transform into the more toxic inorganic As, posing serious health risk to the surrounding ecosystem. The objective of this study were to analyze swine wastes collected from 19 randomly selected CAFOs in the USA for As concentrations, and to determine the geochemical fate of As in the swine waste suspensions. Swine wastes were analyzed for total-recoverable, total soluble, and water-extractable As, which were measured by ICP-MS. Speciation of As was performed following a well-established hyphenated technique using HPLC- ICPMS. Swine waste suspensions differed in solids contents; thus, the particulate matters with varying As concentrations were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions. Findings show the prevalence of inorganic As [As(V)] in swine waste suspension solutions. Roxarsone underwent degradation to both organoarsenicals, such as p-ASA, as well as inorganic arsenate and to a number of unidentified metabolites. Roxarsone degradation kinetics was influenced by the solids content and the air conditions (anaerobic/aerobic) of the swine waste suspensions. Maximum degradation rates were observed under anaerobic conditions, in suspensions which were low in solids content. Roxarsone degradation was primarily microbially-mediated, but in certain cases abiotic degradation was also observed, which were significantly slower.

    12. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

      Science.gov (United States)

      Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

      2016-02-15

      The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. PMID:26763321

    13. Marine litter in Mediterranean sandy littorals: Spatial distribution patterns along central Italy coastal dunes.

      Science.gov (United States)

      Poeta, Gianluca; Battisti, Corrado; Acosta, Alicia T R

      2014-12-15

      Sandy shores are generally considered important sinks for marine litter and the presence of this litter may represent a serious threat to biotic communities and dune integrity mostly due to cleaning activities carried out through mechanical equipment. In spring (April-May) 2012 we sampled 153 2×2m random plots to assess the spatial distribution patterns of litter on Central Italy sandy shores. We analysed the relationship between the presence of litter and coastal dune habitats along the sea-inland gradient. Our results showed that the most frequent litter items were plastic and polystyrene. Differences of marine litter spatial distribution were found between upper beach and fore dune habitats and fixed dune habitats: embryo dune and mobile dune habitats show the highest frequency of litter, but, surprisingly, marine litter did not impact fixed dune habitats, these possibly acting as a natural barrier protecting the inner part of the coast from marine litter dispersion. PMID:25455823

    14. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

      KAUST Repository

      Phillips, F. A.

      2016-05-05

      Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

    15. Effect of leaf litter quantity and type on forest soil fauna and biological quality

      Directory of Open Access Journals (Sweden)

      Zhizhong Yuan

      2013-03-01

      Full Text Available It is important to assess forest litter management. Here we examined the effects of leaf litter addition on the soil faunal community in Huitong subtropical forest region in Hunan Province, China. The microcosm experiment involving leaf-litter manipulation using a block and nested experimental design, respectively, was established in May, 2011. In the block design, the effects of litter quantity and its control were examined, while in the nested design a comparison was made of litter quality by adding broad-leaved litter or needle litter to soils. In July, 2012, we measured the abundance, diversity, and community composition of soil fauna across these treatments. Significant differences in abundance of springtails were found due to litter addition and of Diptera larvae due to litter type treatment. However, the diversity, community composition and abundance of other taxa did not vary significantly across treatments. We also calculated soil biological quality based on soil fauna data. Its value increased significantly by 32.45% due to litter addition, but was unaffected by litter type based on nested ANOVA. The results indicate that litter quantity plays an more important role than litter type in determining soil quality in the earlier stages of soil evolution in the study region. Because soil biological quality based on soil fauna was more sensitive than abundance and diversity of soil fauna, we suggest it is used as an indicator for evaluating the effectiveness of forest litter management.

    16. The investigation of the impact of basic operational parameters on the dynamics of water jacket in a biomass boiler using numerical and experimental methods

      Directory of Open Access Journals (Sweden)

      Szubel Mateusz

      2015-01-01

      Full Text Available Biomass boiler application, despite its many advantages, is dependent upon many technical aspects, which require tests and optimization. Because of practical constraints, one of the most problematic areas of research is the analysis of phenomena occurring inside the water jacket of the boiler during the combustion process. The issue referred to above is significant due to its direct impact on the heating up of the operating medium for current power of the device and the total efficiency. The paper presents the analytical possibilities of the operating medium in a biomass boiler water jacket. The experimental works conducted as a part of the study were performed using an actual device – EKOPAL RM 40 straw boiler. They were aimed at defining the values of significant boundary conditions. Resistance thermometers and K-type thermocouples connected to a data acquisition system were placed in selected points of the water jacket and the combustion chambers to allow the monitoring of the conditions of the water heating process during biomass combustion. A measurement of inlet water mass flow rate was performed. To develop a numerical model of heat transfer into the water jacket, ANSYS CFX software was applied. The results of the experiments and simulations were compared and discussed. The paper describes the methodology and instruments used to perform the experimental studies, as well as some optimization solutions developed based on the results of the numeric alanalysis.

    17. Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study

      Directory of Open Access Journals (Sweden)

      C. A. Randles

      2010-10-01

      Full Text Available Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.

    18. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.

      Science.gov (United States)

      Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P

      2016-01-01

      Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline

    19. Changes in organic compounds during leaf litter leaching: laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon

      Directory of Open Access Journals (Sweden)

      Halima M

      2008-02-01

      Full Text Available A laboratory experiment was carried out on the leaf litter of 8 agroforestry plant species of the Sudano-guinea Savannas of Ngaoundere in order to compare patterns of their water absorption and dynamics of four important energetic organic compounds (soluble sugars, cellulose, phenol and lignin among these plant species during the leaching phase and to determine the influence of initial litter properties on these processes. To this end, 168 samples of leaf litter (5.00 +/- 0.01 g of Annona senegalensis, Lophira lanceolata, Syzygium guineense var. guineense, Syzygium guineense var. macrocarpum, Vitellaria paradoxa, Vitex doniana, Vitex madiensis and Ximenia americana were immersed for 15 days in distilled water at a temperature of 23 °C and relative humidity of 65 +/- 1%. Three samples of each plant species were taken at 1, 6, 24, 72, 168, 240 and 360 hours. Depending on the species, water absorption capacity after 360 h of leaching varied from 162.77 (S. g. var. macrocarpum to 264.00% (V. madiensis of dry litter mass. The release of water-soluble substances varied between 9.61 (L. lanceolata and 34.12% (X. americana. Water absorption and release of water-soluble substances rate constants were the highest in V. madiensis (0.32 h-1 and 0.25 h-1 and the lowest one respectively in S. g. guineense (0.03 h-1 and S. g. var. macrocarpum (0.006 h-1. Organic compound of original litter also varied significantly among species and decreased with leaching time for water-soluble sugars and phenols, while increased for cellulose and lignin. Water absorption by litter was significantly correlated with initial water-soluble sugars and phenol content, leaf litter area and thickness. The release of water-soluble substances by litters was also correlated with initial water-soluble sugars, water content and leaf litter area. The leaching rate constant was correlated with that of water absorption. These preliminary results lead to a better understanding of the litter

    20. Changes in organic compounds during leaf litter leaching: laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon

      Directory of Open Access Journals (Sweden)

      Biyanzi P

      2007-12-01

      Full Text Available A laboratory experiment was carried out on the leaf litter of 8 agroforestry plant species of the Sudano-guinea Savannas of Ngaoundere in order to compare patterns of their water absorption and dynamics of four important energetic organic compounds (soluble sugars, cellulose, phenol and lignin among these plant species during the leaching phase and to determine the influence of initial litter properties on these processes. To this end, 168 samples of leaf litter (5.00 ± 0.01 g of Annona senegalensis, Lophira lanceolata, Syzygium guineense var. guineense, Syzygium guineense var. macrocarpum, Vitellaria paradoxa, Vitex doniana, Vitex madiensis and Ximenia americana were immersed for 15 days in distilled water at a temperature of 23 °C and relative humidity of 65 ± 1%. Three samples of each plant species were taken at 1, 6, 24, 72, 168, 240 and 360 hours. Depending on the species, water absorption capacity after 360 h of leaching varied from 162.77 (S. g. var. macrocarpum to 264.00% (V. madiensis of dry litter mass. The release of water-soluble substances varied between 9.61 (L. lanceolata and 34.12% (X. americana. Water absorption and release of water-soluble substances rate constants were the highest in V. madiensis (0.32 h-1 and 0.25 h-1 and the lowest one respectively in S. g. guineense (0.03 h-1 and S. g. var. macrocarpum (0.006 h-1. Organic compound of original litter also varied significantly among species and decreased with leaching time for water-soluble sugars and phenols, while increased for cellulose and lignin. Water absorption by litter was significantly correlated with initial water-soluble sugars and phenol content, leaf litter area and thickness. The release of water-soluble substances by litters was also correlated with initial water-soluble sugars, water content and leaf litter area. The leaching rate constant was correlated with that of water absorption. These preliminary results lead to a better understanding of the litter

    1. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.

      Science.gov (United States)

      Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P

      2016-01-01

      Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline

    2. Intensive biomass harvesting in forests - what about the carbon balance?

      International Nuclear Information System (INIS)

      The use of biofuels is considered to be CO2-neutral. This means that the use of forest biomass for fuel does not add more CO2 to the atmosphere than what has been taken up over a stand age by photosynthesis. However, the biomass that may be harvested only contains part of the CO2 immobilized through fixation during the growth of the forest stand. A fraction of the produced biomass will always decompose on and in the soil, in part producing humus and in part CO2. To this fraction belongs the litter formed during the period of stand growth, e.g. the annual foliar litterfall. The decomposition of both foliar litter and green needles have been shown to follow an asymptotic function, meaning that the decomposition approaches a limit value. This means that recalcitrant remains are left. The decomposition of felling residues have been assumed to follow the same function. The obvious question is how the amount of humus is affected by removal of felling residues. In an investigation of humus storage in five stands of Norway spruce in south Sweden limit values were estimated for the decomposition of local spruce needle litter giving a variation from 63 to 85 per cent. With the use of these limit values and the amount of litterfall the accumulation of humus was estimated. These calculations showed that there is a growth of the humus layer in the period of stand growth. The rate of humus accumulation varied among the stands and on the average a theoretical humus accumulation of about 42 tons per hectare was estimated for a stand age of 60 years. This amount of already accumulated humus is not affected by harvests of remains from thinnings or clearcuts. If, on the other hand the felling residues are not removed that means that the amount of humus should increase. Experiments with soil scarification showed that for litter buried under plowed-up mineral soil the decomposition went further than in soil not scarified. The estimated limit value was on the average about 40 per cent

    3. Above and belowground controls on litter decomposition in semiarid ecosystems: effects of solar radiation, water availability and litter quality

      Science.gov (United States)

      Austin, A. T.; Araujo, P. I.; Leva, P. E.; Ballare, C. L.

      2008-12-01

      The integrated controls on soil organic matter formation in arid and semiarid ecosystems are not well understood and appear to stem from a number of interacting controls affecting above- and belowground carbon turnover. While solar radiation has recently been shown to have an important direct effect on carbon loss in semiarid ecosystems as a result of photochemical mineralization of aboveground plant material, the mechanistic basis for photodegradative losses is poorly understood. In addition, there are large potential differences in major controls on above- and belowground decomposition in low rainfall ecosystems. We report on a mesocosm and field study designed to examine the relative importance of different wavelengths of solar radiation, water availability, position of senescent material above- and belowground and the importance of carbon litter quality in determining rates of abiotic and biotic decomposition. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position-litter type and position-pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. In the field site, using plastic filters which attenuated different wavelengths of natural solar radiation, we found a highly significant effect of radiation exclusion on mass loss and demonstrated that both UV-A and short-wave visible light can have important impacts on photodegradative carbon losses. The combination of position and litter quality effects on litter decomposition appear to be critical for the

    4. Observations of mixed-aged litters in brown bears

      Science.gov (United States)

      Swenson, J.E.; Haroldson, M.A.

      2008-01-01

      We report on 3 cases of mixed-aged litters (young born in different years) in brown bears (Ursus arctos); in 1 instance the cub-of-the-year (hereafter called cubs) died in the den. Two cases occurred in Sweden after mothers were separated from their young during the breeding season. In one, the mother was separated from the accompanying cub for at least 12.5 hours and possibly up to 3.3 days, and later possibly separated for 4 days. In the other, the mother was separated from her yearling at least 3 times for 1-14, 1-6 and 1-6 days. She was with a male during the first separation. Specific events that produced the mixed-aged litter observed in Greater Yellowstone Ecosystem were unknown and our interpretation is based on estimates of ages of accompanying young from photographs. The observation of only 2 mixed-aged litters, after den emergence, from a sample of 406 observed cub litters accompanying radiomarked females confirms the rarity of this phenomenon. The mechanism apparently includes a short separation of mother and young, and, in the case of cubs, the mother must mate while lactating. Better understanding of the physiological mechanisms that allow mixed-age litters would help us in the debate about the occurrence of sexually selected infanticide in bears.

    5. Litter survey detects the South Atlantic 'garbage patch'.

      Science.gov (United States)

      Ryan, Peter G

      2014-02-15

      A distance-based technique was used to assess the distribution and abundance of floating marine debris (>1cm) in the southeast Atlantic Ocean between Cape Town and Tristan da Cunha, crossing the southern edge of the South Atlantic 'garbage patch' predicted by surface drift models. Most litter was made of plastic (97%). Detection distances were influenced by the size and buoyancy of litter items. Litter density decreased from coastal waters off Cape Town (>100 items km(-2)) to oceanic waters (<10 items km(-2)), and was consistently higher (6.2 ± 1.3 items km(-2)) from 3 to 8°E than in adjacent oceanic waters (2.7 ± 0.3 items km(-2)) or in the central South Atlantic around Tristan (1.0 ± 0.4 items km(-2)). The area with high litter density had few seaweeds, suggesting that most litter had been drifting for a long time. The results indicate that floating debris is accumulating in the South Atlantic gyre as far south as 34-35°S. PMID:24360332

    6. From waste to energy -- Catalytic steam gasification of broiler litter

      Energy Technology Data Exchange (ETDEWEB)

      Jones, J.A.; Sheth, A.C.

      1999-07-01

      In 1996, the production of broiler chickens in the US was approximately 7.60 billion head. The quantity of litter generated is enormous. In 1992, the Southeast region alone produced over five million tons of broiler litter. The litter removed from the broiler houses is rich in nutrients and often spread over land as a fertilizer. Without careful management, the associated agricultural runoff can cause severe environmental damage. With increasing broiler litter production, the implementation of alternative disposal technologies is essential to the sustainable development of the poultry industry. A process originally developed for the conversion of coals to clean gaseous fuel may provide an answer. Catalytic steam gasification utilities an alkali salt catalyst and steam to convert a carbonaceous feedstock to a gas mixture composed primarily of carbon monoxide, carbon dioxide, hydrogen, and methane. The low to medium energy content gas produced may be utilized as an energy source or chemical feedstock. Broiler litter is an attractive candidate for catalytic steam gasification due to its high potassium content. Experiments conducted in UTSI's bench-scale high-pressure fixed bed gasifier have provided data for technical and economic feasibility studies of the process. Experiments have also been performed to examine the effects of temperature, pressure, and additional catalysts on the gasification rate.

    7. Role of arthropod communities in bioenergy crop litter decomposition†.

      Science.gov (United States)

      Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

      2013-10-01

      The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release.

    8. Lost fishing gear and litter at Gorringe Bank (NE Atlantic)

      Science.gov (United States)

      Vieira, Rui P.; Raposo, Isabel P.; Sobral, Paula; Gonçalves, Jorge M. S.; Bell, Katherine L. C.; Cunha, Marina R.

      2015-06-01

      Studies concerning marine litter have received great attention over the last several years by the scientific community mainly due to their ecological and economic impacts in marine ecosystems, from coastal waters to the deep ocean seafloor. The distribution, type and abundance of marine litter in Ormonde and Gettysburg, the two seamounts of Gorringe Bank, were analyzed from photo and video imagery obtained during ROV-based surveys carried out at 60-3015 m depths during the E/V Nautilus cruise NA017. Located approximately 125 nm southwest of Portugal, Gorringe Bank lays at the crossroad between the Atlantic and the Mediterranean and is therefore characterized by an intense maritime traffic and fishing activities. The high frequency of lost or discarded fishing gear, such as cables, longlines and nets, observed on Gorringe Bank suggests an origin mostly from fishing activities, with a clear turnover in the type of litter (mostly metal, glass and to a much lesser extent, plastic) with increasing depth. Litter was more abundant at the summit of Gorringe Bank (ca. 4 items·km- 1), decreasing to less than 1 item·km- 1 at the flanks and to ca. 2 items·km- 1 at greater depths. Nevertheless, litter abundance appeared to be lower than in continental margin areas. The results presented herein are a contribution to support further actions for the conservation of vulnerable habitats on Gorringe Bank so that they can continue contributing to fishery productivity in the surrounding region.

    9. Litter Fall and Its Decomposition in Sapium sebiferum Roxb.: An Invasive Tree Species in Western Himalaya

      OpenAIRE

      Vikrant Jaryan; Sanjay Kr. Uniyal; Gupta, R. C.; Singh, R.D.

      2014-01-01

      Recognizing that high litter fall and its rapid decomposition are key traits of invasive species, litter fall and its decay in Sapium sebiferum Roxb. were studied in Palampur. For this, litter traps of dimension 50 × 50 × 50 cm3 were placed in under-canopy and canopy gap of the species. Litter fall was monitored monthly and segregated into different components. For litter decay studies, litter bags of dimension 25 × 20 cm2 with a mesh size 2 mm were used and the same were analyzed on a fortni...

    10. LITTER DEPOSITION AND DECOMPOSITION IN THREE FOREST FRAGMENTS PERIODICALLY FLOODABLE IN THE ISLAND OF MARAMBAIA, RJ

      OpenAIRE

      Ranieri Ribeiro Paula; Marcos Gervasio Pereira; Luiz Fernando Tavares de Menezes

      2009-01-01

      The litter production and decomposition of three sandy coastal plain forest formations periodically floodable in the Island of Marambaia, Mangaratiba, RJ, were studied from October 2005 to September 2006. For the litter deposition evaluation, 10 litter traps were installed and in each forest formation to quantify the litter decomposition 15 litter bags were allocated in each area. The annual litter production was 11.3, 10.8 and 11.1 Mg ha-1year-1, to F1, F2 and F3, respectively, the highest d...

    11. A review of soil erosion potential associated with biomass crops

      International Nuclear Information System (INIS)

      It has been estimated that up to 60 million hectares could be devoted to energy crop production in the U.S. Due to economic considerations, biomass crops will probably be produced on marginal cropland which is frequently highly erodible. Thus, the impact of herbaceous and woody biomass crop production on soil erosion must be addressed. Perennial grasses provide year-round soil cover, limiting erosion even with continued biomass harvest. Vigorous perennial herbaceous stands reduce water runoff and sediment loss and favor soil development processes by improving soil organic matter, soil structure and soil water and nutrient-holding capacity. Minimum tillage management of row crops reduces erosion compared with systems involving more frequent or more extensive tillage. Woody biomass plantations reduce water erosion by improving water infiltration, reducing impacts by water droplets, intercepting rain and snow and physically stabilizing soil by their roots and leaf litter. Shelterbelts reduce wind erosion when planted as shelterbelts and improve soil organic matter, soil structure and soil moisture in their leeward zone, reducing soil erodibility. Harvesting of woody biomass plantations may be accompanied by increased erosion. Forestry clear-cutting, especially on steep slopes, often results in a large increase in water erosion. For this reason, it is essential that woody biomass plantations be designed for rotational harvesting, even though this may result in higher harvesting costs. (Author)

    12. Fine litter accumulation in Central Amazonian Tropical Rainforest canopy Acúmulo de liteira fina no dossel de uma Floresta Tropical na Amazônia Central

      Directory of Open Access Journals (Sweden)

      Fabiana Rita do Couto-Santos

      2010-12-01

      Full Text Available Fine litter dynamics within the canopy differ from litter dynamics on the forest floor for reasons such as differences in microclimate, substrate, disturbance level, stratum influence and decomposition rates. This study is the first attempt to quantify the fine litter accumulated in the canopy of Central Amazonian forests. We compared the canopy litter accumulation to fine litter-layer on forest floor and to other forests and also investigated which were the mostly accumulated litter omponents. We found that Central Amazonian Rainforest intercepts greater fine litter in the canopy (294 g.m-2 compared to other forest formations with higher winds speed as in a Costa Rican Cloud Forest (170 g.m-2. The mean canopy fine litter accumulated at the end of the dry season was less than a half of that on soil surface (833 g.m-2 and the fine wood component dominates the canopy samplings (174 g.m-2 while leafy component predominate on soil surface litter (353 g.m-2.A dinâmica da liteira fina no dossel difere da dinâmica no chão da floresta por razões como diferenças no microclima, tipo de substrato, taxas de decomposição, distúrbios e influência dos estratos. Esta é a primeira tentativa de quantificar a liteira fina acumulada no dossel das florestas da Amazônia Central. Comparamos o acúmulo da liteira no dossel com a camada de liteira do chão da floresta e com outros tipos de florestas e investigamos quais componentes da liteira acumularam em maiores quantidades. A floresta estudada na Amazônia Central interceptou uma maior quantidade de liteira no dossel (294 g.m-2 do que outras florestas com maior influência dos ventos, como na Costa Rica (170 g.m-2. A média de liteira no dossel no fim da estação seca foi menos da metade da acumulada sobre o solo (833 g.m-2. Os galhos finos dominaram nas amostras do dossel (174 g.m-2 enquanto as folhas predominaram na liteira sobre o solo (353 g.m-2.

    13. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

      Directory of Open Access Journals (Sweden)

      Marc A. Rosen

      2012-03-01

      Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

    14. Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter.

      Science.gov (United States)

      Leitner, Sonja; Wanek, Wolfgang; Wild, Birgit; Haemmerle, Ieda; Kohl, Lukas; Keiblinger, Katharina M; Zechmeister-Boltenstern, Sophie; Richter, Andreas

      2012-07-01

      Glucans like cellulose and starch are a major source of carbon for decomposer food webs, especially during early- and intermediate-stages of decomposition. Litter quality has previously been suggested to notably influence decomposition processes as it determines the decomposability of organic material and the nutrient availability to the decomposer community. To study the impact of chemical and elemental composition of resources on glucan decomposition, a laboratory experiment was carried out using beech (Fagus sylvatica, L.) litter from four different locations in Austria, differing in composition (concentration of starch, cellulose and acid unhydrolyzable residue or AUR fraction) and elemental stoichiometry (C:N:P ratio). Leaf litter was incubated in mesocosms for six months in the laboratory under controlled conditions. To investigate the process of glucan decomposition and its controls, we developed an isotope pool dilution (IPD) assay using (13)C-glucose to label the pool of free glucose in the litter, and subsequently measured the dilution of label over time. This enabled us to calculate gross rates of glucose production through glucan depolymerization, and glucose consumption by the microbial community. In addition, potential activities of extracellular cellulases and ligninases (peroxidases and phenoloxidases) were measured to identify effects of resource chemistry and stoichiometry on microbial enzyme production. Gross rates of glucan depolymerization and glucose consumption were highly correlated, indicating that both processes are co-regulated and intrinsically linked by the microbial demand for C and energy and thereby to resource allocation to enzymes that depolymerize glucans. At early stages of decomposition, glucan depolymerization rates were correlated with starch content, indicating that starch was the primary source for glucose. With progressing litter decomposition, the correlation with starch diminished and glucan depolymerization rates were

    15. Pretreated densified biomass products

      Science.gov (United States)

      Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

      2014-03-18

      A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

    16. Energy use of biomass

      OpenAIRE

      HOLEČKOVÁ, Michaela

      2010-01-01

      The aim of this bachelor thesis is the research of different types of biomass, description of the various types of methods and technologies for energy usage of biomass and the mapping of large power plant units in the Czech Republic. The first part of this thesis deals with the definition of biomass, its distribution and the description of basic essential attributes describing its composition. The downstream part of this work is focused on the technologies of gaining energy out of biomass or ...

    17. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia

      Directory of Open Access Journals (Sweden)

      Lobna Zribi

      2016-07-01

      Full Text Available Aim of the study. To estimate biomass and carbon accumulation in a young and disturbed forest (regenerated after a tornado and an aged cork oak forest (undisturbed forest as well as its distribution among the different pools (tree, litter and soil. Area of study. The north west of Tunisia Material and methods. Carbon stocks were evaluated in the above and belowground cork oak trees, the litter and the 150 cm of the soil. Tree biomass was estimated in both young and aged forests using allometric biomass equations developed for wood stem, cork stem, wood branch, cork branch, leaves, roots and total tree biomass based on combinations of diameter at breast height, total height and crown length as independent variables. Main results. Total tree biomass in forests was 240.58 Mg ha-1 in the young forest and 411.30 Mg ha-1 in the aged forest with a low root/shoot ratio (0.41 for young forest and 0.31 for aged forest. Total stored carbon was 419.46 Mg C ha-1 in the young forest and 658.09 Mg C ha-1 in the aged forest. Carbon stock (Mg C ha-1 was estimated to be113.61(27.08% and 194.08 (29.49% in trees, 3.55 (0.85% and 5.73 (0.87% in litter and 302.30 (72.07% and 458.27 (69.64% in soil in the young and aged forests, respectively. Research highlights. Aged undisturbed forest had the largest tree biomass but a lower potential for accumulation of carbon in the future; in contrast, young disturbed forest had both higher growth and carbon storage potential. Keywords: Tree biomass; disturbance; allometry; cork oak forests; soil organic carbon stock.

    18. Impacts of Biomass Burning on the Land Use / Land Cover Dynamics in Northern Sub-Saharan Africa and Associated Alteration of Local Emission Rates

      Science.gov (United States)

      Ellison, L.; Ichoku, C. M.

      2015-12-01

      Biomass burning is a major anthropogenic event in Northern Sub-Saharan Africa (NSSA), which contributes 15-20% of the global annual total of particulate matter emissions from fires. This burning is mostly for agricultural, grazing or hunting purposes, and thus has a great potential for driving changes in the land use and land cover distribution in that region. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard both the Terra and Aqua spacecraft have two complimentary data products to support this research: the MOD14/MYD14 active fire products measuring fire locations and strengths, and the MCD12 land cover type product, which includes the International Geosphere Biosphere Programme (IGBP) land-cover classification system used in this analysis. More specifically, the MCD12Q1 tiled data product at 500 m was used to match against the 1 km active fire product resolution for the current analysis. Paired data between instantaneous fire measurements and the underlying land cover types for the particular year over the study period of 2003-2013 reveals a dominant burning of savanna, followed by cropland land cover type throughout the region. There are a few indications of the interchange between savanna and cropland due to burning practices. Even though the fire activity in the whole NSSA region is decreasing at a rate of 1.4%/yr during the study period, some land cover types in parts of NSSA show an increase, including local increases in sensitive land cover types such as forest and wetland, which could have serious ecological implications. The changes in the overall redistribution of biomass burning amongst the different land cover types in NSSA dictate that there is also a redistribution of biomass burning emissions. The extent of these changes will also be covered in this presentation.

    19. Direct and indirect effects of UV-B exposure on litter decomposition: a meta-analysis.

      Science.gov (United States)

      Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

      2013-01-01

      Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (PUV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (PUV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (PUV-B exposure intensity (30%) had significant direct effects on litter decomposition (PUV-B on litter decomposition.

    20. The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter

      Science.gov (United States)

      Gritsch, Christine; Egger, Florian; Zehetner, Franz; Zechmeister-Boltenstern, Sophie

      2016-05-01

      The forest litter layer lies at the boundary between soil and atmosphere and is a major factor in biogeochemical cycles. While there are several studies on how the litter layer controls soil trace gas emissions, litter emissions itself are less well understood, and it is still unclear how important gases respond to changing temperature and moisture. In order to assess leaf litter gas exchange, we conducted laboratory incubation experiments in which the full set of climate relevant gases, i.e., carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and nitric oxide (NO) coming from deciduous and coniferous leaf litter were measured at five temperatures and seven moisture contents. In addition, we compared litter and soil from different origin in terms of temperature/moisture responses of gas fluxes and investigated possible interactions between the two climate factors. Deciduous litter emitted more CO2 (up to 335 mg CO2-C kg-1 h-1) than coniferous litter, whereas coniferous litter released maximum amounts of NO (207 µg NO-N kg-1 h-1). N2O was only emitted from litter under very moist and warm conditions (>70% wet weight, >10°C). CH4 emissions were close to zero. Temperature sensitivities of litter emissions were generally lower than for soil emissions. Nevertheless, wet and warm conditions always enhanced litter emissions, suggesting a strong feedback effect of the litter layer to predicted future climate change.

    1. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

      Science.gov (United States)

      Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

      2014-05-01

      The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants. PMID:24590204

    2. Stacking Time and Aluminum Sulfate Effects on Polyether Ionophores in Broiler Litter.

      Science.gov (United States)

      Doydora, Sarah A; Sun, Peizhe; Cabrera, Miguel; Thompson, Aaron; Love-Myers, Kimberly; Rema, John; Calvert, Vaughn; Pavlostathis, Spyros G; Huang, Ching-Hua

      2015-11-01

      The use of ionophores as antiparasitic drugs plays an important role in US poultry production, especially in the broiler () industry. However, administered ionophores can pass through the bird's digestive system and appear in broiler litter, which, when applied to agricultural fields, can present an environmental hazard. Stacking (storing or stockpiling) broiler litter for some time might decrease the litter ionophore concentrations before land application. Because ionophores undergo abiotic hydrolysis at low pH, decreasing litter pH with acidic aluminum sulfate (alum) might also decrease ionophore concentrations. We assessed the change in ionophore concentrations in broiler litter in response to the length of time broiler litter was stored (stacking time) and alum addition. We spiked broiler litter with monensin and salinomycin, placed alum-amended litter (∼pH 4-5) and unamended litter (∼pH 8-9) into 1.8-m bins, and repeatedly sampled each bin for 112 d. Our findings showed that stacking broiler litter alone did not have an impact on monensin concentration, but it did slowly reduce salinomycin concentration by 55%. Adding alum to broiler litter reduced monensin concentration by approximately 20% relative to unamended litter, but it did not change salinomycin concentration. These results call for continued search for alternative strategies that could potentially reduce the concentration of ionophores in broiler litter before their application to agricultural soils. PMID:26641344

    3. Proteins in biomass streams

      NARCIS (Netherlands)

      Mulder, W.J.

      2010-01-01

      The focus of this study is to give an overview of traditional and new biomasses and biomass streams that contain proteins. When information was available, the differences in molecular structure and physical and chemical properties for the different proteins is given. For optimal biomass use, isolati

    4. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

      Directory of Open Access Journals (Sweden)

      P. Straková

      2011-09-01

      and N acquisition towards C acquisition. This caused an increase in the rate of litter decomposition. The effects of the short-term WT drawdown were minor compared to those of the long-term WT drawdown: e.g., the increase in the activity of C-acquiring enzymes was up to 120 % (bog or 320 % (fen higher after the long-term WT drawdown compared to the short-term WT drawdown. In general, the patterns of microbial activity as well as their responses to WT drawdown depended on peatland type: e.g., the shift in activity allocation to C-acquisition was up to 100 % stronger at the fen compared to the bog.

      Our results imply that changes in plant community composition in response to persistent WT drawdown will strongly affect the C dynamics of peatlands. The predictions of decomposer activity under changing climate and/or land-use thus cannot be based on the direct effects of the changed environment only, but need to consider the indirect effects of environmental changes: the changes in plant community composition, their dependence on peatland type, and their time scale.

    5. Litter size, fur quality and genetic analyses of American mink

      DEFF Research Database (Denmark)

      Thirstrup, Janne Pia

      Mink is a production animal breed for the fur. Both quality and quantity of the produced skin are important for the producer. In these analyses both fur quality traits, such as structure of guard hair and wool, which determines the quality of the skin, and litter size which determines the quantity...... of the skin, have been analyzed. Both fur quality traits and litter size are complex traits underlying quantitative genetic variation. Methods for estimating genetic variance, spanning from pedigree information to the use of different genetic markers, have been utilized in order to gain knowledge about...

    6. Paternity analysis in a litter of whale shark embryos

      OpenAIRE

      Schmidt, Jennifer; Chien-Chi, Chen; Sheikh, Saad; Meekan, Mark; Norman, Bradley; Joung, Shoou-Jeng

      2010-01-01

      A 10.6 m female whale shark Rhincodon typus caught off the coast of eastern Taiwan in 1995 carried 304 embryos that ranged in developmental stage from individuals still in egg cases to hatched and free-swimming near-term animals. This litter established that whale sharks develop by aplacental yolk-sac viviparity, with embryos hatching from eggs within the female. The range of developmental stages in this litter suggested ongoing fertilization over an extended period of time, with embryos of d...

    7. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil

      Directory of Open Access Journals (Sweden)

      Vinícius Augusto Morais

      2013-06-01

      Full Text Available This study aimed at quantifying carbon (C and biomass stocks in shoot portion, leaf litter, roots and soil within a fragment of dense savanna 'cerradão', 158.5 ha in area, located in Minas Gerais state. Measures were quantified using dendrometric parameters obtained during the forest inventory and collection of leaf litter, root and soil samples. Furrows were dug in the soil each 100 cm long, 50 cm wide and 100 cm deep in order to collect root samples at depths of 0-30 cm, 30-50 cm and 50-100 cm, and soil samples from the layers 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm and 60-100 cm, as well as any leaf litter from the surrounding surface. Analyses were performed in the Organic Matter Study Laboratory (DCS/UFLA to determine C contents in the above matrices, using an Elementar analyzer model Vario TOC Cube. Higher C contents and stocks and lower density were noted in topmost soil layers. In cerradão, shoot portion was found to be the matrix contributing the most to biomass production, followed by roots and leaf litter. Carbon stock in the fragment was 139.7 Mg ha-1. Soil was the matrix contributing the most to stocked C (64.8%, followed by the shoot portion (26.3%, roots (5.2% and leaf litter (3.7%.

    8. Coarse woody debris dynamics following biomass harvesting : tracking the carbon and nitrogen patterns from harvest to crown closure in upland black spruce ecosystems

      Energy Technology Data Exchange (ETDEWEB)

      Wiebe, S.A.; Luckai, N.J. [Lakehead Univ., Thunder Bay, ON (Canada). Faculty of Natural Resources Management; Morris, D.M.; Reid, D.E.B. [Ontario Ministry of Natural Resources, Thunder Bay, ON (Canada) Centre for Northern Forest Ecosystem Research

      2010-07-01

      Coarse woody debris (CWD) plays an important role in forest regeneration after disturbances such as fire or harvesting. Sites with shallow soils or coarse-textured soils are susceptible to overstory removal, as low carbon and nutrient pools may limit stand productivity. This paper reported on a study that was conducted to document carbon loss and nutrient fluxes associated with residual CWD remaining after 4 levels of biomass removal from mature black spruce forested stands in northwestern Ontario. Fresh, loamy soil, and dry sandy soil types were selected to determine if CWD represents a source or sink for nutrients as well as to determine if decay patterns varied depending on soil type. Results of the study showed that the biomass removal treatment with the greatest carbon loss and fastest CWD decay rate had the highest initial mass of CWD. Nitrogen (N) concentrations in the CWD increased throughout the 14-year sampling period. The trend was most evident on dry, sandy sites where N content peaked at year 4 and then decreased. N losses from CWD represented a substantive portion of the total inorganic N pool. Coarse wood N release ranged between 6 and 10 per cent of the total inorganic N pool on the shallow, loamy sites. Results of the study suggested that CWD may buffer the initial leaching of nutrients from the site after harvesting, and provide an available source of N to the stand prior to crown closure.

    9. Measuring ecosystem functioning of soil mega-aggregates produced by soil/litter mix-feeding animals

      Science.gov (United States)

      Kaneko, N.

      2009-04-01

      on their seed nutrient, and the canopy oak trees seem to be nutrient limited. Thus in this forest, the nutrient condition mediated by earthworm activity was a strong factor influencing plant species-specific growth and this correlation was clear when we used the cast abundance as an independent factor but it was not clear when we used the worm abundance or biomass for explanation variables. In laboratory incubations, fresh casts of earthworm Metaphire hilgendorfi contained higher NH4-N which was mostly nitrified within 4-weeks. The 4-weeks aged casts of the earthworm and millipede Parafontaria laminata emitted significantly more N2O whereas the modified soil had strong CH4 acidification capacity. Therefore the animal effects on greenhouse effect gas should be evaluated for CO2, N2O and CH4 at the same time. We then confirmed that megaaggregates, probably cast origin, tended to contain more carbon than fine soil. Combining our data from various study sites in Japan, the amount of carbon contained in megaaggregates (> 2 mm) in 0-5 cm layer ranged from 200 to 1000 g C per m2. Animal feeding activities maintained substantial amount of surface soil aggregates. Therefore, the activity of soil/litter mix feeders can be linked to the carbon dynamics by evaluating worm's soil engineering effect.

    10. 基于生物质能的芒属(Miscanthus)植物碳动态和收支研究进展%A review on carbon dynamics and budget of biomass energy species of Miscanthus spp.

      Institute of Scientific and Technical Information of China (English)

      欧阳旭; 张亚茹; 李跃林

      2013-01-01

      Miscanthus in European countries as a strategy to relieve the energy crisis and greenhouse effects, study in our country is still at a primary stage. The traditional agricultural use mode in China decided that researchers tended to pay more attention on grassland in northern China than that in southern China. Previous studies on grassland in south China focused on ecological restoration, seldom works were about the CO2 exchange capacity at the ecosystem level. However, with the continuing increase in carbon dioxide and its effects on global warming, researches on biomass plant and its carbon sink function become more and more important. Nearly 6.7×107 ha of degraded grassland in mountain areas in southern China are urgent to be restored or in the process of restoration. Miscanthus grasslands have a low demand for nutrient inputs, they may also be produced with little or no pesticide use, and make full use of natural resources such as light and water, and they have high water use and nutrient use efficiency, which make it reach the biomass plant criteria. Compared to other biomass sources, C4 plants outyield C3 plant due to their more efficient photosynthetic pathway. It is worthy to notice that C4 Miscanthus grasses have great carbon sequestration capacity and potential energy in the biomass with high light use efficiency. Hence, a full assessment of carbon dynamics and budgets for Miscanthus grasses are needed. This paper reviewed the current situation of researches on Miscanthus biomass at home and abroad, and concentrated on studies of carbon dynamics and budgets of biomass energy in Miscanthus grasses at ecosystem level. More objective assessment methods of Miscanthus carbon sequestration function at the ecosystem were discussed. Meanwhile, based on the studies of biomass process, research history and current situation of grass land in south China, it was illustrated that the rational exploitation and utilization of biomass energy resources in degraded grasslands brings

    11. Distribution of beach litter along the coastline of Cádiz, Spain.

      Science.gov (United States)

      Williams, Allan Thomas; Randerson, Peter; Di Giacomo, Carlo; Anfuso, Giorgio; Macias, Ana; Perales, José Antonio

      2016-06-15

      A total of 59 categories of litter items were found at 20 beaches (13 mechanically cleaned, 7 non-cleaned) in the Cádiz tourist environment, Spain. Cluster Analysis and Principal Components Analysis were used to highlight similarities and contrasts between sites and/or associations between litter categories. Multivariate analyses separated beaches according to the total numbers of litter items present. Non-cleaned sites showed a variety of litter category abundance with distinct origins and abundant, ubiquitous items (plastic and glass fragments). Of the 7 non-cleaned beaches (49 litter categories) river-mouth sites were distinct due with high numbers of litter items. The sheltered inner part of Cádiz Bay beaches had a wide range of litter type. Many sites were associated with locally deposited recreational litter categories; while industrial/commercial/fishing categories were abundant only at a few sites, indicating items transported onto the shore from the Guadalete river.

    12. Distribution of beach litter along the coastline of Cádiz, Spain.

      Science.gov (United States)

      Williams, Allan Thomas; Randerson, Peter; Di Giacomo, Carlo; Anfuso, Giorgio; Macias, Ana; Perales, José Antonio

      2016-06-15

      A total of 59 categories of litter items were found at 20 beaches (13 mechanically cleaned, 7 non-cleaned) in the Cádiz tourist environment, Spain. Cluster Analysis and Principal Components Analysis were used to highlight similarities and contrasts between sites and/or associations between litter categories. Multivariate analyses separated beaches according to the total numbers of litter items present. Non-cleaned sites showed a variety of litter category abundance with distinct origins and abundant, ubiquitous items (plastic and glass fragments). Of the 7 non-cleaned beaches (49 litter categories) river-mouth sites were distinct due with high numbers of litter items. The sheltered inner part of Cádiz Bay beaches had a wide range of litter type. Many sites were associated with locally deposited recreational litter categories; while industrial/commercial/fishing categories were abundant only at a few sites, indicating items transported onto the shore from the Guadalete river. PMID:27117354

    13. Decomposition of different plant litters in Loess Plateau of Northwest China%黄土高原不同植物凋落物的分解特性

      Institute of Scientific and Technical Information of China (English)

      李云; 周建斌; 董燕捷; 夏志敏; 陈竹君

      2012-01-01

      Taking the litters of species Hippophae rhamnoides, Medicago sativa, Populus simonii, Robinia pseudoacaci, Salix psammophila, and Stipa bungeana in the Loess Plateau of Northeast China as test objects, and by using mesh bags, this paper studied the dynamic changes of the litters mass, carbon, and nitrogen during decomposition after buried in the field in semiarid region. The litters buried were from one, two, or three of the plant species, and mixed thoroughly with equal proportion of masses. During decomposition, the mass loss rate, total carbon and nitrogen release rates, and total soluble carbon and nitrogen contents of different litters were higher at the early than at the later decomposition stage. After 412 d decomposition, the average mass loss rate of the litters was in the order of mixed litters of three plant species > mixed litters of two plant species > one plant species litter. By the end of this experiment, the average release rates of the litter total carbon and nitrogen ranked as one plant species litter > mixed litters of two plant species > mixed litters of three plant species, the litter soluble organic carbon content was mixed litters of two plant species > mixed litters of three plant species > one plant species litter, while the litter soluble total nitrogen content was mixed litters of three plant species > mixed litters of two plant species > one plant species litter. Correlation analysis showed that the utter mass loss rate had definite correlation with the litter soluble organic matter, especially soluble organic carbon. From the viewpoint of mass loss rate, the mixture of the litters of P. simonii, H. rhamnoide, and M. sativa was the optimum. It was suggested that in the process of returning farmland into forestland and grassland in the gully and valley region of Loess Plateau, it would be required to rationally increase plant species diversity to improve soil fertility.%以黄土高原区典型植物刺槐、小叶杨、沙棘、沙柳

    14. How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest?

      DEFF Research Database (Denmark)

      Strandmark, Lisa Bjørnlund; Christensen, Søren

      2005-01-01

      The relative importance of litter quality and site heterogeneity on population dynamics of decomposer food webs was investigated in a semi-natural mixed deciduous forest in Denmark. Litterbags containing beech or ash leaves were placed in four plots. Plots were located within gaps and under closed...... in gaps. Taxonomic diversity of nematodes increased during decomposition and functional diversity of nematodes followed a pattern often encountered, i.e. opportunistic bacterial-feeders were gradually replaced by fungal-feeders and slower growing bacterial-feeders while predators and omnivors peaked...... in the decomposer food web, site effects were also detected and nematode functional groups responded more to site than to litter quality early on in the decomposition process....

    15. Seasonal dynamics of fungal communities in a temperate oak forest soil.

      Science.gov (United States)

      Voříšková, Jana; Brabcová, Vendula; Cajthaml, Tomáš; Baldrian, Petr

      2014-01-01

      Fungi are the agents primarily responsible for the transformation of plant-derived carbon in terrestrial ecosystems. However, little is known of their responses to the seasonal changes in resource availability in deciduous forests, including photosynthate allocation below ground and seasonal inputs of fresh litter. Vertical stratification of and seasonal changes in fungal abundance, activity and community composition were investigated in the litter, organic and upper mineral soils of a temperate Quercus petraea forest using ergosterol and extracellular enzyme assays and amplicon 454-pyrosequencing of the rDNA-ITS region. Fungal activity, biomass and diversity decreased substantially with soil depth. The highest enzyme activities were detected in winter, especially in litter, where these activities were followed by a peak in fungal biomass during spring. The litter community exhibited more profound seasonal changes than did the community in the deeper horizons. In the litter, saprotrophic genera reached their seasonal maxima in autumn, but summer typically saw the highest abundance of ectomycorrhizal taxa. Although the composition of the litter community changes over the course of the year, the mineral soil shows changes in biomass. The fungal community is affected by season. Litter decomposition and phytosynthate allocation represent important factors contributing to the observed variations. PMID:24010995

    16. Litter Decomposition in Created and Adjacent Forested Wetlands of the Coastal Plain of Virginia

      OpenAIRE

      Schmidt, John Michael

      2002-01-01

      Litter decomposition is a poorly understood function of constructed and natural forested wetlands. This study compared rates of litter mass loss, changes in litter morphology, and associated macroinvertebrate populations in constructed and natural non-tidal wetlands. Two sets of wetlands (constructed vs. natural) were studied in eastern Virginia; a 9 year-old riparian set near Fort Lee, (FL), and a 2 year-old wet flat set in Charles City County, (CC). Mixed deciduous forest litter collected...

    17. Litter production and decomposition in Eucalyptus urophylla x Eucalyptus globulus maidenii stand

      OpenAIRE

      Mauro Valdir Schumacher; Robson Schaff Corrêa; Márcio Viera; Elias Frank de Araújo

      2013-01-01

      he sustainable wood production in commercial plantations requires knowledge of the nutrient cycling process, which also involves the production and decomposition of litter. This study verified the influence of climatic variables on litter production and t evaluated the rate of leaf litter decomposition in a stand of Eucalyptus urophylla x E. globulus maidenii. There were installed 4 plots of 20 m x 20 m, in each plot four litter traps to collect leaves were placed, thin branches and miscellan...

    18. Young mangrove stands produce a large and high quality litter input to aquatic systems

      OpenAIRE

      Nga, B.T.; Tinh, H.Q.; Tam, D.T.; Scheffer, M.; Roijackers, R.M.M.

      2005-01-01

      Mangrove swamps are key ecosystems along the Vietnam coast. Although mangrove litter is thought to represent an important input of organic matter and nutrients to the coastal aquatic systems, the factors determining the quality and size of this litter flux have not been studied so far. We monitored leaf, stipule, twig, and reproductive litter monthly in monocultures of Rhizophora apiculata mangrove forests of 7, 11, 17 and 24 years old in the Camau province, Mekong Delta, Vietnam. Litter trap...

    19. Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.

      Science.gov (United States)

      Lashermes, Gwenaëlle; Gainvors-Claisse, Angélique; Recous, Sylvie; Bertrand, Isabelle

      2016-01-01

      Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C-CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40-80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes and

    20. Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.

      Science.gov (United States)

      Lashermes, Gwenaëlle; Gainvors-Claisse, Angélique; Recous, Sylvie; Bertrand, Isabelle

      2016-01-01

      Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C-CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40-80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes and

    1. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

      International Nuclear Information System (INIS)

      The growth and biomass productivity of kenaf (Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter > rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

    2. A new conceptual model for the fate of lignin in decomposing plant litter

      NARCIS (Netherlands)

      T. Klotzbücher; K. Kaiser; G. Guggenberger; C. Gatzek; K. Kalbitz

      2011-01-01

      Lignin is a main component of plant litter. Its degradation is thought to be critical for litter decomposition rates and the build-up of soil organic matter. We studied the relationships between lignin degradation and the production of dissolved organic carbon (DOC) and of CO2 during litter decompos

    3. PECULIARITIES OF LITTER INVERTEBRATES’ MULTISPECIES COMPLEXES FORMATION ON THE KHORTITSA ISLAND (ZAPORIZHZHYA PROVINCE)

      OpenAIRE

      D. О. Fedorchenko; V. V. Brygadyrenko

      2008-01-01

      Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province) are studied. The dispersion of taxonomic groups of different levels (families and species) in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

    4. Legacy phosphorus in calcareous soils: effects of long-term poultry litter application

      Science.gov (United States)

      Sequential fractionation techniques, coupled with phosphatase hydrolysis, have allowed for greater understanding of manure/litter effects on soil P distribution. We evaluated the effect of long-term (greater than 10 years) poultry litter (broiler and turkey litter) application at annual rates of 4.5...

    5. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient

      NARCIS (Netherlands)

      Makkonen, M.; Berg, M.P.; Handa, I.T.; Hättenschwiler, S.; Ruijven, van J.; Bodegom, van P.M.; Aerts, M.A.P.A.

      2012-01-01

      Plant litter decomposition is a key process in terrestrial carbon cycling, yet the relative importance of various control factors remains ambiguous at a global scale. A full reciprocal litter transplant study with 16 litter species that varied widely in traits and originated from four forest sites c

    6. Alum and Rainfall Effects on Ionophores in Runoff from Surface-Applied Broiler Litter.

      Science.gov (United States)

      Doydora, Sarah A; Franklin, Dorcas; Sun, Peizhe; Cabrera, Miguel; Thompson, Aaron; Love-Myers, Kimberly; Rema, John; Calvert, Vaughn; Pavlostathis, Spyros G; Huang, Ching-Hua

      2015-09-01

      Polyether ionophores, monensin, and salinomycin are commonly used as antiparasitic drugs in broiler production and may be present in broiler litter (bird excreta plus bedding material). Long-term application of broiler litter to pastures may lead to ionophore contamination of surface waters. Because polyether ionophores break down at low pH, we hypothesized that decreasing litter pH with an acidic material such as aluminum sulfate (alum) would reduce ionophore losses to runoff (i.e., monensin and salinomycin concentrations, loads, or amounts lost). We quantified ionophore loss to runoff in response to (i) addition of alum to broiler litter and (ii) length of time between litter application and the first simulated rainfall event. The factorial experiment consisted of unamended (∼pH 9) vs. alum-amended litters (∼pH 6), each combined with simulated rainfall at 0, 2, or 4 wk after litter application. Runoff from alum-amended broiler litter had 33% lower monensin concentration ( runoff from unamended broiler litter when averaged across all events of rainfall. Ionophore losses to runoff were also less when rainfall was delayed for 2 or 4 wk after litter application relative to applying rainfall immediately after litter application. While the weather is difficult to predict, our data suggest that ionophore losses in runoff can be reduced if broiler litter applications are made to maximize dry time after application.

    7. Integrating plant litter quality, soil organic matter stablilization, and the carbon saturation concept

      Science.gov (United States)

      Recent research suggests labile plant litters promote the stabilization of soil organic matter (SOM) in physico-chemically protected fractions with relatively slow turnover. However, the effect of litter quality on SOM stabilization is inconsistent. Labile, ‘high quality’ litters characterized by hi...

    8. Prevention of littering through packaging design: a support tool for concept generation

      NARCIS (Netherlands)

      Wever, R.; Gutter, N.; Silvester, S.

      2006-01-01

      Littering is a social and environmental problem. Numerous studies have been performed trying to understand littering behavior and to find ways to influence it successfully. Various litter-reduction strategies have been applied with changing success. These have either focused on directly influencing

    9. The use of beached bird surveys for marine plastic litter monitoring in Ireland

      NARCIS (Netherlands)

      Acampora, Heidi; Lyashevska, Olga; Franeker, van J.A.; O'Connor, I.

      2016-01-01

      Marine plastic litter has become a major threat to wildlife. Marine animals are highly susceptible to entanglement and ingestion of debris at sea. Governments all around the world are being urged to monitor litter sources and inputs, and to mitigate the impacts of marine