WorldWideScience

Sample records for biomass litter dynamics

  1. 高山森林凋落物分解过程中的微生物生物量动态%Dynamics of microbial biomass during litter decomposition in the alpine forest

    Institute of Scientific and Technical Information of China (English)

    周晓庆; 吴福忠; 杨万勤; 朱剑霄

    2011-01-01

    凋落物分解过程中的微生物生物量动态对于深入了解森林凋落物分解机理具有重要意义.为了解高山森林典型树种凋落物分解过程中的微生物生物量特征,采用凋落物分解袋法,研究了土壤冻结期(3月)、融冻期(4-5月)、生长季节(5-10月)和冻结初期(11月)红桦(Betula albosinensi)、岷江冷杉(Abies faxoniana)和粗枝云杉(Picea asperata)凋落物分解过程的微生物生物量C(MBC)、微生物生物量N(MBN)和微生物生物量P(MBP)动态.4个关键时期,凋落物的MBC、MBN以生长季节最高,但非生长季节的3个关键时期也检测出较高的MBC、MBN.在融冻期结束后,3类凋落物分解过程中MBC和MBN均出现爆发性增长.然而,MBP在生长季节中期(8月)、完全冻结期(3月)和冻结初期(11月)均相对较低,但在融冻期和生长季节后期(9月)相对较高.另外,红桦凋落物的MBC、MBN和MBP含量均高于岷江冷杉和粗枝云杉凋落物(除4月粗枝云杉凋落物MBP异常升高外).这些结果为更加清晰地认识高寒森林凋落物分解过程及机理,以及进一步理解陆地生态系统结构和功能提供了一定基础数据.%Microorganism plays an irreplaceable role in litter decomposition , and the dynamics of microbial activity in litters is of ecological significance in understanding the mechanism of litter decomposition. Microbial biomass serves their important statuses as a sensitive bio indicator of microbial activity in respond to environmental change. Seasonal freezing and thawing is one of the most significant environmental changes in many high latitude/altitude areas such as in alpine regions. The significant temperature fluctuations with related freezing , thawing and freeze thaw cycles could exhibit a strong effect on microbial biomass during litter decomposition in the cold season. As yet, more attentions have been given to the growing season, only a few studies have focused on litter decomposition and the

  2. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  3. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    The following are proposed activities for quarter 2 (9/15/00-12/14/00): (1) Conduct TGA and fuel characterization studies-Task 1; (2) Perform re-burn experiments-Task 2; (3) Fabricate fixed bed gasifier/combustor-Task 3; and (4) Modify the 3D combustion modeling code for feedlot and litter fuels-Task 4. The following were achieved During Quarter 2 (9/15/00-12/14/00): (1) The chicken litter has been obtained from Sanderson farms in Denton, after being treated with a cyclonic dryer. The litter was then placed into steel barrels and shipped to California to be pulverized in preparation for firing. Litter samples have also been sent for ultimate/proximate laboratory analyses.-Task 1; (2) Reburn-experiments have been conducted on coal, as a base case for comparison to litter biomass. Results will be reported along with litter biomass as reburn fuel in the next report-Task 2; (3) Student has not yet been hired to perform task 3. Plans are ahead to hire him or her during quarter No. 3; and (4) Conducted a general mixture fraction model for possible incorporation in the code

  5. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    The following are proposed activities for quarter 3 (12/15/00-3/14/01): (1) Conduct TGA and fuel characterization studies - Task 1; (2) Continue to perform re-burn experiments. - Task 2; (3) Design fixed bed combustor. - Task 3; and (4) Modify the PCGC2 code to include moisture evaporation model - Task 4. The following were achieved During Quarter 3 (12/15/0-3/14/01): (1) Conducted TGA and Fuel Characterization studies (Appendix I). A comparison of -fuel properties, TGA traces etc is given in Appendix I. Litter has 3 and 6 times more N compared to coal on mass and heat basis. The P of litter is almost 2% (Task 1). Both litter biomass (LB) and feedlot biomass (FB) have been pulverized. The size distributions are similar for both litter and FB in that 75% pass through 150(micro)m sieve while for coal 75% pass through 60(micro)m sieve. Rosin Rammler curve parameters are given. The TGA characteristics of FB and LB are similar and pyrolysis starts at 100 C below that of coal; (2) Reburn experiments with litter and with FB have been performed (Appendix II) -Task 2. Litter is almost twice effective (almost 70-90% reduction) compared to coal in reducing the NOx possibly due to presence of N in the form of NH(sub 3); (3) Designed fixed bed gasifier/combustor (Appendix III) - Task 3; and (4) Modified PCGC2 to include moisture evaporation model in coal and biomass particles. (Appendix IV) - Task 4

  6. Poultry litter to fire Europe's biggest biomass plant

    International Nuclear Information System (INIS)

    Fibrowatt, an independent British power developer, has started construction of the Thetford power station which, at 38.5 MW, will be Europe's largest producer of electricity from biomass. This plant will be fired by poultry litter, a fuel which Fibrowatt has developed considerable expertise with at two other plants. The company hopes to take this experience to the continent, where it has a number of projects under development. (UK)

  7. Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio

    Science.gov (United States)

    Spohn, M.

    2015-02-01

    Soil microbial respiration is a central process in the terrestrial carbon (C) cycle. In this study, I tested the effect of the carbon-to-nitrogen (C:N) ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global data set on microbial respiration per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled from literature data. It was found that qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and was negatively correlated with the litter nitrogen (N) concentration. The positive relation between qCO2 and the litter C:N ratio resulted from an increase in respiration with the C:N ratio in combination with no significant effect of the litter C:N ratio on the soil microbial biomass C concentration. The results suggest that soil microorganisms respire more C both in absolute terms and per unit microbial biomass C when decomposing N-poor substrate. The reasons for the observed relationship between qCO2 and the litter layer C:N ratio could be microbial N mining, overflow respiration or the inhibition of oxidative enzymes at high N concentrations. In conclusion, the results show that qCO2 increases with the litter layer C:N ratio. Thus, the findings indicate that atmospheric N deposition, leading to decreased litter C:N ratios, might decrease microbial respiration in soils.

  8. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    Science.gov (United States)

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process. PMID:26947573

  9. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  10. Litter Dynamics of Three Subalpine Forests in Western Sichuan

    Institute of Scientific and Technical Information of China (English)

    YANG Wan-Qin; WANG Kai-Yun; S. KELLOM(A)KI; GONG He-De

    2005-01-01

    Litter production, components and dynamics were investigated and forest floor litter was quantified throughout a whole year in three subalpine forests, dominated by tree species of spruce (SF), fir (FF) and birch (BF), in Western Sichuan, China, in order to understand the key factors that influenced litter production and dynamics. Litterfall in the three forests consisted mainly of leaves, woody litter, reproductive organs and moss. Contribution of leaf litter to the total litterfall was significantly (P < 0.05) greater than that of woody litter, reproductive organs or moss. Regardless of the stands, litterfall exhibited a marked monthly variation with the maximum litterfall peaks occurring in October,with smaller peaks occurring in February for SF and FF, and May for BF. The analysis indicated that tree species,stand density, leaf area index (LAI), stand basal area and stand age were the key factors determining litter production.Meanwhile tree species and phenology controlled the litter dynamics, with wind and snow modifying the litter components and dynamics.

  11. Leaf litter dynamics and litter consumption in two temperate South Australian mangrove forests

    Science.gov (United States)

    Imgraben, Sarah; Dittmann, Sabine

    2008-02-01

    The dynamics and consumption of mangrove litter were investigated in two temperate Avicennia marina dominated forests in South Australia in order to compare production and fate of leaf litter with records from tropical and temperate mangroves. Litterfall was measured using traps over four months in the summer of 2004/2005. Average amount of litter was 2.1 and 3.2 g dwt m - 2 d - 1 , respectively, at the two study sites. Leaves accounted for most of the litterfall, followed by propagules and wood. Litterfall varied over time, and depending on the site and inundation time. The standing stock of leaf litter on the forest floor amounted to 15.5 g m - 2 dwt in March 2005. Decomposition determined by litter bags suggested that leaves lost ˜ 50% of their weight in the first two weeks of exposure, with little further weight loss over longer exposure times. Leaf consumption was investigated with a series of laboratory experiments, using the grapsid crab Helograpsus haswellianus, two snail species ( Salinator fragilis and Austrocochlea concamerata) and the polychaete Neanthes vaalii as potential consumers. There was no consumption of new leaves, and the only significant consumption of aged leaves was found for female H. haswellianus. H. haswellianus consumed 0.1 g dwt d - 1 of senescent leaves in the experiment, equivalent to 0.18 g m - 2 d - 1 in the field (average crab density 1.8 ind m - 2 ), or 9.4% of the average daily leaf litterfall. Experiments with propagules revealed no significant consumption by the crabs. High decomposition and low consumption rates of crabs account for the high accumulation and possible export of leaf litter from these mangroves. Leaf litter availability is not a limiting factor for invertebrate consumers in these temperate mangrove forests, and the low consumption rates imply a major difference in the fate of leaf litter between tropical and temperate mangrove systems.

  12. Biochemical Control of Fungal Biomass and Enzyme Production During Native Hawaiian Litter Degradation

    Science.gov (United States)

    Amatangelo, K. L.; Cordova, T. P.; Vitousek, P. M.

    2007-12-01

    Microbial growth and enzyme production during decomposition is controlled by the availability of carbon substrates, essential elements, and the ratios of these (such as lignin:N). We manipulated carbon:nutrient stoichiometry during decomposition using a natural fertility gradient in Hawaii and litter of varying initial biochemistry. We collected freshly senesced litter of seven biochemically distinct species from three sites offering differing levels of N, P, cations, and 15N , but similar yearly rainfall and temperature patterns. Litter types were decomposed at both the sites they were collected, and at the other site(s) that species was found. Litter was collected at multiple time points, and after one year of decomposition, calculated K constants varied an order of magnitude, from 0.276 to 2.76. Decomposition rates varied significantly with both litter site of origin and deployment, except at the oldest, P-limited site, where litter site of origin was not significantly correlated with decomposition within species. As microbial exocellular enzymes provide the catalyst for the breakdown of organic molecules including phenols, cellulose, and cutin, we assayed polyphenol oxidase, cellobiohydrolase, cutinase, chitinase, and lignin peroxidase to evaluate the breakdown sequence of different litter types. To measure the fungal biomass accumulating during decomposition, we extracted (22E)-Ergosta-5,7,22-trien-3beta- ol (ergosterol) on a subset of samples. The production of particular exocellular enzymes on litter species responded distinctly to origin and decomposition sites: after six months, chitinase and cellobiohydrolase were significantly affected by origin site, whereas polyphenol oxidase activity was controlled by deployment site. We conclude that site characteristics can alter the interaction between litter carbon:nutrient ratios and decomposition rate, mediated through microbial biomass and enzyme production.

  13. Rainfall interception by bracken litter — Relationship between biomass, storage and drainage rate

    Science.gov (United States)

    Pitman, John Iain

    A rainfall simulator was used to investigate the relationship between canopy storage, C, and drainage rate, Ds, of bracken litter. Measured maximum storage, Cmax, for the litter was 4.84 mm kg -1 m -2, and litter storage capacity, Cmin, 1.67 mm kg -1 m -2. Drainage rate Ds and C were found to be related by the function: D s= eK(C-C min) -1 Optimisation of this function for K accounted for 96% of the variation between Ds and C. Comparison of the values of K and Cmin with those reported previously showed that K was a simple function of Cmin for both bracken litter and bracken fronds: lnK=1.268(±0.024)-0.664(±0.023) lnC min R 2=0.991, n=9 Because K is predictable from values of Cmin, determined from the leaf area index or biomass (kg m -2), eqn. (1) has wide applicability to both bracken litter and bracken frond drainage rates. The importance of litter storage capacity is also discussed. Pitman, 1989.

  14. Accumulated organic matter, litterfall production, and decomposition tell us the status of litter dynamics in forests

    Directory of Open Access Journals (Sweden)

    Jae Geun Kim

    2012-06-01

    Full Text Available Litterfall dynamics in forests are assessed by estimating biomass production and decomposition. However, there havebeen few studies on how litter dynamics impact the health and management of ecosystems. Here, a new approach tomeasure and assess ecosystem function is presented based on conventional methods using littertraps, litterbags, andthe mass on the forest floor. To assess the status of litter dynamics, the decay rate (k was estimated from a litterbag experiment,and removal rates (ki were determined from mass balance on the forest floor at 21 sites on three mountainsin South Korea. The k3 (organic mass ratio of Oi and Oe + Oa + A horizons in November values in an equilibrium state inSouth Korea were within the range of k ± 0.174 when considering the annual variation of litterfall production. This studyalso suggests that sampling sites for these types of studies should be in the middle, not at the ends, of steady slopes onthe forest floor.

  15. Natural regeneration of Pinus pinea L. in Tunisia as influenced by canopy cover, litter biomass and understorey vegetation

    OpenAIRE

    Adili, B.; El Aouni, M.H.; Garchi, S.; Balandier, P.

    2009-01-01

    International audience Pinus pinea is one of the most valuable species used in Tunisia in the reforestation program. This species is shade-intolerant and hence needs light to correctly regenerate. It is also influenced by the understorey vegetation and the litter biomass, both also correlated to light availability. To quantify the importance of these different factors, the natural regeneration and evolution of the biomass of understorey vegetation and litter were studied in artificial fore...

  16. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and

  17. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  18. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    International Nuclear Information System (INIS)

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3)

  19. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  20. Ethanol and phenanthrene increase the biomass of fungal assemblages and decrease plant litter decomposition in streams.

    Science.gov (United States)

    Barros, Diana; Oliveira, Patrícia; Pascoal, Cláudia; Cássio, Fernanda

    2016-09-15

    Fungi, particularly aquatic hyphomycetes, have been recognized as playing a dominant role in microbial decomposition of plant litter in streams. In this study, we used a microcosm experiment with different levels of fungal diversity (species number and identity) using monocultures and combinations with up to five aquatic hyphomycete species (Articulospora tetracladia, Tricladium splendens, Heliscus submersus, Tetrachaetum elegans and Flagellospora curta) to assess the effects of ethanol and phenanthrene on three functional measures: plant litter decomposition, fungal biomass accrual and reproduction. Alder leaves were conditioned by fungi for 7days and then were exposed to phenanthrene (1mgL(-1)) dissolved in ethanol (0.1% final concentration) or ethanol (at the concentration used to solubilise phenanthrene) for further 24days. Exposure to ethanol alone or in combination with phenanthrene decreased leaf decomposition and fungal reproduction, but increased fungal biomass produced. All aspects of fungal activity varied with species number. Fungal activity in polycultures was generally higher than that expected from the sum of the weighted performances of participating species in monoculture, suggesting complementarity between species. However, the activity of fungi in polycultures did not exceed the activity of the most productive species either in the absence or presence of ethanol alone or with phenanthrene. PMID:27186876

  1. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    OpenAIRE

    Han Li; Fuzhong Wu; Wanqin Yang; Liya Xu; Xiangyin Ni; Jie He; Bo Tan; Yi Hu

    2016-01-01

    To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson) forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulos...

  2. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    Science.gov (United States)

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition

  3. Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter

    Science.gov (United States)

    Stohlgren, Thomas J.

    1988-01-01

    The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.

  4. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li

    2016-01-01

    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  5. Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.

    Science.gov (United States)

    Vasconcelos, Heraldo L; Pacheco, Renata; Silva, Raphael C; Vasconcelos, Pedro B; Lopes, Cauê T; Costa, Alan N; Bruna, Emilio M

    2009-01-01

    Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of

  6. Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition.

    Science.gov (United States)

    Lucisine, Pierre; Lecerf, Antoine; Danger, Michaël; Felten, Vincent; Aran, Delphine; Auclerc, Apolline; Gross, Elisabeth M; Huot, Hermine; Morel, Jean-Louis; Muller, Serge; Nahmani, Johanne; Maunoury-Danger, Florence

    2015-12-15

    Soil pollution has adverse effects on the performance and life history traits of microorganisms, plants, and animals, yet evidence indicates that even the most polluted sites can support structurally-complex and dynamic ecosystems. The present study aims at determining whether and how litter decomposition, one of the most important soil ecological processes leaf, is affected in a highly trace-metal polluted site. We postulated that past steel mill activities resulting in soil pollution and associated changes in soil characteristics would influence the rate of litter decomposition through two non-exclusive pathways: altered litter chemistry and responses of decomposers to lethal and sub-lethal toxic stress. We carried out a litter-bag experiment using Populus tremula L. leaf litter collected at, and allowed to decompose in, a trace metal polluted site and in three unpolluted sites used as controls. We designed a fully-factorial transplant experimental design to assess effects of litter origin and exposure site on the rate of litter decomposition. We further determined initial litter chemistry, fungal biomass, mesofauna abundance in litter bags, and the soil macrofauna community. Irrespective of the site of litter exposure, litter originating from the polluted site had a two-fold faster decomposition than litter from the unpolluted sites. Litter chemistry, notably the lignin content, seemed most important in explaining the degradation rate of the leaf litter. Abundance of meso and macro-detritivores was higher at the polluted site than at the unpolluted sites. However, litter decomposition proceeded at similar rates in polluted and unpolluted sites. Our results show that trace metal pollution and associated soil and litter changes do not necessarily weaken consumer control on litter decomposition through lethal and sub-lethal toxic stress. PMID:26282755

  7. Total biomass and essential oil composition of Ocimum gratissimum L. in response to broiler litter and phosphorus

    Directory of Open Access Journals (Sweden)

    S.M. PESSOA

    2015-03-01

    Full Text Available The aim of this experiment was to evaluate the biomass yield and chemical composition of the essential oil of clove basil in response to doses of broiler litter (0, 5, 10, 15 and 20 t ha-1 added in presence of triple superphosphate (200 kg ha-1 or without it. Before the first harvest, the height of the plants increased significantly (34.42 cm when 15 tonnes ha-1 broiler litter were added to the soil. However, after resprouting, the plant heights ranged only as a function of the vegetative cycle, with maximum height (76.0 cm observed at 60 days. Phosphate fertilization also significantly influenced the leaf area (1.771 cm2 plant-1 during the first harvest. The fresh weight of leaves increased linearly in response to the addition of broiler litter (20 ton ha-1 with maximum yields of 1,709 and 7,140 kg ha-1 during the first harvest and regrowth, respectively. On average, the oil content of the leaves was 0.7%, with maximum performance (3.8 L ha-1 when 20 tonnes ha-1 of broiler litter were added on the soil. Eugenol was found to be the major compound of the essential oil (71.65%.

  8. Ecological process of leaf litter decomposition in tropical rainforest in Xishuangbanna, southwest China. Ⅲ. Enzyme dynamics

    Institute of Scientific and Technical Information of China (English)

    Ruiqing ZHANG; Zhenjun SUN; Chong WANG; Tangyu YUAN

    2009-01-01

    We tested the dynamics of nine enzymes during leaf litter decomposition in Xishuangbanna tropical rain-forest both in the field and laboratory to explore the response of enzyme dynamics to decomposition under different food-web structures. We used coarse and fine (1 mm and 100 μm mesh size, respectively) litterbags in the field to create different food-web structures during litter decomposition. Most soil macrofauna such as nematodes could access only the coarse mesh litterbags, leaving only microbiota, such as mites, in the fine mesh litterbags. In the laboratory, sterilization and inoculation were adopted to investigate different enzyme dynamics with nematodes or only microbiota participating in litter decomposition.Invertase and amylase increased more for shorter food webs at the early stages of decomposition, while activities of endocellulase, β-glucosidase, xylanase and polypheno-loxydase increased to their maxima at the later stages, but greater increase occurred with extended food webs.Invertase and amylase had negative relationships and endocellulase, β-glucosidase, xylanase and polyphenolox-ydase had positive relationships with litter decomposition (mass loss). The activities of enzymes responded to the process of litter decomposition. Invertase and amylase played key roles for microbiota utilizing the substrates at early stages of decomposition, while endocellulase, β-glucosidase, xylanase and polyphenoloxydase worked on the further decay of recalcitrant compounds at later stages.All enzymes related to carbon decay acted as effective indicators of litter decomposition. The decomposition of plant organic matter was essentially an enzymatic process.

  9. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  10. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  11. Foliar Litter Nitrogen Dynamics as Affected by Forest Gap in the Alpine Forest of Eastern Tibet Plateau

    OpenAIRE

    Wu, Qiqian; Wu, Fuzhong; Yang, Wanqin; Zhao, Yeyi; Wei HE; Tan, Bo

    2014-01-01

    There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics during different critical stages, litterbags with fir (Abies faxoniana), birch (Betula albo-sinensis), l...

  12. Implications of fire-mediated changes in larch forest structure on leaf litter inputs, organic layer accumulation, and permafrost dynamics

    Science.gov (United States)

    Ganzlin, P.; Alexander, H. D.; Petronio, B.; Natali, S.; Davydov, S.

    2012-12-01

    The boreal forest is an expansive biome and stores the majority of the world's above and belowground carbon stocks. These forests are very vulnerable to changes in global climate. As climate warms and dries, boreal forest ecosystems are expected to experience greater fire activity. An increase in fire activity will likely lead to greater consumption of the soil organic layer (SOL), the thick layer of undecomposed mosses and other plant materials lying above the mineral soil. Because the SOL serves as a natural barrier to seed germination, a reduction in SOL depth could increase tree seedling establishment during post-fire succession. This could ultimately lead to stands of greater density, with potentially cascading effects on belowground carbon dynamics due to density-driven changes in understory microenvironment and leaf litter inputs, especially in forests dominated by deciduous species. In permafrost-affected regions, organic soil materials - especially mosses - are important insulators of permafrost and the high content of thermally protected carbon it contains. In order to assess the importance of fire-mediated changes in stand density on permafrost dynamics, we surveyed forests of Cajander Larch (Larix cajander) surrounding the Northeast Science Station in far northeastern Siberia. Two sets of low and high-density stands were selected to establish a natural density gradient in these forests. In each stand we evaluated stand density effects on aboveground biomass, leaf litter inputs, moss abundance, organic layer depth, and permafrost thaw depth. Here we show that the low-density larch stands had significantly higher moss abundance, green moss depth, and organic layer depth. The insulating organic layer was nearly 25% shallower in high-density stands, which was accompanied by a nearly 50% increase in depth of seasonal permafrost thaw. In addition to density, stand biomass and landscape position may also be very important factors in determining litter inputs

  13. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  14. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO(sub x) pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  15. Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins

    NARCIS (Netherlands)

    P. Kraal; K.G.J. Nierop; J. Kaal; A. Tietema

    2009-01-01

    We investigated the carbon (C) mineralisation and nitrogen (N) dynamics in litter from a Corsican pine forest in response to individual and combined additions of aluminium (M), condensed tannin (extracted from fresh Corsican pine needles) and hydrolysable tannin (commercial tannic acid). Production

  16. NUTRIENT ACCUMULATION IN THE ABOVEGROUND BIOMASS, IN THE LITTER LAYER AND PHYLLODIES DECOMPOSITION OF Acacia mangium Willd.

    Directory of Open Access Journals (Sweden)

    Dieter Liebsch

    2010-08-01

    Full Text Available Nutrient concentrations and contents in the shoot (leaves, branches, bark and wood in a five-years-old stand of Acacia mangium Willd. (mangium, decomposition rate of mangium phyllodies (modified leaves and nutrient efficiency use were evaluated in a forest stand in Seropédica, Rio de Janeiro State, Brazil. The species presented a high nutrient use efficency and accumulated 135 t.ha-1 of above ground biomass, containing: 544.9 kg.ha-1 of N, 281.7 kg.ha-1 of Ca, 242.9 kg.ha-1 of K, 47 kg.ha-1 of Mg and 35.2 kg. ha-1 of P. There was an accumulation of 12.7 t.ha-1 of litter and this layer contained 251.0, 5.7, 14.6, 102.7 and 22.7 kg.ha-1, respectively, of N, P, K, Ca and Mg.  The decomposition constant (k estimated for the phyllodies decomposition was 0,00165 g.g-1.day-1 and the half-live was 421 days. The accumulation of litter on the ground may represent an advantage as nutrient supply for succeeding crops or disadvantage as fuel in areas subject to frequent fire.

  17. Litter dynamics and phenology of Melaleuca quinquenervia in south Florida

    OpenAIRE

    Van, T. K.; Rayachhetry, M. B.; Center, T.D.; Pratt, P.D.

    2002-01-01

    We monitored litterfall biomass at six different sites of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forested wetlands in South Florida from July 1997 to June 1999. Annual litterfall of melaleuca varied between sites from 6.5 to 9.9 t dry wt ha(-1) yr(1) over the two-year period. Litterfall was significantly higher (p < 0.0001) in scasonally flooded habitats (9.3 t ha(-1) yr(1)) than in non-flooded (7.5 t ha(-1) yr(1)) and permanently flooded habitats (8.0 t ha(-1) yr(1)). Leaf fal...

  18. Microbial contributions to C and N dynamics in decaying litter elucidated by amino acid and amino sugar analyses

    Science.gov (United States)

    Hobara, S.; Osono, T.; Noro, K.; Hirota, M.; Benner, R. H.

    2011-12-01

    There is still much to be revealed about carbon (C) and nitrogen (N) dynamics in terrestrial soil systems. The objectives of this study were to identify molecular changes in composition during plant litter decomposition and gain insights about microbial contributions to C and N dynamics in decaying litter. Litter bag experiments with three plant species, Miscanthus sinensis, Pinus densiflora and Quercus crispula, were conducted for three years, and the concentrations of C, N, amino acids and amino sugars were determined at various times during the experiments. Mass loss (AFDW) ranged from 66-90% for the plant tissues. The weight %C remained fairly constant, whereas the weight %N increased throughout the study indicating N immobilization was occurring. The percentages of C as amino acids and amino sugars also increased throughout the study suggesting these biomolecules were largely of microbial origin. The increasing yields of amino acids and amino sugars were inversely related to overall C loss from the litter material. As microorganisms degraded the plant litter they left behind molecular signatures that were useful predictors of the extent of overall degradation. The C/N ratio of litter decreased throughout the study and was inversely related to galactosamine yields. The glucosamine/galactosamine (GlcN/GalN) ratio gradually declined to values near 2 by the end of the study. Galactoasamine is more abundant in bacteria than fungi, and the declining GlcN/GalN ratio suggest the relative contributions of bacterial to litter C and N increased relative to contributions from fungi. A cluster analysis of 0- and 36-month litters based on amino acid and amino sugar composition showed that 0-month litters of three plant species were separated from 36-month litters, suggesting common diagenetic pathways during decomposition irrespective of plant species. The microbial decomposers contribute to N immobilization and their contributions to the C and N content of litter increases

  19. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    International Nuclear Information System (INIS)

    The Chernobyl accident has led to radioactive contamination of vast Belarussian forest areas. A total scheme for remediation of contaminated forest areas and utilisation of the removed biomass in safe energy production is being investigated in a Belarussian-American-Danish collaborative project. Here the total radiological impact of the scheme is considered. This means that not only the dose reductive effect of the forest decontamination is taken into account, but also the possible adverse health effects in connection with the much needed bio-energy production. This report presents the results of an in-country, commercial-scale investigation of the effect of a baghouse filter in retaining contaminants so that they are not released to the atmosphere in the biomass energy production process. Approximately 99,5 % of the activity of a commercially representative, dust-laden boiler flue gas was removed from the stream by using a combination of a cyclone and a baghouse filter. (au)

  20. Power production from radioactively contaminated biomass and forest litter in Belarus - Phase 1b

    DEFF Research Database (Denmark)

    Roed, Jørn; Andersson, Kasper Grann; Fogh, C.L.;

    2000-01-01

    of an in-country, commercial-scale investigation of the effect of a baghouse filter in retaining contaminants so that they are not released to theatmosphere in the biomass energy production process. Approximately 99.5% of the activity of a commercially representative, dust-laden boiler flue gas was removed...... from the stream by using a combination of a cyclone and a baghouse filter....

  1. Dynamics of Litter Decomposition, Microbiota Populations, and Nutrient Movement Following Nitrogen and Phosphorus Additions to a Deciduous Forest Stand

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M.

    2002-10-29

    The objective of this study was quantification of the dynamics of litter decomposition, microbiota populations, and nutrient movement in response to nitrogen and phosphorus additions to a deciduous forest stand. Nitrogen (urea) was applied at rates of 0, 550, and 1100 kg/ha in combination with phosphorus (concentrated superphosphate) at rates of 0, 275, and 550 kg/ha. Total loss of organic material from white oak, red maple, and black gum litter bags over a 16-month period was 34, 35, and 45%, respectively. Phosphorus treatment retarded weight loss from litter bags of all species. Weight loss for the 0-, 275-, and 55-kg/ha levels of phosphorus averaged 23, 20, and 19% for white oak; 26, 25, and 25% for red maple; 29, 27 and 26% for black gum. Weight losses were increased by a small amount (1 to 2%) or not at all by nitrogen treatment. The NP interfaction weight loss means were intermediate to the main treatment means. The increase in decomposition associated with nitrogen was offset by the decrease associated with phosphorus. Litter and soil bacterial populations were significantly increased by nitrogen additions, while litter and soil fungi did not respond to nitrogen. Soil fungal populations were increased by phosphorus addition, while litter bacterial populations were reduced. Litter fungi and soil bacteria did not respond to phosphorus. Combined additions of nitrogen and phosphorus increased bacterial populations, though not as much as nitrogen alone. There was a good correlation (r = 0.70) between bacterial population and litter weight loss.

  2. Radionuclide dynamics during litter decomposition in a holm-oak forest

    International Nuclear Information System (INIS)

    Migration of 134Cs and 110Agm in a Mediterranean forest soil was studied by means of field incubation of artificially contaminated holm-oak leaves in plastic cylinders. The contaminated green leaves in the cylinders replaced the original litter layer, and the litter decomposition processes were studied. The following layers were sampled: L (remaining litter), F (fermented litter), H (humus layer) and mineral soli layers. The fraction of radionuclides that had migrated from the L-layer accumulated mainly in the F- and H-layers, whereas very little activity reached the mineral soil after an initial leaching period. During the second year of incubation, a significant transfer from the F-layer to the H-layer was observed for both radionuclides. Radionuclide dynamics in the F-layer followed three different periods: In the first period, rapid accumulation of radionuclides occurred in the F-layer as a consequence of initial leaching from the L-layer. In the second period, there was both transfer from the L-layer and transfer to the H-layer of radiaonuclides, which was mainly due to degradation of easily decomposable compounds. The F-layer lost about 70% of its weight, but the radionuclide content remained constant. It is suggested that in this period, retention of radionuclides by recalcitrant compounds occurred. Micro-organisms could also play an important role in consuming carbon, with subsequent immobilization of radionuclides. Finally, a third period, with both carbon and radionuclide mineralization, was observed at the end of the incubation period. It can be concluded that the decomposition processes and organic matter dynamics in the L- and F-layers are key factors controlling cycling of radionuclides in forest system. 13 refs, 5 figs

  3. Twenty Years of Litter and Root Manipulations: Insights into Multi-Decadal SOM Dynamics and Controls

    Science.gov (United States)

    Wig, J.; Lajtha, K.; Nadelhoffer, K. J.

    2012-12-01

    Reforestation, reducing deforestation, and sustainable forest management are often recommended by policy makers to mitigate the greenhouse gas contributions of the forestry sector. However, underlying many of these policy recommendations is the assumption that increasing above-ground carbon stocks corresponds to long-term increases in ecosystem carbon stocks, the majority of which is stored in soils. We analyzed soil carbon and nitrogen dynamics in forest soils that had undergone twenty years of continuous manipulations of above- and below-ground organic inputs as part of the Detritus Input and Removal Treatment (DIRT) network. Although we expected that increased C inputs would correspond to significantly elevated C in surface mineral soils, our data suggest that increasing above-ground litter inputs has had a positive priming effect in this soil. Positive priming occurs when increased rates of litter addition to soil lead to disproportionate increases in microbial respiration rates of native soil C, resulting in a net decrease of soil C. Soil respiration rates in a year-long laboratory incubation support this theory: increased above-ground litter inputs led to decreased respiration rates, suggesting a relative deficit of labile organic matter. Removal of below ground inputs, either with or without above-ground litter inputs, also led to decreased respiration in laboratory incubations, demonstrating the importance of fresh root inputs to labile C. Trends in non-hydrolyzable C fractions, a proxy for the more stable C pool, agree with our respiration measurements. Data from sequential density fractionation are consistent with the hypotheses that priming has occurred in response to increased above-ground litter inputs and that root inputs are an important control of the labile C pool. The importance of roots inputs for C stabilization is well documented in the literature, and our hypothesis that increased above-ground litter inputs leads to priming is supported by

  4. Dynamics of zoomicrobial complexes upon decomposition of plant litter in spruce forests of the southern taiga

    Science.gov (United States)

    Rakhleeva, A. A.; Semenova, T. A.; Striganova, B. R.; Terekhova, V. A.

    2011-01-01

    Comparative studies of the composition and abundance of soil-dwelling invertebrates (microarthropods, nematodes, and testate amoebas) and micromycetes in the course of leaf and needle litter decomposition were conducted in two types of spruce forests on white-podzolic and brown forest soils in a field experiment. The analysis of the destruction dynamics has revealed a correlation between the rate of the litter mass loss and the abundance of microarthropods and testate amoebas in the decomposing plant residues. The highest amplitude of the seasonal fluctuations in the number of invertebrates was found for the micromycetes and nematodes as compared to that for the testate amoebas and microarthropods. In the complexes of micromycetes and invertebrates, changes in the dominants were revealed at the different stages of the decomposition. The litter's composition was found to be the main factor affecting the composition and abundance of the zoomicrobial complex of the destroyers. The type of biogeocenosis less influenced the abundance of pedobionts, but it determined their taxonomic composition to a greater extent. A significant inverse correlation was revealed between the number of micromycetes and that of small soil invertebrates.

  5. Carbon dynamics in peatlands under changing hydrology. Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates

    Energy Technology Data Exchange (ETDEWEB)

    Strakova, P.

    2010-07-01

    production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models. (orig.)

  6. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    Science.gov (United States)

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink. PMID:12549558

  7. Slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth.

    Science.gov (United States)

    Das, K C; Garcia-Perez, M; Bibens, B; Melear, N

    2008-06-01

    Accidental or prescribed fires in forests and in cultivated fields, as well as primitive charcoal production practices, are responsible for the release of large amounts of gases, char and condensable organic molecules into the environment. This paper describes the impact of condensable organic molecules and chars resulting from the slow pyrolysis of poultry litter, pine chips and pine pellets on the growth of microbial populations in soil and water. The proximate and elemental analyses as well as the content of proteins, cellulose, hemicellulose, lignin, and ash for each of these bio-materials are reported. The yields and some properties of char and condensable liquids are also documented. The behavior of microbial populations in soil and water is followed through respiration studies. It was found that biological activity was highest when aqueous fractions from poultry litter were applied in water. Cumulative oxygen consumption over a 120-h period was highest in the aqueous phases from poultry litter coarse fraction (1.82 mg/g). On average the oxygen consumption when oily fractions from poultry litter were applied represented 44 to 62% of that when aqueous fractions were applied. Pine chip and pine pellet derived liquids and chars produced respiration activity that were an order of magnitude lower than that of poultry litter liquid fractions. These results suggest that the growth observed is due to the effect of protein-derived molecules. PMID:18444073

  8. Market dynamics of biomass fuel in California

    International Nuclear Information System (INIS)

    The California market for biomass fuel purchased by independent power producers has grown substantially since 1980. The PURPA legislation that based power purchase rates upon the 'avoided cost' of public utilities resulted in construction of nearly 900 Megawatts of capacity coming online by 1991. Until 1987, most powerplants were co-sited at sawmills and burned sawmill residue. By 1990 the installed capacity of stand-alone powerplants exceeded the capacity co-sited at wood products industry facilities. The 1991 demand for biomass fuel is estimated as 6,400,000 BDT. The 1991 market value of most biomass fuel delivered to powerplants is from $34 to $47 per BDT. Biomass fuel is now obtained from forest chips, agriculture residue and urban wood waste. The proportion of biomass fuel from the wood products industry is expected to decline and non-traditional fuels are expected to increase in availability

  9. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Science.gov (United States)

    Esperschütz, J.; Zimmermann, C.; Dümig, A.; Welzl, G.; Buegger, F.; Elmer, M.; Munch, J. C.; Schloter, M.

    2013-07-01

    In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany). Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L.) were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1-4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity)

  10. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2013-07-01

    Full Text Available In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1–4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity

  11. Larger phylogenetic distances in litter mixtures - lower microbial biomass and higher C/N ratios but equal mass loss

    Czech Academy of Sciences Publication Activity Database

    Pan, X.; Berg, M. P.; Butenschoen, O.; Murray, P. J.; Bartish, Igor V.; Cornelissen, J.H.C.; Dong, M.; Prinzing, A.

    2015-01-01

    Roč. 282, č. 1806 (2015), s. 1-9; no. UNSP 20150103. ISSN 1471-2954 Grant ostatní: AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:67985939 Keywords : decomposition * litter degradation * phylogenetic signal of functional traits Subject RIV: EF - Botanics

  12. On the role of bulk properties and fuel species on the burning dynamics of pine forest litters

    OpenAIRE

    SIMEONI, A.; Bartoli, P.; Torero, J L; Santoni, P.-A.

    2011-01-01

    This work aims to characterize pine needles as a fuel for a better understanding of the burning dynamics of forest floor fuels in wildland fires. Three Mediterranean species of pine have been studied: Pinus halepensis, Pinus pinaster and Pinus laricio. These species have been chosen because they present close but slightly different physical and chemical properties. The study focuses on the influence of the bulk and particle properties on the burning dynamics of pine needles litters. The perme...

  13. [Composition and seasonal dynamics of litter falls in a broad-leaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountains, Northeast China].

    Science.gov (United States)

    Yuan, Zuo-qiang; Li, Bu-hang; Bai, Xue-jiao; Lin, Fei; Shi, Shuai; Ye, Ji; Wang, Xu-gao; Hao, Zhan-qing

    2010-09-01

    In order to understand the composition and spatiotemporal dynamics of the litter falls at community level in a broad-leaved Korean pine mixed forest in Changbai Mountains, litter falls were collected from 150 containers in a 25 hm2 permanent plot in 2008. The leaf litters in the containers were from 35 tree species, accounting for 67.3% of the total number (52) of the tree species with DBH > or =1 cm in the plot. The litter falls had a weight 29.39 kg, equivalent to 3918.4 kg x hm(-2) among which, broad leaves, miscellany, needle leaves, and branches occupied 61.7%, 18.0%, 11.7%, and 8.6%, respectively. About 83.8% of the broad leaves were from Tilia amurensis, Fraxinus mandshurica, Quercus mongolica, Acer mono, and Ulmus japonica. The litter falls showed an evident seasonal dynamics, with the peaks occurred from 13 September to 10 October, e.g., the litter falls from T. amurensis and Pinus koraiensis peaked in 13-26 September, while those from Q. mongolica, U. japonica, and A. pseudo-sieboldianum peaked in 27 September to 10 October. There was a great difference in the mass of the litter falls among the containers, e.g., with 150-200 g litters in 68 containers and >500 g litters in 1 container. The species number of the litter falls in a container was 18 in maximum, and was 12 in common (32 containers). Litter falls mass was positively proportional to the sum of the basal area at breast height of parent trees in the plot, and the amount of the litter falls in the containers was related with the locations of the containers, exhibiting an evident spatial heterogeneity in the plot. PMID:21265134

  14. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2012-10-01

    Full Text Available In initial ecosystems concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degraders' food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this regions' dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, mainly the amount of N stored in the litter material and its bioavailability for the degradation process and the development of microbial communities in the detritusphere and bulk soil. Whereas the degradation process of the L. corniculatus litter which had a low C/N ratio was fast and most pronounced changes in the microbial community structure were observed 1–4 weeks after litter addition, the degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred at between 4 and 30 weeks after litter addition to the soil. However for both litter materials a clear indication for the importance of fungi for the degradation process was observed both on the abundance level as well as on the level of 13C incorporation (activity.

  15. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Aimee T [ORNL; Chapman, Samantha K. [Smithsonian Environmental Research Center, Edgewater, MD; Whitham, Thomas G [Northern Arizona University; Hart, Stephen C [Northern Arizona University; Koch, George W [Northern Arizona University

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  16. Herbivory, litter and soil disturbance as determinants of vegetation dynamics during early old-field succession under set-aside.

    Science.gov (United States)

    Wilby, A; Brow, V K

    2001-04-01

    Early-successional old fields are a major component of the European landscape. While a range of factors governing vegetation development in old fields has been identified, empirical and theoretical studies have tended to concentrate on plant competition as the dominant driving force behind succession. We studied the influence of three little researched, yet inter-related, factors on the early stages of an old-field succession: litter cover, soil disturbance and herbivory. Physical and chemical techniques were used to exclude large vertebrates and insects from experimental plots. These treatments had little effect on plant recruitment. A litter-removal experiment, nested within the exclusion treatments, revealed a significant inhibition of forb seedling germination by litter cover. However, the majority of seedlings died during the first month following emergence, whether or not litter was removed. A second experiment, involving the factorial combination of mollusc exclusion and soil disturbance, revealed that the response to disturbance was dependent on life-history characteristics of the plants. However, the dominant factor regulating community composition was seedling herbivory by molluscs. Molluscs caused high rates of forb seedling mortality and promoted the transition from a forb-dominated, to a grass-dominated community. Herbivory is often assumed to influence plant community dynamics through effects on competitive interactions. However, direct effects of herbivory, on the survival of seedlings, may be a significant factor structuring plant communities in ruderal, or other annual dominated systems. PMID:24577658

  17. Temporal dynamics of and effects of an ice storm on litter production in an evergreen broad-leaved forest in Gutianshan National Nature Reserve

    OpenAIRE

    Lei Zhang; Xiaohe Wang; Xiangcheng Mi; Jianhua Chen; Mingjian Yu

    2011-01-01

    To study litter production, composition, temporal dynamics, and the effects of an ice storm on litter production in a 24-ha evergreen broad-leaved forest dynamic plot in Gutianshan National Nature Reserve, Zhejiang, we set up 169 seed traps, and collected litterfall weekly from October 2006 to December 2009. Total annual litter production in 2007 and 2009 was 532.05 g/m2 and 375.17 g/m2, respectively. We attribute the remarkable drop in production due to an ice storm in February 2008. Leaves,...

  18. Nutrients dynamics of co-composting poultry litter with fast food wastes

    International Nuclear Information System (INIS)

    Co-composting of poultry litter (PL) and fast food waste (FFW) in different combinations was carried out to explore the nutrient dynamics. The PL and FFW were co-composted in pits of dimensions 2 m*2 m*1.5 m (L*W*D) in ratios of 100:0, 75:25, 50:50, 25:75 and 0:100, respectively, for a period of 105 days. Co-composts of PL and FFW in a 50:50 ratio yielded highest total nitrogen (3.63%), total phosphorus (0.81%), and total potassium (3.40%) levels in the mature compost after 105 days of composting period. Carbon to nitrogen ratio for this combination was 18.33, which is suitable for safe land application. Present study identified PL and FFW co-composting in equal proportions yields maximum N, P and K levels with suitable C:N ratio which may be applied to soils to meet crop nutrient demands and enhanced agricultural productivity. (author)

  19. Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium Biomassa e atividade microbiana da serapilheira durante o desenvolvimento inicial de plantios puros e mistos de Eucalyptus grandis e Acacia mangium

    Directory of Open Access Journals (Sweden)

    Daniel Bini

    2013-02-01

    Full Text Available Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more

  20. Litter dynamics and forest structure of the introduced Sonneratia caseolaris mangrove forest in Shenzhen, China

    Science.gov (United States)

    Chen, Luzhen; Zan, Qijie; Li, Mingguang; Shen, Jinyu; Liao, Wenbo

    2009-11-01

    For the purpose of mangrove restoration in China, Sonneratia caseolaris has been introduced and planted in Guangdong Province outside and north of its native habitat, Hainan Province. We monitored the litter fall and forest structure of this S. caseolaris forest in Shenzhen City, Guangdong Province, China, from 1996 to 2005. The annual fluctuation in litter fall increased with increases in air temperature from spring to early summer, and reached a maximum in autumn when the fruits matured. The total litter fall was significantly affected by air temperature, day length, and evaporation, rainfall in the previous month and by typhoons. In 1998, the sixth year after cultivation, the total litter production of the mature S. caseolaris forest significantly increased. The mean annual total litter production during 1998-2005 was 15.1 t ha -1 yr -1, among which, leaves and reproductive materials contributed more than 80% of the total. During the ten years of study, the DBH (diameter at 1.30 m from ground level) and tree height of S. caseolaris increased from 5.2 cm to 18.3 cm, and from 4.5 m to 13.4 m, respectively. The litter fall production was strongly correlated with forest structure parameters, such as DBH, tree height, and crown area. The R value (the ratio of the maximum total litter fall to the minimum in the same community during the investigation periods) of S. caseolaris in the present study was 1.98, indicating a low annual variation of litter fall during these ten years.

  1. Dynamic of Grassland Biomass in Different Degenerative Stages

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; LIU Shuzhen; ZHOU Wei

    2006-01-01

    The dynamics of plant community and above- and belowground biomass of the different degenerative stages was researched of Kobresia humlis meadows of Nakchu prefecture in Tibet Autonomous Region. The results indicated that the aggravation of the degree of deterioration of alpine meadow is, the lower the vegetation coverage, percentage of excellent forage, and biodiversity are. The total aboveground biomass is highest in the lightly degraded stages while it is lowest in the extremely degraded stages. With the aggravation of degradation, the aboveground biomass of forbs increases while that of Cyperaceae decreases. We found that the belowground biomass was mostly distributed in the 0-10 cm soil depth in the alpine meadow with a "T"-shape distribution feature, and with the acceleration of deterioration, the numbers of roots becomes less and less. Meanwhile, the above- and belowground biomass of the different degraded communities was significantly correlated(r=0.963). There is an obvious positive correlation with the above- and belowground biomass in different degenerative stages, and their ratio increased with the aggravation of degradation.

  2. Oribatid mite (Acari: Oribatida) contribution to decomposition dynamic of leaf litter in primary forest, second growth, and polyculture in the Central Amazon.

    Science.gov (United States)

    Franklin, E; Hayek, T; Fagundes, E P; Silva, L L

    2004-02-01

    We studied the contribution of oribatid mites in the dynamics of litter decomposition in an experiment using litterbags of three different mesh sizes (20 microns, 250 microns, and 1 cm). The experiment was carried out at a primary forest (FLO), a secondary forest (SEC), and at two polyculture systems (POA and POC). We compared the weight loss of the leaves of Vismia guianensis and the changes of the oribatid mite species community. We processed the samples after 26, 58, 111, 174, 278, and 350 days from the beginning of the experiment by using the Berlese-Tullgren to extract the animals. We hypothesized that: 1. the abundance and diversity of oribatid mites would exert an influence in the decomposition process; 2. there would be a successional changing of the species during decomposition; and 3. there would be differences in the colonization of species in relation to the mesh size of the litterbags. A total of 95 species of oribatid mites was found. The biomass data was the first registered for the Amazon region. The great dominance of oribatid mites did not exert an influence in the decomposition process. There was not a successional changing of the species during the course of the decomposition process, unlike those shown by results obtained in the temperate forest, because we found neither early colonizers nor species that prefer advanced decomposition stages. The oribatid mite community, which developed in the litterbags under tropical conditions, was atypical of the normal stages of leaf litter breakdown and decomposition. There were differences in the colonization of species in relation to the mesh size of the litterbags. These differences were very closely related to the specific habits and habitat of the dominant species. PMID:15195365

  3. The influence of litter composition across the litter–soil interface on mass loss, nitrogen dynamics and the decomposer community

    Science.gov (United States)

    Many studies have investigated the influence of plant litter species composition on decomposition, but results have been context-dependent. Litter and soil are considered to constitute a decomposition continuum, but whether litter and soil ecosystems respond to litter identity an...

  4. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal)

    International Nuclear Information System (INIS)

    The concentrations of C, Fe, Mn, Zn, Cu, Pb and Cd were determined monthly in decomposing roots of Halimione portulacoides, using litterbag experiments, in two salt marshes of the Tagus estuary with different levels of contamination. Although carbon concentrations varied within a narrow interval during the experiment, litter decomposed rapidly in the first month (weight loss between 0.051 and 0.065 g d-1). The time variation of metals was examined in terms of Me/C ratios and metal stocks. Ratios of Fe/C and Mn/C and their metal stocks increased in spring, presumably due to the precipitation of oxides in the surface of decomposing roots. Subsequent decrease of Fe/C and Mn/C ratios suggests the use of Fe and Mn oxides, as electron acceptors, in the organic matter oxidation. Zinc, Cu, Pb and Cd ratios to C were, in general, higher than at initial conditions implying that metal that leached out was slower than carbon. However, metal stocks decreased during the experiment indicating that incorporation or sorption of metals in Fe and Mn oxides did not counterbalance the amount of Zn, Pb and Cd released from decomposing litter. An exception was observed for Cu, since stock in the less contaminated marsh (Pancas) increased during the decomposition, indicating that litter was efficient on Cu binding under more oxidising conditions. These results emphasize the importance of litter decomposition and sediment characteristics on metal cycling in salt marshes

  5. Decomposition dynamics of mixed litter in a seasonally flooded forest near the Orinoco river

    Science.gov (United States)

    Bastianoni, Alessia; Chacón, Noemí; Méndez, Carlos L.; Flores, Saúl

    2015-04-01

    We evaluated the decomposition of a litter mixture in the seasonally flooded forest of a tributary of the Orinoco river. This mixture was prepared using three litter species, based on the litter fall rate observed over a complete hydro-period (2012-2013). The mixture loading ratio was 0.46 of Pouteria orinocoensis (Sapotaceae), 0.38 of Alibertia latifolia (Rubiaceae) and 0.16 of Acosmium nitens (Fabaceae). The initial chemical composition of each single litter species was also determined. Litterbags (20 × 20 cm, 2 mm opening) containing either each single species or the mixture, were deployed on the flooded forest soil and sampled after 30, 240, 270, 300 and 330 days. There were differences in initial total N and P concentrations, with A. nitens (AN) showing the highest nutrient concentrations (%NAN = 1.86 ± 0.19; %PAN = 0.058 ± 0.008) and P. orinocoensis (PO) and A. latifolia (AL) the lowest (%NPO = 0.92 ± 0.06; %NAL = 1.04 ± 0.04; %PPO = 0.029 ± 0.005; %PAL = 0.032 ± 0.001). Litter from AN showed the greatest mass loss (55%) and fastest decomposition rate (k = 0.00185 ± 0.00028) while litter from AL and the mixture showed the smallest mass loss (24% and 27% respectively) and the slowest decomposition rate (kAL = 0.00078 ± 0.00012 and kMIX = 0.00077 ± 0.00006). Decomposition rates were significantly and positively correlated with initial N (r = 0.556, p < 0.05) and P concentrations (r = 0.482, p < 0.05). Nevertheless, there were no significant differences between the expected decomposition rate and the observed decomposition rate of the mixture (additive response). To test the nature of the additivity, an enhancement factor (f) on decomposition rates for each single species was calculated. The species with the highest and smallest value of f were AN and AL, respectively. The fact that two out of the three species had values significantly different from 1, suggests that the additivity detected in our mixture was a consequence of the counterbalancing of

  6. Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates

    Science.gov (United States)

    Stohlgren, Thomas J.

    1988-01-01

    Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).

  7. Climate change impact on landscape fire and forest biomass dynamics

    International Nuclear Information System (INIS)

    The aim of this study was to improve current understandings of fire regimes. The estimation of biomass dynamics at the stand scale is essential for understanding landscape scale biomass dynamics, particularly in order to understand the potential effects of fire regimes. This study presented a synthesis of research results obtained from stand scale studies together with fire behaviour and weather variables. Landscape structure, topography and climate conditions were also considered. Integration of the data was conducted with the SEM-LAND model, a spatially explicit model for landscape dynamics. Equations for the model were presented, including fire initiation and spread, as well as a lightning fire process and simulated fire suppression. Results indicated that fire suppression could alter the distribution of fire sizes. The effect of tree and stand mortality on forest biomass estimates was also discussed along with the impact of climate change on fire regimes. Results indicate that fire activities are likely to increase. Results also demonstrate that fire frequency and size distribution are correlated without human intervention. Theoretical negative exponential forest age distribution is not always supported by empirical observations. Point-based fire frequency and fire cycle definitions are special cases from a computational perspective. Detection of quantitative interrelationships may simplify preconditions for estimating fire regimes, and serve as a means to address incomplete empirical observations. 12 refs., 3 figs

  8. Evaluating litter decomposition and soil organic matter dynamics in earth system models: contrasting analysis of long-term litter decomposition and steady-state soil carbon

    Science.gov (United States)

    Bonan, G. B.; Wieder, W. R.

    2012-12-01

    Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual

  9. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B [Los Alamos National Laboratory; Christensen, Candace [Los Alamos National Laboratory; Jennings, Terry L [Los Alamos National Laboratory; Jaros, Christopher L [Los Alamos National Laboratory; Wykoff, David S [Los Alamos National Laboratory; Crowell, Kelly J [Los Alamos National Laboratory; Shuman, Rob [URS

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and

  10. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  11. Dynamics of carbon, biomass, and structure in two Amazonian forests

    Science.gov (United States)

    Pyle, Elizabeth Hammond; Santoni, Gregory W.; Nascimento, Henrique E. M.; Hutyra, Lucy R.; Vieira, Simone; Curran, Daniel J.; van Haren, Joost; Saleska, Scott R.; Chow, V. Y.; Carmago, Plinio B.; Laurance, William F.; Wofsy, Steven C.

    2008-11-01

    Amazon forests are potentially globally significant sources or sinks for atmospheric carbon dioxide. In this study, we characterize the spatial trends in carbon storage and fluxes in both live and dead biomass (necromass) in two Amazonian forests, the Biological Dynamic of Forest Fragments Project (BDFFP), near Manaus, Amazonas, and the Tapajós National Forest (TNF) near Santarém, Pará. We assessed coarse woody debris (CWD) stocks, tree growth, mortality, and recruitment in ground-based plots distributed across the terra firme forest at both sites. Carbon dynamics were similar within each site, but differed significantly between the sites. The BDFFP and the TNF held comparable live biomass (167 +/- 7.6 MgC.ha-1 versus 149 +/- 6.0 MgC.ha-1, respectively), but stocks of CWD were 2.5 times larger at TNF (16.2 +/- 1.5 MgC.ha-1 at BDFFP, versus 40.1 +/- 3.9 MgC.ha-1 at TNF). A model of current forest dynamics suggests that the BDFFP was close to carbon balance, and its size class structure approximated a steady state. The TNF, by contrast, showed rapid carbon accrual to live biomass (3.24 +/- 0.22 MgC.ha-1.a-1 in TNF, 2.59 +/- 0.16 MgC.ha-1.a-1 in BDFFP), which was more than offset by losses from large stocks of CWD, as well as ongoing shifts of biomass among size classes. This pattern in the TNF suggests recovery from a significant disturbance. The net loss of carbon from the TNF will likely last 10-15 years after the initial disturbance (controlled by the rate of decay of coarse woody debris), followed by uptake of carbon as the forest size class structure and composition continue to shift. The frequency and longevity of forests showing such disequilibruim dynamics within the larger matrix of the Amazon remains an essential question to understanding Amazonian carbon balance.

  12. Dynamics of Technological Innovation Systems. The Case of Biomass Energy

    International Nuclear Information System (INIS)

    The starting point is that the current energy system largely depends on fossil fuels. This phenomenon, which is labelled as carbon lock-in, causes a long breakthrough period for renewable energy. The most suitable theoretical approach to analyse the development, diffusion and implementation of emergent technologies, such as renewable energy, is the Technological Innovation Systems' (TIS) perspective. This approach focuses on a particular technology and includes all those factors (institutions, actors, and networks) that influence its development. Recent research has identified several so-called System Functions that need to be fulfilled for a TIS to support successfully the evolution of a technology. In this paper we will use the following set of System Functions: F1: Entrepreneurial Activities, F2: Knowledge Development (learning), F3: Knowledge Diffusion through Networks, F4: Guidance of the Search, F5: Market Formation, F6: Resources Mobilisation, F7: Counteracting Resistance to Change (also Support from Advocacy Coalitions). By focusing on the System Functions the key processes that occur in a system which influence the development, diffusion and implementation of that technology will be identified and insight will be gained in the system dynamics. The System Functions are not independent but interact and influence each other. The nature of interactions whether they are positive or negative will influence the performance of the system respectively. Positive System Function fulfilment can lead to positive, i.e. virtuous cycles of processes that strengthen each other and lead to the building up of momentum that creates a process of creative destruction within the incumbent system. According to the same reasoning, a system in decline is characterised by one or more vicious cycles, where the System Functions interact and reinforce each other in a negative way. The results from the case studies showed that different functional patterns occurred for the Biomass

  13. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (Pforest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, Pforest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676

  14. Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Science.gov (United States)

    Gómez, Cristina; White, Joanne C.; Wulder, Michael A.; Alejandro, Pablo

    2014-07-01

    Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984-2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990-2000 are mapped (70% accuracy when validated with plot values of

  15. Litter composition effects on decomposition across the litter-soil interface

    Science.gov (United States)

    Background/Question/Methods Many studies have investigated the influence of plant litter species composition on decomposition dynamics, but given the variety of communities and environments around the world, a variety of consequences of litter-mixing have been reported. Litter ...

  16. Radiocesium immobilization to leaf litter by fungi during first-year decomposition in a deciduous forest in Fukushima.

    Science.gov (United States)

    Huang, Yao; Kaneko, Nobuhiro; Nakamori, Taizo; Miura, Toshiko; Tanaka, Yoichiro; Nonaka, Masanori; Takenaka, Chisato

    2016-02-01

    Vast forest areas in eastern Japan have been contaminated with radio-isotopes by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Radiocesium (radioCs) is known to remain bioavailable in forest ecosystems for a long time, and it is necessary to terminate the cycling process to decontaminate the forest ecosystem. We observed radiocesium concentrations of leaf litter during decomposition on a forest floor where radiocesium ((137)Cs) contamination was ∼155 kBq/m(2). Litter bag experiments were conducted with newly fallen mixed deciduous leaf litter in a deciduous forest (alt. 610 m) about 50 km from the FDNPP. Litter bags were retrieved in April, June, August, October, and December 2012. Fresh litter (137)Cs concentration was ∼3000 Bq/kg in December 2011. During the decomposition process on the forest floor, litter (137)Cs concentration increased rapidly and exceeded 25,000 Bq/kg after 6 months, whereas potassium (K) concentration in the litter was rather stable, indicating that radiocesium and K showed contrasting dynamics during the early decomposition phase. Nitrogen, phosphorus, and (137)Cs contents were positively correlated to fungal biomass, evaluated by phospholipid fatty acids in the litter during decomposition. The increase of radiocesium concentration mainly occurred during from April to October, when fungal growth peaked. Therefore, this suggests fungal translocation of nutrients from outside the litter substrate (immobilization) is the mechanism to increase radiocesium in the decomposing litter. The amount of (137)Cs contained in the 1-year-old decomposed leaf litter was estimated to be 4% per area of the soil-contaminated (137)Cs. PMID:26630038

  17. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    OpenAIRE

    Jaeeun Sohng; Ah Reum Han; Mi-Ae Jeong; Yunmi Park; Byung Bae Park; Pil Sun Park

    2014-01-01

    Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica), Korean pine (Pinus koraiensis), and their mixed leaf l...

  18. Simulation of the biomass dynamics of Masson pine forest under different management

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-lian; WANG Kai-yun; LIU Xin-wei; PENG Shao-lin

    2006-01-01

    TREE submodel affiliated with TREEDYN was used to simulate biomass dynamics of Masson pine (Pinus massoniana) forest under different managements (including thinning, clear cutting, combining thinning with clear cutting). The purpose was to represent biomass dynamics involved in its development, which can provide scientific arguments for management of Masson pine forest. The results showed the scenario that 10% or 20% of biomass of the previous year was thinned every five years from 15 to 40 years made total biomass of pine forest increase slowly and it took more time to reach a mature community; If clear cutting and thinning were combined, the case C (clear cutting at 20 years of forest age, thinning 50% of remaining biomass at 30 years of forest age, and thinning 50% of remaining biomass again at 40 years of forest age) was the best scenario which can accelerate speed of development of Masson pine forest and gained better economic values.

  19. Nutrients (N, P and K dynamics associated with the leaf litter of two agroforestry tree species of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mahmood H

    2009-10-01

    Full Text Available Eucalyptus camaldulensis (Dehnh. and Swietenia macrophylla (King. are not native to Bangladesh, but they are widely used in agroforestry practices for their commercial values. Selection of tree species with efficient return of nutrients is a vital challenge in agroforestry practices to maintain the soil fertility for sustainable crop production. Therefore, a comparative study was conducted on nutrients (N, P and K leaching from leaf litter of E. camaldulensis and S. macrophylla in laboratory condition. The initial dry weight of leaf litter of E. camaldulensis and S. macrophylla were significantly (p<0.05 decreased to 18% and 10%, respectively at the end of the experiment. Eucalyptus camaldulensis showed comparatively (t-test, p<0.05 higher rate of weight loss, conductivity and TDS (Total Dissolved Solid of leached water. Comparatively, higher amount of N (48 μg g-1 was released from leaf litter of E. camaldulensis whereas higher amount of P (0.8 µg g-1 and K (23 mg g-1 from S. macrophylla, leaf litter and both the species showed similar pattern of nutrient (K>N>P release during the leaching process. Nutrients (N, P and K concentration in leaf litter of these species showed significant (p<0.05 negative exponential curvilinear relationships with the weight loss. Result of this study suggests that E. camaldulensis is the best in terms of N return and S. macrophylla the best in terms of P and K return.

  20. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    Science.gov (United States)

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180

  1. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements

    Directory of Open Access Journals (Sweden)

    V. Meyer

    2013-08-01

    Full Text Available Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne lidar measurements of forest height acquired about 10 yr apart over Barro Colorado Island (BCI, Panama. We used the forest inventory data from the 50 ha Center for Tropical Forest Science (CTFS plot collected every 5 yr during the study period to calibrate the estimation. We compared two approaches for detecting changes in forest aboveground biomass (AGB: (1 relating changes in lidar height metrics from two sensors directly to changes in ground-estimated biomass; and (2 estimating biomass from each lidar sensor and then computing changes in biomass from the difference of two biomass estimates, using two models, namely one model based on five relative height metrics and the other based only on mean canopy height (MCH. We performed the analysis at different spatial scales from 0.04 ha to 10 ha. Method (1 had large uncertainty in directly detecting biomass changes at scales smaller than 10 ha, but provided detailed information about changes of forest structure. The magnitude of error associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Method (2 was accurate at the 1 ha scale to estimate AGB stocks (R2 = 0.7 and RMSEmean = 27.6 Mg ha−1. However, to predict biomass changes, errors became comparable to ground estimates only at a spatial scale of about 10 ha or more. Biomass changes were in the same direction at the spatial scale of 1 ha in 60 to 64% of the subplots, corresponding to p values of respectively 0.1 and 0.033. Large errors in estimating biomass changes from lidar data resulted from the uncertainty in detecting changes at 1 ha from ground

  2. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    Science.gov (United States)

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude). PMID:26087933

  3. Biomass valorisation, a new dynamics for French agriculture. Colloquium proceedings

    International Nuclear Information System (INIS)

    This document brings together the summary of the presentations given at this colloquium on French agriculture and biomass valorisation and the slides of the available presentations as well. The colloquium started with the opening talk by D. Bussereau (Ministry of agriculture and fisheries) who presented an international overview of biomass activities. The colloquium was divided in two parts with presentations and round-tables: 1 - the post-petroleum era: energy context and raw materials market (P. Chalmin, Cyclope); first round-table on biofuels today and tomorrow; back to the basics (C. Roy); 2 - Biomass and industry: second round-table on cellulose - an oldie promised to a bright future; status of biomass valorisation (M. Pappalardo, ADEME); third round-table: the boom of green chemistry; closing talk by C. Roy. Sixteen presentations (slides) are attached to the document: 1 - Opening talk (D. Bussereau, Ministry of agriculture and fisheries); 2 - Biomass, agriculture, forestry and climate, some basics (C. Roy); 3 - Role of biomass in the fight against climate change and in supplies diversification (M. Pappalardo, Ademe); 4 - The 2005/2006 shock on world markets: energy and raw materials (P. Chalmin, Cyclope); 5 - Actions in the energy domain (A. Chosson, CLCV); 6 - Ethanol production (A. Jeanroy); 7 - The 'biofuels' commitment of PSA Peugeot Citroen car maker (Beatrice Perrier-Maurer, PSA); 8 - Bio-diesel development (Bernard Nicol, Diester Industrie); 9 - First round-table on biofuels today and tomorrow: biofuels and conventional fuels - for an harmonious development of resources and outlets (J.B. Sigaud, Petroleum and Engines School); 10 - Agriculture biomass: source of cellulose (C. Burren, Ungrains, Arvalis); 11 - Electrical and thermal valorisations of biomass (C. Jurczak, MINEFI/DGEMP); 12 - Some elements of thought on new uses of biomass as 'material' (Jacques Sturm, Afocel) 13 - Presentation of Agrice (Agriculture for chemistry and energy) research

  4. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    Science.gov (United States)

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. PMID:27288197

  5. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  6. Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands.

    Directory of Open Access Journals (Sweden)

    Penelope J Mograbi

    Full Text Available Woody biomass dynamics are an expression of ecosystem function, yet biomass estimates do not provide information on the spatial distribution of woody vegetation within the vertical vegetation subcanopy. We demonstrate the ability of airborne light detection and ranging (LiDAR to measure aboveground biomass and subcanopy structure, as an explanatory tool to unravel vegetation dynamics in structurally heterogeneous landscapes. We sampled three communal rangelands in Bushbuckridge, South Africa, utilised by rural communities for fuelwood harvesting. Woody biomass estimates ranged between 9 Mg ha(-1 on gabbro geology sites to 27 Mg ha(-1 on granitic geology sites. Despite predictions of woodland depletion due to unsustainable fuelwood extraction in previous studies, biomass in all the communal rangelands increased between 2008 and 2012. Annual biomass productivity estimates (10-14% p.a. were higher than previous estimates of 4% and likely a significant contributor to the previous underestimations of modelled biomass supply. We show that biomass increases are attributable to growth of vegetation <5 m in height, and that, in the high wood extraction rangeland, 79% of the changes in the vertical vegetation subcanopy are gains in the 1-3 m height class. The higher the wood extraction pressure on the rangelands, the greater the biomass increases in the low height classes within the subcanopy, likely a strong resprouting response to intensive harvesting. Yet, fuelwood shortages are still occurring, as evidenced by the losses in the tall tree height class in the high extraction rangeland. Loss of large trees and gain in subcanopy shrubs could result in a structurally simple landscape with reduced functional capacity. This research demonstrates that intensive harvesting can, paradoxically, increase biomass and this has implications for the sustainability of ecosystem service provision. The structural implications of biomass increases in communal rangelands

  7. Litter-Spinning Retarders

    Science.gov (United States)

    Wilson, John C.

    1995-01-01

    Aerodynamic plates stop litter from spinning during hoisting by helicopter. Features of proposed litter-spinning retarders include convenience of deployment and independence from ground restraint. Retarder plate(s) folded flat against bottom of litter during storage or while litter is loaded. Plate(s) held in storage position by latch that releases manually or automatically as litter is hoisted. Upon release, springs move plates into deployed position.

  8. Suspension Dynamics of Liquefied Lignocellulosic Biomass in Pipeflow using Echo Particle Image Velocimetry

    Science.gov (United States)

    Demarchi, Nicholas; White, Christopher

    2015-11-01

    Echo particle image velocimetry (EPIV) is used to acquire planar fields of velocity in pipeflow of liquefied biomass. The biomass used is acid washed corn stover liquefied by enzymatic hydrolysis. The liquefaction process produces a complex multiphase fluid suspension with a microstructure consisting of insoluble solid particles dispersed within a continuous liquid phase. The solid particles are generally heavier than the liquid phase, non-spherical, and distributed over a wide range of aspect ratios and sizes. Batches of liquefied biomass are produced at incremental mass loadings doubling from 1.5% to 12%. The rheology, microstructure, and solid particle settling velocities of the liquefied biomass as a function of mass loading is first quantified. Next, EPIV is used to measure and quantify the flow dynamics of liquefied biomass suspensions under laminar pressure driven pipeflow conditions. Finally, Information gathered from the experimental data is used to simulate particle settling rates and predict the particle physics under the same pipeflow conditions.?

  9. Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil.

    Science.gov (United States)

    Nunes, F P; Garcia, Q S

    2015-05-01

    The study of litter decomposition and nutrient cycling is essential to know native forests structure and functioning. Mathematical models can help to understand the local and temporal litter fall variations and their environmental variables relationships. The objective of this study was test the adequacy of mathematical models for leaf litter decomposition in the Atlantic Forest in southeastern Brazil. We study four native forest sites in Parque Estadual do Rio Doce, a Biosphere Reserve of the Atlantic, which were installed 200 bags of litter decomposing with 20 × 20 cm nylon screen of 2 mm, with 10 grams of litter. Monthly from 09/2007 to 04/2009, 10 litterbags were removed for determination of the mass loss. We compared 3 nonlinear models: 1 - Olson Exponential Model (1963), which considers the constant K, 2 - Model proposed by Fountain and Schowalter (2004), 3 - Model proposed by Coelho and Borges (2005), which considers the variable K through QMR, SQR, SQTC, DMA and Test F. The Fountain and Schowalter (2004) model was inappropriate for this study by overestimating decomposition rate. The decay curve analysis showed that the model with the variable K was more appropriate, although the values of QMR and DMA revealed no significant difference (p > 0.05) between the models. The analysis showed a better adjustment of DMA using K variable, reinforced by the values of the adjustment coefficient (R2). However, convergence problems were observed in this model for estimate study areas outliers, which did not occur with K constant model. This problem can be related to the non-linear fit of mass/time values to K variable generated. The model with K constant shown to be adequate to describe curve decomposition for separately areas and best adjustability without convergence problems. The results demonstrated the adequacy of Olson model to estimate tropical forest litter decomposition. Although use of reduced number of parameters equaling the steps of the decomposition

  10. Dynamics, aboveground biomass and composition on permanent plots, Tambopata National Reserve. Madre de Dios, Peru

    Directory of Open Access Journals (Sweden)

    Nadir C. Pallqui

    2014-12-01

    Full Text Available In this study we evaluated the floristic composition and changes in stored biomass and dynamics over time in 9 permanent plots monitored by RAINFOR (Amazon Forest Inventory Network and located in the lowland Amazon rainforest of the Tambopata National Reserve. Data were acquired in the field using the standardized methodology of RAINFOR. The biomass was estimated using the equation for tropical moist forests of Chave et al. (2005. Biomass dynamics were analyzed, in three separated periods from 2003 to 2011. 64 families, 219 genera and 531 species were recorded. The tree floristic composition is very similar in all plots except for one swamp plot, although but it is also evident that two slightly different forest communities exist in the rest of landscape, apparently related to the age of the ancient river terraces in the area. Mortality and recruitment of individuals averaged 2.12 ± 0.52% and 1.92 ± 0.49%, respectively. The turnover rate is 2.02% per year. Aboveground biomass stored in these forests averages 296.2 ± 33.9 t ha-1. The biomass dynamics show a total net gain of 1.96, 1.69 and –1.23 t ha-1 for period respectively. Prior to the drought of 2010 a change in biomass was found 1.88 t ha-1 yr-1 and post drought was -0.18 t ha-1 yr-1 on average, though the difference is not significant. Demographic analysis suggests a dynamic equilibrium in the plots. The negative balance of biomass observed for the period 2008 – 2011 may be due to the drought of 2010, in which half of the monitored plots experienced negative net biomass change due to mortality of individuals selectively affecting the floristic composition.

  11. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  12. Nutrients (N, P and K) dynamics associated with the leaf litter of two agroforestry tree species of Bangladesh

    OpenAIRE

    Mahmood H; Limon SH; Rahman MS; Azad AK; Islam MS; Khairuzzaman M

    2009-01-01

    Eucalyptus camaldulensis (Dehnh.) and Swietenia macrophylla (King.) are not native to Bangladesh, but they are widely used in agroforestry practices for their commercial values. Selection of tree species with efficient return of nutrients is a vital challenge in agroforestry practices to maintain the soil fertility for sustainable crop production. Therefore, a comparative study was conducted on nutrients (N, P and K) leaching from leaf litter of E. camaldulensis and S. macrophylla in laborato...

  13. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    International Nuclear Information System (INIS)

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest (open-quotes Caatingaclose quotes) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was ∼74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (< O.64 cm diameter). While these components comprised only 30% of the prefire aboveground biomass, they accounted for ∼60% of the aboveground pools of N and P. Three experimental fires were conducted during the 1989 burning season. Consumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. Greater ecosystem losses of these nutrients occurred with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. It would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less. 38 refs., 2 figs., 7 tabs

  14. Annual and diurnal african biomass burning temporal dynamics

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2009-05-01

    Full Text Available Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near

  15. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  16. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    Science.gov (United States)

    Le Quéré, C.; Buitenhuis, E. T.; Moriarty, R.; Alvain, S.; Aumont, O.; Bopp, L.; Chollet, S.; Enright, C.; Franklin, D. J.; Geider, R. J.; Harrison, S. P.; Hirst, A.; Larsen, S.; Legendre, L.; Platt, T.; Prentice, I. C.; Rivkin, R. B.; Sathyendranath, S.; Stephens, N.; Vogt, M.; Sailley, S.; Vallina, S. M.

    2015-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  17. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  18. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.; Tucker, M. P.; Baker, J. O.; Harris, M.; Luo, Y. H.; Xu, Q.; Himmel, M. E.; Ding, S. Y.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  19. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  20. Marine Anthropogenic Litter

    OpenAIRE

    Bergmann, Melanie; Gutow, Lars; Klages, Michael

    2015-01-01

    This book describes how manmade litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers co...

  1. Bioenergy market competition for biomass: A system dynamics review of current policies

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  2. Typhoon enhancement of N and P release from litter and changes in the litter N:P ratio in a subtropical tidal wetland

    Science.gov (United States)

    Wang, Weiqi; Sardans, Jordi; Tong, Chuan; Wang, Chun; Ouyang, Linmei; Bartrons, Mireia; Peñuelas, Josep

    2016-01-01

    Litter production and decomposition are key processes controlling the capacity of wetland to store and cycle carbon (C) and nutrients. Typhoons deposit large amounts of green and semi-green (between green and withered) plant tissues and withered litter (normal litter) on wetland soils, generating a pulse of litter production. Climatic models project an increase in typhoon intensity and frequency. Elucidating the impacts of typhoons on C, N and P cycles and storage capacities in subtropical and tropical wetland areas is thus important. We analyzed the patterns and changes of litter decomposition after a typhoon in the Minjiang River estuary in southeastern China. Green litter decomposed the fastest, and the loss of mass did not differ significantly between semi-green litter, withered litter and mixed litter (all soil litter after a typhoon). During the decomposition process the remaining green litter had the highest, and withered litter the lowest N and P concentrations. The biomass loss rate of litter during the studied period was related to the initial litter N and P concentrations. Remaining litter generally increased its N:P ratio during decomposition. The ratio of the released N and P was consequently lower than the initial N:P ratio in all litter types. The typhoon enhanced the release of C, N and P from the litter (884, 12.3 and 6 kg ha-1, respectively) by 264 days after the typhoon. The soil was accordingly enriched with organic matter and nutrients for several months, which should favor microbial growth rates (higher C, N and P availability and lower C:nutrient and N:P ratios) and increase the rates of C and nutrient cycling. If the frequency and/or intensity of typhoons increase, a constant increase in the release of N and P to the soil with lower N:P ratios could change the N and P cycles in wetlands and provide better conditions for the spread of fast-growing species.

  3. Forest Biomass, Carbon Stocks, and Macrofungal Dynamics: A Case Study in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carlos Rojas

    2014-01-01

    Full Text Available There are few published studies providing information about macrofungal biology in a context of forest dynamics in tropical areas. For this study, a characterization of above-ground standing tree biomass and carbon stocks was performed for four different forest subtypes within two life zones in Costa Rica. Fungal productivity and reproductive success were estimated and analyzed in the context of the forest systems studied and results showed fungal dynamics to be a complex and challenging topic. In the present study, fungal productivity was higher in forest patches with more tree density but independent from life zones, whereas fungal biomass was higher in premontane areas with ectomycorrhizal dominant trees. Even though some observed patterns could be explained in terms of climatic differences and biotic relationships, the high fungal productivity observed in dry forests was an interesting finding and represents a topic for further studies.

  4. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions : a test of the PEG model

    OpenAIRE

    Straile, Dietmar

    2015-01-01

    1. The model of the International Society of Limnology (SIL) Plankton Ecology working group (hereafter the PEG model) is a verbal model describing the patterns and driving factors of seasonal phytoplankton and zooplankton succession in oligotrophic and eutrophic lakes (Sommer et al., 1986). Despite being a citation classic, tests of the PEG model with respect to differences in zooplankton biomass dynamics between oligotrophic and eutrophic lakes are lacking.2. Here, I use the long-term data f...

  5. Seasonal Dynamics and Biomass of Mixotrophic Flagellate Dinobryon sertularia Ehrenberg (Chrysophyceae) in Derbent Reservoir (Samsun, Turkey)

    OpenAIRE

    TAŞ, Beyhan; Gönülol, Arif; TAŞ, Erol

    2010-01-01

    Mixotrophic protists, combining both heterotrophy and phototrophy, are found abundantly in eutrophic waters. Dinobryon sertularia Ehr. from Chrysophyceae (golden algae) are mixotrophic organisms often make up blooms and colony in pools, lakes and dam reservoirs. This study was carried out in Derbent Dam Lake in the Middle Black Sea Region. Seasonal dynamics and biomass of D. sertularia were investigated at four stations between February 2001 and July 2002. D. sertularia consisted of 47-60...

  6. Myxomycetes of the litter

    Directory of Open Access Journals (Sweden)

    Wanda Stojakowska

    2014-08-01

    Full Text Available The litter is a useful substratum for developmen t of the Myxomycetes. On the basis of our own observations and literature data 50 species of the slime molds were found occuring on litter. Species from the order Physarales (33 species are dominant.

  7. Mineral nutrients, biomass and litter deposition on Eucalyptus plantation under different residue management Nutrientes minerais, biomassa e deposição de serapilheira em plantio de Eucalyptus com diferentes sistemas de manejo de resíduos florestais

    Directory of Open Access Journals (Sweden)

    Antonio Francisco Jurado Bellote

    2010-03-01

    Full Text Available It was evaluated the effect of different residue management systems in the plant nutrition status, nutrient contents in the litter and litter biomass yield, on Eucalyptus grandis plantation. Samples were taken on four residue management systems: (i removal of all residues from previous harvesting and NPK fertilization; (ii maintenance of all residues on soil surface and NPK fertilization; (iii removal all at bark  and commercial-size crop stems over 3 cm diameter and NPK fertilization; (iv removal of all residues from previous harvesting, NPK fertilization and addition of industrial waste (15 t.ha-1 of pulp and paper sludge, C:N ratio 25:1 and 4 t.ha-1 of wood ash, C:N ratio 30:1. Results showed that the maintenance of the forest residues on site improved the nutritional status of trees and increased productivity. Addition of industrial waste allowed expressive increase of Eucalyptus sp growth. Possible excesses of Ca from the industrial waste used  should be corrected, to avoid nutritional unbalance in the trees; independent of the treatment used, the amounts of K added to the soil are not enough to maintain appropriate tree nutritional status. Greater amounts of K should be added to correct soil nutritional deficiencies on this element. Neste trabalho foi avaliado o efeito de diferentes manejos de resíduos florestais no estado nutricional
    das árvores, no conteúdo de nutrientes na serapilheira e a biomassa de serapilheira produzida pelo Eucalyptus
    grandis. Foram avaliados quatro sistemas diferentes de manejo de resíduo: (i remoção de todo resíduo do sítio
    proveniente da colheita florestal e adubação NPK; (ii manutenção no sítio de todos os resíduos da colheita
    florestal e adubação NPK; (iii remoção do sítio de todo o resíduo da colheita com diâmetro superior a 3 cm e
    adubação NPK; (iv remoção de todos os resíduos da colheita, adubação NPK e adição de 15 t.ha-1 de resíduo
    celul

  8. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    Science.gov (United States)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  9. Biomass dynamics of Quercus aliena var.acutesrata Community on Mountain Xiaolong in Gansu Province,China

    Institute of Scientific and Technical Information of China (English)

    Suo Anning; Ju Tianzhen; Zhang Junhua; Ge Jianping

    2006-01-01

    The dynamics of tree layer biomass was studied by combining 35 sample plots of field census with biomass model estimation in a natural Quercus aliena var.acutesrata community on Mountain Xiaolong in Gansu Province,China.The tree layer biomass of Quercus aliena var.acutesrata community was 183 660 kg/ha,in which the slow growth group accounted for 64.89% of the total biomass.The fast-medium growth group accounted for 33.40% and the coniferous group accounted for 1.38%.The organs biomass was found to be in the following order:trunk>root>branch>leaf.The total biomass accumulated with the development of the community.The total biomass and the biomass of the organs were highest in the mature community and became stable as the community developed.The relative growth rate of organs was in the following order:trunk>branch>root>leaf.The biomass ratio of the slow growth group trees tended to increase and the fast-medium group trees tended to decrease as the community developed,which was reveresed in the decline development stage.The biomass of the coniferous group was very small throughout the development process.

  10. Strong stoichiometric resilience after litter manipulation experiments; a case study in a Chinese grassland

    Directory of Open Access Journals (Sweden)

    C. W. Xiao

    2014-07-01

    Full Text Available Global climate change has generally increased net primary production which leads to increasing litter inputs. Therefore assessing the impacts of increasing litter inputs on soil nutrients, plant growth and ecological Carbon (C : nitrogen (N : phosphorus (P stoichiometry is critical for an understanding of C, N and P cycling and their feedback processes to climate change. In this study, we added plant litter to the 10–20 cm subsoil layer under a steppe community at rates equivalent to 0, 150, 300, 600 and 1200 g (dry mass m−2 and measured the resulting C, N and P content of different pools (above and below ground plant biomass, litter, microbial biomass. High litter addition (120% of the annual litter inputs significantly increased soil inorganic N and available P, aboveground biomass, belowground biomass and litter. Nevertheless small litter additions, which are more realistic compared to the future predictions, had no effect on the variables examined. Our results suggest that while very high litter addition can strongly affect C : N : P stoichiometry, the grassland studied here is quite resilient to more realistic inputs in terms of stoichiometric functioning. This result highlights the complexity of the ecosystem's response to climate change.

  11. Environmentally friendly animal litter

    Energy Technology Data Exchange (ETDEWEB)

    Chett, Boxley; McKelvie, Jessica

    2013-08-20

    A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  12. Changes in Amazonian forest biomass, dynamics, and composition, 1980-2002

    Science.gov (United States)

    Phillips, Oliver L.; Higuchi, Niro; Vieira, Simone; Baker, Timothy R.; Chao, Kuo-Jung; Lewis, Simon L.

    Long-term, on-the-ground monitoring of forest plots distributed across Amazonia provides a powerful means to quantify stocks and fluxes of biomass and biodiversity. Here we examine the evidence for concerted changes in the structure, dynamics, and functional composition of old-growth Amazonian forests over recent decades. Mature forests have, as a whole, gained biomass and undergone accelerated growth and dynamics, but questions remain as to the long-term persistence of these changes. Because forest growth on average exceeds mortality, intact Amazonian forests have been functioning as a carbon sink. We estimate a net biomass increase in trees ≥10 cm diameter of 0.62 ± 0.23 t C ha-1 a-1 through the late twentieth century. If representative of the wider forest landscape, this translates into a sink in South American old-growth forest of at least 0.49 ± 0.18 Pg C a-1. If other biomass and necromass components also increased proportionally, the estimated South American old-growth forest sink is 0.79 ± 0.29 Pg C a-1, before allowing for possible gains in soil carbon. If tropical forests elsewhere are behaving similarly, the old-growth biomass forest sink would be 1.60 ± 0.58 Pg C a-1. This bottom-up estimate of the carbon balance of tropical forests is preliminary, pending syntheses of detailed biometric studies across the other tropical continents. There is also some evidence for recent changes in the functional composition (biodiversity) of Amazonian forest, but the evidence is less comprehensive than that for changes in structure and dynamics. The most likely driver(s) of changes are recent increases in the supply of resources such as atmospheric carbon dioxide, which would increase net primary productivity, increasing tree growth and recruitment, and, in turn, mortality. In the future the growth response of remaining undisturbed Amazonian forests is likely to saturate, and there is a risk of these ecosystems transitioning from sink to source driven by higher

  13. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    Science.gov (United States)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed

  14. Litter decomposition rate and soil organic matter quality in a patchwork heathland of southern Norway

    Science.gov (United States)

    Certini, G.; Vestgarden, L. S.; Forte, C.; Tau Strand, L.

    2015-02-01

    Norwegian heathland soils, although scant and shallow, are major reservoirs of carbon (C). We aimed at assessing whether vegetation cover and, indirectly, its driving factor soil drainage are good proxies for soil organic matter (SOM) composition and dynamics in a typical heathland area of southern Norway consisting in a patchwork of three different types of vegetation, dominated by Calluna vulgaris (L.) Hull., Molinia caerulea (L.) Moench, or Sphagnum capillifolium (Ehrh.) Hedw. Such vegetation covers were clearly associated to microtopographic differences, which in turn dictated differences in soil moisture regime, Calluna growing in the driest sites, Sphagnum in the wettest, and Molinia in sites with intermediate moisture. Litter decomposition was followed over a period of 1 year by placing litterbags filled with biomass from each dominant species in each type of vegetation cover. The composition of the plant material and SOM was investigated using chemical methods and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Litter decomposition was faster for Molinia and Calluna, irrespective of the vegetation cover of the site where they were placed. Sphagnum litter decomposed very slowly, especially under Calluna, where the soil environment is by far more oxidising than under itself. In terms of SOM quality, Calluna covered areas showed the greatest differences from the others, in particular a much higher contribution from lipids and aliphatic biopolymers, apparently related to biomass composition. Our findings showed that, in the studied environment, litter decomposition rate and SOM composition are actually dependent on vegetation cover and/or soil drainage. On this basis, monitoring changes in the patchwork of vegetation types in boreal heathlands could be a reliable cost-effective way to account for climate-change-induced modifications to SOM and its potential to last.

  15. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    Science.gov (United States)

    Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín; Alvain, Séverine; Aumont, Olivier; Bopp, Laurent; Chollet, Sophie; Enright, Clare; Franklin, Daniel J.; Geider, Richard J.; Harrison, Sandy P.; Hirst, Andrew G.; Larsen, Stuart; Legendre, Louis; Platt, Trevor; Prentice, I. Colin; Rivkin, Richard B.; Sailley, Sévrine; Sathyendranath, Shubha; Stephens, Nick; Vogt, Meike; Vallina, Sergio M.

    2016-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  16. Effect of Long—Term Straw Incorporation on Soil Microbial Biomass and C and N Dynamics

    Institute of Scientific and Technical Information of China (English)

    SHENRENFANG; P.C.BROOKES; 等

    1997-01-01

    A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents,C and N dynamics in both Rothamsted and Woburn soils.The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments,and followed the sequence in treatments of straw chopped and incorporated into 10 cm(CI10)>straw burnt and incorporated into 10 cm(BI10)>staw chopped and incorporated into 20 cm(CI20)>straw burnt and incorporated into 20 cm(BI20).Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content ,Carbon dioxide evolution rates(CO2-C,μg(g.d)-1)decreased rapidly in the first two weeks' incubation,then decreased more slowly,The initial K2SO4-extractable NH4-N and NO33-N contents were low and similar in all the treatments,and all increased gradually with the incubation time ,However,net N immobiliztion was oberved in chopped treatments for Rothamsted soils durig the first 4 weeks ,Nevertheless,more N mineralization occurred in Treatment CI10 than any other treatment at the end of incubation for both soils .The Woburn soils ,could more easily suffer from the leaching of nitrate because the soils were more pemeable and more N was mineralized during the incubation compared to the Rothamsted soils.

  17. Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Mahmood Hossain; Mohammad Raqibul Hasan Siddique; Md. Saidur Rahman; Md. Zaber Hossain; Md. Mahedi Hasan

    2011-01-01

    Azadirachta indica A.Juss,Dalbergia sissoo Roxb.,and Melia azedarach L.are little studied species in nutrient return capabilities from leaf litter decomposition to maintenance of the soil fertility despite their importance in agroforestry practices of Bangladesh.A leaf litter decomposition experiment was conducted using a litterbag technique to assess the nutrient return efficiency of these species.The decomposition rate of leaf liter was highest for M.azedarach and lowest for D.sissoo.Rainfall and temperature of study sites showed a significant (p<0.05) positive relationship with the rate of leaf litter decomposition.The highest decay constant was observed for M.azedarach (6.67).Nitrogen and Phosphorus concentration in leaf litter showed a decreased trend sharply at the end of the first month,whereas rapid decrease of Potassium concentration was reported within 10 days.Conversely,higher concentration of nutrient was observed at the later stages of decomposition.All three species showed a similar pattern of nutrient release (K > N> P) during the decomposition process of leaf litter.Among the studied species,D.sissoo was best in terms of N and P return and A.indica was best in terms of K return.

  18. Dynamics of plant litter of typical steppe under enclosure management in Inner Mongolia Autonomous Region%典型草原封育过程中植物凋落物的变化动态

    Institute of Scientific and Technical Information of China (English)

    阚雨晨; 王堃; 王宇通; 黄欣颖; 邵新庆

    2011-01-01

    A field experiment was conducted in a degraded area of typical steppe ecotype in Balinyou Banner, Inner Mongolia Autonomous Region,China to reveal the dynamics of plant litter, using direct collection. The result show that the plant litter shows an increasing trend in different enclosed sucession process,the litter in the first 10 year is the highest. Litter nutrients,in different years, there were significant differences. Carbon content of maximum 1 year fencing,fencing a minimum of 10 years, and nitrogen is based on 4 years of enclosure was the highest content of fencing a minimum 1 year, they were significantly different among. Carbon and nitrogen ratio increases with the enclosure years showed decrease.%以内蒙古巴林右旗退化草原为研究对象,采用直接收集的方法,研究各种围封条件下,退化草原在自然演替过程中土壤凋落物的变化动态。结果表明:典型草原在封育演替过程中,凋落物呈增加的趋势,以封育10年的凋落物量最高;凋落物的养分,不同年限之间均存在显著差异,其中碳素含量以封育1年的最高,封育10年的最低,氮素则是以封育4年的含量最高,封育1年的含量最低;C/N比值随封育年限的增加呈现降低的趋势。

  19. Atmospheric emissions modeling of energetic biomass alternatives using system dynamics approach

    International Nuclear Information System (INIS)

    To simulate the quantitative effects of regional biomass alternatives for energetic purpose (BfE) on air pollutant emissions, a system dynamics model was developed and applied for the EuRegion Austrian-Hungarian cross-border area. The dynamic simulation program VensimR was used to build an overall regional model with economic, social and environmental sectors. Within this model, the here-introduced regional air pollution sub-model (RegAir) includes the important human-made emissions of 10 pollutants resulting from all relevant source sectors within the region investigated. Emissions from activities related to biomass production, transport, conversion and final energy consumption were built in detail. After building and calibrating the RegAir model, seven quantitative test scenarios were defined and implemented into the world. Through the scenarios simulation, effects on air emissions were followed and compared over time. The results of these simulations show a significant reduction of CO2 emission, especially in cases where fossil fuel displacement in heating devices is achieved on the largest scale. On the contrary, traditional air pollutants increase by most BfE options. The results of the RegAir model simulations of BfE alternatives over two decades provide useful quantifications of various air emissions and identify the less pollutant BfE alternatives in the dynamic context of the relevant air pollution sources of the region. After minor structural modification and appropriate calibration, RegAir can be applied to other regions as well. However, it is stated that, to finally decide on the overall most-appropriate options at a regional level, other environmental as well as economic and social effects must be taken into consideration, being the latter the goal of the mentioned overall regional model which serves as a model frame to the RegAir tool. (author)

  20. Atmospheric emissions modeling of energetic biomass alternatives using system dynamics approach

    Science.gov (United States)

    Szarka, Nora; Kakucs, Orsolya; Wolfbauer, Jürgen; Bezama, Alberto

    To simulate the quantitative effects of regional biomass alternatives for energetic purpose (BfE) on air pollutant emissions, a system dynamics model was developed and applied for the EuRegion Austrian-Hungarian cross-border area. The dynamic simulation program Vensim ® was used to build an overall regional model with economic, social and environmental sectors. Within this model, the here-introduced regional air pollution sub-model (RegAir) includes the important human-made emissions of 10 pollutants resulting from all relevant source sectors within the region investigated. Emissions from activities related to biomass production, transport, conversion and final energy consumption were built in detail. After building and calibrating the RegAir model, seven quantitative test scenarios were defined and implemented into the model. Through the scenarios simulation, effects on air emissions were followed and compared over time. The results of these simulations show a significant reduction of CO 2 emissions, especially in cases where fossil fuel displacement in heating devices is achieved on the largest scale. On the contrary, traditional air pollutants increase by most BfE options. The results of the RegAir model simulations of BfE alternatives over two decades provide useful quantifications of various air emissions and identify the less pollutant BfE alternatives in the dynamic context of the relevant air pollution sources of the region. After minor structural modifications and appropriate calibration, RegAir can be applied to other regions as well. However, it is stated that, to finally decide on the overall most-appropriate options at a regional level, other environmental as well as economic and social effects must be taken into consideration, being the latter the goal of the mentioned overall regional model which serves as a model frame to the RegAir tool.

  1. Forest based biomass for energy in Uganda: Stakeholder dynamics in feedstock production

    International Nuclear Information System (INIS)

    Insufficient energy supply and low levels of development are closely linked. Both are major issues in Uganda where growing demand cannot be met by overstretched infrastructure and the majority still rely on traditional biomass use. Uganda's renewable energy policy focuses on decentralised sources including modern biomass. In this paper, stakeholder dynamics and potential socio-economic impacts of eight modern bioenergy feedstock production models in Uganda are considered, and key considerations for future planning provided. For these models the main distinctions were land ownership (communal or private) and feedstock type (by-product or plantation). Key social issues varied by value chain (corporate, government or farmer/NGO), and what production arrangement was in place (produced for own use or sale). Small, privately owned production models can be profitable but are unlikely to benefit landless poor and, if repeated without strategic planning, could result in resource depletion. Larger projects can have greater financial benefits, though may have longer term natural resource impacts felt by adjacent communities. Bioenergy initiatives which allow the rural poor to participate through having a collaborative stake, rather than receiving information, and provide opportunities for the landless are most likely to result in socio-economic rural development to meet policy goals. The structured approach to understanding stakeholder dynamics used was found to be robust and sufficiently adaptable to provide meaningful analysis. In conclusion; local, context-specific planning and assessment for bioenergy projects, where all stakeholders have the opportunity to be collaborators in the process throughout its full lifecycle, is required to achieve rural development objectives. -- Highlights: • Stakeholder dynamics and socio-economics in 8 Ugandan bioenergy projects considered. • Key distinctions were ownership, feedstock, value chain and production arrangement. • Small

  2. The Experimental Control of Littering

    Science.gov (United States)

    Clark, Roger N.; And Others

    1972-01-01

    Behavior, incentives, and education programs were researched as factors relating to littering. Experiments in theaters, forest campgrounds, and hiking and dispersed car camping areas indicate incentive systems are necessary and feasible for curbing litter problems. (BL)

  3. Large litter sizes

    DEFF Research Database (Denmark)

    Sandøe, Peter; Rutherford, K.M.D.; Berg, Peer

    2012-01-01

    This paper presents some key results and conclusions from a review (Rutherford et al. 2011) undertaken regarding the ethical and welfare implications of breeding for large litter size in the domestic pig and about different ways of dealing with these implications. Focus is primarily on the direct...... adverse consequences for animal welfare of Danish breeding for large litter sizes due to increased piglet mortality and the subsequent attempts to reverse these consequences by breeding for number of live piglets at day five rather than number of piglets born. By this change of breeding goal it seems...

  4. Pattern and dynamics of biomass stock in old growth forests: The role of habitat and tree size

    Science.gov (United States)

    Yuan, Zuoqiang; Gazol, Antonio; Wang, Xugao; Lin, Fei; Ye, Ji; Zhang, Zhaochen; Suo, YanYan; Kuang, Xu; Wang, Yunyun; Jia, Shihong; Hao, Zhanqing

    2016-08-01

    Forest ecosystems play a fundamental role in the global carbon cycle. However, how stand-level changes in tree age and structure influence biomass stock and dynamics in old-growth forests is a question that remains unclear. In this study, we quantified the aboveground biomass (AGB) standing stock, the coarse woody productivity (CWP), and the change in biomass over ten years (2004-2014) in a 25 ha unmanaged broad-leaved Korean pine mixed forest in northeastern China. In addition, we quantified how AGB stock and change (tree growth, recruitment and mortality) estimations are influenced by the variation in habitat heterogeneity, tree size structure and subplot size. Our analysis indicated that Changbai forest had AGB of 265.4 Mg ha-1 in 2004, and gained1.36 Mg ha-1 y-1 between 2004 and 2014. Despite recruitment having better performance in nutrient rich habitat, we found that there is a directional tree growth trend independent of habitat heterogeneity for available nutrients in this old growth forest. The observed increases in AGB stock (∼70%) are mainly attributed to the growth of intermediate size trees (30-70 cm DBH), indicating that this forest is still reaching its mature stage. Meanwhile, we indicated that biomass loss due to mortality reduces living biomass, not increment, may be the primary factor to affect forest biomass dynamics in this area. Also, spatial variation in forest dynamics is large for small sizes (i.e. coefficient of variation in 20 × 20 m subplots is 53.2%), and more than 90 percent of the inherent variability of these coefficients was predicted by a simple model including plot size. Our result provides a mean by which to estimate within-plot variability at a local scale before inferring any directional change in forest dynamics at a regional scale, and information about the variability of forest structure and dynamics are fundamental to design effective sampling strategies in future study.

  5. Radiocesium leaching from contaminated litter in forest streams

    International Nuclear Information System (INIS)

    In Japanese forests suffering from the Fukushima Daiichi Nuclear Power Plant accident, litter fall provides a large amount of radiocesium from forests to streams. Submerged litter is processed to become a vital food resource for various stream organisms through initial leaching and subsequent decomposition. Although leaching from litter can detach radiocesium similarly to potassium, radiocesium leaching and its migration are poorly understood. We examined both radiocesium and potassium leaching to the water column and radiocesium allocation to minerals (glass beads, silica sand, and vermiculite) in the laboratory using soaked litter with and without minerals on a water column. The mineral types did not affect radiocesium leaching from litter, but soaking in water for 1, 7, and 30 days decreased the radiocesium concentration in litter by ×0.71, ×0.66, and ×0.56, respectively. Meanwhile, the 1-, 7-, and 30-day experiments decreased potassium concentration in litter by ×0.17, ×0.11, and ×0.09, respectively. Leached radiocesium remained in a dissolved form when there was no mineral phases present in the water, whereas there was sorption onto the minerals when they were present. In particular, vermiculite adsorbed radiocesium by two to three orders of magnitude more effectively than the other minerals. Because radiocesium forms (such as that dissolved or adsorbed to organic matter or minerals) can further mobilize to ecosystems, our findings will increase our understanding regarding the dynamics of radiocesium in stream ecosystems. - Highlights: • Radiocesium in contaminated litter was leached when soaked in water. • Radiocesium in litter leached slowly compared to potassium. • Minerals adsorbed dissolved radiocesium that was leached from litter. • Vermiculite effectively adsorbed radiocesium leached from litter

  6. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Zaidett Barrientos

    2012-09-01

    Full Text Available Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration and a 40 year old Cupressus lusitanica plantation (natural understory. The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010 in each habitat; humidity was measured in 439g samples (average, depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (x=73.2, followed by secondary forest (x=63.3 and cypress plantation (x=52.9 (Kruskall-Wallis=77.93, n=232, p=0.00. In the primary (Kruskal-Wallis=31.63, n=78, p<0.001 and secondary (Kruskal-Wallis=11.79, n=75, p=0.008 forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001 and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001 leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter’s structure in different ecosystems though the year.

  7. Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets

    Directory of Open Access Journals (Sweden)

    Florian Siegert

    2013-05-01

    Full Text Available Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks projects, which require an accurate monitoring of their carbon stocks or aboveground biomass (AGB. Our study objective was to evaluate multi-temporal LiDAR measurements of a tropical forested peatland area in Central Kalimantan on Borneo. Canopy height and AGB dynamics were quantified with a special focus on unaffected, selective logged and burned forests. More than 11,000 ha were surveyed with airborne LiDAR in 2007 and 2011. In a first step, the comparability of these datasets was examined and canopy height models were created. Novel AGB regression models were developed on the basis of field inventory measurements and LiDAR derived height histograms for 2007 (r2 = 0.77, n = 79 and 2011 (r2 = 0.81, n = 53, taking the different point densities into account. Changes in peat swamp forests were identified by analyzing multispectral imagery. Unaffected forests accumulated on average 20 t/ha AGB with a canopy height increase of 2.3 m over the four year time period. Selective logged forests experienced an average AGB loss of 55 t/ha within 30 m and 42 t/ha within 50 m of detected logging trails, although the mean canopy height increased by 0.5 m and 1.0 m, respectively. Burned forests lost 92% of the initial biomass. These results demonstrate the great potential of repetitive airborne LiDAR surveys to precisely quantify even small scale AGB and canopy height dynamics in remote tropical forests, thereby featuring the needs of REDD+.

  8. Demonstration of a Small Modular BioPower System Using Poultry Litter

    Energy Technology Data Exchange (ETDEWEB)

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.

  9. Demonstration of a Small Modular BioPower System Using Poultry Litter; FINAL

    International Nuclear Information System (INIS)

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricty and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter

  10. Space-time dynamics of fine root biomass of six forests in the Maoershan forest region,northeast China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Biao; ZHU Shengying; MAO Zijun; WANG Xiuwei; ZHAO Xizhu; SUN Yuanfa

    2007-01-01

    The Maoershan forestry centre is situated in the Zhangguangcai Mountain of the Changbai mountain range.The main forest types in the Maoershan region are plantation (Pinus sylvestris var.mongolica,Pinus koraiensis and Larix gmelinii) and natural secondary forests (Fraxinus mandshurica,Quercus mongolica and Populus davidiana).Fine roots have enormous surface areas,growing and turning over quickly,which plays an important role in terms of substance cycling and energy flow in the forest ecosystem.This study deals with the dynamics of live,dead,and total fine roots (≤ mm) biomass in the 0-30 cm soil layer using the soil core method.Differences between the six stands in the Maoershan region showed the following results:1) the fine root biomass in the various stands showed obvious differences.The total fine root biomass of six stands from high to low were F.mandshurica (1,030.0 g/m2) > Q.mongolica (973.4 g/m2) > Pinus koraiensis (780.9 g/m2) >L.gmelinii (718.2 g/m2) > Populusdavidiana(709.1 g/m2) > Pinus sylvestris var.mongolica (470.4 g/m2);2) except for L.gmelinii,the development of live fine root biomass agreed with the trend of total fine root biomass.The maximum biomass of live fine roots in Pinus koraiensis or L.gmelinii stand appeared in May,others in June;in the F.mandshurica stand,the minimum biomass of live fine roots occurred in September,others in July or August;3) the proportions of dead fine root biomass varied in different stands;4) the vertical distribution of fine roots was affected by temperature,water,and nutrients;the proportion of fine root biomass was concentrated in the 0-10 cm soil layer.The fine root biomass of six stands in the 0-10 cm soil layer was over 40% of the total fine root biomass;this proportion was 60.3% in F.mandshurica. Space-time dynamics of the various stands had different characteristics.When investigating the substance cycling and energy flows of all forest ecosystems,we should consider the characteristics of

  11. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    Science.gov (United States)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  12. Carbon input belowground is the major C flux contributing to leaf litter mass loss

    DEFF Research Database (Denmark)

    Rubino, Mauro; Dungait; Evershed; Bertolini; De Angelis; D'Onofrio; Lagomarsino; Lubritto; Merola; Terrasi; Cotrufo

    2010-01-01

    Partitioning of the quantities of C lost by leaf litter through decomposition into (i) CO2 efflux to the atmosphere and (ii) C input to soil organic matter (SOM) is essential in order to develop a deeper understanding of the litter-soil biogeochemical continuum. However, this is a challenging task...... due to the occurrence of many different processes contributing to litter biomass loss. With the aim of quantifying different fluxes of C lost by leaf litter decomposition, a field experiment was performed at a short rotation coppice poplar plantation in central Italy. Populus nigra leaf litter......, enriched in 13C (d13C +160‰) was placed within collars to decompose in direct contact with the soil (d13C -26‰) for 11 months. CO2 efflux from within the collars and its isotopic composition were determined at monthly intervals. After 11 months, remaining litter and soil profiles (0–20 cm) were sampled and...

  13. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    OpenAIRE

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs...

  14. The life cycle, population dynamics, and contribution to litter decomposition of .i.Penthetria holosericea./i. (Diptera: Bibionidae) in an alder forest

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Jedlička, Pavel; Šimáčková, H.; Lhotáková, Z.

    2015-01-01

    Roč. 71, November (2015), s. 21-27. ISSN 1164-5563 Grant ostatní: GA ČR(CZ) GAP504/12/1288; GA MŠk(CZ) LO1417 Institutional support: RVO:60077344 ; RVO:61388963 Keywords : development * larvae * litter decomposition * soil fauna * St. Marcs fly Subject RIV: DF - Soil Science; EG - Zoology (UOCHB-X) Impact factor: 1.719, year: 2014

  15. Litter fall dynamics of restored mangroves (Rhizophora mucronata Lamk. and Sonneratia alba Sm.) in Kenya

    OpenAIRE

    Wang'ondu, V.W.; Bosire, O; Kairo, G; Kinyamario, I; Mwaura, B; Dahdouh-Guebas, F.; N. Koedam

    2014-01-01

    Mangrove forests are active carbon sinks and important for nutrient cycling in coastal ecosystems. Restoration of degraded mangrove habitats enhances return of ecosystem goods and services, including carbon sequestration. Our objective was to assess the restoration of primary productivity of reforested mangrove stands in comparison with natural reference stands in Gazi Bay, Kenya. Litter fall data were collected in nine Rhizophora mucronata and Sonneratia alba monospecific stands by use of li...

  16. Spatial and temporal dynamics of phytoplankton and bacterioplankton biomass in Sanya Bay, northern South China Sea.

    Science.gov (United States)

    Zhou, Weihua; Li, Tao; Cai, Chuanghua; Huang, Liangmin; Wang, Hankui; Xu, Jirong; Dong, Junde; Zhang, Si

    2009-01-01

    The composition of phytoplankton and the dynamics of phytoplankton and bacterioplankton biomass (PB and BB, respectively) of Sanya Bay, South China Sea, were determined. A total of 168 species (67 genera) phytoplankton were identified, including Bacillariophyta (diatom, 128 species), Pyrrophyta (35 species), Cyanophyta (3 species), and Chrysophyta (2 species). Annual average abundance of phytoplankton was 1.2 x 10(7) cells/m3, with the highest abundance in autumn, and the lowest in summer. Annual average diversity index (H') and evenness (J) values were 3.96 and 0.70, respectively. Average chlorophyll-a was 2.5 mg/m3, and the average PB was 124 mg C/m3, with the highest value in autumn. Surface PB was higher than the bottom, except for summer. Annual mean bacterioplankton abundance and BB were 6.9 x 10(11) cells/m3 and 13.8 mg C/m3, respectively. The highest BB was found in summer, followed by winter, spring, and autumn. Surface BB was higher than bottom all year round. The spatial distribution patterns of PB and BB were very similar with the highest biomass in the estuary, and decreased seaward, primarily due to the terrestrial input from the Sanya River and influx of oceanic water. The main factor influencing PB and BB was dissolved inorganic nitrogen (DIN). Other factors such as temperature, which is above 22 degrees C throughout the year, had a negligible impact. The correlation between BB and PB was significant (P bacterioplankton. PMID:20108660

  17. Effects of natural and anthropogenic processes in the distribution of marine litter in the deep Mediterranean Sea

    Science.gov (United States)

    Ramirez-Llodra, Eva; De Mol, Ben; Company, Joan B.; Coll, Marta; Sardà, Francesc

    2013-11-01

    The distribution, type and quantity of marine litter accumulated on the bathyal and abyssal Mediterranean seafloor has been studied in the framework of the Spanish national projects PROMETEO and DOS MARES and the ESF-EuroDEEP project BIOFUN. Litter was collected with an otter trawl and Agassiz trawl while sampling for megafauna on the Blanes canyon and adjacent slope (Catalan margin, north-western Mediterranean) between 900 and 2700 m depth, and on the western, central and eastern Mediterranean basins at 1200, 2000 and 3000 m depth. All litter was sorted into 8 categories (hard plastic, soft plastic, glass, metal, clinker, fabric, longlines and fishing nets) and weighed. The distribution of litter was analysed in relation to depth, geographic area and natural (bathymetry, currents and rivers) and anthropogenic (population density and shipping routes) processes. The most abundant litter types were plastic, glass, metal and clinker. Lost or discarded fishing gear was also commonly found. On the Catalan margin, although the data indicated an accumulation of litter with increasing depth, mean weight was not significantly different between depths or between the open slope and the canyon. We propose that litter accumulated in the canyon, with high proportions of plastics, has predominantly a coastal origin, while litter collected on the open slope, dominated by heavy litter, is mostly ship-originated, especially at sites under major shipping routes. Along the trans-Mediterranean transect, although a higher amount of litter seemed to be found on the Western Mediterranean, differences of mean weight were not significant between the 3 geographic areas and the 3 depths. Here, the shallower sites, also closer to the coast, had a higher proportion of plastics than the deeper sites, which had a higher proportion of heavy litter and were often affected by shipping routes. The weight of litter was also compared to biomass of megafauna from the same samples. On the Blanes slope

  18. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005

    International Nuclear Information System (INIS)

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as 13C for carbon, based on the use of enriched or depleted 13C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on these experiments, the

  19. The synergistic use of models and observations: understanding the mechanisms behind observed biomass dynamics at 14 Amazonian field sites and the implications for future biomass change

    Science.gov (United States)

    Levine, N. M.; Galbraith, D.; Christoffersen, B. J.; Imbuzeiro, H. A.; Restrepo-Coupe, N.; Malhi, Y.; Saleska, S. R.; Costa, M. H.; Phillips, O.; Andrade, A.; Moorcroft, P. R.

    2011-12-01

    The Amazonian rainforests play a vital role in global water, energy and carbon cycling. The sensitivity of this system to natural and anthropogenic disturbances therefore has important implications for the global climate. Some global models have predicted large-scale forest dieback and the savannization of Amazonia over the next century [Meehl et al., 2007]. While several studies have demonstrated the sensitivity of dynamic global vegetation models to changes in temperature, precipitation, and dry season length [e.g. Galbraith et al., 2010; Good et al., 2011], the ability of these models to accurately reproduce ecosystem dynamics of present-day transitional or low biomass tropical forests has not been demonstrated. A model-data intercomparison was conducted with four state-of-the-art terrestrial ecosystem models to evaluate the ability of these models to accurately represent structure, function, and long-term biomass dynamics over a range of Amazonian ecosystems. Each modeling group conducted a series of simulations for 14 sites including mature forest, transitional forest, savannah, and agricultural/pasture sites. All models were run using standard physical parameters and the same initialization procedure. Model results were compared against forest inventory and dendrometer data in addition to flux tower measurements. While the models compared well against field observations for the mature forest sites, significant differences were observed between predicted and measured ecosystem structure and dynamics for the transitional forest and savannah sites. The length of the dry season and soil sand content were good predictors of model performance. In addition, for the big leaf models, model performance was highest for sites dominated by late successional trees and lowest for sites with predominantly early and mid-successional trees. This study provides insight into tropical forest function and sensitivity to environmental conditions that will aid in predictions of the

  20. Microbial utilization of litter carbon under the effect of extreme weather events

    Science.gov (United States)

    Heinrich, Steffen; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Climate change is expected to not only lead to an increase of average annual temperature but also to increase the frequency of extreme meteorological events. For example, extreme summer-droughts followed by heavy rainfall events are likely to increase. This may change SOM quality, composition, microbial community functioning and thus C turnover in temperate forest ecosystems. Therefore, we performed a tracer experiment in the "Fichtelgebirge" (Northern Bavaria) to verify the influence of strong drying followed by intensive rewetting on the microbial community structure and decomposition of litter-derived 13C by individual microbial groups. In 2010, sheltered plots with artificially simulated drought, those with additional irrigation and control sites under natural conditions were established at a Norway spruce forest. At each plot, we added 13C enriched spruce litter to simulate annual litter fall. Thereafter, we assessed the effect of extreme weather events on microbial community structure by phospholipid fatty acid (PLFA) analysis. In addition, we analyzed the 13C incorporation into bulk soil, microbial biomass and PLFA of the organic horizon and the mineral soil up to 10 cm. Additionally respired CO2 was quantified by closed chambers. Drought reduced the microbial biomass only in the organic horizon, while in the mineral soil the microbial abundance did not decrease compared to the control and irrigated plots. The decrease in microbial biomass in the organic horizon of the drought plots resulted also in a strongly reduced incorporation of litter derived C: Incorporation of litter 13C was a magnitude of three lower in the drought plots compared to the control and irrigation plots. Furthermore, after the drought period of 90 days the proportion of 13C in CO2 from soil respiration was reduced by about 95% on the drought plots compared to the control and irrigated plots. This is in agreement with the reduced degradation of litter derived C and thus a reduced C

  1. Carbon dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    J. Schöngart

    2008-05-01

    Full Text Available This is the first estimation on carbon dynamics in the aboveground coarse wood biomass (AGWB of wetland forests in the Pantanal, located in Central Southern America. In four 1-ha plots in stands characterized by the pioneer species Vochysia divergens Pohl (Vochysiaceae forest inventories (trees ≥10 cm diameter at breast height, DBH have been performed and converted to predictions of AGWB by five different allometric models using two or three predicting parameters (DBH, tree height, wood density. Best prediction has been achieved using allometric equations with three independent variables. Carbon stocks (50% of AGWB vary from 7.4 to 100.9 Mg C ha−1 between the four stands. Carbon sequestration differs 0.50–4.24 Mg C ha−1 yr−1 estimated by two growth models derived from tree-ring analysis describing the relationships between age and DBH for V. divergens and other tree species. We find a close correlation between estimated tree age and C-stock, C-sequestration and C-turnover (mean residence of C in AGWB.

  2. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors.

    Science.gov (United States)

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S

    2015-12-01

    This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold. PMID:26041472

  3. Effects of the 2006 El Nino on Tropospheric Ozone and Carbon Monoxide: Implications for Dynamics and Biomass Burning

    Science.gov (United States)

    Chandra, S.; Ziemke, J. R.; Duncan, B. N.; Diehl, t. L.

    2008-01-01

    We have studied the effects of the 2006 El Nino on tropospheric O3 and CO at tropical and sub-tropical latitudes measured from the OMI and MLS instruments on the Aura satellite. The 2006 El Nino-induced drought allowed forest fires set to clear land to burn out of control during October and November in the Indonesian region. The effects of these fires are clearly seen in the enhancement of GO concentration measured from the MLS instrument. We have used a global model of atmospheric chemistry and transport (GMI CTM) to quantify the relative irrrportance of biomass burning and large scale transport: in producing observed changes in tropospheric O3 and CO . The model results show that during October and November both biomass burning and meteorological changes contributed almost equally to the observed increase in tropospheric O3 in the Indonesian region. The biomass component was 4-6 DU but it was limited to the Indonesian region where the fires were most intense, The dynamical component was 4-8 DU but it covered a much larger area in the Indian Ocean extending from South East Asia in the north to western Australia in the south. By December 2006, the effect of biomass taming was reduced to zero and the obsemed changes in tropospheric O3 were mostly due to dynamical effects. The model results show an increase of 2-3% in the global burden of tropospheric ozone. In comparison, the global burdean of CO increased by 8-12%.

  4. Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems.

    Science.gov (United States)

    Sheffer, Efrat; Canham, Charles D; Kigel, Jaime; Perevolotsky, Avi

    2015-04-01

    Species affect the dynamics of litter decay through the intrinsic properties of their litter, but also by influencing the environmental conditions imposed by their canopy, roots, and litter layers. We examined how human-induced changes in the relative abundances of two dominant Mediterranean trees-Pinus halepensis and Quercus calliprinos-impact leaf litter decomposition. A reciprocal transplant experiment tested decomposition of pine, oak, and mixed leaf litter in oak woodland and pine forest ecosystems with different relative abundances of pine and oak. Using likelihood methods, we tested the importance and magnitude of the environmental effects of local species abundance, litter layer composition, and soil properties on litter mass loss. Oak litter decomposition was slower than pine, and had an antagonistic effect on mixed litter decay. These results differ from other reported pine-oak associations, and are probably associated with a higher content of tannins and phenols in oak compared to pine litter in our study sites. The environmental effects of the two species were opposite to their litter decomposition dynamics. An increased proportion of pine in the oak woodlands and a higher content of pine needles in the litter layer of pine forests reduced decay rates. The presence of more oak and broadleaf litter in the litter layer accelerated decomposition in pine forests. Our results highlight the importance of considering multidimensional species effects mediated by both chemical and physical properties, and imply that man-made changes in the composition and configuration of plant communities may result in complex unpredicted consequences to ecosystem biogeochemistry. PMID:25680333

  5. Habitat, food, and climate affecting leaf litter anuran assemblages in an Atlantic Forest remnant

    Science.gov (United States)

    Rievers, Camila Rabelo; Pires, Maria Rita Silvério; Eterovick, Paula Cabral

    2014-07-01

    Leaf litter anuran assemblages include both species that have terrestrial development and species that, during the breeding season, aggregate around bodies of water where their tadpoles develop. The resources used by these two groups in the leaf litter are likely to differ, as well as their sampled species richness, abundance and biomass as resource availability changes. We conducted a 12-month survey of leaf litter anuran assemblages at three forest areas in the largest Atlantic Forest remnant in the state of Minas Gerais in southeastern Brazil. Each month we estimated, based on capture rates, anuran species richness, abundance, and biomass as assemblage descriptors. We also measured variables that could potentially affect these descriptors in space and time: invertebrate litter fauna (abundance and richness of taxa), leaf litter biomass, and microclimatic conditions (air humidity, air and soil temperature, soil water content, and rainfall). We tested for differences in these variables among areas. We used general linear models to search for the variables that best explained variation in anuran abundance (based on capture rates) throughout the year. We analyzed species with terrestrial development (TD) and with aquatic larvae (AL) separately. We recorded 326 anurans of 15 species. Sampled anuran abundance (correlated to species richness and biomass) was explained by air humidity and/or invertebrate abundance for species with TD, and by soil water content or air humidity and leaf litter biomass for species with AL. The variability in the results of studies on leaf litter frogs that try to find variables to explain changes in community descriptors may be due to spatial variation of resources among areas and also to the fact that TD and AL species are frequently analyzed together, when in fact they are likely to show different responses to resources present in the leaf litter habitat, reflected on capture rates.

  6. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    Science.gov (United States)

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p  0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be

  7. Anaerobic Capacities of Leaf Litter

    OpenAIRE

    Kusel, K.; Drake, H L

    1996-01-01

    Leaf litter displayed a capacity to spontaneously form organic acids, alcohols, phenolic compounds, H(inf2), and CO(inf2) when incubated anaerobically at 20(deg)C either as buffered suspensions or in a moistened condition in microcosms. Acetate was the predominant organic product formed regardless of the degree of litter decomposition. Initial rates of acetate formation in litter suspensions and microcosms approximated 2.6 and 0.53 (mu)mol of acetate per g (dry weight) of litter per h, respec...

  8. Pattern and dynamics of biomass stock in old growth forests: The role of habitat and tree size

    Science.gov (United States)

    Yuan, Zuoqiang; Gazol, Antonio; Wang, Xugao; Lin, Fei; Ye, Ji; Zhang, Zhaochen; Suo, YanYan; Kuang, Xu; Wang, Yunyun; Jia, Shihong; Hao, Zhanqing

    2016-08-01

    Forest ecosystems play a fundamental role in the global carbon cycle. However, how stand-level changes in tree age and structure influence biomass stock and dynamics in old-growth forests is a question that remains unclear. In this study, we quantified the aboveground biomass (AGB) standing stock, the coarse woody productivity (CWP), and the change in biomass over ten years (2004-2014) in a 25 ha unmanaged broad-leaved Korean pine mixed forest in northeastern China. In addition, we quantified how AGB stock and change (tree growth, recruitment and mortality) estimations are influenced by the variation in habitat heterogeneity, tree size structure and subplot size. Our analysis indicated that Changbai forest had AGB of 265.4 Mg ha-1 in 2004, and gained1.36 Mg ha-1 y-1 between 2004 and 2014. Despite recruitment having better performance in nutrient rich habitat, we found that there is a directional tree growth trend independent of habitat heterogeneity for available nutrients in this old growth forest. The observed increases in AGB stock (∼70%) are mainly attributed to the growth of intermediate size trees (30-70 cm DBH), indicating that this forest is still reaching its mature stage. Meanwhile, we indicated that biomass loss due to mortality reduces living biomass, not increment, may be the primary factor to affect forest biomass dynamics in this area. Also, spatial variation in forest dynamics is large for small sizes (i.e. coefficient of variation in 20 × 20 m subplots is 53.2%), and more than 90 percent of the inherent variability of these coefficients was predicted by a simple model including plot size. Our result provides a mean by which to estimate within-plot variability at a local scale before inferring any directional change in forest dynamics at a regional scale, and information about the variability of forest structure and dynamics are fundamental to design effective sampling strategies in future study.

  9. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics.

    Science.gov (United States)

    Kauffman, J Boone; Hughes, R Flint; Heider, Chris

    2009-07-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate

  10. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques.

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    Full Text Available Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well.

  11. Mower/Litter Removal

    Science.gov (United States)

    1996-01-01

    The Burg Corporation needed to get more power out of the suction system in their Vac 'N Bag grass mower/litter remover. The president submitted a problem statement to the Marshall Space Flight Center Technology Transfer Office, which devised a way to guide heavier items of trash to a point where suction was greatest, and made changes to the impeller and the exhaust port, based on rocket propulsion technology. The improved system is used by highway departments, city governments and park authorities, reducing work time by combining the tasks of grass cutting and vacuuming trash and grass clippings.

  12. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  13. Five years of ozonesoundings from the central Himalayas: role of dynamical processes and biomass burning

    Science.gov (United States)

    Naja, Manish; Bhardhwaj, Piyush; Lal, Shyam; Venkataramani, Sethuram; Kumar, Rajesh

    2016-04-01

    Higher water vapour, intense solar radiation and increasing levels of trace species over the tropical Asia are making this region more complex for understanding the physical, dynamical and chemical process over here. One of the most populated regions (The Indo-Gangetic Plain, IGP) of the world and a variety of anthropogenic and biogenic emission sources are also housing in the foothill of one of the pristine region, i.e. Himalaya. Uplifting and transport of polluted air-masses to the higher heights is a major concern in the South Asia. However, observations of vertical distribution of ozone, and other trace gases including water vapour, aerosols and meteorological parameters are very limited in South Asia. In view of this, an observational facility was setup at ARIES, Nainital (29.4N, 79.5E; 1950 m) in the central Himalayas. Regular, once in a week, balloon borne measurements of ozone, RH, temperature and GPS winds are being made since January 2011. Surface observations of different trace gases (Ozone, CO, NO, NOy, light NMHCs, SO2, CO2 and other GHGs) and aerosols are also being made at this site. Here, we present five years of ozonesoundings observations. A strong seasonal cycle in the lower tropospheric ozone with highest values during spring (~ 100 ppbv) and lowest during summer-monsoon (20-40 ppbv) is discerned. Elevated ozone levels (~120 ppbv) were observed in the middle-upper troposphere along with very high wind speed (~50 m/s) which indicates the role of dynamics in bringing ozone rich air from higher altitude. The signatures of ozone downward transport have also been noticed in TES water vapour and PV. In contrast, such influence is seen to be weaker in the eastern part of the Himalayas. A very clear enhancement (20-30 ppbv) in the lower tropospheric ozone is seen that is induced by the biomass burning. Further analysis of these observations with the help of air trajectories and satellite data will be presented.

  14. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite

    Science.gov (United States)

    Andela, Niels; van der Werf, Guido R.; Kaiser, Johannes W.; van Leeuwen, Thijs T.; Wooster, Martin J.; Lehmann, Caroline E. R.

    2016-06-01

    Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in

  15. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    Science.gov (United States)

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  16. Linking Predation Risk, Herbivore Physiological Stress and Microbial Decomposition of Plant Litter

    OpenAIRE

    Schmitz, Oswald J; Bradford, Mark A.; Strickland, Michael S.; Hawlena, Dror

    2013-01-01

    The quantity and quality of detritus entering the soil determines the rate of decomposition by microbial communities as well as recycle rates of nitrogen (N) and carbon (C) sequestration1,2. Plant litter comprises the majority of detritus3, and so it is assumed that decomposition is only marginally influenced by biomass inputs from animals such as herbivores and carnivores4,5. However, carnivores may influence microbial decomposition of plant litter via a chain of interactions in which predat...

  17. Forest biomass density, utilization and production dynamics in a western Himalayan watershed

    Institute of Scientific and Technical Information of China (English)

    Rakesh Kumar Sharma; Prem Lall Sankhayan; Ole Hofstad

    2008-01-01

    There is enough evidence to show that the forest biomass has decreased significantly in the Indian Himalayan state of Himachal Pradesh. The government has responded through restrictive measures to check this decline. Using tree biomass as proxy for degradation, we assessed the current state of biomass within dominant land use types and examined its implications for sustainability. The highest above-ground mean tree biomass density of 1158 t·ha-1 was recorded for the reserved forest followed by 728, 13, 11, 8, 5 and 3 t·ha-1 in the protected forest, fallow land, cultivated-unirrigated land, grassland, orchard land and cultivated-irrigated land respectively. Of the total accessible biomass, only 0.31% was extracted annually by the local people for fuel, fodder and other uses. Though, the current level of extraction may be sustainable in the short run, insufficient regeneration is observed for long term sustainability. Forest biomass production was simulated for the next 30 years with a logistic growth model and the relative significance of input variables in influencing system behaviour was analysed through sensitivity analysis. The model results highlighted the declining forest resources in the long run. Positive response through appropriate government policies can, however, change the scenario for the better.

  18. Litter decomposition and nutrient release from Brachiaria, Sorghum and soybean in no-tillage areas in the Cerrado region, Goiás
    Decomposição e liberação de nutrientes da palhada de braquiária, sorgo e soja em áreas de plantio direto no cerrado goiano

    OpenAIRE

    Celeste Queiroz Rossi; Marcos Gervasio Pereira; Simone Guimarães Giácomo; Marconi Betta; José Carlos Polidoro

    2013-01-01

    The evaluation of plant litter decomposition added to the soil by cover crops provides a better understanding of nutrient supply to crops of commercial interest. The objective of this study was to evaluate the decomposition rate and dynamics of release of N, P and K in crop residues from crop of soybeans grown in Oxisol under no tillage. The residues used were Congo grass (Brachiaria ruziziensis) and sorghum (Sorghum bicolor L. Moench). The average production of Congo grass biomass + soybean ...

  19. Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation

    Science.gov (United States)

    Mincheva, T.; Barni, E.; Varese, G. C.; Brusa, G.; Cerabolini, B.; Siniscalco, C.

    2014-01-01

    Fallopia japonica succeeds in invading different ecosystems likely because of its huge biomass production. This biomass is characterized by low nutritional quality and low decomposition rates but knowledge on whether these features are correlated to microbial decomposers is still lacking. The aims of this work were: i) to determine litter decomposition rates of native grassland vegetation and F. japonica under different conditions in a year-round experiment; ii) to evaluate litter quality and/or site effect on the decomposition of the invader and native vegetation and iii) to characterize mycoflora isolated from F. japonica and native vegetation litter. The results showed that F. japonica litter decomposes 3-4 times slower than that of native grassland, mainly due to its low N content and consequently high C/N ratio both in leaves and stems. As decomposition proceeds C/N in F. japonica litter decreases to values approaching those of the grassland litter. Site had no effect on the decomposition rates of F. japonica and grassland litter. Total fungal load and composition differed between F. japonica and native litter, and also varied across sites. These results indicate that the successful invasive plant F. japonica affects the structure and functions of the invaded ecosystem through a huge production of low quality, slow-decomposing litter that selects saprotrophic fungi.

  20. Empirical Constraints on Water Stress-induced Tree Mortality and its Impacts on Forest Biomass Dynamics in Western North America

    Science.gov (United States)

    Hember, R. A.; Kurz, W.; Coops, N. C.

    2015-12-01

    It is widely appreciated that forest biomass dynamics do not follow smooth sigmoidal age response functions, yet accounting for realistic overshoot-and-collapse cycles remains a big challenge. Here, millions of observations of vital status at permanent sample plots from Canada and the U.S. were used to predict probability of tree mortality (Pm) based on segmented logistic regression functions of xylem water potential (WPX) derived from a simplified model of plant water transport for dominant boreal and temperate North American tree species. First, we demonstrate that hydraulic limits are clearly detectable from the increase of Pm at the lowest levels of WPX and that the relationship is strongly defined by increasing vulnerability (decreasing WPX) as tree height (h) increases. Second, we demonstrate the implications of representing water stress-induced mortality on regional simulations of net ecosystem biomass production (NEBP), drawing on examples of specific collapse events where we have observations of NEBP for comparison. Simulations suggest that extreme surface energy balance anomalies during 1981 and 1998 triggered catastrophic levels of mortality in regions of western North America. Yet, simulations may still greatly underestimate the impact of these collapse events if associations exist between WPX and insect outbreaks. Nevertheless, the models suggest that a combination of size-dependent hydraulic limits and low-frequency variability in the surface energy balance conspire to produce overshoot-and-collapse cycles that strongly shaped biomass dynamics in western North America over recent decades.

  1. Threshold Level of Harvested Litter Input for Carbon Sequestration by Bioenergy Crops

    Science.gov (United States)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.

    2013-12-01

    Due to the increase in the demands for bioenergy, considerable areas in the Midwestern United States could be converted into croplands for second generation bioenergy, such as the cultivation of miscanthus and switchgrass. Study on the effect of the expansion of these crops on soil carbon and nitrogen dynamics is integral to understanding their long-term environmental impacts. In this study, we focus on a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation on the below-ground dynamics of carbon and nitrogen. Fate of soil carbon and nitrogen is sensitive to harvest litter treatments and residue quality. Therefore, we attempt to address how different amounts of harvested biomass inputs into the soil impact the evolution of organic carbon and inorganic nitrogen in the subsurface. We use Precision Agricultural Landscape Modeling System, version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained from 10 years of atmospheric data recorded at both the study site and Willard Airport. Comparisons of model results against observations of drainage, ammonium and nitrate loads in tile drainage, nitrogen mineralization, nitrification, and litterfall in 2011 reveal the ability of the model to accurately capture the ecohydrology, as well as the carbon and nitrogen dynamics at the study site. The results obtained here highlight that there is a critical return of biomass to the soil when harvested for miscanthus (15% of aboveground biomass), and switchgrass (25%) after which the accumulation of carbon in the soil is significantly enhanced and nitrogen leaching is reduced, unlike corn-corn-soybean rotation. The main factor

  2. The biomass production and nutrient content of roselle leaves grown with poultry litter and Organosuper®=Produção de biomassa e teor de nutrientes em folhas de rosela cultivada com cama-de-frango e Organosuper®

    Directory of Open Access Journals (Sweden)

    André Trento Luciano

    2012-04-01

    Full Text Available The objective of this study was to evaluate the effects of poultry litter and Organosuper® with three modes of application on the biomass production and nutrient content of the leaves of roselle plants. The treatments in each crop cycle were in a factorial arrangement, 2 x 3 + 1, composed of a control and combinations of the two organic fertilizers (poultry litter (10 ton. ha-1 and Organosuper® (10 ton. ha-1 and the three application modes (surface, incorporated and surface + incorporated, in a randomized block design with four replicates. In the surface + incorporated mode, the organic fertilizers were applied as 5 ton. ha-1 surface and 5 ton. ha-1 incorporated. The highest productions of fresh and dry weight and number of calyxes were obtained for poultry litter in surface (10,776, 1,239 and 3,980,602 kg ha-1, respectively and Organosuper® incorporated (11,372, 1,308 and 4,405,075 kg ha-1, respectively in the agricultural year 2009/2010. The increases in the fresh and dry weights of the calyxes, leaves, stems and roots, number of calyxes, leaf area and fibers in the agricultural year 2008/2009 in the poultry litter treatments. Nutrients concentrations in the dry weight of the roselle leaves were not affected by the organic fertilizer type or by the mode of application.O objetivo deste trabalho foi avaliar o efeito da cama-de-frango e do Organosuper® sob três modos de aplicação na produção de biomassa e nos teores de nutrientes nas folhas de plantas de rosela. Os tratamentos em cada ciclo de cultivo foram arranjados como fatorial 2 x 3 + 1, sendo constituídos pelas combinações de dois compostos orgânicos cama-de-frango (10 t ha-1 e Organosuper® (10 t ha-1 e três modos de aplicação (cobertura, incorporada e cobertura + incorporada mais a testemunha, no delineamento experimental de blocos casualizados, com quatro repetições. As maiores produções de massas frescas e secas de cálices e o número de cálices foram obtidos para

  3. Biomass Productivity Dynamics Monitoring and its Drivers in Sahelian Croplands and Rangelands to Support Food Security Policies

    Science.gov (United States)

    Leroux, L.

    2015-12-01

    Since the Sahelian population livelihood relies mainly on agropastoral activities, accurate information on biomass productivity dynamics and the underlying drivers are needed to manage a wide range of issues such as food security. This study aims to contribute to a better understanding of these drivers in rangeland and cropland, both at the Sahel and local scales (an agropastoral site in South-West Niger). At the Sahel scale, the MODIS Land Cover product was used to extract cropland and rangeland pixels. By analyzing MODIS NDVI trends together with TRMM3B43 annual rainfall (2000-2010), we developed a new classification scheme allowing to identify areas of persistent decline/improvement in biomass productivity and to separate rainfall-driven dynamics from other factors. The results showed an overall increase of productivity in the rangeland, and both an improvement and a degradation in the cropland. We found strong evidence that the increase in biomass productivity was generally linked to increasing rainfall, while the decrease could be attributed chiefly to other factors exclusively or to a combination of both climate- and human-induced factors (see the attached Figure). At the Niger site scale, biomass trends have been put in relation with a set of potential drivers via a RandomForest model, to define which were the explanatory factors of the observed trends. The factor set covered 5 categories: climate, natural constraints, demography, physical accessibility and land cover changes. We highlighted that tiger bushes areas were particularly prone to pressure due to overgrazing and overexploitation of wood, while positive trends were mainly observed near rivers and in fossil valleys where new agricultural practices might have been promoted. The approach developped here could help to delineate areas with decrease in crop and grassland production and thus to assess the vulnerability of the population, but also to target zones with good potential for planning long

  4. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  5. Formation of soil organic matter via biochemical and physical pathways of litter mass loss

    Science.gov (United States)

    Cotrufo, M. Francesca; Soong, Jennifer L.; Horton, Andrew J.; Campbell, Eleanor E.; Haddix, Michelle L.; Wall, Diana H.; Parton, William J.

    2015-10-01

    Soil organic matter is the largest terrestrial carbon pool. The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter. However, labile components of plant litter could also form mineral-stabilized soil organic matter. Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter-microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.

  6. Environmentally-friendly animal litter

    Energy Technology Data Exchange (ETDEWEB)

    Boxley, Chett; McKelvie, Jessica

    2013-09-03

    An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.

  7. Environmentally-friendly animal litter

    Energy Technology Data Exchange (ETDEWEB)

    Boxley, Chett; McKelvie, Jessica

    2012-08-28

    An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  8. 33 CFR 144.01-35 - Litter.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Litter. 144.01-35 Section 144.01... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-35 Litter. On each manned platform a Stokes litter, or other suitable safety litter capable of being safely hoisted with an...

  9. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Zaidett Barrientos

    2012-09-01

    Full Text Available Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration and a 40 year old Cupressus lusitanica plantation (natural understory. The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010 in each habitat; humidity was measured in 439g samples (average, depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (x=73.2, followed by secondary forest (x=63.3 and cypress plantation (x=52.9 (Kruskall-Wallis=77.93, n=232, p=0.00. In the primary (Kruskal-Wallis=31.63, n=78, pPoco se sabe acerca de cómo las estrategias de restauración afectan aspectos como la cantidad, profundidad y humedad de la hojarasca. Se analizaron estas variables en un bosque tropical húmedo montano bajo, considerado bosque primario y dos áreas restauradas: un bosque secundario de 15 años (restauración natural y una plantación de Cupressus lusitanica de 40 años con sotobosque restaurado naturalmente. Los sitios estudiados se ubican en la reserva forestal Río Macho, Costa Rica. Los muestreos se realizaron cada tres meses (abril 2009-abril 2010. En cada ocasión se escogieron al azar 20 cuadrículas de 50x50cm de las que se recogió 439g en promedio de hojarasca para medir la humedad por diferencia entre peso seco y húmedo. En cada cuadrícula se midió la profundidad y cantidad de hojarasca haciendo un promedio de cinco puntos. La cantidad se midió con el número de hojas ensartadas en un picahielos. La profundidad se midió con una

  10. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy

    Science.gov (United States)

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR. PMID:27022916

  11. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Gaspare Cesarano

    Full Text Available Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  12. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Science.gov (United States)

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR. PMID:27022916

  13. Phosphatase activities in soil after repeated untreated and alum-treated poultry litter applications

    Science.gov (United States)

    Repeated additions of untreated and aluminum sulfate (alum)-treated poultry litter to soil affect ecology and consequent nutrient dynamics. The objective of this study was to determine how repeated annual poultry litter additions affected phosphatase activities in concert with changes in soil phosph...

  14. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  15. INFLUENCE OF VEGETATIONAL COVER ON POPULATION DYNAMICS AND BIOMASS OF A MEGASCOLOCID EARTHWORM LENNOGASTER PUSILLUS(STEPHENSON)

    OpenAIRE

    M. P. SINHA; D K Gupta; AKANKSHA SINGH; SWETA MALANI; MADHU PANDEY; MRIDULA KUMARI

    2007-01-01

    The influence of vegetational cover on earthworm population dynamics and biomass of Lenogaster pusillus(Stephenson) a megascolocid endemic earthworm has been studied in three tropical forests of Shorea robusta Roxb.ex. Gaertn.f., Acacia auriculaeformis A.Cunn. ex. Benth and Eucalyptus citriodora Hook near Bero area, Ranchi. The maximum and minimum density(No m-2) of the worm varied from 415 + 53.19 to 75 + 18.70 in the forest of S.robusta, from 745 + 82.28 to 75 + 27.38 in A.auriculaeofrmis w...

  16. INFLUENCE OF VEGETATIONAL COVER ON POPULATION DYNAMICS AND BIOMASS OF A MEGASCOLOCID EARTHWORM LENNOGASTER PUSILLUS(STEPHENSON

    Directory of Open Access Journals (Sweden)

    M.P.SINHA

    2007-01-01

    Full Text Available The influence of vegetational cover on earthworm population dynamics and biomass of Lenogaster pusillus(Stephenson a megascolocid endemic earthworm has been studied in three tropical forests of Shorea robusta Roxb.ex. Gaertn.f., Acacia auriculaeformis A.Cunn. ex. Benth and Eucalyptus citriodora Hook near Bero area, Ranchi. The maximum and minimum density(No m-2 of the worm varied from 415 + 53.19 to 75 + 18.70 in the forest of S.robusta, from 745 + 82.28 to 75 + 27.38 in A.auriculaeofrmis while from 598 + 25.10 to 35 + 19.49 in E.citriodora respectively with a variation in biomass as g dry wt m-2 of the species from 0.31 + 0.1 to 2.65 + 0.38, from 0.41 + 0.17 to 5.34 + 0.86 and from 0.19 + 0.1 to 3.72 + 0.24 respectively. The variation in population density and biomass of L.pusillus in three forest types was statistically (two ways ANOVA significant, reflecting the influence of above ground biodiversity on earthworms (F = 9.903; df = 2,36; p < 0.001 and F = 8.133; df = 2,36; p < 0.005 respectively.The paper deals with the significance of vegetational cover on the worm and its size class.

  17. Effects of snow condition on microbial respiration of Scots pine needle litter in a boreal forest

    Science.gov (United States)

    Ohnuki, Masataka; Domisch, Timo; Dannoura, Masako; Ataka, Mioko; Finér, Leena; Repo, Tapani; Osawa, Akira

    2016-04-01

    Climate warming scenarios predict decreasing snow depths and increasing winter precipitation in boreal forests ("rain on snow"). I These conditions may affect the decomposition and the microbial respiration of leaf litter, contributing a major part of tree litters, To understand how different snow conditions during winter would affect the microbial respiration of Scots pine needle litter in a boreal forest, we conducted a laboratory experiment using needle litter of two age classes (newly dropped and older litter). The experiment simulated four different winter treatments, followed by spring and early summer : (1) ambient snow cover (SNOW), (2) Compressed snow and ice encasement (ICE), (3) frozen flood (FLOOD) and (4) no snow cover at all (NO SNOW). The experiment was carried out in four walk-in dasotrons (n=3) with soil temperatures of -2° C and air temperatures of 2° C during winter and increased to 15° C and 20° C during spring, respectively . Needle litter samples were collected three times (prior to the winter, just after winter and at the end of the experiment). We evaluated the microbial respiration from the litter at several temperatures (-5° C, 0° C, 5° C and 12° C), the SIR index (an index estimating the microbial biomass), and the C/N ratio .And we calculated Q10 value (index of microbial respiration activity) using microbial respiration data. We found significant differences in microbial respiration between the newly dropped and older litter at the beginning and at the end of the experiment. However, there were no significant differences in Q10 value and the SIR (index of microbial biomass) between the different winter treatments. All samples showed decrease of microbial activity with time. Finally, we conclude that the winter snow conditions with mild air temperatures as used in our experiment, are not detrimentally affecting the Scots pine needle litter decomposition and its respiration.

  18. Contribution of leaf and needle litter to whole ecosystem BVOC fluxes

    Science.gov (United States)

    Greenberg, J. P.; Asensio, D.; Turnipseed, A.; Guenther, A. B.; Karl, T.; Gochis, D.

    2012-11-01

    Biogenic volatile organic compound (BVOC) emissions come from a variety of sources, including living above-ground foliar biomass and microbial decomposition of dead organic matter at the soil surface (litter and soil organic matter). There are, however, few reports that quantify the contributions of each component. Measurements of emission fluxes are now made above the vegetation canopy, but these include contributions from all sources. BVOC emission models currently include detailed parameterization of the emissions from foliar biomass but do not have an equally descriptive treatment of emissions from litter or other sources. We present here results of laboratory and field experiments to characterize the major parameters that control emissions from litter. Litter emissions are exponentially dependent on temperature. The moisture content of the litter plays a minor role, except during and immediately following rain events. The percentage of carbon readily available for microbial and other decomposition processes decreases with litter age. These 3 variables are combined in a model to explain over 50% of the variance of individual BVOC emission fluxes measured. The modeled results of litter emissions were compared with above-canopy fluxes. Litter emissions constituted less than 1% of above-canopy emissions for all BVOCs measured. A comparison of terpene oil pools in litter and live needles with above-canopy fluxes suggests that there may be another canopy terpene source in addition to needle storage or that some terpene emissions may be light-dependent. Ground enclosure measurements indicated that compensation point concentrations of BVOCs (equilibrium between BVOC emission and deposition) were usually higher than ambient air concentrations at the temperature of the measurements.

  19. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest;

    2015-01-01

    Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose for...

  20. Acúmulo de Nutrientes na Biomassa e na Serapilheira de Eucalyptus grandis em Função da Aplicação de Lixo Urbano e de Nutrientes Minerais Nutrient Accumulation in Eucalyptus grandis Biomass and Litter Using Urban Waste and Mineral Fertilizer

    Directory of Open Access Journals (Sweden)

    Guilherme de Castro Andrade

    2011-03-01

     growing on Neossolo Quartzarênico, analyzing nutrient contents in the litter and in the above ground biomass of trees at 86 months old. The results showed that those plots that received organic wastes presented biomass increments of 36.9 % and largest contents of N, P, K and Ca, 86 months after the establishment. After harvesting, largest nutrient pools remained on those same plots (18 % to 49 %, contributing significantly to maintain forest productivity. This study emphasized also the importance of keeping tree bark on site. Debarking tree on field accounted to an average of about 32 % of total nutrients present in the above ground biomass of the trees. Large quantity of nutrients in the canopy tree and litter highlights the importance to conserve this organic matter to contribute to the sustainability of the forest productivity. 

  1. Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    Science.gov (United States)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for

  2. Microbial food web dynamics along a soil chronosequence of a glacier forefield

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2011-11-01

    Full Text Available Microbial food webs are critical for efficient nutrient turnover providing the basis for functional and stable ecosystems. However, the successional development of such microbial food webs and their role in "young" ecosystems is unclear. Due to a continuous glacier retreat since the middle of the 19th century, glacier forefields have expanded offering an excellent opportunity to study food web dynamics in soils at different developmental stages. In the present study, litter degradation and the corresponding C fluxes into microbial communities were investigated along the forefield of the Damma glacier (Switzerland. 13C-enriched litter of the pioneering plant Leucanthemopsis alpina (L. Heywood was incorporated into the soil at sites that have been free from ice for approximately 10, 60, 100 and more than 700 years. The structure and function of microbial communities were identified by 13C analysis of phospholipid fatty acids (PLFA and phospholipid ether lipids (PLEL. Results showed increasing microbial diversity and biomass, and enhanced proliferation of bacterial groups as ecosystem development progressed. Initially, litter decomposition proceeded faster at the more developed sites, but at the end of the experiment loss of litter mass was similar at all sites, once the more easily-degradable litter fraction was processed. As a result incorporation of 13C into microbial biomass was more evident during the first weeks of litter decomposition. 13C enrichments of both PLEL and PLFA biomarkers following litter incorporation were observed at all sites, suggesting similar microbial foodwebs at all stages of soil development. Nonetheless, the contribution of bacteria, especially actinomycetes to litter turnover became more pronounced as soil age increased in detriment of archaea, fungi and protozoa, more prominent in recently deglaciated terrain.

  3. Microbial food web dynamics along a soil chronosequence of a glacier forefield

    Science.gov (United States)

    Esperschütz, J.; Pérez-de-Mora, A.; Schreiner, K.; Welzl, G.; Buegger, F.; Zeyer, J.; Hagedorn, F.; Munch, J. C.; Schloter, M.

    2011-11-01

    Microbial food webs are critical for efficient nutrient turnover providing the basis for functional and stable ecosystems. However, the successional development of such microbial food webs and their role in "young" ecosystems is unclear. Due to a continuous glacier retreat since the middle of the 19th century, glacier forefields have expanded offering an excellent opportunity to study food web dynamics in soils at different developmental stages. In the present study, litter degradation and the corresponding C fluxes into microbial communities were investigated along the forefield of the Damma glacier (Switzerland). 13C-enriched litter of the pioneering plant Leucanthemopsis alpina (L.) Heywood was incorporated into the soil at sites that have been free from ice for approximately 10, 60, 100 and more than 700 years. The structure and function of microbial communities were identified by 13C analysis of phospholipid fatty acids (PLFA) and phospholipid ether lipids (PLEL). Results showed increasing microbial diversity and biomass, and enhanced proliferation of bacterial groups as ecosystem development progressed. Initially, litter decomposition proceeded faster at the more developed sites, but at the end of the experiment loss of litter mass was similar at all sites, once the more easily-degradable litter fraction was processed. As a result incorporation of 13C into microbial biomass was more evident during the first weeks of litter decomposition. 13C enrichments of both PLEL and PLFA biomarkers following litter incorporation were observed at all sites, suggesting similar microbial foodwebs at all stages of soil development. Nonetheless, the contribution of bacteria, especially actinomycetes to litter turnover became more pronounced as soil age increased in detriment of archaea, fungi and protozoa, more prominent in recently deglaciated terrain.

  4. High litter moisture content suppresses litter ammonia volatilization.

    Science.gov (United States)

    Miles, D M; Rowe, D E; Cathcart, T C

    2011-07-01

    With global food demand expected to increase by 100% in the next 50 yr, urgency to combine comprehensive strategies for sustainable, efficacious, and environmentally sensible agronomic practices has never been greater. One effort for US meat bird management is to reduce NH(3) volatilization from litter to create a better growing environment for the birds, improve production efficiency, retain N in litter for fertilizer value, and negate the detrimental environmental impacts of NH(3) loss to the air. To derive the fundamental effects of temperature and moisture on litter NH(3) volatilization over the range of conditions found in commercial houses, experiments were conducted using commercial broiler litter that had moisture contents of approximately 20 to 55% while controlling temperatures ranging from 18.3 to 40.6°C. Litter samples (100 g) were placed in 1-L containers that received humidified air at approximately 113 mL/min. Volatilized NH(3) in exhaust air was captured in H(3)BO(3) traps. Ammonia loss (log(10) transformation) was modeled via an equation using linear coefficients for temperature and moisture, an interaction term for temperature × moisture, and a quadratic term for moisture. The surface responses resembled parabolic cylinders, indicating a critical moisture level at which NH(3) no longer increases but is diminished as moisture continues to increase. The critical moisture level lies between 37.4 and 51.1% litter moisture, depending on the temperature. An increase in temperature consistently increased NH(3) generation. When the temperature extremes were compared, the maximum NH(3) was up to 7 times greater at 40.6 vs. 18.3°C. The upper moisture limit at which NH(3) release is maximized and subsequently arrested as moisture continues to increase had not been defined previously for commercial broiler litter. The poultry industry and researchers can use these results as a decision tool to enable management strategies that limit NH(3) production. PMID

  5. Improving basic and translational science by accounting for litter-to-litter variation in animal models

    OpenAIRE

    Lazic, Stanley E.; Essioux, Laurent

    2012-01-01

    Background Animals from the same litter are often more alike compared with animals from different litters. This litter-to-litter variation, or “litter effects”, can influence the results in addition to the experimental factors of interest. Furthermore, sometimes an experimental treatment can only be applied to whole litters rather than to individual offspring. An example is the valproic acid (VPA) model of autism, where VPA is administered to pregnant females thereby inducing the disease phen...

  6. Estimating litter carbon stocks on forest land in the United States.

    Science.gov (United States)

    Domke, Grant M; Perry, Charles H; Walters, Brian F; Woodall, Christopher W; Russell, Matthew B; Smith, James E

    2016-07-01

    Forest ecosystems are the largest terrestrial carbon sink on earth, with more than half of their net primary production moving to the soil via the decomposition of litter biomass. Therefore, changes in the litter carbon (C) pool have important implications for global carbon budgets and carbon emissions reduction targets and negotiations. Litter accounts for an estimated 5% of all forest ecosystem carbon stocks worldwide. Given the cost and time required to measure litter attributes, many of the signatory nations to the United Nations Framework Convention on Climate Change report estimates of litter carbon stocks and stock changes using default values from the Intergovernmental Panel on Climate Change or country-specific models. In the United States, the country-specific model used to predict litter C stocks is sensitive to attributes on each plot in the national forest inventory, but these predictions are not associated with the litter samples collected over the last decade in the national forest inventory. Here we present, for the first time, estimates of litter carbon obtained using more than 5000 field measurements from the national forest inventory of the United States. The field-based estimates mark a 44% reduction (2081±77Tg) in litter carbon stocks nationally when compared to country-specific model predictions reported in previous United Framework Convention on Climate Change submissions. Our work suggests that Intergovernmental Panel on Climate Change defaults and country-specific models used to estimate litter carbon in temperate forest ecosystems may grossly overestimate the contribution of this pool in national carbon budgets. PMID:27017077

  7. Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi- Temporal LiDAR Datasets

    OpenAIRE

    Florian Siegert; Juilson Jubanski; Sandra Englhart

    2013-01-01

    Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks) projects, which require an accurate monitoring of their carbon stocks or aboveground biomass (AGB). Our study o...

  8. Influences of leaf litter replacement on soil biochemical characteristics of main planted forests in Qinling Mountains of China

    Institute of Scientific and Technical Information of China (English)

    Zengwen LIU; Erjun DUAN; Wenjun GAO

    2009-01-01

    Long-term continuous growth of the same tree species in planted pure forest will lead to soil polarization and degradation. Mixed forestation or litter replacement between different needle- and broad-leaved forests are effective measures, except fertilization, to control soil polarization according to the mutual compensation principle of different tree species. Through a two-year leaf litter replacement experiment in 4 typical planted pure forests of Larix kaempferi, Pinus tabulaeformis, Catalpa fargesii and Quercus aliena var. acuteserrata in Qinling Mountains of China, influences of leaf litter replacement on soil biochemical characteristics and their interspecific relationships were studied and main conclusions were reached as follows. (1) Annual leaf litter decomposition rate of broadleaved forests was 33.70% higher than those of needleleaved forests and increased by 8.35%-12.15% when needle-leaved litter was replaced with broad-leaved forests, whereas it decreased by 5.38%-9.49% when broad-leaved litter was replaced with needle-leaved forests. (2) Leaf litter replacement between needle- and broad-leaved forests popularly raised the contents of organic C, available N, P and K in soil, whose content increments in the needle-leaved forests (8.70%-35.84%) were obviously more than those in the broad-leaved forests (3.73%-10.44%), and in the former, the content increments after replacement with the litter of Catalpa fargesii (24.63%-35.84%) were more than those after replacement with the litter ofQuercus aliena var. acuteserrata (8.70% 28.15%). Furthermore, the litter replacement was found to make the soil pH of needle-leaved forests developed from light-acid to neutral. (3) Litter replacement of the needleleaved forests with the broad-leaved litter popularly raised enzyme activities, amounts of microorganisms and contents of micro-biomass C and N in soil, the increments of which after replacement with the litter of Catalpa fargesii were also more than those after

  9. Litter Inputs and Soil Aggregation in Midwestern Biofuel Crops

    Science.gov (United States)

    Kantola, I. B.; Masters, M. D.; Smyth, E. M.; DeLucia, E. H.

    2014-12-01

    Perennial C4 grasses represent alternatives to corn for the production of ethanol because of low management costs and high biomass production. To evaluate the effects of perennial grasses on the agricultural soils of the Midwest, native switchgrass and a sterile hybrid of the Asian grass Miscanthus were planted at the University of Illinois Energy Farm in 2008. Through five years of growth, above and belowground plant biomass, litter, and soil were compared with soils in plots growing a corn-corn-soy rotation typical of the area. Above- and belowground plant biomass in Miscanthus and switchgrass averaged higher than corn/soy following two years of perennial establishment, with belowground biomass exceeding corn/soy by approximately 5-fold in the year after establishment (2010) and 25-fold by 2012. Measurements of root distribution and turnover rates indicate that roots are the primary contribution of new carbon to soils under perennial crops. Physical fractionation of the soils into water stable aggregates showed 4-14% increases in macroaggregate fractions under perennial crops; the large aggregates are adhered together by organic material and indicative of the increased presence of labile carbon forms like plant roots, fungi, and plant and microbial exudates. Carbon and nitrogen analyses of the fractions show that while overall carbon has not increased significantly in whole soil, soils under perennial grasses are concentrating carbon by 5-17% in the macroaggregates after just 5 years. Native switchgrass roots (buried) and litter (surface-applied) decompose faster than Miscanthus roots and litter, but slower than corn roots and litter buried to simulate incorporation by tillage. Switchgrass soil shows the highest degree of macroaggregate formation, pointing to a high rate of litter and root decomposition and incorporation into soil structure. While macroaggregates are relatively labile soil structures compared to microaggregates and free silt and clay, they offer

  10. Mapping litter decomposition by remote-detected indicators

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-06-01

    Full Text Available Leaf litter decomposition is a key process for the functioning of natural ecosystems. An important limiting factor for this process is detritus availability, which we have estimated by remote sensed indices of canopy green biomass (NDVI. Here, we describe the use of multivariate geostatistical analysis to couple in situ measures with hyper-spectral and multi-spectral remote-sensed data for producing maps of litter decomposition. A direct relationship between the decomposition rates in four different CORINE habitats and NDVI, calculated at different scales from Landsat ETM+ multi-spectral data and MIVIS hyper-spectral data was found. Variogram analysis was used to evaluate the spatial properties of each single variable and their common interaction. Co-variogram and co-kriging analysis of the two variables turned out to be an effective approach for decomposition mapping from remote-sensed spatial explicit data.

  11. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh

    DEFF Research Database (Denmark)

    Flury, Sabine; Gessner, Mark

    2011-01-01

    obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had......Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions...... of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles...

  12. Relocation of carbon from decomposition of {sup 14}C-labelled needle and fine root litter in peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Domish, T.; Laine, J.; Laiho, R. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Karsisto, M. [Finnish Forest Research Inst. (Finland). Dept. of Forest Ecology

    1996-12-31

    Drainage of peatlands promotes a shift of biomass and production from the ground vegetation to the trees. Thus, the above-ground (e.g. needles) and below-ground (roots) litter production of trees increases. Fine roots in particular are an important factor in the carbon and nutrient cycle in forest ecosystems. A major part of the annual net primary production of trees may be allocated below ground, the relative proportion being smaller on fertile sites than on less fertile ones. For modelling the carbon balance of drained peatlands, it is important to know the fate of carbon from newly introduced and decomposing litter. Newly added and fertilised tree litter material may be decomposed at a rate different than litter from the ground vegetation. The objectives of this study are to study the pathways of decomposing litter carbon in peat soil and to evaluate the use of the litterbag method in a controlled environment. (9 refs.)

  13. Marine Litter as Habitat and Dispersal Vector

    OpenAIRE

    Kiessling, Tim; Gutow, Lars; THIEL Martin

    2015-01-01

    Floating anthropogenic litter provides habitat for a diverse community of marine organisms. A total of 387 taxa, including pro- and eukaryotic micro-organisms, seaweeds and invertebrates, have been found rafting on floating litter in all major oceanic regions. Among the invertebrates, species of bryozoans, crustaceans, molluscs and cnidarians are most frequently reported as rafters on marine litter. Microorganisms are also ubiquitous on marine litter although the composition of the microbial ...

  14. Annual litter fall in an intact mixed dipterocarp forest of Brunei Darussalam

    Science.gov (United States)

    Roh, Yujin; Lee, Jongyeol; Lee, Sohye; Abu Salim, Kamariah; Davies, Stuart James; Son, Yowhan

    2016-04-01

    Estimating litter dynamics in an intact tropical forests is important for understanding tropical forests. Litter fall varies with seasonality, forest type or species composition, forest age, soil water retention, and soil fertility. These parameters are known to be strongly affected by elevation. The objective of this study was to estimate annual litter fall along a relative elevation in an intact mixed dipterocarp forest of Brunei Darussalam. This study was conducted in the Kuala Belalong lowland MDF, which is part of the Ulu Tembulong National Park, Brunei Darussalam. Five 0.36 ha plots were established within the permanent 25 ha UBD-CTFS plot. The plots were divided into three groups by relative elevation of the site: 1) high (N = 1), 2) middle (N = 2) and 3) low (N = 2). In January 2015, nine litter traps were installed in each plot and falling litter was collected every month from February to November, 2015. The collected litter was separated into leaves and other materials, and then weighed after drying at 80oC. The average annual litter fall in this site was 8.70 ± 0.16 Mg ha-1 yr-1, and this was within the range reported in previous studies which were conducted in tropical forests. Litter fall at high, middle and low plots was 9.09 ± 0.46, 8.90 ± 0.29 and 8.06 ± 0.29 Mg ha-1 yr-1, respectively. Litter fall was not significantly different among the groups (P>0.05). The results of regression analysis showed that litter fall was not significantly increased with altitude. We suppose that litter fall may be relatively constant in this site. *Supported by research grants from the Korea Forest Service (S121314L130100)

  15. Fine root longevity and carbon input into soil from below- and aboveground litter in climatically contrasting forests

    OpenAIRE

    Leppalammi-Kujansuu, Jaana; Aro, Lasse; Salemaa, Maija; Hansson, Karna; Kleja, Dan Berggren; Helmisaari, Helja-Sisko

    2014-01-01

    The major part of carbon (C) flow into forest soil consists of continually renewed fine roots and aboveground litterfall. We studied the belowground C input from the fine root litter of trees and understorey vegetation in relation to their aboveground litterfall in two Norway spruce (Picea abies L) stands located in northern and southern Finland. The production of fine roots was estimated by using turnover and biomass data from minirhizotrons and soil cores. The foliage litter production of t...

  16. Influence of packaging design on littering behavior

    NARCIS (Netherlands)

    Wever, R.

    2006-01-01

    Litter is an environmental and social problem that is closely related to packaging. Many attempts have been made to reduce litter. So far these attempts have mainly focused on influencing littering behavior either through general campaigns or through manipulating the environment. The latter might be

  17. Poultry Industry Trends for Litter Utilization

    Science.gov (United States)

    Broiler litter utilization falls primarily into two broad categories, as fertilizer or in litter-to-energy processes. Without economic, environmentally sound litter uses, potential or real regional litigation may force alternative management that can be detrimental to the grower’s bottom line as wel...

  18. How Much Is Poultry Litter Worth?

    OpenAIRE

    Carreira, Rita I.; Goodwin, Harold L., Jr.; Hamm, Sandra J.

    2006-01-01

    Land-applying poultry litter to nutrient-deficient soils instead of commercial fertilizer could absorb nutrients from concentrated poultry production areas and help crop farmers. A survey of potential litter users showed that although farmers have used/are interested in using litter, there are still some problems that prevent the market from fully developing.

  19. 46 CFR 108.709 - Litter.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Litter. 108.709 Section 108.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.709 Litter. Each unit must have a litter that is— (a) Stowed in a location that...

  20. Estimating a Demand Function for Poultry Litter

    OpenAIRE

    Carreira, Rita I.; Goodwin, Harold L., Jr.

    2006-01-01

    Excess poultry litter could be a sustainable source of crop nutrients outside of nutrient-saturated regions if crop farmers are willing to utilize it. Using nearly 150 observations of actual poultry litter purchases in Oklahoma, Arkansas, and Missouri we estimate a demand function for poultry litter produced in northwest Arkansas.

  1. Spatial and Temporal Dynamics in the Relationship of Phytoplankton Biomass and Limnological Variables in a Small Artificial Lake

    Science.gov (United States)

    Li, Feipeng; Zhang, Haiping; Zhu, Yiping; Chen, Ling; Zhao, Jianfu

    2010-11-01

    Zhongxin Lake is an artificial freshwater lake located in Qianwei Village of Chongming Island, the third largest island in China. Besides its culture function and aesthetic value, it is also an ideal target, which can be regarded as an enclosed and simplified ecosystem with little external pollution. The objective of the study is to determine the spatial and temporal dynamics in the relationship between phytoplankton and main limnological variables. An intensive observation and monitoring program was performed more than one year at six sampling points along five locally connected watercourses. Nutrient levels and their seasonal variables might be the main factors which control the temporal development of phytoplankton. Chlorophyll-a (chl-a) levels peaked from late August to September and showed a significant positive correlation with water temperature, turbidity, total nitrogen (TN), total phosphorus (TP) and dissolved total phosphorus (DTP). Wind driven flow and geographical features appears to be the limiting factors for the spatial dynamics of phytoplankton. Higher average chl-a levels caused higher turbidity in the south and middle watercourses which are separated by dams and where shallow-circulation flow can be hardly maintained. Low average chl-a levels were recorded in the north watercourse in conditions of lower water levels, direct connection with the east watercourse and west watercourse and higher prevailing wind driven flow. The findings have strongly shown the influence of nutrients and hydro-meteorological variables as important factors of spatial and temporal dynamics of phytoplankton biomass.

  2. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor

    DEFF Research Database (Denmark)

    Vázquez-Padín, Jose; Mosquera-Corral, Anuska; Campos, Jose Luis; Méndez, Ramón; Revsbech, Niels Peter

    2010-01-01

     (Lgranule)-1 d-1. Anammox activity was registered between 400 and 1000 μm depth inside the granules. The nitrogen removal capacity of the studied sequencing batch reactor containing the granular biomass was of 0.5 g N L-1 d-1. This value is similar to the mean nitrogen removal rate obtained from......The application of microelectrodes to measure oxygen and nitrite concentrations inside granules operated at 20 °C in a CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) reactor and the application of the FISH (Fluorescent In Situ Hybridization) technique to cryosectioned slices of these...... time of the reactor....

  3. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    OpenAIRE

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2013-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consist...

  4. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  5. Seasonal variation in biomass at the tropical rainforest of Western Ghats, Kodayar, Tamilnadu

    Directory of Open Access Journals (Sweden)

    J Geetha Jhansi Rani

    2014-12-01

    Full Text Available A field study was conducted in Kodayar to study the seasonal variation in biomass. The study revealed that there is much difference in the biomass during different seasons. The live shoot biomass in comparatively lesser during winter and its showed negative correlation with rainfall. The standard dead biomass is maximum during summer and no standing dead is recorded during certain months of post monsoon season. Litter biomass is maximum during summer and minimum during winter season. The litter biomass depends upon the canopy cover. During summer canopy cover is less, whereas during winter and monsoon season there is closed canopy. Below ground biomass showed negative correlation with air temperature. Variation in below ground biomass is influenced by species composition, nutrient availability and rate of rainfall. Total biomass is maximum during summer and minimum during rainy season. Light availability and soil moisture had a significant effect on total biomass.

  6. Effect of poultry litter biochar on Saccharomyces cerevisiae growth and ethanol production from steam-exploded poplar and corn stover

    Science.gov (United States)

    Diallo, Oumou

    The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.

  7. Foliar Litter Decomposition: A Conceptual Model with Focus on Pine (Pinus) Litter—A Genus with Global Distribution

    OpenAIRE

    Björn Berg

    2014-01-01

    The genus Pinus encompasses c 120 species and has a global distribution. Today we know more about the decomposition of pine needle litter than litter from any other genus. This paper presents a developed conceptual three-phase model for decomposition, based on pine needle litter, starting with newly shed litter and following the process until a humus-near stable residue. The paper focuses on the mass-loss dynamics and factors regulating the process in the early phase, the late one, and the hu...

  8. Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China); Su, Haijia, E-mail: suhj@mail.buct.edu.cn [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China); Tan, Tianwei; Xiao, Gang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, College of Life Science and Technology, Beijing 100029 (China)

    2011-10-15

    Based on the integration of biosorption and membrane-separation, a novel biosorption membrane with good mechanical property was prepared by immobilizing Penicillium biomass with cross-linked chitosan on fabric. The ability of the low cost biosorption membrane to remove Cu(II) ions from a solution was studied through batch and continuous experiments. Langmuir adsorption isotherm models were found to accurately fit the batch experimental data (R{sup 2} > 0.99) indicating that sorption was of monolayer-mode. The uptake of Cu(II) could reach 38 mg/g at its initial concentration of 200 mg/L in the solution. Continuous biosorption was investigated in a column and the effects of the height, flow rate and initial concentration of Cu(II) were studied. The Bed Depth Service Time model (BDST) was applied to simulate column adsorption data. The breakthrough time at different flow rates and initial concentrations was accurately predicted by the model (error < 8%). The uptake of Cu(II) could reach 38.3 mg/g at height 30 cm, flow rate 5 mL/min, initial concentration of Cu(II) 200 mg/L. The biosorption membrane was regenerated by washing with 0.05 mol/L solution of HCl, and breakthrough curves remained fairly unchanged after 10 cycles of adsorption-desorption.

  9. Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass

    International Nuclear Information System (INIS)

    Based on the integration of biosorption and membrane-separation, a novel biosorption membrane with good mechanical property was prepared by immobilizing Penicillium biomass with cross-linked chitosan on fabric. The ability of the low cost biosorption membrane to remove Cu(II) ions from a solution was studied through batch and continuous experiments. Langmuir adsorption isotherm models were found to accurately fit the batch experimental data (R2 > 0.99) indicating that sorption was of monolayer-mode. The uptake of Cu(II) could reach 38 mg/g at its initial concentration of 200 mg/L in the solution. Continuous biosorption was investigated in a column and the effects of the height, flow rate and initial concentration of Cu(II) were studied. The Bed Depth Service Time model (BDST) was applied to simulate column adsorption data. The breakthrough time at different flow rates and initial concentrations was accurately predicted by the model (error < 8%). The uptake of Cu(II) could reach 38.3 mg/g at height 30 cm, flow rate 5 mL/min, initial concentration of Cu(II) 200 mg/L. The biosorption membrane was regenerated by washing with 0.05 mol/L solution of HCl, and breakthrough curves remained fairly unchanged after 10 cycles of adsorption-desorption.

  10. Biomass and energy dynamics in a tribal village ecosystem of Orissa, India

    International Nuclear Information System (INIS)

    Biomass energy production and consumption patterns were investigated in Bhogibandha, a small tribal village ecosystem in the Eastern Ghats of India. The land area was 116.7 ha with 0.18 forest area per capita. Human population was 76 in 21 families. The livestock population in the village was low. Annual crop yield was 19.1 t on 13.9 ha of land. Annual collection of minor forest produce was 9.74 t. Annual energy consumption in terms of food was 278.4 GJ, fodder 929.6 GJ, liquor 20.9 GJ and fuelwood 636.5 GJ (excluding camp fire). Energy expenditure for agricultural, domestic and other daily activities in the village ecosystems was 122 GJ by human and 124 GJ by draught animals. The energy-flow pattern in the ecosystem shows annual production of 2062 GJ, consumption of 1917 GJ, out-flow (export) of 97 GJ and in-flow (import) of 235 GJ. Based on the energy-flow and large dependence on forest and forest products (mainly firewood for sale along with minor products), the village Bhogibanda was concluded to be an open, forest-dependent based village ecosystem. An energy-flow model was developed for the village ecosystem. (Author)

  11. The cryptofauna of Zostera marina (L.): Abundance, biomass and population dynamics

    Science.gov (United States)

    Pihl Baden, Susanne

    Cryptofauna (epifauna passing a 2-mm but retained on a 0.2-mm mesh sieve) of Zostera marina on the Swedish west coast (58°N, 11°E) is dominated by crustaceans, mainly detritivorous tube-building amphipods and harpacticoids. Abundance and biomass of amphipods in two relatively unpolluted Z. marina beds were higher than any data from the literature, with maximum abundance of 80·10 3 ind·m -2 and 1 g AFDW·m -2 bottom. This is at least partly due to the small mesh size used in this investigation. The recruitment of the crustaceans started in late June and was continuous through the rest of the season, whereas the recruitment of the molluscs peaked in late June and July. In a Z. marina bed (Rixö) located 2 km from an oil refinery, the seasonal abundance of amphipods was 15% of the abundance in the other beds, whereas the remaining fauna had about the same density. In Rixö the percentage of female amphipod with empty brood pouches increased during the season. It is suggested that low abundances and fecundity of amphipods in Rixö could result from oil pollution.

  12. Integrated dynamic model of the alkaline delignification process of Lignocellulosic biomass

    International Nuclear Information System (INIS)

    Although in the public literature there are several studies that describe models of alkaline delignification, they were originally developed for the paper industry, and do not include the effects of important operating variables such as temperature, hydroxide-ion concentration, solid to liquid weight ratio, particle size, biomass composition (hemi cellulose, lignin fraction) and mixing. This lack of detailed models of the pretreatment stages prompted the current study that describes a model which includes the variables listed above and provides an important tool for predicting the degree of lignin removal in lignocellulosic materials such as sugar cane bagasse (Saccharum officinarum L). The model considers kinetic expressions available in the literature. The kinetic parameters were determined by fitting the model to experimental data obtained for that purpose in our lab. The experimental matrix considered eighteen, 24-h isothermal experiments in which bulk and residual delignification stages were observed to occur in a parallel manner. Carbohydrate removal and hydroxide consumption were related to lignin removal by effective stoichiometric coefficients that were calculated by fitting the experimental data. A mixing compartment network model that represented mixing inside the reactor was included into a temporal superstructure based on the similarity between plug flow reactors and ideal batch reactors to model a non-ideally mixed batch reactor. The kinetic model was validated with data obtained in this study.

  13. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    Energy Technology Data Exchange (ETDEWEB)

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  14. Belowground carbon pools and dynamics in China's warm temperate and sub-tropical deciduous forests

    Directory of Open Access Journals (Sweden)

    C. W. Xiao

    2009-07-01

    Full Text Available We report the first estimates of pools and dynamics of microbes, roots, plant litter and soil organic carbon (SOC in three dominant types of China's vast deciduous forest area: Betula platyphylla, Quercus liaotungensis, and Quercus aliena varacuteserrata. Organic matter degradation rates overshadowed litter inputs as the main determinant of the soil carbon stocks. Across the three forests, rates of litter decomposition were also indicative for turnover rates of SOC. Litter and SOC decay was faster in the sub-tropical than in the warm-temperate forests. Among the latter, SOC turnover was highest in the forest producing the higher-quality litter. Microbial biomass was, as expected, correlated with SOC content. Microbial activity, in contrast, was highest at the sub-tropical forest, despite the lower SOC availability, lower fraction of labile SOC, and lower soil microbial biomass. These results may contribute to increased understanding of controls over belowground carbon cycling in deciduous forests.

  15. Seasonal variation in biomass at the tropical rainforest of Western Ghats, Kodayar, Tamilnadu

    OpenAIRE

    J Geetha Jhansi Rani; Kailash Paliwal

    2014-01-01

    A field study was conducted in Kodayar to study the seasonal variation in biomass. The study revealed that there is much difference in the biomass during different seasons. The live shoot biomass in comparatively lesser during winter and its showed negative correlation with rainfall. The standard dead biomass is maximum during summer and no standing dead is recorded during certain months of post monsoon season. Litter biomass is maximum during summer and minimum during winter season. The litt...

  16. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

    Directory of Open Access Journals (Sweden)

    K. G. Schulz

    2013-01-01

    Full Text Available Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2, have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in Kongsfjorden on the west coast of Spitsbergen (Norway, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a, peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured as high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2-related shifts in nutrient flow into different phytoplankton groups (mainly dinoflagellates, prasinophytes and haptophytes could have consequences for future organic matter flow to higher trophic levels and export production, with consequences

  17. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

    Directory of Open Access Journals (Sweden)

    K. G. Schulz

    2012-09-01

    Full Text Available Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2, have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a, peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric

  18. Detritivores enhance the mobilization of 137Cs from leaf-litter

    International Nuclear Information System (INIS)

    nursery experiment, komatsuna (Brassica rapa var. pervidis) was utilized. Seed of komatsuna was planted on the contaminated leaf litter and the litter with larvae excreta. The 137Cs concentrations were compared between these treatments. For the 10 days of feeding, beetle larvae finely shredded the leaf litter to particles. The 137Cs contamination of the treatment leaf litter was about 10% higher in deionised water wash and about 20% higher in KCl wash compared with control litters. The results of nursery experiment will be reported also. These results revealed a significant but limited role of detritivore arthropods in the dynamics of 137Cs transfer in forest ecosystems. (authors)

  19. Detritivores enhance the mobilization of {sup 137}Cs from leaf-litter

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Masashi; Suzuki, Takahiro [Community Ecology Lab., Biology Course, Faculty of Science, Chiba University, Chiba, 263-8522 (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Ohte, Nobuhito [Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 (Japan)

    2014-07-01

    by germanium detectors (Seiko EG and G). As a nursery experiment, komatsuna (Brassica rapa var. pervidis) was utilized. Seed of komatsuna was planted on the contaminated leaf litter and the litter with larvae excreta. The {sup 137}Cs concentrations were compared between these treatments. For the 10 days of feeding, beetle larvae finely shredded the leaf litter to particles. The {sup 137}Cs contamination of the treatment leaf litter was about 10% higher in deionised water wash and about 20% higher in KCl wash compared with control litters. The results of nursery experiment will be reported also. These results revealed a significant but limited role of detritivore arthropods in the dynamics of {sup 137}Cs transfer in forest ecosystems. (authors)

  20. Marine litter prediction by artificial intelligence

    International Nuclear Information System (INIS)

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems

  1. Dynamics of microbial biomass and respiratory activity during late summer in a site of Arctic Kongsfjorden

    Directory of Open Access Journals (Sweden)

    Rosabruna La Ferla

    2014-06-01

    The Kongsfjorden was affected by inflow of Atlantic water as well as glacier melt water runoff (Cottier et al., 2005. The experiment comprised 5 samplings performed during a 7 day period in MDI station. For each sampling, photosynthetically active radiation (PAR, temperature and conductivity (salinity were recorded along the water column with a PNF-300 profiler and a SeaBird Electronics SBE-911 plus profiler, respectively . Water samples were taken at five different depths (surface, 5, 25, 50 and 100 m to determine nutrients, particulate organic carbon, prokaryotes and phytoplankton biomass, and community respiration. In addition, prokaryotes sunk with the particulate matter were studied into the sediment trap positioned in the MDI during the period between June and September 2013. The latter assessment allowed us to determine the flow of prokaryotes, conveyed from organic matter sinking, throughout the summer. Due to melting of the glaciers in the surface water of the study site, there were sediment loads which strongly limited light penetration and low irradiance (~0.7% E0+ at 5 meters below the surface. Along the water column the intrusion of the salty and warm Atlantic water was visible in the study site and the warm core was at about 25 m depth. PO4 concentrations ranged between 0.43 (surface and 1 µM (100 m and in general the values increased from surface to bottom. NH4, NO2 and NO3 significantly changed along the vertical and with time and varied between 0.39 and 5.05µM, 0.01 and 0.67µM, 0.001 and 4.18µM, respectively. Prokaryotic abundances and cell volumes ranged between 5.6 and 15.9 E+05 cells ml-1 and 0.033 and 0.093 µm3, respectively. These latter parameters showed a peak at 25 m depth in the core of incoming Atlantic water. This evidence was not determined in chlorophyll a (range 0.034-1.102 mg m-3, where the highest values were determined at the surface and 5 m depth. Speculations will be made on the variability of the fluxes of carbon

  2. Experimental study of terrestrial plant litter interaction with aqueous solutions

    Science.gov (United States)

    Fraysse, F.; Pokrovsky, O. S.; Meunier, J.-D.

    2010-01-01

    Quantification of silicon and calcium recycling by plants is hampered by the lack of physico-chemical data on reactivity of plant litter in soil environments. We applied a laboratory experimental approach for determining the silica and calcium release rates from litter of typical temperate and boreal plants: pine ( Pinus laricio), birch ( Betula pubescens), larch ( Larix gmelinii), elm ( Ulmus laevis Pall.), tree fern ( Dicksonia squarrosa), and horsetail (Equisetum arvense) in 0.01 M NaCl solutions, pH of 2-10 and temperature equals to 5, 25 and 40 °C. Open system, mixed-flow reactors equipped with dialysis compartment and batch reactors were used. Comparative measurements were performed on intact larch needles and samples grounded during different time, sterilized or not and with addition or not of sodium azide in order to account for the effect of surface to mass ratio and possible microbiological activity on the litter dissolution rates. Litter degradation results suggest that the silica release rate is independent on dissolved organic carbon release (cell breakdown) which implies the presence of phytoliths in a pure "inorganic" pool not complexed with organic matter. Calcium and DOC are released at the very first stage of litter dissolution while Si concentration increases gradually suggesting the presence of Ca and Si in two different pools. The dry-weight normalized dissolution rate at circum-neutral pH range (approx. 1-10 μmol/g DW/day) is 2 orders of magnitude higher than the rates of Si release from common soil minerals (kaolinite, smectite, illite). Minimal Ca release rates evaluated from batch and mixed-flow reactors are comparable with those of most reactive soil minerals such as calcite and apatite, and several orders of magnitude higher than the dissolution rates of major rock-forming silicates (feldspars, pyroxenes). The activation energy for Si liberation from plant litter is approx. 50 kJ/mol which is comparable with that of surface

  3. Estimation of fungal biomass in forest litter and soil

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Větrovský, Tomáš; Cajthaml, Tomáš; Dobiášová, Petra; Petránková, Mirka; Šnajdr, Jaroslav; Eichlerová, Ivana

    2013-01-01

    Roč. 6, č. 1 (2013), s. 1-11. ISSN 1754-5048 R&D Projects: GA ČR GA526/08/0751; GA MŠk LD12050 Institutional support: RVO:61388971 Keywords : Basidiomycota * Ectomycorrhizal fungi * Ergosterol Subject RIV: EE - Microbiology, Virology Impact factor: 2.992, year: 2013

  4. Responses of litter invertebrate communities to litter manipulation in a Japanese conifer plantation

    Science.gov (United States)

    Yoshida, Tomohiro; Takito, Yuki; Soga, Masashi; Hijii, Naoki

    2013-08-01

    We examined how the litter invertebrate communities were affected by the temporal changes in the mass and structural complexity of the litter resources by adding and removing litter on the forest floor of a temperate conifer plantation (Cryptomeria japonica) in Japan. We showed that litter mass and depth in the litter-addition (L+) plots changed rapidly into a steady-state condition similar to those in the control plots, mainly due to accelerated decomposition processes during the rainy season. Higher area-based densities of litter invertebrates in the L+ plots, similar mass-based densities between the L+ and control plots, and significant positive correlations between litter mass and the number of individuals implied that the abundance of litter invertebrates would be governed by litter mass rather than by the litter depth. Many litter invertebrates including detritivores were collected even in the litter-removal (L-) area. The relative abundances of invertebrate predators collecting pitfall traps were higher in the L- plots and lower in the L+ plots compared to those in the control plots, whereas those collecting Tullgren funnels were higher in the L+ plots than in the control plots. In the L+ plots, the range of variation in the community compositions among the samples decreased significantly over time in response to a drastic decrease in litter mass, in contrast to the control plots, which showed a relatively constant community composition during the study period. Our litter manipulation experiment reveals some of the mechanisms responsible for maintaining an equilibrium state of forest-floor litter mass and for the responses of litter invertebrate communities to temporal changes in the litter.

  5. Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  6. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    Science.gov (United States)

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. PMID:27233094

  7. Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondo‸nia, Brazil during SCAR-B

    Science.gov (United States)

    Guild, Liane S.; Kauffman, J. Boone; Ellingson, Lisa J.; Cummings, Dian L.; Castro, Elmar A.; Babbitt, Ron E.; Ward, Darold E.

    1998-12-01

    Burning of slashed tropical forests and pastures is among the most significant global sources of atmospheric emissions, yet the composition of the fuels and fires that creates these emissions is not well characterized. As part of the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment, we measured total aboveground biomass (TAGB) as well as carbon, nitrogen, and sulfur pools in one cattle pasture and two slashed primary forests in Rondônia, Brazil. These pools were measured before and immediately after fires. From these data, we calculated the quantities of biomass and elements lost to the atmosphere during biomass burning. Prefire biomass in the pasture was 66 Mg ha-1; fire consumed 31% of this mass. Woody debris from the forest that occupied this site 12 years previously comprised 81% of the pasture prefire TAGB. Elemental inputs into the atmosphere (site losses) from the pasture fire were 9 Mg C ha-1, 88 kg N ha-1, and 5 kg S ha-1. Combining previous studies with this one, we calculate that the mean TAGB of Amazonian pastures is 74 Mg ha-1 with a mean combustion factor of 46%. Mean nutrient losses from pasture fires in Amazonia are 14 Mg C ha-1, 199 kg N ha-1, and 16 kg S ha-1. The TAGB of the two slashed primary forests before fire was 355 and 399 Mg ha-1 and following fire was 188 and 185 Mg ha-1 (i.e., a combustion factor of 47 and 54%), respectively. Combining this study with other studies of Amazon slashed primary forests, we calculate that the mean TAGB is 349 Mg ha-1 and the mean combustion factor is 48%. Total elemental losses arising from the primary forest slash fires in this study were notably higher than losses from the pasture site: 79 and 102 Mg C ha-1; 1019 and 1196 kg N ha-1; and 87 and 96 kg S ha-1. From this study combined with previous research in Rondônia and Pará, we calculate that mean nutrient losses from primary forest slash fires are 88 Mg C ha-1, 1181 kg N ha-1, and 107 kg S ha-1. As rates of deforestation are remaining high in

  8. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.

    Science.gov (United States)

    Xia, Mengxue; Talhelm, Alan F; Pregitzer, Kurt S

    2015-11-01

    Most studies of forest litter dynamics examine the biochemical characteristics and decomposition of leaf litter, but fine roots are also a large source of litter in forests. We quantified the concentrations of eight biochemical fractions and nitrogen (N) in leaf litter and fine roots at four sugar maple (Acer saccharum)-dominated hardwood forests in the north-central United States. We combined these results with litter production data to estimate ecosystem biochemical fluxes to soil. We also compared how leaf litter and fine root biochemistry responded to long-term simulated N deposition. Compared with leaf litter, fine roots contained 2.9-fold higher acid-insoluble fraction (AIF) and 2.3-fold more condensed tannins; both are relatively difficult to decompose. Comparatively, leaf litter had greater quantities of more labile components: nonstructural carbohydrates, cellulose and soluble phenolics. At an ecosystem scale, fine roots contributed over two-thirds of the fluxes of AIF and condensed tannins to soil. Fine root biochemistry was also less responsive than leaf litter to long-term simulated N deposition. Fine roots were the dominant source of difficult-to-decompose plant carbon fractions entering the soil at our four study sites. Based on our synthesis of the literature, this pattern appears to be widespread in boreal and temperate forests. PMID:26073624

  9. Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF

    Directory of Open Access Journals (Sweden)

    Laura Silva

    2015-11-01

    Full Text Available The experiment evaluates the food production and water treatment of TAN, NO2−–N, NO3−–N, and PO43− in two aquaponics systems using the dynamic root floating technique (DRF. A separate recirculation aquaculture system (RAS was used as a control. The fish cultured was Nile tilapia (Oreochromis niloticus. The hydroponic culture in one treatment (PAK was pak choy (Brassica chinensis, and in the other (COR coriander (Coriandrum sativum. Initial and final weights were determined for the fish culture. Final edible fresh weight was determined for the hydroponic plant culture. TAN, NO2−–N, NO3−–N, and PO43− were measured in fish culture and hydroponic culture once a week at two times, morning (9:00 a.m. and afternoon (3:00 p.m.. The fish biomass production was not different in any treatment (p > 0.05 and the total plant yield was greater (p < 0.05 in PAK than in COR. For the hydroponic culture in the a.m., the PO43− was lower (p < 0.05 in the PAK treatment than in COR, and in the p.m. NO3−–N and PO43− were lower (p < 0.05 in PAK than in COR. The PAK treatment demonstrated higher food production and water treatment efficiency than the other two treatments.

  10. Mineralisation, leaching and stabilisation of 13C-labelled leaf and twig litter in a beech forest soil

    Directory of Open Access Journals (Sweden)

    F. Hagedorn

    2011-02-01

    Full Text Available Very few field studies have quantified the different pathways of C loss from decomposing litter even though this is essential to better understand long-term dynamics of C stocks in soils. Using 13C-labelled leaf (isotope ratio (δ13C = −40.8‰ and twig litter (δ13C = −38.4‰, we tracked down the litter-derived C in the soil respiration, in the dissolved organic C (DOC and in the soil organic matter of a beech forest in the Swiss Jura. After one year of decomposition, mass loss in the litter layer was almost twice as great for leaves as it was for twigs (75% vs. 40%. This difference was not the result of a slow mineralisation of the woody litter, but primarily of the only slight incorporation of twig-derived C into mineral soils. The C mineralisation rates of the twig litter were only slightly lower than those of the leaf litter (10–35%, in particular after the loss of the readily available litter fraction. However, the leaching of DOC from twigs amounted only to half of that from leaves. Tracing the litter-derived DOC showed that DOC from both litter types was mostly retained (88–96% and stabilised in the top centimetres of the mineral soil. In the soil organic C at 0–2 cm depth, we recovered 8% of the initial leaf C, but only 4% of the twig C. Moreover, the 13C mass balance suggested that a substantial fraction of the leaf material (~30% was transported via soil fauna to soil depths below 2 cm, while the twig litter mainly decomposed in situ on the soil surface, probably due to its rigid structure and low nutritional value. In summary, our study shows that decaying twigs are rapidly mineralised, but seem to be clearly less important for the C storage in this beech forest soils than leaf litter.

  11. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode

    International Nuclear Information System (INIS)

    Batch and dynamic flow biosorption studies were carried out using the waste biomass entrapped in silica-gel matrix for the removal of nickel(II) ions from synthetic solutions and real wastewater. Batch biosorption conditions were examined with respect to initial pH, S/L ratio, contact time, and initial nickel ion concentration. Zeta potential measurements showed that immobilized biosorbent was negatively charged in the pH range of 3.0-8.0. The immobilized biomass was found to possess relatively high biosorption capacity (98.01 mg g-1), and biosorption equilibrium was established in a short time of operation (5 min). The equilibrium data were followed by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Scanning electron microscope analysis was used to screen the changes on the surface structure of the waste biomass after immobilization and nickel(II) biosorption. Sorbent-sorbate interactions were confirmed by Fourier transform infrared spectroscopy. The applicability of sorbent system was investigated in a continuous mode, and column studies were performed under different flow rate, column size, and biosorbent dosage. Also, the proposed sorbent system was successfully used to remove the nickel ions from industrial wastewater in dynamic flow treatment mode. The results showed that silica-immobilized waste biomass was a low-cost promising sorbent for sequester of nickel(II) ions from synthetic and real wastewater

  12. Management of Alum-Treated Poultry Litter

    OpenAIRE

    Warren, Jason George

    2005-01-01

    Previous research has shown that treatment of poultry litter with alum is an effective management strategy to reduce phosphorus (P) solubility in litter thereby reducing potential P losses to surface runoff after surface applications. However, limited data are available evaluating alum-treated poultry litter (ATPL) environmental impact in cultivated systems and how its application will affect crop production. In addition little is known as to how its application affects various P fractions ...

  13. Cigarette Litter: Smokers’ Attitudes and Behaviors

    Directory of Open Access Journals (Sweden)

    Julia C. Cartwright

    2012-06-01

    Full Text Available Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers’ littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers’ knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000 were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05. The majority (74.1% of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7% reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66 and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32. Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94. Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic

  14. [Forest biomass carbon storage and its dynamics in Tanjiang River basin].

    Science.gov (United States)

    Yang, Kun; Guan, Dongsheng; Zhou, Chunhua

    2006-09-01

    Based on an improved estimation method of forest carbon storage and the inventory of forest resources, this paper estimated the forest carbon storage and its dynamic changes in Tanjiang River basin, and analyzed the relationships of the carbon storage and its density with the increase of population density and GDP during the urbanization in 1990-2001. The results showed that the forest carbon storage in Tanjiang River basin increased from 5.906 x 10(6) t in 1990 to 7.852 x 10(6) t in 2001, with an annual average accumulation amount of 0.18 x 10(6) t or an annual average accumulation rate of 3.05%, and playing a role of carbon sink. The rapid increase of population density and GDP didn't influence the increase of forest carbon storage and density, but the development of forestry was far lower than that of economy. To have a better service function of forest ecosystem in the process of urbanization, and to promote the sustainable development of regional ecological environment, the key point is the reasonable coordination of forestry management with the development of economy. PMID:17147160

  15. McDonald's Litter Hunt: A Community Litter Control System for Youth.

    Science.gov (United States)

    McNees, M. Patrick; And Others

    1979-01-01

    Describes a community litter control program. Special adhesive stickers were randomly placed on existing litter throughout a community and youth were rewarded with special prizes for participating in the program. Litter was reduced 32 percent across the city. (Author/MA)

  16. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

    OpenAIRE

    Johnson, Michelle; Galbraith, David; Gloor, Manuel; De Deaurwaerder, Hannes; Guimberteau, Mattieu; Rammig, Anja; Thonicke, Kristin; Verbeeck, Hans; von Randow, Celso; Monteagudo Mendoza, Abel; Phillips, Oliver L; Brienen, Roel; Feldpausch, Ted R.; Lopez Gonzales, Gabriela; Fauset, Sophie

    2016-01-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biom...

  17. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  18. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz

    2016-07-01

    Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of

  19. The spatial and temporal dynamic of algal biomass associated with mangrove roots in Buenaventura bay pacific coast of Colombia

    International Nuclear Information System (INIS)

    The spatial and temporal variation of biomass of mangrove associated macro algae growing on roots of Rhizophora mangle and pneumatophores of Avicennia. germinans were studied at three sampling stations in Buenaventura bay, Colombia, between November 1999 and September 2003. Eighteen species of algae were collected including nine Rhodophyceae, five Chlorophyceae and four Cyanophyta (Cyanobacteria). Four species dominated the algal flora and collectively contributed with 90 % of the total algal biomass. Bostrychia calliptera was the most dominant with 32 % of the total biomass, followed by Boodleopsis verticillata (26 %), Catenella impudica (18 %), and Caloglossa leprieurii (12 %) Algal biomass between seasons showed significant differences, with higher biomass found during the dry season compared to those of the rainy season. The algal biomass at the mouth of the estuary was significantly higher than that found in the inner areas of the estuary (annual means of 30.7 ± 10.8 vs. 13.8 ± 4.1 g m2 respectively).Three well-defined vertical zones were observed, based on algal biomass

  20. Characterization of forest litter horizons through full-wave inversion of ground-penetrating radar data

    Science.gov (United States)

    André, Frédéric; Jonard, Mathieu; Jonard, François; Lambot, Sébastien

    2015-04-01

    Decomposing litter accumulated at the soil surface in forest ecosystems play a major role in a series of ecosystem processes (soil carbon sequestration, nutrient release through decomposition, water retention, buffering of soil temperature variations, tree regeneration, population dynamics of ground vegetation and soil fauna, ...). Besides, the presence of litter is acknowledged to influence remote sensing radar data over forested areas and accurate quantification of litter radiative properties is essential for proper processing of these data. In these respects, ground-penetrating radar (GPR) presents particular interests, potentially allowing for fast and non-invasive characterization of organic layers with fine spatial and/or temporal resolutions as well as for providing detailed information on litter electrical properties which are required for modeling either active or passive microwave remote sensing data. We designed an experiment in order to analyze the backscattering from forest litter horizons and to investigate the potentialities of GPR for retrieving the physical properties of these horizons. For that purpose, we used an ultrawide band radar system connected to a transmitting and receiving horn antenna. The GPR data were processed resorting to full-wave inversion of the signal, through which antenna effects are accounted for. In a first step, GPR data were acquired over artificially reconstructed layers of three different beech litter types (i.e., (i) recently fallen litter with easily discernible plant organs (OL layer), (ii) fragmented litter in partial decomposition without entire plant organs (OF layer) and (iii) combination of OL and OF litter layers) and considering in each case a range of layer thicknesses. In a second step, so as to validate the adopted methodology in real natural conditions, GPR measurements were performed in situ along a transect crossing a wide range of litter properties in terms of thickness and composition through stands of

  1. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响%Effects of forest gap on hemicellulose dynamics during foliar litter decomposition in an subal-pine forest

    Institute of Scientific and Technical Information of China (English)

    李晗; 吴福忠; 杨万勤; 徐李亚; 倪祥银; 何洁; 胡义

    2015-01-01

    亚高山森林林窗可能通过改变冬季雪被格局和生长季水热环境影响林窗内凋落物中半纤维素的分解动态,但目前对此还缺乏研究。采用凋落物分解袋法,以亚高山森林5种典型物种岷江冷杉(Abies faxoniana)、红桦(Betula albosinensis)、四川红杉(Larix mastersiana)、方枝柏(Sabina saltuaria)和高山杜鹃(Rhododendron lapponicum)凋落物为研究对象,研究雪被形成期、雪被覆盖期、雪被融化期和生长季节从林窗中心、林冠林窗、扩展林窗到郁闭林下物种凋落物的半纤维素变化特征。经历一年分解后,5种凋落物的半纤维素均呈现净累积现象。针、阔叶凋落物半纤维素分别在雪被覆盖期和融化期表现出相对较高的损失率。在雪被覆盖期和融化期,凋落物半纤维素在林窗中心和林冠林窗具有相对较高的损失率;而在生长季节,林窗中心呈现相对较低的凋落物半纤维素累积率。统计分析结果表明凋落物分解过程中半纤维素损失率与环境因子和凋落物质量因子均显著相关。这些结果表明亚高山森林林窗对凋落物分解过程中半纤维素损失率具有显著影响,分别促进了半纤维素在冬季的损失以及抑制了半纤维素在生长季节的累积,意味着亚高山森林林窗的形成有利于凋落物半纤维素的降解。%Aims As part of fiber structures, the hemicellulose degrades and transforms during foliar litter decomposition along with other components of leaf tissue. Forest gaps and crown canopies may regulate hemicellulose dynamics during foliar litter decomposition by redistributing winter snow cover and altering the temperature, precipitation and solar radiation during the growing season, but little information is available concerning those effects and the consequences. Therefore, our objective was to study the effects of forest gap on hemicellulose dynamics during foliar litter decomposition in an subalpine

  2. Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation

    Institute of Scientific and Technical Information of China (English)

    CHENG Yunhuan; HAN Youzhi; WANG Qingcheng; WANG Zhengquan

    2006-01-01

    Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine

  3. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition.

    Science.gov (United States)

    Manna, M C; Jha, S; Ghosh, P K; Acharya, C L

    2003-07-01

    An experiment was conducted during 1998-1999, in a deciduous forest located in the semi-arid tropics of central India, to evaluate the suitability of different forest litters as food material for the tropical epigeic earthworms i.e. Eisenia fetida (Savigny), Perionyx excavatus (Perrier) and Dicogaster bolaui (michaelsen). The aim was to examine the influence of these earthworms on the decomposition processes of three types of forest litters i.e. Tectona grandis (teak), Madhuca indica (mahua) and Butea monosperma (palas), on the maintenance of quality in a vermicomposting system, and to assess the effect of applications of in situ prepared vermicomposts on the growth of forest trees. The results indicated that T. grandis litter was the most suitable food material for the earthworms possibly because it contained high reserves of mineral nutrients. Comparisons of the survival and reproduction rates of the three epigeic earthworm species indicated that a higher reproduction rate was maintained for E. fetida compared to P. excavatus and D. bolaui in the decomposition of these forest litters. The rates of growth and population increases of E. fetida approximately doubled after 12 weeks of litter decomposition. The litter decomposition process was associated strongly with the quality of the materials and their chemical composition. Irrespective of earthworm inoculations, the levels of available nutrient such as NH(4)-N, NO(3)-N, available P and K increased significantly (pM. indica litter compost>B. monosperma litter compost. The mature decomposed litter had lower C/N ratios (11.3-24.8:1), water-soluble carbon (0.30-0.58%), water-soluble carbohydrates (0.35-0.71%) and larger cation exchange capacity/total organic carbon ratios than the values in the parent forest litter. The lignin content increased with maturation with a concomitant decrease in cellulose resulting in higher lignin/cellulose ratios. Application of all three vermicomposts to forest trees significantly

  4. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    Full Text Available Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB community composition and nitrogen (N availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. The aim of this study was to determine the influence of leaf litter decomposition on N mineralization. The specific objectives of this study were to evaluate the influence of the litter biochemistry of five plants species (Faidherbia albida A.Chev., Azadirachta indica A.Juss., Casuarina equisetifolia L., Andropogon gayanus Kunth and Eragrostis tremula Hochst. ex Steud. on N mineralization in a tropical ferrous soil (Lixisol, nitrification, and genetic diversity of ammonia-oxidizing bacteria. Denaturing gradient gel electrophoresis (DGGE of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of leaf litter in soils. Method. Community structure of AOB was determined at two time periods: day 0 and day 140. Ten strains were tested and each of these strains produced a single band. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. Plant secondary compounds such as polyphenols are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability and humus formation. In a laboratory study, we investigated the influence of six phenolic acids (ferulic, gallic, vanillic, syringic, p-coumaric and p-HBA acids commonly found in the plant residues on N mineralization and NH4+ and NO3- production in soils. Results. The results showed that litter type did affect soil nitrification. Faidherbia albida litter was associated with

  5. Emissions and Furnace Gas Temperature for Electricity Generation Via Co-Firing of Coal and Biomass

    OpenAIRE

    Shoaib Mehmood; Bale Reddy; Marc Rosen

    2015-01-01

    The emissions of carbon dioxide and nitrogen and sulphur oxides for electricity generation with coal and biomass co-firing are investigated and the furnace gas temperature assessed. The study uses simulation and considers fuel combinations based on two coals (bituminous coal, lignite) and four types of biomass (rice husk, sawdust, chicken litter, refused derived fuel). With increasing biomass, net CO2 emissions are seen to decline significantly for all types of selected biomass, while gross c...

  6. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

    Science.gov (United States)

    Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

    2016-08-01

    The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems. PMID:27273089

  7. Non-additive effects of litter diversity on greenhouse gas emissions from alpine steppe soil in Northern Tibet.

    Science.gov (United States)

    Chen, Youchao; Sun, Jian; Xie, Fangting; Yan, Yan; Wang, Xiaodan; Cheng, Genwei; Lu, Xuyang

    2015-01-01

    While litter decomposition is a fundamental ecological process, previous studies have mainly focused on the decay of single species. In this study, we conducted a litter-mixing experiment to investigate litter diversity effects on greenhouse gas (GHG) emissions from an alpine steppe soil in Northern Tibet. Significant non-additive effects of litter diversity on GHG dynamics can be detected; these non-additive effects were the result of species composition rather than species richness. Synergistic effects were frequent for CO2 and N2O emissions, as they were found to occur in 70.5% and 47.1% of total cases, respectively; antagonistic effects on CH4 uptake predominated in 60.3% of the cases examined. The degree of synergism and antagonism may be significantly impacted by litter chemical traits, such as lignin and N, lignin:N ratio, and total phenols during decomposition (P < 0.05). In addition, the relationship between chemical traits and litter-mixing effects changed over incubation time. Our study provides an opportunity to gain insight into the relationship between litter diversity and soil ecological processes. The results indicate that higher plant diversity may generally enhance CO2 and N2O emissions while inhibiting CH4 uptake; meanwhile, the direction and strength of non-additive effects appear to be related to litter chemical traits. PMID:26634911

  8. Multi-functional biomass systems

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.

    2004-12-01

    The central research question of this thesis is: What is the potential of multi-functional biomass systems to improve the costs and the land use efficiency of saving non-renewable energy consumption and reducing GHG (greenhouse gases) emissions in quantitative terms? Therefore, in the following chapters the performance of multi-functional biomass systems is quantified. Biomass system costs are investigated from a societal perspective using e.g. low discount rates. A main focus will be on the review of methodologies for accounting GHG emissions, non-renewable energy consumption, agricultural land use and costs as well as the adaptation of these methodologies to special aspects of multifunctional biomass use. The analysis of the potential benefits of multi-functional biomass systems is carried out by several case studies of biomass systems including various waste treatment technologies for the short term that appeared promising after a first review. Because at present the shift of biomass production to more favourable areas seems to be an alternative for more efficient biomass systems, these case studies are situated in Europe and concentrate on Poland in order to investigate the potential of biomass production in the new EU-member states of Central Eastern Europe. In Chapter 2 of this thesis, the concept of multi-product use and its potential impacts on fuel costs of bioenergy and GHG emission reduction per area of agricultural land use are investigated. Especially, the relation between the economic value and the specific GHG emission reduction of a possible material application and the potential benefits of multiproduct use is analysed. Material uses regarded for multi-product use are the use of wheat grains for food, wheat straw for animal litter, hemp bark fibres for reinforced composites, hemp core fibres for animal litter, hemp seeds for food and cosmetics and poplar wood chips for pulp. For energy uses parts of the crops are used as solid fuel for electricity

  9. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  10. Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.

    Science.gov (United States)

    Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C

    2013-10-01

    Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these

  11. Data on litter quality of host grass plants with and without fungal endophytes

    Directory of Open Access Journals (Sweden)

    P.E. Gundel

    2016-06-01

    Full Text Available Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively. Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin×endophyte]. This data can be potentially used in other studies which, by means of ‘data reanalyzing’ or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article “Role of foliar fungal endophytes on litter decomposition among species and population origins” (Gundel et al., In preparation [1].

  12. Data on litter quality of host grass plants with and without fungal endophytes.

    Science.gov (United States)

    Gundel, P E; Helander, M; Garibaldi, L A; Vázquez-de-Aldana, B R; Zabalgogeazcoa, I; Saikkonen, K

    2016-06-01

    Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis) affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively). Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin)×endophyte]. This data can be potentially used in other studies which, by means of 'data reanalyzing' or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article "Role of foliar fungal endophytes on litter decomposition among species and population origins" (Gundel et al., In preparation) [1]. PMID:27182541

  13. GASIFICATION BASED BIOMASS CO-FIRING

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate

  14. Treatment of broiler litter with organic acids.

    Science.gov (United States)

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  15. Morphogenetic Litter Types of Bog Spruce Forests

    OpenAIRE

    T. T. Efremova; A. F. Avrova; S. P. Efremov

    2015-01-01

    For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss)-hypnum spruce forest can be characterized as medium thickness (9–17 cm) with high storage of organic matter (77–99 t/ha), which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, w...

  16. The Litter Problem. Environmental Education Supplementary Instructional Guide, Secondary Level.

    Science.gov (United States)

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Presented is a guide for helping secondary school students investigate the litter problem, acquire litter control skills, and develop an anti-litter ethic. The manual contains a hierarchy of learning objectives, a pretest/posttest, background information on litter, and activities keyed to the learning objectives. Each lesson includes brief…

  17. The Litter Problem. Environmental Education Supplementary Instructional Guide, Elementary Level.

    Science.gov (United States)

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Presented is a guide for helping elementary school students become aware of the litter problem, acquire litter control skills, and develop an anti-litter ethic. The manual contains a hierarchy of learning objectives, a pretest/posttest instrument, background information on litter, and 12 lessons designed to promote attainment of the learning…

  18. An Approach to Litter Generation and Littering Practices in a Mexico City Neighborhood

    Directory of Open Access Journals (Sweden)

    Cecilia E. Muñoz-Cadena

    2012-08-01

    Full Text Available Urban litter is generated by human societies everywhere. Some litter is recyclable waste. In this study, the acronym RMSW is used to refer to recyclable municipal solid waste generated in streets. Public attitude towards RMSW generation, generators’ perceptions, and quantification of RMSW in streets were examined in a Mexico City neighborhood, where litter presence causes major environmental problems affecting the population year after year. Interviews with neighborhood residents and item counts were carried out from 2010 to 2011. In all, 58% of interviewees reported generating RMSW at variable frequencies while 42% said they did not generate this kind of waste. Laziness, lack of vigilance by municipal authorities, no litter bins in streets, and imitation were the main causes identified by interviewees as reasons for littering. Potential litter generators may be of any age, educational level or income. Interviewees’ perception of RMSW generation was compared with item counts in the neighborhood studied.

  19. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes......, enzymatic hydrolysis, and product fermentation options. Biomass Recalcitrance is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology. This book examines the connection between biomass...... of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options. "Biomass Recalcitrance" is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology....

  20. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m2·g-1) is used to convert dry leaf litter biomass (g .m-2) into leaf area per ground unit area (m2·m-2). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m2) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm2·g-1. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA and leaf area had

  1. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    OpenAIRE

    Kerry D. Woods

    2014-01-01

    Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equ...

  2. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    Climatic warming leads to the expansion of deciduous shrubs and trees in the Arctic. This leads to higher leaf litter inputs, which together with warming may alter the rate of carbon and nutrient cycling in the arctic ecosystems. We assessed effects of factorial warming and additional litter on t...... more to the soil and litter moisture conditions than to the change in the quality of the organic matter....... on the soil ecosystem of a subarctic heath in a 7-year-long field experiment. Fine root biomass, dissolved organic carbon (DOC) and total C concentration increased in response to warming, which probably was a result of the increased vegetation cover. Litter addition increased the concentration of inorganic P...... proportion of biomarkers for Gram-positive bacteria. The combined warming plus litter addition treatment decreased the soil water content in the uppermost 5 cm soil, which was a likely reason for many interactions between the effects of warming and litter addition. The soil organic matter quality...

  3. How Far Can Poultry Litter Go? A New Technology for Litter Transport

    OpenAIRE

    Carreira, Rita I.; Young, Kenneth B.; Goodwin, Harold L., Jr.; Wailes, Eric J.

    2007-01-01

    Exporting northwest Arkansas excess turkey and broiler litter to partially fertilize nutrient-deficient cropland in eastern Arkansas can be more cost effective than to supply all crop nutrients with chemical fertilizer only, given current high fertilizer prices. Cost savings are greater if litter is baled in ultraviolet resistant plastic and transported via truck, since backhaul opportunities reduce truck rates, or alternatively, if raw litter is shipped via a truck-barge combination. Rice is...

  4. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review

    OpenAIRE

    Zhao Chen; Xiuping Jiang

    2014-01-01

    Chicken litter or chicken litter-based organic fertilizers are usually recycled into the soil to improve the structure and fertility of agricultural land. As an important source of nutrients for crop production, chicken litter may also contain a variety of human pathogens that can threaten humans who consume the contaminated food or water. Composting can inactivate pathogens while creating a soil amendment beneficial for application to arable agricultural land. Some foodborne pathogens may ha...

  5. Can't See the Wood for the Litter: Evaluation of Litter Behavior Modification in a Forest

    Science.gov (United States)

    Lindemann-Matthies, Petra; Bonigk, Isabel; Benkowitz, Dorothee

    2012-01-01

    This study investigated elementary school children's (n = 171) litter behavior during guided forest tours following two different treatments. Four classes received a verbal appeal not to litter in the forest, while another four classes received both a verbal appeal and a demonstration of the desired litter behavior (picking up litter, putting it…

  6. [Seasonal release characteristics of Ca, Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest].

    Science.gov (United States)

    Ma, Zhi-liang; Gao, Shun; Yang, Wan-qin; Wu, Fu-zhong

    2015-10-01

    Seasonal release dynamics of Ca, Mg and Mn during decomposition of foliar litter of Pinus massoniana, Cryptomeria fortunei, Cunninghamia lanceolata, Cinnamomum camphora, Toona ciliate, and Quercus acutissima were investigated in subtropical evergreen broad-leaved forest employing the method of litterbag. After one-year decomposition, the release rates of Ca, Mg and Mn in foliar litter of the studied tree species ranged from -13.8% to 92.3%, from 4.0% to 64.8%, and from 41.6% to 81.1%, respectively. Ca dynamics in foliar litter of P. massoniana, C. camphora exhibited the pattern of accumulating early and releasing later, while that of the other four tree species showed direct release. Similarly, the dynamics of Mg released from foliar litter of C. camphora showed the pattern of accumulating early and then releasing, while that of the other five tree species exhibited continuous release. Meanwhile, the dynamics of Mn released from foliar litter of C. fortunei and T. ciliate exhibited early accumulation, and subsequent release, while that of the other four tree species showed continuous release. The releases of Ca, Mg and Mn in foliar litter were greatly influenced by seasonal rainfall, and varied with tree species. Furthermore, the rates and amounts of Ca, Mg and Mn released from foliar litter were higher in rainy season than in dry season. In conclusion, the initial nutrient concentrations and precipitation were two key factors influencing the release dynamics of Ca, Mg and Mn during decomposition of foliar litter in the subtropical evergreen broad-leaved forest. PMID:26995897

  7. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    Science.gov (United States)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  8. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    OpenAIRE

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 d...

  9. Influence of a Biodegradable Litter Amendment on the Pyrolysis of Poultry Litter

    OpenAIRE

    Tarrant, Ryan Carl Allen

    2010-01-01

    The effects of adding a biodegradable litter amendment (AmmoSoak), developed from steam exploded corncobs, to poultry litter prior to pyrolysis on the product yields and qualities were investigated. Mixtures of litter and AmmoSoak were pyrolyzed in a bench-scale fluidized bed reactor. The objective of the second phase was to start-up a pilot-scale fluidized bed reactor unit. The poultry litter had a lower higher heating value (HHV), higher moisture, ash, nitrogen, sulfur, and chlorine con...

  10. Poultry litter as a source of gastrointestinal helminth infections

    OpenAIRE

    Maurer, V.; Amsler, Z; Perler, E.; Heckendorn, F.

    2009-01-01

    The aim of this study carried out in 6 commercial layer houses was to examine the effect of litter management on water content, helminth egg count and litter infectiousness with the intestinal nematodes Ascaridia galli, Heterakis gallinarum, and Capillaria spp. Three types of litter management were established in each layer house in parallel: in compartment A, litterwas left undisturbed, in compartment B, wet litter was replaced and in compartment C, new litter material was added weekly. Dry ...

  11. Study on Hydrological Functions of Litter Layers in North China

    OpenAIRE

    LI Xiang; Niu, Jianzhi; Xie, Baoyuan

    2013-01-01

    Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter...

  12. IMPLICATIONS OF POLICY REGULATIONS ON LAND APPLICATIONS OF POULTRY LITTER

    OpenAIRE

    Govindasamy, Ramu; Cochran, Mark J.

    1998-01-01

    The growth of the poultry industry in Arkansas has exploded in the past decade. As a result, approximately 1.5 million tons of litter are produced every year. Concerns about possible contamination of ground and surface water from land applications of poultry litter have been raised. This paper compares four policy scenarios in terms of their efficiency and practicality to manage land applications of poultry litter. The results indicate that a litter tax per ton of litter applied could achieve...

  13. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    Science.gov (United States)

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  14. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005; Biodegradation des litieres et sequestration du carbone dans les ecosystemes cultives et perennes. Rapport final des travaux Avril 2005

    Energy Technology Data Exchange (ETDEWEB)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie Laon-Reims-Mons (France); Balesdent, J. [CNRS-CEA-Univ.de la Mediterranee, UMR 6191, Lab. d' Ecologie Microbienne de la Rhizosphere, 13 - Saint Paul lez Durance (France); Dambrine, E.; Zeller, B. [Institut National de Recherches Agronomiques (INRA), Unite Biogeochimie des Ecosystemes Forestiers, 54 - Nancy (France); Loiseau, P.; Personeni, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie, 63 - Clermont-Ferrand (France)

    2002-07-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as {sup 13}C for carbon, based on the use of enriched or depleted {sup 13}C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on

  15. Arst on patsiendi poolel / Galina Litter

    Index Scriptorium Estoniae

    Litter, Galina

    2006-01-01

    Naistearst Galina Litter seadusest, mis lubab alaealistel ilma vanema nõusolekuta aborti teha. Vastus artiklile : Varro Vooglaid. Vanemate vastutus - kas reaalne või paljasõnaline? // Õpetajate Leht (2006) 13. okt., lk. 1, 7

  16. No Litter Will Make a Better Place.

    Science.gov (United States)

    Rodgers, Amy

    1987-01-01

    Describes a community anti-litter campaign developed by second grades, involving letter writing, dramatics, photography, and the creation of posters and a videotape. Identifies skills from the Kentucky Essential Skills list that were taught by the project. (SV)

  17. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.

    Science.gov (United States)

    Moser, Gerald; Schuldt, Bernhard; Hertel, Dietrich; Horna, Viviana; Coners, Heinz; Barus, Henry; Leuschner, Christoph

    2014-05-01

    Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood

  18. EFFECTS OF SOIL FAUNA ON LITTER DECOMPOSITION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Forest litter is the physical makeup part of forest ecosystem. The rate of decomposition of forest litter is low in temperate and cool temperate zones. There is important significance to search and utilize the function of soil animals, in order to probe the material circulation and energy flow in forest ecosystem. We selected three kinds of mesh bag with different mesh size, in which, large pore mesh bag is large enough to permit the activities of all kinds of soil animals, medium mesh bag is designed to exclude the function of soil macrofauna, while small mesh bag is small enough to exclude the effects of any kind of soil animals as far as possible. The decomposition time is three years. The studying results show that: the decomposing speed of the bags with big meshes, under functions of all kinds of soil animals, faster than the bags with medium meshes, under functions of medium and small soil animals, as well as the bags with small meshes that excluding all possibility of functions of soil animals; in the process of decomposition of litter, relationship of the litter lost weight with number of soil animals is not obvious clearly; the degree of functions of soil animals to soft litter higher than hard litter; according to the analysis of diversity index, no regular changes will happen to the diversity of soil animals as the time of decomposing samples lengthen.

  19. Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone

    OpenAIRE

    V. V. Brygadyrenko

    2016-01-01

    The litter in a forest ecosystem acts as a trophic substrate, and at the same time it is the environment for litter invertebrates. But despite this fact, there has been very little research conducted on the influence of litter thickness on the structure of litter macrofauna. The litter of steppe forests contains most types of integrated communities of forest ecosystems. This means that its thickness cannot avoid playing a significant role in the functioning of the ecosystem. Following to the ...

  20. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China

    OpenAIRE

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei; Zhang, Tao; Fu, Shenglei; LIU, ZHANFENG; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleav...

  1. Quantifying the dynamics of water bodies, wetlands and biomass in the Poyang Lake region: A multi-polarization SAR remote sensing approach

    Science.gov (United States)

    Sang, Huiyong

    Field measurements were combined with synthetic aperture radar (SAR) images to evaluate the use of C-band multi-polarized radar remote sensing for estimating plant parameters (plant height, fresh biomass, dry biomass and vegetation water content) of wetland vegetation, and mapping the dynamics of water bodies, wetlands (natural wetlands and rice paddies) and flooding extents in the Poyang Lake region. The capacity of L-band SAR in land cover mapping was also investigated by integrating with optical imagery. Hydrological patterns in Poyang Lake are the dominant factor controlling the spatial and temporal variations of wetland species in Poyang Lake. Water levels in this region are primarily governed by five rivers (Ganjiang river, Xiushui river, Raohe river, Fuhe river, and Xinjiang river). Its northern region is also influenced by the backflow from Yangtze River. The above-ground total biomass increased steadily from March following the hydrological cycle. Wetland species colonizing at different altitudes were gradually flooded from late spring to summer. Carex spp. died during flooding periods and started another growth cycle in autumn after flooding receded. Canopy volume dominates the radar backscattering mechanism in Carex spp. wetlands during their growth period, but the temporal variation of radar backscatter from these wetlands is mainly influenced by flooding. Tall wetland species (Miscanthus sacchariflorus, Phragmites communis Trin., and others) still emerged above water surfaces during flooding peaks and started to senesce in autumn. Surface backscattering mechanism is dominant during the early growing stage and the senescent period of tall vegetation. Plant canopy variation controlled the temporal dynamics of radar backscatters from Phragmites communis Min. Radar backscattering mechanisms from Miscanthus sacchariflorus wetlands were more complicated during the flooding periods. The variations of ground water depth and plant structure of Miscanthus

  2. How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest?

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Christensen, Søren

    2005-01-01

    The relative importance of litter quality and site heterogeneity on population dynamics of decomposer food webs was investigated in a semi-natural mixed deciduous forest in Denmark. Litterbags containing beech or ash leaves were placed in four plots. Plots were located within gaps and under closed...... organisms in the decomposer food web, site effects were also detected and nematode functional groups responded more to site than to litter quality early on in the decomposition process....

  3. Litter layer influence on the thermal regime of a sandy soil under a pine forest in mediterranean Portugal

    OpenAIRE

    Andrade, José; Abreu, Francisco

    2004-01-01

    Decomposition of needle litter is a relevant process in applied ecology, namely in the nutrient dynamics of forested ecosystems. Soil temperature strongly influences soil microbian activity. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured at several depths down to 16 cm, with and without litter layer. Daily cycles were analysed by means of Fourier series. Daily cycles were studied based on data from four days defined according to soil water content....

  4. Effect of collector size on forest litter-fall collection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    McShane, M.C.; Carlile, D.W.; Hinds, W.T.

    1983-01-01

    Litter fall is commonly collected for a variety of ecological studies. This study was designed to test the effect of collector size on the precision of forest litter-fall estimates and on the time involved in laboratory sample sorting. Collectors varied in size from 0.010 to 0.933 m/sup 2/ and were physically nested, the smaller units with in larger units. Ten of these collector combinations were randomly placed on a 1-ha plot in a Douglas-fir/western hemlock (Pseudotsuga menziesii (Mirb.) Franco/Tsuga heterophylla (Raf.) Sarg.) stand in H.J. Andrews Experimental Forest. Collections were made monthly and records were kept of the time required to sort the litter into needles, epiphytes, and miscellaneous categories. Based on a definition of precision as +/- 10% of the mean, 90% of the time, results indicate (i) that the cost of obtaining precise estimates of needle fall decreases with decreasing collector size to 0.010 m/sup 2/, (ii) that collectors of any size can be used to obtain estimates of total litter fall if the number of collectors required to obtain precise results is determined, and (iii) that precise estimates of epiphyte biomass require large numbers of samplers and are not cost effective.

  5. Analysis of litter size and average litter weight in pigs using a recursive model

    DEFF Research Database (Denmark)

    Varona, Luis; Sorensen, Daniel; Thompson, Robin

    2007-01-01

    An analysis of litter size and average piglet weight at birth in Landrace and Yorkshire using a standard two-trait mixed model (SMM) and a recursive mixed model (RMM) is presented. The RMM establishes a one-way link from litter size to average piglet weight. It is shown that there is a one-to-one...

  6. Litter NSV; marine litter monitoring by northern fulmars (a pilot study)

    NARCIS (Netherlands)

    Franeker, van J.A.; Meijboom, A.

    2002-01-01

    The northern fulmar is a seabird known to consume litter such as plastic. The Dutch government has asked for an investigation of the possibility to use stomach contents of beach-washed fulmars as a monitoring tool for the abundance of marine litter inthe North Sea. Such monitoring is of importance i

  7. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2014-01-01

    Full Text Available Chicken litter or chicken litter-based organic fertilizers are usually recycled into the soil to improve the structure and fertility of agricultural land. As an important source of nutrients for crop production, chicken litter may also contain a variety of human pathogens that can threaten humans who consume the contaminated food or water. Composting can inactivate pathogens while creating a soil amendment beneficial for application to arable agricultural land. Some foodborne pathogens may have the potential to survive for long periods of time in raw chicken litter or its composted products after land application, and a small population of pathogenic cells may even regrow to high levels when the conditions are favorable for growth. Thermal processing is a good choice for inactivating pathogens in chicken litter or chicken litter-based organic fertilizers prior to land application. However, some populations may become acclimatized to a hostile environment during build-up or composting and develop heat resistance through cross-protection during subsequent high temperature treatment. Therefore, this paper reviews currently available information on the microbiological safety of chicken litter or chicken litter-based organic fertilizers, and discusses about further research on developing novel and effective disinfection techniques, including physical, chemical, and biological treatments, as an alternative to current methods.

  8. Effect of an odor eliminator on feline litter box behavior.

    Science.gov (United States)

    Cottam, Nicole; Dodman, Nicholas H

    2007-02-01

    Decreasing litter box odor may be an important treatment component in addressing feline inappropriate elimination. A three-phase study was conducted to determine if the use of Zero Odor litter box spray increases the preference of litter boxes to cats, presumably by its odor-eliminating quality. In the first phase, cats were given a litter box preference test between a litter box sprayed with Zero Odor and one without. In the second phase, the number of occurrences of behaviors indicative of a cat's dissatisfaction with the litter box (scratching at the sides of the box, floor or wall, hesitating when entering the litter box, balancing on the side of the box and eliminating outside of the litter box) was compared before and after the use of Zero Odor. Last, the frequency of eliminations that occurred outside the litter box was measured during a baseline phase and a test phase, in which Zero Odor was sprayed into all litter boxes in the home. Significantly fewer behaviors associated with feline litter box dissatisfaction and fewer undesirable eliminations were observed in phases 2 and 3, respectively. These findings suggest that use of Zero Odor litter box spray appears to decrease litter box odor and increases the attractiveness of litter box to cats. PMID:17049291

  9. [Recovery of three tropical forest covers from mid-elevation sites in Costa Rica: oligochaetes, litter and soil analysis].

    Science.gov (United States)

    Pérez-Molina, Junior Pastor; Cordero Solórzano, Roberto A

    2012-12-01

    In Costa Rica, the region of Rio Macho is a highly fragmented landscape with imminent risk of landslides. This area, which provides important environmental services, has been partially recovered to its original forest through intentional reforestation with exotic species or natural regeneration after abandonment. The aim of this study was to evaluate the bioindicator potential of oligochaete presence as well as some litter and soil characteristics. The ecosystem recovery of the two common restoration modes was measured within three different forest covers. For this, some substrate characteristics were analyzed and compared in a-50 years old secondary forest, a 13 years tacotal, and a 35 years cypress (Cupressus lusitanica) plantation. The three sites studied differed in density, biomass and average mass of oligochaetes, and in some litter (depth, nitrogen, phosphorus and C/N ratio of litter), and soil variables (soil water content (CA), pH, phosphorus, cation exchange capacity, and magnesium). The forest registered the lowest density of earthworms and soil pH, and the highest soil CA and phosphorus. CA was inversely related to the oligochaete density across sites. Besides, there were positive correlations between C/N and C/P ratios from the litter and soil pH, and inverse correlations of litter depth, litter N and P concentrations with soil P. Discriminant Analysis (AD) performed with all soil and litter variables, produced a sharp classification of the three forest cover types. AD suggests that site differences were mostly determined by soil CA and litter nitrogen concentration. Considering all the evaluated parameters, our results suggest in the first place, that oligochaetes are sensitive to changes in some soil and litter characteristics. Secondly, aside from the striking oligochaete differences between the old secondary forest and the other two sites, some soil and litter traits resulted good indicators of the present recovery of the three forest covers. In

  10. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application

    Science.gov (United States)

    Ventorino, Valeria; Aliberti, Alberto; Faraco, Vincenza; Robertiello, Alessandro; Giacobbe, Simona; Ercolini, Danilo; Amore, Antonella; Fagnano, Massimo; Pepe, Olimpia

    2015-02-01

    The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the `greener' technology of second-generation biofuels.

  11. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    Science.gov (United States)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  12. Effects of climate change on volatile organic compound emissions from soil and litter

    Science.gov (United States)

    Gray, C. M.; Fierer, N.

    2012-12-01

    Our knowledge of the variability and magnitude of volatile organic compound (VOC) emissions from soil and litter is relatively limited compared to what we know about VOC emissions from terrestrial plants. With climate change expecting to alter plant community composition, nitrogen (N) deposition rates, mean annual temperatures, and precipitation patterns, it is unknown how production and consumption of VOCs from litter and soil will respond. We spent the last four years quantifying VOC emissions from soil and litter, comparing VOC emissions to CO2 emissions, and identifying the biotic and abiotic controls on emission rates with both lab and field experiments using a proton transfer reaction mass spectrometer (PTR-MS). In all studies, methanol was the dominant VOC flux. VOC emissions were not driven by abiotic processes, as microbial sources accounted for 78% to 99% of the total VOC emissions from decomposing litter. Litter chemistry was correlated with the types of VOCs emitted and the net emissions of carbon as VOCs was found to be up to 88% of that emitted as CO2 suggesting that VOCs likely represent an important component of the carbon cycle in many terrestrial systems. Nitrogen additions drastically reduced VOC emissions from litter to near zero, though it is still not understood whether this was due to an increase in consumption or a decrease in production. Finally, field and lab experiments show that temperature and moisture are both important controls of certain VOC emissions from soils, but that the effects of these factors on VOC emissions are not necessarily equivalent to their effects on CO2 emissions. Together, these series of studies are moving us toward a predictive understanding of VOC emissions from soil and litter with the ultimate goal of incorporating these VOC emissions into global models of terrestrial VOC dynamics.

  13. Effects of forest fragmentation and habitat degradation on West African leaf-litter frogs

    NARCIS (Netherlands)

    A. Hillers; M. Veith; M.-O. Rödel

    2008-01-01

    Habitat degradation alters the dynamics and composition of anuran assemblages in tropical forests. The effects of forest fragmentation on the composition of anuran assemblages are so far poorly known. We studied the joint influence of forest fragmentation and degradation on leaf-litter frogs. We spe

  14. Emissions and Furnace Gas Temperature for Electricity Generation Via Co-Firing of Coal and Biomass

    Directory of Open Access Journals (Sweden)

    Shoaib Mehmood

    2015-12-01

    Full Text Available The emissions of carbon dioxide and nitrogen and sulphur oxides for electricity generation with coal and biomass co-firing are investigated and the furnace gas temperature assessed. The study uses simulation and considers fuel combinations based on two coals (bituminous coal, lignite and four types of biomass (rice husk, sawdust, chicken litter, refused derived fuel. With increasing biomass, net CO2 emissions are seen to decline significantly for all types of selected biomass, while gross carbon dioxide emissions increase for all blends except bituminous coal/refuse derived fuel, lignite/chicken litter and lignite/refuse derived fuel. The reductions in emissions of nitrogen and sulphur oxides are dependent on the contents of nitrogen and sulphur in the biomass. The results also show for all fuel combinations that increasing the biomass proportion decreases the furnace exit gas temperature.

  15. Changes in tundra vascular plant biomass over thirty years at Imnavait Creek, Alaska, and current ecosystem C and N dynamics.

    Science.gov (United States)

    Bret-Harte, M. S.; Shaver, G. R.; Euskirchen, E. S.; Huebner, D. C.; Drew, J. W.; Cherry, J. E.; Edgar, C.

    2015-12-01

    Understanding the magnitude of, and controls over, carbon fluxes in arctic ecosystems is essential for accurate assessment and prediction of their responses to climate change. In 2013, we harvested vegetation and soils in the most common plant community types in source areas for fluxes measured by eddy covariance towers located in three representative Alaska tundra ecosystems along a toposequence (a ridge site of heath tundra and moist non-acidic tundra, a mid-slope site of moist acidic tussock tundra, and a valley bottom site of wet sedge tundra and moist acidic tussock tundra) at Imnavait Creek, Alaska. This harvest sought to relate biomass, production, composition, and C and N stocks in soil and vegetation, to estimates of net ecosystem CO2 exchange obtained by micrometeorological methods. Soil C and N stocks in the seasonally unfrozen soil layer were greatest in the wet sedge community, and least in the heath community. In contrast, moist acidic tussock tundra at the valley bottom site had the highest C and N stocks in vascular plant biomass, while nearby wet sedge tundra had the lowest. Overall, soil C:N ratio was highest in moist acidic tussock tundra at the mid-slope site. Aboveground biomass of vascular plants in moist acidic tundra at the mid-slope site was nearly three times higher than that measured thirty years earlier in vegetation harvests of nearby areas at Imnavait Creek. Other harvests from sites near Toolik Field Station suggest that vascular plant biomass in moist acidic tundra has increased in multiple sites over this time period. Increased biomass in the mid-1990s corresponds with a switch from mostly negative to mostly positive spatially-averaged air temperature anomalies in the climate record. All our sites have been annual net sources of CO2 to the atmosphere over nine years of measurement, but in the last two years, the valley bottom site has been a particularly strong source, due to CO2 losses in fall and winter that correspond with a

  16. Composição e dinâmica da biomassa aérea após a queima em savana gramíneo-lenhosa no Pantanal Composition and aerial biomass dynamics after burning of a grassy-woody savanna in the Pantanal wetlands

    Directory of Open Access Journals (Sweden)

    EVALDO LUIS CARDOSO

    2000-11-01

    Full Text Available O objetivo deste estudo foi avaliar a composição e dinâmica da biomassa aérea após a queima de uma savana gramíneo-lenhosa no Pantanal. Foram coletados dados mensais de freqüência de espécies, biomassa aérea e cobertura do solo durante 11 meses em uma área com queima (CQ e outra sem queima (SQ, ambas sem pastejo. A queima reduziu a freqüência das gramíneas predominantes e condicionou aumento no número de espécies dicotiledôneas e ciperáceas. A produção de biomassa aérea total foi inferior na área com queima, embora a tendência de incremento tenha sido semelhante nas duas áreas. A produção de biomassa morta foi muito afetada pela queima, cuja produção, 11 meses após, representou aproximadamente 25% da obtida na área sem queima. A cobertura do solo foi inferior na área com queima e somente no quarto mês assemelhou-se à área sem queima.The purpose of this work was to evaluate composition and aerial biomass dynamics after burning of a grassy-woody savanna in the Pantanal wetlands, Brazil. During 11 months, data on species frequency, aerial biomass and soil cover were collected in an area with burning (WB and another free of burning (FB, both not grazed. Burning reduced the frequency of the most predominant grasses and increased the number of dicotyledons and cyperaceae species. The production of total aerial biomass was lower in the WB area, despite an increase tendency that was similar in both areas. Litter production was strongly affected by burnings. After 11 months its production was approximately 25% of the production exhibited by the FB area. Soil cover was also lower in the WB and only after four months it was similar to the FB area.

  17. UVB Exposure Does Not Accelerate Rates of Litter Decomposition in a Semiarid Riparian Ecosystem

    Science.gov (United States)

    Uselman, S. M.; Snyder, K. A.; Blank, R. R.; Jones, T. J.

    2010-12-01

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium

  18. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China

    DEFF Research Database (Denmark)

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter...... litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can...... affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem. © 2014 Chen et al....

  19. ECONOMIC RETURNS FROM REDUCING POULTRY LITTER PHOSPHORUS WITH MICROBIAL PHYTASE

    OpenAIRE

    Bosch, Darrell J.; Zhu, Minkang; Kornegay, Ervin T.

    1997-01-01

    Requiring that crop applications of manure be based on phosphorus content (P-standard) could increase poultry litter disposal costs. Microbial phytase reduces litter P content and could reduce litter disposal costs under a P-standard. For a representative Virginia turkey farm, phytase costs $2,500 and could increase value of litter used for fertilizer on the turkey farm by $390 and reduce supplemental P feed costs by $1,431. Based on assumed litter demand and supply, estimated litter export p...

  20. Biological and climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

    Science.gov (United States)

    Portillo-Estrada, M.; Pihlatie, M.; Korhonen, J. F. J.; Levula, J.; Frumau, A. K. F.; Ibrom, A.; Lembrechts, J. J.; Morillas, L.; Horváth, L.; Jones, S. K.; Niinemets, Ü.

    2015-11-01

    Projection of carbon and nitrogen cycles to future climates is associated with large uncertainties, in particular due to uncertainties how changes in climate alter soil turnover, including litter decomposition. In addition, future conditions are expected to result in changes in vegetation composition, and accordingly in litter type and quality, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across 6 European sites (4 forest and 2 grasslands) spanning a large geographical and climatic gradient (5.6-11.4 °C in annual temperature 511-878 mm in precipitation) to gain insight into biological (litter origin and type, soil type) and climatic controls on litter decomposition. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated to the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species, litter origin and soil type. Cumulative climatic variables, precipitation and air temperature (ignoring days with air temperatures below 0 °C), were appropriate to predict the litter remaining mass during decomposition (Mr). And Mr and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during decomposition. We concluded with an equation for predicting the decomposition k rate by using mean annual air temperature and litter total specific leaf area.

  1. LITTER AND MACRONUTRIENT DEPOSITION IN A STAND OF BLACK WATTLE (Acacia mearnsii De Wild. IN THE STATE OF RIO GRANDE DO SUL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Márcio Viera

    2010-08-01

    Full Text Available This study evaluated litter and macronutrient deposition in a six year-old black wattle (Acacia mearnsii De Wild. stand, in Butia-RS. Five plots (18mx24m of litter were systematically allocated, each one with four trap collectors of 1 m2. The litter intercepted was collected monthly between January 2002 and December 2003. After collection, litter was divided into leaves, flowers, fruits and caterpillar (Adeloneivaia subangulata feces, oven dried, weighed, milled and analyzed for N, P, K, Ca and Mg contents. The average annual litter deposition reached 4.32 Mg ha-1, and was composed of 75.5, 11.1, 11.2 and 2.2% of leaves, flowers, fruits and feces, respectively. Litter deposition was more concentrated in the spring. The higher deposition of nutrients was through the leaf fraction, which contributed annually with a great amount of litter biomass, although not showing the highest nutrient concentrations. The supply of total amount of macronutrients to the soil was of 74.8 of N, 26.8 of K, 23.1 of Ca, 7.9 of Mg and 2.4 of P (kg ha-1.

  2. The effect of soil macrofauna on litter decomposition and soil organic matter accumulation during soil formation in spoil heaps after brown coal mining: A preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Frouz, J. [Academy of Science for Czech Republic, Ceske Budejovice (Czech Republic)

    2002-07-01

    The effect of macrofauna on removal of litter from the soil surface and accumulation of organic matter in the mineral soil layer were studied in two post mining sites planted by alder of different ages (4 and 38 years), using field microcosms, that were either accessible or not to soil macrofauna. The microcosms contained two layers: litter layer (autochthonous alder litter) and mineral layer (clay - spoil material early after mining with low organic matter content). After one year of exposure, no significant effect of macrofauna on total organic carbon loss in whole system (i.e. in both layers pooled) was found. Nevertheless, the distribution of carbon between layers was affected. Macrofauna enhanced C removal from the litter layer and its accumulation in the mineral layer. The accumulation of C in the mineral layer resulted in long term enhancement of microbial biomass and respiration. This indicates that effect of soil fauna on decomposition estimated using litter bags with various mesh size may indicate effect of fauna on litter fragmentation and removal from surface rather than effect on litter mineralization.

  3. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    OpenAIRE

    Marc A. Rosen; Shoaib Mehmood; Bale V. Reddy

    2012-01-01

    The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel) and two coals (bituminous coal and lignite) are considered. Key system performance parameters are evaluated for various fuel combina...

  4. [Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest].

    Science.gov (United States)

    Wang, Ning; Wang, Mei-ju; Li, Shi-lan; Wang, Nan-nan; Feng, Fu-juan; Han, Shi-jie

    2015-05-01

    Broadleaved Korean pine mixed forest is the zonal climax vegetation in Northeast China and it plays a significant role in maintaining the ecological security. Changbai Mountains is a suitable region to study the positive and negative feedback mechanisms of temperate forest for precipitation variation. This study analyzed responses of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN) to precipitation variation (± 30%) in original broadleaved Korean pine mixed forest of Changbai Mountains. The results showed that, during the growing seasons (from May to September), the averages of SMBC and SMBN were 879.09 and 100.03 mg · kg(-1), respectively. Moreover, both of these two parameters gradually decreased with the soil depth. The contents of SMBC and SMBN all increased with the increasing precipitation, and the changes of SMBC and SMBN in the 0-5 cm soil layer were stronger than in the 5-10 cm soil layer. The value of SMBC/SMBN declined with the increase of precipitation. The precipitation variation significantly influenced the means of SMBC and SMBN. Compared with precipitation reduction, precipitation enhancement affected the indices much significantly. Both SMBC and SMBN showed similar seasonal patterns, which were the lowest in May, and after that, they increased and then decreased and increased again, showing 1-2 peaks in the growing season. However, the value and occurring time of the peaks varied with the precipitation and soil layer, and the seasonal variations of SMBC and SMBN in the 0-5 cm soil layer were higher than in the 5-10 cm soil layer. SMBC and SMBN had significant positive correlation with organic matter and total nitrogen content. The variances of soil physical and chemical properties caused by precipitation variation were closely related with the difference in spatial-temporal patterns of the soil microbial biomass in the forest. In conclusion, the precipitation variations could cause the change of the soil microbial

  5. Natural zeolites in diet or litter of broilers.

    Science.gov (United States)

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter. PMID:26879673

  6. Biomass co-firing under oxy-fuel conditions: A computational fluid dynamics modelling study and experimental validation

    OpenAIRE

    Álvarez González, Lucía; Yin, C.; Riaza Benito, Juan; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2014-01-01

    This paper presents an experimental and numerical study on co-firing olive waste (0, 10%, 20% on mass basis) with two coals in an entrained flow reactor under three oxy-fuel conditions (21%O2/79%CO2, 30%O2/70%CO2 and 35%O2/65%CO2) and air–fuel condition. Co-firing biomass with coal was found to have favourable synergy effects in all the cases: it significantly improves the burnout and remarkably lowers NOx emissions. The reduced peak temperatures during co-firing can also help to mitigate dep...

  7. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  8. White popular (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ciadamidaro, L.; Madejon, P.; Cabrera, F.; Madejon, E.

    2014-06-01

    Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health. Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH 2.66) and a non-contaminated soil (RHU pH 7.19). Materials and methods: Soil samples were placed in 2,000 cm{sup 3} microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH{sub 4}{sup 4}+-N) and nitrate (NO{sub 3}{sup -} -N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl{sub 2}) were determined at different times of incubation. Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO{sub 3} –-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH{sub 4}{sup +}-N and NO{sub 3}{sup -} -N, microbial biomass N and protease activity. Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle. (Author)

  9. A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2013-06-01

    multiple substrates. We then applied the EC and ECA kinetics to a guild based C-only microbial litter decomposition model and found that both approaches successfully simulated the commonly observed (i two-phase temporal evolution of the decomposition dynamics; (ii final asymptotic convergence of the lignocellulose index to a constant that depends on initial litter chemistry and microbial community structure; and (iii microbial biomass proportion of total organic biomass (litter plus microbes. In contrast, the MM kinetics failed to realistically predict these metrics. We therefore conclude that the ECA kinetics is more robust than the MM kinetics in representing complex microbial, C substrate, and mineral surface interactions. Finally, we discuss how these concepts can be applied to other consumer-substrate networks.

  10. A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition

    Science.gov (United States)

    Tang, J. Y.; Riley, W. J.

    2013-12-01

    substrates. We then applied the EC and ECA kinetics to a guild based C-only microbial litter decomposition model and found that both approaches successfully simulated the commonly observed (i) two-phase temporal evolution of the decomposition dynamics; (ii) final asymptotic convergence of the lignocellulose index to a constant that depends on initial litter chemistry and microbial community structure; and (iii) microbial biomass proportion of total organic biomass (litter plus microbes). In contrast, the MM kinetics failed to realistically predict these metrics. We therefore conclude that the ECA kinetics are more robust than the MM kinetics in representing complex microbial, C substrate, and mineral surface interactions. Finally, we discuss how these concepts can be applied to other consumer-substrate networks.

  11. [Seasonal dynamics of algae species composition and biomass in the coastal ice of Kandalaksha Bay, the White Sea].

    Science.gov (United States)

    2012-01-01

    Ice algae were investigated in January - April in Velikaya Salma Sound (1997), Kandalaksha Inlet (2002), and Chupa Inlet (2003) of Kandalaksha Bay, the White Sea. In total, 146 taxa were found. By species number, diatoms predominated. The highest species richness was observed in Velikaya Salma Sound (108 taxa), the lowest--in Kandalarsha Inlet (51 taxa). Between the three regions, algae species composition differed significantly from each other (with similarity measured by Shimkevich-Simpson index being on the level of 0.61-0.63). Total ice algae biomass varied substantially over time and space. In all the regions it increased during ice season: in Velikaya Salma Sound from 0.08 to 4.10 mg C/m2 in Kandalaksha Inlet from 0.38 to 89 mg C/m2, in Chupa Inlet from 1.72 to 64.70 mg C/m2. Species composition of those algae contributing to biomass value to the greatest extent varied over time and space, within each region, and between the regions. Among dominating species not only ice-neritic algae (Nitzschia frigida, Pauliella taeniata, Entomoneis kjellmanii, E. paludosa, and others), but also neritic (Thalassiosira gravida, T. nordenskioeldii) and littoral ones (Amphora laevis and other) were registered. In Chupa Inlet, at sites affected by river discharge, freshwater cyanobacteria Gomphosphaeria lacustris and chlorophyte Ulothrix implexa dominated. In one case the dominating species was found to be snow algae Rhaphidonema nivale. PMID:23330401

  12. Biomass dynamics and 137Cs cycling in floating-leaved macrophytes in a nuclear-contaminated aquatic ecosystem

    International Nuclear Information System (INIS)

    The purpose of these studies was to provide system-wide estimates of quantities of radioactive 137Cs cycling through above-sediment biomass of dominant macrophyte species during a growing season in Pond B, an abandoned cooling reservoir on the Department of Energy's Savannah River Plant, SC. Three floating-leaved species comprised 50-60% of plant standing crop in this softwater system and were the subject of production studies stratified by water depth. Turnover rates for leaf/petiole biomass averaged 2%, 3% and 5% day-1 and 5.9, 7.4 and 14.7 yr-1 for Nymphaea odorata, Brasenia schreberi, and Nymphoides cordata, respectively. Turnover rates varied by season, water depth, and levels of herbivory, depending on species. 137Cs concentrations in plants did not different significantly by water depth, but were higher in petioles than in leaves. Transplant experiments determined that 137Cs was absorbed readily from the water column, and not from sediments, by all three species

  13. Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian; ZHAO Ke-bin; WANG Li-xian; WANG Li-gang; SHI Hui-bi; YAN Hua; ZHANG Long-chao; LIU Xin; PU Lei; LIANG Jing; ZHANG Yue-bo

    2016-01-01

    Litter uniformity, which is usualy represented by within-litter weight coefifcient of variation at birth (CVB), could inlfuence litter performance of sows and the proiftability of pig enterprises. The objective of this study was to characterize CVB and its effect on other reproductive traits in Large White sows. Genetic parameters and genetic correlation of the reproductive traits, including CVB, within-litter weight coefifcient of variation at three weeks (CVT), total number born (TNB), number born alive (NBA), number born dead (NBD), gestation length (GL), piglet mortality at birth (M0), piglet mortality at three weeks (M3), total litter weight at birth (TLW0), and total litter weight at three weeks (TLW3) were estimated for 2032 Large White litters. The effects of parity and classiifed litter size on CVB, CVT, TNB, NBA, NBD, GL, M0, M3, TLW0, and TLW3 were also estimated. The heritabilities of these reproductive traits ranged from 0.06 to 0.17, with the lowest heritability for CVB and the highest heritability for TLW0. Phenotypic and genetic correlations between these reproductive traits were low to highly positive and negative (ranging from −0.03 to 0.93, and −0.53 to 0.93, respectively). The genetic correlations between TNB and CVB, and between M0 and CVB were 0.32 and 0.29, respectively. In addition, CVB was signiifcantly inlfuenced by parity and litter size class (P<0.05). Al the results suggest that piglet uniformity should be maintained in pig production practices and pig breeding programs.

  14. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.

    Science.gov (United States)

    Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey; Garnier-Laplace, Jacqueline; Adam-Guillermin, Christelle

    2016-08-15

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. PMID:27110974

  15. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  16. Litter decomposition in burned corsican pine stands in Turkey

    OpenAIRE

    Küçük, Mehmet; Sağlam, Bülent; Dinç, Musa; Duman, Ahmet

    2014-01-01

    This study was carried out to determine the effects of forest fire on litter decomposition in Corsican pine (P. nigra) stands. The study is located in Vezirkopru Forest area in Samsun, Turkey. We made measurements of litter decomposition in 80 to 100 years old stands subjected to prescribed burning. Measurements were made between November, 2013 and October, 2014. 20x20 cm litter bags were placed on soil surface and collected in July and October. Sampling time had significant effect on litter...

  17. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest.

    Science.gov (United States)

    Dore, Sabina; Fry, Danny L; Collins, Brandon M; Vargas, Rodrigo; York, Robert A; Stephens, Scott L

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60-70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related

  18. Long-term litter decomposition controlled by manganese redox cycling.

    Science.gov (United States)

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates. PMID:26372954

  19. Current status on marine litter indicators in Nordic waters

    DEFF Research Database (Denmark)

    Strand, Jakob; Tairova, Zhanna; Magnusson, Kerstin;

    Status for project on Marine litter in the Nordic waters. This includes a review of Nordic studies on marine litter indicators. Various studies as part of either research or existing monitoring have provided information on occurrence of marine litter in Nordic waters from Baltic Sea to the Arctic....

  20. A Dynamic Model for Cellulosic Biomass Hydrolysis: a Comprehensive Analysis and Validation of Hydrolysis and Product Inhibition Mechanisms

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Morales Rodriguez, Ricardo; Sin, Gürkan;

    2014-01-01

    The objective of this study is to perform a comprehensive enzyme kinetics analysis in view of validating and consolidating a semimechanistic kinetic model consisting of homogeneous and heterogeneous reactions for enzymatic hydrolysis of lignocellulosic biomass proposed by the U.S. National...... product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanisms of the model. A nonlinear least squares method was used to identify the model and estimate kinetic parameters based on the experimental data. The suitable mathematical model for industrial...... application was selected among the proposed models based on statistical information (weighted sum of square errors). The analysis showed that transglycosylation plays a key role at high glucose levels. It also showed that the values of parameters depend on the selected experimental data used for parameter...

  1. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.

    Science.gov (United States)

    Funck, J Arce; Clivot, H; Felten, V; Rousselle, P; Guérold, F; Danger, M

    2013-11-15

    The functioning of forested headwater streams is intimately linked to the decomposition of leaf litter by decomposers, mainly aquatic hyphomycetes, which enables the transfer of allochthonous carbon to higher trophic levels. Evaluation of this process is being increasingly used as an indicator of ecosystem health and ecological integrity. Yet, even though the individual impacts of contaminants and nutrient availability on decomposition have been well studied, the understanding of their combined effects remains limited. In the current study, we investigated whether the toxic effects of a reemerging contaminant, silver (Ag), on leaf litter decomposition could be partly overcome in situations where microorganisms were benefitting from high phosphorus (P) availability, the latter being a key chemical element that often limits detritus decomposition. We also investigated whether these interactive effects were mediated by changes in the structure of the aquatic hyphomycete community. To verify these hypotheses, leaf litter decomposition by a consortium of ten aquatic hyphomycete species was followed in a microcosm experiment combining five Ag contamination levels and three P concentrations. Indirect effects of Ag and P on the consumption of leaf litter by the detritivorous crustacean, Gammarus fossarum, were also evaluated. Ag significantly reduced decomposition but only at the highest concentration tested, independently of P level. By contrast, P and Ag interactively affected fungal biomass. Both P level and Ag concentrations shaped microbial communities without significantly affecting the overall species richness. Finally, the levels of P and Ag interacted significantly on G. fossarum feeding rates, high [Ag] reducing litter consumption and low P availability tending to intensify the feeding rate. Given the high level of contaminant needed to impair the decomposition process, it is unlikely that a direct effect of Ag on leaf litter decomposition could be observed in

  2. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

    OpenAIRE

    Portillo-Estrada, Miguel; Pihlatie, Mari; Korhonen, Janne F. J.; Levula, Janne; Frumau, Arnoud K. F.; Ibrom, Andreas; Lembrechts, Jonas J.; Morillas, Lourdes; Horváth, László; Jones, Stephanie K.; NIINEMETS, ÜLO

    2016-01-01

    Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experim...

  3. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

    OpenAIRE

    Portillo-Estrada, Miguel; Pihlatie, Mari; Korhonen, Janne F. J.; Levula, Janne; Frumau, Arnoud K. F.; Ibrom, Andreas; Lembrechts, Jonas J.; Morillas, Lourdes; Horvath, Laszlo; Jones, Stephanie K.; Niinemets, Ulo

    2016-01-01

    Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried ...

  4. Population dynamics in a 6-year old coppice culture of poplar. I. Clonal differences in stool mortality, shoot dynamics and shoot diameter distribution in relation to biomass production

    International Nuclear Information System (INIS)

    Poplar trees have the capacity to regrow a number of shoots after being coppiced. In April 1996, a high density field trial with 17 different poplar (Populus) clones was established in Boom (Belgium) on a former waste disposal site. At the end of the establishment year (December 1996), all plants were cut back to a height of 5 cm to create a coppice culture. Four years after the first coppicing in January 2001, the stand was cut back again. During 6 years (1996-2001), shoot diameters and number of stools and shoots were assessed every year for all clones. Before the second coppicing, biomass production of all clones was estimated. Significant clonal differences were found in stool mortality, number of shoots per stool and biomass production. After 6 years (December 2001), stool mortality averaged 7-65%. After the first coppicing (1997), the average number of shoots ranged between three and seven shoots per stool; after the second coppicing, the average number of shoots ranged between 8 and 19 shoots per stool. During the 4 years following the first coppicing, shoot density decreased exponentially, leaving mostly one or two dominant shoots per stool by the end of 2000. The other shoots had no significant influence on stool dry mass, since most of the surviving shoots were suppressed and small and made little contribution to total dry mass. The diameter of the dominant shoot(s) was the most important determinant of stool dry mass. Mean annual biomass production ranged from 2 to 11 Mg ha-1

  5. Biomass power; Biomasse-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Woergetter, M.

    2003-07-01

    The author reports about use of biomass in Austria and Bavaria: power generation, production of biodiesel, bioethanol, energy efficiency of small biomass furnaces. (uke) [German] Bioenergie wird von breiten Kreisen als wichtiger Ansatz in Richtung einer nachhaltigen Entwicklung in Europa gesehen. Die Herausforderung liegt dabei im neuen Herangehen an Entscheidungen; Dimensionen der Wirtschaft, der Umwelt und der Gesellschaft sind dabei zu beruecksichtigen. Bioenergie ist somit keine reine Frage der Umwelt, sondern zielt auf den Umbau unseres Systems in Richtung Nachhaltigkeit. (orig.)

  6. Ballonnen in zee = balloons as marine litter

    NARCIS (Netherlands)

    Franeker, van J.A.

    2008-01-01

    Releasing balloons seems harmless. However, remains of balloons, especially valves and ribbons are becoming a common and persistent type of marine litter found on beaches. Following Dutch Queens day 2007, large numbers of Dutch balloons were found in Normandy, France. Animals may become entangled in

  7. Ecological restoration of litter in mined areas

    Science.gov (United States)

    Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro

    2016-04-01

    The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.

  8. Litter Study: A School Research Project

    Science.gov (United States)

    McCollum, Dannel

    1976-01-01

    Describes a project done to verify or dispute the breakdown in litter content proposed by Keep America Beautiful, Inc. (KAB). Decisions made relating to quantity of materials, area to be studied, and a complete description of the project are given. (EB)

  9. Poultry litter power spreads to Europe

    International Nuclear Information System (INIS)

    Fibrowatt Ltd., an independent British power developer, have built the world's first two poultry litter fired power stations. This brief article discusses the technology behind Fibrowatt's power stations, the significant benefits to the environment, the company's financial track record and the overseas opportunities for Fibrowatt's technology. (UK)

  10. Extension Leads Model City Litter Fight

    Science.gov (United States)

    Magnuson, Doris

    1971-01-01

    A three-year war on litter is in effect in the Portland, Maine, area, as a result of the University of Maine's enlisting the county extension service to help the local Model Cities program clean up the inner city. Article details problems and progress in meeting the objectives. (PD)

  11. Evaluation of ammonia emissions from broiler litter

    Science.gov (United States)

    Ammonia emissions from poultry litter results in air pollution and can cause high levels of ammonia in poultry houses, which negatively impacts bird performance. The objectives of this study were to: (1) conduct a nitrogen (N) mass balance in broiler houses by measuring the N inputs (bedding, chick...

  12. Temporary Storage of Poultry Broiler Litter

    Science.gov (United States)

    Transportation and storage of poultry broiler litter during the winter months is critical to implementing comprehensive nutrient/waste management plans, but acceptable temporary storage near the site of spreading can be difficult to arrange. Alternative, less expensive methods for temporary storage...

  13. Litter NSV; marine litter monitoring by northern fulmars (a pilot study)

    OpenAIRE

    Franeker, van, JJ Hans; Meijboom, A.

    2002-01-01

    The northern fulmar is a seabird known to consume litter such as plastic. The Dutch government has asked for an investigation of the possibility to use stomach contents of beach-washed fulmars as a monitoring tool for the abundance of marine litter inthe North Sea. Such monitoring is of importance in view of the implementation of the EU directive on port reception facilities and the development of ecological quality objectives by ICES and OSPAR.

  14. Too Litter, Too Late: Economic Logistics of Transporting Nutrient-Rich Poultry Litter Out of Nutrient-Saturated Regions

    OpenAIRE

    Carreira, Rita I.; Young, Kenneth B.; Goodwin, Harold L., Jr.

    2005-01-01

    Export of excess litter from concentrated animal production regions has become a pressing issue. A break even price for poultry litter in nutrient-deficient areas was identified through a math programming model using willingness to pay data from crop producers. Results indicate that a $16 subsidy is needed to sustain a long-term poultry litter market.

  15. Poultry litter as a source of gastrointestinal helminth infections.

    Science.gov (United States)

    Maurer, V; Amsler, Z; Perler, E; Heckendorn, F

    2009-05-12

    The aim of this study carried out in 6 commercial layer houses was to examine the effect of litter management on water content, helminth egg count and litter infectiousness with the intestinal nematodes Ascaridia galli, Heterakis gallinarum, and Capillaria spp. Three types of litter management were established in each layer house in parallel: in compartment A, litter was left undisturbed, in compartment B, wet litter was replaced and in compartment C, new litter material was added weekly. Dry matter (DM) contents of the litter and parasitological parameters (helminth egg concentration in litter samples, faecal egg counts (FECs) in the permanent layer flocks, helminth prevalence and burdens in two series of tracer animals) were determined every 4 weeks during the first 32 weeks of one laying period. DM contents of the litter varied in a broad range (48-95%); 8 weeks after onset of the study, there were significant differences between sites (Pgalli/H. gallinarum eggs were isolated from 91% of the litter samples, whereas eggs of Capillaria spp. were only extracted from 13% of the samples. Egg concentrations in litter remained at a similar level during the observation period. Neither management regime reduced helminth egg concentrations in the litter compared to the unmanaged regime. Laying hens started excreting helminth eggs 8 weeks after introduction to the layer house. In treatment C (litter added) FECs were lower than in the unmanaged treatment A in weeks 8 (Pgalli in tracer animals was lower (<10%) than the prevalences of H. gallinarum (68-80%) and Capillaria spp. (30-58%). Prevalences and H. gallinarum burdens did not differ significantly between management regimes. Although high helminth egg concentrations were found in litter, the prevalence and worm burdens in tracer animals were low compared to a similar study with tracers kept in poultry runs. The reasons for this may be that poultry litter negatively affects viability and infectiousness of helminth eggs

  16. Morphogenetic Litter Types of Bog Spruce Forests

    Directory of Open Access Journals (Sweden)

    T. T. Efremova

    2015-02-01

    Full Text Available For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss-hypnum spruce forest can be characterized as medium thickness (9–17 cm with high storage of organic matter (77–99 t/ha, which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, which depend on the content of mineral inclusions in organogenic substrate and the degree of its drainage. The differentiation of litter subhorizons was performed, visual diagnostic indicators of fermentative layers were characterized, and additional (indexes to indicate their specificity were developed. Peat- and peaty-fermentative, humified-fermentative and (black mold humus-fermentative layers were selected. Peat- and peaty-fermentative layers are characterized by content of platy peat macroaggregates of coarse vegetable composition, the presence of abundant fungal mycelium and soil animals are the primary decomposers – myriopoda, gastropoda mollusks. Humified-fermentative layers are identified by including the newly formed amorphous humus-like substances, nutty-granular structural parts of humus nature and soil animals’ humificators – enchytraeids and earthworms. (Black mold humus-fermentative layers are diagnosed by indicators with similar humified-fermentative, but differ from them in clay-humus composition of nutty-granular blue-grey parts. The nomenclature and classification of moss litter were developed on the basis of their diagnostic characteristics of fermentative layers – peat, peaty, reduced peaty, (black mold humus-peaty, reduced (black mold humus-peaty. Using the method of discriminant analysis, we revealed that the physical-chemical properties, mainly percentage of ash and decomposition degree of plant substrate, objectively

  17. Microelement contents of litter, soil fauna and soil in Pinus koralensis and mixed broad-leaved forest

    Institute of Scientific and Technical Information of China (English)

    LI Jinxia; YIN Xiuqin; DONG Weihua

    2007-01-01

    The Mn,Zn and Cu contents of litter,soil fauna and soil in Pinus koraiensis and mixed broad-leaved forest in Liangshui Nature Reserve of Xiaoxing'an Mountains were analyzed in this paper,results showed that the tested microelement contents in the litter,soil fauna and soil followed the order:Mn>Zn>Cu,but varied with environmental components,for Mn the order is soil>litter>soil fauna,for Zn is soil fauna>litter and soil,and for Cu is soil fauna>soil>litter.The change range of the tested microelement contents in litter was larger in broad-leaved forest than those in coniferous forest.Different soil fauna differed in their microelementenrichment capability,the highest content of Mn,Zn and Cu existed in earthworm,centipede and diplopod,respectively.The contents of the tested microelements in soil fauna had significant correlations with their environmental background values,litter decomposition rate,food habit of soil fauna,and its absorbing selectively and enrichment to microelements.The microelements contained in 5-20 cm soil horizon were more than those in 0-5 cm humus layer,and their dynamics differed in various horizons.

  18. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  19. The impact of alum addition on organic P transformations in poultry litter and litter-amended soil.

    Science.gov (United States)

    Warren, Jason G; Penn, Chad J; McGrath, Joshua M; Sistani, Karamat

    2008-01-01

    Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment. PMID:18268310

  20. Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone

    Directory of Open Access Journals (Sweden)

    V. V. Brygadyrenko

    2016-02-01

    Full Text Available The litter in a forest ecosystem acts as a trophic substrate, and at the same time it is the environment for litter invertebrates. But despite this fact, there has been very little research conducted on the influence of litter thickness on the structure of litter macrofauna. The litter of steppe forests contains most types of integrated communities of forest ecosystems. This means that its thickness cannot avoid playing a significant role in the functioning of the ecosystem. Following to the standard methodologies, Invertebrates were collected using pit-fall traps in deciduous forests of Nikolaev, Zaporizhzhya, Dnipropetrovsk, Donetsk and Kharkiv oblasts, which are characterized by different types of geomorphological profile, different moisture conditions, soil salinity, tree crown and herbaceous vegetation density, soil texture and other factors. The total number of macrofauna increases in conditions where litter thickness exceeds40 mmin comparison with forest ecosystems with fragmented and average capacity litter. The number of litter macrofauna species also increases from 11–23 to 38 species on average when litter thickness increases to more than40 mm. The Shannon and Pielou diversity indexes show no definite tendencies to change in relation to changing degrees of litter thickness. At sites of greater thickness of the litter layer, the corresponding increase in the absolute number of litter mesofauna invertebrates is mostly due to saprophages, and the increase the number of species – due to zoophages. The optimum structure of domination was observed at sites with maximum thickness of litter. The proportion of large species shows no statistically significant change in relation to variations in litter thickness. The qualitative compound of the fauna at sites with thick litter changes mainly due to an increase in the number of Carabidae species.

  1. Subtidal littering: Indirect effects on soft substratum macrofauna?

    Directory of Open Access Journals (Sweden)

    I. AKOUMIANAKI

    2012-12-01

    Full Text Available Changes in macrofauna community structure, abundance and species richness were examined both before and one year after the deployment of plastic and glass bottles at littered (litter density: 16 items / 100 m2 and non-littered (control surfaces at three unimpacted coastal areas of the western Saronikos Gulf (Greece. In parallel, LOI% at the adjacent sediments and changes in the composition of feeding types of the megaepifauna that colonized the litter were examined across treatments. Significant changes in macrofauna community structure were demonstrated between before and after littering. At only one of the sites was there detected a significant difference in macrofauna community structure between control and littered plots after littering. This difference was linked with a significant increase in the abundance of opportunistic polychaete species and LOI% levels in the sediment surface due to the entrapment of macrophytal debris within the littered surface. The study did not show a consistent direct response of macroinfauna community to litter and the associated megafauna. Unlike the megafauna attracted by litter items, soft-substratum macrofauna is less responsive to the addition of novel hard substrates in adjacent sediments. Alternatively, it could be that the impact of littering with small items triggers a macrofauna response detectable in the long-run.

  2. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    Science.gov (United States)

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system. PMID:25982984

  3. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  4. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China.

    Science.gov (United States)

    Deng, Qi; Cheng, Xiaoli; Hui, Dafeng; Zhang, Qian; Li, Ming; Zhang, Quanfa

    2016-01-15

    Afforestation may alter soil microbial community structure and function, and further affect soil carbon (C) and nitrogen (N) dynamics. Here we investigated soil microbial carbon and nitrogen (MBC and MBN) and microbial community [e.g. bacteria (B), fungi (F)] derived from phospholipid fatty acids (PLFAs) analysis in afforested (implementing woodland and shrubland plantations) and adjacent croplands in central China. Relationships of microbial properties with biotic factors [litter, fine root, soil organic carbon (SOC), total nitrogen (TN) and inorganic N], abiotic factors (soil temperature, moisture and pH), and major biological processes [basal microbial respiration, microbial metabolic quotient (qCO2), net N mineralization and nitrification] were developed. Afforested soils had higher mean MBC, MBN and MBN:TN ratios than the croplands due to an increase in litter input, but had lower MBC:SOC ratio resulting from low-quality (higher C:N ratio) litter. Afforested soils also had higher F:B ratio, which was probably attributed to higher C:N ratios in litter and soil, and shifts of soil inorganic N forms, water, pH and disturbance. Alterations in soil microbial biomass and community structure following afforestation were associated with declines in basal microbial respiration, qCO2, net N mineralization and nitrification, which likely maintained higher soil carbon and nitrogen storage and stability. PMID:26410698

  5. Changes in microbial structure and functional communities at different soil depths during 13C labelled root litter degradation

    Science.gov (United States)

    Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia

    2014-05-01

    Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community

  6. Comparison of flammability of litters sampled according to two different methods

    OpenAIRE

    Ganteaume, A.; Jappiot, M.; Curt, T.; Lampin, C.; Borgniet, L.

    2012-01-01

    In laboratory conditions, reconstructed or intact litter samples can be used to assess the flammability of dead surface fuels but the sampling method could affect litter flammability results. To assess this effect, samples of litters were collected in south-eastern France, according to two different methods previously used in other studies, one keeping intact the structure of litter layers (intact litter) and the other using mainly the surface litter layer to reconstruct the litter sample (re...

  7. Flammability of litter sampled according to two different methods: comparison of results in laboratory experiments

    OpenAIRE

    Ganteaume, A.; Jappiot, M.; Curt, T.; Lampin, C.; Borgniet, L.

    2014-01-01

    In the laboratory, different types of litter samples (constructed v. intact) can be used in flammability experiments but the sampling method of these litters could affect litter flammability results. To assess this effect, samples of litters were collected in South-eastern France, according to two different methods previously used in other studies, one keeping intact the structure of the litter layers (non-constructed litter) and the other requiring the construction of the litter, using mainl...

  8. Technical Note: Enhanced reactivity of nitrogenous organohalogen formation from plant litter to bacteria

    Directory of Open Access Journals (Sweden)

    J. J. Wang

    2012-06-01

    Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on Earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, increasing reactivity for nitrogenous organohalogen yield was observed with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

  9. Contribution of litter and tree diameter increment in the eastern Amazon rainforest

    Science.gov (United States)

    Camargo, P. B.; Ferreira, M.; De Oliveira, R., Jr.; Saleska, S. R.; Alves, L. F.

    2013-12-01

    Tropical forests have a great importance in the global carbon cycle, especially with regard to biomass. Some models predict that these forests can be vulnerable to carbon loss due to global warming-induced drought increases, while others contradict this theory. So, it is necessary to assess changes in carbon storage over time to better understand the future trends of this scenario. In this sense, this work has as its main objective the evaluation of tree diameter increment and the amount of litter, in a region of the eastern Amazon rainforest. 1000 dendometric trees bands were installed in different taxonomic families and size classes over four transects represent 4 ha each, as well as 60 collectors (litter traps). The trees of the forest had a higher growth in November and a smaller diameter increment in the month of September. The trees of the size class 55-90 cm were the most grown up followed by class > 90 cm trees. A likely factor that drove this episode was the height of the canopy of these trees. Pearson's correlation analysis showed correlation of 55-90 cm class with temperature and precipitation. The production of litter has an average production within the range found in the literature between 200 and 1700 kg.ha.ano-1. Further studies are needed in order to understand more clearly, what are the key factors that drive or limit the growth of tree species in the Amazon.

  10. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation.

    Science.gov (United States)

    Austin, Amy T; Vivanco, Lucía

    2006-08-01

    The carbon balance in terrestrial ecosystems is determined by the difference between inputs from primary production and the return of carbon to the atmosphere through decomposition of organic matter. Our understanding of the factors that control carbon turnover in water-limited ecosystems is limited, however, as studies of litter decomposition have shown contradictory results and only a modest correlation with precipitation. Here we evaluate the influence of solar radiation, soil biotic activity and soil resource availability on litter decomposition in the semi-arid Patagonian steppe using the results of manipulative experiments carried out under ambient conditions of rainfall and temperature. We show that intercepted solar radiation was the only factor that had a significant effect on the decomposition of organic matter, with attenuation of ultraviolet-B and total radiation causing a 33 and 60 per cent reduction in decomposition, respectively. We conclude that photodegradation is a dominant control on above-ground litter decomposition in this semi-arid ecosystem. Losses through photochemical mineralization may represent a short-circuit in the carbon cycle, with a substantial fraction of carbon fixed in plant biomass being lost directly to the atmosphere without cycling through soil organic matter pools. Furthermore, future changes in radiation interception due to decreased cloudiness, increased stratospheric ozone depletion, or reduced vegetative cover may have a more significant effect on the carbon balance in these water-limited ecosystems than changes in temperature or precipitation. PMID:16885982

  11. Effects of increased biomass removal on the biogeochemistry of two Norwegian forest ecosystems

    Science.gov (United States)

    Lange, H.; Clarke, N.; Kjønaas, O. J.; Aas, W.; Andreassen, K.; Børja, I.; Bratli, H.; Eich-Greatorex, S.; Eldhuset, T.; Holt-Hanssen, K.

    2009-04-01

    Increased removal of biomass from forested ecosystems for use as an alternative source of energy is an option in several countries. E.g., it is planned to double the use of bioenergy from all sources until 2020 in Norway. A large fraction of this increase is coming from forest resources, e.g. by removing harvest residues like branches and tops. This removal will reduce the supply of nutrients and organic matter to the forest soil, and may in the longer term increase the risk for future nutrient imbalance, soil erosion on steep slopes, reduced forest production, and changes in biodiversity and ground vegetation species composition. However, field experiments so far have found contrasting results in this respect. Soil effects of increased biomass removal will be closely related to soil organic matter (SOM) dynamics, litter quality, and turnover rates. Harvest intensity may affect the decomposition of existing SOM as well as the build-up of new SOM from litter and forest residues, by changing factors like soil temperature and moisture as well as amount and type of litter input. Changes in input of litter with different nutrient concentrations and decomposition patterns along with changes in SOM decomposition will affect the total storage of carbon, nitrogen and other vital nutrients in the soil. In the context of a Norwegian research project started in 2009, we will quantify how different harvesting regimes lead to different C addition to soil, and determine which factors have the greatest effect on decomposition of SOM under different environmental conditions. Two Norway spruce forest ecosystems will be investigated, one in eastern and one in western Norway, representing different climatic conditions and landscape types. At each location, two treatment regimes will be tested: (1) conventional harvesting (CH), with residues left on-site, and (2) aboveground whole-tree harvest (WTH), with branches, needles, and tops removed. Input of different forest residues will be

  12. How does litter cover, litter diversity and fauna affect sediment discharge and runoff?

    Science.gov (United States)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2013-04-01

    Litter cover plays a major role in soil erosion processes. It is known that litter cover reduces erosivity of raindrops, decreases sediment discharge and lowers runoff volume compared to bare ground. However, in the context of biodiversity, the composition of litter cover, its effect on sediment discharge and runoff volume and their influence on soil erosion have not yet been analyzed in detail. Focusing on initial soil erosion (splash), our experimental design is designated to get a better understanding of these mechanisms. The experiments were carried out within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" in subtropical China. The "New Integrated Litter Experiment (NILEx)" used as platform combining different subprojects of BEF-China dealing with "decomposition and nutrient cycling", "mechanisms of soil erosion" and "functional effects of herbivores, predators and saproxylics" in one experiment. In NILEx, 96 40cm x 40cm runoff plots on two hill slopes inside a castanea molissima forest plantation have been installed and filled with seven different types of litter cover. 16 one-species plots, 24 two-species plots, 4 four-species plots and 4 bare ground plots have been set up, each replicated once. We prepared 48 Plots with traps (Renner solution) for soil macrofauna (diplopods and collembola), so half of the plots were kept free from fauna while the other half was accessible for fauna. Rainfall was generated artificially by using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Our experiments included two runs of 20 minutes duration each, both conducted at two different time steps (summer 2012 and autumn 2012). Runoff volume and sediment discharge were measured every 5 minutes during one rainfall run. Litter coverage and litter mass were recorded at the beginning (summer 2012) and at the end of the experiment (autumn 2012). Our results show that sediment discharge as well as runoff volume decreases

  13. LITTER EFFECT IN MOUSE PHENOTYPIC STUDIES

    Czech Academy of Sciences Publication Activity Database

    Šimeček, Petr; Dzúr-Gejdošová, Mária; Chvátalová, I.; Forejt, Jiří

    SETUBAL, PORTUGAL: SCITEPRESS, AV D MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL, 2011, s. 238-243. ISBN 978-989-8425-36-2. [BIOINFORMATICS 2011, Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms. Setubal (PT), 26.01.2011-29.01.2011] Institutional support: RVO:68378050 Keywords : Litter effect * Mixed-effect models * Phenome databases * Mouse genetics Subject RIV: EB - Genetics ; Molecular Biology

  14. Role of litter turnover in soil quality in tropical degraded lands of Colombia.

    Science.gov (United States)

    León, Juan D; Osorio, Nelson W

    2014-01-01

    Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6-13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems. PMID:24696656

  15. Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia

    Directory of Open Access Journals (Sweden)

    Juan D. León

    2014-01-01

    Full Text Available Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6–13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems.

  16. Biotechnology of biomass conversion

    International Nuclear Information System (INIS)

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion

  17. Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF)

    OpenAIRE

    Laura Silva; Eucario Gasca-Leyva; Edgardo Escalante; Kevin M Fitzsimmons; David Valdés Lozano

    2015-01-01

    The experiment evaluates the food production and water treatment of TAN, NO2−–N, NO3−–N, and PO43− in two aquaponics systems using the dynamic root floating technique (DRF). A separate recirculation aquaculture system (RAS) was used as a control. The fish cultured was Nile tilapia (Oreochromis niloticus). The hydroponic culture in one treatment (PAK) was pak choy (Brassica chinensis,) and in the other (COR) coriander (Coriandrum sativum). Initial and final weights were determined for the fis...

  18. Statistical analysis of litter experiments in teratology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.; Buschbom, R.L.

    1982-11-01

    Teratological data is binary response data (each fetus is either affected or not) in which the responses within a litter are usually not independent. As a result, the litter should be taken as the experimental unit. For each litter, its size, n, and the number of fetuses, x, possessing the effect of interest are recorded. The ratio p = x/n is then the basic data generated by the experiment. There are currently three general approaches to the analysis of teratological data: nonparametric, transformation followed by t-test or ANOVA, and parametric. The first two are currently in wide use by practitioners while the third is relatively new to the field. These first two also appear to possess comparable power levels while maintaining the nominal level of significance. When transformations are employed, care must be exercised to check that the transformed data has the required properties. Since the data is often highly asymmetric, there may be no transformation which renders the data nearly normal. The parametric procedures, including the beta-binomial model, offer the possibility of increased power.

  19. Biomass shock pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  20. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. PMID:27111649

  1. On-farm evaluation of aluminum sulfate (alum) as a poultry litter amendment: effects on litter properties.

    Science.gov (United States)

    Sims, J T; Luka-McCafferty, N J

    2002-01-01

    Aluminum sulfate [alum; Al2(SO4)3] amendment of poultry litters has been suggested as a best management practice to help reduce the potential environmental effects of poultry production. Past research has shown that alum treatment reduced NH3 emissions from litters, decreased the loss in runoff of P and trace metals from litter-amended soils, improved poultry health, and reduced the costs of poultry production. We conducted a large scale, "on-farm" evaluation of alum as a poultry (broiler) litter amendment on the Delmarva peninsula to determine the effect of alum on (i) litter properties and elemental composition and (ii) the solubility of several elements in litter that are of particular concern for water quality (Al, As, Cu, P, and Zn). Alum was applied over a 16-mo period to 97 poultry houses on working poultry farms; 97 houses on other farms served as controls (no alum). Litter samples were analyzed initially and after approximately seven alum applications. We found that alum decreased litter pH and the water solubility of P, As, Cu, and Zn. Alum-treated houses also had higher litter total N, NH4-N, and total S concentrations and thus a greater overall fertilizer value than litters from the control houses. Higher litter NH4-N values also suggest that alum reduced NH3 losses from litters. Thus, alum appears to have promise as a best management practice (BMP) for poultry production. Future research should focus on the long-term transformations of P, Al, As, Cu, and Zn in soils amended with alum-treated litters. PMID:12469858

  2. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

    Science.gov (United States)

    Portillo-Estrada, Miguel; Pihlatie, Mari; Korhonen, Janne F. J.; Levula, Janne; Frumau, Arnoud K. F.; Ibrom, Andreas; Lembrechts, Jonas J.; Morillas, Lourdes; Horváth, László; Jones, Stephanie K.; Niinemets, Ülo

    2016-03-01

    Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6-11.4 °C in annual temperature 511-878 mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (Mr). Mr and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.

  3. Electrifying biomass

    International Nuclear Information System (INIS)

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  4. The importance of litter for interactions between terrestrial plants and invertebrates

    OpenAIRE

    Gelfgren, Maria

    2010-01-01

    According to the exploitation ecosystem hypothesis (EEH), terrestrial ecosystems are characterized by well defined trophic levels and strong trophic interactions with community level tropic cascades. In unproductive terrestrial habitats as tundra heaths, the energy shunt from litter and apparent competition between herbivores and detritivores are expected to be important for the structure and dynamics of the invertebrate community. The aim of this study was to test this hypothesis by investig...

  5. Phosphorus 32 cycling in the root-litter mat of Pernambuco atlantic coastal forest, Brazil

    International Nuclear Information System (INIS)

    We propose a compartmental model to describe P cycling in the root-litter mat and surface mineral soil of an Atlantic coastal forest. Considerable amounts of P accumulate in this root-litter mat, relative to available P in the underlying mineral soil. We studied the mechanisms responsible for P retention five days after addition of sup(32)P on the surface of the 02 horizon. Total sup(31)P and sup(32)P were determined in leaves, humus, mineral soil and roots. In addition, we determined sup(31)P and sup(32)P in the solution and microbial biomass of the humus material. Fluxes of sup(31)P were obtained from published data and from experimental results of sup(32)P distribution among compartments. The main fluxes taking P out from the soils solution were uptake by the microbial biomass and sorption by the humus (12.9 e 5.2 mg P m sup(-2) week sup(-1), respectively), while the mean flux into the roots was 3.1 mg P m sup(-2) week sup(-1). The main compartment responsible for P accumulation was the humus+fragments, which had the highest P content (61% of total P in the forest floor) and the longest turnover time (15.5 months). (author)

  6. Plant Litter Decomposition and Nutrient Release in Peatlands

    OpenAIRE

    Bragazza, Luca; Buttler, Alexandre; Siegenthaler, Andy; Mitchell, Edward A. D.

    2010-01-01

    Decomposition of plant litter is a crucial process in controlling the carbon balance of peatlands. Indeed, as long as the rate of litter decomposition remains lower than the rate of above- and belowground litter production, a net accumulation of peat and, thus, carbon will take place. In addition, decomposition controls the release of important nutrients such as nitrogen, phosphorus, and potassium, the availability of which affects the structure and the functioning of plant communities. This ...

  7. Degradation of Leaf Litter Phenolics by Aquatic and Terrestrial Isopods

    OpenAIRE

    Zimmer, Martin; Oliveira, Ricardo de; Rodrigues, Elsa; Graça, Manuel A. S.

    2005-01-01

    To investigate species-specific decomposition rates of litter from native (Quercus faginea) and introduced (Eucalyptus globulus) tree species in Portugal, we monitored changes in the phenolic signature of leaf litter during decomposition as mediated by an aquatic, Proasellus coxalis (Isopoda: Asellota), and two terrestrial, Porcellio dispar and Eluma caelatum (Isopoda: Oniscidea), detritivores. Although the litter of Eucalyptus and Quercus did not differ in overall protein precipitation capac...

  8. Global distribution, composition and abundance of marine litter

    OpenAIRE

    Galgani, F.; G. Hanke; Maes, T

    2015-01-01

    Marine debris is commonly observed everywhere in the oceans. Litter enters the seas from both land-based sources, from ships and other installations at sea, from point and diffuse sources, and can travel long distances before being stranded. Plastics typically constitute the most important part of marine litter sometimes accounting for up to 100 % of floating litter. On beaches, most studies have demonstrated densities in the 1 item m-2 range except for very high concentrations because of loc...

  9. Soil Biota and Litter Decay in High Arctic Ecosystems

    Science.gov (United States)

    González, G.; Rivera, F.; Makarova, O.; Gould, W. A.

    2006-12-01

    Frost heave action contributes to the formation of non-sorted circles in the High Arctic. Non-sorted circles tend to heave more than the surrounding tundra due to deeper thaw and the formation of ice lenses. Thus, the geomorphology, soils and vegetation on the centers of the patterned-ground feature (non-sorted circles) as compared to the surrounding soils (inter-circles) can be different. We established a decomposition experiment to look at in situ decay rates of the most dominant graminoid species on non-sorted circles and adjacent inter-circle soils along a climatic gradient in the Canadian High Arctic as a component of a larger study looking at the biocomplexity of small-featured patterned ground ecosystems. Additionally, we investigated variation in soil chemical properties and biota, including soil microarthropods and microbial composition and biomass, as they relate to climate, topographic position, and litter decay rates. Our three sites locations, from coldest to warmest, are Isachsen, Ellef Ringnes Island (ER), NU (bioclimatic subzone A); Mould Bay (MB), Prince Patrick Island, NT (bioclimatic subzone B), and Green Cabin (GC), Aulavik National Park, Thomsen River, Banks Island, NT (bioclimatic subzone C). Our sample design included the selection of 15 non-sorted circles and adjacent inter-circle areas within the zonal vegetation at each site (a total of 90 sites), and a second set of 3 non-sorted circles and adjacent inter-circle areas in dry, mesic and wet tundra at each of the sites. Soil invertebrates were sampled at each site using both pitfall traps, soil microbial biomass was determined using substrate induced respiration and bacterial populations were determined using the most probable number method. Decomposition rates were measured using litterbags and as the percent of mass remaining of Carex misandra, Luzula nivalis and Alopecuris alpinus in GC, MB and ER, respectively. Our findings indicate these graminoid species decayed significantly over

  10. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

  11. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams

    OpenAIRE

    Ferreira, Verónica; Chauvet, Eric

    2011-01-01

    The predicted increase in atmospheric CO2 concentration for this century is expected to lead to increases in temperature and changes in litter quality that can affect small woodland streams, where water tempera- ture is usually low and allochthonous organic matter con- stitutes the basis of the food web. We have assessed the individual and interactive effect of water temperature (5 and 10°C) and alder litter quality produced under ambient CO2 levels (ambient litter) or under CO2 concentration...

  12. Biomass systems

    International Nuclear Information System (INIS)

    Biofuels productions and uses should allow valorization of raw materials belonging to biomass: plants used in food utilization, ligno-cellulose plants, or by-products even wastes from animal or vegetable origin. These bioenergies are renewable energies, and their developments pass through an economical competitivity, a clean and spare production, and atmospheric emissions control of vehicles. The principal advantage of bioenergies is the reduction of fossil carbon consumption and its replacement by a renewable carbon consumption. (A.B.). 13 refs., 7 figs., 3 tabs

  13. Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China.

    Directory of Open Access Journals (Sweden)

    Wenfa Xiao

    Full Text Available To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010-Jan. 2012 in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m(-2 s(-1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%-45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old, but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling.

  14. Effects of chemically amended litter on broiler performances, atmospheric ammonia concentration, and phosphorus solubility in litter.

    Science.gov (United States)

    Do, J C; Choi, I H; Nahm, K H

    2005-05-01

    The effects of 6 different litter amendments on broiler performance, level of atmospheric ammonia (NH3) concentration, and soluble reactive phosphorus (SRP) in litter was determined. Through 3 experiments conducted on 2 different commercial farms, one chemical amendment was added to the litter and then was compared with a control. Broiler performance was not affected by any of the amendments except the ferrous sulfate amendment for which mortality was 25.5%. Application of aluminum chloride (AlCl3 x 6H2O) to the litter lowered atmospheric ammonia concentrations at 42 d by 97.2%, whereas ferrous sulfate (FeSO4 x 7H2O) lowered it by 90.77%. Ammonia concentrations were reduced by 86.18, 78.66, 75.52, and 69.00% by aluminum sulfate [alum or Al2(SO4)3 x 14H2O)], alum + CaCO3, aluminum chloride + CaCO3, and potassium permanganate (KMnO4), respectively, when compared with each control at 42 d. Each amendment except KMnO4 significantly reduced SRP contents. Alum and aluminum chloride were the effective compounds evaluated on the commercial farms with respect to reducing ammonia contents, phosphorus solubility, and mortality. PMID:15913178

  15. Weaning and separation stress: maternal motivation decreases with litter age and litter size in farmed mink

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Sørensen, Dennis Dam; Larsen, Torben;

    2016-01-01

    (P < 0.01), indicative of dam hunger/metabolic burden in the preceding period. We found no signs of nipple/inflammation problems, evaluated visually and by Infrared Thermography (IRT) measuring surface temperatures of active teats.Dams separated at litter age 7 weeks had higher concentrations of...... and maternal motivation around the time of weaning and separation. Therefore, we investigated effects of separating the dam from the litter using brown first-parity farm mink dams (n = 374) taken away from the litter either day 49 ± 1 (7w, n = 185) or day 56 ± 1 (8w, n = 189) after birth. The aim was...... significant difference in dam bodyweight (7w: 1420 ± 15.0 g, 8w: 1404 ± 14.7, P = 0.43). However, the litter size negatively influenced both the dam weight and body condition (P < 0.001) regardless of the separation age. Stereotypies D0-D1were influenced by group (8w > 7w) and increased with number of young...

  16. Fate of mercury in tree litter during decomposition

    Directory of Open Access Journals (Sweden)

    A. K. Pokharel

    2011-09-01

    Full Text Available We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C mass and concentration, mercury (Hg mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months, which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss, although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (<0.22 ng Hg g−1 dry mass and decreased with increasing stage of decomposition for all litter types. Our results indicate potentially large gaseous emissions, or re-emissions, of Hg originally associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

  17. Effect of invader litter chemistries on soil organic matter compositions: consequences of Polygonum cuspidatum and Pueraria lobata invasions

    Science.gov (United States)

    Tharayil, N.; Tamura, M.

    2012-12-01

    Carbon fixation during photosynthesis forms the precursor of all organic carbon in soil and the predominant source of energy that drives soil microbial processes; hence the molecular identity of the fixed carbon could influence the formation of soil organic matter (SOM). Due to their high resource acquisition and resource use efficiencies, some invasive plants can input disproportionately high quantities of litter that are qualitatively distinctive, and this could influence the accrual of organic carbon and overall carbon cycling in invaded habitats. Hence, we hypothesized that invasive plants with unique litter chemistries would significantly influence the overall carbon cycling in the invaded soils. We tested this hypothesis by comparing plants exhibiting recalcitrant vs. labile litter chemistries using japanese knotweed (Polygonum cuspidatum) and kudzu (Pueraria lobata), respectively. Japanese knotweed produces low litter abundant in polyphenols which selectively hinders microbially mediated decomposition and re-synthesis; whereas kudzu produces low C:N, high quality litter that can stimulate microbial decomposition. Soil samples were collected at 5-cm intervals and from inside and outside 15 to 20 year old stands of the invasive species. The novelty of our study was that both of our study species were invading into soils of contrasting substrate qualities relative to the invading litter quality. The molecular composition of carbon in the soils and the degradation stage of the SOM were assessed with a biomarker approach using gas chromatography-mass spectrometry to determine the source of biomolecules (plant or microbes). Stability of SOM fractions was assessed through oxidation with hydrogen peroxide, serving as a proxy of biological degradation, followed by stable isotope analysis. Fungal communities dominated the uppermost soils under knotweed whereas kudzu litter suppressed fungal biomass in the top 10-cm. In constrast, increase in active microbial biomass C

  18. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland.

    Science.gov (United States)

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month(-1)) compared to in isolation (k = 0.10 month(-1)). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration

  19. Non-Native Plant Litter Enhances Soil Carbon Dioxide Emissions in an Invaded Annual Grassland

    OpenAIRE

    Zhang, Ling; Wang, Hong; Zou, Jianwen; Rogers, William E; Siemann, Evan

    2014-01-01

    Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter deco...

  20. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China

    OpenAIRE

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beg...

  1. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    Energy Technology Data Exchange (ETDEWEB)

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake [Dept. of Forest Soi ls, Swedish Univ. of Agricultural Sciences (Sweden); Hyvoenen, Riitta [Dept. of Eco logy, Swedish Univ. of Agricultural Sciences (Sweden)

    2007-04-15

    Forsmark sites, the N return in litterfall varied between 1.1 and 2.6 gdw/m{sup 2}/yr, the lower figure for site F3 and the higher for site F2. At site F1, about 1.7 gdw N/m{sup 2}/yr was deposited. The decomposition of the individual site litters was monitored over two years in field studies and the decomposition was predicted for up to 10 years using a dynamic decomposition model. At all three sites in the Forsmark area, the spruce needle litter lost around 33% in mass during the first year and after two years the cumulative mass loss amounted to 45%. The alder leaf litter decomposed more rapidly and lost 60% of mass during the first year and had reached a cumulative mass loss of 73% after two years. Generally, minor differences were noted in the decomposition pattern for the spruce and pine needles at sites within the Oskarshamn area. According to the model predictions, after 10 years about 80% of the initial mass was decomposed from needle litters and oak leaves but over 90% of the initial mass of alder leaves was decomposed. Mineralisation of N started immediately from alder leaves, and proceeded at a rapid rate during the first five months, after which it slowed down markedly. Due to its fast initial mineralisation, the alder litter lost about half its original amount of N during these first months. There was also generally a small loss of N from the other litter types during the first months but this loss was minor and never exceeded 10% of the initial N amount in the litter. The first phase of N loss was generally followed by short irregular periods when N was immobilised. Generally, 80-90% of the initial N amount still remained in the coniferous and oak litters after two years of decomposition (100% in the pine needles) whereas alder leaves had lost 60% of their N. The release of phosphorus (P) started immediately from all litter types and was most rapid from the alder leaf litter, which lost about 60% of its initial amount during the first five months. The other

  2. Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm

    Energy Technology Data Exchange (ETDEWEB)

    Froberg, Mats J. [Sveriges Lantbruksuniversitet; Hanson, Paul J [ORNL; Trumbore, Susan E. [University of California, Irvine; Swanston, Christopher W. [USFS; Todd Jr, Donald E [ORNL

    2009-01-01

    The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from 14C-enriched (about 1000 ) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms were placed in the field for 17 months during which time fluxes and 14C content of DOC and CO2 were measured. Changes in 14C in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and 14C budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Δ14C-signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retentionwas low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale.

  3. The emission of volatile compounds from leaf litter

    NARCIS (Netherlands)

    Derendorp, L.

    2012-01-01

    Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the e

  4. Litter in submarine canyons off the west coast of Portugal

    Science.gov (United States)

    Mordecai, Gideon; Tyler, Paul A.; Masson, Douglas G.; Huvenne, Veerle A. I.

    2011-12-01

    Marine litter is of global concern and is present in all the world's oceans, including deep benthic habitats where the extent of the problem is still largely unknown. Litter abundance and composition were investigated using video footage and still images from 16 Remotely Operated Vehicle (ROV) dives in Lisbon, Setúbal, Cascais and Nazaré Canyons located west of Portugal. Litter was most abundant at sites closest to the coastline and population centres, suggesting the majority of the litter was land sourced. Plastic was the dominant type of debris, followed by fishing gear. Standardised mean abundance was 1100 litter items km -2, but was as high as 6600 litter items km -2 in canyons close to Lisbon. Although all anthropogenic material may be harmful to biota, debris was also used as a habitat by some macro-invertebrates. Litter composition and abundance observed in the canyons of the Portuguese margin were comparable to those seen in other deep sea areas around the world. Accumulation of litter in the deep sea is a consequence of human activities both on land and at sea. This needs to be taken into account in future policy decisions regarding marine pollution.

  5. Analysis of litter mesofauna of Poltava region forest ecosystems

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2007-08-01

    Full Text Available On the basis of research of litter mesofauna of 48 forest biogeocenoses the regularities of invertebrate communities formation on the species and families levels are determined. The degree of similarity of test plots are analysed by taxonomic structure of the communities. The factors of the litter invertebrate communities formation in forest ecosystems of the Poltava region are revealed.

  6. Soil and litter exchange of reactive trace gases

    Science.gov (United States)

    The soil and litter play an important role in the exchange of trace gases between terrestrial ecosystems and the atmosphere. - The exchange of ammonia between vegetation and the atmosphere is highly influenced by soil and litter emissions especially in managed ecosystems (grassla...

  7. Anti-Litter Curriculum Packet, Interdisciplinary, K-12.

    Science.gov (United States)

    Tillis, Richard

    This curriculum packet consists of 20 illustrated cards with 15 activities designed to create "positive feelings" about a clean environment. Activities range from picture coloring for younger students, to lessons such as the economic and health problems litter creates for older students. Objectives include encouraging anti-litter and…

  8. Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland.

    Science.gov (United States)

    Throop, Heather L; Archer, Steven R

    2007-09-01

    Encroachment of woody plants into grasslands, and subsequent brush management, are among the most prominent changes to occur in arid and semiarid systems over the past century. Despite the resulting widespread changes in landcover, substantial uncertainty about the biogeochemical impacts of woody proliferation and brush management exists. We explored the role of shrub encroachment and brush management on leaf litter decomposition in a semidesert grassland where velvet mesquite (Prosopis velutina) abundance has increased over the past 100 years. This change in physiognomy may affect decomposition directly, through altered litter quality or quantity, and indirectly through altered canopy structure. To assess the direct and indirect impacts of shrubs on decomposition, we quantified changes in mass, nitrogen, and carbon in litterbags deployed under mesquite canopies and in intercanopy zones. Litterbags contained foliage from mesquite and Lehmann lovegrass (Eragrostis lehmanniana), a widespread, nonnative grass in southern Arizona. To explore short- and long-term influences of brush management on the initial stages of decomposition, litterbags were deployed at sites where mesquite canopies were removed three weeks, 45 years, or 70 years prior to study initiation. Mesquite litter decomposed more rapidly than lovegrass, but negative indirect influences of mesquite canopies counteracted positive direct effects. Decomposition was positively correlated with soil infiltration into litterbags, which varied with microsite placement, and was lowest under canopies. Low under-canopy decomposition was ostensibly due to decreased soil movement associated with high under-canopy herbaceous biomass. Decomposition rates where canopies were removed three weeks prior to study initiation were comparable to those beneath intact canopies, suggesting that decomposition was driven by mesquite legacy effects on herbaceous cover-soil movement linkages. Decomposition rates where shrubs were

  9. Dominance in vertebrate broods and litters.

    Science.gov (United States)

    Drummond, Hugh

    2006-03-01

    Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as "aggression-submission," "aggression-resistance," "aggression-aggression," "aggression-avoidance," "rotating dominance," and "flock dominance." These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the "site-specific dominance" (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. PMID:16602272

  10. Marine litter in bottom trawls off the Portuguese coast.

    Science.gov (United States)

    Neves, Diogo; Sobral, Paula; Pereira, Tânia

    2015-10-15

    Benthic marine litter along the Portuguese coast, was recorded in 14 trips on stern trawlers covering a distance of 2117 km and an area of 56.2 km(2), average depth range 90-349 m. 2034 items of marine litter were registered, 76% were plastics and 38.6% were originated from fishing related activities. Plastic was present in all the trawls and had the highest average density of all litter categories, 50 items km(-2). The highest density of marine litter (178.9 ± 64.0 items km(-2)) was found in the proximity of the Tagus river mouth, probably related to the high population density in the Lisbon metropolitan area. This study highlights the need to raise fishermen awareness for the adoption of good environmental practices that will contribute to the reduction of marine litter. PMID:26231069

  11. Leaf litter ecological fate in the Schelde estuary in Belgium

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two dominant species of Willow (Salix triandra) and Reed(Phragmites australis) along the Schelde estuary (in Belgium) wereselected in this research. The pigments of higher plant was used asbiomarkers, the decomposition process of the two species werestudied after they fall into the Schelde estuary. After statisticalanalysis (Spearman rank order correlation, p<0.05), the results hasshown the decomposition dynamics pattern of the pigments, and thewillow showed different pattern in comparing with the reed, eg.Chlorophyll-a decomposition dynamics for willow is: y1 = 12196x2 -175895x + 1E + 06 + k, R2 = 0.5706 while for reed is: y2 = -37878x2+ 229782x + 734282 + k, R2 = 0.9065. The precise time of the leaflitter spent in the water was also calculated as were less than 24days, 24-37 days, longer than 37 days (willow) and less than 24days, longer than 24 days (reed), the leaf litter fate of the two -Process, Institute of Applied Ecology, Chinese Academy of Sciencesdominant species in the Schelde estuary was also compared.

  12. Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling

    Science.gov (United States)

    Steinberg, Deborah K.; Lomas, Michael W.; Cope, Joseph S.

    2012-03-01

    Changes in zooplankton biomass and species composition over long time scales can have significant effects on biogeochemical cycling and transfer of energy to higher trophic levels. We analyzed size-fractionated mesozooplankton biomass (>200μm) from biweekly to monthly day and night tows taken from 1994 to 2010 in the epipelagic zone at the Bermuda Atlantic Time series Study (BATS) site in the oligotrophic North Atlantic subtropical gyre. During this 17-year period total mesozooplankton biomass increased 61% overall, although a few short-term downturns occurred over the course of the time series. The overall increase was higher in the nighttime compared to daytime, resulting in an increase in calculated diel vertical migrator biomass. The largest seasonal increase in total biomass was in the late-winter to spring (February-April). Associated with the larger increase in late-winter/spring biomass was a shift in the timing of annual peak biomass during the latter half of the time series (from March/April to a distinct March peak for all size fractions combined, and April to March for the 2-5 mm size fractions). Zooplankton biomass was positively correlated with sea-surface temperature, water column stratification, and primary production, and negatively correlated with mean temperature between 300 and 600 m. Significant correlations exist between multidecadal climate indices-the North Atlantic Oscillation plus three different Pacific Ocean climate indices, and BATS zooplankton biomass, indicating connections between patterns in climate forcing and ecosystem response. Resultant changes in biogeochemical cycling include an increase in the magnitude of both active carbon flux by diel vertical migration and passive carbon flux of fecal pellets as components of the export flux. The most likely mechanism driving the zooplankton biomass increase is bottom-up control by smaller phytoplankton, which has also increased in biomass and production at BATS, translating up the

  13. The role of biomass in climate change mitigation : Assessing the long-term dynamics of bioenergy and biochemicals in the land and energy systems

    OpenAIRE

    Daioglou, V.

    2016-01-01

    Scientific literature addressing climate change mitigation options have highlighted the potentially important role of biomass as a substitute for fossil fuels in the provision of energy and materials. However significant uncertainties remain concerning the drivers and constraints of the available biomass, the overall greenhouse gas (GHG) benefit, and the most effective supply and demand chains. This thesis builds on the IMAGE integrated assessment model in order to improve the representation ...

  14. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  15. Mixing effects on litter decomposition rates in a young tree diversity experiment

    Science.gov (United States)

    Setiawan, Nuri Nurlaila; Vanhellemont, Margot; De Schrijver, An; Schelfhout, Stephanie; Baeten, Lander; Verheyen, Kris

    2016-01-01

    Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.

  16. Littered cigarette butts as a source of nicotine in urban waters

    Science.gov (United States)

    Roder Green, Amy L.; Putschew, Anke; Nehls, Thomas

    2014-11-01

    The effect of nicotine from littered cigarette butts on the quality of urban water resources has yet to be investigated. This two-part study addresses the spatial variation, seasonal dynamics and average residence time of littered cigarette butts in public space, as well as the release of nicotine from cigarette butts to run-off in urban areas during its residence time. Thereby, we tested two typical situations: release to standing water in a puddle and release during alternating rainfall and drying. The study took place in Berlin, Germany, a city which completely relies on its own water resources to meet its drinking water demand. Nine typical sites located in a central district, each divided into 20 plots were studied during five sampling periods between May 2012 and February 2013. The nicotine release from standardized cigarette butts prepared with a smoking machine was examined in batch and rainfall experiments. Littered cigarette butts are unevenly distributed among both sites and plots. The average butt concentration was 2.7 m-2 (SD = 0.6 m-2, N = 862); the maximum plot concentration was 48.8 butts m-2. This heterogeneity is caused by preferential littering (gastronomy, entrances, bus stops), redistribution processes such as litter removal (gastronomy, shop owners), and the increased accumulation in plots protected from mechanized street sweeping (tree pits, bicycle stands). No significant seasonal variation of cigarette butt accumulation was observed. On average, cigarette butt accumulation is characterized by a 6 days cadence due to the rhythm and effectiveness of street sweeping (mean weekly butt accumulation rate = 0.18 m-2 d-1; SD = 0.15 m-1). Once the butt is exposed to standing water, elution of nicotine occurs rapidly. Standardized butts released 7.3 mg g-1 nicotine in a batch experiment (equivalent to 2.5 mg L-1), 50% of which occurred within the first 27 min. In the rainfall experiment, the cumulative nicotine release from fifteen consecutive

  17. Eutrophication modulates plant-litter diversity effects on litter decomposition in streams

    OpenAIRE

    Fernandes, Eva Lima; Fernandes, Isabel; Pereira, Ana; Geraldes, Paulo; Cássio, Fernanda; Pascoal, Cláudia

    2015-01-01

    Freshwater ecosystems are severely impacted by changes in riparian vegetation and eutrophication, but their interactive effects on litter decomposition and associated biota remain poorly understood. We placed 5 leaf species in coarse-mesh bags alone or in mixtures and immersed them in 6 low-order streams along a eutrophication gradient. Fungal and invertebrate assemblages were mainly structured by stream eutrophication. The quality of leaf species also structured fungal assemblages, whereas t...

  18. Leaf litter decomposition and its relation with aquatic macroinvertebrates of the Gaira River (Santa Marta Colombia)

    International Nuclear Information System (INIS)

    The rate of decomposition of leaf litter of four native species and three exotic species were evaluated. They were selected due to the most frequently collected by the bank vegetation Gaira river, located on the sierra Nevada de Santa Marta. We took four sampling sections at different heights. Furthermore, it was evaluated the richness, abundance and trophic function of macroinvertebrates that colonized the artificial substrates containing leaf packs or meshes. The middle part had the greatest rate of decomposition of native and exotic species (kw = 15.9, n = 23, p = 0.001 and kw = 15.5, n = 36, p = 0.0014 respectively). The native species had the highest rates (kw = 4, n = 47, p = 0.04), with the species pithecellobium longifolium in the middle stretch, which had the greatest mass loss over time. Descriptively a relationship between decomposition rate and current velocity is presented. the macroinvertebrate assemblage was represented by 41 taxa, with an abundance of 1895 individuals which provided a biomass of 2.27 g. the functional structure of macroinvertebrates associated with leaf litter was represented in the upper, middle and low reaches by plecoptera (predators) of the genus anacroneuria with 10.14%, 68.43% and 7.60% respectively. The taxon tanypodinae (diptera) predators were dominant in the mouth with 0.51%. The result of this study can determinate whether the presence of macroinvertebrates associated with leaf litter, is not conditioned by the plant species (native or exotic), and not enter these differences that create an effect on the rate of decomposition.

  19. Aerial environment and deep litter temperature in a swine building

    Directory of Open Access Journals (Sweden)

    Francine Aparecida Sousa

    2014-10-01

    Full Text Available This study objective was to assess the air quality by measuring gas concentrations, and assess the surface and inside temperatures of deep litter materials in a finishing swine building. The experiment was conducted during the months of June and July. It was compared three treatments: deep litter composed of shaving woods + sugarcane bagasse (M + B, deep litter composed of sugarcane bagasse (BAG and deep litter consisting of shaving woods (MAR. The installation stalls had a concrete floor under the deep litter. Measurements of instantaneous concentrations of ammonia, NH3 (ppm, carbon dioxide (CO2 ppm and carbon monoxide (CO, ppm at the level of the animals were taken. Data relating to surface temperature and inside the deep litter for swine were collected at three different points within the stalls (center, in the frontal region and background of the stalls. It was observed that the "MAR" deep litter showed the highest average concentration of NH3 (2.88 ppm. The "BAG" deep litter showed the lowest values of NH3 for all time intervals evaluated. In the morning period was observed significant differences for all treatments. The highest CO2 concentration (1530 ppm was observed in treatment "BAG" at 11 h 30 min. The surface temperatures of deep beddings showed no significant differences between the sampling points. The temperature inside the deep litter at the front of the stall treatment was higher (M + B when compared to treatment (ABG and (MAR. The concentration of CO, CO2 and NH3, measured, gases not reached levels that could cause harm to the health of animals.

  20. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    International Nuclear Information System (INIS)

    between 1.1 and 2.6 gdw/m2/yr, the lower figure for site F3 and the higher for site F2. At site F1, about 1.7 gdw N/m2/yr was deposited. The decomposition of the individual site litters was monitored over two years in field studies and the decomposition was predicted for up to 10 years using a dynamic decomposition model. At all three sites in the Forsmark area, the spruce needle litter lost around 33% in mass during the first year and after two years the cumulative mass loss amounted to 45%. The alder leaf litter decomposed more rapidly and lost 60% of mass during the first year and had reached a cumulative mass loss of 73% after two years. Generally, minor differences were noted in the decomposition pattern for the spruce and pine needles at sites within the Oskarshamn area. According to the model predictions, after 10 years about 80% of the initial mass was decomposed from needle litters and oak leaves but over 90% of the initial mass of alder leaves was decomposed. Mineralisation of N started immediately from alder leaves, and proceeded at a rapid rate during the first five months, after which it slowed down markedly. Due to its fast initial mineralisation, the alder litter lost about half its original amount of N during these first months. There was also generally a small loss of N from the other litter types during the first months but this loss was minor and never exceeded 10% of the initial N amount in the litter. The first phase of N loss was generally followed by short irregular periods when N was immobilised. Generally, 80-90% of the initial N amount still remained in the coniferous and oak litters after two years of decomposition (100% in the pine needles) whereas alder leaves had lost 60% of their N. The release of phosphorus (P) started immediately from all litter types and was most rapid from the alder leaf litter, which lost about 60% of its initial amount during the first five months. The other litter types generally lost around 10-20% within the same

  1. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    Science.gov (United States)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation

  2. Microbial Population In Decompsing Legume Litter Of Differing Quality

    OpenAIRE

    M. B. Oyun; F. C. Akharayi; F. C. Adetuyi

    2006-01-01

    The influence of litter quality on microbial population during decomposition of fresh pruning of Acacia auriculiformis; Gliricidia sepium and Acacia mixed with Gliricidia (50 : 50) is reported. Acacia (soluble C, 46.6%; N, 3.9%; Phenolic, 2.3%) was rated as low quality litter while Gliricidia (soluble C, 45.2%; N, 4.8%; Phenolic, 2.3%) was rated as high quality litter. Acacia mixed with Gliricidia (50 : 50) had an initial phase of rapid decomposition followed by a second phase of comparativel...

  3. Poultry litter power station in the United Kingdom

    International Nuclear Information System (INIS)

    Poultry litter has presented a waste disposal problem to the poultry industry in many parts of the United Kingdom. The plant at Eye is a small to medium scale power station, fired using poultry litter. The 12.7 MW of electricity generated is supplied, through the local utility, to the National Grid. The spent litter that constitutes the fuel is made up of excrement and animal bedding (usually 90% excrement and 10% straw or wood shavings). It comes from large climate-controlled buildings (broiler houses) where birds, reared for meat production, are allowed to roam freely. (UK)

  4. Cotton response to poultry litter applied by subsurface banding relative to surface broadcasting

    Science.gov (United States)

    Dry poultry litter is typically land-applied by surface broadcasting, a practice that exposes certain litter nutrients to volatilization loss. Applying litter with a new, experimental implement that places the litter in narrow bands below the soil surface may reduce or eliminate such losses but has...

  5. Implement with adjustable band spacing for subsurface band application of poultry litter

    Science.gov (United States)

    Broiler litter is commonly used as a fertilizer on pastures and cropland. Poultry litter is typically land-applied by broadcasting the litter on the soil surface. Rain falling on soil to which poultry litter has been applied, may carry phosphorus (P) and nitrogen (N) nutrients from the soil into s...

  6. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

    Science.gov (United States)

    Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia

    2016-08-01

    In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability. PMID:27521943

  7. Seasonal nutrient dynamics and biomass quality of giant reed (Arundo donax L. and miscanthus (Miscanthus x giganteus Greef et Deuter as energy crops

    Directory of Open Access Journals (Sweden)

    Nicoletta Nassi o Di Nasso

    2011-08-01

    Full Text Available The importance of energy crops in displacing fossil fuels within the energy sector in Europe is growing. Among energy crops, the use of perennial rhizomatous grasses (PRGs seems promising owing to their high productivity and their nutrient recycling that occurs during senescence. In particular, nutrient requirements and biomass quality have a fundamental relevance to biomass systems efficiency. The objective of our study was to compare giant reed (Arundo donax L. and miscanthus (Miscanthus × giganteus Greef et Deuter in terms of nutrient requirements and cellulose, hemicelluloses and lignin content. This aim was to identify, in the Mediterranean environment, the optimal harvest time that may combine, beside a high biomass yield, high nutrient use efficiency and a good biomass quality for second generation biofuel production. The research was carried out in 2009, in San Piero a Grado, Pisa (Central Italy; latitude 43°41’ N, longitude 10°21’ E, on seven-year-old crops in a loam soil characterised by good water availability. Maximum above-ground nutrient contents were generally found in summer. Subsequently, a decrease was recorded; this suggested a nutrient remobilisation from above-ground biomass to rhizomes. In addition, miscanthus showed the highest N, P, and K use efficiency, probably related to its higher yield and its C4 pathway. Regarding biomass quality, stable values of cellulose (38%, hemicelluloses (25% and lignin (8% were reported from July onwards in both crops. Hence, these components appear not to be discriminative parameters in the choice of the harvest time in the Mediterranean environment. In conclusion, our results highlighted that, in our environment, a broad harvest period (from late autumn to winter seems suitable for these PRGs. However, further research is required to evaluate the role of rhizomes in nutrient storage and supply during the growing season, as well as ecological and productive performances in marginal

  8. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  9. Role of plant growth promoting rhizobacteria in modulating the efficiency of poultry litter composting with rock phosphate and its effect on growth and yield of wheat.

    Science.gov (United States)

    Billah, Motsim; Bano, Asghari

    2015-01-01

    The present study was aimed to evaluate the role of Plant Growth Promoting Rhizobacteria (PGPR) in P solubilisation from rock phosphate through composting with poultry litter, and further to study the effects of prepared enriched composts on growth, yield, and phosphorus uptake of wheat crop. Various phosphorus-enriched composts were prepared from rock phosphate and poultry litter (1:10) with and without inoculation of plant growth promoting rhizobacterias (Pseudomonas sp. and Proteus sp.). Results showed that the rock-phosphate-added poultry litter had higher total phosphorus, available (Mehlic-3 extracted) phosphorus, microbial biomass (carbon and phosphorus), and lower total organic carbon, total nitrogen, and carbon/nitrogen ratio over poultry litter alone. Inoculation of Pseudomonas sp. with rock phosphate-added poultry litter showed maximum increase in available phosphorus (41% of total phosphorus) followed by Proteus sp. inoculation (30% of total phosphorus) over uninoculated treatment (23% of total phosphorus) on the 120th day of composting. Microbial biomass (carbon and phosphorus) increased up to Day 45 and tended to decrease till the 120th day of composting, irrespective of the treatments. However, in pot experiments, wheat seeds receiving inoculation with plant growth promoting rhizobacterias, subsequently treated with rock phosphate-enriched compost proved highly stimulatory to plant height, phosphorus uptake, grain yield, and seed phosphorus content over uninoculated untreated control. The plant growth promoting rhizobacterias inoculation can be a sustainable source releasing phosphorus from low grade rock phosphate through composting and application of rock phosphate-enriched compost can be an alternative to chemical fertilisers for better crop production. PMID:25423956

  10. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Science.gov (United States)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  11. Technical Note: Reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria

    Directory of Open Access Journals (Sweden)

    J. J. Wang

    2012-10-01

    Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

  12. Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    OpenAIRE

    Koorem, Kadri; Price, Jodi N.; Moora, Mari

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest—evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two species...

  13. Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species.

    OpenAIRE

    Hoorens, B.; D. A. Coomes; R. Aerts

    2010-01-01

    The mass loss of litter mixtures is often different than expected based on the mass loss of the component species. We investigated if the identity of neighbour species affects these litter-mixing effects. To achieve this, we compared decomposition rates in monoculture and in all possible two-species combinations of eight tree species, widely differing in litter chemistry, set out in two contrasting New Zealand forest types. Litter from the mixed-species litter bags was separated into its comp...

  14. Effect of leaf litter quantity and type on forest soil fauna and biological quality

    OpenAIRE

    Zhizhong Yuan; Yang Cui; Shaokui Yan

    2013-01-01

    It is important to assess forest litter management. Here we examined the effects of leaf litter addition on the soil faunal community in Huitong subtropical forest region in Hunan Province, China. The microcosm experiment involving leaf-litter manipulation using a block and nested experimental design, respectively, was established in May, 2011. In the block design, the effects of litter quantity and its control were examined, while in the nested design a comparison was made of litter quality ...

  15. Influence of Soil Moisture on Litter Respiration in the Semiarid Loess Plateau

    OpenAIRE

    Zhang, Yanjun; Guo, Shengli; Liu, Qingfang; Jiang, Jishao

    2014-01-01

    Understanding the response mechanisms of litter respiration to soil moisture in water-limited semi-arid regions is of vital importance to better understanding the interplay between ecological processes and the local carbon cycle. In situ soil respiration was monitored during 2010–2012 under various conditions (normal litter, no litter, and double litter treatments) in a 30-year-old artificial black locust plantation (Robinia pseudoacacia L.) on the Loess Plateau. Litter respiration with norma...

  16. Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams?

    Science.gov (United States)

    Pradhan, Arunava; Seena, Sahadevan; Pascoal, Cláudia; Cássio, Fernanda

    2011-07-01

    The extensive use of nanometal-based products increases the chance of their release into aquatic environments, raising the question whether they can pose a risk to aquatic biota and the associated ecological processes. Aquatic microbes, namely fungi and bacteria, play a key role in forested streams by decomposing plant litter from terrestrial vegetation. Here, we investigated the effects of nanocopper oxide and nanosilver on leaf litter decomposition by aquatic microbes, and the results were compared with the impacts of their ionic precursors. Alder leaves were immersed in a stream of Northwest Portugal to allow microbial colonization before being exposed in microcosms to increased nominal concentrations of nanometals (CuO, 100, 200 and 500 ppm; Ag, 100 and 300 ppm) and ionic metals (Cu(2+) in CuCl(2), 10, 20 and 30 ppm; Ag(+) in AgNO(3), 5 and 20 ppm) for 21 days. Results showed that rates of leaf decomposition decreased with exposure to nano- and ionic metals. Nano- and ionic metals inhibited bacterial biomass (from 68.6% to 96.5% of control) more than fungal biomass (from 28.5% to 82.9% of control). The exposure to increased concentrations of nano- and ionic metals decreased fungal sporulation rates from 91.0% to 99.4%. These effects were accompanied by shifts in the structure of fungal and bacterial communities based on DNA fingerprints and fungal spore morphology. The impacts of metal nanoparticles on leaf decomposition by aquatic microbes were less pronounced compared to their ionic forms, despite metal ions were applied at one order of magnitude lower concentrations. Overall, results indicate that the increased release of nanometals to the environment may affect aquatic microbial communities with impacts on organic matter decomposition in streams. PMID:21553058

  17. [Effects of Eucalyptus grandis leaf litter at its early stage of decomposition on the growth and photosynthetic characteristics of Cichorium intybus].

    Science.gov (United States)

    Wu, Xiu-Hua; Li, Yi-Qiao; Hu, Ting-Xing; Chen, Bao-Jun; Yang, Yong-Gui; Chen, Hong; Hu, Hong-Ling

    2013-07-01

    From March to May, 2010, a pot experiment was conducted to investigate the effects of Eucalyptus grandis leaf litter at its early stage of decomposition on the growth and photosynthetic characteristics of Cichorium intybus. Four treatments with different application rate of the leaf litter, i.e., 0 g x pot(-1) (CK), 30 g x pot(-1) (A1), 60 g x pot(-1) (A2), and 90 g x pot(-1) (A3), were installed. Each pot contained 12 kg soil mixed with the leaf litter, and then, C. intybus was sown. The growth indicators of the C. intybus were measured at the 30, 45, 60, and 75 d after sowing, and the photosynthetic characteristics of the C. intybus in treatment A3 were studied after the seedlings third leaf fully expanded. At each measured time, the biomass accumulation and leaf area growth of C. intybus in treatments A1, A2, and A3 were inhibited significantly. At the early stage of the leaf litter decomposition, the synthesis of photosynthetic pigments of the C. intybus seedlings was inhibited significantly, and the inhibition effect was getting stronger with the increasing amount of the leaf litter addition. The diurnal change of the seedlings photosynthetic rate in all treatments showed a bimodal curve with midday depression, the stomatal conductance and water use efficiency had the same variation trend with the net photosynthetic rate, and the total diurnal photosynthesis decreased in the order of CK > A1 > A2 > A3. The GC-MS analysis showed there were 33 kinds of small molecule compounds released gradually with the decomposition of the leaf litter, among which, allelopathic substance terpenoid dominated. PMID:24175509

  18. Bioaccumulation and biological effects of cigarette litter in marine worms

    OpenAIRE

    Stephanie L. Wright; Darren Rowe; Reid, Malcolm J; Thomas, Kevin V.; Galloway, Tamara S.

    2015-01-01

    Marine debris is a global environmental issue. Smoked cigarette filters are the predominant coastal litter item; 4.5 trillion are littered annually, presenting a source of bioplastic microfibres (cellulose acetate) and harmful toxicants to marine environments. Despite the human health risks associated with smoking, little is known of the hazards cigarette filters present to marine life. Here we studied the impacts of smoked cigarette filter toxicants and microfibres on the polychaete worm Hed...

  19. SLAUGHTERING TRAITS OF PIGS REARED CONVENTIONALLY AND ON DEEP LITTER

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2005-12-01

    Full Text Available The aim of this research was to compare slaughtering traits of two pig genotypes when reared in two different ways, and to determine the influence of pig housing on carcass characteristics and muscle tissue quality. The research was carried out on 68 fattening pigs of both sex, divided into two groups: the first group was kept on deep litter, and the second one was housed in flat deck pens without deep litter. Each group consisted of pigs of two genotypes, i.e. three-way crossbreeds of Large White and German Landrace (LW x GL in the dam line and of German Landrace and Pietrain (P in the sire line. At the end of the experiment, pigs were slaughtered and the following values were determined: the pH45 and pH24 values, electric conductivity values (EC45, EC24, the “a” and “b” carcass length, loin values and the values of backfat and muscle thickness, aiming to evaluate the share of muscular tissue in carcass by applying the two-points method. Pigs reared on deep litter had statistically significantly smaller live weights (P<0.05 and warm carcass weights in comparison to pigs reared on flat deck without deep litter. Pigs crossed with Pietrain, which were kept without deep litter had significantly thicker muscles than the ones crossed with German Landrace, kept on deep litter (P<0.05. Fattening pigs of both genotypes, reared without deep litter, had significantly smaller pH45 values in loins and in MLD, when compared to pigs crossed with Pietrain and kept on deep litter (P<0.05. The influence of genotype was statistically significant for the EC45 value in loin, as well as for the muscle thickness and percentage share of muscular tissue (P<0.05. Interaction between the way of fattening and genotype did not have any effect on carcass and meat quality.

  20. Nutrient Availability from Poultry Litter Co-Products

    OpenAIRE

    Middleton, Amanda Jo

    2015-01-01

    Phosphorus (P) is a nutrient of concern in the Chesapeake Bay watershed due to nutrient imbalances in areas with confined animal feeding operations. By converting poultry litter to an ash via thermal conversion, nutrients are concentrated and are economical to ship out of nutrient surplus watersheds to nutrient deficient regions, such as the corn-belt. We initiated incubation and field studies on sandy loam soils to test P and potassium (K) availability from poultry litter ash (PLA). Four PLA...

  1. Effect of prenatal irradiation on total litter birth weight

    International Nuclear Information System (INIS)

    Total litter weight at birth was used as a response variable to study the effects of in utero irradiations on birth weight. Analyses were performed in such a manner as to allow for variations in litter size and environmental temperatures. No effects due to irradiation were noted for exposures given 8 days postcoitus (dpc) and 55 dpc. However, for exposures given 28 dpc, a 5% decrement in birth weight was found for an 80 rad dose

  2. Hydrocarbons in smoke aerosols from controlled burning of Mangifera foetida litter falls and Panicum repens

    International Nuclear Information System (INIS)

    A study has been carried out to characterize hydrocarbons emitted from the burning of two typical garden wastes, bachang (Mangifera foetida) litter falls and grass (panicum repens). The biomass samples were burned and their respective smoke particulate emitted was sampled using high volume sampler fitted with pre-cleaned glass fibre filters under smouldering and flaming conditions. Hydrocarbons were extracted using dichloromethane-methanol mixture as solvent and the extracts fractionated on silica-alumina column. Detection and quantification of aliphatic hydrocarbons and PAHs compounds were carried out using GC-MS. For comparison, hydrocarbons in fresh unburnt bachang litter falls and grass were also analyzed for aliphatic and PAHs content. Result indicated that the major components in the aliphatic fraction for all samples were n-alkane compounds which exhibited a saw-tooth pattern that is characteristic of a biogenic origin. The major components in this aliphatic fraction for smoke particulate matters were n-alkanes in the range of C12-C36, with an odd to even carbon predominance with CPI values ranging from 2.89-4.32 and Cmax generally at C31; total identified n-alkanes for these samples ranged from 221-939 μgg-1. On the other hand, hydrocarbons present in the fresh unburnt bachang litter falls and grass ranged from C12-C36 with C27 and C33 species dominating and CPI value of 4.5 and 23.1, respectively; total identified n-alkanes were significantly higher (1530-33000 μgg-1) than those found in smoke aerosols. In general, CPI > 1 indicates n-alkanes contribution from epicuticular waxes thus it could be concluded that, even though the overall signature of the source of n-alkanes is maintained, burning seems to alter the distribution of aliphatic hydrocarbon emitted accompanied with a decrease in the CPI values and shifting in Cmax. In addition, results also indicated that burning resulted in the formation of many PAHs compounds in all smoke aerosols samples with

  3. Density and Biomass Dynamics of Hippophae rhamnoides L.subsp.sinensis Population in Mu Us Sandland%毛乌素沙地中国沙棘种群数量动态研究

    Institute of Scientific and Technical Information of China (English)

    李根前; 赵粉侠; 李秀寨; 韦宇

    2004-01-01

    Based on the measurement of all individuals of population at different successional stage and following excavation of clones, the density and biomass dynamics of Hippophae rhamnoides L. subsp, sinensis population in Mu Us sandland were analyzed with the methods of plots arranged with age and reverse age class addition(RAA). The main results were as follows:(1)The density of clone population increased with the population growth before 5-year-old. The population biomass accumulating also increased by Logistic equation in the period of age structure of population developed from increasing type to mid-decreasing type.Then they tended to be decrease. While the population density, population biomass augmented again with the emergence of gap regeneration, and the dominant status of H.rhamnoides L.subsp, sinensis population and the stability of the community were maintained. (2)The decrease process of density of daughter ramets population lagged behind that of mother ramets population,and the numerical ratio of daughter ramets population within the population gradually enlarged. As the population thinned, the composition of population changed from more clones with less daughter ramets to less clones with more daughter ramets and the genetic diversity of population reduced. (3)The prosperous stage of biomass accumulation appeared from 8-year-old to 16-year-old and its peak appeared at 12-year-old. And the relationship between the individual mean weight and population density could be expressed by the law of power-3/2 in the period of age structure of population developed from stable type to decreasing type.

  4. Evidence for extraintestinal growth of bacteroidales originating from poultry litter.

    Science.gov (United States)

    Weidhaas, Jennifer; Mantha, Sirisha; Hair, Elliott; Nayak, Bina; Harwood, Valerie J

    2015-01-01

    Water quality monitoring techniques that target microorganisms in the order Bacteroidales are potential alternatives to conventional methods for detection of fecal indicator bacteria. Bacteroidales and members of the genus Bacteroides have been the focus of microbial source tracking (MST) investigations for discriminating sources of fecal pollution (e.g., human or cattle feces) in environmental waters. For accurate source apportionment to occur, one needs to understand both the abundance of Bacteroides in host feces and the survival of these host-associated microbial markers after deposition in the environment. Studies were undertaken to evaluate the abundance, persistence, and potential for growth of Bacteroidales originating from poultry litter under oxic and anoxic environmental conditions. Bacteroidales abundance, as determined by quantitative PCR (qPCR) with GenBac primers and probe, increased 2 to 5 log gene copies ml(-1) and 2 log gene copies g litter(-1) under most conditions during incubation of poultry litter in a variety of laboratory microcosm and field mesocosm studies. DNA sequencing of the Bacteroidales organisms in the litter identified taxa with sequences corresponding exactly to the GenBac primer and probe sequences and that were closely related to Bacteroides uniformis, B. ovatus, and B. vulgatus. These results suggest that MST studies using qPCR methods targeting Bacteroidales in watersheds that are affected by poultry litter should be interpreted cautiously. Growth of Bacteroidales originating from poultry litter in environmental waters may occur while Bacteroidales growth from other fecal sources declines, thus confounding the interpretation of MST results. PMID:25326306

  5. Consequences of biodiversity loss for litter decomposition across biomes.

    Science.gov (United States)

    Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

    2014-05-01

    The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales. PMID:24805346

  6. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water level regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-02-01

    Full Text Available Peatlands are carbon (C storage ecosystems sustained by a high water level (WL. High WL creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WL drawdown caused by land-use and/or climate change. Aerobic decomposers are directly affected by WL drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WL drawdown on aerobic decomposer activity in plant litter. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen, phosphorus and sulphur. Our study sites represented a three-stage chronosequence from pristine (undrained to short-term (years and long-term (decades WL drawdown conditions under two nutrient regimes. The litter types included reflected the prevalent vegetation, i.e., Sphagnum mosses, graminoids, shrubs and trees.

    WL drawdown had a direct and positive effect on microbial activity. Enzyme allocation shifted towards C acquisition, which caused an increase in the rate of decomposition. However, litter type overruled the direct effects of WL drawdown and was the main factor shaping microbial activity patterns. Our results imply that changes in plant community composition in response to persistent WL drawdown will strongly affect the C dynamics of peatlands.

  7. Tree litter and forest understorey vegetation: a conceptual framework to understand the effects of tree litter on a perennial geophyte, Anemone nemorosa

    OpenAIRE

    Baltzinger, M; Archaux, F.; Dumas, Y.

    2012-01-01

    BACKGROUND AND AIMS: Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions betwe...

  8. Typhoon enhancement of N and P release from litter and changes in the litter N: P ratio in a subtropical tidal wetland

    OpenAIRE

    Wang, Weiqi; Sardans i Galobart, Jordi; Tong, Chuan; Wang, Chun; Ouyang, Linmei; Bartrons Vilamala, Mireia; Peñuelas, Josep

    2016-01-01

    Litter production and decomposition are key processes controlling the capacity of wetland to store and cycle carbon(C)and nutrients. Typhoons deposit large amounts of green and semi-green(between green and withered)plant tissues and withered litter(normal litter)on wetland soils, generating a pulse of litter production. Climatic models project an increase in typhoon intensity and frequency. Elucidating the impacts of typhoons on C, N and P cycles and storage capacities in subtropical and trop...

  9. Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian Grassland

    Science.gov (United States)

    Barger, N.N.; Ojima, D.S.; Belnap, J.; Shiping, W.; Yanfen, W.; Chen, Z.

    2004-01-01

    This study reports on changes in plant functional group composition, litter quality, and soil C and N mineralization dynamics from a 9-year sheep grazing study in Inner Mongolia. Addressed are these questions: 1) How does increasing grazing intensity affect plant community composition? 2) How does increasing grazing intensity alter soil C and N mineralization dynamics? 3) Do changes in soil C and N mineralization dynamics relate to changes in plant community composition via inputs of the quality or quantity of litter? Grazing plots were set up near the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) with 5 grazing intensities: 1.3, 2.7, 4.0, 5.3, and 6.7 sheep ha -1??yr-1. Plant cover was lower with increasing grazing intensity, which was primarily due to a dramatic decline in grasses, Carex duriuscula, and Artemisia frigida. Changes in litter mass and percentage organic C resulted in lower total C in the litter layer at 4.0 and 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Total litter N was lower at 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Litter C:N ratios, an index of litter quality, were significantly lower at 4.0 sheep ha-1??yr -1 relative to 1.3 and 5.3 sheep ha-1??yr -1. Cumulative C mineralized after 16 days decreased with increasing grazing intensity. In contrast, net N mineralization (NH4+ + NO3-) after a 12-day incubation increased with increasing grazing intensity. Changes in C and N mineralization resulted in a narrowing of CO2-C:net Nminratios with increasing grazing intensity. Grazing explained 31% of the variability in the ratio of CO 2-C:net Nmin. The ratio of CO2-C:net N min was positively correlated with litter mass. Furthermore, there was a positive correlation between litter mass and A. frigida cover. Results suggest that as grazing intensity increases, microbes become more C limited resulting in decreased microbial growth and demand for N.

  10. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape.

    Science.gov (United States)

    Vasconcelos, Heraldo L; Laurance, William F

    2005-07-01

    Amazonian forest fragments and second-growth forests often differ substantially from undisturbed forests in their microclimate, plant-species composition, and soil fauna. To determine if these changes could affect litter decomposition, we quantified the mass loss of two contrasting leaf-litter mixtures, in the presence or absence of soil macroinvertebrates, and in three forest habitats. Leaf-litter decomposition rates in second-growth forests (>10 years old) and in fragment edges (edge) did not differ from that in the forest interior (>250 m from the edges of primary forests). In all three habitats, experimental exclusion of soil invertebrates resulted in slower decomposition rates. Faunal-exclosure effects were stronger for litter of the primary forest, composed mostly of leaves of old-growth trees, than for litter of second-growth forests, which was dominated by leaves of successional species. The latter had a significantly lower initial concentration of N, higher C:N and lignin:N ratios, and decomposed at a slower rate than did litter from forest interiors. Our results indicate that land-cover changes in Amazonia affect decomposition mainly through changes in plant species composition, which in turn affect litter quality. Similar effects may occur on fragment edges, particularly on very disturbed edges, where successional trees become dominant. The drier microclimatic conditions in fragment edges and second-growth forests (>10 years old) did not appear to inhibit decomposition. Finally, although soil invertebrates play a key role in leaf-litter decomposition, we found no evidence that differences in the abundance, species richness, or species composition of invertebrates between disturbed and undisturbed forests significantly altered decomposition rates. PMID:15942762

  11. Abundance of pathogens in the gut and litter of broiler chickens as affected by bacitracin and litter management.

    Science.gov (United States)

    Wei, Shan; Gutek, Amanda; Lilburn, Michael; Yu, Zhongtang

    2013-10-25

    Clostridium perfringens, Salmonella spp. and Campylobacter spp. are food-borne enteric pathogens that are commonly associated with poultry. The objective of this study was to investigate the effects of supplemental bacitracin and litter management (fresh vs. reused) on the abundance of these pathogens in commercial broiler chickens. Specific quantitative PCR (qPCR) assays were used to quantify C. perfringens, virulent C. perfringens that carried the genes encoding α-toxin (cpa) and NetB-toxin (netB), Salmonella, and Campylobacter in samples of ileal mucosa, cecal content, and litter. Campylobacter was not detected in any of the samples collected. The abundance of Salmonella was not affected by either bacitracin or litter condition. Generic C. perfringens was detected in the ileal mucosa at very low level at 10 days of age but was much higher at 35 days. Chickens reared on reused litter tended to have a lower abundance of generic C. perfringens compared with those reared on fresh litter. In the ileal mucosa, no cpa or netB was detected at day 10 but was detected at day 35 in the chickens that were not fed supplemental bacitracin. Chicks fed supplemental bacitracin had reduced abundance of generic C. perfringens as well as the cpa and netB genes in the ileal mucosa, cecal content, and litters. A strong positive correlation was found between the abundance of all three measurements of C. perfringens. The abundance of Salmonella spp. and C. perfringens was also shown to be correlated. This is the first study that has examined the effect of dietary bacitracin and litter conditions on the prevalence of these three common enteric pathogens. Unless contaminated from previous flocks, reused litter may not necessarily contain significantly greater abundances of C. perfringens or Salmonella. PMID:23870707

  12. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

    Science.gov (United States)

    Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

    2016-05-15

    The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment. PMID:26990075

  13. Litter mercury deposition in the Amazonian rainforest.

    Science.gov (United States)

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-11-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha(-1) y(-1). Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g(-1) was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m(-2) yr(-1). This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. PMID:26312742

  14. Predicting Biomass and Species Composition in the Siberian Boreal Forest Using a New Spatially-Explicit Vegetation Dynamics Model: Model Development, Calibration, and Climate Sensitivity Analysis.

    Science.gov (United States)

    Brazhnik, K.; Shugart, H. H., Jr.

    2014-12-01

    Circumpolar boreal forests contain one third of the terrestrial carbon stores, and it has been shown that they are already affected by climate change. As temperature and precipitation regimes shift, the total biomass and species composition may change in ways that promote further warming on the regional level through atmosphere-vegetation feedbacks. Changes in vegetation cover and the resulting atmosphere-vegetation feedbacks may be the determining factors in how regional terrestrial carbon stores change with climate change. This project reports on the development of a new spatially-explicit individual-based gap model SibBorK that can be utilized to investigate the potential changes in biomass and species composition in the Siberian boreal forest over the coming decades and centuries. SibBorK tracks the establishment, growth, and mortality of individual trees on 0.01-ha plots within a 9-ha simulation area. The new model is based on the principles of the ZELIG vegetation model, implemented in Python to facilitate interface with geographic information systems for explicit modeling of vegetation across artificial and real terrain. SibBorK was trained on modal (actual) regional forestry yield tables for southern taiga region of central Siberia. The model was calibrated and tested against the regional forestry yield tables, and further tested against an independent dataset from a forest inventory. Model comparisons were made on monospecies and mixed species stands, and included the evaluation of total stand biomass, species-specific biomass, species composition, and stem density based on site index and terrain elevation. Additionally, species distribution along altitudinal gradients and total biomass for specific locations was independently tested against other published forest inventory values. SibBorK is particularly good at predicting biomass and species composition on poor soils, with Orlov site indices III-V, which dominate the Siberian landscape. Herein, Sib

  15. Development of piglets raised in a new multi-litter housing system vs. conventional single-litter housing until 9 weeks of age

    NARCIS (Netherlands)

    Nieuwamerongen, van S.E.; Soede, N.M.; Peet-Schwering, van der C.M.C.; Kemp, B.; Bolhuis, J.E.

    2015-01-01

    This study compared the development until 9 wk of age of piglets raised in either a multi-litter (ML) system or a conventional single-litter (SL) system. The ML system consisted of a multi-suckling system with 5 sows and their litters before weaning, followed by housing in a pen with enrichment in a

  16. Intensive biomass harvesting in forests - what about the carbon balance?

    International Nuclear Information System (INIS)

    The use of biofuels is considered to be CO2-neutral. This means that the use of forest biomass for fuel does not add more CO2 to the atmosphere than what has been taken up over a stand age by photosynthesis. However, the biomass that may be harvested only contains part of the CO2 immobilized through fixation during the growth of the forest stand. A fraction of the produced biomass will always decompose on and in the soil, in part producing humus and in part CO2. To this fraction belongs the litter formed during the period of stand growth, e.g. the annual foliar litterfall. The decomposition of both foliar litter and green needles have been shown to follow an asymptotic function, meaning that the decomposition approaches a limit value. This means that recalcitrant remains are left. The decomposition of felling residues have been assumed to follow the same function. The obvious question is how the amount of humus is affected by removal of felling residues. In an investigation of humus storage in five stands of Norway spruce in south Sweden limit values were estimated for the decomposition of local spruce needle litter giving a variation from 63 to 85 per cent. With the use of these limit values and the amount of litterfall the accumulation of humus was estimated. These calculations showed that there is a growth of the humus layer in the period of stand growth. The rate of humus accumulation varied among the stands and on the average a theoretical humus accumulation of about 42 tons per hectare was estimated for a stand age of 60 years. This amount of already accumulated humus is not affected by harvests of remains from thinnings or clearcuts. If, on the other hand the felling residues are not removed that means that the amount of humus should increase. Experiments with soil scarification showed that for litter buried under plowed-up mineral soil the decomposition went further than in soil not scarified. The estimated limit value was on the average about 40 per cent

  17. A review of soil erosion potential associated with biomass crops

    International Nuclear Information System (INIS)

    It has been estimated that up to 60 million hectares could be devoted to energy crop production in the U.S. Due to economic considerations, biomass crops will probably be produced on marginal cropland which is frequently highly erodible. Thus, the impact of herbaceous and woody biomass crop production on soil erosion must be addressed. Perennial grasses provide year-round soil cover, limiting erosion even with continued biomass harvest. Vigorous perennial herbaceous stands reduce water runoff and sediment loss and favor soil development processes by improving soil organic matter, soil structure and soil water and nutrient-holding capacity. Minimum tillage management of row crops reduces erosion compared with systems involving more frequent or more extensive tillage. Woody biomass plantations reduce water erosion by improving water infiltration, reducing impacts by water droplets, intercepting rain and snow and physically stabilizing soil by their roots and leaf litter. Shelterbelts reduce wind erosion when planted as shelterbelts and improve soil organic matter, soil structure and soil moisture in their leeward zone, reducing soil erodibility. Harvesting of woody biomass plantations may be accompanied by increased erosion. Forestry clear-cutting, especially on steep slopes, often results in a large increase in water erosion. For this reason, it is essential that woody biomass plantations be designed for rotational harvesting, even though this may result in higher harvesting costs. (Author)

  18. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  19. Changes in organic compounds during leaf litter leaching: laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon

    Directory of Open Access Journals (Sweden)

    Halima M

    2008-02-01

    Full Text Available A laboratory experiment was carried out on the leaf litter of 8 agroforestry plant species of the Sudano-guinea Savannas of Ngaoundere in order to compare patterns of their water absorption and dynamics of four important energetic organic compounds (soluble sugars, cellulose, phenol and lignin among these plant species during the leaching phase and to determine the influence of initial litter properties on these processes. To this end, 168 samples of leaf litter (5.00 +/- 0.01 g of Annona senegalensis, Lophira lanceolata, Syzygium guineense var. guineense, Syzygium guineense var. macrocarpum, Vitellaria paradoxa, Vitex doniana, Vitex madiensis and Ximenia americana were immersed for 15 days in distilled water at a temperature of 23 °C and relative humidity of 65 +/- 1%. Three samples of each plant species were taken at 1, 6, 24, 72, 168, 240 and 360 hours. Depending on the species, water absorption capacity after 360 h of leaching varied from 162.77 (S. g. var. macrocarpum to 264.00% (V. madiensis of dry litter mass. The release of water-soluble substances varied between 9.61 (L. lanceolata and 34.12% (X. americana. Water absorption and release of water-soluble substances rate constants were the highest in V. madiensis (0.32 h-1 and 0.25 h-1 and the lowest one respectively in S. g. guineense (0.03 h-1 and S. g. var. macrocarpum (0.006 h-1. Organic compound of original litter also varied significantly among species and decreased with leaching time for water-soluble sugars and phenols, while increased for cellulose and lignin. Water absorption by litter was significantly correlated with initial water-soluble sugars and phenol content, leaf litter area and thickness. The release of water-soluble substances by litters was also correlated with initial water-soluble sugars, water content and leaf litter area. The leaching rate constant was correlated with that of water absorption. These preliminary results lead to a better understanding of the litter

  20. Changes in organic compounds during leaf litter leaching: laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon

    Directory of Open Access Journals (Sweden)

    Biyanzi P

    2007-12-01

    Full Text Available A laboratory experiment was carried out on the leaf litter of 8 agroforestry plant species of the Sudano-guinea Savannas of Ngaoundere in order to compare patterns of their water absorption and dynamics of four important energetic organic compounds (soluble sugars, cellulose, phenol and lignin among these plant species during the leaching phase and to determine the influence of initial litter properties on these processes. To this end, 168 samples of leaf litter (5.00 ± 0.01 g of Annona senegalensis, Lophira lanceolata, Syzygium guineense var. guineense, Syzygium guineense var. macrocarpum, Vitellaria paradoxa, Vitex doniana, Vitex madiensis and Ximenia americana were immersed for 15 days in distilled water at a temperature of 23 °C and relative humidity of 65 ± 1%. Three samples of each plant species were taken at 1, 6, 24, 72, 168, 240 and 360 hours. Depending on the species, water absorption capacity after 360 h of leaching varied from 162.77 (S. g. var. macrocarpum to 264.00% (V. madiensis of dry litter mass. The release of water-soluble substances varied between 9.61 (L. lanceolata and 34.12% (X. americana. Water absorption and release of water-soluble substances rate constants were the highest in V. madiensis (0.32 h-1 and 0.25 h-1 and the lowest one respectively in S. g. guineense (0.03 h-1 and S. g. var. macrocarpum (0.006 h-1. Organic compound of original litter also varied significantly among species and decreased with leaching time for water-soluble sugars and phenols, while increased for cellulose and lignin. Water absorption by litter was significantly correlated with initial water-soluble sugars and phenol content, leaf litter area and thickness. The release of water-soluble substances by litters was also correlated with initial water-soluble sugars, water content and leaf litter area. The leaching rate constant was correlated with that of water absorption. These preliminary results lead to a better understanding of the litter

  1. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.

    Science.gov (United States)

    Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline

  2. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

    Science.gov (United States)

    Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

    2016-02-15

    The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. PMID:26763321

  3. Marine litter in Mediterranean sandy littorals: Spatial distribution patterns along central Italy coastal dunes.

    Science.gov (United States)

    Poeta, Gianluca; Battisti, Corrado; Acosta, Alicia T R

    2014-12-15

    Sandy shores are generally considered important sinks for marine litter and the presence of this litter may represent a serious threat to biotic communities and dune integrity mostly due to cleaning activities carried out through mechanical equipment. In spring (April-May) 2012 we sampled 153 2×2m random plots to assess the spatial distribution patterns of litter on Central Italy sandy shores. We analysed the relationship between the presence of litter and coastal dune habitats along the sea-inland gradient. Our results showed that the most frequent litter items were plastic and polystyrene. Differences of marine litter spatial distribution were found between upper beach and fore dune habitats and fixed dune habitats: embryo dune and mobile dune habitats show the highest frequency of litter, but, surprisingly, marine litter did not impact fixed dune habitats, these possibly acting as a natural barrier protecting the inner part of the coast from marine litter dispersion. PMID:25455823

  4. Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study

    Directory of Open Access Journals (Sweden)

    C. A. Randles

    2010-10-01

    Full Text Available Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.

  5. Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice

    Directory of Open Access Journals (Sweden)

    Salgado Concepción

    2006-09-01

    Full Text Available Abstract The aim of this research was to explore the genetic parameters associated with environmental variability for litter size (LS, litter weight (LW and mean individual birth weight (IW in mice before canalisation. The analyses were conducted on an experimental mice population designed to reduce environmental variability for LS. The analysed database included 1976 records for LW and IW and 4129 records for LS. The total number of individuals included in the analysed pedigree was 3997. Heritabilities estimated for the traits under an initial exploratory approach varied from 0.099 to 0.101 for LS, from 0.112 to 0.148 for LW and from 0.028 to 0.033 for IW. The means of the posterior distribution of the heritability under a Bayesian approach were the following: 0.10 (LS, 0.13 (LW and 0.03 (IW. In general, the heritabilities estimated under the initial exploratory approach for the environmental variability of the analysed traits were low. Genetic correlations estimated between the trait and its variability reached values of -0.929 (LS, -0.815 (LW and 0.969 (IW. The results presented here for the first time in mice may suggest a genetic basis for variability of the evaluated traits, thus opening the possibility to be implemented in selection schemes.

  6. Fine litter accumulation in Central Amazonian Tropical Rainforest canopy Acúmulo de liteira fina no dossel de uma Floresta Tropical na Amazônia Central

    Directory of Open Access Journals (Sweden)

    Fabiana Rita do Couto-Santos

    2010-12-01

    Full Text Available Fine litter dynamics within the canopy differ from litter dynamics on the forest floor for reasons such as differences in microclimate, substrate, disturbance level, stratum influence and decomposition rates. This study is the first attempt to quantify the fine litter accumulated in the canopy of Central Amazonian forests. We compared the canopy litter accumulation to fine litter-layer on forest floor and to other forests and also investigated which were the mostly accumulated litter omponents. We found that Central Amazonian Rainforest intercepts greater fine litter in the canopy (294 g.m-2 compared to other forest formations with higher winds speed as in a Costa Rican Cloud Forest (170 g.m-2. The mean canopy fine litter accumulated at the end of the dry season was less than a half of that on soil surface (833 g.m-2 and the fine wood component dominates the canopy samplings (174 g.m-2 while leafy component predominate on soil surface litter (353 g.m-2.A dinâmica da liteira fina no dossel difere da dinâmica no chão da floresta por razões como diferenças no microclima, tipo de substrato, taxas de decomposição, distúrbios e influência dos estratos. Esta é a primeira tentativa de quantificar a liteira fina acumulada no dossel das florestas da Amazônia Central. Comparamos o acúmulo da liteira no dossel com a camada de liteira do chão da floresta e com outros tipos de florestas e investigamos quais componentes da liteira acumularam em maiores quantidades. A floresta estudada na Amazônia Central interceptou uma maior quantidade de liteira no dossel (294 g.m-2 do que outras florestas com maior influência dos ventos, como na Costa Rica (170 g.m-2. A média de liteira no dossel no fim da estação seca foi menos da metade da acumulada sobre o solo (833 g.m-2. Os galhos finos dominaram nas amostras do dossel (174 g.m-2 enquanto as folhas predominaram na liteira sobre o solo (353 g.m-2.

  7. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  8. Energy use of biomass

    OpenAIRE

    HOLEČKOVÁ, Michaela

    2010-01-01

    The aim of this bachelor thesis is the research of different types of biomass, description of the various types of methods and technologies for energy usage of biomass and the mapping of large power plant units in the Czech Republic. The first part of this thesis deals with the definition of biomass, its distribution and the description of basic essential attributes describing its composition. The downstream part of this work is focused on the technologies of gaining energy out of biomass or ...

  9. Geochemical fate of arsenic in swine litter

    Science.gov (United States)

    Quazi, S.; Makris, K.; Sarkar, D.; Datta, R.; Punamiya, P.

    2007-12-01

    Swine diet is often supplemented by organoarsenicals, such as roxarsone to treat diseases and to promote growth. Recent data reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in unprotected lagoons in concentrated animal feeding operations (CAFOs). However, serious environmental health risk may arise upon significant arsenic (As) release into solution. The problem may be exacerbated under certain environmental conditions where organoarsenicals, such as roxarsone transform into the more toxic inorganic As, posing serious health risk to the surrounding ecosystem. The objective of this study were to analyze swine wastes collected from 19 randomly selected CAFOs in the USA for As concentrations, and to determine the geochemical fate of As in the swine waste suspensions. Swine wastes were analyzed for total-recoverable, total soluble, and water-extractable As, which were measured by ICP-MS. Speciation of As was performed following a well-established hyphenated technique using HPLC- ICPMS. Swine waste suspensions differed in solids contents; thus, the particulate matters with varying As concentrations were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions. Findings show the prevalence of inorganic As [As(V)] in swine waste suspension solutions. Roxarsone underwent degradation to both organoarsenicals, such as p-ASA, as well as inorganic arsenate and to a number of unidentified metabolites. Roxarsone degradation kinetics was influenced by the solids content and the air conditions (anaerobic/aerobic) of the swine waste suspensions. Maximum degradation rates were observed under anaerobic conditions, in suspensions which were low in solids content. Roxarsone degradation was primarily microbially-mediated, but in certain cases abiotic degradation was also observed, which were significantly slower.

  10. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil

    Directory of Open Access Journals (Sweden)

    Vinícius Augusto Morais

    2013-06-01

    Full Text Available This study aimed at quantifying carbon (C and biomass stocks in shoot portion, leaf litter, roots and soil within a fragment of dense savanna 'cerradão', 158.5 ha in area, located in Minas Gerais state. Measures were quantified using dendrometric parameters obtained during the forest inventory and collection of leaf litter, root and soil samples. Furrows were dug in the soil each 100 cm long, 50 cm wide and 100 cm deep in order to collect root samples at depths of 0-30 cm, 30-50 cm and 50-100 cm, and soil samples from the layers 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm and 60-100 cm, as well as any leaf litter from the surrounding surface. Analyses were performed in the Organic Matter Study Laboratory (DCS/UFLA to determine C contents in the above matrices, using an Elementar analyzer model Vario TOC Cube. Higher C contents and stocks and lower density were noted in topmost soil layers. In cerradão, shoot portion was found to be the matrix contributing the most to biomass production, followed by roots and leaf litter. Carbon stock in the fragment was 139.7 Mg ha-1. Soil was the matrix contributing the most to stocked C (64.8%, followed by the shoot portion (26.3%, roots (5.2% and leaf litter (3.7%.

  11. Ant-mediated effects on spruce litter decomposition, solution chemistry, and microbial activity

    DEFF Research Database (Denmark)

    Stadler, B.; Schramm, Andreas; Kalbitz, K.

    2006-01-01

    effects of ants and aphid honeydew on litter solution of Norway spruce, microbial enzyme activities, and needle decomposition in a field and greenhouse experiment during summer 2003. In the field, low ant densities had relatively little effects on litter solution 30 cm away from a tree trunk, but...... %N were not affected by ants or honeydew. Our results suggest that ants have a distinct and immediate effect on solution composition and microbial activity in the litter layer indicating accelerated litter decay whereas the effect of honeydew was insignificant. Keywords: Ants; Decomposition; Formica...... polyctena; Honeydew; Litter solution chemistry; Microbial activity; Needle litter...

  12. Litter Fall and Its Decomposition in Sapium sebiferum Roxb.: An Invasive Tree Species in Western Himalaya

    OpenAIRE

    Vikrant Jaryan; Sanjay Kr. Uniyal; Gupta, R. C.; Singh, R.D.

    2014-01-01

    Recognizing that high litter fall and its rapid decomposition are key traits of invasive species, litter fall and its decay in Sapium sebiferum Roxb. were studied in Palampur. For this, litter traps of dimension 50 × 50 × 50 cm3 were placed in under-canopy and canopy gap of the species. Litter fall was monitored monthly and segregated into different components. For litter decay studies, litter bags of dimension 25 × 20 cm2 with a mesh size 2 mm were used and the same were analyzed on a fortni...

  13. LITTER DEPOSITION AND DECOMPOSITION IN THREE FOREST FRAGMENTS PERIODICALLY FLOODABLE IN THE ISLAND OF MARAMBAIA, RJ

    OpenAIRE

    Ranieri Ribeiro Paula; Marcos Gervasio Pereira; Luiz Fernando Tavares de Menezes

    2009-01-01

    The litter production and decomposition of three sandy coastal plain forest formations periodically floodable in the Island of Marambaia, Mangaratiba, RJ, were studied from October 2005 to September 2006. For the litter deposition evaluation, 10 litter traps were installed and in each forest formation to quantify the litter decomposition 15 litter bags were allocated in each area. The annual litter production was 11.3, 10.8 and 11.1 Mg ha-1year-1, to F1, F2 and F3, respectively, the highest d...

  14. Proteins in biomass streams

    NARCIS (Netherlands)

    Mulder, W.J.

    2010-01-01

    The focus of this study is to give an overview of traditional and new biomasses and biomass streams that contain proteins. When information was available, the differences in molecular structure and physical and chemical properties for the different proteins is given. For optimal biomass use, isolati

  15. Above and belowground controls on litter decomposition in semiarid ecosystems: effects of solar radiation, water availability and litter quality

    Science.gov (United States)

    Austin, A. T.; Araujo, P. I.; Leva, P. E.; Ballare, C. L.

    2008-12-01

    The integrated controls on soil organic matter formation in arid and semiarid ecosystems are not well understood and appear to stem from a number of interacting controls affecting above- and belowground carbon turnover. While solar radiation has recently been shown to have an important direct effect on carbon loss in semiarid ecosystems as a result of photochemical mineralization of aboveground plant material, the mechanistic basis for photodegradative losses is poorly understood. In addition, there are large potential differences in major controls on above- and belowground decomposition in low rainfall ecosystems. We report on a mesocosm and field study designed to examine the relative importance of different wavelengths of solar radiation, water availability, position of senescent material above- and belowground and the importance of carbon litter quality in determining rates of abiotic and biotic decomposition. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position-litter type and position-pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. In the field site, using plastic filters which attenuated different wavelengths of natural solar radiation, we found a highly significant effect of radiation exclusion on mass loss and demonstrated that both UV-A and short-wave visible light can have important impacts on photodegradative carbon losses. The combination of position and litter quality effects on litter decomposition appear to be critical for the

  16. Experimental investigation of surface litter ignition by bark firebrands

    Science.gov (United States)

    Filkov, Alexander; Kasymov, Denis; Zima, Vladislav; Matvienko, Oleg

    2016-01-01

    Probability and conditions for ignition of surface litter (pine needles) caused by firebrands is studied in the laboratory conditions. For modeling of firebrands, pine bark of various sizes 10×10, 15×15, 20×20, 25×25, 30×30 mm2 and 5 mm in thickness is used. The experiment was conducted in the absence of wind and at different wind velocities: 1, 1.5, 2 and 3 m/s. To conduct investigations, an experimental setup was constructed for generation of firebrands and their impact on surface litter. The results of experiments have shown that the increase in air velocity leads to the increase in probability of surface litter ignition. Thus, wind plays a role of catalyst in the ignition process, bringing an oxidizing agent to firebrands and supporting the process of smoldering. However, if the wind velocity is insufficient for ignition, then there is only the process of smoldering. The area of "uncertainty", where there is smoldering of surface litter without transition to ignition, is found to decrease with increasing the wind velocity. Based on the received results, it can be concluded that the ignition curve of surface liter by firebrands is nonlinear and depends on the wind velocity. At the same time, there is no smoldering and ignition of surface litter for all the wind velocities and the particles with a size of 10 × 10 mm2, regardless of their number.

  17. Lost fishing gear and litter at Gorringe Bank (NE Atlantic)

    Science.gov (United States)

    Vieira, Rui P.; Raposo, Isabel P.; Sobral, Paula; Gonçalves, Jorge M. S.; Bell, Katherine L. C.; Cunha, Marina R.

    2015-06-01

    Studies concerning marine litter have received great attention over the last several years by the scientific community mainly due to their ecological and economic impacts in marine ecosystems, from coastal waters to the deep ocean seafloor. The distribution, type and abundance of marine litter in Ormonde and Gettysburg, the two seamounts of Gorringe Bank, were analyzed from photo and video imagery obtained during ROV-based surveys carried out at 60-3015 m depths during the E/V Nautilus cruise NA017. Located approximately 125 nm southwest of Portugal, Gorringe Bank lays at the crossroad between the Atlantic and the Mediterranean and is therefore characterized by an intense maritime traffic and fishing activities. The high frequency of lost or discarded fishing gear, such as cables, longlines and nets, observed on Gorringe Bank suggests an origin mostly from fishing activities, with a clear turnover in the type of litter (mostly metal, glass and to a much lesser extent, plastic) with increasing depth. Litter was more abundant at the summit of Gorringe Bank (ca. 4 items·km- 1), decreasing to less than 1 item·km- 1 at the flanks and to ca. 2 items·km- 1 at greater depths. Nevertheless, litter abundance appeared to be lower than in continental margin areas. The results presented herein are a contribution to support further actions for the conservation of vulnerable habitats on Gorringe Bank so that they can continue contributing to fishery productivity in the surrounding region.

  18. From waste to energy -- Catalytic steam gasification of broiler litter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.A.; Sheth, A.C.

    1999-07-01

    In 1996, the production of broiler chickens in the US was approximately 7.60 billion head. The quantity of litter generated is enormous. In 1992, the Southeast region alone produced over five million tons of broiler litter. The litter removed from the broiler houses is rich in nutrients and often spread over land as a fertilizer. Without careful management, the associated agricultural runoff can cause severe environmental damage. With increasing broiler litter production, the implementation of alternative disposal technologies is essential to the sustainable development of the poultry industry. A process originally developed for the conversion of coals to clean gaseous fuel may provide an answer. Catalytic steam gasification utilities an alkali salt catalyst and steam to convert a carbonaceous feedstock to a gas mixture composed primarily of carbon monoxide, carbon dioxide, hydrogen, and methane. The low to medium energy content gas produced may be utilized as an energy source or chemical feedstock. Broiler litter is an attractive candidate for catalytic steam gasification due to its high potassium content. Experiments conducted in UTSI's bench-scale high-pressure fixed bed gasifier have provided data for technical and economic feasibility studies of the process. Experiments have also been performed to examine the effects of temperature, pressure, and additional catalysts on the gasification rate.

  19. SOA formation potential of emissions from soil and leaf litter.

    Science.gov (United States)

    Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M

    2014-01-21

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation. PMID:24328143

  20. Seasonal dynamics of fungal communities in a temperate oak forest soil.

    Science.gov (United States)

    Voříšková, Jana; Brabcová, Vendula; Cajthaml, Tomáš; Baldrian, Petr

    2014-01-01

    Fungi are the agents primarily responsible for the transformation of plant-derived carbon in terrestrial ecosystems. However, little is known of their responses to the seasonal changes in resource availability in deciduous forests, including photosynthate allocation below ground and seasonal inputs of fresh litter. Vertical stratification of and seasonal changes in fungal abundance, activity and community composition were investigated in the litter, organic and upper mineral soils of a temperate Quercus petraea forest using ergosterol and extracellular enzyme assays and amplicon 454-pyrosequencing of the rDNA-ITS region. Fungal activity, biomass and diversity decreased substantially with soil depth. The highest enzyme activities were detected in winter, especially in litter, where these activities were followed by a peak in fungal biomass during spring. The litter community exhibited more profound seasonal changes than did the community in the deeper horizons. In the litter, saprotrophic genera reached their seasonal maxima in autumn, but summer typically saw the highest abundance of ectomycorrhizal taxa. Although the composition of the litter community changes over the course of the year, the mineral soil shows changes in biomass. The fungal community is affected by season. Litter decomposition and phytosynthate allocation represent important factors contributing to the observed variations. PMID:24010995

  1. Impacts of Biomass Burning on the Land Use / Land Cover Dynamics in Northern Sub-Saharan Africa and Associated Alteration of Local Emission Rates

    Science.gov (United States)

    Ellison, L.; Ichoku, C. M.

    2015-12-01

    Biomass burning is a major anthropogenic event in Northern Sub-Saharan Africa (NSSA), which contributes 15-20% of the global annual total of particulate matter emissions from fires. This burning is mostly for agricultural, grazing or hunting purposes, and thus has a great potential for driving changes in the land use and land cover distribution in that region. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard both the Terra and Aqua spacecraft have two complimentary data products to support this research: the MOD14/MYD14 active fire products measuring fire locations and strengths, and the MCD12 land cover type product, which includes the International Geosphere Biosphere Programme (IGBP) land-cover classification system used in this analysis. More specifically, the MCD12Q1 tiled data product at 500 m was used to match against the 1 km active fire product resolution for the current analysis. Paired data between instantaneous fire measurements and the underlying land cover types for the particular year over the study period of 2003-2013 reveals a dominant burning of savanna, followed by cropland land cover type throughout the region. There are a few indications of the interchange between savanna and cropland due to burning practices. Even though the fire activity in the whole NSSA region is decreasing at a rate of 1.4%/yr during the study period, some land cover types in parts of NSSA show an increase, including local increases in sensitive land cover types such as forest and wetland, which could have serious ecological implications. The changes in the overall redistribution of biomass burning amongst the different land cover types in NSSA dictate that there is also a redistribution of biomass burning emissions. The extent of these changes will also be covered in this presentation.

  2. Effects of different sources of organic waste application on the growth and biomass production of kenaf (hibiscus cannabinus L.)

    International Nuclear Information System (INIS)

    The growth and biomass productivity of kenaf (Hibiscus cannabinus L.) grown with different sources of organic waste viz. sewage sludge, poultry litter, cow dung and rice straw application were observed in a field experiment. Organic wastes were applied at the rate of 5 t/ha and were compared with recommended dose of fertilizers and control. The plants were harvested at 120 days after sowing (at the flowering stage). Different sources of organic wastes had a significant effect (P cow dung>poultry litter > rice straw treatments. Among the four sources of organic wastes, sewage sludge treated plot produced the highest mean biomass of 23.33 t/ha (dry weight basis) which was 14.64% higher than the mean biomass production from control plot. (author)

  3. Stacking Time and Aluminum Sulfate Effects on Polyether Ionophores in Broiler Litter.

    Science.gov (United States)

    Doydora, Sarah A; Sun, Peizhe; Cabrera, Miguel; Thompson, Aaron; Love-Myers, Kimberly; Rema, John; Calvert, Vaughn; Pavlostathis, Spyros G; Huang, Ching-Hua

    2015-11-01

    The use of ionophores as antiparasitic drugs plays an important role in US poultry production, especially in the broiler () industry. However, administered ionophores can pass through the bird's digestive system and appear in broiler litter, which, when applied to agricultural fields, can present an environmental hazard. Stacking (storing or stockpiling) broiler litter for some time might decrease the litter ionophore concentrations before land application. Because ionophores undergo abiotic hydrolysis at low pH, decreasing litter pH with acidic aluminum sulfate (alum) might also decrease ionophore concentrations. We assessed the change in ionophore concentrations in broiler litter in response to the length of time broiler litter was stored (stacking time) and alum addition. We spiked broiler litter with monensin and salinomycin, placed alum-amended litter (∼pH 4-5) and unamended litter (∼pH 8-9) into 1.8-m bins, and repeatedly sampled each bin for 112 d. Our findings showed that stacking broiler litter alone did not have an impact on monensin concentration, but it did slowly reduce salinomycin concentration by 55%. Adding alum to broiler litter reduced monensin concentration by approximately 20% relative to unamended litter, but it did not change salinomycin concentration. These results call for continued search for alternative strategies that could potentially reduce the concentration of ionophores in broiler litter before their application to agricultural soils. PMID:26641344

  4. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    Science.gov (United States)

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants. PMID:24590204

  5. The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter

    Science.gov (United States)

    Gritsch, Christine; Egger, Florian; Zehetner, Franz; Zechmeister-Boltenstern, Sophie

    2016-05-01

    The forest litter layer lies at the boundary between soil and atmosphere and is a major factor in biogeochemical cycles. While there are several studies on how the litter layer controls soil trace gas emissions, litter emissions itself are less well understood, and it is still unclear how important gases respond to changing temperature and moisture. In order to assess leaf litter gas exchange, we conducted laboratory incubation experiments in which the full set of climate relevant gases, i.e., carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and nitric oxide (NO) coming from deciduous and coniferous leaf litter were measured at five temperatures and seven moisture contents. In addition, we compared litter and soil from different origin in terms of temperature/moisture responses of gas fluxes and investigated possible interactions between the two climate factors. Deciduous litter emitted more CO2 (up to 335 mg CO2-C kg-1 h-1) than coniferous litter, whereas coniferous litter released maximum amounts of NO (207 µg NO-N kg-1 h-1). N2O was only emitted from litter under very moist and warm conditions (>70% wet weight, >10°C). CH4 emissions were close to zero. Temperature sensitivities of litter emissions were generally lower than for soil emissions. Nevertheless, wet and warm conditions always enhanced litter emissions, suggesting a strong feedback effect of the litter layer to predicted future climate change.

  6. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-09-01

    and N acquisition towards C acquisition. This caused an increase in the rate of litter decomposition. The effects of the short-term WT drawdown were minor compared to those of the long-term WT drawdown: e.g., the increase in the activity of C-acquiring enzymes was up to 120 % (bog or 320 % (fen higher after the long-term WT drawdown compared to the short-term WT drawdown. In general, the patterns of microbial activity as well as their responses to WT drawdown depended on peatland type: e.g., the shift in activity allocation to C-acquisition was up to 100 % stronger at the fen compared to the bog.

    Our results imply that changes in plant community composition in response to persistent WT drawdown will strongly affect the C dynamics of peatlands. The predictions of decomposer activity under changing climate and/or land-use thus cannot be based on the direct effects of the changed environment only, but need to consider the indirect effects of environmental changes: the changes in plant community composition, their dependence on peatland type, and their time scale.

  7. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the im-portance of species composition, species richness, the type of different growth forms, and plant bio-mass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, her-baceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a de-crease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of below-ground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0-10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K

  8. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the Ln and Lv horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.)

  9. Measuring ecosystem functioning of soil mega-aggregates produced by soil/litter mix-feeding animals

    Science.gov (United States)

    Kaneko, N.

    2009-04-01

    on their seed nutrient, and the canopy oak trees seem to be nutrient limited. Thus in this forest, the nutrient condition mediated by earthworm activity was a strong factor influencing plant species-specific growth and this correlation was clear when we used the cast abundance as an independent factor but it was not clear when we used the worm abundance or biomass for explanation variables. In laboratory incubations, fresh casts of earthworm Metaphire hilgendorfi contained higher NH4-N which was mostly nitrified within 4-weeks. The 4-weeks aged casts of the earthworm and millipede Parafontaria laminata emitted significantly more N2O whereas the modified soil had strong CH4 acidification capacity. Therefore the animal effects on greenhouse effect gas should be evaluated for CO2, N2O and CH4 at the same time. We then confirmed that megaaggregates, probably cast origin, tended to contain more carbon than fine soil. Combining our data from various study sites in Japan, the amount of carbon contained in megaaggregates (> 2 mm) in 0-5 cm layer ranged from 200 to 1000 g C per m2. Animal feeding activities maintained substantial amount of surface soil aggregates. Therefore, the activity of soil/litter mix feeders can be linked to the carbon dynamics by evaluating worm's soil engineering effect.

  10. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    OpenAIRE

    Cheng, Fei; Peng, Xiaobang; ZHAO, PENG; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same...

  11. Carbon and biomass stocks in a fragment of cerradão in Minas Gerais state, Brazil

    OpenAIRE

    Vinícius Augusto Morais; José Roberto Soares Scolforo; Carlos Alberto Silva; José Marcio de Mello; Lucas Rezende Gomide; Antônio Donizette de Oliveira

    2013-01-01

    This study aimed at quantifying carbon (C) and biomass stocks in shoot portion, leaf litter, roots and soil within a fragment of dense savanna 'cerradão', 158.5 ha in area, located in Minas Gerais state. Measures were quantified using dendrometric parameters obtained during the forest inventory and collection of leaf litter, root and soil samples. Furrows were dug in the soil each 100 cm long, 50 cm wide and 100 cm deep in order to collect root samples at depths of 0-30 cm, 30-50 cm and 50-10...

  12. Litter input controls on soil carbon in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Bowden, Richard D.; Deem, Lauren; Plante, Alain F.;

    2014-01-01

    Above- and belowground litter inputs in a temperate deciduous forest were altered for 20 yr to determine the importance of leaves and roots on soil C and soil organic matter (SOM) quantity and quality. Carbon and SOM quantity and quality were measured in the O horizon and mineral soil to 50 cm in...... soil C, but decreases in litter inputs resulted in rapid soil C declines. Root litter may ultimately provide more stable sources of soil C. Management activities or environmental alterations that decrease litter inputs in mature forests can lower soil C content; however, increases in forest...... five treatments (control, double litter [DL], no litter [NL], no roots [NR], no inputs [NI]). After two decades of doubled litter addition, soil C and SOM did not increase. However, leaf litter exclusions reduced soil C (O and mineral horizons combined) by 24% in NL and 33% in NI treatments. In the...

  13. Distribution of beach litter along the coastline of Cádiz, Spain.

    Science.gov (United States)

    Williams, Allan Thomas; Randerson, Peter; Di Giacomo, Carlo; Anfuso, Giorgio; Macias, Ana; Perales, José Antonio

    2016-06-15

    A total of 59 categories of litter items were found at 20 beaches (13 mechanically cleaned, 7 non-cleaned) in the Cádiz tourist environment, Spain. Cluster Analysis and Principal Components Analysis were used to highlight similarities and contrasts between sites and/or associations between litter categories. Multivariate analyses separated beaches according to the total numbers of litter items present. Non-cleaned sites showed a variety of litter category abundance with distinct origins and abundant, ubiquitous items (plastic and glass fragments). Of the 7 non-cleaned beaches (49 litter categories) river-mouth sites were distinct due with high numbers of litter items. The sheltered inner part of Cádiz Bay beaches had a wide range of litter type. Many sites were associated with locally deposited recreational litter categories; while industrial/commercial/fishing categories were abundant only at a few sites, indicating items transported onto the shore from the Guadalete river. PMID:27117354

  14. Litter size, fur quality and genetic analyses of American mink

    DEFF Research Database (Denmark)

    Thirstrup, Janne Pia

    Mink is a production animal breed for the fur. Both quality and quantity of the produced skin are important for the producer. In these analyses both fur quality traits, such as structure of guard hair and wool, which determines the quality of the skin, and litter size which determines the quantity...... of the skin, have been analyzed. Both fur quality traits and litter size are complex traits underlying quantitative genetic variation. Methods for estimating genetic variance, spanning from pedigree information to the use of different genetic markers, have been utilized in order to gain knowledge...

  15. Paternity analysis in a litter of whale shark embryos

    OpenAIRE

    Schmidt, Jennifer; Chien-Chi, Chen; Sheikh, Saad; Meekan, Mark; Norman, Bradley; Joung, Shoou-Jeng

    2010-01-01

    A 10.6 m female whale shark Rhincodon typus caught off the coast of eastern Taiwan in 1995 carried 304 embryos that ranged in developmental stage from individuals still in egg cases to hatched and free-swimming near-term animals. This litter established that whale sharks develop by aplacental yolk-sac viviparity, with embryos hatching from eggs within the female. The range of developmental stages in this litter suggested ongoing fertilization over an extended period of time, with embryos of d...

  16. ESTIMATE OF BIOMASS IN Platanus x acerifolia (Aiton Willd. ESTABLISHED

    Directory of Open Access Journals (Sweden)

    Juarez Martins Hoppe

    2010-08-01

    Full Text Available This study aimed at estimating the biomass in a 5.5-year-Platanus x acerifolia stand, in Dom Feliciano county, Rio Grande do Sul. The inventory in the experimental area was done in five plots (20 m x 30 m each one. Trees were grouped in eight diameter classes, and 3 trees per class were cut. After cutting the trees, a cubing was done and the biomass of each component (leaf, fruit, branch, bark, wood and root was determined and sampled. The biomasses estimative from each component were done through regression equations adjustment that correlated dendrometric characteristics with biomass volumes from the respective components of the trees. The total biomass was 45,28 Mg h-1, distributed in: wood 21,07 Mg ha-1; branch 11,72 Mg ha-1; root 8,43 Mg ha-1; bark 2,01 Mg ha-1; leaf 1,89 Mg ha-1 and fruit 0,16 Mg ha-1. The accumulated litter was 12,80 Mg ha-1.

  17. Litter Decomposition in Created and Adjacent Forested Wetlands of the Coastal Plain of Virginia

    OpenAIRE

    Schmidt, John Michael

    2002-01-01

    Litter decomposition is a poorly understood function of constructed and natural forested wetlands. This study compared rates of litter mass loss, changes in litter morphology, and associated macroinvertebrate populations in constructed and natural non-tidal wetlands. Two sets of wetlands (constructed vs. natural) were studied in eastern Virginia; a 9 year-old riparian set near Fort Lee, (FL), and a 2 year-old wet flat set in Charles City County, (CC). Mixed deciduous forest litter collected...

  18. Litter production and decomposition in Eucalyptus urophylla x Eucalyptus globulus maidenii stand

    OpenAIRE

    Mauro Valdir Schumacher; Robson Schaff Corrêa; Márcio Viera; Elias Frank de Araújo

    2013-01-01

    he sustainable wood production in commercial plantations requires knowledge of the nutrient cycling process, which also involves the production and decomposition of litter. This study verified the influence of climatic variables on litter production and t evaluated the rate of leaf litter decomposition in a stand of Eucalyptus urophylla x E. globulus maidenii. There were installed 4 plots of 20 m x 20 m, in each plot four litter traps to collect leaves were placed, thin branches and miscellan...

  19. Young mangrove stands produce a large and high quality litter input to aquatic systems

    OpenAIRE

    Nga, B.T.; Tinh, H.Q.; Tam, D.T.; Scheffer, M.; Roijackers, R.M.M.

    2005-01-01

    Mangrove swamps are key ecosystems along the Vietnam coast. Although mangrove litter is thought to represent an important input of organic matter and nutrients to the coastal aquatic systems, the factors determining the quality and size of this litter flux have not been studied so far. We monitored leaf, stipule, twig, and reproductive litter monthly in monocultures of Rhizophora apiculata mangrove forests of 7, 11, 17 and 24 years old in the Camau province, Mekong Delta, Vietnam. Litter trap...

  20. Effects of UV Exposure and Litter Position on Decomposition in a California Grassland

    OpenAIRE

    Lin, Y.; King, JY

    2014-01-01

    The importance of photodegradation in surface litter decomposition has recently been recognized in arid and semi-arid terrestrial ecosystems, yet its importance in decomposing dense litter and the mechanisms through which it acts remain unclear. We investigated how ultraviolet (UV) radiation exposure and litter position affected decomposition processes in a California annual grassland. In a split-plot design, we exposed Bromus diandrus litter to two levels of UV radiation (UV pass and UV bloc...

  1. Interrelations between the Microbiotas in the Litter and in the Intestines of Commercial Broiler Chickens ▿

    OpenAIRE

    Cressman, Michael D.; Yu, Zhongtang; Nelson, Michael C.; Moeller, Steven J.; Lilburn, Michael S.; Zerby, Henry N.

    2010-01-01

    The intestinal microbiota of broiler chickens and the microbiota in the litter have been well studied, but the interactions between these two microbiotas remain to be determined. Therefore, we examined their reciprocal effects by analyzing the intestinal microbiotas of broilers reared on fresh pine shavings versus reused litter, as well as the litter microbiota over a 6-week cycle. Composite ileal mucosal and cecal luminal samples from birds (n = 10) reared with both litter conditions (fresh ...

  2. Mammary number and litter size in Rodentia: The “one-half rule”

    OpenAIRE

    Gilbert, Avery Nelson

    1986-01-01

    Litter size and mammary number in the mammalian order Rodentia show a significant positive correlation. Mean litter size is typically one-half the number of available mammaries, while maximum litter size approximates mammary number. Similar relationships are found in the families Muridae, Cricetidae, and Sciuridae. The relationship of litter size to mammary number is significantly different between the arboreal and terrestrial squirrels, and between the hystricomorph and nonhystricomorph rode...

  3. Transcriptomic Analysis of Ovaries from Pigs with High And Low Litter Size

    OpenAIRE

    Zhang, Xiaodong; Huang, Long; Wu, Tao; FENG, YIFANG; DING, YUEYUN; Ye, Pengfei; Yin, Zongjun

    2015-01-01

    Litter size is one of the most important economic traits for pig production as it is directly related to the production efficiency. Litter size is affected by interactions between multiple genes and the environment. While recent studies have identified some genes associated with prolificacy in pigs, transcriptomic studies of specific genes affecting litter size in porcine ovaries are rare. In order to identify candidate genes associated with litter size in swine, we assessed gene expression d...

  4. Does mixing of beech (Fagus sylvatica) and spruce (Picea abies) litter hasten decomposition?

    OpenAIRE

    Berger, Torsten W.; Berger, Pétra

    2013-01-01

    Background and aims It is of practical relevance to know how much beech must be admixed to pure spruce stands in order to increase litter decomposition and associated nutrient cycling, since the formation of thick organic layers is commonly ascribed to the recalcitrance of spruce needles. We addressed the impact of tree species mixture within forest stands and within litter on mass loss and nutritional release from litter. Methods Litter decomposition was measured in three adjacent stands of ...

  5. ECONOMICS OF TRADE-OFF BETWEEN UREA NITROGEN AND POULTRY LITTER FOR RICE PRODUCTION

    OpenAIRE

    Govindasamy, Ramu; Cochran, Mark J.; Miller, David M.; Norman, Richard J.

    1994-01-01

    This paper identifies optimal combinations of nitrogen in the form of urea, fresh litter and composted litter for rice production. Traditional cost minimization techniques using data from experimental results conducted at three sites in Arkansas during 1991 have been employed. Comparisons between different scenarios indicate that the trade-off between the use of poultry litter and urea nitrogen depends on such factors as soil fertility, the yield response to litter application and the relativ...

  6. Nutrient Dynamics in an Avicennia marina (Forsk. Vierh., Mangrove Forest in Vamleshwar, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Isaiah Nirmal KUMAR

    2011-03-01

    Full Text Available The study was carried out to determine the nutrient budget of plants, sediments and nutrient dynamics in an Avicennia marina (Forsk. Vierh., dominated forest in Vamleshwar near Narmada estuary, West Coast of Gujarat for a period of one year from November 2008 to October 2009. The average tree height of the mangrove is 1.5 to 2 m without much vertical stratification. Allometric methodology was used to measure the biomass, and yield a figure of 86.47 t ha-1 and the litter fall rate amounted to 2.9 t ha-1. Nutrient stocks of N, P and K in this mangrove were 137.05, 14.38 and 241.29 kg ha-1, with an annual accumulation of 55.74, 12.38 and 83.94 kg ha-1, and an annual return of 51.30, 10.83 and 13.52 kg ha-1, respectively, in the form of litter. The annual uptake for N, P and K were 61.04, 14.28 and 97.46 kg ha-1, and turnover rates of N, P and K were estimated at 3, 6 and 14 years, respectively, for the study period. Flow coefficients, which reveal the dynamic processes of nutrients between mangrove plants and sediments, are also explained. The present study concluded that the A. marina dominated mangrove plantation is more efficient in nutrient use and conservation.

  7. NETL, USDA design coal-stabilized biomass gasification unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-09-30

    Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

  8. Legacy phosphorus in calcareous soils: effects of long-term poultry litter application

    Science.gov (United States)

    Sequential fractionation techniques, coupled with phosphatase hydrolysis, have allowed for greater understanding of manure/litter effects on soil P distribution. We evaluated the effect of long-term (greater than 10 years) poultry litter (broiler and turkey litter) application at annual rates of 4.5...

  9. Prevention of littering through packaging design: a support tool for concept generation

    NARCIS (Netherlands)

    Wever, R.; Gutter, N.; Silvester, S.

    2006-01-01

    Littering is a social and environmental problem. Numerous studies have been performed trying to understand littering behavior and to find ways to influence it successfully. Various litter-reduction strategies have been applied with changing success. These have either focused on directly influencing

  10. PECULIARITIES OF LITTER INVERTEBRATES’ MULTISPECIES COMPLEXES FORMATION ON THE KHORTITSA ISLAND (ZAPORIZHZHYA PROVINCE)

    OpenAIRE

    D. О. Fedorchenko; V. V. Brygadyrenko

    2008-01-01

    Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province) are studied. The dispersion of taxonomic groups of different levels (families and species) in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  11. 33 CFR 149.324 - What are the requirements for litters?

    Science.gov (United States)

    2010-07-01

    ... litters? 149.324 Section 149.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Equipment Manned Deepwater Port Requirements § 149.324 What are the requirements for litters? Each manned deepwater port must have at least one Stokes or other suitable litter, capable of safely hoisting an...

  12. ECONOMICS OF POULTRY LITTER UTILIZATION AND OPTIMAL ENVIRONMENTAL POLICY FOR PHOSPHORUS DISPOSAL IN GEORGIA

    OpenAIRE

    Paudel, Krishna P.; McIntosh, Christopher S.

    2000-01-01

    Poultry litter can be used as plant nutrients or cattle feed. Both of these alternatives may increase phosphorus concentration in the nearby watershed. Use of phosphorus consistent litter application rule in nutrient management combined with permit system has potential to curtail the over production of litter and prevent the possible contamination of water.

  13. The Nitrogen Fertilizer Value of Baled Broiler Litter for Cotton Production in the Arkansas Delta

    OpenAIRE

    Kemper, Nathan; Goodwin, Harold L., Jr.; Mozaffari, Morteza

    2008-01-01

    The export of poultry litter by baling efficiently packages litter for long-term storage and transportation. Use of baled poultry litter to supply the recommended rates of P and K and a portion of the N rate appears to be a feasible nutrient management strategy for cotton.

  14. The use of beached bird surveys for marine plastic litter monitoring in Ireland

    NARCIS (Netherlands)

    Acampora, Heidi; Lyashevska, Olga; Franeker, van J.A.; O'Connor, I.

    2016-01-01

    Marine plastic litter has become a major threat to wildlife. Marine animals are highly susceptible to entanglement and ingestion of debris at sea. Governments all around the world are being urged to monitor litter sources and inputs, and to mitigate the impacts of marine litter, which is primarily c

  15. A new conceptual model for the fate of lignin in decomposing plant litter

    NARCIS (Netherlands)

    T. Klotzbücher; K. Kaiser; G. Guggenberger; C. Gatzek; K. Kalbitz

    2011-01-01

    Lignin is a main component of plant litter. Its degradation is thought to be critical for litter decomposition rates and the build-up of soil organic matter. We studied the relationships between lignin degradation and the production of dissolved organic carbon (DOC) and of CO2 during litter decompos

  16. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast

    Science.gov (United States)

    Whitbeck, M.; Grace, J.B.

    2006-01-01

    The estimation of aboveground biomass is important in the management of natural resources. Direct measurements by clipping, drying, and weighing of herbaceous vegetation are time-consuming and costly. Therefore, non-destructive methods for efficiently and accurately estimating biomass are of interest. We compared two non-destructive methods, visual obstruction and light penetration, for estimating aboveground biomass in marshes of the upper Texas, USA coast. Visual obstruction was estimated using the Robel pole method, which primarily measures the density and height of the canopy. Light penetration through the canopy was measured using a Decagon light wand, with readings taken above the vegetation and at the ground surface. Clip plots were also taken to provide direct estimates of total aboveground biomass. Regression relationships between estimated and clipped biomass were significant using both methods. However, the light penetration method was much more strongly correlated with clipped biomass under these conditions (R2 value 0.65 compared to 0.35 for the visual obstruction approach). The primary difference between the two methods in this situation was the ability of the light-penetration method to account for variations in plant litter. These results indicate that light-penetration measurements may be better for estimating biomass in marshes when plant litter is an important component. We advise that, in all cases, investigators should calibrate their methods against clip plots to evaluate applicability to their situation. ?? 2006, The Society of Wetland Scientists.

  17. Biomass Resource Allocation among Competing End Uses

    Energy Technology Data Exchange (ETDEWEB)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  18. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to pr