WorldWideScience

Sample records for biomass heating systems

  1. Design of biomass district heating systems

    International Nuclear Information System (INIS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2009-01-01

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions

  2. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  3. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  4. White Pine Co. Public School System Biomass Conversion Heating Project

    Energy Technology Data Exchange (ETDEWEB)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  5. Biomass universal district heating systems

    Science.gov (United States)

    Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo

    2017-11-01

    In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  6. Technoeconomic analysis of a biomass based district heating system

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    This paper discussed a proposed biomass-based district heating system to be built for the Pictou Landing First Nation Community in Nova Scotia. The community centre consists of 6 buildings and a connecting arcade. The methodology used to size and design heating, ventilating and air conditioning (HVAC) systems, as well as biomass district energy systems (DES) were discussed. Annual energy requirements and biomass fuel consumption predictions were presented, along with cost estimates. A comparative assessment of the system with that of a conventional oil fired system was also conducted. It was suggested that the design and analysis methodology could be used for any similar application. The buildings were modelled and simulated using the Hourly Analysis Program (HAP), a detailed 2-in-1 software program which can be used both for HVAC system sizing and building energy consumption estimation. A techno-economics analysis was conducted to justify the viability of the biomass combustion system. Heating load calculations were performed assuming that the thermostat was set constantly at 22 degrees C. Community centre space heating loads due to individual envelope components for 3 different scenarios were summarized, as the design architecture for the buildings was not yet finalized. It was suggested that efforts should be made to ensure air-tightness and insulation levels of the interior arcade glass wall. A hydronic distribution system with baseboard space heating units was selected, comprising of a woodchip boiler, hot water distribution system, convective heating units and control systems. The community has its own logging operation which will provide the wood fuel required by the proposed system. An outline of the annual allowable harvest covered by the Pictou Landing Forestry Management Plan was presented, with details of proposed wood-chippers for the creation of biomass. It was concluded that the woodchip combustion system is economically preferable to the

  7. Small-scale automated biomass energy heating systems: a viable option for remote Canadian communities?

    Energy Technology Data Exchange (ETDEWEB)

    McCallum, B. [Canadian Forest Service, Ottawa, ON (Canada). Industry, Economics and Programs Branch

    1997-12-31

    The potential benefits of wood energy (forest biomass) for space heating in Canada`s remote communities was discussed. Diesel fuel and heating oil must be transported into these communities to produce electricity and to heat large public buildings. Below the treeline, roundwood is often used to heat private homes. The move toward environmentally sustainable development has focussed much attention on renewable energy technologies such as biomass energy, (i.e. any form of energy derived from plant or animal materials). Wood is the most readily available biomass fuel in remote communities. Woodchips and sawmill waste can be burned in automated biomass heating systems which provide a convenient way to use low-grade wood to heat large buildings or groups of buildings which would not be feasible to heat with roundwood. It was shown that one cord of spruce can produce 1.5 tonnes of woodchips to ultimately displace 300 litres of heating oil. A description of a small-commercial and small-industrial biomass system was presented. The benefits of biomass were described as: (1) direct savings compared to high-cost oil heat, (2) increased circulation of energy dollars inside the community, and (3) employment opportunities in harvesting, processing and operating biomass systems. A steady supply of good quality woodchips to the heating plant must be ensured. 1 ref., 3 figs.

  8. An applied methodology for assessment of the sustainability of biomass district heating systems

    Science.gov (United States)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2016-03-01

    In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.

  9. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Directory of Open Access Journals (Sweden)

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  10. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Science.gov (United States)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  11. Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available Global interest in using biomass feedstock to produce heat and power is increasing. In this study, RETScreen modelling software was used to investigate the feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Weiss Kessel Multicratboiler system with 2 MW capacity using rice straw biomass as fuel and 10 units of RBI® CB0500 boilers with 144 kW capacity using natural gas as fuel were selected for the proposed biomass heating system. The total cost of the biomass heating project is US$ 786,390. The project has a pre-tax and after tax internal rate of return (IRR of 122.70%, simple payback period of 2.54 years, equity payback period of 0.83 year, a net present value of US$ 3,357,138.29, an annual lifecycle savings of US$ 262,617.91, a benefit-cost ratio of 21.83, an electricity cost of $0/kWh and a GHG reduction cost of −204.66 $/tCO₂. The annual GHG emission reduction is 1,283.2 tCO₂, which is equivalent to 118 hectares of forest absorbing carbon. The development and adoption of this renewable energy technology will save costs on buying conventional type of heating system and result in a large technical and economic potential for reducing greenhouse gas emissions which will satisfy the sustainable development goals.

  12. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  13. Establishing biomass heating in the UK: phase 2

    International Nuclear Information System (INIS)

    2000-01-01

    The Biomass Heat Working Group, first set up in 1995, was taken on by British BioGen in 1996. Over the summer of 1996 British BioGen, supported by DTI, worked with the group to produce 'A Strategy to Develop the UK Market for Biomass Heating Installations'. In the spring of 1997 British BioGen agreed a two-year programme with ETSU (for the DTI) to 'Establish Biomass Heating in the UK'. The DTI's New and Renewable Energy Programme has supported this two-year programme which aims to bring together industry stakeholders and assist in the development of a significant biomass heat market in the UK. Overall we believe the project has been successful in its aim to increase the volume of biomass heating enquiries and enable greater use of the industry 'knowledge base'. Throughout the duration of the project a number of new biomass heating systems have been installed, including Shenstone Lodge School, Boughton Pumping Station and Elvendon Priory. In addition, an efficient system of information exchange has been established for customers and industry. British BioGen believe that the benefits of this system will be a crucial factor in achieving bioenergy industry targets of 2MWt for domestic heating, 2MWt for industrial and commercial heating and 2MWt for CHP by the end of 2001. The remainder of this summary offers highlights of the activities undertaken within the project, outlines the conclusions of the project and makes brief recommendations for further actions to assist the further deployment of biomass heating in the UK. (author)

  14. Establishing biomass heating in the UK: phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Biomass Heat Working Group, first set up in 1995, was taken on by British BioGen in 1996. Over the summer of 1996 British BioGen, supported by DTI, worked with the group to produce 'A Strategy to Develop the UK Market for Biomass Heating Installations'. In the spring of 1997 British BioGen agreed a two-year programme with ETSU (for the DTI) to 'Establish Biomass Heating in the UK'. The DTI's New and Renewable Energy Programme has supported this two-year programme which aims to bring together industry stakeholders and assist in the development of a significant biomass heat market in the UK. Overall we believe the project has been successful in its aim to increase the volume of biomass heating enquiries and enable greater use of the industry 'knowledge base'. Throughout the duration of the project a number of new biomass heating systems have been installed, including Shenstone Lodge School, Boughton Pumping Station and Elvendon Priory. In addition, an efficient system of information exchange has been established for customers and industry. British BioGen believe that the benefits of this system will be a crucial factor in achieving bioenergy industry targets of 2MWt for domestic heating, 2MWt for industrial and commercial heating and 2MWt for CHP by the end of 2001. The remainder of this summary offers highlights of the activities undertaken within the project, outlines the conclusions of the project and makes brief recommendations for further actions to assist the further deployment of biomass heating in the UK. (author)

  15. Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

    International Nuclear Information System (INIS)

    Gunarathne, Duleeka Sandamali; Mellin, Pelle; Yang, Weihong; Pettersson, Magnus; Ljunggren, Rolf

    2016-01-01

    Highlights: • Multi-stage biomass gasification is integrated with steel heat treatment furnace. • Fossil fuel derived CO_2 emission is eliminated by replacing natural gas with syngas. • The integrated system uses waste heat from the furnace for biomass gasification. • Up to 13% increment of the gasifier system energy efficiency is observed. • Fuel switching results in 10% lower flue gas loss and improved furnace efficiency. - Abstract: The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO_2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency. A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature. The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required. Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed

  16. Port Graham Community Building Biomass Heating Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Patrick [Port Graham Village Corporation, Anchorage, AK (United States); Sink, Charles [Chugachmiut, Anchorage, Alaska (United States)

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to

  17. Biomass fuels in district heating systems. Final report. Biobrensel i fjernvarmesystem. Sluttrapport

    Energy Technology Data Exchange (ETDEWEB)

    Otterstad, B.

    1987-02-01

    The report deals with an energy conservation project on district heating. The project gives a cost comparison between a biomass fuelled system for the local water heating/electric power supply and the development of hydroelectric power. The computer program ESENTRAL is used in the simulation. 3 drawings.

  18. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of multi-biomass supply chains and biomass to biofuel processing technologies. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents a mixed integer linear programming (MILP) approach to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the representation of the relationships between the biomass processing and biofuel energy conversion steps, and on the trade-offs between centralized district heating plants and local heat generation systems. After a description of state of the art and research trends in urban energy systems and bioenergy modelling, an application of the methodology to a generic case study is proposed. With the assumed techno-economic parameters, biomass based thermal energy generation results competitive with natural gas, while district heating network results the main option for urban areas with high thermal energy demand density. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  19. Biomass gasification in district heating systems - The effect of economic energy policies

    International Nuclear Information System (INIS)

    Wetterlund, Elisabeth; Soederstroem, Mats

    2010-01-01

    Biomass gasification is considered a key technology in reaching targets for renewable energy and CO 2 emissions reduction. This study evaluates policy instruments affecting the profitability of biomass gasification applications integrated in a Swedish district heating (DH) system for the medium-term future (around year 2025). Two polygeneration applications based on gasification technology are considered in this paper: (1) a biorefinery plant co-producing synthetic natural gas (SNG) and district heat; (2) a combined heat and power (CHP) plant using integrated gasification combined cycle technology. Using an optimisation model we identify the levels of policy support, here assumed to be in the form of tradable certificates, required to make biofuel production competitive to biomass based electricity generation under various energy market conditions. Similarly, the tradable green electricity certificate levels necessary to make gasification based electricity generation competitive to conventional steam cycle technology, are identified. The results show that in order for investment in the SNG biorefinery to be competitive to investment in electricity production in the DH system, biofuel certificates in the range of 24-42 EUR/MWh are needed. Electricity certificates are not a prerequisite for investment in gasification based CHP to be competitive to investment in conventional steam cycle CHP, given sufficiently high electricity prices. While the required biofuel policy support is relatively insensitive to variations in capital cost, the required electricity certificates show high sensitivity to variations in investment costs. It is concluded that the large capital commitment and strong dependency on policy instruments makes it necessary that DH suppliers believe in the long-sightedness of future support policies, in order for investments in large-scale biomass gasification in DH systems to be realised.

  20. Technoeconomic analysis of a biomass based district heating system. Paper no. IGEC-1-ID01

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    District energy systems (DES) that produce steam, hot water or chilled water at a central plant and then distribute that energy to buildings in the district for space heating, domestic hot water heating and air conditioning provide opportunities for increasing energy efficiency and reducing greenhouse gas (GHG) emissions. Use of biomass, such as wood, wood byproducts and wastes, fast-growing trees, agricultural crops and waste, in place of conventional fossil fuels to produce the thermal energy needed by a DES, presents further opportunities for reducing green house gas emissions as well as providing rural employment, and local solutions to rural and remote energy needs. In this paper, a technoeconomic analysis of a biomass based DES for a community center in Nova Scotia, Canada is presented. The methodology used to size and design the heating and ventilating system, as well as the biomass based DES is discussed. Annual energy requirement and biomass fuel consumption predictions are presented along with cost estimates. A comparative assessment of the economic feasibility of the system vis-a-vis a conventional oil fired system is conducted. While the results are specific to the particular application, the design and analysis methodology that is presented in the paper can be used for any similar application. (author)

  1. Biomass Supply Planning for Combined Heat and Power Plants using Stochastic Programming

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    method using stochastic optimization to support the biomass supply planning for combined heat and power plants. Our two-phase approach combines mid-term decisions about biomass supply contracts with the short-term decisions regarding the optimal market participation of the producer to ensure......During the last years, the consumption of biomass to produce power and heat has increased due to the new carbon neutral policies. Nowadays, many district heating systems operate their combined heat and power (CHP) plants using different types of biomass instead of fossil fuel, especially to produce......, and heat demand and electricity prices vary drastically during the planning period. Furthermore, the optimal operation of combined heat and power plants has to consider the existing synergies between the power and heating systems while always fulfilling the heat demand of the system. We propose a solution...

  2. Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    An economic linear programming model with a sliding time window was developed to assess designing and scheduling a biomass-fueled combined heat and power system consisting of biomass gasifier, internal combustion engine, heat recovery set, heat-only boiler, producer gas storage and thermal energy......, utility tariff structure and technical and finical performance of the system components. Engine partial load performance was taken into consideration. Sensitivity analyses demonstrate how the optimal BCHP configuration changes with varying demands and utility tariff rates....

  3. Solar-assisted biomass-district heating: projects in Austria and operational data; Solarunterstuetzte Biomasse-Fernwaermeversorgung: Projekte in Oesterreich und Betriebsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Faninger, G. [Institut fuer Interdisziplinaere Forschung und Fortbildung der Universitaeten Klagenfurt, Innsbruck und Wien (IFF), Klagenfurt (Austria)

    1998-12-31

    In recent years small-volume biomass district heating systems (district heat grids) have attracted increasing interest in Austria. By the end of 1997 some 359 biomass-district heating systems with an overall capacity of approximately 483 MW were in operation. If a biomass-district heating plant and a solar plant are combined the solar plant can supply most of the heat required outside the heating season. At present Austria runs 12 solar-assisted biomass-district heating grids with collector areas between 225 square metres and 1,250 square metres. In order to run these biomass-district heating systems in an economically and technically efficient way it is necessary to assure high quality in terms of planning, construction and operation. A list of criteria is set up on the basis of first operational data in order to evaluate energy efficiency and economic performance. These criteria should be applied in order to ensure that energy, environment and economy are equally considered in the planning and construction of solar-assisted biomass-district heating plants. They should also be helpful for the approval procedures of projects. (orig.) [Deutsch] Kleinraeumige Biomasse-Fernwaermeanlagen (Nahwaermenetze) fanden in den letzten Jahren zunehmendes Interesse in Oesterreich. So waren Ende 1997 insgesamt 359 Biomasse-Fernwaermeanlagen mit einer installierten Gesamtleistung von etwa 483 MW in Betrieb. Die Kombination einer Biomasse-Fernwaermeanlage mit einer Solaranlage bringt den Vorteil, dass die Waermebereitstellung ausserhalb der Heizsaison zu einem hohen Anteil ueber die Solaranlage vorgenommen werden kann. Derzeit werden in Oesterreich 12 solarunterstuetzte Biomasse-Nahwaermenetze mit Kollektorflaechen von 225 m{sup 2} bis 1.250 m{sup 2} betrieben. Um einen moeglichst effizienten und damit auch wirtschaftlichen Betrieb von solarunterstuetzten Biomasse-Fernwaermeanlagen zu gewaehrleisten, werden hohe Anforderungen an Planung, Ausfuehrung und Betrieb gestellt. Auf der

  4. Economic and policy factors driving adoption of institutional woody biomass heating systems in the United States

    Science.gov (United States)

    Jesse D. Young; Nathaniel M. Anderson; Helen T. Naughton; Katrina Mullan

    2018-01-01

    Abundant stocks of woody biomass that are associated with active forest management can be used as fuel for bioenergy in many applications. Though factors driving large-scale biomass use in industrial settings have been studied extensively, small-scale biomass combustion systems commonly used by institutions for heating have received less attention. A zero inflated...

  5. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  6. Combined heat and power system with advanced gasification technology for biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, S.; Abe, T.; Yasuda, T. [Nippon Furnace Kogyo Kaisha Ltd, Yokohama (Japan); Gupta, A.K. [Maryland Univ., College Park, MD (United States). Dept. of Mechnical Engineering

    2013-07-01

    The results obtained from an advanced gasification system utilizing high temperature steam are presented here. The results showed successful demonstration of clean syngas production having high calorific value fuel ({proportional_to}10 MJ/m{sup 3}N) using woody biomass wastes in a downdraft type gasifier. The gasification capacity of the plant on dry basis was 60 kg/h. The syngas produced can be utilized in an absorption type chiller for air conditioning. This advanced gasification technology allows one to transform wastes to clean energy at local production sites without any environmental impact and expensive waste transportation costs. The experience gained from the demonstration plant allows one to implement to other industrial applications for use as a decentralized unit and obtain clean syngas for local use. The demonstration conducted here shows that the system is favorable for onsite use of compatible combined heat and power (CHP) system including light oil supported diesel engine power generator. The biomass waste fuel from a lumber mill factory was used in this study. The factory handles a wide forests area of about 50 ha and produces about 2,500 m{sup 3}/year of wood chips from thin out trees and waste lumbers. This translates to a maximum 110 kg/h of wood chips that can be fed to a gasifier. The syngas produced was used for the combined heat and power system. Local use of biomass for fuel reforming reduces the cost of collection and transportation costs so that a sustainable business is demonstrated with profit from the generated electricity and thermal energy. The cost structure incorporates both the depreciation cost and operation cost of the system. Thermal energy from hot water can be used for drying lumbers and wood chips in a cascade manner. The drying process can be adopted for enhancing its productivity with increased variability on the quality of lumber. The results show that the combined heat and power system (CHP) offers good profitable

  7. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  8. Fort Carson Building 1860 Biomass Heating Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gaul, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    As part of the Army Net-Zero Energy Installation program, the Fort Carson Army Base requested that NREL evaluate the feasibility of adding a biomass boiler to the district heating system served by Building 1860. We have also developed an Excel-spreadsheet-based decision support tool--specific to the historic loads served by Building 1860--with which users can perform what-if analysis on gas costs, biomass costs, and other parameters. For economic reasons, we do not recommend adding a biomass system at this time.

  9. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  10. District heating and combined heat and power generation from biomass

    International Nuclear Information System (INIS)

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  11. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  12. Small scale biomass heating systems: Standards, quality labelling and market driving factors - An EU outlook

    International Nuclear Information System (INIS)

    Verma, V.K.; De Ruyck, J.; Bram, S.

    2009-01-01

    In the present study a comparative evaluation of several existing quality labels and standards for small scale biomass heating systems (BHS) and the biomass fuels they use was performed. With the introduction of pellet fuels, biomass heating technology achieved enough maturity to successfully compete with oil/gas heating devices in terms of ease of use, utilization of energy and pollutant emissions. From indoor air quality and related health risks point of view, quality labelling of both BHS and fuel they use leads to stricter emissions, efficiency and safety requirements as compared to National and EU standards. Several measures supporting this green energy market in the active countries (Sweden, Nordic countries, Germany, France and Austria) were investigated. It was found that policies and financial incentives such as the Finance Law (2005-2009) in France and Market Incentives Programme (1999-2006) in Germany are the most successful. German regulations and quality label (Blue Angel) provide the stringent quality requirements for residential BHS. In Belgium, Wallonia is the most active region for biomass energy utilization (83.5 MW for residential heating in 2007). A quality label for small scale BHS however does not yet exist. An equivalent label (Optimaz) exists for oil fired residential boilers. Emphasis has been placed upon using Optimaz as a reference and to compare with other existing quality labels. As a result, an effort had been made to move ahead in the preliminary study for development of a quality label for Belgian. (author)

  13. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    OpenAIRE

    Ortwein Andreas

    2016-01-01

    Against the background of greenhouse gases causing climate change, combined heat and power (CHP) systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated) electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat), different techno...

  14. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  15. Combined Heat and Power Systems for the Provision of Sustainable Energy from Biomass in Buildings

    Directory of Open Access Journals (Sweden)

    Ortwein Andreas

    2016-01-01

    Full Text Available Against the background of greenhouse gases causing climate change, combined heat and power (CHP systems fueled by biomass can efficiently supply energy with high flexibility. Such CHP systems will usually consist of one or more thermo-chemical conversion steps and at least one (the more or less separated electric power generation unit. Depending on the main products of the previous conversion steps (e.g. combustible gases or liquids, but also flue gases with sensible heat, different technologies are available for the final power conversion step. This includes steam cycles with steam turbines or engines and different working fluids (water, organic fluids, but also combustion based systems like gas turbines or gas engines. Further promising technologies include fuel cells with high electric efficiency. When integrating such CHP systems in buildings, there are different strategies, especially concerning electric power generation. While some concepts are focusing on base load production, others are regulated either by thermal or by electric power demand. The paper will give a systematic overview on the combination of thermo-chemical conversion of biomass and combined heat and power production technologies. The mentioned building integration strategies will be discussed, leading to conclusions for further research and development in that field.

  16. The emissions from a space-heating biomass stove

    International Nuclear Information System (INIS)

    Koyuncu, T.; Pinar, Y.

    2007-01-01

    In this paper, the flue gas emissions of carbon monoxide (CO), nitrogen oxides (NO X ), sulphur dioxide (SO 2 ) and soot from an improved space-heating biomass stove and thermal efficiency of the stove have been investigated. Various biomass fuels such as firewood, wood shavings, hazelnut shell, walnut shell, peanut shell, seed shell of apricot (sweet and hot seed type), kernel removed corncob, wheat stalk litter (for cattle and sheep pen), cornhusk and maize stalk litter (for cattle pen) and charcoal were burned in the same space-heating biomass stove. Flue gas emissions were recorded during the combustion period at intervals of 5min. It was seen from the results that the flue gas emissions have different values depending on the characteristics of biomass fuels. Charcoal is the most appropriate biomass fuel for use in the space-heating biomass stoves because its combustion emits less smoke and the thermal efficiency of the stove is approximately 46%. (author)

  17. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  18. Design and System Analysis of Quad-Generation Plant Based on Biomass Gasification Integrated with District Heating

    DEFF Research Database (Denmark)

    Rudra, Souman

    alternative by upgrading existing district heating plant. It provides a generic modeling framework to design flexible energy system in near future. These frameworks address the three main issues arising in the planning and designing of energy system: a) socio impact at both planning and proses design level; b...... in this study. The overall aim of this work is to provide a complete assessment of the technical potential of biomass gasification for local heat and power supply in Denmark and replace of natural gas for the production. This study also finds and defines the future areas of research in the gasification......, it possible to lay a foundation for future gasification based power sector to produce flexible output such as electricity, heat, chemicals or bio-fuels by improving energy system of existing DHP(district heating plant) integrating gasification technology. The present study investigate energy system...

  19. Modelling of heat transfer during torrefaction of large lignocellulosic biomass

    Science.gov (United States)

    Regmi, Bharat; Arku, Precious; Tasnim, Syeda Humaira; Mahmud, Shohel; Dutta, Animesh

    2018-07-01

    Preparation of feedstock is a major energy intensive process for the thermochemical conversion of biomass into fuel. By eliminating the need to grind biomass prior to the torrefaction process, there would be a potential gain in the energy requirements as the entire step would be eliminated. In regards to a commercialization of torrefaction technology, this study has examined heat transfer inside large cylindrical biomass both numerically and experimentally during torrefaction. A numerical axis-symmetrical 2-D model for heat transfer during torrefaction at 270°C for 1 h was created in COMSOL Multiphysics 5.1 considering heat generation evaluated from the experiment. The model analyzed the temperature distribution within the core and on the surface of biomass during torrefaction for various sizes. The model results showed similarities with experimental results. The effect of L/D ratio on temperature distribution within biomass was observed by varying length and diameter and compared with experiments in literature to find out an optimal range of cylindrical biomass size suitable for torrefaction. The research demonstrated that a cylindrical biomass sample of 50 mm length with L/D ratio of 2 can be torrefied with a core-surface temperature difference of less than 30 °C. The research also demonstrated that sample length has a negligible effect on core-surface temperature difference during torrefaction when the diameter is fixed at 25 mm. This information will help to design a torrefaction processing system and develop a value chain for biomass supply without using an energy-intensive grinding process.

  20. Modelling of heat transfer during torrefaction of large lignocellulosic biomass

    Science.gov (United States)

    Regmi, Bharat; Arku, Precious; Tasnim, Syeda Humaira; Mahmud, Shohel; Dutta, Animesh

    2018-02-01

    Preparation of feedstock is a major energy intensive process for the thermochemical conversion of biomass into fuel. By eliminating the need to grind biomass prior to the torrefaction process, there would be a potential gain in the energy requirements as the entire step would be eliminated. In regards to a commercialization of torrefaction technology, this study has examined heat transfer inside large cylindrical biomass both numerically and experimentally during torrefaction. A numerical axis-symmetrical 2-D model for heat transfer during torrefaction at 270°C for 1 h was created in COMSOL Multiphysics 5.1 considering heat generation evaluated from the experiment. The model analyzed the temperature distribution within the core and on the surface of biomass during torrefaction for various sizes. The model results showed similarities with experimental results. The effect of L/D ratio on temperature distribution within biomass was observed by varying length and diameter and compared with experiments in literature to find out an optimal range of cylindrical biomass size suitable for torrefaction. The research demonstrated that a cylindrical biomass sample of 50 mm length with L/D ratio of 2 can be torrefied with a core-surface temperature difference of less than 30 °C. The research also demonstrated that sample length has a negligible effect on core-surface temperature difference during torrefaction when the diameter is fixed at 25 mm. This information will help to design a torrefaction processing system and develop a value chain for biomass supply without using an energy-intensive grinding process.

  1. Biomass heating at East Surrey Hospital: technical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Landen, R; Rippengal, R

    2000-07-01

    This report provides the results of a detailed evaluation of the proposed biomass heating installation at East Surrey Hospital. It is intended to allow the Trust to make a decision on whether to proceed further with the scheme and, if so, on what basis. Specific areas assessed and reported on include: existing services provision for heating and cooling; technical aspects of the proposed biomass scheme; commercial aspects of the proposed biomass scheme. (author)

  2. Biomass District Heat System for Interior Rural Alaska Villages

    Energy Technology Data Exchange (ETDEWEB)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  3. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...... for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than...

  4. Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems

    International Nuclear Information System (INIS)

    Santhanam, S.; Schilt, C.; Turker, B.; Woudstra, T.; Aravind, P.V.

    2016-01-01

    This study deals with the thermodynamic modeling of biomass Gasifier–SOFC (Solid Oxide Fuel Cell)–GT (Gas Turbine) systems on a small scale (100 kW_e). Evaluation of an existing biomass Gasifier–SOFC–GT system shows highest exergy losses in the gasifier, gas turbine and as waste heat. In order to reduce the exergy losses and increase the system's efficiency, improvements are suggested and the effects are analyzed. Changing the gasifying agent for air to anode gas gave the largest increase in the electrical efficiency. However, heat is required for an allothermal gasification to take place. A new and simple strategy for heat pipe integration is proposed, with heat pipes placed in between stacks in series, rather than the widely considered approach of integrating the heat pipes within the SOFC stacks. The developed system based on a Gasifier–SOFC–GT combination improved with heat pipes and anode gas recirculation, increases the electrical efficiency from approximately 55%–72%, mainly due to reduced exergy losses in the gasifier. Analysis of the improved system shows that operating the system at possibly higher operating pressures, yield higher efficiencies within the range of the operating pressures studied. Further the system was scaled up with an additional bottoming cycle achieved electrical efficiency of 73.61%. - Highlights: • A new and simple strategy for heat pipe integration between SOFC and Gasifier is proposed. • Anode exhaust gas is used as a gasifying agent. • The new proposed Gasifier–SOFC–GT system achieves electrical efficiency of 72%. • Addition of steam rankine bottoming cycle to proposed system increases electrical efficiency to 73.61%.

  5. Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    Production of transportation fuels from biorefineries via biomass gasification has been suggested as a way of introducing renewable alternatives in the transportation system with an aim to reduce greenhouse gas emissions to the atmosphere. By co-locating gasification-based processes within heat demanding industries, excess heat from the gasification process can replace fossil or renewable fuels. The objective of this study was to compare the heat integration potential of four different gasification-based biorefinery concepts with a chemical pulp and paper mill. The results showed that the choice of end-product which was either methanol, Fischer-Tropsch crude, synthetic natural gas or electricity, can have significant impact on the heat integration potential with a pulp and paper mill and that the heat saving measures implemented in the mill in connection to integration of a gasification process can increase the biomass resource efficiency by up to 3%-points. Heat saving measures can reduce the necessary biomass input to the biorefinery by 50% if the sizing constraint is to replace the bark boiler with excess heat from the biorefinery. A large integrated gasification process with excess steam utilisation in a condensing turbine was beneficial only if grid electricity is produced at below 30% electrical efficiency. - Highlights: • Biomass gasification integrated with a pulp and paper mill. • Different sizing constraints of integrated biofuel production. • The biofuel product largely influence the heat integration potential. • An oversized gasifier for increased power production could be favourable.

  6. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    OpenAIRE

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  7. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  8. Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Koller, Martin

    2007-01-01

    This paper reports on an empirical investigation about the economic and CO 2 mitigation impacts of bioenergy promotion in the Austrian federal province of Vorarlberg. We study domestic value-added, employment, and fiscal effects by means of a static input-output analysis. The bioenergy systems analysed comprise biomass district heating, pellet heating, and automated wood chip heating systems, as well as logwood stoves and boilers, ceramic stoves, and buffer storage systems. The results indicate that gross economic effects are significant, regarding both investment and operation of the systems, and that the negative economic effects caused by the displacement of conventional decentralised heating systems might be in the order of 20-40%. Finally, CO 2 mitigation effects are substantial, contributing already in 2004 around 35% of the 2010 CO 2 mitigation target of the Land Vorarlberg for all renewable energy sources

  9. Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems

    International Nuclear Information System (INIS)

    Caliano, Martina; Bianco, Nicola; Graditi, Giorgio; Mongibello, Luigi

    2017-01-01

    Highlights: • A novel operation strategy for biomass-fired combined cooling, heating and power system is presented. • A design optimization of the system is conducted. • The effects of variation of the incentive for the electricity generation are evaluated. • The effects of the variation of the absorption chiller size and the thermal energy storage system one are evaluated. • The inclusion of a cold storage system into the combined cooling, heating and power system is also analyzed. - Abstract: In this work, an operation strategy for a biomass-fired combined cooling, heating and power system, composed of a cogeneration unit, an absorption chiller, and a thermal energy storage system, is formulated in order to satisfy time-varying energy demands of an Italian cluster of residential multi-apartment buildings. This operation strategy is adopted for performing the economical optimization of the design of two of the devices composing the combined cooling, heating and power system, namely the absorption chiller and the storage system. A sensitivity analysis is carried out in order to evaluate the impact of the incentive for the electricity generation on the optimized results, and also to evaluate, separately, the effects of the variation of the absorption chiller size, and the effects of the variation of the thermal energy storage system size on the system performance. In addition, the inclusion into the system of a cold thermal energy storage system is analyzed, as well, assuming different possible values for the cold storage system cost. The results of the sensitivity analysis indicate that the most influencing factors from the economical point of view are represented by the incentive for the electricity generation and the absorption chiller power. Results also show that the combined use of a thermal energy storage and of a cold thermal energy storage during the hot season could represent a viable solution from the economical point of view.

  10. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  11. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  12. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Sosa, Amanda; McDonnell, Kevin; Devlin, Ger

    2016-01-01

    The energy sector is the major contributor to GHG (greenhouse gas emissions) in Ireland. Under EU Renewable energy targets, Ireland must achieve contributions of 40%, 12% and 10% from renewables to electricity, heat and transport respectively by 2020, in addition to a 20% reduction in GHG emissions. Life cycle assessment methodology was used to carry out a comprehensive, holistic evaluation of biomass-to-energy systems in 2020 based on indigenous biomass supply chains optimised to reduce production and transportation GHG emissions. Impact categories assessed include; global warming, acidification, eutrophication potentials, and energy demand. Two biomass energy conversion technologies are considered; co-firing with peat, and biomass CHP (combined heat and power) systems. Biomass is allocated to each plant according to a supply optimisation model which ensures minimal GHG emissions. The study shows that while CHP systems produce lower environmental impacts than co-firing systems in isolation, determining overall environmental impacts requires analysis of the reference energy systems which are displaced. In addition, if the aims of these systems are to increase renewable energy penetration in line with the renewable electricity and renewable heat targets, the optimal scenario may not be the one which achieves the greatest environmental impact reductions. - Highlights: • Life cycle assessment of biomass co-firing and CHP systems in Ireland is carried out. • GWP, acidification and eutrophication potentials, and energy demand are assessed. • Biomass supply is optimised based on minimising GHG emissions. • CHP systems cause lower environmental impacts than biomass co-firing with peat. • Displacing peat achieves higher GHG emission reductions than replacing fossil heat.

  13. The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland

    International Nuclear Information System (INIS)

    Panos, Evangelos; Kannan, Ramachandran

    2016-01-01

    The Swiss Energy Strategy targets to reduce per capita energy consumption, to decrease the share of fossil energy and to replace nuclear electricity generation by gains in efficiency and renewable energy sources. In view of the above objectives, we evaluated the prospects of biomass in stationary applications and grid balancing from an energy system perspective. We quantify a number of “what-if” scenarios using a cost-optimisation bottom-up model, with detailed representation of biomass production and use pathways, electricity and heat sectors, and grid ancillary services markets. The scenario analysis shows that domestic biomass can contribute 5–7% in electricity and 14–21% in heat production by 2050, depending on natural gas prices and climate policy intensity. Pooling of biogenic driven cogeneration plants can provide about 22–44% of the total secondary control power in 2050. Generally, biogenic technologies complement other assets in heat, electricity and ancillary services markets such as heat pumps, new renewable sources and hydropower. - Highlights: • Development and application of the Swiss TIMES electricity and heat system model. • Bioenergy supplies 5–7% of electricity and 14–21% of heat by 2050. • Biogenic gas driven CHP can provide 22–44% of secondary control power in 2050.

  14. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  15. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  16. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  17. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  18. Thermal distillation system utilizing biomass energy burned in stove by means of heat pipe

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2016-09-01

    Full Text Available A thermal distillation system utilizing a part of the thermal energy of biomass burned in a stove during cooking is proposed. The thermal energy is transported from the stove to the distiller by means of a heat pipe. The distiller is a vertical multiple-effect diffusion distiller, in which a number of parallel partitions in contact with saline-soaked wicks are set vertically with narrow gaps of air. A pilot experimental apparatus was constructed and tested with a single-effect and multiple-effect distillers to investigate primarily whether a heat pipe can transport thermal energy adequately from the stove to the distiller. It was found that the temperatures of the heated plate and the first partition of the distiller reached to about 100 °C and 90 °C, respectively, at steady state, showing that the heat pipe works sufficiently. The distilled water obtained was about 0.75 and 1.35 kg during the first 2 h of burning from a single-effect and multiple-effect distillers, respectively.

  19. Solar-Biomass hybrid system for process heat supply in medium scale hotels in Sri Lanka

    OpenAIRE

    Abeywardana, Asela M.A.J.

    2016-01-01

    This study aimed at evaluating and demonstrating the feasibility of using Concentrated Solar Thermal technology combined with biomass energy technology as a hybrid renewable energy system to supply the process heat requirements in small scale industries in Sri Lanka. Particularly, the focus was to apply the concept to the expanding hotel industry, for covering the thermal energy demand of a medium scale hotel. Solar modules utilize the rooftop area of the building to a valuable application. L...

  20. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion......As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel...

  1. Greenhouse gas emissions of Dutch biomass. Quantification of greenhouse gases emission of Dutch biomass for electricity and heat

    International Nuclear Information System (INIS)

    Koop, K.; Yildiz, I.

    2010-09-01

    The greenhouse gas emissions of all available flows of the biomass chain have been established. This report has the following aims: (1) to establish the greenhouse gas emission of Dutch biomass available for generating electricity and heat; (2) to obtain insight in the opportunities and threats for using the potential of the biomass chains that have the highest potential to reduce greenhouse gas emissions. This report can be seen as a supplement to the report 'Availability of Dutch biomass for electricity and heat in 2020' (2009) [nl

  2. Controlling the excess heat from oxy-combustion of coal by blending with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Turan, A.Z.; Yaman, S.; Kucukbayrak, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469, Maslak, Istanbul (Turkey)

    2010-11-15

    Two different biomass species such as sunflower seed shell and hazelnut shell were blended with Soma-Denis lignite to determine the effects of co-combustion on the thermal reactivity and the burnout of the lignite sample. For this purpose, Thermogravimetric Analysis and Differential Scanning Calorimetry techniques were applied from ambient to 900 C with a heating rate of 40 C/min under dry air and pure oxygen conditions. It was found that the thermal reactivities of the biomass materials and the lignite are highly different from each other under each oxidizing medium. On the other hand, the presence of biomass in the burning medium led to important influences not only on the burnout levels but also on the heat flows. The heat flow from the burning of lignite increased fivefold when the oxidizing medium was altered from dry air to pure oxygen. But, in case of co-combustion under oxygen, the excess heat arising from combustion of lignite could be reduced and this may be helpful to control the temperature of the combustion chamber. Based on this, co-combustion of coal/biomass blends under oxygen may be suggested as an alternative method to the ''Carbon Dioxide Recycle Method'' encountered in the oxyfuel combustion systems. (author)

  3. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  4. Projecting demand and supply of forest biomass for heating in Norway

    International Nuclear Information System (INIS)

    Tromborg, Erik; Havskjold, Monica; Lislebo, Ole; Rorstad, Per Kristian

    2011-01-01

    This paper assesses the increase in demand and supply for forest biomass for heating in Norway in 2020. By then there is a political aim to double the national production of bioenergy from the level in 2008. The competitiveness of woody biomass in central and district heating is analyzed in a model selecting the least-cost heating technology and scale in municipalities given a set of constraints and under different fuels price scenarios. The supply of forest biomass from roundwood is estimated based on data of forest inventories combined with elasticities regarding price and standing volumes. The supply of biomass from harvesting residues is estimated in an engineering approach based on data from the national forest inventories and roundwood harvest. The results show how the production of bioenergy is affected by changes in energy prices and support schemes for bioenergy. One conclusion from the analyses is that the government target of 14 TWh more bioenergy by 2020 is not likely to be met by current technologies and policy incentives. The contribution of the analysis is the detailed presentation of the heat market potentials and technology choices combined with supply functions for both roundwood and harvesting residues. - Highlights: → This paper accesses the demand and supply for forest biomass for heating in Norway in 2020. → Market share for wood in central and new district heating is analyzed in a cost-minimizing model. → The supply of forest biomass includes wood chips from import, roundwood and harvesting residues. → The production of bioenergy is affected by changes in energy prices and support schemes. → The government target for bioenergy is not met by current technologies and policy incentives.

  5. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  6. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  7. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population.

    Science.gov (United States)

    Stabile, L; Buonanno, G; Avino, P; Frattolillo, A; Guerriero, E

    2018-04-01

    Homes represent a critical microenvironment in terms of air quality due to the proximity to main particle sources and the lack of proper ventilation systems. Biomass-fed heating systems are still extensively used worldwide, then likely emitting a significant amount of particles in indoor environments. Nonetheless, research on biomass emissions are limited to their effects on outdoor air quality then not properly investigating the emission in indoor environments. To this purpose, the present paper aims to evaluate the exposure to different airborne particle metrics (including both sub- and super-micron particles) and attached carcinogenic compounds in dwellings where three different heating systems were used: open fireplaces, closed fireplaces and pellet stoves. Measurements in terms of particle number, lung-deposited surface area, and PM fraction concentrations were measured during the biomass combustion activities, moreover, PM 10 samples were collected and chemically analyzed to obtain mass fractions of carcinogenic compounds attached onto particles. Airborne particle doses received by people exposed in such environments were evaluated as well as their excess lung cancer risk. Most probable surface area extra-doses received by people exposed to open fireplaces on hourly basis (56 mm 2  h -1 ) resulted one order of magnitude larger than those experienced for exposure to closed fireplaces and pellet stoves. Lifetime extra risk of Italian people exposed to the heating systems under investigation were larger than the acceptable lifetime risk (10 -5 ): in particular, the risk due to the open fireplace (8.8 × 10 -3 ) was non-negligible when compared to the overall lung cancer risk of typical Italian population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  9. Closed-loop system for growth of aquatic biomass and gasification thereof

    Science.gov (United States)

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  10. Biomass gasification--a substitute to fossil fuel for heat application

    International Nuclear Information System (INIS)

    Dasappa, S.; Sridhar, H.V.; Sridhar, G.; Paul, P.J.; Mukunda, H.S.

    2003-01-01

    The paper addresses case studies of a low temperature and a high temperature industrial heat requirement being met using biomass gasification. The gasification system for these applications consists of an open top down draft reburn reactor lined with ceramic. Necessary cooling and cleaning systems are incorporated in the package to meet the end use requirements. The other elements included are the fuel conveyor, water treatment plant for recirculating the cooling water and adequate automation to start, shut down and control the operations of the gasifier system. Drying of marigold flower, a low temperature application is considered to replace diesel fuel in the range of 125-150 l h -1 . Gas from the 500 kg h -1 , gasifier system is piped into the producer gas burners fixed in the combustion chamber with the downstream process similar to the diesel burner. The high temperature application is for a heat treatment furnace in the temperature range of 873-1200 K. A 300 kg h -1 of biomass gasifier replaces 2000 l of diesel or LDO per day completely. The novelty of this package is the use of one gasifier to energize 16 burners in the 8 furnaces with different temperature requirements. The system operates over 140 h per week on a nearly nonstop mode and over 4000 h of operation replacing fossil fuel completely. The advantage of bioenergy package towards the economic and environmental considerations is presented

  11. Devolatilization characteristics of biomass at flash heating rate

    Energy Technology Data Exchange (ETDEWEB)

    Xiu Shuangning; Li Zhihe; Li Baoming; Yi Weiming; Bai Xueyuan [China Agricultural University, Beijing (China). College of Water Conservancy and Civil Engineering

    2006-03-15

    The devolatilization characteristics of biomass (wheat straw, coconut shell, rice husk and cotton stalk) during flash pyrolysis has been investigated on a plasma heated laminar entrained flow reactor (PHLEFR) with average heating rates of 10{sup 4} K/s. These experiments were conducted with steady temperatures between 750 and 900 K, and the particle residence time varied from about 0.115 to 0.240 s. The ash tracer method was introduced to calculate the yield of volatile products at a set temperature and the residence time. This experimental study showed that the yield of volatile products depends both on the final pyrolysis temperature and the residence time. From the results, a comparative analysis was done for the biomasses, and a one-step global model was used to simulate the flash pyrolytic process and predict the yield of volatile products during pyrolysis. The corresponding kinetic parameters of the biomasses were also analyzed and determined. These results were essential for designing a suitable pyrolysis reactor. 24 refs., 5 figs., 5 tabs.

  12. Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Marie Creyx

    2016-04-01

    Full Text Available A specific heat exchanger has been developed to transfer heat from flue gas to the working fluid (hot air of the Ericsson engine of a solid biomass-fuelled micro combined heat and power (CHP. In this paper, the theoretical and experimental energetic analyses of this heat exchanger are compared. The experimental performances are described considering energetic and exergetic parameters, in particular the effectiveness on both hot and cold sides. A new exergetic parameter called the exergetic effectiveness is introduced, which allows a comparison between the real and the ideal heat exchanger considering the Second Law of Thermodynamics. A global analysis of exergetic fluxes in the whole micro-CHP system is presented, showing the repartition of the exergy destruction among the components.

  13. Cogeneration: One way to use biomass efficiently

    International Nuclear Information System (INIS)

    Gustavsson, L.; Johansson, B.

    1993-01-01

    Cogeneration in district heating systems is the most energy-efficient way to convert biomass into heat and electricity with current or nearly commercial technologies. Methanol produced from biomass and used in vehicles instead of petrol or diesel could reduce carbon dioxide emissions nearly as much per unit of biomass as if the biomass were used to replace natural gas for cogeneration, but at some higher cost per unit of carbon dioxide reduction. The most energy-efficient way to use biomass for cogeneration appears to be combined cycle technology, and the world's first demonstration plant is now being built. Potentially, this technology can be used for electricity production in Swedish district heating systems to provide nearly 20% of current Swedish electricity production, while simultaneously reducing carbon dioxide emissions from the district heating systems by some 55%. The heat costs from cogeneration with biomass are higher than the heat costs from fossil fuel plants at current fuel prices. Biomass can only compete with fossil fuel if other advantages, for example a lower environmental impact are considered. (au) (35 refs.)

  14. Biomass: towards more co-generation than gasification? Interview with Jean-Christophe Pouet; Figures for the heat fund; biomass in the Parisian heat network; gasification still at the promise stage; Engie bets on bio-methane of 2. generation; a new bidding for biomass co-generation

    International Nuclear Information System (INIS)

    Petitot, Pauline; De Santis, Audrey; Mary, Olivier; Signoret, Stephane

    2016-01-01

    After some brief presentations of some highlights in the biomass sector in France, Ukraine, UK and Brazil, a set of articles proposes an overview of recent developments and perspectives for the biomass-based energy and heat production in France. It presents and comments some emerging projects based on biomass gasification as technologies have evolved for a higher economic profitability. It discusses the action of the Heat Fund (Fonds chaleur) which supports investors in a context constrained by the hard competition with fossil energies, notably with gas as discussed in an interview with a member of the ADEME. Some tables and graphs give data about biomass installations supported by the Heat fund, about subsidies awarded by the ADEME, about the production of the various heat sources. An article comments the operation of a biomass-based plant near Paris which supplies the Parisian heat network. A project of methane production from dry biomass from local resources by Engie near Lyons (methane of second generation). The last article comments a new bidding process for co-generation projects which can be an opportunity for new projects, and not only big ones

  15. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  16. Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles

    DEFF Research Database (Denmark)

    Luo, Hao; Wu, Hao; Lin, Weigang

    Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...

  17. Biomass gasification systems for residential application: An integrated simulation approach

    International Nuclear Information System (INIS)

    Prando, Dario; Patuzzi, Francesco; Pernigotto, Giovanni; Gasparella, Andrea; Baratieri, Marco

    2014-01-01

    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  18. The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz; Sobolewski, Aleksander; Iluk, Tomasz; Remiorz, Leszek

    2014-01-01

    This paper analyzes the possibility and the cost of using gas from biomass gasification in the production of electricity and generation of heat using a piston engine in which the power in the supplied biomass is no more than 50 MW. A mathematical model that allows for thermodynamic and economic analysis was designed. The input data regarding the gas generator and the process gas were collected in real experiments on the research installation. Electricity and heat production efficiencies and the electric and heat power of the system were primarily used as indicators of the thermodynamic effectiveness. For the economic analysis, discount methods were adopted that consider the legal and economic environment of such investments. Given the assumptions, the analysis shows that positive economic indicators can characterize the considered systems. The work also included sensitivity analysis of change of the selected characteristic quantities on the evaluation indices. The economic viability of such systems is strongly influenced by many factors, mainly price of fuel and green certificates. When the price of fuel is higher than 9.62 €/GJ or the price of certificates lower than 26.75 €/MWh the NPV (net present value) and NPVR (net present value ratio) indices do not reach positive values for any size of installation. - Highlights: • CHP systems integrated with biomass gasification and piston engine(s) were examined. • An experiment with a biomass-fed gasifier was conducted and the data were used for calculations. • The conditions for economic profitability were determined. • Sensitivity analyses of the influence of the selected quantities were performed. • Price of green certificates and price of fuel are the most important for economic viability

  19. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  20. Increased combustion stability in modulating biomass boilers for district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hermansson, Roger (eds.) [Lulea Univ. of Technology (Sweden)

    2002-09-01

    One of the problems in small district heating systems is the large load variation that must be handled by the system. If the boiler is designed to cover the needs during the coldest day in winter time in northern Europe it would have to run at loads as low as 10% of full load during summer time, when heat is needed only for tap water production. Load variations in small networks are quite fast and earlier investigations have shown that existing biomass boilers give rise to large amounts of harmful emissions at fast load variations and at low loads. The problem has been addressed in different ways: Three new boiler concepts have been realized and tested: A prototype of a 500 kW boiler with partitioned primary combustion chamber and supplied with a water heat store. A 10 kW bench scale combustor and a 500 kW prototype boiler based on pulsating combustion. Bench scale boilers to test the influence from applied sound on emissions and a 150 kW prototype boiler with a two-stage secondary vortex combustion chamber. Development of control and regulating equipment: Glow Guard, a control system using infra-red sensors to detect glowing char on the grate, has been constructed and tested. A fast prediction model that can be used in control systems has been developed. Simulation of the combustion process: Code to simulate pyrolysis/gasification of fuel on the grate has been developed. Combustion of the gas phase inside the combustion chamber has been simulated. The two models have been combined to describe the combustion process inside the primary chamber of a prototype boiler. A fast simulation code based on statistical methods that can predict the environmental performance of boilers has been developed. One of the boiler concepts matches the desired load span from 10 to 100% of full load with emissions far below the set limits for CO and THC and close to the set limits for NO{sub x}. The other boilers had a bit more narrow load range, one with very low emissions except for NO

  1. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  2. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  3. A cost-effective evaluation of biomass district heating in rural communities

    International Nuclear Information System (INIS)

    Hendricks, Aaron M.; Wagner, John E.; Volk, Timothy A.; Newman, David H.; Brown, Tristan R.

    2016-01-01

    Highlights: • Develop a cost-effective model using secondary data examining delivering heat through Biomass District Heating (BDH). • Eight of ten rural villages studied could cost-effectively deliver heat through BDH below the 2013 price of heating oil. • 80% of the annual cost of BDH was attributable to capital expenses. • Erratic fuel oil prices substantially impact future feasibility. • Village level feasibility is highly-influenced by the presence of large heat demanders. - Abstract: The economic feasibility of Biomass District Heating (BDH) networks in rural villages is largely unknown. A cost-effective evaluation tool is developed to examine the feasibility of BDH in rural communities using secondary data sources. The approach is unique in that it accounts for all the major capital expenses: energy center, distribution network, and energy transfer stations, as well as biomass procurement. BDH would deliver heat below #2 fuel oil in eight of the ten rural study villages examined, saving nearly $500,000 per year in heating expenses while demanding less than 5% of the forest residues sustainably available regionally. Capital costs comprised over 80% of total costs, illuminating the importance of reaching a sufficient heat density. Reducing capital costs by 1% lowers total cost by $93,000 per year. Extending capital payment period length five years or lowering interest rates has the next highest influence decreasing delivered heat price 0.49% and 0.35% for each 1% change, respectively. This highlights that specific building heat is a strong determinant of feasibility given the relative influence of high-demanding users on the overall village heat-density. Finally, we use a stochastic analysis projecting future #2 fuel oil prices, incorporating historical variability, to determine the probability of future BDH feasibility. Although future oil prices drop below the BDH feasibility threshold, the villages retain a 22–53% probability of feasibility after

  4. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...... as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...

  5. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  6. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  7. Fossil fuel and biomass burning effect on climate - heating or cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Y.J.; Fraser, R.S.; Mahoney, R.L. (NASA/Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO{sub 2} cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO{sub 2} molecules as SO{sub 2} molecules, each SO{sub 2} molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO{sub 2} molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO{sub 2} (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO{sub 2} concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs.

  8. Evaluation of energy plantation crops in a high-throughput indirectly heated biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, M.A.; Litt, R.D. [Battelle, Columbus, OH (United States)

    1993-12-31

    Experiments were run in Battelle`s 10 ton per day Process Research Unit (PRU) gasifier using two high-growth, energy plantation crops -- hybrid poplar -- and an herbaceous biomass crop -- switch grass. The results show that both feedstocks provide gas production rates, product gas compositions, and heating value similar to other biomass feedstocks tested in the Battelle gasification process. The ash compositions of the switch grass and hybrid poplar feedstocks were high in potassium relative to previously tested biomass feedstocks. High growth biomass species tend to concentrate minerals such as potassium in the ash. The higher potassium content in the ash can then cause agglomeration problems in the gasification system. A method for controlling this agglomeration through the addition of small amounts (approximately 2 percent of the wood feed rate) of an additive could adequately control the agglomeration tendency of the ash. During the testing program in the PRU, approximately 50 tons of hybrid poplar and 15 tons of switch grass were gasified to produce a medium Btu product gas.

  9. Comparison of swimming pools alternative passive and active heating systems based on renewable energy sources in Southern Europe

    International Nuclear Information System (INIS)

    Katsaprakakis, Dimitris Al.

    2015-01-01

    This article examines different passive and active heating systems for swimming pools. The passive systems introduced in this article are: * The swimming pools' enclosure. * The placement of floating insulating covers on the pools' surfaces whenever they are not used. The examined active systems in this article are: * A biomass heater. * A biomass heater and solar collectors combi-system. * Vertical geothermal heat exchangers (GHE) co-operating with geothermal heat pumps (GHP). The methodology employed for the introduced systems' evaluation is the arithmetic computational simulation of the swimming pools' annual heating, using annual time series of averaged hourly values for the available solar radiation and the calculated pools' thermal power demand (heating loads). The dimensioning of the active systems aims at the maximisation of the heating production from R.E.S. (renewable energy sources). and the optimisation of the corresponding investments' economic indexes. The examined systems are evaluated technically and economically versus fundamental criteria. It is proved that significant reduction of the heating loads is achieved with the introduced passive systems. The reduced swimming pools' heating loads can be successfully covered by the proposed R.E.S. active systems. The fossil fuels consumption is eliminated. The corresponding investments' payback periods can be lower than 5 years. - Highlights: • The passive solar systems reduce the swimming pools heating loads more than 90%. • The examined active heating system exhibit payback periods lower than 3.5 years. • The energy saving is maximised with a biomass heater – solar collectors system. • Single biomass heaters exhibits the shortest payback period. • GHE–GHP can be used in cases of low solar radiation and lack of biomass fuels

  10. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants

    International Nuclear Information System (INIS)

    Drescher, Ulli; Brueggemann, Dieter

    2007-01-01

    In small solid biomass power and heat plants, the ORC is used for cogeneration. This application shows constraints different from other ORC. These constraints are described and an adapted power plant design is presented. The new design influences the selection criteria of working fluids. A software has been developed to find thermodynamic suitable fluids for ORC in biomass power and heat plants. Highest efficiencies are found within the family of alkylbenzenes

  11. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material

    Directory of Open Access Journals (Sweden)

    Juan Camilo Solarte-Toro

    2018-05-01

    Full Text Available The use of nonrenewable energy sources to provide the worldwide energy needs has caused different problems such as global warming, water pollution, and smog production. In this sense, lignocellulosic biomass has been postulated as a renewable energy source able to produce energy carriers that can cover this energy demand. Biogas and syngas are two energy vectors that have been suggested to generate heat and power through their use in cogeneration systems. Therefore, the aim of this review is to develop a comparison between these energy vectors considering their main features based on literature reports. In addition, a techno-economic and energy assessment of the heat and power generation using these vectors as energy sources is performed. If lignocellulosic biomass is used as raw material, biogas is more commonly used for cogeneration purposes than syngas. However, syngas from biomass gasification has a great potential to be employed as a chemical platform in the production of value-added products. Moreover, the investment costs to generate heat and power from lignocellulosic materials using the anaerobic digestion technology are higher than those using the gasification technology. As a conclusion, it was evidenced that upgraded biogas has a higher potential to produce heat and power than syngas. Nevertheless, the implementation of both energy vectors into the energy market is important to cover the increasing worldwide energy demand.How to cite: Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 2018:33. https://doi.org/10.1016/j.ejbt.2018.03.005 Keywords: Anaerobic digestion, Biogas power generation, Biomass gasification, Biomethane, Energy sources, Energy vectors, Heat generation, Lignocellulosic energy production, Power generation, Renewable energy, Syngas production

  12. A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage

    International Nuclear Information System (INIS)

    Dominković, D.F.; Ćosić, B.; Bačelić Medić, Z.; Duić, N.

    2015-01-01

    Highlights: • Hybrid optimization model of biomass trigeneration system with PTES is developed. • Influence of premium feed-in tariffs on trigeneration systems is assessed. • Influence of total system efficiency on biomass trigeneration system with PTES is assessed. • Influence of energy savings on project economy is assessed. - Abstract: This paper provides a solution for managing excess heat production in trigeneration and thus, increases the power plant yearly efficiency. An optimization model for combining biomass trigeneration energy system and pit thermal energy storage has been developed. Furthermore, double piping district heating and cooling network in the residential area without industry consumers was assumed, thus allowing simultaneous flow of the heating and cooling energy. As a consequence, the model is easy to adopt in different regions. Degree-hour method was used for calculation of hourly heating and cooling energy demand. The system covers all the yearly heating and cooling energy needs, while it is assumed that all the electricity can be transferred to the grid due to its renewable origin. The system was modeled in Matlab© on hourly basis and hybrid optimization model was used to maximize the net present value (NPV), which was the objective function of the optimization. Economic figures become favorable if the economy-of-scale of both power plant and pit thermal energy storage can be utilized. The results show that the pit thermal energy storage was an excellent option for storing energy and shaving peaks in energy demand. Finally, possible switch from feed-in tariffs to feed-in premiums was assessed and possible subsidy savings have been calculated. The savings are potentially large and can be used for supporting other renewable energy projects

  13. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat

    Directory of Open Access Journals (Sweden)

    Borna Doračić

    2018-03-01

    Full Text Available District heating plays a key role in achieving high primary energy savings and the reduction of the overall environmental impact of the energy sector. This was recently recognized by the European Commission, which emphasizes the importance of these systems, especially when integrated with renewable energy sources, like solar, biomass, geothermal, etc. On the other hand, high amounts of heat are currently being wasted in the industry sector, which causes low energy efficiency of these processes. This excess heat can be utilized and transported to the final customer by a distribution network. The main goal of this research was to calculate the potential for excess heat utilization in district heating systems by implementing the levelized cost of excess heat method. Additionally, this paper proves the economic and environmental benefits of switching from individual heating solutions to a district heating system. This was done by using the QGIS software. The variation of different relevant parameters was taken into account in the sensitivity analysis. Therefore, the final result was the determination of the maximum potential distance of the excess heat source from the demand, for different available heat supplies, costs of pipes, and excess heat prices.

  14. Economic viability of the construction and operation of a biomass gasificator for poultry houses heating

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Fabio Luiz; Silva, Jadir Nogueira da; Tinoco, Ilda de Fatima Ferreira; Martin, Samuel; Melo, Lucas D.; Bueno, Mateus [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: fzanatta@vicosa.ufv.br

    2008-07-01

    In all poultry farms, at least in the first days of life of the chicken, it is necessary to heat the environment to obtain a good development of the chicken and good economics results. However, this additional heat generation is sometimes neglected or not well executed, because of the costs that this practice could bring. This research has the objective of analyze the costs of construction and operation of a Biomass Gasificator for Poultry Houses Heating in comparison with a direct furnace system. The fuel used in both systems was firewood of eucalyptus. For so much, economic analyzes was make considering the costs of the gasification systems implementation in substitution of the traditional system used in the company (direct furnace system). For the viability the adopted method was the partial budget and the complementary investments were analyzed through the cash flow elaboration and of determination of indicator of economic feasibility. (author)

  15. Hybrid system for fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacin de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Mareda de Luna, 3, Zaragoza 50018, (Spain)

    2006-12-15

    Renewable energy sources are essential paths towards sustainable development and CO{sub 2} emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive use of this energy source is being avoided by some technical problems as fouling and slagging in the surfaces of boiler heat exchangers. Although these phenomena were extensively studied in the last decades in order to optimize the behaviour of large coal power boilers, a simple, general and effective method for fouling control has not been developed. For biomass boilers, the feedstock variability and the presence of new components in ash chemistry increase the fouling influence in boiler performance. In particular, heat transfer is widely affected and the boiler capacity becomes dramatically reduced. Unfortunately, the classical approach of regular sootblowing cycles becomes clearly insufficient for them. Artificial Intelligence (AI) provides new means to undertake this problem. This paper illustrates a methodology based on Neural Networks (NNs) and Fuzzy-Logic Expert Systems to select the moment for activating sootblowing in an industrial biomass boiler. The main aim is to minimize the boiler energy and efficiency losses with a proper sootblowing activation. Although the NN type used in this work is well-known and the Hybrid Systems had been extensively used in the last decade, the excellent results obtained in the use of AI in industrial biomass boilers control with regard to previous approaches makes this work a novelty. (Author)

  16. Biomass and Swedish energy policy

    International Nuclear Information System (INIS)

    Johansson, Bengt

    2001-01-01

    The use of biomass in Sweden has increased by 44% between 1990 and 1999. In 1999 it was 85 TWh, equivalent to 14% of the total Swedish energy supply. The existence of large forest industry and district heating systems has been an essential condition for this expansion. The tax reform in 1991 seems, however, to have been the most important factor responsible for the rapid bioenergy expansion. Through this reform, the taxation of fossil fuels in district heating systems increased by approximately 30-160%, depending on fuel, whereas bioenergy remained untaxed. Industry is exempted from the energy tax and pays reduced carbon tax. No tax is levied on fossil fuels used for electricity production. Investment grants have existed for biomass-based electricity production but these grants have not been large enough to make biomass-based electricity production economically competitive in a period of falling electricity prices. Despite this, the biomass-based electricity production has increased slightly between 1990 and 1999. A new taxation system aiming at a removal of the tax difference between the industry, district heating and electricity sectors has recently been analysed by the Swedish government. One risk with such a system is that it reduces the competitiveness for biomass in district heating systems as it seems unlikely that the taxes on fossil fuels in the industry and electricity sectors will increase to a level much higher than in other countries. A new system, based on green certificates, for supporting electricity from renewable energy sources has also been proposed by the government.

  17. Processes for exhaust purification of biomass combustion systems, dust removal, heat recovery, technologies and practical experience; Verfahren zur Abgasreinigung nach Biomasseverbrennung, Abgasentstaubung, Abgasreinigung Moeglichkeiten zur Waermerueckgewinnung; Technologien und Praxiserfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Jirkowsky, C.; Pretzl, R.; Sihorsch, K.

    2003-07-01

    The authors report on air pollution control systems of biomass burners: dedusting, centrifugal filtration, cyclone separators, electric filters (wet and dry), fabric filters, wet scrubbers. Technical specifications and methods of heat recovery are given. (uke)

  18. Generating usable and safe CO{sub 2} for enrichment of greenhouses from the exhaust gas of a biomass heating system

    Energy Technology Data Exchange (ETDEWEB)

    Dion, L.M.; Lefsrud, M. [McGill Univ., Macdonald Campus, Ste-Anne-deBellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    This study demonstrated the use of biomass as a renewable fuel to enrich a greenhouse with carbon dioxide (CO{sub 2}). CO{sub 2} enrichment of greenhouses has been shown to improve crop production whether it occurs from liquid CO{sub 2} or combustion of fossil fuels. Biomass, in the form of wood chips or pellets, has received much interest as a sustainable and economically viable alternative to heat greenhouses. As such, the opportunity exists to convert exhaust gases from a greenhouse wood heating system into a useful resource. CO{sub 2} can be extracted from flue gas via membrane separation instead of electrostatic precipitators. This technique has shown potential for large industries trying to reduce and isolate CO{sub 2} emissions for sequestration and may be applicable to the greenhouse industry. Some research has also been done with wet scrubbers using catalysts to obtain plant fertilizers. Sulphur dioxide (SO{sub 2}) and nitrogen (NO) emissions can be stripped from flue gas to form ammonium sulphate as a valuable byproduct for fertilizer markets. This study will review the potential of these techniques in the summer of 2010 when experiments will be conducted at the Macdonald Campus of McGill University.

  19. Micro scale CHP based on biomass intelligent heat transfer with thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.; Aigenbauer, S.; Heckmann, M.; Friedl, G. (Austrian Bioenergy Centre GmbH, Wieselburg (Austria)); Hofbauer, H. (Institute of Chemical Engineering, Vienna University of Technology (Austria))

    2007-07-01

    Pellet burners need auxiliary electrical power to provide CO{sub 2} balanced heat in a comfortable and environment friendly way. The idea is to produce this and some extra electricity within the device in order to save resources and to gain operation reliability and independency. An option for micro scale CHP is the usage of thermoelectric generators (TEGs). They allow direct conversion of heat into electrical power. They have the advantage of a long maintenance free durability and noiseless operation without moving parts or any working fluid. The useful heat remains almost unaffected and can still be used for heating. TEGs are predestined for the use in micro scale CHP based on solid biomass. In this paper the first results from the fully integrated prototype are presented. The performance of the TEG was observed for different loads and operating conditions in order to realise an optimised micro scale CHP based on solid biomass. (orig.)

  20. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  1. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  2. Biomass fuelled indirect fired micro turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2005-07-01

    This report summarises the findings of a project to further develop and improve a system based on the Bowman TG50 50kWe turbine and a C3(S) combustor with a high temperature heat exchanger for the production of electricity from biomass. Details are given of the specific aims of the project, the manufacture of a new larger biomass combustor, the development of startup and shutdown procedures, waste heat recuperation, adaption of a PC-based mathematical model, and capital equipment costs. The significant levels of carbon emission savings and the commercial prospects of the biomass generator gas turbine combined heat and power (CHP) system are considered, and recommendations are presented.

  3. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  4. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  5. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs

    Directory of Open Access Journals (Sweden)

    Daniel Maraver

    2014-04-01

    Full Text Available This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs, coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling demands in the tertiary sector. The thermodynamic approach was complemented, to avoid its possible limitations, by the technological constraints of the expander, the heat exchangers and the pump of the ORC. The working fluids considered are: n-pentane, n-heptane, octamethyltrisiloxane, toluene and dodecamethylcyclohexasiloxane. In addition, the energy and environmental performance of the different optimal CCHP plants was investigated. The optimal plant from the energy and environmental point of view is the one integrated by a toluene recuperative ORC, although it is limited to a development with a turbine type expander. Also, the trigeneration plant could be developed in an energy and environmental efficient way with an n-pentane recuperative ORC and a volumetric type expander.

  6. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system

    International Nuclear Information System (INIS)

    Lundström, Lukas; Wallin, Fredrik

    2016-01-01

    Highlights: • Energy savings impact on an low CO 2 emitting district heating system. • Heat profiles of eight building energy conservation measures. • Exhaust air heat pump, heat recovery ventilation, electricity savings etc. • Heat load weather normalisation with segmented multivariable linear regression. - Abstract: This study highlights the forthcoming problem with diminishing environmental benefits from heat demand reducing energy conservation measures (ECM) of buildings within district heating systems (DHS), as the supply side is becoming “greener” and more primary energy efficient. In this study heat demand profiles and annual electricity-to-heat factors of ECMs in buildings are computed and their impact on system efficiency and greenhouse gas emissions of a Swedish biomass fuelled and combined heat and power utilising DHS are assessed. A weather normalising method for the DHS heat load is developed, combining segmented multivariable linear regressions with typical meteorological year weather data to enable the DHS model and the buildings model to work under the same weather conditions. Improving the buildings’ envelope insulation level and thereby levelling out the DHS heat load curve reduces greenhouse gas emissions and improves primary energy efficiency. Reducing household electricity use proves to be highly beneficial, partly because it increases heat demand, allowing for more cogeneration of electricity. However the other ECMs considered may cause increased greenhouse gas emissions, mainly because of their adverse impact on the cogeneration of electricity. If biomass fuels are considered as residuals, and thus assigned low primary energy factors, primary energy efficiency decreases when implementing ECMs that lower heat demand.

  7. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  8. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  9. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  10. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  11. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  12. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Kouji [Meteorological Research Inst., Tsukuba (Japan). Atmospheric Environment and Applied Meteorology Research Dept.; Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Kleinman, Lawrence [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Chand, Duli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Hubbe, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Buseck, Peter R. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration and School of Molecular Sciences

    2017-09-26

    The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomass Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.

  13. Biomass programme: Overview of the 2006 Swiss research programme; Programm Biomasse. Ueberblicksbericht zum Forschungsprogramm 2006

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE) reviews work done within the framework of the Swiss biomass research programme in 2006. The programme concentrates on the efficient conversion of biomass into heat, electrical power and motor fuels. Projects concerned with the optimisation of processes are reported on, including low-particle-emission systems, control systems for bivalent heating installations, use of demanding biomass fuels, combined pellets and solar heating systems and the elimination of ammonia emissions. In the material flow area, measurement campaigns, organic pollutants in compost, the effects of fermented wastes in agriculture and methane losses in biogas conditioning are reported on. New conversion technologies are reviewed, including hydro-thermal gasification, plant-oil fuelled combined heat and power units, flameless burners and catalytic direct liquefaction. In the area of basics, studies and concepts, eco-balances and life-cycle analyses are reported on; the production of synthetic natural gas and the influence of combustion particles are discussed and decentralised power generation from solid biomass is reported on. National and international co-operation is reviewed. The report is concluded with a review of eight pilot and demonstration projects, a review of work to be done in 2007 and a list of research and demonstration projects.

  14. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    Kaliyan, Nalladurai; Morey, R. Vance; Tiffany, Douglas G.

    2011-01-01

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm 3 y -1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO 2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  15. Potential utilization of biomass in production of electricity, heat and transportation fuels including energy combines - Regional analyses and examples; Potentiell avsaettning av biomassa foer produktion av el, vaerme och drivmedel inklusive energikombinat - Regionala analyser och raekneexempel

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Karin; Boerjesson, Paal

    2008-01-15

    The objective of this study is to analyse how the use of biomass may increase in the next 10-20 years in production of heat, electricity and transportation fuels in Sweden. In these analyses, the biomass is assumed to be used in a resource and cost efficient way. This means for example that the demand for heat determines the potential use of biomass in co-generation of heat and electricity and in energy combines, and that the markets for by-products determine the use of biomass in production of certain transportation fuels. The economic conditions are not analysed in this study. In the heat and electricity production sector, we make regional analyses of the potential use of biomass in production of small-scale heat, district heat, process heat in the forest industry and electricity produced in co-generation with heat in the district heating systems and forest industry. These analyses show that the use of biomass in heat and electricity production could increase from 87 TWh (the use in 2004/2005, excluding small-scale heat production with firewood) to between 113 TWh and 134 TWh, depending on the future expansion of the district heating systems. Geographically, the Stockholm province accounts for a large part of the potential increase owing to the great opportunities for increasing the use of biomass in production of district heat and CHP in this region. In the sector of transportation fuels we applied a partly different approach since we consider the market for biomass-based transportation fuels to be 'unconstrained' within the next 10-20 years. Factors that constrain the production of these fuels are instead the availability of biomass feedstock and the local conditions required for achieving effective production systems. Among the first generation biofuels this report focuses on RME and ethanol from cereals. We estimate that the domestic production of RME and ethanol could amount to up to 1.4 TWh/y and 0.7-3.8 TWh/y, respectively, where the higher figure

  16. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  17. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  18. The Regional Biomass-Energy Agency (ERBE): an opportunity for the biomass-energy development in Wallonia

    International Nuclear Information System (INIS)

    Lemaire, P.; Menu, J.F.; Belle, J.F. van; Schenkel, Y.

    1997-01-01

    In 1995, the European Commission (Directorate-General for Energy) and the Walloon government set up a biomass-energy agency (ERBE), to promote and build biomass-energy projects in Wallonia (Belgium). A survey of biomass-energy potential indicates that wood-energy seems to offer the best utilization opportunities. Forest and logging residues, sawmills' and joineries' off-cuts, pallets residues, etc. could be burnt in wood district heating units with a significant social benefit. Consequently, the ERBE Agency is trying to set up projects in this way in Austria (+/- 100 wood heating systems) or in Sweden. It serves to inform industries and municipalities about biomass-energy, to advise them in the building of biomass-energy projects, to identify their energy needs and their biomass resources, to carry out prefeasibility studies, to inform them about financing opportunities, and so on. (author)

  19. Combined methodology of optimization and life cycle inventory for a biomass gasification based BCHP system

    International Nuclear Information System (INIS)

    Wang, Jiang-Jiang; Yang, Kun; Xu, Zi-Long; Fu, Chao; Li, Li; Zhou, Zun-Kai

    2014-01-01

    Biomass gasification based building cooling, heating, and power (BCHP) system is an effective distributed energy system to improve the utilization of biomass resources. This paper proposes a combined methodology of optimization method and life cycle inventory (LCI) for the biomass gasification based BCHP system. The life cycle models including biomass planting, biomass collection-storage-transportation, BCHP plant construction and operation, and BCHP plant demolition and recycle, are constructed to obtain economic cost, energy consumption and CO 2 emission in the whole service-life. Then, the optimization model for the biomass BCHP system including variables, objective function and solution method are presented. Finally, a biomass BCHP case in Harbin, China, is optimized under different optimization objectives, the life-cycle performances including cost, energy and CO 2 emission are obtained and the grey incidence approach is employed to evaluate their comprehensive performances of the biomass BCHP schemes. The results indicate that the life-cycle cost, energy efficiency and CO 2 emission of the biomass BCHP system are about 41.9 $ MWh −1 , 41% and 59.60 kg MWh −1 respectively. The optimized biomass BCHP configuration to minimize the life-cycle cost is the best scheme to achieve comprehensive benefit including cost, energy consumption, renewable energy ratio, steel consumption, and CO 2 emission. - Highlights: • Propose the combined method of optimization and LCI for biomass BCHP system. • Optimize the biomass BCHP system to minimize the life-cycle cost, energy and emission. • Obtain the optimized life-cycle cost, energy efficiency and CO 2 emission. • Select the best biomass BCHP scheme using grey incidence approach

  20. Drying and heat decomposition of biomass during the production of biochar

    Science.gov (United States)

    Lyubov, V. K.; Popova, E. I.

    2017-11-01

    The process of wood torrefaction provides an opportunity to combine properties of biofuel and steam coal. Different degrees of biofuel heat treating leads to varied outcomes and varied biochar heating value. Therefore, the torrefaction process requires optimal operation that ensures the highest heating value of biochar with the lowest energy loss. In this paper we present the experimental results of drying cycle and thermal decomposition of particles of spruce stem wood and hydrolytic lignin in argon under various temperature conditions and basic material humidity as well as changes in the morphological structure of the biomass and its grain size composition during the torrefaction.

  1. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass

    Science.gov (United States)

    Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung

    2013-01-01

    Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...

  2. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  3. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  4. Biomass gasification to heat, electricity and biofuels. HighBio project publication

    Energy Technology Data Exchange (ETDEWEB)

    Lassi, U.; Wikman, B. (eds.)

    2011-07-01

    Renewable energy and the use of biomass in energy production promotes sustainable development and decreases the use of fossil fuels. Biomass, e.g. wood chips can be used in the production of heat and electricity, as well as being used as a biofuel component and novel product for the chemical industry. Efficient utilisation of biomass requires a high level of knowledge and the development of new processes to create a new way of thinking. In this process, international co-operation plays a significant role. The aim of the HighBio project was to produce new information on biomass gasification and the utilisation opportunities of product gas in biofuel and biochemicals production. The project was also aimed at studying utilisation properties of biogasification ashes in distributed energy production. Small-scaled CHP plants can be used for simultaneous heat and power production by gasifying wood chips and by burning energy intensive product gas. Compared with thermal combustion, particulate emissions from gasification are lower, which also contributes to the EU's ever tightening emission legislation. Several small and middle scale companies in the Northern part of Finland and Sweden have worked with biomass gasification, and during the project, the birth of new ones has been seen. In this development stage, researchers of the HighBio project have also been strongly involved. Increased use of renewable energy opens up new possibilities for entrepreneurship and the birth of new companies, especially in rural areas. In order to enable these opportunities, we need research data from the universities, novel innovations, and especially their successful commercialisation. The HighBio project has also contributed to tackling those challenges by arranging research seminars and meetings to companies and other interest groups, as well as by establishing research activities and collaborations. Regional collaboration combined with national and international research networks

  5. Estimating the Heat of Formation of Foodstuffs and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, Alan K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-11-23

    Calorie estimates for expressing the energy content of food are common, however they are inadequate for the purpose of estimating the chemically defined heat of formation of foodstuffs for two reasons. First, they assume utilization factors by the body.1,2,3 Second, they are usually based on average values for their components. The best way to solve this problem would be to measure the heat of combustion of each material of interest. The heat of formation can then be calculated from the elemental composition and the heats of formation of CO2, H2O, and SO2. However, heats of combustion are not always available. Sometimes elemental analysis only is available, or in other cases, a breakdown into protein, carbohydrates, and lipids. A simple way is needed to calculate the heat of formation from various sorts of data commonly available. This report presents improved correlations for relating the heats of combustion and formation to the elemental composition, moisture content, and ash content. The correlations are also able to calculate heats of combustion of carbohydrates, proteins, and lipids individually, including how they depend on elemental composition. The starting point for these correlations are relationships commonly used to estimate the heat of combustion of fossil fuels, and they have been modified slightly to agree better with the ranges of chemical structures found in foodstuffs and biomass.

  6. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  7. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  8. Influencing Swedish homeowners to adopt district heating system

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2009-01-01

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Ostersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey

  9. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  10. Forestry biomass for energy use

    International Nuclear Information System (INIS)

    Pettenella, D.; Ciccarese, L.

    1992-01-01

    This paper first analyses the current and potential market in Italy for wood chips and firewood and assesses the potential economic and environmental benefits of the use of forestry biomass. Here, the paper cites the favourable opportunities offered by Italian forestry policies and legislative initiatives for energy saving. The survey of the principal consumers of forestry biomass leads to the identification of three distinct user categories - families living in rural are as requiring wood fuels for space heating, small industrial firms requiring process heat and urban (elite) users with homes furnished with fireplaces in addition to conventional space heating systems. Tabled consumption data going back to the year 1955 and estimated per capita consumption in industrialized countries are used to make comparative market trend analyses. The paper then reviews the current state-of-the-art in wood furnace design by noting the innovative design, performance, operation and maintenance characteristics of key residential and industrial furnace components (feeding systems, combustion chambers, heating boxes, heat exchangers, control systems, deashing systems, etc.). A list of the main Italian wood furnace manufacturers is also included

  11. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS; SEMIANNUAL

    International Nuclear Information System (INIS)

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-01-01

    The Energy and Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems-grate clinkering and heat exchange surface fouling-associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass-specifically wood and agricultural residuals-in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  12. Location Optimization for Biomass Trigeneration System with Pit Thermal Energy Storage: the Case of the City of Petrinja

    DEFF Research Database (Denmark)

    Ćosić, B.; Dominkovic, Dominik Franjo; Ban, M.

    2015-01-01

    The combined production of electricity, heat and cold in biomass trigeneration power plants integrated with seasonal pit thermal energy storage ensures maximum utilization of biomass resources and at the same time reduction of variable operation costs of the system. Beside optimal size of trigene...

  13. Modeling and Assessment of a Biomass Gasification Integrated System for Multigeneration Purpose

    Directory of Open Access Journals (Sweden)

    Shoaib Khanmohammadi

    2016-01-01

    Full Text Available The use of biomass due to the reduction in greenhouse gas emissions and environmental impacts has attracted many researchers’ attention in the recent years. Access to an energy conversion system which is able to have the optimum performance for applying valuable low heating value fuels has been considered by many practitioners and scholars. This paper focuses on the accurate modeling of biomass gasification process and the optimal design of a multigeneration system (heating, cooling, electrical power, and hydrogen as energy carrier to take the advantage of this clean energy. In the process of gasification modeling, a thermodynamic equilibrium model based on Gibbs energy minimization is used. Also, in the present study, a detailed parametric analysis of multigeneration system for undersigning the behavior of objective functions with changing design parameters and obtaining the optimal design parameters of the system is done as well. The results show that with exergy efficiency as an objective function this parameter can increase from 19.6% in base case to 21.89% in the optimized case. Also, for the total cost rate of system as an objective function it can decrease from 154.4 $/h to 145.1 $/h.

  14. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    International Nuclear Information System (INIS)

    Mann, M.K.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus trademark to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product

  15. Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies

    International Nuclear Information System (INIS)

    Koenig, Andreas

    2011-01-01

    The possible uses of biomass for energy provision are manifold. Gaseous, liquid and solid bioenergy carriers can be alternatively converted into heat, power or transport fuel. The contribution of the different utilisation pathways to environmental political targets for greenhouse gas (GHG) emission reduction and energy political targets for the future share of renewable energy vary accordingly to their techno-economic characteristics. The aim of the presented study is to assess the different biomass options against the background of energy and environmental political targets based on a system analytical approach for the future German energy sector. The results show that heat generation and to a lower extent combined heat and power (CHP) production from solid biomass like wood and straw are the most cost effective ways to contribute to the emission reduction targets. The use of energy crops in fermentation biogas plants (maize) and for production of 1st generation transportation fuels, like biodiesel from rapeseed and ethanol from grain or sugar beet, are less favourable. Optimisation potentials lie in a switch to the production of 2nd generation biofuels and the enhanced use of either biomass residues or low production intensive energy crops. - Research Highlights: → Heat generation and CHP generation from biomass can contribute cost efficiently to emission reduction targets. → Biofuel production represenst the least cost efficient option for emission reduction when using biomass energetically. → The energetical use of biomass shows a high potential to contribute to energy and envirnoment political targets.

  16. Performance Evaluation of a Lithium-Chloride Absorption Refrigeration and an Assessment of Its Suitability for Biomass Waste Heat

    Directory of Open Access Journals (Sweden)

    Sacha Oberweis

    2012-10-01

    Full Text Available This paper presents a computer model that will evaluate the performance of a thermo-chemical accumulator. The model is based on operational data such as temperatures and flow rates. The ultimate goal for this model is to estimate the coefficient of performance (COP of this unit when run on hot water from biomass combustion as the heat source. The outputs of the model are verified by comparing the simulation of the actual machine with published experimental data. The computed results for cooling COP are within 10% of the measured data. The simulations are all run for heat load temperatures varying between 80 °C and 110 °C. As expected, simulation results showed an increase in COP with increased heat source temperatures. The results demonstrate that the potential of combined solar and biomass combustion as a heat source for absorption cooling/heating in climates with low solar radiation can be coupled with biomass waste.

  17. Biomass combustion for greenhouse carbon dioxide enrichment

    International Nuclear Information System (INIS)

    Roy, Yves; Lefsrud, Mark; Orsat, Valerie; Filion, Francis; Bouchard, Julien; Nguyen, Quoc; Dion, Louis-Martin; Glover, Antony; Madadian, Edris; Lee, Camilo Perez

    2014-01-01

    Greenhouses in northern climates have a significant heat requirement that is mainly supplied by non-renewable fuels such as heating oil and natural gas. This project's goal was the development of an improved biomass furnace able to recover the heat and the CO 2 available in the flue gas and use them in the greenhouse. A flue gas purification system was designed, constructed and installed on the chimney of a wood pellet furnace (SBI Caddy Alterna). The purification system consists of a rigid box air filter (MERV rating 14, 0.3 μm pores) followed by two sets of heating elements and a catalytic converter. The air filter removes the particulates present in the flue gas while the heating elements and catalysers transform the noxious gases into less harmful gases. Gas analysis was sampled at different locations in the system using a TESTO 335 flue gas analyzer. The purification system reduces CO concentrations from 1100 cm 3  m −3 to less than 1 cm 3  m −3 NO x from 70 to 5.5 cm 3  m −3 SO 2 from 19 cm 3  m −3 to less than 1 cm 3  m −3 and trapped particulates down to 0.3 μm with an efficiency greater than 95%. These results are satisfactory since they ensure human and plant safety after dilution into the ambient air of the greenhouse. The recuperation of the flue gas has several obvious benefits since it increases the heat usability per unit biomass and it greatly improves the CO 2 recovery of biomass heating systems for the benefit of greenhouse grown plants. - Highlights: • Biomass furnace shows high potential for greenhouse carbon dioxide enrichment. • Flue gas recuperation significantly increases the thermal efficiency of a furnace. • Catalytic converter can reduce CO and NOx below humans and plants exposure limit. • Particulates control is essential to maintain the efficiency of the catalytic conversion. • CO 2 recovery from biomass heating systems reduces farmer's reliance on fossil fuel

  18. The use of biomass for energy in Sweden. Critical factors and lessons learned

    International Nuclear Information System (INIS)

    Johansson, Bengt; Boerjesson, Paal; Ericsson, Karin; Nilsson, Lars J.; Svenningsson, Per

    2002-08-01

    In this report the development of Swedish biomass use during recent decades is discussed. The relations between biomass supply, biomass demand and various policy initiatives are explored. The objectives are to discuss the most important factors affecting the biomass development and to establish which factors are specific for Swedish conditions and also to identify general factors that are relevant in assessing the possibility of expanding biomass use in different contexts. The focus is on the use of biomass for heat and electricity production. Biomass contributed 14% to the Swedish energy supply in 1999. The major fraction of Swedish biomass is used within the forest industry (63%) and in district heating systems (23%). The remaining fraction is used in small-scale boilers in one- and two family dwellings. Between 1990 and 1999 Swedish bioenergy use (including waste and peat) increased by 44%. During the same period there has been a fourfold increase in the district heating systems. By-products from forestry and the Swedish forest industry dominate the supply of biomass in Sweden, but the importation of biomass increased significantly during the 1990s. A number of factors of various kinds have interacted to bring about the increased use of biomass in Sweden during the past twenty years. These factors can be divided into three categories: structure, policies and actors. The existence of a major forest industry and well-developed district heating systems has enabled a rapid response to strong and standing policy commitments to biomass. The reformation of the taxation system, with the introduction of a high carbon tax on fossil fuels, has led to significantly improved competitiveness for biomass when used for heating purposes.

  19. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  20. Biomass application for heating primary schools in Portugal

    International Nuclear Information System (INIS)

    Pires, A.; Cordeiro, M.

    2000-01-01

    The use of renewable energies for heating the schools, hospitals, public and agricultural buildings and even houses must constitute a principal option instead a second choice. The life quality of the people, in this case the students of primary schools, must be concern for all the people whose working in the energy subject. All the people must be aware that the life quality must be tried by the use of the renewable energies and in this case the biomass. This work pretends to be a good contribution for using of this type of energy. (Author)

  1. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  2. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  3. Impact assessment of biomass-based district heating systems in densely populated communities. Part II: Would the replacement of fossil fuels improve ambient air quality and human health?

    Science.gov (United States)

    Petrov, Olga; Bi, Xiaotao; Lau, Anthony

    2017-07-01

    To determine if replacing fossil fuel combustion with biomass gasification would impact air quality, we evaluated the impact of a small-scale biomass gasification plant (BRDF) at a university campus over 5 scenarios. The overall incremental contribution of fine particles (PM2.5) is found to be at least one order of magnitude lower than the provincial air quality objectives. The maximum PM2.5 emission from the natural gas fueled power house (PH) could adversely add to the already high background concentration levels. Nitrogen dioxide (NO2) emissions from the BRDF with no engineered pollution controls for NOx in place exceeded the provincial objective in all seasons except during summer. The impact score, IS, was the highest for NO2 (677 Disability Adjusted Life Years, DALY) when biomass entirely replaced fossil fuels, and the highest for PM2.5 (64 DALY) and CO (3 DALY) if all energy was produced by natural gas at PH. Complete replacement of fossil fuels by one biomass plant can result in almost 28% higher health impacts (708 DALY) compared to 513 DALY when both the current BRDF and the PH are operational mostly due to uncontrolled NO2 emissions. Observations from this study inform academic community, city planners, policy makers and technology developers on the impacts of community district heating systems and possible mitigation strategies: a) community energy demand could be met either by splitting emissions into more than one source at different locations and different fuel types or by a single source with the least-impact-based location selection criteria with biomass as a fuel; b) advanced high-efficiency pollution control devices are essential to lower emissions for emission sources located in a densely populated community; c) a spatial and temporal impact assessment should be performed in developing bioenergy-based district heating systems, in which the capital and operational costs should be balanced with not only the benefit to greenhouse gas emission

  4. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  5. Power/heat production from biomass in Finland - Two modern Finnish examples

    International Nuclear Information System (INIS)

    Aeijaelae, M.

    1997-01-01

    According to this conference paper, Finland is a leading country in the utilization of biomass fuels for power and heat production. One reason is that peat and wood are the only indigenous fuels available in Finland. Other reasons are the strong forest industry and the widely adopted combined heat and power (CHP) production. CHP production is typical of process industry and municipal district heating. The most common boiler type in modern CHP plants is the fluidized bed type. District heating is the cheapest heating in municipalities with a few thousand inhabitants. Electric heating dominates in sparsely populated regions. CHP becomes attractive for populations of more than ten thousand. Two examples are described: (1) Rauhalahti Power Plant produces 140 MW of district heat, 65 MW of industrial steam and 87 MW of electricity. (2) Kuusamo Power Plant produces 6.1 MW electric energy and 17.6 MW district heat; its unique feature is the utilization of the bed mixing dryer for drying of the fuel prior to combustion, this dryer being the first of its kind in the world. 1 figure

  6. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Lauer, M.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness

  7. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness. (author)

  8. An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy

    International Nuclear Information System (INIS)

    Rajaseenivasan, T.; Srithar, K.

    2017-01-01

    Highlights: • A biomass based humidification dehumidification desalination system is tested. • System is analyzed with the direct and preheated air supply. • Highest distillate rate of 6.1 kg/h is collected with the preheated air supply. • The minimum fuel feed of 0.2 kg is needed to produce 1 kg of fresh water. - Abstract: This article describes a biomass powered bubble column humidification-dehumidification desalination system. This system mainly consists of a biomass stove, air heat exchanger, bubble column humidifier and dehumidifier. Saw dust briquettes are used as biomass fuel in the stove. First level of experiments are carried out in bubble column humidifier with ambient air supply to select the best water depth, bubble pipe hole diameter and water temperature. Experiments are conducted by integrating the humidifier with the dehumidifier. Air is sent to the humidifier with and without pre-heating. Preheating of air is carried out in the air heat exchanger by using the flue gas and flame from the combustion chamber. It is observed that the humidifier ability is augmented with the rise in water depth, water temperature, mass flow rate of air and cooling water flow rate, and reduction in bubble pipe hole diameter. It is found from Taguchi analysis that the water temperature dominates in controlling the humidifier performance compared to other parameters. Better specific humidity is recorded with a bubble pipe hole diameter of 1 mm, water depth of 170 mm and water temperature of 60 °C. Highest distillate of 6.1 kg/h and 3.5 kg/h is collected for the HDH desalination system with preheated air and direct air supply respectively. Recovery of waste heat using an air heat exchanger reduces the fuel consumption from 0.36 kg to 0.2 kg for producing 1 kg of distilled water. Lowest distilled water cost of 0.0133 US $/kg through preheated air supply and 0.0231 US $/kg through direct air supply is observed. A correlation is developed to estimate the mass transfer

  9. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander

    2017-01-01

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing...

  10. The exploitation of biomass for building space heating in Greece: Energy, environmental and economic considerations

    International Nuclear Information System (INIS)

    Michopoulos, A.; Skoulou, V.; Voulgari, V.; Tsikaloudaki, A.; Kyriakis, N.A.

    2014-01-01

    Highlights: • The oil substitution with biomass residues for heating buildings is examined. • Primary energy consumption from biomass results increased by 3–4% as compared to diesel oil. • CO 2 and SO 2 emissions are significantly higher with biomass than with diesel oil. • The examined substitution is economically attractive for the final consumers. - Abstract: The exploitation of forest and agricultural biomass residues for energy production may offer significant advantages to the energy policy of the relevant country, but it strongly depends on a number of financial, technological and political factors. The work in hand focuses on the investigation of the energy, environmental and financial benefits, resulting from the exploitation of forest and agricultural biomass residues, fully substituting the conventional fuel (diesel oil) for building space heating in Greece. For this investigation, the energy needs of a representative building are determined using the EnergyPlus software, assuming that the building is located across the various climate zones of Greece. Based on the resulting thermal energy needs, the primary energy consumption and the corresponding emissions are determined, while an elementary fiscal analysis is also performed. The results show that significant financial benefits for the end-user are associated with the substitution examined, even though increased emissions and primary energy consumption have been derived

  11. Trigeneration integrated with absorption enhanced reforming of lignite and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Yaodong Wang; Ye Huang; Anthony P. Roskilly [Newcastle University, Newcastle Upon Tyne (United Kingdom). Sir Joseph Swan Institute for Energy Research

    2009-10-15

    A technical investigation of an innovative trigeneration integrated with absorption enhanced reforming (AER) of lignite and biomass is carried out using the ECLIPSE process simulator. The system includes an internal combustion engine, an AER gasifier, a waste heat recovery and storage unit and an absorption refrigerator. The whole system is operated in the following sequence: The AER gasifier is used to generate hydrogen using lignite and biomass; the hydrogen generated is used to run the engine which drives a generator to produce electricity. Additionally, the heat recovery unit collects waste heat from the engine and is used to supply hot water and space heating. Furthermore, the waste heat is used to operate the absorption refrigerator. The electricity, heat and cooling can be used to meet the energy requirements for the households in a village, a resident building or a commercial building, or a supermarket. Within the study, the effects of lignite mixed with three different types of biomass (straw, willow and switch grass) on the system performance are investigated and the results are compared. The results show that it is feasible to use an AER system to reform the low quality fuels lignite and biomass to generate a cleaner fuel - hydrogen to replace fossil fuels (diesel or natural gas) and to fuel an engine based trigeneration system; the system works with high efficiencies and with a potential of carbon capture from the sorbent-regeneration process that would benefit the environment. 25 refs., 2 figs., 3 tabs.

  12. Impact of different national biomass policies on investment costs of biomass district heating plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The BIO-COST project - co-ordinated by E.V.A. - was funded by the European Commission's THERMIE Type B Programme. The objective of BIO-COST was to analyse the impact of national biomass policies on the investment costs of biomass district heating (DH) plants. The European comparison should help identifying measures to reduce investment costs for biomass DH plants and/or components down to a 'best practice' level. The investigation is based on the comparison of 20 biomass DH plants by country, with Denmark and Sweden having mainly high energy taxes as driver, while Austria and France rely mainly on subsidy systems. The results of BIO-COST show, that governmental policies can have a big impact especially on grid and buildings costs, effecting of course the overall costs of the plant enormously. Emission standards have their effects especially on the costs for technical equipment, however, this fact was not reflected in the BIO-COST data. The results do not show a clear advantage of either the energy tax approach or the subsidy approach: The French subsidy approach leads to fairly low cost levels compared to the Danish tax approach, while the Swedish tax approach seems to yield the lowest cost level. On the other hand the Austrian subsidy approach seems to intercrease investment costs. In principle both the tax as the subsidy approach can lead to the same effect: a project is calculated in such a way, that it just meets economic breakeven. This is typically the case when the project is not carried out by a private enterprise but by an operator aiming at enhanced public welfare (e.g. co-operative, municipality). In this case a subsidy model might yield more possibilities to encourage an economically efficient development, than a tax. Instead of giving subsidies as a fixed percentage of investments they could be adjusted to the actual needs of the project as proven by a standardised calculation. Of course this can create the incentive to expect higher

  13. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    by the cocombustion tests appeared to be somewhat different compared to that of the laboratory-prepared ash samples. The heated stage XRD data provide useful information regarding the reactions among the various ash compounds and the phase transformations during the heating and cooling of the ash samples and helped...... a high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag...

  14. Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator

    International Nuclear Information System (INIS)

    Prando, Dario; Renzi, Massimiliano; Gasparella, Andrea; Baratieri, Marco

    2015-01-01

    More than seventy district heating (DH) plants based on biomass are operating in South Tyrol (Italy) and most of them supply heat to residential districts. Almost 20% of them are cogenerative systems, thus enabling primary energy savings with respect to the separate production of heat and power. However, the actual performance of these systems in real operation can considerably differ from the nominal one. The main objectives of this work are the assessment of the energy performance of a biomass boiler coupled with an Organic Rankine Cycle (i.e. ORC) generator under real operating conditions and the identification of its potential improvements. The fluxes of energy and mass of the plant have been measured onsite. This experimental evaluation has been supplemented with a thermodynamic model of the ORC generator, calibrated with the experimental data, which is capable to predict the system performance under different management strategies of the system. The results have highlighted that a decrease of the DH network temperature of 10 °C can improve the electric efficiency of the ORC generator of one percentage point. Moreover, a DH temperature reduction could decrease the main losses of the boiler, namely the exhaust latent thermal loss and the exhaust sensible thermal loss, which account for 9% and 16% of the boiler input power, respectively. The analysis of the plant has pointed out that the ORC pump, the flue gases extractor, the thermal oil pump and the condensation section fan are the main responsible of the electric self-consumption. Finally, the negative effect of the subsidisation on the performance of the plant has been discussed. - Highlights: • Energy performance of a biomass boiler coupled to an ORC turbine in real operation. • Potential improvements of a CHP plant connected to a DH network. • Performance prediction by means of a calibrated ORC thermodynamic model. • Influence of the DH temperature on the electric efficiency. • Impact of the

  15. Modelling fireside corrosion of heat exchangers in co-fired pulverised fuel power systems

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield Univ. (United Kingdom). Energy Technology Centre; Fry, A.T. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    As a result of concerns about the effects of CO{sub 2} emissions on the global environment, there is increasing pressure to reduce such emissions from power generation systems. The use of biomass co-firing with coal in conventional pulverised fuel power stations has provided the most immediate route to introduce a class of fuel that is regarded as both sustainable and carbon neutral. In the future it is anticipated that increased levels of biomass will need to be used in such systems to achieve the desired CO{sub 2} emission targets. However there are concerns over the risk of fireside corrosion damage to the various heat exchangers and boiler walls used in such systems. Future pulverised fuel power systems will need to be designed to cope with the effects of using a wide range of coal-biomass mixes. However, such systems will also need to use much higher heat exchanger operating temperatures to increase their conversion efficiencies and counter the effects of the CO{sub 2} capture technologies that will need to be used in them. Higher operating temperatures will also increase the risk of fireside corrosion damage to the critical heat exchangers. This paper reports work that has been carried out to develop quantitative corrosion models for heat exchangers in pulverised fuel power systems. These developments have been particularly targeted at producing models that enable the evaluation of the effects of using different coal-biomass mixtures and of increasing heat exchanger operating conditions. Models have been produced that have been targeted at operating conditions and materials used in (a) superheaters/reheaters and (b) waterwalls. Data used in the development of these models has been produced from full scale and pilot scale plants in the UK using a wide range of coal and biomass mixtures, as well as from carefully targeted series of laboratory corrosion tests. Mechanistic and neural network based models have been investigated during this development process to

  16. Complex thermal energy conversion systems for efficient use of locally available biomass

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2016-01-01

    This paper is focused on a theoretical study in search for new technological solutions in the field of electricity generation from biomass in small-scale distributed cogeneration systems. The purpose of this work is to draw readers' attention to possibilities of design complex multi-component hybrid and combined technological structures of energy conversion plants for effective use of locally available biomass resources. As an example, there is presented analysis of cogeneration system that consists of micro-turbine, high temperature fuel cell, inverted Bryton cycle module and biomass gasification island. The project assumes supporting use of natural gas and cooperation of the plant with a low-temperature district heating network. Thermodynamic parameters, energy conversion effectiveness and economic performance are examined. Results show relatively high energy conversion performance and on the other hand weak financial indices of investment projects at the current level of energy prices. It is however possible under certain conditions to define an optimistic business model that leads to a feasible project. - Highlights: • Concept of biomass energy conversion plant is proposed and theoretically analysed. • MCFC type fuel cell is fuelled with biomass gasification gas. • Natural gas fired microturbine is considered as a source of continuous power. • Inverted Bryton Cycle is considered for utilisation of high temperature exhaust gas.

  17. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  18. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...

  19. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry.

    Science.gov (United States)

    Shen, Jiacheng; Igathinathane, C; Yu, Manlu; Pothula, Anand Kumar

    2015-06-01

    Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700°C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587°C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism. Published by Elsevier Ltd.

  20. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  1. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  2. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    International Nuclear Information System (INIS)

    Ren, Hongbo; Zhou, Weisheng; Nakagami, Ken'ichi; Gao, Weijun

    2010-01-01

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  3. Penetrating the markets: biomass and commercial distribution

    International Nuclear Information System (INIS)

    Schmidl, J.

    1999-01-01

    Although biomass accounts for a significant proportion of renewable energy in Europe, its market penetration could be increased if certain barriers can be surmounted. Some of those barriers are identified and suggestions made as to how they may be overcome through improved 'distribution' in various sectors. To integrate biomass into the electricity distribution system, the commercial distribution of liquid biofuels, and in the commercial distribution of biomass in the heat sector, certain rewards and penalties could be introduced and these are discussed. The low temperature heat market is seen as very important for the further development of bioenergy in Europe. (UK)

  4. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  5. Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases

    International Nuclear Information System (INIS)

    Sun, Yongqi; Seetharaman, Seshadri; Liu, Qianyi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2016-01-01

    In this study, the thermodynamics of a novel strategy, i.e., biomass/CO 2 gasification integrated with heat recovery from hot slags in the steel industry, were systemically investigated. Both the target syngas yield and the polluting gas release were considered where the effect of gasifying conditions including temperature, pressure and CO 2 reacted was analyzed and then the roles of hot slags were further clarified. The results indicated that there existed an optimum temperature for the maximization of H 2 production. Compared to blast furnace slags, steel slags remarkably increased the CO yield at 600–1400 °C due to the existence of iron oxides and decreased the S-containing gas releases at 400–700 °C, indicating potential desulfurizing ability. The identification of biomass/CO 2 gasification thermodynamics in presence of slags could thus provide important clues not only for the deep understanding of biomass gasification but also for the industrial application of this emerging strategy from the viewpoint of syngas optimization and pollution control. - Highlights: • Biomass/CO 2 gasification was integrated with the heat recovery from hot slags. • Both syngas yield and polluting gas release during gasification were determined. • There existed an optimum temperature for the maximization of H 2 production. • Steel slags increased CO yield at 600–1400 °C due to the existence of iron oxides. • Steel slags remarkably decreased the releases of S-containing gas at 400–700 °C.

  6. Biomass Deconstruction and Recalcitrance

    DEFF Research Database (Denmark)

    Zhang, Heng

    This thesis is about the use of an agricultural residue as a feedstock for fermentable sugars to be used for second generation (2G) bioethanol. The main focus of this thesis work is upon the recalcitrance of different anatomical fractions of wheat straw. Biomass recalcitrance is a collective...... of lignocellulosic biomass’ degradability, a high throughput screening (HTS) platform was developed for combined thermochemical pretreatment and enzymatic degradation in Copenhagen laboratory during this thesis work. The platform integrates an automatized biomass grinding and dispensing system, a pressurized heating...... system, a plate incubator and a high performance liquid chromatography (HPLC) system. In comparison with the reported HTS platforms, the Copenhagen platform is featured by the fully automatic biomass sample preparation system, the bench-scale hydrothermal pretreatment setup, and precise sugar measurement...

  7. Analysis of Competitiveness and Support Instruments for Heat and Electricity Production from Wood Biomass in Latvia

    Science.gov (United States)

    Klavs, G.; Kudrenickis, I.; Kundzina, A.

    2012-01-01

    Utilisation of renewable energy sources is one of the key factors in a search for efficient ways of reducing the emissions of greenhouse gases and improving the energy supply security. So far, the district heating supply in Latvia has been based on natural gas, with the wood fuel playing a minor role; the same is true for decentralised combined heat-power (CHP) production. The paper describes a method for evaluation of the economic feasibility of heat and electricity production from wood biomass under the competition between different fuel types and taking into account the electricity market. For the simulation, a cost estimation model is applied. The results demonstrate that wood biomass can successfully be utilised for competitive heat production by boiler houses, while for electricity production by CHP utilities it cannot compete on the market (even despite the low prices on wood biomass fuel) unless particular financial support instruments are applied. The authors evaluate the necessary support level and the impact of two main support instruments - the investment subsidies and the feed-in tariff - on the economic viability of wood-fuelled CHP plants, and show that the feed-in tariff could be considered as an instrument strongly affecting the competitiveness of such type CHP. Regarding the feed-in tariff determination, a compromise should be found between the economy-dictated requirement to develop CHP projects concerning capacities above 5 MWel - on the one hand, and the relatively small heat loads in many Latvian towns - on the other.

  8. Optimization of radial systems with biomass fueled gas engine from a metaheuristic and probabilistic point of view

    International Nuclear Information System (INIS)

    Ruiz-Rodriguez, F.J.; Gomez-Gonzalez, M.; Jurado, F.

    2013-01-01

    Highlights: ► Loads and distributed generation production are modeled as random variables. ► Distribution system with biomass fueled gas engines. ► Random nature of lower heat value of biomass and load. ► The Cornish–Fisher expansion is used for approximating quantiles of a random variable. ► Computational cost is low enough than that required for Monte Carlo simulation. - Abstract: This paper shows that the technical constraints must be considered in radial distribution networks, where the voltage regulation is one of the primary problems to be dealt in distributed generation systems based on biomass fueled engine. Loads and distributed generation production are modeled as random variables. Results prove that the proposed method can be applied for the keeping of voltages within desired limits at all load buses of a distribution system with biomass fueled gas engines. To evaluate the performance of this distribution system, this paper has developed a probabilistic model that takes into account the random nature of lower heat value of biomass and load. The Cornish–Fisher expansion is used for approximating quantiles of a random variable. This work introduces a hybrid method that utilizes a new optimization method based on swarm intelligence and probabilistic radial load flow. It is demonstrated the reduction in computation time achieved by the more efficient probabilistic load flow in comparison to Monte Carlo simulation. Acceptable solutions are reached in a smaller number of iterations. Therefore, convergence is more rapidly attained and computational cost is significantly lower than that required for Monte Carlo methods.

  9. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  10. High temperature solar heating and cooling systems for different Mediterranean climates: Dynamic simulation and economic assessment

    International Nuclear Information System (INIS)

    Calise, Francesco

    2012-01-01

    The paper presents a dynamic model of an innovative solar heating and cooling system (SHC) based on the coupling of Parabolic Trough Collectors (PTC) with a double-stage LiBr-H 2 O absorption chiller; auxiliary energy for both heating and cooling is supplied by a biomass-fired heater. The system layout also includes a number of additional components such as: cooling tower, pumps, heat exchangers, etc. The consumption of non-renewable energy resources is only due to the small amount of electrical energy consumed by some auxiliary device. A case study is presented, in which the SHC provides space heating and cooling and domestic hot water for a small university hall, all year long. Both the SHC system and the building were dynamically simulated in TRNSYS. In order to evaluate the performance of the investigated system in various climatic conditions, the analyses were performed for seven Mediterranean cities in Italy, Spain, Egypt, France, Greece and Turkey. The analysis was also performed for a similar SHC in which the biomass heater was replaced by a gas-fired heater, in order to evaluate the influence of biomass to the overall system economic and energetic performance. In addition, a parametric analysis was performed in order to evaluate the sensitivity of the results, when varying some of the main design and operating parameters, such as: collector field area, tank volume and set-point temperatures. The results showed that the SHC system layout investigated can be competitive for the majority of the locations analysed, although the economic profitability is higher for the hottest climates. - Highlights: → In the high temperature SHC system the auxiliary heat is provided by biomass. → The energetic performance of the system is excellent during the summer. → In the winter the system suffers of the low beam radiation incident on the PTC. → The Simple Pay Back Period is encouraging, particularly in case of public funding. → An increase of the solar field

  11. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  12. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  13. Biomass-fuelled PEMFC systems: Evaluation of two conversion paths relevant for different raw materials

    International Nuclear Information System (INIS)

    Guan, Tingting; Chutichai, Bhawasut; Alvfors, Per; Arpornwichanop, Amornchai

    2015-01-01

    Highlights: • Anaerobic digestion and gasification are viable biomass conversion technologies. • GF-PEMFC system yields a 20% electric efficiency and 57% thermal efficiency. • AD-PEMFC system has a 9% electric efficiency and 13% thermal efficiency. • AD-PEMFC system has an efficient land-use. • GF-PEMFC system has a high CO_2 emissions offset factor. - Abstract: Biomass-fuelled polymer electrolyte membrane fuel cells (PEMFCs) offer a solution for replacing fossil fuel with hydrogen production. This paper uses simulation methods for investigating biomass-fuelled PEMFCs for different raw materials and conversion paths. For liquid and solid biomass, anaerobic digestion (AD) and gasification (GF), respectively, are relatively viable and developed conversion technologies. Therefore, the AD-PEMFC system and the GF-PEMFC system are simulated for residential applications in order to evaluate the performance of the biomass-fuelled PEMFC systems. The results of the evaluation show that renewable hydrogen-rich gas from manure or forest residues is usable for the PEMFCs and makes the fuel cell stack work in a stable manner. For 100 kWe generation, the GF-PEMFC system yields an excellent technical performance with a 20% electric efficiency and 57% thermal efficiency, whereas the AD-PEMFC system only has an 9% electric efficiency and 13% thermal efficiency due to the low efficiency of the anaerobic digester (AD) and the high internal heat consumption of the AD and the steam reformer (SR). Additionally, in this study, the environmental performances of the AD-PEMFC and the GF-PEMFC in terms of CO_2 emission offset and land-use efficiency are discussed.

  14. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  15. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)

  16. Performance evaluation of a biomass boiler on the basis of heat loss method and total heat values of steam

    International Nuclear Information System (INIS)

    Munir, A.; Alvi, J.Z.; Ashfaq, S.; Ghafoor, A.

    2014-01-01

    Pakistan being an agricultural country has large resources of biomass in the form of crop residues like wood, wheat straw, rice husk, cotton sticks and bagasse. Power generation using biomass offers an excellent opportunity to overcome current scenario of energy crises. Of the all biomass resources, bagasse is one of the potential energy sources which can be successfully utilized for power generation. During the last decade, bagasse fired boilers attained major importance due to increasing prices of primary energy (e.g. fossil fuels). Performance of a bagasse fired boiler was evaluated at Shakarganj Sugar Mill, Bhone-Jhang having steam generation capacity of 80 tons h/sup -1/at 25 bar working pressure. The unit was forced circulation and bi-drum type water tube boiler which was equipped with all accessories like air heater, economizer and super-heater. Flue gas analyzer and thermocouples were used to record percent composition and temperature of flue gases respectively. Physical analysis of bagasse showed gross calorific value of bagasse as 2326 kCal kg/sup -1/. Ultimate analysis of bagasse was performed and the actual air supplied to the boiler was calculated to be 4.05 kg per kg of bagasse under the available resources of the plant. Performance evaluation of the boiler was carried out and a complete heat balance sheet was prepared to investigate the different sources of heat losses. The efficiency of the boiler was evaluated on the basis of heat losses through boiler and was found to be 56.08%. It was also determined that 2 kg of steam produced from 1 kg of bagasse under existing condition of the boiler. The performance evaluation of the boiler was also done on the basis of total heat values of steam and found to be 55.98%. The results obtained from both the methods were found almost similar. Effects of excess air, stack and ambient temperature on the efficiency of boiler have also been evaluated and presented in the manuscript. (author)

  17. Biomass energy inventory and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Kasile, J.D. [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was used as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.

  18. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  19. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.

    Science.gov (United States)

    Boumanchar, Imane; Chhiti, Younes; M'hamdi Alaoui, Fatima Ezzahrae; El Ouinani, Amal; Sahibed-Dine, Abdelaziz; Bentiss, Fouad; Jama, Charafeddine; Bensitel, Mohammed

    2017-03-01

    The heating value describes the energy content of any fuel. In this study, this parameter was evaluated for different abundant materials in Morocco (two types of biochar, plastic, synthetic rubber, and cardboard as municipal solid waste (MSW), and various types of biomass). Before the evaluation of their higher heating value (HHV) by a calorimeter device, the thermal behavior of these materials was investigated using thermogravimetric (TGA) and Differential scanning calorimetry (DSC) analyses. The focus of this work is to evaluate the calorific value of each material alone in a first time, then to compare the experimental and theoretical HHV of their mixtures in a second time. The heating value of lignocellulosic materials was between 12.16 and 20.53MJ/kg, 27.39 for biochar 1, 32.60MJ/kg for biochar 2, 37.81 and 38.00MJ/kg for plastic and synthetic rubber respectively and 13.81MJ/kg for cardboard. A significant difference was observed between the measured and estimated HHVs of mixtures. Experimentally, results for a large variety of mixture between biomass/biochar and biomass/MSW have shown that the interaction between biomass and other compounds expressed a synergy of 2.37% for biochar 1 and 6.11% for biochar 2, 1.09% for cardboard, 5.09% for plastic and 5.01% for synthetic rubber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  1. Analysis of a feasible trigeneration system taking solar energy and biomass as co-feeds

    International Nuclear Information System (INIS)

    Zhang, Xiaofeng; Li, Hongqiang; Liu, Lifang; Zeng, Rong; Zhang, Guoqiang

    2016-01-01

    Highlights: • A feasible trigeneration system is proposed to generate power, heating and cooling. • The steam for biomass gasification process is provided by solar energy. • The thermodynamic properties of the proposed system are investigated. • Effects of ER and SBR on gasification process is presented. • The sensitivity of the economic performance of trigeneration system is evaluated. - Abstract: The trigeneration systems are widely used owing to high efficiency, low greenhouse gas emission and high reliability. Especially, those trigeneration systems taking renewable energy as primary input are paid more and more attention. This paper presents a feasible trigeneration system, which realizes biomass and solar energy integrating effective utilization according to energy cascade utilization and energy level upgrading of chemical reaction principle. In the proposed system, the solar energy with mid-and-low temperature converted to the chemical energy of bio-gas through gasification process, then the bio-gas will be taken as the fuel for internal combustion engine (ICE) to generate electricity. The jacket water as a byproduct generated from ICE is utilized in a liquid desiccant unit for providing desiccant capacity. The flue gas is transported into an absorption chiller and heat exchanger consequently, supplying chilled water and domestic hot water. The thermodynamic performance of the trigeneration system was investigated by the help of Aspen plus. The results indicate that the overall energy efficiency and the electrical efficiency of the proposed system in case study are 77.4% and 17.8%, respectively. The introduction of solar energy decreases the consumption of biomass, and the solar thermal energy input fraction is 8.6%. In addition, the primary energy saving ratio and annual total cost saving ratio compared with the separated generation system are 16.7% and 25.9%, respectively.

  2. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O. [Enugu State Univ. of Science and Technology (Nigeria). Faculty of Applied Natural Sciences; Okafor, M.; Ezejiofor, E. [Nnamdi Azikiwe Univ., Awka (Nigeria). Dept. of Applied Microbiology

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  3. Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Qiuhui Yan

    2014-01-01

    Full Text Available The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system.

  4. Introduction of renewable energy sources in the district heating system of Greece

    Directory of Open Access Journals (Sweden)

    Nikolaos Margaritis

    2016-06-01

    Full Text Available The district heating (DH system of Greece, mainly supported from lignite fired stations, is facing lately significant challenges. Stricter emission limits, decreased efficiency due to old age and increased costs are major challenges of the lignite sector and are expected to result in the decommissioning of several lignite-fired units in the coming years. As a result, managers of DH networks are currently investigating alternative scenarios for the substitution of thermal power that it is expected to be lost, through the integration of Renewable Energy Sources (RES into the system. In this paper, the DH systems of Kozani and Ptolemaida are examined regarding possible introduction of RES. The first study examines district heating of Kozani and alternative future options for covering a part of city’s thermal load whereas the second study refers to a biomass CHP plant (ORC technology, 1MWe, 5MWth to be powered from a biomass mixture (wood chips and straw.

  5. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  6. An empirical, integrated forest biomass monitoring system

    Science.gov (United States)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  7. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  8. The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems

    International Nuclear Information System (INIS)

    Holmgren, Kristina M.; Berntsson, Thore S.; Andersson, Eva; Rydberg, Tomas

    2015-01-01

    This study analyses the impact on the GHG (greenhouse gas) emissions of the raw material supply chain, the utilisation of excess heat and CO 2 storage for a bio-SNG (biomass gasification-based synthetic natural gas) system by applying a consequential life cycle assessment approach. The impact of the biomass supply chain is analysed by assessing GHG emissions of locally produced woodchips and pellets with regional or transatlantic origin. Results show that the supply area for the gasification plant can be substantially increased with only modest increases in overall GHG emissions (3–5%) by using regionally produced pellets. The transatlantic pellet chains contribute to significantly higher GHG emissions. Utilising excess heat for power generation or steam delivery for industrial use contributes to lower emissions from the system, whereas delivery of district heating can contribute to either increased or decreased emissions. The production technology of the replaced heat and the carbon intensity of the reference power production were decisive for the benefits of the heat deliveries. Finally, the storage of CO 2 separated from the syngas upgrading and from the flue gases of the gasifier can nearly double the GHG emission reduction potential of the bio-SNG system. - Highlights: • Greenhouse gas emission evaluation of gasification-based bio-SNG system is made. • The impact of biomass supply chains and utilisation of excess heat is in focus. • Locally produced woodchips result in lowest overall greenhouse gas emissions. • Regionally produced pellets have small impact on overall greenhouse gas emissions. • Storing separated CO 2 from the bio-SNG process reduces the GHG impact significantly.

  9. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Zheng, Huixiao; Kaliyan, Nalladurai; Morey, R. Vance

    2013-01-01

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm 3 y −1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  10. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  11. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat.

    Science.gov (United States)

    Sun, Yongqi; Liu, Qianyi; Wang, Hao; Zhang, Zuotai; Wang, Xidong

    2017-01-01

    Disposal of biomass in the agriculture and steel slags in the steel industry provides a significant solution toward sustainability in China. Herein these two sectors were creatively combined as a novel method, i.e., biomass/CO 2 gasification using waste heat from hot slags where the influence of chemical compositions of steel slags, characterized as iron oxide content and basicity, on gasification thermodynamics, was systemically reported for the first time. Both the target gases of CO, H 2 and CH 4 and the polluted gases of NH 3 , NO and NO 2 were considered. It was first found that an increasing iron content and slag basicity continuously improved the CO yield at 600-1000°C and 800-1000°C, respectively; while the effect on polluted gas releases was limited. Moreover, the solid wastes after gasification could be utilized to provide nutrients and improve the soil in the agriculture, starting from which an integrated modern system was proposed herein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Preliminary Study on Rock Bed Heat Storage from Biomass Combustion for Rice Drying

    Science.gov (United States)

    Nelwan, L. O.; Wulandani, D.; Subrata, I. D. M.

    2018-05-01

    One of the main constraints of biomass fuel utilization in a small scale rice drying system is the operating difficulties related to the adjustment of combustion/feeding rate. Use of thermal storage may reduce the problem since combustion operation can be accomplished in a much shorter time and then the use of heat can be regulated by simply adjusting the air flow. An integrated biomass furnace-rock bed thermal storage with a storage volume of 540 L was designed and tested. There were four experiments conducted in this study. Charging was performed within 1-2 hours with a combustion rate of 11.5-15.5 kg/h. In discharging process, the mixing of air passing through the rock bed and ambient air were regulated by valves. Without adjusting the valve during the discharging process, air temperature increased up to 80°C, which is not suitable for rice batch drying process. Charging with sufficiently high combustion rate (14 kg/h) within 1 hour continued by adjusting the valve during discharging process below 60°C increased the discharge-charge time ratio (DCTR) up to 5.33 at average air temperature of 49°C and ambient temperature of 33°C.The efficiency of heat discharging was ranged from 34.5 to 45.8%. From the simulation, as much as 156.8-268.8 kg of rice was able to be dried by the discharging conditions.

  13. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R P [National Renewable Energy Laboratory, Golden, CO (United States)

    1997-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  14. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  15. The biomass energy market in Finland

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001, it was estimated that the Finnish biomass market was in excess of 235 million dollars. The development of renewable energy, with special emphasis on biomass, was supported by the development of an energy strategy by the government of Finland. The installed capacity of biomass in Finland in 2002 was 1400 megawatt electrical (MWe). Extensive use of combined heat and power (CHP) is made in Finland, and district heating (DH) systems using biomass are gaining in popularity. Wood-based biomass technologies, retrofits to fluidized bed combustion, and wood procurement technologies were identified as the best opportunities for Canadian companies interested in operating in Finland. A country with high standards, Finland seems to look favorably on new innovative solutions. Joint ventures with Finnish companies might be an excellent way for Canadian companies to gain a foothold in Finland and expand into the European Union, the Nordic countries, the Baltic, Russia and the Central and Eastern European markets. It was further noted that Finland is one of the leading exporters of biomass technology in the world. The document provided quick facts, examined opportunities, and looked at key players. 19 refs., 4 tabs

  16. Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems

    International Nuclear Information System (INIS)

    Colpan, C.O.; Hamdullahpur, F.; Dincer, I.; Yoo, Y.

    2009-01-01

    In this study, an integrated SOFC and biomass gasification system is modeled. For this purpose, energy and exergy analyses are applied to the control volumes enclosing the components of the system. However, SOFC is modeled using a transient heat transfer model developed by the authors in a previous study. Effect of gasification agent, i.e. air, enriched oxygen and steam, on the performance of the overall system is studied. The results show that steam gasification case yields the highest electrical efficiency, power-to-heat ratio and exergetic efficiency, but the lowest fuel utilization efficiency. For this case, it is found that electrical, fuel utilization and exergetic efficiencies are 41.8%, 50.8% and 39.1%, respectively, and the power-to-heat ratio is 4.649. (author)

  17. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Mehmet; Kirtay, Elif; Balat, Havva

    2009-01-01

    Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air-steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.

  18. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  19. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    Chutichai, Bhawasut; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2013-01-01

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  20. Independent System Operators and Biomass Power

    International Nuclear Information System (INIS)

    Porter, Kevin L.

    1999-01-01

    Since the Federal Energy Regulatory Commission issued its landmark open access transmission rule in 1996, the idea of creating and establishing independent system operators (ISOs) has gained momentum. ISOs may help combine individual utility transmission systems into more regional transmission networks, which ultimately will allow biomass companies to transmit power over longer distances while paying a single transmission rate. To the extent that ISOs are combined or operated with power exchanges, however, biomass companies will likely face even more competitive market pressures. Few operators have experience with ISOs and power exchanges, but preliminary results show that short-term electricity market prices are probably too low for most biomass companies to compete against. Without policy measures, biomass companies may have to pursue strategic opportunities with short-term, spot-market sales; direct bilateral sales to customers; alternative power exchanges; and perhaps a ''green'' power market and sales to ancillary service markets. In addition, prices will likely be more volatile in a restructured market so biomass generators should be selling during those times

  1. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin-Na; Wang, Bing [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Li, Gang [Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, 325006 Wenzhou, Zhejiang Province (China); Wang, Sheng [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Crowley, David E., E-mail: crowley@ucr.edu [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Zhao, Yu-Hua, E-mail: yhzhao225@zju.edu.cn [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The maximum amount of Acid Black 172 sorption was about 2.98 mmol/g biomass. Black-Right-Pointing-Pointer Amine groups played a major role in the biosorption of Acid Black 172. Black-Right-Pointing-Pointer The reasons of increased dye sorption by heat-treated biomass were proposed. - Abstract: The ability of Pseudomonas sp. strain DY1 to adsorb Acid Black 172 was studied to determine the kinetics and mechanisms involved in biosorption of the dye. Kinetic data for adsorption fit a pseudo-second-order model. Increased initial dye concentration could significantly enhance the amount of dye adsorbed by heat-treated biomass in which the maximum amount of dye adsorbed was as high as 2.98 mmol/g biomass, whereas it had no significant influence on dye sorption by live biomass. As treated temperature increased, the biomass showed gradual increase of dye sorption ability. Experiments using potentiometric titration and Fourier transform infrared spectroscopy (FTIR) indicated that amine groups (NH{sub 2}) played a prominent role in biosorption of Acid Black 172. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis indicated that heat treatment of the biomass increased the permeability of the cell walls and denatured the intracellular proteins. The results of biosorption experiments by different cell components confirmed that intracellular proteins contributed to the increased biosorption of Acid Black 172 by heat-treated biomass. The data suggest that biomass produced by this strain may have application for removal of metal-complex dyes from wastewater streams generated from the dye products industry.

  2. Energy from Biomass: technology assessment of small-medium scale biomass conversion systems

    OpenAIRE

    Cutz Ijchajchal, Luis Leonardo

    2016-01-01

    Mención Internacional en el título de doctor Bioenergy is a key resource to addressing challenges such as climate change (anthropogenic CO₂ emissions), pollution (suspended particles), energy security and human well-being. Currently, most of the biomass produced worldwide is consumed for cooking and space heating which has raised concerns among governments and policy-makers, especially due to threats to human health. The present thesis focuses on studying the technical and economic feasibi...

  3. Gasification technologies for heat and power from biomass

    NARCIS (Netherlands)

    Beenackers, AACM; Maniatis, K; Kaltschmitt, M; Bridgwater, AV

    1997-01-01

    A critical review is presented of biomass gasifier systems presently commercially available or under development. Advantages and possible problem areas are discussed in relation to particular applications. Both large and small scale technologies are reviewed. Catalysed by the EC JOULE and AIR

  4. Swiss Biomass Programme - Overview report on the 2007 research programme; Programm Biomasse: Ueberblicksbericht zum Forschungsprogramm 2007

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D; Guggisberg, B

    2008-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) presents an overview of the results obtained in 2007 within the framework of the Swiss Biomass research programme. The potential for biomass use in Switzerland is reviewed and the emphases of the national programme are discussed. The results obtained are noted for the following areas: process optimisation, including - amongst others - particle emissions and control aspects as well as combined wood-pellets and solar heating systems. Projects involving non-wood biomass are reported on, including biomass digesters and various biogas systems. Further reports deal with the analysis and optimisation of material flows, organic pollutants and methane losses. New conversion technologies are reported on. Further reports deal with basic strategies and concepts in the area of biomass usage. National and international co-operation is also discussed. A selection of innovative pilot and demonstration projects is also presented and research and development projects are listed.

  5. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  6. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  7. Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy

    International Nuclear Information System (INIS)

    Chinese, Damiana; Meneghetti, Antonella

    2005-01-01

    A system optimisation approach is proposed to design biomass-based district-heating networks in the context of industrial districts, which are one of the main successful productive aspects of Italian industry. Two different perspectives are taken into account, that of utilities and of policy makers, leading to two optimisation models to be further integrated. A mixed integer linear-programming model is developed for a utility company's profit maximisation, while a linear-programming model aims at minimising the balance of greenhouse-gas emissions related to the proposed energy system and the avoided emissions due to the substitution of current fossil-fuel boilers with district-heating connections. To systematically compare their results, a sensitivity analysis is performed with respect to network size in order to identify how the optimal system configuration, in terms of selected boilers to be connected to a multiple energy-source network, may vary in the two cases and to detect possible optimal sizes. Then a factorial analysis is adopted to rank desirable client types under the two perspectives and identify proper marketing strategies. The proposed optimisation approach was applied to the design of a new district-heating network in the chair-manufacturing district of North-Eastern Italy. (Author)

  8. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  9. Study on new biomass energy systems

    Science.gov (United States)

    1992-03-01

    A biomass energy total system is proposed, and its feasibility is studied. It is the system in which liquid fuel is produced from eucalyptuses planted in the desert area in Australia for production of biomass resource. Eucalyptus tree planting aims at a growth amount of 40 cu m/ha. per year and a practical application area of 45,000ha. CO2 fixation in the biomass plantation becomes 540,000 tons at a 12 ton/ha. rate. Assuming that 0.55 ton of liquid fuel is produced from 1 ton of biomass, a petrochemical plant having a production of 2.5 million bbl/year per unit (equivalent to the fuel used in the 100,000kW class power plant) is needed. Moreover, survey is made on practicality of diesel substitution fuel by esterification of palm oil, and a marked effect of reduction in soot/smoke and particulates in exhaust gas is confirmed. The biomass conversion process technology and the technology for afforestation at the arid land and irrigation are important as future subjects, and the technology development using a bench plant and a pilot plant is needed.

  10. Development of a catalytic system for gasification of wet biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350{degrees}C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversions of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  11. The Potential for Biomass District Energy Production in Port Graham, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating

  12. Decentralized biomass combustion: State of the art and future development

    NARCIS (Netherlands)

    Obernberger, I.

    1998-01-01

    The present amount of biomass used for heat, and to a smaller extent electricity production, is already considerable in several European countries but the potential unused in Europe is even higher. Combustion is the most mature conversion technology utilized for biomass. The systems addressed in

  13. Surplus biomass through energy efficient kilns

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2011-01-01

    Highlights: → The magnitude of the national heat demand for drying lumber in kilns is established. → Each part of the total heat consumption is divided and shown between the main drying conditions. → The potential to increase the energy efficiency in kilns with available techniques is presented. → The market demand for the biomass, available with increase kiln energy efficiency, is reviled. -- Abstract: The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO 2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4 Mm 3 , 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills' national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills' own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9 TW h/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9 TW h. This additional amount of energy corresponds to the market's desire for larger energy supply.

  14. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy

    International Nuclear Information System (INIS)

    Pantaleo, A.M.; Camporeale, S.M.; Shah, N.

    2013-01-01

    Highlights: • A thermo-economic analysis of natural gas/biomass fired microturbine is proposed. • Energy efficiency, capex, opex and electricity revenues trade-offs are assessed. • The optimal biomass energy input is 70% of total CHP consumption. • Industrial/tertiary heat demand and baseload/heat driven operation is assessed. • The main barriers of small scale CHP systems in Italy are overviewed. - Abstract: This paper proposes a thermo-economic assessment of small scale (100 kWe) combined heat and power (CHP) plants fired by natural gas and solid biomass. The focus is on dual fuel gas turbine cycle, where compressed air is heated in a high temperature heat exchanger (HTHE) using the hot gases produced in a biomass furnace, before entering the gas combustion chamber. The hot air expands in the turbine and then feeds the internal pre-heater recuperator, Various biomass/natural gas energy input ratios are modeled, ranging from 100% natural gas to 100% biomass. The research assesses the trade-offs between: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate and (ii) higher primary energy savings and revenues from bio-electricity feed-in tariff in case of high biomass input rate. The influence of fuel mix and biomass furnace temperature on energy conversion efficiencies, primary energy savings and profitability of investments is assessed. The scenarios of industrial vs. tertiary heat demand and baseload vs. heat driven plant operation are also compared. On the basis of the incentives available in Italy for biomass electricity and for high efficiency cogeneration (HEC), the maximum investment profitability is achieved for 70% input biomass percentage. The main barriers of these embedded cogeneration systems in Italy are also discussed

  15. Technical and economic data biomass-based energy conversion systems for the production of gaseous and/or liquid energy carriers

    International Nuclear Information System (INIS)

    2000-02-01

    The objectives of this study are: (1) to give an indication of the expected development of the currently mainly fossil fuel based Dutch energy supply system to a future CO 2 -emission 'free' energy supply system, and (2) to present main technological, economic, and environmental characteristics of three promising renewable energy based technologies for the production of gaseous and/or liquid secondary energy carriers and/or electricity and/or heat, viz.: (a) biomass hydrogasification for SNG (synthetic natural gas) production; (b) trigeneration of methanol and CHP (combined heat and power) from biomass by integrating a 'once-through' LPMEOH (liquid phase methanol) process into a 'conventional BIG/CC (Biomass-Integrated-Gasifier/Combined Cycle) system; and (c) trigeneration of Fischer-Tropsch derived transportation fuels and CHP from biomass by integrating a 'once-through' FT-process (Fischer-Tropsch) into a 'conventional' BIG/CC-system. Biomass conversion systems, for the production of CHP, transportation fuels, and as biofeedstock for the petrochemical industry, will play a substantial role in meeting the future Dutch renewable energy policy goals. In case fossil fuel prices remain low, additional policies are needed to reach these goals. Biomass will also play a significant role in reaching significant CO 2 emission reduction in Western Europe. In which sector the limited amount of biomass available/contractable can be applied best is still unclear, and therefore needs further research. By biomass hydrogasification it is possible to produce SNG with more or less the same composition as Groningen natural gas. In case relatively cheap hydrogen-rich waste gas streams are used in the short-term, the SNG production costs will he in the same order of magnitude as the market price for Dutch natural gas for small consumers (fl 0.6/Nm 3 ). The calculated minimum production costs for the 'green' fuels (methanol: 15 Euroct/l or 9 Euro/GJ, and FT-fuels: 27 Euroct/l or 9 Euro

  16. A tree biomass and carbon estimation system

    Science.gov (United States)

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  17. Energetic and economical comparison for biomass fuel

    International Nuclear Information System (INIS)

    Galins, A.; Grundulis, A.; Zihmane, K.

    2003-01-01

    The common agricultural biomass, such as wheat straw, rape straw, wheat small corn, wheat forage, rape oil cakes and other, we can use as fuel for heat production. The biomass application for burning depends on economical situation on agriculture and fuel market. Energetic and economical parameters of agricultural biomass are estimated and compared to wooden grain. As parameters for comparison used the biomass heat value Q (MJ/kg), specific cost per 1 kWh heat production C 0 (Ls/kWh) and the fuel consumption per 1 kWh heat production M 0 (kg/kWh). The rape oil cakes have best heat value (20.82 MJ/kg), but cheapest heat energy we can get from rape straw (0.0046 Ls/kWh). Expenses of heat production for forge wheat corn (0.011 Ls/kWh) are alike to wooden chip (0.0103 Ls/kWh) and wooden grain (0.0122 Ls/kWh) (authors)

  18. Biomass market and trade in Norway: Status and future prospects

    International Nuclear Information System (INIS)

    Troemborg, Erik; Bolkesjoe, Torjus Folsland; Solberg, Birger

    2008-01-01

    This paper gives an overview of bioenergy use, prices, markets and markets prospects in Norway. The current energy production based on biomass in Norway is about 50 pJ or 10% of the stationary energy consumption. About one-half is produced and used in forest industries. The main share of bioenergy used by households consists of firewood in stoves. The use of refined, solid biofuels in heat production is hampered by low coverage of water-borne heating systems and historically low end-user prices of electricity. Harvest levels in Norwegian forests are much below annual growth, implying that forest biomass resources steadily accumulate. Decreasing wood prices combined with rising prices of oil and electricity in recent year have improved competitiveness of solid biofuels in the heat market. Projections of future bioenergy use in Norway using a partial equilibrium forest sector model suggest that bioenergy use will increase in some market segments with the current price levels of electricity and oil. However, quite minor improvements of bioenergy competitiveness or increased energy prices may release substantially higher bioenergy use. A net increase in bioenergy use of 5 TWh (18 PJ) by 2010 is realistic, but requires public awareness of the opportunities in bioenergy technologies, as well as significant economic incentives. Wood stoves and replacement of oil-boilers in central heating systems show highest competitiveness, whereas district heating systems need higher energy prices or more subsidies to be competitive. Biomass for combined heat and power projects or domestically produced liquid biofuels seems to have limited competitiveness in the short term. On the raw material side, wood residues, and roundwood from pine and non-coniferous species represent the main potential, whereas spruce continues to be consumed by the forest industries. According to the model projections, imported biomass will take a significant share of the possible increase of wood consumption

  19. A comparison between two methods of generating power, heat and refrigeration via biomass based Solid Oxide Fuel Cell: A thermodynamic and environmental analysis

    International Nuclear Information System (INIS)

    Mortazaei, M.; Rahimi, M.

    2016-01-01

    Highlights: • Two novel trigeneration systems based biomass and Solid Oxide Fuel Cell are compared. • A complete environmental analysis for three different cases is conducted. • Digester based system has 14.56% more exergetic efficiency than gasifier based one. • Gasifier based system has 14.31% more energetic efficiency than Digester based one. • Gasifier, Digester and air heat exchanger have the highest exergy destruction. - Abstract: Utilization of biomass energy is of prevalence focus these days. Using these fuels to run the fuel cells is of primary interest. In this regard, two new trigeneration systems (producing power and heating alongside with cooling) based on solid oxide fuel cell fed by either the syngas or biogas are proposed. The performance of systems is analyzed and compared with each other from the thermodynamic viewpoint. Applying the conservation of mass and energy as well as the exergy for each system component and using the engineering equation solver, the system’s performance are modeled. Through a parametric study, the effects of some key variables such as the current density and the fuel utilization factor in the systems’ performance are investigated. In addition, considering the system as a combination of three subsystems, that is, the power generation system, heat and power generation system and trigeneration system, an environmental impact assessment in terms of Carbon dioxide emission is carried out for both digester based Solid Oxide Fuel Cell and gasifier based one. It is observed that using biogas from digester leads to more exergetic (which is 14.56%) and less energetic efficiency (Which is 14.31%), with a Carbon dioxide emission of 17.87 ton/MW h for the tri-generation system. The value of this parameter is 21.32 ton/MW h when gasifier is used as the supplier of fuel for solid oxide fuel cell.

  20. A review of large-scale solar heating systems in Europe

    International Nuclear Information System (INIS)

    Fisch, M.N.; Guigas, M.; Dalenback, J.O.

    1998-01-01

    Large-scale solar applications benefit from the effect of scale. Compared to small solar domestic hot water (DHW) systems for single-family houses, the solar heat cost can be cut at least in third. The most interesting projects for replacing fossil fuels and the reduction of CO 2 -emissions are solar systems with seasonal storage in combination with gas or biomass boilers. In the framework of the EU-APAS project Large-scale Solar Heating Systems, thirteen existing plants in six European countries have been evaluated. lie yearly solar gains of the systems are between 300 and 550 kWh per m 2 collector area. The investment cost of solar plants with short-term storage varies from 300 up to 600 ECU per m 2 . Systems with seasonal storage show investment costs twice as high. Results of studies concerning the market potential for solar heating plants, taking new collector concepts and industrial production into account, are presented. Site specific studies and predesign of large-scale solar heating plants in six European countries for housing developments show a 50% cost reduction compared to existing projects. The cost-benefit-ratio for the planned systems with long-term storage is between 0.7 and 1.5 ECU per kWh per year. (author)

  1. Biomass boiler still best choice

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    Full text: The City of Mount Gambier upgraded its boiler in September after analysis showed that biomass was still the optimal energy option. The Mount Gambier Aquatic Centre was built by the local city council in the 1980s as an outdoor pool facility for the public. The complex has three pools — an Olympic-sized, toddler and a learner pool — for a total volume of 1.38ML (including balance tanks). The large pool is heated to 27-28°C, the smaller one 30-32°C. From the very beginning, the pool water was heated by a biomass boiler, and via two heat exchangers whose combined capacity is 520 kW. The original biomass boiler ran on fresh sawdust from a local timber mill. After thirty years of dedicated service the original boiler had become unreliable and difficult to operate. Replacement options were investigated and included a straight gas boiler, a combined solar hot water and gas option, and biomass boilers. The boiler only produces heat, not electricity. All options were subjected to a triple bottom line assessment, which included potential capital costs, operating costs, community and environmental benefits and costs. The project was also assessed using a tool developed by Mount Gambier City Council that considers the holistic benefits — the CHAT Tool, which stands for Comprehensive Holistic Assessment Tool. “Basically it is a survey that covers environmental, social, economic and governance factors,” the council's environmental sustainability officer, Aaron Izzard told WME. In relation to environmental considerations, the kinds of questions explored by the CHAT Tool included: Sustainable use of resources — objective is to reduce council's dependence on non-renewable resources; Greenhouse emissions — objective is to reduce council's contribution of GHG into the atmosphere; Air quality — objective is to improve local air quality. The conclusion of these analyses was that while a biomass boiler would have a higher capital cost than a straight gas

  2. Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion

    International Nuclear Information System (INIS)

    Eriksson, Ola; Finnveden, Goeran; Ekvall, Tomas; Bjoerklund, Anna

    2007-01-01

    The aim of this consequential life cycle assessment (LCA) is to compare district heating based on waste incineration with combustion of biomass or natural gas. The study comprises two options for energy recovery (combined heat and power (CHP) or heat only), two alternatives for external, marginal electricity generation (fossil lean or intense), and two alternatives for the alternative waste management (landfill disposal or material recovery). A secondary objective was to test a combination of dynamic energy system modelling and LCA by combining the concept of complex marginal electricity production in a static, environmental systems analysis. Furthermore, we wanted to increase the methodological knowledge about how waste can be environmentally compared to other fuels in district-heat production. The results indicate that combustion of biofuel in a CHP is environmentally favourable and robust with respect to the avoided type of electricity and waste management. Waste incineration is often (but not always) the preferable choice when incineration substitutes landfill disposal of waste. It is however, never the best choice (and often the worst) when incineration substitutes recycling. A natural gas fired CHP is an alternative of interest if marginal electricity has a high fossil content. However, if the marginal electricity is mainly based on non-fossil sources, natural gas is in general worse than biofuels

  3. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  4. The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant

    Directory of Open Access Journals (Sweden)

    Claudio Fagarazzi

    2014-09-01

    Full Text Available The purpose of this study was to examine two biomass district heating plants operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and financial feasibility and of their environmental benefits. The former biomass district heating plant supplies only public users (Comunità Montana della Lunigiana, CML: administrative body that coordinates the municipalities located in mountain areas, the latter supplies both public and private users (Municipality of San Romano in Garfagnana. Ex-post investment analysis was performed to check both the consistency of results with the forecasts made in the stage of the project design and on the factors, which may have reduced or jeopardized the estimated economic performance of the investment (ex-ante assessment. The results of the study point out appreciable results only in the case of biomass district heating plants involving private users and fuelled by biomasses sourced from third parties. In this case, the factors that most influence ex-post results include the conditions of the woody biomass local market (market prices, the policies of energy selling prices to private users and the temporal dynamics of private users’ connection. To ensure the consistency of ex-post economic outcome with the expected results it is thus important to: (i have good knowledge of the woody local market; (ii define energy selling prices that should be cheap for private users but consistent with energy production costs and (iii constrain private users beforehand to prevent errors in the plant design and in the preliminary estimate of return on investment. Moreover, the results obtained during the monitoring activities could help in providing information on the effectiveness of the supporting measures adopted and also to orient future choices of policy makers and particularly designers, to identify the most efficient configuration of district heating organization for improving energy and

  5. Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock.

    Science.gov (United States)

    Senapati, P K; Behera, S

    2012-08-01

    Based on an entrained flow concept, a prototype atmospheric gasification system has been designed and developed in the laboratory for gasification of powdery biomass feedstock such as rice husks, coconut coir dust, saw dust etc. The reactor was developed by adopting L/D (height to diameter) ratio of 10, residence time of about 2s and a turn down ratio (TDR) of 1.5. The experimental investigation was carried out using coconut coir dust as biomass feedstock with a mean operating feed rate of 40 kg/h The effects of equivalence ratio in the range of 0.21-0.3, steam feed at a fixed flow rate of 12 kg/h, preheat on reactor temperature, product gas yield and tar content were investigated. The gasifier could able to attain high temperatures in the range of 976-1100 °C with gas lower heating value (LHV) and peak cold gas efficiency (CGE) of 7.86 MJ/Nm3 and 87.6% respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Gadsbøll, Rasmus; Thomsen, Jesper

    2016-01-01

    This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments......Jmol-1. The accuracy of the derived global kinetics was supported by comparing predictions to experimental results from a 15kW furnace. The work emphasizes the importance of characterizing the temperature history of the biomass particles when deriving pyrolysis kinetics. The present results indicate...

  7. A multicriteria approach to evaluate district heating system options

    Energy Technology Data Exchange (ETDEWEB)

    Ghafghazi, S.; Sowlati, T. [Department of Wood Science, University of British Columbia, 2931-2424 Main Mall, Vancouver, BC (Canada); Sokhansanj, S. [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC (Canada); Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Melin, S. [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC (Canada); Delta Research Corporation, Delta, BC (Canada)

    2010-04-15

    District energy systems, in which renewable energy sources may be utilized, are centralized systems to provide energy to residential and commercial buildings. The aim of this paper is to evaluate and rank energy sources available for a case of district heating system in Vancouver, Canada, based on multiple criteria and the view points of different stakeholders, and to show how communication would affect the ranking of alternatives. The available energy sources are natural gas, biomass (wood pellets), sewer heat, and geothermal heat. The evaluation criteria include GHG emissions, particulate matter emissions, maturity of technology, traffic load, and local source. In order to rank the energy options the PROMETHEE method is used. In this paper, two different scenarios were developed to indicate how the communication between the stakeholders would affect their preferences about criteria weights and would change the ranking of alternatives. The result of this study shows that without communication the best energy source for the considered district energy system is different for different stakeholders. While, addressing concerns through efficient communication would result in a general consensus. In this case, wood pellet is the best energy alternative for all the stakeholders. (author)

  8. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  9. Different heating systems for single family house: Energy and economic analysis

    Directory of Open Access Journals (Sweden)

    Turanjanin Valentina M.

    2016-01-01

    Full Text Available The existing building stock energy consumption accounts for about 38% of final energy consumption in Republic of Serbia. 70% of that energy is consumed by residential sector, mostly for space heating. This research is addressed to the single family house building placed in the Belgrade city. The house has ground and first floor with total heating area of 130 m2 and pellet as space heating source. The aim of this paper is to evaluate energy and economic analysis for different heating systems. Several homeheating were compared: Option 1 (biomass combustion boiler using pellet as a fuel, Option 2 (gas combustion boiler and Option 3 (heat pump. The building performance was evaluated by TRNSYS 17 simulation code. Results show estimated savings using renewable energy sources. [Projekat Ministarstva nauke Republike Srbije, br. III42008

  10. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  11. Biomass gasification cogeneration – A review of state of the art technology and near future perspectives

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Thomsen, Tobias; Henriksen, Ulrik Birk

    2013-01-01

    Biomass is a renewable resource from which a broad variety of commodities can be produced. However, the resource is scarce and must be used with care to avoid depleting future stock possibilities. Flexibility and efficiency in production are key characteristics for biomass conversion technologies...... in future energy systems. Thermal gasification of biomass is proved throughout this article to be both highly flexible and efficient if used optimally. Cogeneration processes with production of heat-and-power, heat-power-and-fuel or heat-power-and-fertilizer are described and compared. The following...

  12. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  13. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  14. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  15. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    International Nuclear Information System (INIS)

    Rentizelas, Athanasios A.; Tolis, Athanasios I.; Tatsiopoulos, Ilias P.

    2014-01-01

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  16. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  17. Use of farm waste biomass in the process of gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Piechocki, J. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    The process of gasification of waste biomass from farm production was examined along with the energy balance of the process. A newly developed biomass gasification technology that uses manure from poultry farms as the input material was shown to meet all environmental requirements. The gas was purified in a membrane process to increase its calorific value. The gas was then used in an internal combustion engine powering a current generating system to produce electricity and heat in a combined heat and power system (CHP).

  18. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  19. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  20. Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant

    Directory of Open Access Journals (Sweden)

    Amirabedin Ehsan

    2014-12-01

    Full Text Available Trigeneration or Combined Cooling, Heat and Power (CCHP which is based upon combined heat and power (CHP systems coupled to an absorption chiller can be recognized as one of the best technologies recovering biomass effectively to heat, cooling and power. Co-gasification of the lignite and biomass can provide the possibility for safe and effective disposal of different waste types as well as for sustainable and environmentally-friendly production of energy. In this article, a trigeneration system based on an IC engine and gasifier reactor has been simulated and realized using Thermoflex simulation software. Performance results suggest that utilization of sustainably-grown biomass in a Tri-Generation Power Plant (TGPP can be a possibility for providing cooling, heat and power demands with local renewable sources and reducing the environmental impacts of the energy conversion systems.

  1. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    Science.gov (United States)

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  2. LCA of domestic and centralized biomass combustion: The case of Lombardy (Italy)

    International Nuclear Information System (INIS)

    Caserini, S.; Livio, S.; Giugliano, M.; Grosso, M.; Rigamonti, L.

    2010-01-01

    This paper analyzes and compares the environmental impacts of biomass combustion in small appliances such as domestic open fireplaces and stoves, and in two types of centralized combined heat and power plants, feeding district heating networks. The analysis is carried out following a Life Cycle Assessment (LCA) approach. The expected savings of GHG (greenhouse gases) emissions due to the substitution of fossil fuels with biomass are quantified, as well as emissions of toxic pollutants and substances responsible for acidification and ozone formation. The LCA results show net savings of GHG emissions when using biomass instead of conventional fuels, varying from 0.08 to 1.08 t of CO 2 eq. per t of dry biomass in the different scenarios. Avoided GHG emissions thanks to biomass combustion in Lombardy are 1.32 Mt year -1 (1.5% of total regional GHG emissions). For the other impact categories, the use of biomass in district heating systems can again cause a consistent reduction of impacts, whereas biomass combustion in residential devices shows higher impacts than fossil fuels with a particular concern for PAH, VOC and particulate matter emissions. For example, in Lombardy, PM10 emissions from domestic devices are about 8100 t year -1 , corresponding to almost one third of the total particulate emissions in 2005. (author)

  3. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  4. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    Science.gov (United States)

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  6. AUTONOMOUS HEAT SUPPLY SYSTEM OF CONSUMERS WITH CONSIDERABLE DIFFERENT THERMAL INERTIA

    Directory of Open Access Journals (Sweden)

    Berzan V.P.

    2012-04-01

    Full Text Available There are examined problems occurring at the adoption of the decentralized heat energy supply system of the group of objects, which contains buildings with thermal inertia differed in thousands of times one from the other. It is studied the influence of water volume of hot-water boiler on greenhouse dynamics. It is conducted the comparison between the use ob biomass and natural gas boilers for such as objects.

  7. Quinault Indian Nation Comprehensive Biomass Strategic Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jesus [American Community Enrichment, Elma, WA (United States)

    2015-03-31

    The overall purposes of the Quinault Indian Nation’s Comprehensive Biomass Strategic Planning Project were to: (1) Identify and confirm community and tribal energy needs; (2) Conducting an inventory of sustainable biomass feedstock availability; (3) Development of a biomass energy vision statement with goals and objectives; (4) Identification and assessment of biomass options for both demand-side and supply side that are viable to the Quinault Indian Nation (QIN); and (5) Developing a long-term biomass strategy consistent with the long-term overall energy goals of the QIN. This Comprehensive Biomass Strategic Planning Project is consistent with the QIN’s prior two-year DOE Renewable Energy Study from 2004 through 2006. That study revealed that the most viable options to the QIN’s renewable energy options were biomass and energy efficiency best practices. QIN's Biomass Strategic Planning Project is focused on using forest slash in chipped form as feedstock for fuel pellet manufacturing in support of a tribal biomass heating facility. This biomass heating facility has been engineered and designed to heat existing tribal facilities as well as tribal facilities currently being planned including a new K-12 School.

  8. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related...... to thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... of these activities has been fruitful. The two- stage gasifier was developed for gasification aiming at decentralised cogeneration of heat and power. The development ranged from lap-top scale equipment to a fully automatic plant with more than 2000 hours of operation. Compared to most other gasification processes...

  9. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  10. Analysing biomass torrefaction supply chain costs.

    Science.gov (United States)

    Svanberg, Martin; Olofsson, Ingemar; Flodén, Jonas; Nordin, Anders

    2013-08-01

    The objective of the present work was to develop a techno-economic system model to evaluate how logistics and production parameters affect the torrefaction supply chain costs under Swedish conditions. The model consists of four sub-models: (1) supply system, (2) a complete energy and mass balance of drying, torrefaction and densification, (3) investment and operating costs of a green field, stand-alone torrefaction pellet plant, and (4) distribution system to the gate of an end user. The results show that the torrefaction supply chain reaps significant economies of scale up to a plant size of about 150-200 kiloton dry substance per year (ktonDS/year), for which the total supply chain costs accounts to 31.8 euro per megawatt hour based on lower heating value (€/MWhLHV). Important parameters affecting total cost are amount of available biomass, biomass premium, logistics equipment, biomass moisture content, drying technology, torrefaction mass yield and torrefaction plant capital expenditures (CAPEX). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Combining solid biomass combustion and stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemers, W.; Senkel, N. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany)], e-mail: werner.siemers@cutec.de

    2012-11-01

    Decentralised electricity production in combination with and based on biomass still finds some difficulties in real applications. One concept favoured in a recent project is the connection of a wood chip furmace with a Stirling engine. Because the direct exposure of the Stirling head causes numerous problems, the solution is sought in designing an indirect heat transfer system. The main challenge is the temperature level, which should be reached for high electrical efficiencies. Temperatures above 1000 deg C at the biomass combustion side are needed for an efficient heat transfer at some 850 deg C at the Stirling engine in theory. Measurements on both installations have been conducted and analyzed. After this, the design phase is started. However, no final choice on the design has been taken.

  12. An investigation into heat recovery from the surface of a cyclone dust collector attached to a downdraft biomass gasifier

    International Nuclear Information System (INIS)

    Nwokolo, Nwabunwanne; Mamphweli, Sampson; Makaka, Golden

    2016-01-01

    Highlights: • At a temperature of 450 °C–500 °C, hot syngas is regarded as a good heat carrier. • A significant quantity of energy (665893.07 kcal) is lost via the surface of the cyclone. • The surface temperature 150 °C–220 °C was within the low waste heat recovery temperature. - Abstract: The gas leaving the reactor of a downdraft biomass gasifier contains large quantities of heat energy; this is due to the fact that the gas passes through a hot bed of charcoal before leaving the reactor. This heat is normally wasted in the gas scrubber/cooler that cools it from between 400 °C–500 °C to ambient temperature (around 25 °C). The waste heat stream under consideration is the raw syngas that emanates from a gasification process in a downdraft gasifier situated at Melani Village, Eastern Cape. This loss of heat is undesirable as it impacts on the thermal efficiency of the system. This study investigates the feasibility of heat recovery from the surface of the cyclone dust collector prior to entering the gas scrubber. It was shown that there was a downward decrease in temperature along the length of the cyclone. It is found that the total quantity of heat contained in the gas was 665893.07 kcal, which could indicate the viability of recovering heat from the cyclone.

  13. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  14. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  15. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  16. A fluidized bed furnace fired with biomass waste to supply heat for a spray dryer in a plant producing floortiles

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Andre, R.; Mendes, J.; Monteiro, A.; Cabrita, I. [Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa (Portugal)

    1993-12-31

    This project has been implemented at a factory producing floortiles for domestic use. The project consists of a fluidized bed combustion system burning coal or wood or a mixture of both to produce hot combustion gases to provide heat for spray drying process. The system was designed by INETI for a maximum output of 8 MW thermal energy and all the engineering calculations were carried out to dimension the furnace to provide this amount of heat. Shallow bed concept was used for complete burning of the biomass particles which contained volatiles up to 75% by weight. The sand bed was used as a flame stabilizer for the combustion of volatiles. The combustion of volatiles in the freeboard was mainly controlled by mixing ashes and other impurities. The combustion temperature had to be maintained in the range 700--800{degrees}C to achieve combustion efficiencies of 85% or more. The combustion efficiency (1) did not increase substantially above 90% of excess air although levels of up to 120% were used during combustion and (2) was found to increase through air staging in the order of 20 to 25%, by simply adding 45 to 55% of the air required to the freeboard zone. No SO{sub 2} was observed in flue gases when burning only biomass but there was some NO{sub x} formed and the level of conversion of fuel-N to NO{sub x} was found to be about 25--30%.

  17. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  18. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  19. Economic sustainability of a biomass energy project located at a dairy in California, USA

    International Nuclear Information System (INIS)

    Camarillo, Mary Kay; Stringfellow, William T.; Jue, Michael B.; Hanlon, Jeremy S.

    2012-01-01

    Previous experience has demonstrated the tenuous nature of biomass energy projects located at livestock facilities in the U.S. In response, the economic sustainability of a 710 kW combined heat and power biomass energy system located on a dairy farm in California was evaluated. This biomass energy facility is unique in that a complete-mix anaerobic digester was used for treatment of manure collected in a flush-water system, co-digestates were used as additional digester feedstocks (whey, waste feed, and plant biomass), and the power plant is operating under strict regulatory requirements for stack gas emissions. Electricity was produced and sold wholesale, and cost savings resulted from the use of waste heat to offset propane demand. The impact of various operational factors was considered in the economic analysis, indicating that the system is economically viable as constructed but could benefit from introduction of additional substrates to increase methane and electricity production, additional utilization of waste heat, sale of digested solids, and possibly pursuing greenhouse gas credits. Use of technology for nitrogen oxide (NO x ) removal had a minimal effect on economic sustainability. - Highlights: ► We evaluated the economic sustainability of a dairy biomass energy project. ► The project is economically sustainable as currently operated. ► The simple payback period could be reduced if the system is operated near capacity. ► Co-digestion of off-site waste streams is recommended to improve profitability.

  20. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  1. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  2. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  3. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    2012-01-01

    In this study, energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle (ORC) are presented. Four cases are considered for analysis: electrical-power, cooling-cogeneration, heating-cogeneration and trigeneration cases. The results obtained reveal that the best performance of the trigeneration system considered can be obtained with the lowest ORC evaporator pinch temperature considered, T pp = 20 K, and the lowest ORC minimum temperature, T 9 = 345 K. In addition, this study reveals that there is a significant improvement when trigeneration is used as compared to only electrical power production. This study demonstrates that the fuel utilization efficiency increases, in average, from 12% for electrical power to 88% for trigeneration. Moreover, the maximum exergy efficiency of the ORC is 13% and, when trigeneration is used, it increases to 28%. Furthermore, this study reveals that the electrical to cooling ratio can be controlled through changing the ORC evaporator pinch point temperature and/or the pump inlet temperature. In addition, the study reveals that the biomass burner and the ORC evaporator are the main two sources of exergy destruction. The biomass burner contributes to 55% of the total destructed exergy whereas the ORC evaporator contributes to 38% of the total destructed exergy. -- Highlights: ► The best performance can be obtained with the lowest ORC evaporator pinch temperature and the lowest ORC minimum temperature. ► There is, on average, 75 % gain in energy efficiency for trigeneration compared to electrical system. ► There is, on average, 17% gain in exergy efficiency when trigeneration is used as compared to electrical system. ► The electrical to cooling ratio is sensitive to the variation of the pinch point temperature and pump inlet temperature. ► The two main sources of the exergy destruction are the biomass burner with 55% and the ORC evaporator with 38%.

  4. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems

    Science.gov (United States)

    Saatchi, Sassan; Moghaddam, Mahta

    1995-01-01

    In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.

  5. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  6. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    Science.gov (United States)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  7. Examination of the combustion conditions of herbaceous biomass

    Energy Technology Data Exchange (ETDEWEB)

    Szemmelveisz, K.; Szucs, I.; Palotas, A.B.; Winkler, L. [Department of Combustion Technology and Thermal Energy, University of Miskolc (Hungary); Eddings, E.G. [Department of Chemical Engineering, University of Utah, Salt Lake City (United States)

    2009-06-15

    Power generation from biomass is a fairly new area, and boilers that utilize various types of biomass have in many cases experienced serious problems with slagging, fouling and corrosion of boiler tubes. Mineral matter in these fuels can deposit on the heat-exchanger surfaces in the boiler and generate an insulating layer, which will significantly reduce the degree of heat-transfer from flue gas to water and steam. Our investigations were focused on the slag characteristics of different kinds of herbaceous biomass fuels. Since there is usually a reducing atmosphere present in the direct combustion zone of modern low-NO{sub x} firing systems, it is important to study mineral matter transformation of burned fuel residues in a reducing atmosphere. An excellent device for this type of study is the electric-resistance heated Bunte-Baum softening temperature testing instrument, which was used in this work. Ash chemical composition was analyzed via flame atomic absorption spectrometry and the microstructure of ash was determined using a scanning electron microscope. Crystalline compounds of the ashes were identified by using X-ray powder diffraction. This paper provides an overview of results on the combustion and slag characteristics of herbaceous biomass fuels. The results include chemical compositions, morphology and softening properties of these fuels, with special attention to switch grass and sunflower seed shell. (author)

  8. Laboratory stand for examination of the operational thermal parameters of polyvalent system for heating, cooling and domestic hot water supply using renewable energy sources

    International Nuclear Information System (INIS)

    Zlateva, Merima

    2014-01-01

    The report presents the structure of an universal laboratory stand for determine the operating parameters of a polyvalent system for utilization of renewable energy sources. The system is a combination of three modules using different technologies for renewable sources – solar energy, atmospheric air and biomass, incorporated in a common heat accumulator. The structural scheme permits the possibility to use the stand in different operating modes, to demonstrate the feasibility of using any one of the renewable energy sources both individually and in various combinations. The author express gratitude to the partners of the companies Robert Bosch Bulgaria Ltd, Ahi Carrier Bulgaria and Eratermtotal, with whose generous support is build the stand. Key words: Renewable energy sources (RES), Heating with RES, Biomass, Air to Water Heat pumps

  9. Simulation and assessment of agricultural biomass supply chain systems

    Directory of Open Access Journals (Sweden)

    D. Pavlou

    2017-05-01

    Full Text Available Agricultural biomass supply chain consists of a number of interacted sequential operations affected by various variables, such as weather conditions, machinery systems, and biomass features. These facts make the process of biomass supply chain as a complex system that requires computational tools, e.g. simulation and mathematical models, for their assessment and analysis. A biomass supply chain simulation model developed on the ExtendSim 8 simulation environment is presented in this paper. A number of sequential operations are applied in order biomass to be mowed, harvested, and transported to a biorefinery facility. Different operational scenarios regarding the travel distance between field and biorefinery facility, number of machines, and capacity of machines are analyzed showing how different parameters affect the processes within biomass supply chain in terms of time and cost. The results shown that parameters such as area of the field, travel distance, number of available machines, capacity of the machines, etc. should be taken into account in order a less time and/ or cost consuming machinery combination to be selected.

  10. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  11. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  12. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Jurascik, M.; Ptasinski, K.J.

    2011-01-01

    This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by

  13. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1997-01-01

    Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled ''Economic Development through Biomass Systems Integration'', with the objective of investigating the feasibility of integrated biomass energy systems utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full fuel cycle for four of these case studies, which have been examined with regard to the emissions of carbon dioxide., CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 emissions from the DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. However, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared with a 100% coal power system. By introducing a DFSS on former farmland the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved and a significant amount of energy will be produced compared with an ordinary farm crop. Compared with traditional coal-based electricity production, the CO 2 emissions are in the most cases reduced significantly by as much as 95%. The important conclusion is the great potential for reducing greenhouse gas emissions through the offset of coal by biomass. (author)

  14. Integrated biomass energy systems and emissions of carbon dioxide

    International Nuclear Information System (INIS)

    Boman, U.R.; Turnbull, J.H.

    1996-01-01

    Electric Power Research Institute (EPRI) and US Department of Energy (DOE) have been funding a number of case studies under the initiative entitled 'Economic Development through Biomass Systems Integration', with the objective to investigate the feasibility of integrated biomass energy systems, utilizing a dedicated feedstock supply system (DFSS) for energy production. This paper deals with the full cycle for four of these case studies, which have been examined with regard to the emissions of greenhouse gases, especially CO 2 . Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from DFSS. External energy is required for the production and transportation of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing biomass with fossil fuels as external input fuels, we would get about 10-15 times more electric energy per unit fossil fuel, compared to a 100% coal power system. By introducing a DFSS on former farmland, the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly, as much as 95%. The important conclusion is the great potential of reducing greenhouse gas emissions through the offset of coal by biomass. 23 refs,, 8 figs, 2 tabs

  15. Multi-functional biomass systems

    NARCIS (Netherlands)

    Dornburg, Veronika

    2004-01-01

    Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share of biomass applications in Europe is their often-high production costs, among others due to the relatively low availability of

  16. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  17. Economics of multifunctional biomass systems

    International Nuclear Information System (INIS)

    Ignaciuk, A.

    2006-01-01

    ) ethane-diol (1,2EDO). Two novel technologies based on biorefinery principles to produce b io-nylon and propane-diol (1,3PDO), a substitute of 1,2EDO, are explored. Those technologies are: (1) the Refiner process and (2) the Press process. Moreover, this chapter analyzes the cascading possibilities of the substituted materials. Disposed biomass-based products are used as a cheap fuel option in the Bioelectricity sector. In such a way, the cascading system is mimicked, where the biomass resources are first used for the production of chemicals, and the end product is later used for electricity production. This chapter analyzes to what extent utilizing large scale cascading systems can influence the sectoral production of other commodities and the related influence on land use. Finally, Chapter 7 contains the conclusions and policy recommendations that can be drawn from the analyses in the previous chapters. In this chapter, the research questions will also be answered

  18. Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA

    International Nuclear Information System (INIS)

    Loeffler, Dan; Anderson, Nathaniel

    2014-01-01

    Highlights: • Case study using audited fuel consumption and emissions data from a coal mine and power plant. • Model emissions tradeoffs of cofiring forest biomass with coal up to 20% by heat input value. • Substituting forest biomass with coal displaces fossil energy with an otherwise waste material. • Substantially less system emissions overall are generated when cofiring forest biomass. • Cofiring forest biomass has positive global and local greenhouse gas and human health implications. - Abstract: Cofiring forest biomass residues with coal to generate electricity is often cited for its potential to offset fossil fuels and reduce greenhouse gas emissions, but the extent to which cofiring achieves these objectives is highly dependent on case specific variables. This paper uses facility and forest specific data to examine emissions from cofiring forest biomass with coal ranging up to 20% substitution by heat value in southwest Colorado, USA. Calculations for net system emissions include five emissions sources: coal mining, power plant processes, forest biomass processes, boiler emissions, and forest biomass disposal. At the maximum displacement of 20% of heat demand using 120,717 t of forest biomass per year, total system emissions are projected to decrease by 15% for CO 2 , 95% for CH 4 , 18% for NO X , 82% for PM 10 , and 27% for SO X . PM 10 and CH 4 emissions benefits are closely tied to reducing open burning for residue disposal. At maximum displacement, 189,240 t of CO 2 emissions equivalent to the annual CO 2 emissions from 36,200 passenger vehicles, 440,000 barrels of oil, or nearly 990 railcars of coal are avoided. When forest biomass is not cofired, emissions equivalent to144,200 t of CO 2 are emitted from open burning. In addition to exploring the details of this case, we provide a methodology for assessing the emissions tradeoffs related to using forest biomass for cogeneration that incorporates the operational aspects of managing forest

  19. System analysis of CO{sub 2} sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability; Systemanalyse der CO{sub 2}-Sequestrierung aus Biomasse-Heizkraftwerken (Bio-KWK-CCS). Technik, Wirtschaftlichkeit, Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Claus

    2014-10-15

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO{sub 2} sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO{sub 2} sequestration'' refers to the process chain from CO{sub 2} capture, CO{sub 2} transport and CO{sub 2} storage. While the use of biomass in combined heat and power plants is a common practice, CO{sub 2} sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO{sub 2} from the atmosphere as a future climate protection instrument by means of CO{sub 2} neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO{sub 2

  20. Application of a New Dynamic Heating System Model Using a Range of Common Control Strategies

    Directory of Open Access Journals (Sweden)

    Joshua Fong

    2016-06-01

    Full Text Available This research investigates the overall heating energy consumptions using various control strategies, secondary heat emitters, and primary plant for a building. Previous research has successfully demonstrated that a dynamic distributed heat emitter model embedded within a simplified third-order lumped parameter building model is capable of achieving improved results when compared to other commercially available modelling tools. With the enhanced ability to capture transient effects of emitter thermal capacity, this research studies the influence of control strategies and primary plant configurations on the rate of energy consumption of a heating system. Four alternative control strategies are investigated: zone feedback; weather-compensated; a combination of both of these methods; and thermostatic control. The plant alternative configurations consist of conventional boilers, biomass boilers, and heat pumps supporting radiator heating and underfloor heating. The performance of the model is tested on a primary school building and can be applied to any residential or commercial building with a heating system. Results show that the new methods reported offer greater detail and rigor in the conduct of building energy modelling.

  1. Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo P.; Järvinen, Mika P.

    2014-01-01

    Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO 2 emissions. - Highlights: • Part load simulation of a cogeneration plant integrated with biomas fast pyrolysis. • Analysis of energetic and environmental performance. • Assessment of different uses of the pyrolysis products

  2. System, method, and apparatus for remote measurement of terrestrial biomass

    Science.gov (United States)

    Johnson, Patrick W [Jefferson, MD

    2011-04-12

    A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

  3. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  4. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  5. Catalytically supported reduction of emissions from small-scale biomass furnace systems

    International Nuclear Information System (INIS)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian; Kraus, Markus; Matthes, Mirjam; Roland, Ulf; Bindig, Rene; Einicke, Wolf-Dietrich

    2011-01-01

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  6. Process systems engineering studies for catalytic production of bio-based platform molecules from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2017-01-01

    Highlights: • A process-systems engineering study for production of bio-based platform molecules to is presented. • Experimentally verified catalysis studies for biomass conversion are investigated. • New separations for effective recovery of bio-based platform molecules are developed. • Separations are integrated with catalytic biomass conversions. • Proposed process can compete economically with the current production approaches. - Abstract: This work presents a process-system engineering study of an integrated catalytic conversion strategy to produce bio-based platform molecules (levulinic acid (LA), furfural (FF), and propyl guaiacol (PG)) from hemicellulose (C_5), cellulose (C_6), and lignin fractions of lignocellulosic biomass. A commercial-scale process based on the strategy produces high numerical carbon yields (overall yields: 35.2%; C_6-to-LA: 20.4%, C_5-to-FF: 69.2%, and Lignin-to-PG: 13.3%) from a dilute concentration of solute (1.3–30.0 wt.% solids), but a high recovery of these molecules requires an efficient separation system with low energy requirement. A heat exchanger network significantly reduced the total energy requirements of the process. An economic analysis showed that the minimum selling price of LA as the highest value-added product (42.3 × 10"3 t of LA/y using 700 × 10"3 dry t/y of corn stover) is US$1707/t despite using negative economic parameters, and that this system can be cost-competitive with current production approaches.

  7. System applications CRC -Biomass + Coal; Aplicaciones Sistema CRC-Biomasa+Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Main object of Phase I of the project is to analyse the technical-economic feasibility of the combined use of biomass and coal for power generation in the Spanish region of Andalusia, by means of new medium-size independent power plants or using biomass as supplementary fuel in existing large coal power plants, including: -Analysis and classification of biomass and coal resources in the region -Technical-economic study of conventional alternatives using the steam cycle -Analysis of efficiency improvement provided by advanced Rankine-cycle technologies, like the SMR cycle -Analysis of alternatives based on parallel combined cycles using gas turbines, including advanced solutions, like the EAPI and CRC-EAPI systems. -Description and evaluation of different biomass drying systems. -Description and evaluation of the three main biomass gasification systems currently under development: atmospheric direct, atmospheric indirect and pressurized. Main objects of Phase II of the project are to analyse a specific application of the EAPI system to a real cogeneration plant project and to analyse the application of the CRC2 system to a commercial supercritical power plant, including technical-economic study of both applications. (Author)

  8. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hori, Hiroaki; Deguchi, Shinguo; Yano, Junya; Sakai, Shinichi

    2010-01-01

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x10 6 t-wet/ yr (0.14x10 6 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  9. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  10. City/industry/utility partnership leads to innovative combined heat and power project

    Energy Technology Data Exchange (ETDEWEB)

    Savage, J. [Savage and Associates, Quesnel, BC (Canada)

    2010-07-01

    This presentation discussed a combined heat and power (CHP) project that was launched in Quesnel, British Columbia. The CHP is being developed in phases in which new components will enter the system, providing added benefits. Hot oil from a sawmill bioenergy system will be used to heat lumber kilns, generate electricity at an Organic Rankine Cycle co-generation plant, and heat water for a District Energy Loop (DEL) to heat up to 22 existing buildings in the city as well as sawmill and planer buildings. The DEL piping would comprise a 5 kilometre loop. The energy would come from recovered sawmill space heating, recovered stack energy, and additional biomass energy. All of the district heating and 41 per cent of the power would be from heat recovered from the existing industrial operation. This bio-economy vision ultimately involves incorporating a biogas digester into the system to process food, regional organic waste, and pulp mill residuals, relying on bio-solids and heat from the mill. The fertilizer from the digester would then be used in a biomass plantation, which would provide materials to industry for many products, including bio-refining. This project evolved in response to concerns about the ecological effects and long-term economics of aggressive utilization of forest biomass. 15 figs.

  11. 'Biomass lung': primitive biomass combustion and lung disease

    International Nuclear Information System (INIS)

    Baris, Y. I.; Seyfikli, Z.; Demir, A.; Hoskins, J. A.

    2002-01-01

    Domestic burning of biomass fuel is one of the most important risk factors for the development of respiratory diseases and infant mortality. The fuel which causes the highest level of disease is dung. In the rural areas of developing countries some 80% of households rely on biomass fuels for cooking and often heating as well and so suffer high indoor air pollution. Even when the fire or stove is outside the home those near it are still exposed to the smoke. In areas where the winters are long and cold the problem is aggravated since the fire or stove is indoors for many months of the year. The consequence of biomass burning is a level of morbidity in those exposed to the smoke as well as mortality. The rural areas of Turkey are among many in the world where biomass is the major fuel source. In this case report 8 patients from rural areas, particularly Anatolia, who used biomass are presented. Many of these are non-smoking, female patients who have respiratory complaints and a clinical picture of the chronic lung diseases which would have been expected if they had been heavy smokers. Typically patients cook on the traditional 'tandir' stove using dung and crop residues as the fuel. Ventilation systems are poor and they are exposed to a high level of smoke pollution leading to cough and dyspnoea. Anthracosis is a common outcome of this level of exposure and several of the patients developed lung tumours. The findings from clinical examination of 8 of these patients (2 M, 6 F) are presented together with their outcome where known. (author)

  12. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    Grado, S.C.; Strauss, C.H.

    1993-01-01

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L -1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  13. Availability of Dutch biomass for electricity and heat in 2020

    International Nuclear Information System (INIS)

    Koppejan, J.; Elbersen, W.; Meeusen, M.; Bindraban, P.

    2009-11-01

    Availability of biomass is an important factor in realizing the Dutch targets for renewable energy. This study maps the availability of Dutch biomass in the framework of alternative applications and sustainability requirements, today and in the future. The conclusion is drawn that there is approximately 13 to 16 million tons of dry biomass available for energy generation in the Netherlands in 2020. This is 30 to 40% of the amount of biomass that is annually used in the Netherlands, generating 53 to 94 PJ of final energy, avoiding 101 to 157 PJ of fossil energy. This availability of biomass and the energy that is generated from the biomass can increase further after 2020. In addition, biomass will also be imported, especially for combustion and co-firing in coal-fired power plants and for the production of transport fuels. [nl

  14. Spatial Heat Planning and Heat Demand Reductions in Buildings

    DEFF Research Database (Denmark)

    Nielsen, Steffen

    2013-01-01

    to an energy system based 100% on renewable energy is not just a fi-ne-tuning of the existing system, but is a fundamental change of the entire energy system. However, similar to the use of fossil fuels, biomass re-sources, which account of a large share of the renewable energy sources, are limited in relation...... long-term savings in investments in production capacity and fuel costs. Through a case study, the amount of these long-term sav-ings is compared to the costs of implementing heat savings. The case study shows that heat reductions of roughly 50% are feasible if the long-term costs are included. Savings...

  15. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  16. Conversion to biofuel based heating systems - local environmental effects

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2003-01-01

    One of the most serious environmental problems today is the global warming, i.e.climate changes caused by emissions of greenhouse gases. The greenhouse gases originate from combustion of fossil fuels and changes the atmospheric composition. As a result of the climate change, the Swedish government has decided to make a changeover of the Swedish energy system. This involves an increase of the supply of electricity and heating from renewable energy sources and a decrease in the amount electricity used for heating, as well as a more efficient use of the existing electricity system. Today, a rather large amount electricity is used for heating in Sweden. Furthermore, nuclear power will be phased out by the year 2010 in Sweden. Bio fuels are a renewable energy source and a conceivable alternative to the use of fossil fuels. Therefore, an increase of bio fuels will be seen the coming years. Bio fuels have a lot of environmental advantages, mainly for the global environment, but might also cause negative impacts such as depletion of the soils where the biomass is grown and local deterioration of the air quality where the bio fuels are combusted. These negative impacts are a result of the use of wrong techniques and a lack of knowledge and these factors have to be improved if the increase of the use of bio fuels is to be made effectively. The aim of this master thesis is to evaluate the possibilities for heating with bio fuel based systems in housing areas in the municipalities of Trollhaettan, Ulricehamn and Goetene in Vaestra Goetalands County in the South West of Sweden and to investigate which environmental and health effects are caused by the conversion of heating systems. The objective is to use the case studies as examples on preferable bio fuel based heating systems in different areas, and to what environmental impact this conversion of heating systems might cause. The housing areas for this study have been chosen on the basis of present heating system, one area

  17. FY 2000 Report on survey results. Curtailment of the carbon dioxide emission by effective use of woody biomass system waste; 2000 nendo mokushitsu biomass kei haikibutsu no yuko riyo ni yoru nisanka tanso haishutsu no sakugen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    It is estimated that the woody biomass resources in Japan total 42.70 million t/y on a dry basis (indigenous production: 20.00 million t/y), which corresponds to 18.00 million t/y as oil. This project studies effective utilization of low-quality biomass resources now discarded, e.g., thinning materials and demolition woods, by reference to biomass utilization pursued in European and North American countries. The study activities cover the 3 areas of woody biomass wastes, current status of biomass utilization technologies in the overseas countries, and feasibility of introduction of the utilization technologies, after investigating necessity of abatement of the green-effect gases, current status of energy demands and policies, and woody biomass. Utilization of biomass resources for low-temperature heat purposes, which is the central issue in Japan, is not well established both technologically and politically. Moreover, the biomass resources are not exposed to price competition. Based on these premises, a total of 6 scenarios are proposed to promote utilization of biomass resources, including power/heat co-generation at a wood processing center, and dual firing at existing coal-fired boilers. (NEDO)

  18. System impact of energy efficient building refurbishment within a district heated region

    International Nuclear Information System (INIS)

    Lidberg, T.; Olofsson, T.; Trygg, L.

    2016-01-01

    The energy efficiency of the European building stock needs to be increased in order to fulfill the climate goals of the European Union. To be able to evaluate the impact of energy efficient refurbishment in matters of greenhouse gas emissions, it is necessary to apply a system perspective where not only the building but also the surrounding energy system is taken into consideration. This study examines the impact that energy efficient refurbishment of multi-family buildings has on the district heating and the electricity production. It also investigates the impact on electricity utilization and emissions of greenhouse gases. The results from the simulation of four energy efficiency building refurbishment packages were used to evaluate the impact on the district heating system. The packages were chosen to show the difference between refurbishment actions that increase the use of electricity when lowering the heat demand, and actions that lower the heat demand without increasing the electricity use. The energy system cost optimization modeling tool MODEST (Model for Optimization of Dynamic Energy Systems with Time-Dependent Components and Boundary Conditions) was used. When comparing two refurbishment packages with the same annual district heating use, this study shows that a package including changes in the building envelope decreases the greenhouse gas emissions more than a package including ventilation measures. - Highlights: • Choice of building refurbishment measures leads to differences in system impact. • Building refurbishment in district heating systems reduces co-produced electricity. • Valuing biomass as a limited resource is crucial when assessing global GHG impact. • Building envelope measures decrease GHG (greenhouse gas) emissions more than ventilation measures.

  19. Geothermal heat-pump systems of heat supply

    International Nuclear Information System (INIS)

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  20. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  1. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  2. A Theoretical Study of Two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chung, J. N., E-mail: jnchung@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL (United States)

    2014-01-02

    Two concept systems that are based on the thermochemical process of high temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are (1) to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest, and municipal waste to clean energy (pure hydrogen fuel), and (2) to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming). The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO{sub 2} sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  3. 2-component heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1987-03-01

    The knowledge accumulated only recently of the damage to buildings and the hazards of formaldehyde, radon and hydrocarbons has been inducing louder calls for ventilation, which, on their part, account for the fact that increasing importance is being attached to the controlled ventilation of buildings. Two-component heating systems provide for fresh air and thermal comfort in one. While the first component uses fresh air blown directly and controllably into the rooms, the second component is similar to the Roman hypocaustic heating systems, meaning that heated outer air is circulating under the floor, thus providing for hot surfaces and thermal comfort. Details concerning the two-component heating system are presented along with systems diagrams, diagrams of the heating system and tables identifying the respective costs. Descriptions are given of the two systems components, the fast heat-up, the two-component made, the change of air, heat recovery and control systems. Comparative evaluations determine the differences between two-component heating systems and other heating systems. Conclusive remarks are dedicated to energy conservation and comparative evaluations of costs. (HWJ).

  4. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  5. Biogas production supported by excess heat – A systems analysis within the food industry

    International Nuclear Information System (INIS)

    Broberg Viklund, Sarah; Lindkvist, Emma

    2015-01-01

    Highlights: • A systems analysis when moving from external to internal production and use of biogas at an industry. • The aim is to study the impacts on greenhouse gas emissions and economics from this switch. • The study compares the choice of using biogas or industrial excess heat to heat the digester. • Internal biogas production supported by excess heat has environmental and economic benefits. - Abstract: The aim of this paper was to study the effects on greenhouse gases and economics when a change is made in the use of industrial organic waste from external production and use of biogas (A) to internal production and use (B). The two different system solutions are studied through a systems analysis based on an industrial case. The baseline system (A) and a modified system (B) were compared and analysed. Studies show that industrial processes considered as integrated systems, including the exchange of resources between industries, can result in competitive advantages. This study focuses on the integration of internally produced biogas from food industry waste produced by a food company and the use of excess heat. Two alternative scenarios were studied: (1) the use of available excess heat to heat the biogas digester and (2) the use of a part of the biogas produced to heat the biogas digester. This study showed that the system solution, whereby excess heat rather than biogas is used to heat the biogas digester, was both environmentally and economically advantageous. However, the valuation of biomass affects the magnitude of the emissions reduction. Implementing this synergistic concept will contribute to the reaching of European Union climate targets

  6. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  7. Biomass District Energy Trigeneration Systems: Emissions Reduction and Financial Impact

    International Nuclear Information System (INIS)

    Rentizelas, A.; Tolis, A.; Tatsiopoulos, I.

    2009-01-01

    Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances' value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases

  8. Assessment of Biomass Resources in Afghanistan

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  9. Desenvolvimento e construção de fornalha para biomassa com sistema de aquecimento direto e indireto do ar = Development and construction of a furnace for biomass with system of direct and indirect air heating

    Directory of Open Access Journals (Sweden)

    Fernanda Augusta de Oliveira Melo

    2010-07-01

    Full Text Available Uma fornalha, com opção para aquecimento direto e indireto de ar, foiprojetada e construída para utilizar, como combustível complementar à lenha, biomassa particulada, resíduo agroindustrial abundante e desperdiçado em boa parte. No intuito de verificar o funcionamento da fornalha, na opção de aquecimento direto e indireto, foram realizados três testes preliminares utilizando somente lenha como combustível. Nestes testes, avaliaram-se as temperaturas do ar ambiente, do ar aquecido na saída da fornalha e depois do ventilador, fluxo de ar, poder calorífico inferior e eficiência térmica. Com os dados obtidos nos testes, nas opções de aquecimento direto e indireto de ar, a fornalha mostrou-se flexível na opção de aquecimento, de fácil construção e operação, não exigindo mão-de-obra qualificada.A furnace, with a system for direct and indirect air heating, was projected and constructed to use biomass, particulate biomass, abundant and largely wasted agroindustrial refuse, as complementary fuel to firewood. With the objective of verifying furnace operation, in the option of direct and indirect heating, three preliminaries tests were conducted using only firewood as fuel. In these tests, the following variables were monitored: room air temperature, heated air temperature at the exit of the furnace and after the fan; room air relative humidity; warm air flow; lower calorific power and thermal efficiency of the furnace. In the tests the results showed, for both direct and indirect air heating, the furnace was shown to be flexible in the heating option, of easy construction and operation, not requiring skilled labor.

  10. Biomass sector review for the Carbon Trust

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-26

    The review drew on an extensive number of sources, including a detailed literature survey, in-house references, questionnaires and interviews with trade associations, industry participants and industry observers. The policy observations that were drawn from the review, together with the results of the analysis itself, were subject to a detailed peer review with leading industry participants, observers and academics. The purpose of this document, is to place the results of this analysis in the public domain and to ensure that it is available to those interested in developing the biomass sector in the UK. Screening of the available biomass resource in the UK highlighted four key biomass fuels: forestry crops, dry agricultural residue, waste wood arid woody energy crops. The four fuels could have a material impact on UK energy supply when used for heat and power. Currently they have the potential to supply up to an additional. 41TWh/yr or about 1.5% of UK energy supply. In the future this could rise to c.80TWh/yr, mainly through expansion in the supply of woody energy crops and/or dry agricultural residue. If available resources are used for biofuels the level of potential carbon saving decreases significantly compared with providing heat or electricity due to lower conversion efficiency. Consequently, biofuels are not covered in depth in this report. Although the UK has a considerable amount of biomass resource, gaining access to it is not always viable for developers and end-users as the UK. currently has a relatively undeveloped biomass fuel supply infrastructure. Just as biomass can be drawn from a number or sources, it can be converted to useful energy through a number of processes and delivered to a variety of markets. Our screening of biomass conversion processes demonstrated that currently combustion represents the best area of focus. Combustion is a proven, established conversion process and the lowest cost option available today. Co-firing was not analysed

  11. Dynamics of Technological Innovation Systems. The Case of Biomass Energy

    International Nuclear Information System (INIS)

    Negro, S.O.

    2007-01-01

    The starting point is that the current energy system largely depends on fossil fuels. This phenomenon, which is labelled as carbon lock-in, causes a long breakthrough period for renewable energy. The most suitable theoretical approach to analyse the development, diffusion and implementation of emergent technologies, such as renewable energy, is the Technological Innovation Systems' (TIS) perspective. This approach focuses on a particular technology and includes all those factors (institutions, actors, and networks) that influence its development. Recent research has identified several so-called System Functions that need to be fulfilled for a TIS to support successfully the evolution of a technology. In this paper we will use the following set of System Functions: F1: Entrepreneurial Activities, F2: Knowledge Development (learning), F3: Knowledge Diffusion through Networks, F4: Guidance of the Search, F5: Market Formation, F6: Resources Mobilisation, F7: Counteracting Resistance to Change (also Support from Advocacy Coalitions). By focusing on the System Functions the key processes that occur in a system which influence the development, diffusion and implementation of that technology will be identified and insight will be gained in the system dynamics. The System Functions are not independent but interact and influence each other. The nature of interactions whether they are positive or negative will influence the performance of the system respectively. Positive System Function fulfilment can lead to positive, i.e. virtuous cycles of processes that strengthen each other and lead to the building up of momentum that creates a process of creative destruction within the incumbent system. According to the same reasoning, a system in decline is characterised by one or more vicious cycles, where the System Functions interact and reinforce each other in a negative way. The results from the case studies showed that different functional patterns occurred for the Biomass

  12. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  13. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    International Nuclear Information System (INIS)

    Chau, J.; Sowlati, T.; Sokhansanj, S.; Preto, F.; Melin, S.; Bi, X.

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO 2 ) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO 2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas

  14. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  15. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  16. Definition of a remuneration system for heat from renewable resources; Ausgestaltung einer Einspeiseverguetung fuer erneuerbare Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Dettli, R.; Ott, W.; Philippen, D.; Umbricht, A.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) deals with proposals for a remuneration system for heat obtained from renewable resources. Local and regional district heating systems cover around three percent of Swiss heating needs. The authors estimate that, if these systems were to be operated completely using renewable resources such as biomass, ambient heat and the renewable portion of heat from waste incineration, around seven per cent of needs could be met. Further, around 10,000 heating systems with a power of more than 350 kW could be operated with renewables. A further potential for the use of renewable heating resources can be found in wastewater treatment plants and industrial waste heat. Various obstacles and restraints on the use of renewable resources in the heating area are discussed. The idea of providing a cost-covering remuneration system for heat is discussed and compared with that for renewable electricity. The proposed system is discussed, which would provide investment subsidies, risk-coverage and project development subsidies. The report discusses the results of a market analysis and the differences to be found between the markets for electricity and heat. Existing promotional programs are noted and the aims of a possible remuneration system are discussed. A concept for a promotion program for renewable heat generation and the use of waste heat is introduced. The installations to be promoted and the amount of remuneration to be paid out are discussed. Finally, the costs and the effects of the proposed promotion scheme are discussed. A comprehensive appendix provides details on the proposed system and provides information on market volume, energy resources, networks and infrastructure, providers of heat energy, heat consumers and general conditions as far as factors such as pricing and legislation are concerned. Finally, the 'Climate Cent' foundation is commented on.

  17. Energy of forest biomass in Croatia

    International Nuclear Information System (INIS)

    Cupin, N.; Krivak, B.; Dundovic, J.

    2005-01-01

    Forest biomass is organic substance raised in forest ecosystem, consisting of trees and bushes which are used for mechanical processing and thermal use. Croatia, with 44 percent of surface under forests, has the renewable energy potential in forest biomass that could cover as much as about 50 percent of the current heating consumption. The existence of an appropriate heating consume and district heating are a prerequisite for exploitation of the mentioned potential. At the same time, heating consumption enables the utilization of cogeneration plants and the paper gives examples of such possibilities in industry, community and special facilities (sport centres, hotels, hospitals etc.). Among them, the so called 'Croatian energy absurdum' is mentioned. The paper underlines the feasibility of exploitation of forest biomass at the national level and suggests that, in order to promote and accelerate the development of cogeneration plants, the HED expert group should be established. The task of the expert group would be to draft proposal for appropriate measures in this regard and submit it to the Government for consideration.(author)

  18. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  19. Renewables for Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This timely report examines the technologies, current markets and relative costs for heat and cold production using biomass, geothermal and solar-assisted systems. It evaluates a range of national case studies and relevant policies. Should the successful and more cost-effective policies be implemented by other countries, then the relatively untapped economic potential of renewable energy heating and cooling systems could be better realised, resulting in potential doubling of the present market within the next few years.

  20. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  1. Incentives and market development to establish sustainable biomass systems

    International Nuclear Information System (INIS)

    Matteson Gary, C.

    2009-01-01

    Business-as-usual is not acceptable when it comes to the future for biomass-to-energy/product conversion industry. Incentives and market development need to be applied to guide the owners and operators towards the sustainable practices. Sustainability for biomass is defined to be future energy fuels and bio products that are secure, renewable, and accessible locally, affordable, and pollution free. Intensives are required to convert biomass-to-energy/product conversion systems that are not sustainable into sustainable formats. (Author)

  2. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  3. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  4. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  5. Natural gas–biomass dual fuelled microturbines: Comparison of operating strategies in the Italian residential sector

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Camporeale, Sergio; Shah, Nilay

    2014-01-01

    gas and the high subsidies available for biomass electricity by feed-in tariffs. The results show that dual fuel MT can be an interesting option to increase efficiencies, flexibility and plant reliability at low cost in comparison to only biomass systems, facilitating an integration of renewable and fossil fuel systems. - Highlights: • A natural gas/biomass fired 100 kWe microturbine serving residential energy demand is investigated. • Energy efficiency, capex, opex and electricity revenues trade-offs are assessed. • Various CHP plant operating strategies are compared. • The optimal biomass energy input is 70% of total CHP consumption. • The heat driven operation is the most profitable operation mode in the Italian energy framework

  6. The French market of biomass. An analysis of barriers and levers of development of the wood-energy sector, main biomass resource

    International Nuclear Information System (INIS)

    2011-06-01

    This article presents the content of a market study which aimed at assessing the weight of wood-energy in the French energy mix when it represents 97 per cent of biomass consumed under the form of heat, at giving an overview of markets within which this energy is now valorised (housing heating, heat and cogeneration), at analysing the business model of biomass projects, at assessing mechanisms aimed at supporting this sector, and at assessing the potential of the French market as far as wood-energy is concerned. The report presents the operation principles and applications of biomass, analyses the share of wood-energy in the French energy mix and the objectives defined by the Grenelle de l'Environnement, presents the French forests as an abundant resource, comments wood-based heating of housing as an evolving market, presents and analyses the market of industrial and collective heat, and discusses the perspective of a multiplication by 4 by 2020 of cogeneration installed capacities

  7. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  8. Combined hydraulic and biomass power - an answer to economic and ecological adaptation pressure on the energy supply system

    International Nuclear Information System (INIS)

    Pistauer, M.

    1991-01-01

    On the large scale, there will be an economic pressure in the European Communities on coal and oil from the CO 2 taxes. The economic and ecological advantages of a combination of hydraulic and biomass power in Austria are emphasized. In particular a biomass remote heating pilot project is announced. (Quittner)

  9. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Design and process integration of organic Rankine cycle utilizing biomass for power generation

    Science.gov (United States)

    Ependi, S.; Nur, T. B.

    2018-02-01

    Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.

  11. Domestic heating - the biomass challenge

    International Nuclear Information System (INIS)

    Rakos, C.

    1999-01-01

    This article highlights currently available efficient, low emission technical concepts for the combustion of wood, log-burning boilers, woodchip boilers, and the use of wood pellets. The economics of domestic heating with wood, the higher costs incurred with modern efficient wood burners as compared with fuelwood costs, and the proposed European Commission's campaign to implement more wood heated dwellings are discussed, and the transition from traditional to modern wood heating, and options for stimulating growth in renewable energy are considered

  12. Shorea robusta: A sustainable biomass feedstock

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Singh

    2016-09-01

    Full Text Available The biomass feedstock needs to be available in a manner that is sustainable as well as renewable. However, obtaining reliable and cost effective supplies of biomass feedstock produced in a sustainable manner can prove to be difficult. Traditional biomass, mainly in the form of fallen leaves, fuel wood or dried dung, has long been the renewable and sustainable energy source for cooking and heating. Present study accounts for the biomass of fallen leaves of Shorea robusta, also known as sal, sakhua or shala tree, in the campus of BIT Mesra (Ranchi. These leaves are being gathered and burnt rather than being sold commercially. They contain water to varying degrees which affects their energy content. Hence, measurement of moisture content is critical for its biomass assessment. The leaves were collected, weighed, oven dried at 100oC until constant weight, then dry sample was reweighed to calculate the moisture content that has been driven off. By subtraction of moisture content from the initial weight of leaves, biomass was calculated. Using Differential Scanning Calorimeter (DSC the heat content of the leaves was calculated and the elemental analysis of leaf was done by CHNSO elemental analyser. Further, total biomass and carbon content of Sal tree was calculated using allometric equations so as to make a comparison to the biomass stored in dried fallen leaves

  13. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System.

    Science.gov (United States)

    de Gennaro, Gianluigi; Dambruoso, Paolo Rosario; Di Gilio, Alessia; Di Palma, Valerio; Marzocca, Annalisa; Tutino, Maria

    2015-12-24

    Around 50% of the world's population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The paper presents the results of Indoor Air Quality (IAQ) measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m³, 350.7 μg/m³ and 16.8 μg/m³ respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m³, while the maximum and the minimum values were 24.0 ng/m³ and 1.5 ng/m³, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP) and Total Volatile Organic Compounds (TVOC) was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants' concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  14. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System

    Directory of Open Access Journals (Sweden)

    Gianluigi de Gennaro

    2015-12-01

    Full Text Available Around 50% of the world’s population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM and polycyclic aromatic hydrocarbons (PAHs. The paper presents the results of Indoor Air Quality (IAQ measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m3, 350.7 μg/m3 and 16.8 μg/m3 respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m3, while the maximum and the minimum values were 24.0 ng/m3 and 1.5 ng/m3, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP and Total Volatile Organic Compounds (TVOC was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants’ concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  15. Decentralised power generation using solid biomass - Know-how on combined heat and power generation for investors; Dezentrale Stromerzeugung mit Feststoffbiomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Gaegauf, Ch.; Sattler, M.

    2007-01-15

    This comprehensive report made by the Centre of Appropriate Technology and Social Ecology in Langenbruck, Switzerland presents a summary of know-how for investors on combined heat and power generation using solid biomass in installations with an electrical rating of up to one megawatt. Topics covered include a review of the reasons for using biomass to generate electricity - with the results of an analysis of potential in Switzerland and the European Union - and of economic assessment methods for the choice of technology and manufacturers. A SWOT (strengths, weaknesses, opportunities and threats) analysis of technologies is presented and existing biomass-fired installations in Switzerland are listed. A comparison with centrally-refined combustibles is presented and examples of cost and profitability calculations are given. Finally technological background information is presented, including information on 'forgotten' technologies.

  16. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  17. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  18. A review on torrefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tapasvi, Dhruv; Tran, Khanh-Quang

    2010-07-01

    Full text: Torrefaction is a mild-pyrolysis (200-300 deg.C.) process which can be employed as pre-treatment to improve fuel properties of plant biomass materials. The treatment results in not only improved energy density, but also enhanced grindability and better storage characteristics for biomass fuels. Because of these advantages and the high level of viability, the technique has attracted increasing interests during the last decades. Several studies on torrefaction of biomass for heat and power applications have been documented. Substantial amounts of data on the technique are available in the literature, which need to be reviewed and analyzed for further actions in the area. This is the primary objective of the present study. This review is consisted of three parts, of which the first focuses on the mechanism of biomass torrefaction for heat and power applications, and the process as a whole. It is then followed by a critical review on experimental methods in laboratory, and effects of operating parameters on fuel properties of torrefied biomass. Finally, opportunities and challenges for the process are discussed. (Author)

  19. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Feasibility of Biomass Biodrying for Gasification Process

    Science.gov (United States)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004

  1. Soil microbial biomass in an agroforestry system of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Rosane C. Rodrigues

    2015-01-01

    Full Text Available Agroforestry systems (AFS are considered alternative land use options to help prevent soil degradation and improve soil microbial biomass and organic C status. However, it is unclear how different densities of babassu palm [Attalea speciosa (syn. Orbignya phalerata], which is an important tree in Northeast Brazil, affect the soil microbial biomass. We investigated the soil microbial biomass C and activity under AFS with different densities of babassu palm associated with Brachiaria brizantha grass. Soil microbial biomass C (MBC, soil microbial biomass N (MBN, MBC:total organic C ratio, fluorescein diacetate hydrolysis and dehydrogenase activity showed highest values in plots with high density of babassu palm. On the other hand, the respiratory quotient (qCO2 was significantly greater in plots without babassu palm. Brachiaria brizantha in monoculture may promote C losses from the soil, but AFS with high density of babassu palm may increase the potential of soils to accumulate C.Keywords: Enzyme activity, tropical soil, babassu palm, silvopastoral system, soil quality.DOI: 10.17138/TGFT(341-48

  2. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  3. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  4. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  5. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  6. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  7. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    Science.gov (United States)

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  8. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  9. Biomass boilers: towards a higher efficiency

    International Nuclear Information System (INIS)

    Petitot, Pauline; Signoret, Stephane; Mary, Olivier; Dejeu, Mathieu; Tachet, Jean-Pierre

    2014-01-01

    A set of articles proposes an overview of the situation and perspectives of biomass fuelled boilers in France. As outlined in an interview, professionals are supported by ADEME and the Heat Fund (Fonds Chaleur) for a continuous development of wood-energy in order to reach national objectives for renewable energies by 2020. The next article discusses issues related to wood supply, with some concerns regarding forest exploitation, and needs to find new management ways and to use other sources than forests. The technical status and perspectives of smoke condensation in wood-fuelled boilers are discussed. The example of a malt-house near Issoudun fuelled by biomass since 2013 is presented. Other examples concern a small town of Burgundy which developed and is still improving a heat network, a wood-fuelled heat network in Saint-Denis, and a biomass wood-fuelled heat production plant for the Toulouse University hospital. Graphs indicate evolutions of prices for different wood-based fuel products. The last article outlines the role of forests and the importance of their protection in the struggle against climate change, and discusses problems faced to support this preservation and its financing

  10. A Thermogravimetric Study of the Behaviour of Biomass Blends During Combustion

    Directory of Open Access Journals (Sweden)

    Ivo Jiříček

    2012-01-01

    Full Text Available The ignition and combustion behavior of biomass and biomass blends under typical heating conditions were investigated. Thermogravimetric analyses were performed on stalk and woody biomass, alone and blended with various additive weight ratios. The combustion process was enhanced by adding oxygen to the primary air. This led to shorter devolatilization/pyrolysis and char burnout stages, which both took place at lower temperatures than in air alone. The results of the ignition study of stalk biomass show a decrease in ignition temperature as the particle size decreases. This indicates homogeneous ignition, where the volatiles burn in the gas phase, preventing oxygen from reaching the particle surface.The behavior of biomass fuels in the burning process was analyzed, and the effects of heat production and additive type were investigated. Mixing with additives is a method for modifying biofuel and obtaining a more continuous heat release process. Differential scanning calorimetric-thermogravimetric (DSC-TGA analysis revealed that when the additive is added to biomass, the volatilization rate is modified, the heat release is affected, and the combustion residue is reduced at the same final combustion temperature.

  11. Discover the benefits of residential wood heating

    International Nuclear Information System (INIS)

    2003-01-01

    This publication described how residential wood-heating systems are being used to reduce energy costs and increase home comfort. Biomass energy refers to all forms are renewable energy that is derived from plant materials. The source of fuel may include sawmills, woodworking shops, forest operations and farms. The combustion of biomass is also considered to be carbon dioxide neutral, and is not considered to be a major producer of greenhouse gases (GHG) linked to global climate change. Wood burning does, however, release air pollutants, particularly if they are incompletely burned. Incomplete combustion of wood results in dense smoke consisting of toxic gases. Natural Resources Canada helped create new safety standards and the development of the Wood Energy Technical Training Program to ensure that all types of wood-burning appliances are installed correctly and safely to reduce the risk of fire and for effective wood heating. In Canada, more than 3 million families heat with wood as a primary or secondary heating source in homes and cottages. Wood heating offers security from energy price fluctuations and electrical power failures. This paper described the benefits of fireplace inserts that can transform old fireplaces into modern heating systems. It also demonstrated how an add-on wood furnace can be installed next to oil furnaces to convert an oil-only heating system to a wood-oil combination system, thereby saving thousands of dollars in heating costs. Wood pellet stoves are another wood burning option. The fuel for the stoves is produced from dried, finely ground wood waste that is compressed into hard pellets that are loaded into a hopper. The stove can run automatically for up to 24 hours. New high-efficiency advanced fireplaces also offer an alternative heating system that can reduce heating costs while preserving Canada's limited supply of fossil fuels such as oil and gas. 13 figs

  12. Indirectly heated biomass gasification using a latent-heat ballast-part 3: refinement of the heat transfer model

    International Nuclear Information System (INIS)

    Cummer, Keith; Brown, Robert C.

    2005-01-01

    An indirectly heated gasifier is under development at Iowa State University. This gasifier integrates a latent-heat ballast with a fluidized-bed reactor. The latent heat ballast is an array of stainless-steel tubes filled with lithium fluoride, which is a high-temperature phase-change material (PCM). Previous studies have presented experimental results from the gasifier and described a mathematical model of the pyrolysis phase of the cyclic gasification process. This model considers both heat transfer and chemical reactions that occur during pyrolysis, but discrepancies between model predictions and experimental data have demonstrated the need to refine the model. In particular, cooling curves for the ballasting system are not well predicted during phase change of the lithium fluoride. A reformulated model, known as the Receding Interface (RI) model, postulates the existence of a receding liquid phase within the ballast tubes as they cool, which progressively decreases the rate of heat transfer from the tubes. The RI model predicts behavior that is more consistent with experimental results during the phase-change process, while retaining accuracy before and after the process of phase change

  13. Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration

    International Nuclear Information System (INIS)

    Hogerwaard, Janette; Dincer, Ibrahim; Zamfirescu, Calin

    2013-01-01

    A low-temperature heat driven heat engine is proposed as a cost-effective system for power and heat production for small scale applications. The external heat source allows flexibility in the design; the system may be coupled with various available renewable sources including biomass/biofuel/biogas combustion, geothermal heat, concentrated solar radiation, and industrial waste heat, by selecting appropriate off-the-shelf components from the HVAC (heating, ventilation, and air conditioning), refrigeration, and automotive industries for use in an ORC (organic Rankine cycle). A theoretical analysis and an experimental study are carried out for an ORC with R134a as the working fluid, utilizing a low-temperature heat source (T source < 150 °C), with focus on the expansion and boiling processes. The complete ORC model is comprised of models for the expander, working fluid pump, boiler, and condenser. Thermodynamic and heat transfer models are developed to calculate the local and averaged heat transfer coefficient of the working fluid throughout the boiling process, based on the geometry of the selected heat exchanger. Data collected for the experimental ORC test bench are used to validate the expander and boiler models. A case study is performed for the proposed ORC, for cogeneration of power and heat in a residential application. The results of the case study analysis for the proposed ORC system indicate a cycle efficiency of 0.05, exergy efficiency of 0.17, and energy and exergy cogeneration efficiency of 0.87, and 0.35, respectively. - Highlights: • Development and investigation of a scroll based Rankine heat engine operating with R134a. • Thermodynamic analyses of the system and its components. • Heat transfer analyses of boiler and condenser. • Dynamic analysis of expander. • Model validation through performed experiments on an ORC test bench

  14. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  15. Effect of biomass on burnouts of Turkish lignites during co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical Univ., Chemical and Metallurgical Engineering Faculty, Chemical Engineering Dept., 34469 Maslak, Istanbul (Turkey)

    2009-09-15

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 C at a heating rate of 40 C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management. (author)

  16. Effect of biomass on burnouts of Turkish lignites during co-firing

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.

    2009-01-01

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 deg. C at a heating rate of 40 deg. C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management.

  17. Calculating the share of process energy consumed by biomass conversion plants. Bestimmung der Anteile der Prozessenergie bei einer Biogasanlage

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, W

    1984-06-01

    During the winter season the process energy consumption of biomass conversion plants is relatively high. Apart from the quantity and temperature of manures and insulation of the fermentation tank the process energy consumption depends on the efficiency of the heating system. Moreover, heat losses decide on the required quantities of process energy. Compared with the process energy consumption the electric power consumption of the engines supplying the biomass conversion plant is relatively low. Along with calculations tests and measurements in a biomass conversion plant during the winter season of 1981/1982 give access to the interrelation between process energy and electric power consumption.

  18. Device for the treatment of biomass for obtaining methane gas. Vorrichtung fuer die Behandlung von Biomasse zur Methangasgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Mergen, R

    1983-06-09

    This is a device for the treatment of biomass from all organic materials for obtaining methane gas by anaerobic fermentation, characterized by the fact that a water-cooled internal combustion engine carries out three main functions: it drives the chopper, it drives the stirrer and, together with a rake, it destroys the floating surface and heats the fermentation area, where the device is made as a direct waste gas heating system, is controlled via a thermostat control. It gives the pulse for starting and shutting down the internal combustion engine and the waste heat of the engine and the heat of the waste gas from the internal combustion engine are used to heat the service water heat, characterized by the fact that for large plants with biogas flow, the generator engine with its exhaust gas heat takes over the function of the fermentation area heater, that the exhaust gas heat is also used to heat the service water and that a heating circuit is connected to the water cooling system of the generator engine, also characterized by the fact that an effective layer of insulation made of hard foam surrounds an iron skeleton frame, the fermentation container, fixes the supports of the heating coils, acts as a sealed protective trough and as transport packing or outside of a compact ready to use plant.

  19. Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact

    International Nuclear Information System (INIS)

    Yang, Y.; Brammer, J.G.; Wright, D.G.; Scott, J.A.; Serrano, C.; Bridgwater, A.V.

    2017-01-01

    Highlights: • Performance of the Pyrolysis and CHP systems is studied and evaluated. • Overall CHP efficiency of the 1000 kg/h Pyro-CHP system is 42.5%. • Levelised Energy Cost is high, but the optimistic scenario is potentially profitable. • Life-cycle GHG analysis shows strong positive environmental benefits. - Abstract: Combined heat and power from the intermediate pyrolysis of biomass materials offers flexible, on-demand renewable energy with some significant advantages over other renewable routes. To maximise the deployment of this technology an understanding of the dynamics and sensitivities of such a system is required. In the present work the system performance, economics and life-cycle environmental impact is analysed with the aid of the process simulation software Aspen Plus. Under the base conditions for the UK, such schemes are not currently economically competitive with energy and char products produced from conventional means. However, under certain scenarios as modelled using a sensitivity analysis this technology can compete and can therefore potentially contribute to the energy and resource sustainability of the economy, particularly in on-site applications with low-value waste feedstocks. The major areas for potential performance improvement are in reactor cost reductions, the reliable use of waste feedstocks and a high value end use for the char by-product from pyrolysis.

  20. Understanding forest-derived biomass supply with GIS modelling

    DEFF Research Database (Denmark)

    Hock, B. K.; Blomqvist, L.; Hall, P.

    2012-01-01

    distribution, and the cost of delivery as forests are frequently remote from energy users. A GIS-based model was developed to predict supply curves of forest biomass material for a site or group of sites, both now and in the future. The GIS biomass supply model was used to assist the New Zealand Energy...... Efficiency and Conservation Authority's development of a national target for biomass use for industrial heat production, to determine potential forest residue volumes for industrial heat and their delivery costs for 19 processing plants of the dairy company Fonterra, and towards investigating options...

  1. Economic and environmental benefits of converting industrial processes to district heating

    International Nuclear Information System (INIS)

    Djuric Ilic, Danica; Trygg, Louise

    2014-01-01

    greenhouse gas emissions. The potential for the reduction of global greenhouse gas emissions is highly dependent on the alternative use of biomass and on the type of the marginal electricity producers. When the marginal effects from biomass use are not considered, the greenhouse gas emissions reduction is between 10 thousand tonnes of CO 2eq and 58 thousand tonnes of CO 2eq per year, depending on the county and the type of marginal electricity production plants. The highest reduction is achieved in Östergötland. However, considering that biomass is a limited resource, the increase of biomass use in the district heating systems may lead to a decrease of biomass use in other energy systems. If this assumption is included in the calculations, the conversion of the industrial processes to district heating still signify a potential for reduction of greenhouse gas emissions, but this potential is considerable lower

  2. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.

    Science.gov (United States)

    Kumar, Amit; Sokhansanj, Shahab; Flynn, Peter C

    2006-01-01

    This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8 x 10(6) dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/ stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4 x 10(6) dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.

  3. Heat transfer mechanisms in poplar wood undergoing torrefaction

    Science.gov (United States)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  4. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J; Hoppesteyn, P D.J.; Hein, K R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  5. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  6. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  7. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  8. Energy from Waste and Biomass - ALTENER Conference held in Estonia

    International Nuclear Information System (INIS)

    Roos, Inge

    1999-01-01

    On November 9-10, 1998 ALTENER Conference Energy from Waste and Biomass took place in the hotel Pirita, Tallinn, Estonia. The Conference was organized by the Swedish National Energy Administration in co-operation with the FEMOPET Estonia and the South Jutland University Centre, Biomass Institute (Denmark). The main topics of the Conference were: collecting biogas from landfall, biogas from municipal sewage treatment, biogas from animal manure, waste heat, biomass from the pulp industry and the sawmill, biomass from forestry, biomass for local and district heating. More than 200 delegates from 14 countries participated in this event. A poster exhibition and two study tours to Paeaeskuela Landfill Plant and Jueri Boiler House were organised too. (author)

  9. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  10. Biomass Thermochemical Conversion Program. 1984 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  11. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  12. Biomass energy utilisation - ecological and economic aspects

    International Nuclear Information System (INIS)

    Plamen Gramatikov

    2009-01-01

    Biomass is the world's fourth largest energy source today and it represents about 35% of the primary energy supply in developing countries. Biomass is a versatile source of energy in that it can produce electricity, heat, transport fuel and it can be stored. The problems (technical, economic, etc.) which have to be solved by treatment of biomass are discussed in this work. The average quantities of biomass resources of some European countries are presented and the structure, percentage of products and their calorific values are estimated. Keywords: Biomass Energy Potential, Ecological & Economic Aspects

  13. CRBRP decay heat removal systems

    International Nuclear Information System (INIS)

    Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

    1977-01-01

    The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented

  14. Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage

    DEFF Research Database (Denmark)

    Zheng, Yingying; Jenkins, Bryan M.; Kornbluth, Kurt

    2018-01-01

    Deterministic constrained optimization and stochastic optimization approaches were used to evaluate uncertainties in biomass-integrated microgrids supplying both electricity and heat. An economic linear programming model with a sliding time window was developed to assess design and scheduling...... of biomass combined heat and power (BCHP) based microgrid systems. Other available technologies considered within the microgrid were small-scale wind turbines, photovoltaic modules (PV), producer gas storage, battery storage, thermal energy storage and heat-only boilers. As an illustrative example, a case...... study was examined for a conceptual utility grid-connected microgrid application in Davis, California. The results show that for the assumptions used, a BCHP/PV with battery storage combination is the most cost effective design based on the assumed energy load profile, local climate data, utility tariff...

  15. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  17. A review on biomass classification and composition, cofiring issues and pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  18. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry; Proceedings, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this first volume deal with Resource Base and Power Production. The particular subjects within the Resource Base area are Biomass, Wastes and Residues, Feedstock Research, and Commercial Systems. The emphasized subjects within the Power Production area are Combustion, Thermal and Biological Gasification, Waste Generation and Waste Disposal and Waste Emissions, and Heat, Steam, and Fuels-Commercial Systems. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. A spatial model for the economic evaluation of biomass production systems

    International Nuclear Information System (INIS)

    Wei Liu; Phillips, V.D.; Singh, Devindar

    1992-01-01

    A system model for estimating short-rotation, intensive-culture woody biomass production costs, including establishment, maintenance, harvesting, and transport costs, was developed and applied to the island of Kauai. Using data from existing large-plot field trials, biomass yield of the tropical hardwood Eucalyptus saligna was predicted from site-specific factors such as local weather and soil conditions and management strategies. Possible harvesting systems were identified and associated harvesting costs were estimated. The distances from the plantation sites to a bio-conversion plant located at the Lihue sugar mill were calculated based on existing road networks. The delivered cost of biomass on a dollar per dry metric ton (Mg) basis was then calculated using a discounted cash flow method. A geographic information system was interfaced with the biomass system model to access a database and present results in map form. Under the most favorable management strategy modeled, approximately 330 x 10 3 dry Mg year -1 of Eucalyptus saligna could be produced from 12,000 ha at a delivered cost of $25-38 per dry Mg chips. (author)

  1. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  2. Policy Impact on Economic Viability of Biomass Gasification Systems in Indonesia

    Directory of Open Access Journals (Sweden)

    Pranpreya Sriwannawit

    2016-03-01

    Full Text Available Indonesia is facing challenges on the lack of electricity access in rural areas and the management of agricultural waste. The utilization of waste-to-energy technology can help in mitigating these issues. The aim of this paper is to assess the economic viability of a biomass gasification system for rural electrification by investigating its competitiveness in relation to various government supports. Financial modelling is applied to calculate Net Present Value (NPV, Internal Rate of Return (IRR, and Levelized Cost of Electricity (LCOE. NPV and IRR results indicate that biomass gasification is an economically viable option when appropriate financial government supports exist. LCOE result indicates that biomass gasification system is already more economically competitive compared to diesel generator even without additional support but it is less competitive compared to the national electricity grid tariff. In conclusion, the biomass gasification system is an economically viable option for rural electrification in Indonesian context.

  3. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  4. A key review on emergy analysis and assessment of biomass resources for a sustainable future

    International Nuclear Information System (INIS)

    Zhang Gaijing; Long Weiding

    2010-01-01

    The present study comprehensively reviews emergy analysis and performance evaluation of biomass energy. Biomass resources utilization technologies include (a) bioethanol production, (b) biomass for bio-oil, (c) biodiesel production, (d) straw as fuel in district heating plants, (e) electricity from Municipal Solid Waste (MSW) incineration power plant, (f) electricity from waste landfill gas. Systems diagrams of biomass, which are to conduct a critical inventory of processes, storage, and flows that are important to the system under consideration and are therefore necessary to evaluate, for biomasses are given. Emergy indicators, such as percent renewable (PR), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are shown to evaluate the environmental load and local sustainability of the biomass energy. The emergy indicators show that bio-fuels from crop are not sustainable and waste management for fuels provides an emergy recovery even lower than mining fossil fuel.

  5. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  6. 75 FR 6263 - Biomass Crop Assistance Program

    Science.gov (United States)

    2010-02-08

    ... guidelines followed for any harvesting, collecting, storing or transporting of such material from such... for the purposes of transport and delivery to eligible biomass conversion facilities. As specified in... or proposes to convert renewable biomass into heat, power, biobased products, advanced biodiesel, or...

  7. Clean heating with wood. An electrostatic separator reduces particulate matter emissions from biomass boilers; Sauber heizen mit Holz. Ein elektrostatischer Abscheider senkt die Feinstaub-Emissionen von Biomassekesseln

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2016-08-01

    Despite considerable advances in firing technology, harmful particulate matter is produced when wood is combusted. Electrostatic precipitators, however, filter up to 90 per cent of particulate emissions from biomass boilers. These therefore enable wood burners to use a wider range of fuel and still meet the tightened requirements of Germany's 1st Ordinance on the Implementation of the Federal Immission Control Act. The major advantage: Both new and old heating plants can benefit from the new system.

  8. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  9. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  10. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  11. Opportunities for and limits to Academics as System builders-The case of realizing the potential of gasified biomass in Austria

    International Nuclear Information System (INIS)

    Hellsmark, Hans; Jacobsson, Staffan

    2009-01-01

    Gasified biomass is a technology that has the potential to partially replace fossil fuels for the production of heat, electricity, transport fuels, synthetic natural gas (BioSNG) and chemicals. In the context of climate change, biomass gasification is an attractive technology. It is, however, still in the early phase of its diffusion and much of the knowledge resides in the academic sector and in small companies-the technological innovation system (TIS) is in the process of being formed. Austria is one of the leading European countries in this field and much of the development in Austria can be traced to one prominent individual, Professor Hermann Hofbauer at the Technical University of Vienna. The purpose of this paper is to analyze how and the extent to which an individual academic, Professor Hofbauer, has influenced the formation of a TIS centred on gasified biomass in Austria. We find that his impact is multidimensional and significant but that there is also a frictional and intentional resistance that obstructs the commercialisation of the new technology. These sources of resistance go beyond the ability of an individual system builder to handle. Policy makers, therefore, need to add a strong element of system building activities that interact with and supplement those pursued by Professor Hofbauer.

  12. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier types have been investigated in this project: 1) The Two-Stage Gasifier (Viking Gasifier), designed to produce a very clean gas to be used in a gas engine, has been connected to a lab-scale methanol plant, to prove that the gas from the gasifier could be used for methanol production with a minimum of gas cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51-58% (LHV). By using waste heat from the plants for district heating, the total energy efficiencies could reach 87-88% (LHV). 2) A lab-scale electrically heated entrained flow gasifier has been used to gasify wood and straw. Entrained flow gasifiers are today the preferred gasifier type for commercial coal gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic fraction of the biomass that is not converted to gas appears as soot. Thermodynamic computer models of DME and methanol plants based on using entrained flow gasification were created to show the potential of such plants. These models showed that the potential torrefied biomass to DME/methanol + net electricity energy efficiency was 65-71% (LHV). Different routes to produce liquid transport fuels from biomass are possible. They include production of RME (rapeseed oil

  13. Thermal non-equilibrium heat transfer in a porous cavity in the presence of bio-chemical heat source

    Directory of Open Access Journals (Sweden)

    Nazari Mohsen

    2015-01-01

    Full Text Available This paper is concerned with thermal non-equilibrium natural convection in a square cavity filled with a porous medium in the presence of a biomass which is transported in the cavity. The biomass can consume a secondary moving substrate. The physics of the presented problem is related to the analysis of heat and mass transfer in a composting process that controlled by internal heat generation. The intensity of the bio-heat source generated in the cavity is equal to the rate of consumption of the substrate by the biomass. It is assumed that the porous medium is homogeneous and isotropic. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. A simplified Monod model is introduced along with the governing equations to describe the consumption of the substrate by the biomass. In other word, the transient biochemical heat source which is dependent on a solute concentration is considered in the energy equations. Investigation of the biomass activity and bio-chemical heat generation in the case of thermal non-equilibrium assumption has not been considered in the literature and they are open research topics. The effects of thermal non-equilibrium model on heat transfer, flow pattern and biomass transfer are investigated. The effective parameters which have a direct impact on the generated bio-chemical heat source are also presented. The influences of the non-dimensional parameters such as fluid-to-solid conductivity ratio on the temperature distribution are presented.

  14. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  15. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  16. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel...

  17. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.

    Science.gov (United States)

    Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim

    2017-06-01

    As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Exploiting the Medium Term Biomass Energy Potentials in Austria. A Comparison of Costs and Macroeconomic Impact

    International Nuclear Information System (INIS)

    Steininger, K.W.; Voraberger, H.

    2003-01-01

    The transition to an implicitly solar-based energy system can make use of various specific biomass energy systems. This paper provides economic and environmental indicators for evaluating alternative options. The paper proceeds in three empirical steps. First, an expert survey supplies the primary biomass potentials available for non-food use in Austria and their respective costs. Second, an inquiry into investment, operating and financing costs of 30 different biomass energy use systems allows a standardized comparison among them and their relationship to fossil reference technologies. Third, a computable general equilibrium model of the Austrian economy is employed to quantify the impacts of fostering the use of distinct biomass energy technologies. The results allow us to distinguish between those technologies that tend to lead to an increase in both GDP and employment (e.g., combined heat and power production from sewage sludge biogas), to an increase only in employment, while GDP tends to diminish (e.g., district heating based on agricultural pellets) or to a decline in both (e.g., co-firing based on wood-chips, bark or industrial pellets). Individual technologies could account for up to one third of Austria's Kyoto obligation, while combinations of technologies, triggered by a combined CO2 tax and biomass energy subsidy for example, could almost fully lead to Austrian Kyoto-compliance

  19. Application of industrial wood residues for combined heat and power production

    International Nuclear Information System (INIS)

    Majchrzycka, A.

    2015-01-01

    The paper discusses combined production of heat and power (CHP) from industrial wood residues. The system will be powered by wood residues generated during manufacturing process of wooden floor panels. Based on power and heat demands of the plant and wood residues potential, the CHP system was selected. Preliminary analysis of biomass conversion in CHP system and environmental impact was performed.

  20. A review on biomass as a fuel for boilers

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Abelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering

    2011-06-15

    Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40-50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO{sub 2} and NO emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

  1. Analysis and co-ordination of the activities concerning gasification of biomass. Summary country report, Denmark and Norway

    International Nuclear Information System (INIS)

    Stoholm, P.; Olsen, A.

    1996-11-01

    The analysis summarises the coordination of activities concerning the gasification of biomass in Denmark and Norway. The total quantity of available biomass for energy production in Denmark corresponds to ca. 115 PJ of which ca. 40% is utilized - and this constitutes ca. 6% of the country's total energy consumption. The resulting energy from biomass is currently mostly used for heating purposes utilizing small wood/straw household or farm stoves in addition to ca. 100 district heating systems. There is a tendency to use biomass fuels for electric power production as in the case of all major waste incineration plants and about 10 fully or partly wood/straw-fired cogeneration plants which are found within the range of 2 -20 MWe. A table shows details of all Danish biomass gasification plants and information is given on the types of biomass, under the titles of residue products and energy crops, most relevant to energy production in Denmark. Data is presented on the consumption of renewable energy in Denmark, recalculated in fuel equivalents, and Danish national energy policy and related legislation are described. Information on Norway's use of biomass as fuel is given under the headings of primary consumption, biomass sources and use, legislation, and brief evaluations of commercial gasification plants, pilot and demonstration plants, and laboratory plants and studies. It has recently been decided to speed up the development of small-scale gasification plants for combined heat and electricity production using biomass as fuel in Denmark. Total Norwegian energy consumption is 25% higher than Denmark's, and biomass fuels cover only 3.6% of this. (ARW) 32 refs

  2. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  3. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  4. Solid biomass barometer - EurObserv'ER - December 2016

    International Nuclear Information System (INIS)

    2016-12-01

    Solid biomass consumption, primarily wood energy, is still largely governed by heating requirements which are climate-dependent. The main factor for the European rebound in solid biomass consumption as primary energy during the winter of 2015 is that it was not as mild across the continent as the previous winter. Leaving aside climatic variations, the use of solid biomass for producing heat or electricity has tended to increase in the European Union, spurred on by European support policies. A new consumption record of 93.8 Mtoe was posted in 2015... a rise of 3.8 Mtoe over 2014

  5. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  6. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  7. Marketing research for energy from biomass in Europe; Marktverkenning voor energie uit biomassa in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Rijpkema, B. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands); Van den Berg, P.; Vanb Haren, P. [Biomass Technology Group BTG, Enschede (Netherlands)

    1997-07-01

    Insight is given into the European market for energy from biomass, including information on plant size, most promising technologies, etc. These potentials may offer opportunities for manufacturers of energy generating systems. A quick scan of 23 European countries has been carried out as phase 1 of this project, which resulted in data, presented in the following format: General introduction; Existing energy infrastructure and structure of the energy demand; Price of fossil fuels, electricity and heat; Available biomass quantities; Prices of biomass; Installed biomass plants; Policy and regulations. Based on that information an overall conclusion was drawn for each country`s biomass energy situation. In phase 2 a more detailed survey has been executed for Estonia, Germany, Poland and Spain. The results of both phases are presented in a separate English report. This report is the result of phase 3 in which the results of phase 1 and 2 are evaluated to assess the possibilities for Dutch manufacturers of biomass energy systems

  8. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  9. Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, Å.; Hansson, P.-A.

    2015-01-01

    Farmers can use their own agricultural biomass residues for heat production in small-scale systems, enabling synergies between the district heating (DH) sector and agriculture. The barriers to entry into the Swedish heat market were extremely high as long as heat distribution were considered natural monopoly, but were recently lowered due to the introduction of a regulated third party access (TPA) system in the DH sector. This study assesses the potential impact on greenhouse gas emissions and cost-based heat price in the DH sector when farmers vertically integrate into the heat supply chain and introduce more local and agricultural crops and residues into the fuel mix. Four scenarios with various degree of farmer integration, were assessed using life cycle assessment (LCA) methodology, and by analysis of the heat production costs. The results show that full integration of local farm and forest owners in the value chain can reduce greenhouse gas emissions and lower production costs/heat price, if there is an incentive to utilise local and agricultural fuels. The results imply that farmer participation in the DH sector should be encouraged by e.g. EU rural development programmes. - Highlights: • Five DH production systems based on different fuels and ownership were analysed. • Lower GHG emissions were obtained when farmers integrate fully into the DH chain. • Lower heat price was obtained by full vertical integration of farmers. • Salix and straw-based production resulted in the lowest GHG and heat price

  10. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  11. Heat Recovery System

    Science.gov (United States)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  12. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  13. Road map for district heating. The role of district heating in the energy system. Main report; Denmark; Roadmap for fjernvarmen. Fjernvarmens rolle i energisystemet. Hovedrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, M.; Aabye Moeller, A.; Eggert, A.; Bjerregaard, M. (Fjernvarmens Udviklingscenter, AArhus (Denmark)); Dyrelund, A. (Ramboell, Koebenhavn (Denmark)); OErsted Pedersen, H. (Ea Energianalyse, Koebenhavn (Denmark)); Lund, H. (Aalborg Univ., Aalborg (Denmark))

    2011-07-01

    In the recent years many studies of how Denmark can be fossil free by 2050 it is agreed that district heating will play a crucial role. District heating is an important factor of phasing out fossil fuels in an energy-and cost-effective way. But the future energy supply without fossil fuels poses new requirements for district heating. In the future, district heating shall provide energy for low-energy houses, have low distribution losses and use a variety of heat sources such as geothermal, solar, waste, surplus heat, CHP and various biomass con-version processes. In addition, it must all be done in an energy efficient way and in an active interaction with production of electricity and electricity consumption and, through integration of electricity from wind, solar and wave power. Low temperature, use of heat pumps and the interaction with electricity and biomass will be keywords. It is not only in Denmark we will need an active development of future technologies and systems. Large parts of Europe and many other parts of the world need the same development, and today Denmark has a significant export in the market - an export that has risen sharply, despite the recent economic recession. There is thus a double need to actively promote the development of future district heating technologies. We will partly need the technology development to realize the goal of a fossil free society and secondly because it is necessary to maintain and expand the export. This report contains a number of proposals for concrete actions - a roadmap for the development of district heating. The project is anchored at the District Energy Development Center that will work for an implementation of the concrete project ideas after the project completion. There is a need to increase the activity level for development of district heating. There is therefore a need to ensure financing of this development. We suggest that this can be done by creating an opportunity for a more sustained funding, for

  14. Road map for district heating. The role of district heating in the energy system. Summary report; Denmark; Roadmap for fjernvarmen. Fjernvarmens rolle i energisystemet. Resumerapport

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, M.; Aabye Moeller, A.; Eggert, A.; Bjerregaard, M. (Fjernvarmens Udviklingscenter, AArhus (Denmark)); Dyrelund, A. (Ramboell, Koebenhavn (Denmark)); OErsted Pedersen, H. (Ea Energianalyse, Koebenhavn (Denmark)); Lund, H. (Aalborg Univ., Aalborg (Denmark))

    2011-07-01

    In the recent years many studies of how Denmark can be fossil free by 2050 it is agreed that district heating will play a crucial role. District heating is an important factor of phasing out fossil fuels in an energy-and cost-effective way. But the future energy supply without fossil fuels poses new requirements for district heating. In the future, district heating shall provide energy for low-energy houses, have low distribution losses and use a variety of heat sources such as geothermal, solar, waste, surplus heat, CHP and various biomass con-version processes. In addition, it must all be done in an energy efficient way and in an active interaction with production of electricity and electricity consumption and, through integration of electricity from wind, solar and wave power. Low temperature, use of heat pumps and the interaction with electricity and biomass will be keywords. It is not only in Denmark we will need an active development of future technologies and systems. Large parts of Europe and many other parts of the world need the same development, and today Denmark has a significant export in the market - an export that has risen sharply, despite the recent economic recession. There is thus a double need to actively promote the development of future district heating technologies. We will partly need the technology development to realize the goal of a fossil free society and secondly because it is necessary to maintain and expand the export. This report contains a number of proposals for concrete actions - a roadmap for the development of district heating. The project is anchored at the District Energy Development Center that will work for an implementation of the concrete project ideas after the project completion. There is a need to increase the activity level for development of district heating. There is therefore a need to ensure financing of this development. We suggest that this can be done by creating an opportunity for a more sustained funding, for

  15. A Life Cycle Analysis on a Bio-DME production system considering the species of biomass feedstock in Japan and Papua New Guinea

    International Nuclear Information System (INIS)

    Higo, Masashi; Dowaki, Kiyoshi

    2010-01-01

    This paper describes the performance and/or CO 2 intensities of a Bio-DME (Biomass Di-methyl Ether) production system, considering the differences of biomass feedstock. In the past LCA studies on an energy chain model, there is little knowledge on the differences of biomass feedstock and/or available condition. Thus, in this paper, we selected Papua New Guinea (PNG) which has good potential for supply of an energy crop (a short rotation forestry), and Japan where wood remnants are available, as model areas. Also, we referred to 9 species of biomass feedstock of PNG, and to 8 species in Japan. The system boundary on our LCA consists of (1) the pre-treatment process, (2) the energy conversion process, and (3) the fuel transportation process. Especially, since the pre-treatment process has uncertainties related to the moisture content of biomass feedstock, as well as the distance from the cultivation site to the energy plant, we considered them by the Monte Carlo simulation. Next, we executed the process design of the Bio-DME production system based on the basic experimental results of pyrolysis and char gasification reactions. Due to these experiments, the gas components of pyrolysis and the gasification rate under H 2 O (steam) and CO 2 were obtained. Also, we designed the pressurized fluid-bed gasification process. In a liquefaction process, that is, a synthesis process of DME, the result based on an equilibrium constant was used. In the proposed system, a steam turbine for an auxiliary power was assumed to be equipped, too. The energy efficiencies are 39.0-56.8 LHV-%, depending upon the biomass species. Consequently, CO 2 intensities in the whole system were 16.3-47.2 g-CO 2 /MJ-DME in the Japan case, and 12.2-36.7 g-CO 2 /MJ-DME in the PNG one, respectively. Finally, using the results of CO 2 intensities and energy efficiencies, we obtained the regression equations as parameters of hydrogen content and heating value of a feedstock. These equations will be

  16. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  17. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  18. Biosorption of rare earth elements, thorium and uranium using Buccinum tenuissimum shell biomass

    International Nuclear Information System (INIS)

    Wang, Yudan; Koto, Yusuke; Sakamoto, Nobuo; Kano, Naoki; Imaizumi, Hiroshi

    2010-01-01

    In order to evaluate the efficiency of shell biomass as sorbent for rare earth elements (REEs), thorium (Th) and uranium (U), sorption experiment from multi-element solutions containing known amount of REEs, Th and U using Buccinum tenuissimum shell was explored. Furthermore, to confirm the characteristics of the shell biomass, the surface morphology, the crystal structure, and the specific surface area of the shell (both original sample and the heat-treatment (480degC, 6h) sample) was determined. Consequently, the following matters have been mainly clarified. (1) By heat-treatment (480degC, 6h), the crystal structure of the shell biomass was transformed from aragonite (CaCO 3 ) into calcite (CaCO 3 ) phase, and the specific surface area of the biomass have decreased remarkably (i.e., by a factor of less than one eighth). (2) The shell biomass (both original sample and the heat-treated sample) showed excellent sorption capacity for REEs, although the sorption capacity decreases slightly after heat-treatment. (3) Adsorption isotherms using the shell biomass can be described by Langmuir and Freundlich isotherms satisfactorily for REEs, but not for Th and U in this work. (4) Shell biomass (usually treated as waste material) could be an efficient sorbent for REEs in future. (author)

  19. Biomass energy: State of the technology present obstacles and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  20. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    Directory of Open Access Journals (Sweden)

    Antonio Rigueiro-Rodríguez

    2012-02-01

    Full Text Available Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener and beta (Jaccard and Magurran biodiversity for a period of four years in a P. radiata silvopastoral system. The experiment consisted of a randomized block design of two treatments (continuous and rotational grazing. Biomass, and species abundances were measured - biodiversity metrics were calculated based on these results for a two years of grazing and two years of post-grazing periods. Both continuous and rotational grazing systems were useful tools for reducing biomass and, therefore, fire risk. The rotational grazing system caused damage to the U. europaeus shrub, limiting its recovery once grazing was stopped. However, the more intensive grazing of U. europaeus plants under rotational had a positive effect on both alpha and beta biodiversity indexes due to the low capacity of food selection in the whole plot rather than continuous grazing systems. Biomass was not affected by the grazing system; however the rotational grazing system is more appropriate to reduce U. europaeus biomass and therefore forest fire risk at a long term and to enhance pasture biodiversity than the continuous grazing system.

  1. EFFECT OF THE TYPE OF HEAT SOURCES ON CARBON DIOXIDE EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sławomir Rabczak

    2016-11-01

    Full Text Available A lot of attention is nowadays devoted to the problem of generally defined ecology. It is absolutely essential in case of systems and sources generating heat due to their direct influence on the environment through emitting post-process products to the atmosphere which are, most frequently a result of combustion. Therefore, constant searchers are made to optimize the operation of heat sources and to acquire energy from sources for which the general balance of carbon dioxide emission is zero or close to zero. This work compares the emissions of equivalent CO2 from selected systems with the following heat sources: coal, gas furnace, heat pump, and refers results of the analysis to aspects connected with regulations concerning environmental protection. The systems generating thermal energy in the gas furnaces, coal, biomass, as well as the compression heat pumps with the lower heat source as ambient air or ground were taken under consideration, as well as centralized systems for the production of heat based on the combustion of coal, gas, oil, and biomass. the Emission of carbon dioxide for the installation of cogeneration and absorption heat pump were also calculated. Similarly obtained amount of extra emission necessary for the proper operation maintenance of heating devices via the supplied electricity from external source, the mostly fuel-fired power plants for fuels as previously mentioned. The results of the calculations were presented in tables and graphs.

  2. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  3. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  4. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  5. Overview of renewable and recovery heat - Release Autumn 2017

    International Nuclear Information System (INIS)

    Payen, Elodie; Descat, Marie; Purdue, Julie; Apolit, Robin; Richard, Axel; Billerey, Elodie; Jouet, Francoise; Laplagne, Valerie

    2017-09-01

    This publication proposes an overview of the different sources of renewable heat or of heat recovery. It addresses the biomass sector (collective, individual and tertiary biomass, domestic wood-based heating, biomass characteristics and stakes), the direct geothermal and heat pumps sectors, the thermal solar sector (key figures, installed power, characteristics and stakes), the sector of energetic valorisation of wastes for heat production (key figures, installed power, stakes and objectives, typology and regulation), and heat networks as energy vectors (key figures, characteristics of heat networks and of cold networks). The development framework is also presented with the objectives of the multi-year energy programming (PPE), the economic and regulatory framework. Agencies and professional bodies are briefly presented

  6. Biomass for rural vitality report

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S.; DiPaolo, J.; Bryan, J.

    2009-06-15

    This report was completed by the Eastern Lake Ontario Regional Innovation Network (ELORIN) in order to identify opportunities for producing pellets from agricultural biomass in Lennox and Addington County. An agricultural profile of the county was presented. Potential feedstocks for biomass production included industrial hemp; switchgrass; short rotation crop willow; hybrid poplars; and miscanthus. Available soil survey data was combined with soil class data in order to generate maps of the total area of land available for energy crop production. The pelletizing process was described. A cost projection for 3 to 7 ton per hour pellet production facility was also presented. Potential markets for using the pellets include greenhouses, residential home heating suppliers and large industrial users. The study showed that heating just 1 per cent of Ontario's greenhouse space with switchgrass will create a demand for 15,000 tonnes of pellets. The average home requires 3 to 4 tonnes of pellets per year for heating. 3 tabs., 54 figs.

  7. Biomass for rural vitality report

    International Nuclear Information System (INIS)

    McDonald, S.; DiPaolo, J.; Bryan, J.

    2009-06-01

    This report was completed by the Eastern Lake Ontario Regional Innovation Network (ELORIN) in order to identify opportunities for producing pellets from agricultural biomass in Lennox and Addington County. An agricultural profile of the county was presented. Potential feedstocks for biomass production included industrial hemp; switchgrass; short rotation crop willow; hybrid poplars; and miscanthus. Available soil survey data was combined with soil class data in order to generate maps of the total area of land available for energy crop production. The pelletizing process was described. A cost projection for 3 to 7 ton per hour pellet production facility was also presented. Potential markets for using the pellets include greenhouses, residential home heating suppliers and large industrial users. The study showed that heating just 1 per cent of Ontario's greenhouse space with switchgrass will create a demand for 15,000 tonnes of pellets. The average home requires 3 to 4 tonnes of pellets per year for heating. 3 tabs., 54 figs.

  8. International biomass. International markets of biomass-energy - Public synthesis

    International Nuclear Information System (INIS)

    Gardette, Yves-Marie; Dieckhoff, Lea; Lorne, Daphne; Postec, Gwenael; Cherisey, Hugues de; RANTIEN, Caroline

    2014-11-01

    This publication proposes a synthesis of a study which aimed at analysing the present and future place of wood-energy in the European Union as the main renewable resource used to produce heat and electricity. This study comprised an analysis of European markets of solid biomass and of regulation, case studies on wood-energy producer markets (North America, Eastern Europe, Brazil and Africa), a study of preparation modes (shredding, granulation, roasting) and biomass transport. This study is based on bibliographical searches in national and European sources, and on field data collected by the various bodies involved in this study. This synthesis notably discusses the following issues: solid biomass is the main renewable resource for the EU and has many applications; European objectives for solid biomass by 2020 are very ambitious; markets are becoming international to face the EU's increasing demand; pellet production in North America is strongly increasing; in Europe, eastern European countries are the main exporters; Brazil has an export potential which is still to be confirmed; the African trade with Europe is still in its infancy. Finally, the development perspectives of roasted wood trade are discussed

  9. Torrefied biomass for use in power station sector; Torrefizierte Biomasse zum Einsatz im Kraftwerkssektor

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Schaubach, Kay [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Kiel, Jaap; Carbo, Michiel [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands); Wojcik, Magdalena [OFI Austrian Research Institute for Chemistry and Technology, Vienna (Austria)

    2013-10-01

    In the torrefaction process biomass is heated up in the absence of oxygen to a temperature of at least 250 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage. Torrefaction also creates superior properties for biomass in many major end-use applications. The process has the potential to provide a significant contribution to an enlarged raw material portfolio for sustainable biomass fuel production inside Europe by including both agricultural and forestry biomass (residues). The article will briefly introduce the concept and objectives of the project and the different torrefaction technologies involved and then focus on the results obtained within the first project phase of the EU-project SECTOR. This comprises production of torrefied biomass batches, subsequent densification (pelletisation and briquetting), characterisation and Round Robin testing of characterisation methods, initial logistics and end-use performance testing, material safety data sheet preparation and sustainability assessment along the value chain. (orig.)

  10. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  11. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  12. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200--1450 kg/hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400 C. Char yield is 14--18% weight on dry basis and is of good quality consisting of 76% C with heat content 6760 kcal/kg. Bio-oil includes 64% C and its heat content is 6250 kcal/kg.

  13. Air pollution reduction with respect to the conversion of biomass into electricity and heat. Emission and cost indexes

    International Nuclear Information System (INIS)

    Bergsma, G.C.; Croezen, H.C.; De Weerd, G.; Van der Werff, T.

    1999-01-01

    Although biomass conversion is considered to be a CO2-free method of producing electricity and heat other emissions have to be taken into account: SO2, NOx, HCl, HF, Hg, Cd, dusts, etc. The aim of the study on the title subject is to support the Dutch Ministry of Housing, Planning and Environment (VROM) in the determination of feasible emission standards for bioconversion installations. The Centre for Energy conservation and clean technology (CE) compiled information on the costs for flue gas purification for different degrees of purification. Because of the fact that the composition of flue gases strongly depends on the biomass flow and the applied conversion technique, both biomass flows and conversion techniques must be distinguished. The following biomass conversion techniques were studied: large-scale combustion of wood wastes and sludges, large-scale gasification of wood wastes, cocombustion of wood wastes and sludges, small-scale combustion of wood wastes and chicken manure, small-scale gasification of wood wastes, and fermentation of wastes from vegetables, fruits and gardens. For each combination it is determined what the emissions are in case of a minimal flue gas purification, what the emissions are and how much additional costs are involved in case the regulations in the BLA (decree on air pollution of waste incineration) are taken into account, and what the emissions are and how much additional costs are involved for a number of levels in between the two fore-mentioned cases. refs

  14. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  15. Assessment of Biomass Resources in Liberia

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  16. Critical success factors for biomass. Identification/specification of critical success factors in the development and market introduction of biomass conversion systems for the production of electricity and/or heat and/or gaseous/liquid secondary energy carriers

    International Nuclear Information System (INIS)

    Van Ree, R.; Dinkelbach, L.; Van Doorn, J.; Hemmes, K.; Gerlagh, T.; Groenendaal, B.

    2000-06-01

    The Dutch government has set the policy target that in 2020 10% of the total energy consumption has to be provided by means of renewable energy sources. Biomass is expected to play a major role (25-30%) in this future renewable energy based energy supply system. However, it is still unclear if this biomass-based target will be reached. Although studies showed that success or failure of innovations and projects depend on a multitude of scientific, technical, economic and societal variables, a number of questions still remained unanswered. This information often concentrated exclusively on the cost price aspects. This study is conducted to identify the internal and external barriers or constraints other than cost aspects, which are of vital importance to a successful penetration of biomass in the Dutch energy market. Barriers with a decreasing influence on the market introduction of bioenergy in the Netherlands are: short-term contractability of biomass (organic waste streams) for energy purposes, applicable emission and waste policies, and unfamiliarity of bioenergy by the public and government. Barriers that potentially could play an important role on the market introduction of bioenergy in the Netherlands in the near future are: long-term contractability of biomass (organic waste streams and energy crops) for energy purposes, the 'new' emission constraints and their potential negative influence on the implementation of small-scale biomass-based combined-cycle plants, the rivalry of bioenergy with other renewable energy based technologies in a liberalising energy market, the social acceptance of bioenergy, the future European agriculture policy (energy crops), and the current status and development perspectives of biomass-based energy conversion technologies. 66 refs

  17. Design and Performance Evaluation of a Solar Assisted Heat Pump Dryer Integrated with Biomass Furnace for Red Chilli

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performance of a solar assisted heat pump dryer integrated with biomass furnace has been designed and evaluated for drying red chillies, and drying kinetics of red chillies were evaluated. The red chillies were dried from 22 kg with moisture content of 4.26 db to moisture content of 0.08 db which needed 11 hours, with the average drying chamber temperature, drying chamber relative humidity, and an air mass flow rate of 70.5°C, 10.1%, and 0.124 kg/s, respectively, while the open sun drying needed 62 hours. Compared to open sun drying, this dryer yielded 82% saving in drying time. The drying rate, the specific moisture extraction rate, and thermal efficiency of the dryer were estimated in average to be about 1.57 kg/h, 0.14 kg/kWh, and 9.03%, respectively. Three mathematical models, the Newton, Henderson-Pabis, and Page models, were fitted to the experimental data on red chillies dried by solar assisted heat pump dryer integrated with biomass furnace and open sun drying. The performance of these models was evaluated by comparing the coefficient of determination (R2, mean bias error (MBE, and root mean-square error (RMSE. The Page model gave the best results for representing drying kinetics of red chillies.

  18. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  19. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  20. Catalytically supported reduction of emissions from small-scale biomass furnace systems; Katalytisch unterstuetzte Minderung von Emissionen aus Biomasse-Kleinfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kraus, Markus; Matthes, Mirjam; Roland, Ulf [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Bindig, Rene; Einicke, Wolf-Dietrich [Leipzig Univ. (Germany)

    2011-06-29

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  1. Catalytically supported reduction of emissions from small-scale biomass furnace systems; Katalytisch unterstuetzte Minderung von Emissionen aus Biomasse-Kleinfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kraus, Markus; Matthes, Mirjam; Roland, Ulf [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Bindig, Rene; Einicke, Wolf-Dietrich [Leipzig Univ. (Germany)

    2011-06-29

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  2. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    Science.gov (United States)

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sustainability of biomass electricity systems. An estimate of costs, macro-economic and environmental impacts

    International Nuclear Information System (INIS)

    Van den Broek, R

    2001-01-01

    Since the 1990s there has been a renewal of interest in the possibility of sustainable generating energy from biomass, an interest driven in part by the climate issue. Other motives are the search for alternatives for parts of Western agriculture and progress in the technological feasibility of efficiently producing high-quality energy from biomass. World-wide this renewed interest has led to a clear increase in research, demonstration and commercial implementation of biomass energy systems. A recent thesis concludes that biomass can contribute to all aspects of sustainability. In the context of sustainable development (often viewed as a concept having economic, social and ecological dimensions), the central question asked by this Ph.D. research is: How do biomass electricity systems compare to fossil-fuel systems and to the land-use that they may replace, in terms of costs, macro-economic and environmental impacts. This article presents a number of conclusions

  4. Biomass and territory

    International Nuclear Information System (INIS)

    Leca, Christel; Regnier, Yannick; Couturier, Christian; Cousin, Stephane; Defaye, Serge; Jilek, Wolfgang; Merle, Sophie; Le Treis, Marc; Jacques, Dominique; Gauthier, Alice; Formerg, Thomas; Duffes, Thomas; Bellanger, Delphine; Nguyen, Elodie

    2012-01-01

    As the biomass sector is growing, several questions are raised regarding the durability of the use of wood as energy source: risk of forest over-exploitation, impact of particles on health, oversized projects without any relationship with local interests, controversy on carbon assessment, massive imports of pellets without real guarantee of durability. A first article addresses the role of French local communities, and identifies six main regions with different characteristics. The example of the Austrian region of Styria is discussed where the share of renewable energies has reached 26,5% (61% of biomass including paper mill wastes). Opportunities and limitations of the development of the agro-fuel sector are briefly discussed. The case of the city of Aubenas is commented (heat network supplied by wood). The issue of short circuit supply is discussed. Other articles outline how air quality is an asset for wood energy, discuss which kind of wood is adapted to an environment-friendly heating, the need to promote wood energy, the importance of the empowerment of local communities, the perspective of a new law on heat, the need to review mechanisms supporting cogeneration, and the role of the French rural network (Reseau Rural Francais) to support rural actors of the wood energy sector

  5. Productivity and cost of conventional understory biomass harvesting systems

    Science.gov (United States)

    Douglas E. Miller; Thomas J. Straka; Bryce J. Stokes; William Watson

    1987-01-01

    Conventional harvesting equipment was tested for removing forest understory biomass (energywood) for use as fuel. Two types of systems were tested--a one-pass system and a two-pass system. In the one-pass system, the energywood and pulpwood were harvested simultaneously. In the two-pass system, the energywood was harvested in a first pass through the stand, and the...

  6. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  7. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  8. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  9. A guideline for fire prevention during the storage of biomass; Leitfaden zur Brandvermeidung bei der Lagerung von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Ferrero, Fabio; Malow, Marcus; Schmidt, Martin; Krause, Ulrich

    2009-10-14

    For five years, an increasing number of fires in timber-yards is observed. A multiplicity of these fires results from self inflammation of the material. Under this aspect, the contribution under consideration reports on the fundamentals of the self inflammation by biomass using wood as an example. The methodology for the avoidance of the self inflammation of biomass is based on a combination of laboratory tests and numeric simulation in order to determine the reliable waste dump geometry and storage times. In particular, the humidity content of the stored material is very important for growth and heat production of the micro organisms. If the material does not possess optimal humidity content, heat production and the probability of self inflammation are reduced. The optimal content of humidity amounts nearly 50-60 mass-%. For the determination of a safe storage of biomass, a flow chart is developed using pinewood as an example. (orig.)

  10. Methods and apparatus for catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  11. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass

    International Nuclear Information System (INIS)

    Striūgas, N.; Vorotinskienė, L.; Paulauskas, R.; Navakas, R.; Džiugys, A.; Narbutas, L.

    2017-01-01

    Highlights: • Combustion of biomass with varying moisture content might lead to unstable operation of a furnace. • Method for automatic control of a furnace fired with wet biomass was developed. • Fuel moisture is estimated by cost-effective indirect method for predictive control. • Fuel moisture estimation methods and furnace control algorithm were validated in an industrial boiler. - Abstract: In small countries like Lithuania with a widespread district heating system, 5–10 MW moving grate biomass furnaces equipped with water boilers and condensing economisers are widely used. Such systems are designed for firing biomass fuels; however, varying fuel moisture, mostly in the range from 30% to 60%, complicates the automated operation. Without manual adjustment of the grate motion mode and other parameters, unstable operation or even extinction of the furnace is possible. To ensure stable furnace operation with moist fuel, the indirect method to estimate the fuel moisture content was developed based on the heat balance of the flue gas condensing economiser. The developed method was implemented into the automatic control unit of the furnace to estimate the moisture content in the feedstock and predictively adjust the furnace parameters for optimal fuel combustion. The indirect method based on the economiser heat balance was experimentally validated in a 6 MW grate-fired furnace fuelled by biomass with moisture contents of 37, 46, 50, 54 and 60%. The analysis shows that the estimated and manually measured values of the fuel moisture content do not differ by more than 3%. This deviation indicates that the indirect fuel moisture calculation method is sufficiently precise and the calculated moisture content varies proportionally to changes in the thermal capacity of the economiser. By smoothing the data using sliding weighted averaging, the oscillations of the fuel moisture content were identified.

  12. Cob biomass supply for combined heat and power and biofuel in the north central USA

    International Nuclear Information System (INIS)

    Schmer, Marty R.; Dose, Heather L.

    2014-01-01

    Corn (Zea mays L.) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) using existing corn grain ethanol plants as a proxy for possible future co-located cellulosic ethanol plants. Cob production estimates averaged 6.04 Tg and 8.87 Tg using a 40 km radius area and 80 km radius area, respectively, from existing corn grain ethanol plants. The use of CHP from cobs reduces overall GHG emissions by 60%–65% from existing dry mill ethanol plants. An integrated biorefinery further reduces corn grain ethanol GHG emissions with estimated ranges from 13.9 g CO 2  equiv MJ −1 to 17.4 g CO 2  equiv MJ −1 . Significant radius area overlap (53% overlap for 40 km radius and 86% overlap for 80 km radius) exists for cob availability between current corn grain ethanol plants in this region suggesting possible cob supply constraints for a mature biofuel industry. A multi-feedstock approach will likely be required to meet multiple end user renewable energy requirements for the north central United States. Economic and feedstock logistics models need to account for possible supply constraints under a mature biofuel industry. - Highlights: • Corn cob biomass was estimated for the north central United States region. • Cobs were evaluated for combined heat and power generation and bioethanol. • Co-located ethanol plants showed a reduction in greenhouse gas emissions. • Biomass supply constraints may occur under a mature cellulosic ethanol scenario

  13. Exergy analysis of biomass organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  14. Potentialities and type of integrating nuclear heating stations into district heating systems

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.; Schmidt, G.

    1978-01-01

    Technical and economical potentialities of applying nuclear heating stations in district heating systems are discussed considering the conditions of the GDR. Special attention is paid to an optimum combination of nuclear heating stations with heat sources based on organic fuels. Optimum values of the contribution of nuclear heating stations to such combined systems and the economic power range of nuclear heating stations are estimated. Final considerations are concerned with the effect of siting and safety concepts of nuclear heating stations on the structure of the district heating system. (author)

  15. Fuzzy comprehensive evaluation of district heating systems

    International Nuclear Information System (INIS)

    Wei Bing; Wang Songling; Li Li

    2010-01-01

    Selecting the optimal type of district heating (DH) system is of great importance because different heating systems have different levels of efficiency, which will impact the system economics, environment and energy use. In this study, seven DH systems were analysed and evaluated by the fuzzy comprehensive evaluation method. The dimensionless number-goodness was introduced into the calculation, the economics, environment and energy technology factors were considered synthetically, and the final goodness values were obtained. The results show that if only one of the economics, environment or energy technology factors are considered, different heating systems have different goodness values. When all three factors were taken into account, the final ranking of goodness values was: combined heating and power>gas-fired boiler>water-source heat pump>coal-fired boiler>ground-source heat pump>solar-energy heat pump>oil-fired boiler. The combined heating and power system is the best choice from all seven systems; the gas-fired boiler system is the best of the three boiler systems for heating purpose; and the water-source heat pump is the best of the three heat pump systems for heating and cooling.

  16. Pyrolysis of forestry biomass by-products in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.

    1999-06-01

    This article summarizes the technical characteristics of a biomass pyrolysis pilot plant recently constructed in central Greece. It highlights the considerations involved in achieving successful pyrolysis technology and environmental and developmental goals, by reviewing technical and nontechnical barriers associated with biomass treatment technology in Greece. Data from the start-up phase of the plant operation are presented and some aspects of the process are outlined. The capacity of the plant is 1200 1450 kg hr, based on wet biomass (Arbutus Unedo) and the pyrolysis temperature is approximately 400{sup o}C. Char yield is 1418 % weight on dry basis and is of good quality consisting of 76{sup o}C with heat content 6760 kcal kg. Bio-oil includes 63% C and its heat content is 6250 kcal kg. (author)

  17. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy....... The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand...

  18. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    Kozak, T.; Majchrzycka, A.

    2009-01-01

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  19. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    Science.gov (United States)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  20. Individual Heating systems vs. District Heating systems: What will consumers pay for convenience?

    International Nuclear Information System (INIS)

    Yoon, Taeyeon; Ma, Yongsun; Rhodes, Charles

    2015-01-01

    For Korea's two most popular apartment heating systems – Individual Heating (IH) and District Heating (DH), – user convenience rests heavily on location of the boiler, availability of hot water, administration of the system, and user control of indoor temperature. A double-bounded dichotomous choice method estimates consumer value for convenience, in a hypothetical market. Higher-income more-educated consumers in more expensive apartments prefer DH. Cost-conscious consumers, who use more electrical heating appliances and more actively adjust separate room temperatures, prefer IH. With willingness-to-pay (WTP) defined as the price ratio between IH and DH, 800 survey respondents indicate a WTP of 4.0% for DH over IH. IH users unfamiliar with DH expect little greater convenience (0.1% WTP), whereas the WTP for DH users runs to 7.9%, demonstrating consumer loyalty. Quantified estimates of consumer preference and convenience can inform design of a full-cost-plus pricing system with a price cap. Results here indirectly predict the effect of abolishing regulations that exclusively establish district heating zones. Strategies to foster the many external benefits of DH systems should stress not their lower cost, but convenience, comfort, and safety. Higher installation costs still hamper DH expansion, so policy-makers could set policies to lower cost barriers to entry. - Highlights: • District Heating (DH) and Individual Heating (IH) systems differ in user convenience. • Difference of convenience is evaluated by a double-bounded dichotomous choice method. • Consumers are willing to pay a 4.03–12.52% higher rate to use DH rather than IH. • Consumers with high living standards prefer DH to IH, and show high consumer loyalty. • Strategies to foster DH systems should stress DH convenience over its lower cost.

  1. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  2. The importance of the wood biomass in environment protection

    Science.gov (United States)

    Spîrchez, Cosmin; Lunguleasa, Aurel; Croitoru, Cǎtǎlin

    2017-12-01

    Biomass is a natural vegetal component. As a form of storing energy is chemical form sun, biomass is one of the most popular and universal resource on Earth. Today biomass fuel can be used for various purposes from room heating to produce electricity and fuel for cars. Biomass is presented in various form for energy, including biodegradable fraction of products, remains and waste from agricultural, forestry and industrial wood processing residues from factories paste stationery and paper, remnants of industrial.

  3. MATHEMATICAL MODEL OF UNSTEADY HEAT TRANSFER OF PASSENGER CAR WITH HEATING SYSTEM

    Directory of Open Access Journals (Sweden)

    E. V. Biloshytskyi

    2018-02-01

    Full Text Available Purpose. The existing mathematical models of unsteady heat processes in a passenger car do not fully reflect the thermal processes, occurring in the car wits a heating system. In addition, unsteady heat processes are often studied in steady regime, when the heat fluxes and the parameters of the thermal circuit are constant and do not depend on time. In connection with the emergence of more effective technical solutions to the life support system there is a need for creating a new mathematical apparatus, which would allow taking into account these features and their influence on the course of unsteady heat processes throughout the travel time. The purpose of this work is to create a mathematical model of the heat regime of a passenger car with a heating system that takes into account the unsteady heat processes. Methodology. To achieve this task the author composed a system of differential equations, describing unsteady heat processes during the heating of a passenger car. For the solution of the composed system of equations, the author used the method of elementary balances. Findings. The paper presents the developed numerical algorithm and computer program for simulation of transitional heat processes in a locomotive traction passenger car, which allows taking into account the various constructive solutions of the life support system of passenger cars and to simulate unsteady heat processes at any stage of the trip. Originality. For the first time the author developed a mathematical model of heat processes in a car with a heating system, that unlike existing models, allows to investigate the unsteady heat engineering performance in the cabin of the car under different operating conditions and compare the work of various life support systems from the point of view their constructive solutions. Practical value. The work presented the developed mathematical model of the unsteady heat regime of the passenger car with a heating system to estimate

  4. Paths to bioenergy villages. A guideline for a independent supply of heat and electricity based on biomass in rural area. 3. ed.; Wege zum Bioenergiedorf. Leitfaden fuer eine eigenstaendige Waerme- und Stromversrogung auf Basis von Biomasse im laendlichen Raum

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Hans; Eigner-Thiel, Swantje; Girschner, Walter; Karpenstein-Machan, Marianne; Roland, Folker; Ruwisch, Volker; Sauer, Benedikt; Schmuck, Peter

    2010-12-15

    Bioenergy villages are one component for the sustainable energy supply in rural areas. The guideline under consideration is intended to encourage people in villages to switch their heat supply and electricity supply on the bases of biomass. The focus of this process-oriented guideline is on: (1) A presentation of the social feasibility, especially the involvement, motivation and encouragement of the population; (2) The presentation of concepts for a nature-friendly cultivation of the required biomass; (3) The treatment of economic and legal issues from the perspective of the people involved.

  5. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  6. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  7. Economic viability of present-day biomass energy installations; Wirtschaftlichkeit von heutigen Biomasse-Energieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Markus Sommerhalder, M; Schelske, O [Ernst Basler und Partner AG, Zuerich (Switzerland); Nussbaumer, T [Verenum, Zuerich (Switzerland); Engeli, H [Engeli Engineering, Neerach (Switzerland); Membrez, Y; Ndoh, M; Tacchini, C [EREP SA, Aclens (Switzerland)

    2007-03-15

    This illustrated, comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the economic viability of biomass energy installations. The installations examined included wood-fired installations, biogas installations and those using bio-diesel and bio-ethanol. The system boundaries involved are defined and various factors that influence cost calculations are examined. The resulting heat and electricity prices for various energy sources and systems are presented and discussed. Examples of small and large-scale installations are presented. For wood-energy, combined heat and power system producing electricity at powers of 1 to 5 MWe are looked at and the various factors influencing their viability are discussed. Biogas installations of various sizes are discussed and the differing investment costs involved are commented on. Here, large industrial installations using communal green wastes are also examined and the influence of communal waste-collection charges on the price for the electricity generated is discussed, as is the influence of the market for the residual compost produced. The production and use of biogas in public wastewater treatment plants is also looked at, including the use of co-substrates. As far as biogenic liquid fuels such as bio-diesel and bio-ethanol are concerned, the report takes a brief look at the situation concerning installations in Switzerland and reviews the production costs involved. Various conclusions are drawn for the various energy sources reviewed as well as for the prices for heat and electrical energy obtained.

  8. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  9. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  10. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  11. A theoretical and experimental study of the thermal degradation of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Groenli, Morten G.

    1996-12-31

    This thesis relates to the thermal degradation of biomass covering a theoretical and experimental study in two parts. In the first part, there is presented an experimental and modeling work on the pyrolysis of biomass under regimes controlled by chemical kinetics, and the second part presents an experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. Five different celluloses, and hemicellulose and lignin isolated from birch and spruce have been studied by thermogravimetry. The thermo grams of wood species revealed different weight loss characteristics which can be attributed to their different chemical composition. The kinetic analysis gave activation energies between 210 and 280 kJ/mole for all the celluloses, and a model of independent parallel reactions was successfully used to describe the thermal degradation. In the second part of the thesis there is presented experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. The effect of heating conditions on the product yields distribution and reacted fraction was investigated. The experiments show that heat flux alters the pyrolysis products as well as the intra particle temperatures to the greatest extent. A comprehensive mathematical model which can simulate drying and pyrolysis of moist wood is presented. The simulation of thermal degradation and heat transport processes agreed well with experimental results. 198 refs., 139 figs., 68 abs.

  12. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  13. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  14. Investigation of biomasses and chars obtained from pyrolysis of different biomasses with solid-state 13C and 23Na nuclear magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Link, S.; Arvelakis, S.; Spliethoff, H.; Waard, de P.; Samoson, A.

    2008-01-01

    A number of biomass samples (reed, pine pellets, Douglas fir wood chips, wheat straw, peach stones, and olive residue), pretreated biomass samples (leached wheat straw, leached peach stones, and leached olive residue), as well as their chars obtained by pyrolysis using different heating rates (5,

  15. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  16. Kinetic model for hydrothermal biomass gasification; Kinetisches Modell der hydrothermalen Biomassevergasung

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, A.; Keskin, M.; Faquir, M.; Dahmen, N. [Inst. fuer Technische Chemie, Forschungszentrum Karlsruhe (Germany)

    2008-07-01

    Hydrothermal biomass gasification is a promising technology to produce hydrogen from wet biomass, i.e. a water content of at least 50 %. This process allows the utilization of agricultural wastes or residuals from biochemical conversions. Since the reaction is highly kinetically controlled, it should be possible to optimimize gas yield and composition with respect to a maximum hydrogen yield. The paper describes the simulation of the process using a kinetic reaction model and experimental data from appropriate test facilities. Experiments were performed for several reactor types and a variety of model systems, like glucose, methane and hydroxy methyl furfural, that were identified as intermediate product for the hydrothermal hydrogen production. The influence of different additive 'catalysts' was tested. It was shown that the biomass composition has an important influence on the gas yield. Alkaline salts can be added to increase the yield. A fast heating and agitation of the biomass are also increasing the gas yield.

  17. Design and performance of the KSC Biomass Production Chamber

    Science.gov (United States)

    Prince, Ralph P.; Knott, William M.; Sager, John C.; Hilding, Suzanne E.

    1987-01-01

    NASA's Controlled Ecological Life Support System program has instituted the Kennedy Space Center 'breadboard' project of which the Biomass Production Chamber (BPC) presently discussed is a part. The BPC is based on a modified hypobaric test vessel; its design parameters and operational parameters have been chosen in order to meet a wide range of plant-growing objectives aboard future spacecraft on long-duration missions. A control and data acquisition subsystem is used to maintain a common link between the heating, ventilation, and air conditioning system, the illumination system, the gas-circulation system, and the nutrient delivery and monitoring subsystems.

  18. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  19. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  20. Improved energy efficiency in sawmill drying system

    International Nuclear Information System (INIS)

    Anderson, Jan-Olof; Westerlund, Lars

    2014-01-01

    Highlights: • A heating system at a sawmill was investigated and improved. • Different impacts of external technologies at the energy usage were explored. • The heat and electricity consumption was analysed separate between technologies type. • The result point out a significant decrease of the biomass consumptions. - Abstract: The worldwide use of biomass has increased drastically during the last decade. At Swedish sawmills about half of the entering timber becomes lumber, with the remainder considered as by-product (biomass). A significant part of this biomass is used for internal heat production, mainly for forced drying of lumber in drying kilns. Large heat losses in kilns arise due to difficulties in recovering evaporative heat in moist air at low temperatures. This paper addresses the impact of available state-of-the-art technologies of heat recycling on the most common drying schemes used in Swedish sawmills. Simulations of different technologies were performed on an hourly basis to compare the heat and electricity demand with the different technologies. This was executed for a total sawmill and finally to the national level to assess the potential effects upon energy efficiency and biomass consumption. Since some techniques produce a surplus of heat the comparison has to include the whole sawmill. The impact on a national level shows the potential of the different investigated techniques. The results show that if air heat exchangers were introduced across all sawmills in Sweden, the heat demand would decrease by 0.3 TWh/year. The mechanical heat pump technology would decrease the heat demand by 5.6 TWh/year and would also produce a surplus for external heat sinks, though electricity demand would increase by 1 TWh/year. The open absorption system decreases the heat demand by 3.4 TWh/year on a national level, though at the same time there is a moderate increase in electricity demand of 0.05 TWh/year. Introducing actual energy prices in Sweden gives an

  1. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  2. Heat-pump-centered integrated community energy systems: system development summary

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  3. Explaining the failure of the Dutch innovation system for biomass digestion-A functional analysis

    International Nuclear Information System (INIS)

    Negro, Simona O.; Hekkert, Marko P.; Smits, Ruud E.

    2007-01-01

    Since the 1970s research on energy conversion technologies, such as biomass digestion, has been carried out in the Netherlands. However, after 30 years biomass digestion has not been implemented on large scale. The aim of this paper is to create insight into the underlying factors of this troublesome trajectory by applying the 'Functions of Innovation Systems' framework. This results in clear understanding of the (lack of) activities that took place in the innovation system of biomass digestion and the role of government policy in both inducing and blocking this development. The analysis provides several lessons to take into account when developing policies for the acceleration of the development and diffusion of biomass energy

  4. Advances in heat pump systems: A review

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.

    2010-01-01

    Heat pump systems offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. As the cost of energy continues to rise, it becomes imperative to save energy and improve overall energy efficiency. In this light, the heat pump becomes a key component in an energy recovery system with great potential for energy saving. Improving heat pump performance, reliability, and its environmental impact has been an ongoing concern. Recent progresses in heat pump systems have centred upon advanced cycle designs for both heat- and work-actuated systems, improved cycle components (including choice of working fluid), and exploiting utilisation in a wider range of applications. For the heat pump to be an economical proposition, continuous efforts need to be devoted to improving its performance and reliability while discovering novel applications. Some recent research efforts have markedly improved the energy efficiency of heat pump. For example, the incorporation of a heat-driven ejector to the heat pump has improved system efficiency by more than 20%. Additionally, the development of better compressor technology has the potential to reduce energy consumption of heat pump systems by as much as 80%. The evolution of new hybrid systems has also enabled the heat pump to perform efficiently with wider applications. For example, incorporating a desiccant to a heat pump cycle allowed better humidity and temperature controls with achievable COP as high as 6. This review paper provides an update on recent developments in heat pump systems, and is intended to be a 'one-stop' archive of known practical heat pump solutions. The paper, broadly divided into three main sections, begins with a review of the various methods of enhancing the performance of heat pumps. This is followed by a review of the major hybrid heat pump systems suitable for application with various heat sources. Lastly, the paper presents novel

  5. Conceptual evaluation of hybrid energy system comprising wind-biomass-nuclear plants for load balancing and for production of renewable synthetic transport fuels

    International Nuclear Information System (INIS)

    Carlsson, Johan; Purvins, Arturs; Papaioannou, Ioulia T.; Shropshire, David; Cherry, Robert S.

    2014-01-01

    Future energy systems will increasingly need to integrate variable renewable energy in order to reduce greenhouse gas emissions from power production. Addressing this trend the present paper studies how a hybrid energy systems comprising aggregated wind farms, a biomass processing plant, and a nuclear cogeneration plant could support high renewable energy penetration. The hybrid energy system operates so that its electrical output tends to meet demand. This is achieved mainly through altering the heat-to-power ratio of the nuclear reactor and by using excess electricity for hydrogen production through electrolysis. Hybrid energy systems with biomass treatment processes, i.e. drying, torrefaction, pyrolysis and synthetic fuel production were evaluated. It was shown that the studied hybrid energy system comprising a 1 GWe wind farm and a 347 MWe nuclear reactor could closely follow the power demand profile with a standard deviation of 34 MWe. In addition, on average 600 m"3 of bio-gasoline and 750 m"3 bio-diesel are produced daily. The reduction of greenhouse gas emissions of up to 4.4 MtCO_2eq annually compared to power generation and transport using conventional fossil fuel sources. (author)

  6. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  7. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  8. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  9. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  10. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  11. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  12. Environmental implications of increased biomass energy use

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  13. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  14. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lopez, P. Reche; Reyes, N. Ruiz; Gonzalez, M. Gomez; Jurado, F.

    2008-01-01

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  15. Energetic use of renewable fuels. Logistics of energy carrier supply, technologies of usage, boundary conditions for economically efficient use of biomass. Proceedings; Energetische Nutzung nachwachsender Rohstoffe - Logistik der Energietraegerbereitstellung, Technologien der Energietraegernutzung, Rahmenbedinungen fuer den wirtschaftlichen Einsatz von Biomasse. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the 14th international conference 'Energetical use of renewable fuels' at Freiberg (Federal Republic of Germany) at 11th and 12th September, 2008, the following lectures were held: (a) State of the legislation procedure for the revision of the Renewable Energy Resources Act and Renewable Energy Resources Heat Act (Bernhard Dreher); (b) Power generation from biomass - A task of investigation? (Martin Kaltschmitt); (c) A physical-chemical online analysis of fine dust emissions from wood furnaces (Michael Sattler, Christian Gaegauf, Nicolas Meyer, Maaren Heringa); (d) Actual state of standardization of biogenic solid fuels (Andreas Neff, Frank Baur); (e) Combined heat and power coupling with thermal gasification of biomass - State of the art and actual developments (Juergen Karl); (f) Wood power generation in the practice - Possibilities and potentials (Michael Hoeffling); (g) Biological natural gas - An analysis and evaluation (Alexander Vogel, Stephan Ramesohl); (h) Digestion of biomass ensures a high yield of biogas (Thilo Lehmann, Christina Dornack); (i) Market for wood pellets in the Federal Republic of Germany - State of the art, development, perspectives (Martin Bentele); (j) Report on the expert opinion ''Utilization of biomass for power generation'' of the Scientific Advisory Council agrarian policy at BMELV (Thomas De Witte); (k) About the ecology of short rotation plants (Heino Wolf); (l) Generation of electricity and heat on the basis of straw - The first straw-fired heating plant in Germany (Rainer Knieper); (m) Standardization of liquid fuels in European context (Thomas Brehmer, Franz Heger); (n) Bio fuels of the second generation: Production, quantities of biomass and strategies of supply (Lutz Freytag); (o) Biomass-fired heating plant Simmering (Ludwig Gockner); (p) Industrial network Renewably Energy in the Free State of Saxony (Klaus Beumler); (q) Exemplary regional conversion of an intelligent, decentralised

  16. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  17. Carbon dioxide from integrated biomass energy systems - examples from case studies in USA

    International Nuclear Information System (INIS)

    Boman, U.

    1996-04-01

    This report is a result of a work by Vattenfall and Electric Power Research Institute (EPRI) to study a number of integrated biomass energy systems. The emphasis of this paper will be on the energy systems of the projects in Minnesota and New York. By introducing the dedicated feedstock supply system (DFSS), the amount of energy spent for production of crops can be reduced, the amount of fertilizers can be decreased, the soil can be improved, and a significant amount of energy will be produced, compared to an ordinary farm crop. Although the conversion of biomass to electricity in itself does not emit more CO 2 than is captured by the biomass through photosynthesis, there will be some CO 2 -emissions from the DFSS. External energy is required for the production of the biomass feedstock, and this energy is mainly based on fossil fuels. By using this input energy, CO 2 and other greenhouse gases are emitted. But, by utilizing fossil fuels as external input fuels for production of biomass, we would get about 10-15 times more electric energy per unit fossil fuel, than we would get if the fossil fuel was utilized in a power directly. Compared to traditional coal based electricity production, the CO 2 -emissions are in most cases reduced significantly. But the reduction rate is related to the process and the whole integrated system. The reduction could possibly be increased further, by introducing more efficient methods in farming, transportation, and handling, and by selecting the best methods or technologies for conversion of biomass fuel to electricity. 25 refs, 8 figs, 8 tabs

  18. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  19. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  20. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.