WorldWideScience

Sample records for biomass heating systems

  1. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    -scale solar thermal, large heat pumps, geothermal heat, industrial surplus heat, and waste incineration. Where the energy density in the building stock is not high enough for DH to be economical, geothermal heat pumps can be recommended for individual heating systems, even though biomass consumption is higher......The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...

  2. Technoeconomic analysis of a biomass based district heating system

    International Nuclear Information System (INIS)

    This paper discussed a proposed biomass-based district heating system to be built for the Pictou Landing First Nation Community in Nova Scotia. The community centre consists of 6 buildings and a connecting arcade. The methodology used to size and design heating, ventilating and air conditioning (HVAC) systems, as well as biomass district energy systems (DES) were discussed. Annual energy requirements and biomass fuel consumption predictions were presented, along with cost estimates. A comparative assessment of the system with that of a conventional oil fired system was also conducted. It was suggested that the design and analysis methodology could be used for any similar application. The buildings were modelled and simulated using the Hourly Analysis Program (HAP), a detailed 2-in-1 software program which can be used both for HVAC system sizing and building energy consumption estimation. A techno-economics analysis was conducted to justify the viability of the biomass combustion system. Heating load calculations were performed assuming that the thermostat was set constantly at 22 degrees C. Community centre space heating loads due to individual envelope components for 3 different scenarios were summarized, as the design architecture for the buildings was not yet finalized. It was suggested that efforts should be made to ensure air-tightness and insulation levels of the interior arcade glass wall. A hydronic distribution system with baseboard space heating units was selected, comprising of a woodchip boiler, hot water distribution system, convective heating units and control systems. The community has its own logging operation which will provide the wood fuel required by the proposed system. An outline of the annual allowable harvest covered by the Pictou Landing Forestry Management Plan was presented, with details of proposed wood-chippers for the creation of biomass. It was concluded that the woodchip combustion system is economically preferable to the

  3. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting the...... dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...... district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density in the...

  4. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  5. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    OpenAIRE

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy so...

  6. Biomass District Heat System for Interior Rural Alaska Villages

    Energy Technology Data Exchange (ETDEWEB)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  7. Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available Global interest in using biomass feedstock to produce heat and power is increasing. In this study, RETScreen modelling software was used to investigate the feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Weiss Kessel Multicratboiler system with 2 MW capacity using rice straw biomass as fuel and 10 units of RBI® CB0500 boilers with 144 kW capacity using natural gas as fuel were selected for the proposed biomass heating system. The total cost of the biomass heating project is US$ 786,390. The project has a pre-tax and after tax internal rate of return (IRR of 122.70%, simple payback period of 2.54 years, equity payback period of 0.83 year, a net present value of US$ 3,357,138.29, an annual lifecycle savings of US$ 262,617.91, a benefit-cost ratio of 21.83, an electricity cost of $0/kWh and a GHG reduction cost of −204.66 $/tCO₂. The annual GHG emission reduction is 1,283.2 tCO₂, which is equivalent to 118 hectares of forest absorbing carbon. The development and adoption of this renewable energy technology will save costs on buying conventional type of heating system and result in a large technical and economic potential for reducing greenhouse gas emissions which will satisfy the sustainable development goals.

  8. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier

    International Nuclear Information System (INIS)

    The aim of this study is to investigate the use of waste heat that is recovered from a biomass gasifier. In the gasification process, the low heating value of biomass can be transferred to a high heating value for combustible gaseous fuel, a form that is widely used in industry and power plants. Conventionally, some of cleaning processes need to be conducted under higher operating temperatures that the low temperatures typically used to burn biomass. Therefore, the catalytic reactor was designed before installation the scrubber in the downdraft gasifier system to make effective use of the waste heat. The experimental result shows that the temperature of the gasifier outlet is about 623–773 K; dolomite is used for tar removal in the catalytic reactor. To further improve the use of waste heat, a thermoelectric generator is added to provide for the recovery of waste heat. The thermoelectric generator system is manufactured using a Bi2Te3 based material and is composed of eight thermoelectric modules on the surface of catalytic reactor. The measured surface temperature of the catalytic reactor is 473–633 K that is the correct temperature for Bi2Te3 as thermoelectric generator. The result shows that the maximum power output of the thermoelectric generator system is 6.1 W and thermoelectric generator power density is approximately 193.1 W/m2. - Highlights: • Set up the thermoelectric power generation system to recover waste heat from biomass gasifier. • Bi2Te3 based material is suitable for choosing as a thermoelectric generator in the waste heat recovery temperature range of 473–633 K form gasifier. • The maximum power density can reach 193.1 W/m2 for waste heat recovery

  9. Technoeconomic analysis of a biomass based district heating system. Paper no. IGEC-1-ID01

    International Nuclear Information System (INIS)

    District energy systems (DES) that produce steam, hot water or chilled water at a central plant and then distribute that energy to buildings in the district for space heating, domestic hot water heating and air conditioning provide opportunities for increasing energy efficiency and reducing greenhouse gas (GHG) emissions. Use of biomass, such as wood, wood byproducts and wastes, fast-growing trees, agricultural crops and waste, in place of conventional fossil fuels to produce the thermal energy needed by a DES, presents further opportunities for reducing green house gas emissions as well as providing rural employment, and local solutions to rural and remote energy needs. In this paper, a technoeconomic analysis of a biomass based DES for a community center in Nova Scotia, Canada is presented. The methodology used to size and design the heating and ventilating system, as well as the biomass based DES is discussed. Annual energy requirement and biomass fuel consumption predictions are presented along with cost estimates. A comparative assessment of the economic feasibility of the system vis-a-vis a conventional oil fired system is conducted. While the results are specific to the particular application, the design and analysis methodology that is presented in the paper can be used for any similar application. (author)

  10. Assessment of integration of different biomass gasification alternatives in a district-heating system

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, E.; Ahlgren, E.O. [Department of Energy and Environment, Energy Systems Technology, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2009-12-15

    With increasingly stringent CO{sub 2} emission reduction targets, incentives for efficient use of limited biomass resources increase. Technologies for gasification of biomass may then play a key role given their potential for high electrical efficiency and multiple outputs; not only electricity but also bio transport fuels and district heat. The aim of this study is to assess the economic consequences and the potential for CO{sub 2} reduction of integration of a biomass gasification plant into a district-heating (DH) system. The study focuses on co-location with an existing natural gas combined cycle heat and power plant in the municipal DH system of Goeteborg, Sweden. The analysis is carried out using a systems modelling approach. The so-called MARTES model is used. MARTES is a simulating, DH systems supply model with a detailed time slice division. The economic robustness of different solutions is investigated by using different sets of parameters for electricity price, fuel prices and policy tools. In this study, it is assumed that not only tradable green certificates for electricity but also tradable green certificates for transport fuels exist. The economic results show strong dependence on the technical solutions and scenario assumptions but in most cases a stand-alone SNG-polygeneration plant with district-heat delivery is the cost-optimal solution. Its profitability is strongly dependent on policy tools and the price relation between biomass and fossil fuels. Finally, the results show that operation of the biomass gasification plants reduces the (DH) system's net emissions of CO{sub 2}. (author)

  11. Biomass gasification in district heating systems - The effect of economic energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Wetterlund, Elisabeth; Soederstroem, Mats [Division of Energy Systems, Department of Management and Engineering, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2010-09-15

    Biomass gasification is considered a key technology in reaching targets for renewable energy and CO{sub 2} emissions reduction. This study evaluates policy instruments affecting the profitability of biomass gasification applications integrated in a Swedish district heating (DH) system for the medium-term future (around year 2025). Two polygeneration applications based on gasification technology are considered in this paper: (1) a biorefinery plant co-producing synthetic natural gas (SNG) and district heat; (2) a combined heat and power (CHP) plant using integrated gasification combined cycle technology. Using an optimisation model we identify the levels of policy support, here assumed to be in the form of tradable certificates, required to make biofuel production competitive to biomass based electricity generation under various energy market conditions. Similarly, the tradable green electricity certificate levels necessary to make gasification based electricity generation competitive to conventional steam cycle technology, are identified. The results show that in order for investment in the SNG biorefinery to be competitive to investment in electricity production in the DH system, biofuel certificates in the range of 24-42 EUR/MWh are needed. Electricity certificates are not a prerequisite for investment in gasification based CHP to be competitive to investment in conventional steam cycle CHP, given sufficiently high electricity prices. While the required biofuel policy support is relatively insensitive to variations in capital cost, the required electricity certificates show high sensitivity to variations in investment costs. It is concluded that the large capital commitment and strong dependency on policy instruments makes it necessary that DH suppliers believe in the long-sightedness of future support policies, in order for investments in large-scale biomass gasification in DH systems to be realised. (author)

  12. Design and System Analysis of Quad-Generation Plant Based on Biomass Gasification Integrated with District Heating

    DEFF Research Database (Denmark)

    Rudra, Souman

    . Different biomass resources are used to generate heat and electricity, to produce gas fuel like bio-SNG (synthesis natural gas) and also to produce liquid fuels, such as ethanol, and biodiesel. Due to the fact that the trend of establishing new and modern plants for handling and processing biomass...... in this study. The overall aim of this work is to provide a complete assessment of the technical potential of biomass gasification for local heat and power supply in Denmark and replace of natural gas for the production. This study also finds and defines the future areas of research in the gasification...... technology in Denmark within the development of green syngas for different sector including transportation sector. Computational models of whole system component for steady-state operation were developed and also system concept and key performance parameters were identified. The main contribution...

  13. Multi-parametric indicators of energy products in biomass district heating system

    OpenAIRE

    Eneja Osterman

    2011-01-01

    In this work integration of an organic Rankine cycle (ORC) into district heating system (DHS) is studied. Two scenarios are considered, namely, low temperature cogeneration and high temperature cogeneration, each of them having two cases. Those cases are full time and part time operation of cogeneration. A general model which was built up in Trnsys simulation environment consists of boiler, cogeneration unit, DHS as a heat load and cooling tower. It calculates heat demand due to space heating...

  14. Mobile Biomass Pelletizing System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  15. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  16. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    OpenAIRE

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  17. Biomass equipments. The wood-fueled heating plants; Materiels pour la biomasse. Les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R, 63 - Arlanc (France)

    1997-12-31

    This paper analyzes the consequences of the classification of biomass fuels in the French 2910 by-law on the classification of biomass-fueled combustion installations. Biomass fuels used in such installations must be only wood wastes without any treatment or coating. The design of biomass combustion systems must follow several specifications relative to the fueling system, the combustion chamber, the heat exchanger and the treatment of exhaust gases. Other technical solutions must be studied for other type of wood wastes in order to respect the environmental pollution laws. (J.S.)

  18. Establishing biomass heating in the UK: phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Biomass Heat Working Group, first set up in 1995, was taken on by British BioGen in 1996. Over the summer of 1996 British BioGen, supported by DTI, worked with the group to produce 'A Strategy to Develop the UK Market for Biomass Heating Installations'. In the spring of 1997 British BioGen agreed a two-year programme with ETSU (for the DTI) to 'Establish Biomass Heating in the UK'. The DTI's New and Renewable Energy Programme has supported this two-year programme which aims to bring together industry stakeholders and assist in the development of a significant biomass heat market in the UK. Overall we believe the project has been successful in its aim to increase the volume of biomass heating enquiries and enable greater use of the industry 'knowledge base'. Throughout the duration of the project a number of new biomass heating systems have been installed, including Shenstone Lodge School, Boughton Pumping Station and Elvendon Priory. In addition, an efficient system of information exchange has been established for customers and industry. British BioGen believe that the benefits of this system will be a crucial factor in achieving bioenergy industry targets of 2MWt for domestic heating, 2MWt for industrial and commercial heating and 2MWt for CHP by the end of 2001. The remainder of this summary offers highlights of the activities undertaken within the project, outlines the conclusions of the project and makes brief recommendations for further actions to assist the further deployment of biomass heating in the UK. (author)

  19. Fort Carson Building 1860 Biomass Heating Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gaul, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    As part of the Army Net-Zero Energy Installation program, the Fort Carson Army Base requested that NREL evaluate the feasibility of adding a biomass boiler to the district heating system served by Building 1860. We have also developed an Excel-spreadsheet-based decision support tool--specific to the historic loads served by Building 1860--with which users can perform what-if analysis on gas costs, biomass costs, and other parameters. For economic reasons, we do not recommend adding a biomass system at this time.

  20. Investigation of Heat Generation from Biomass Fuels

    Directory of Open Access Journals (Sweden)

    Naoharu Murasawa

    2015-06-01

    Full Text Available New biomass fuels are constantly being developed from renewable resources in an effort to counter global warming and to create a sustainable society based on recycling. Among these, biomass fuels manufactured from waste are prone to microbial fermentation, and are likely to cause fires and explosions if safety measures, including sufficient risk assessments and long-term storage, are not considered. In this study, we conducted a series of experiments on several types of newly developed biomass fuels, using combinations of various thermal- and gas-analysers, to identify the risks related to heat- and gas-generation. Since a method for the evaluation of the relative risks of biomass fuels is not yet established in Japan, we also such a method based on our experimental results. The present study found that in cases where safety measures are not thoroughly observed, biomass fuels manufactured from waste materials have a higher possibility of combusting spontaneously at the storage site due to microbial fermentation and heat generation.

  1. Grate-firing of biomass for heat and power production

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2008-01-01

    As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can...... bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion...

  2. Port Graham Community Building Biomass Heating Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Patrick [Port Graham Village Corporation, Anchorage, AK (United States); Sink, Charles [Chugachmiut, Anchorage, Alaska (United States)

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to

  3. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  4. Port Graham Community Building Biomass Heating Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Patrick [Port Graham Village Corporation, Anchorage, AK (United States); Sink, Charles [Chugachmiut, Anchorage, Alaska (United States)

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to

  5. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO2 emission reductions than transportation fuels from annual crops. Swedish CO2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these local

  6. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  7. Generating usable and safe CO{sub 2} for enrichment of greenhouses from the exhaust gas of a biomass heating system

    Energy Technology Data Exchange (ETDEWEB)

    Dion, L.M.; Lefsrud, M. [McGill Univ., Macdonald Campus, Ste-Anne-deBellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    This study demonstrated the use of biomass as a renewable fuel to enrich a greenhouse with carbon dioxide (CO{sub 2}). CO{sub 2} enrichment of greenhouses has been shown to improve crop production whether it occurs from liquid CO{sub 2} or combustion of fossil fuels. Biomass, in the form of wood chips or pellets, has received much interest as a sustainable and economically viable alternative to heat greenhouses. As such, the opportunity exists to convert exhaust gases from a greenhouse wood heating system into a useful resource. CO{sub 2} can be extracted from flue gas via membrane separation instead of electrostatic precipitators. This technique has shown potential for large industries trying to reduce and isolate CO{sub 2} emissions for sequestration and may be applicable to the greenhouse industry. Some research has also been done with wet scrubbers using catalysts to obtain plant fertilizers. Sulphur dioxide (SO{sub 2}) and nitrogen (NO) emissions can be stripped from flue gas to form ammonium sulphate as a valuable byproduct for fertilizer markets. This study will review the potential of these techniques in the summer of 2010 when experiments will be conducted at the Macdonald Campus of McGill University.

  8. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs

    Directory of Open Access Journals (Sweden)

    Daniel Maraver

    2014-04-01

    Full Text Available This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs, coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling demands in the tertiary sector. The thermodynamic approach was complemented, to avoid its possible limitations, by the technological constraints of the expander, the heat exchangers and the pump of the ORC. The working fluids considered are: n-pentane, n-heptane, octamethyltrisiloxane, toluene and dodecamethylcyclohexasiloxane. In addition, the energy and environmental performance of the different optimal CCHP plants was investigated. The optimal plant from the energy and environmental point of view is the one integrated by a toluene recuperative ORC, although it is limited to a development with a turbine type expander. Also, the trigeneration plant could be developed in an energy and environmental efficient way with an n-pentane recuperative ORC and a volumetric type expander.

  9. Multi-functional biomass systems

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, V.

    2004-12-01

    The central research question of this thesis is: What is the potential of multi-functional biomass systems to improve the costs and the land use efficiency of saving non-renewable energy consumption and reducing GHG (greenhouse gases) emissions in quantitative terms? Therefore, in the following chapters the performance of multi-functional biomass systems is quantified. Biomass system costs are investigated from a societal perspective using e.g. low discount rates. A main focus will be on the review of methodologies for accounting GHG emissions, non-renewable energy consumption, agricultural land use and costs as well as the adaptation of these methodologies to special aspects of multifunctional biomass use. The analysis of the potential benefits of multi-functional biomass systems is carried out by several case studies of biomass systems including various waste treatment technologies for the short term that appeared promising after a first review. Because at present the shift of biomass production to more favourable areas seems to be an alternative for more efficient biomass systems, these case studies are situated in Europe and concentrate on Poland in order to investigate the potential of biomass production in the new EU-member states of Central Eastern Europe. In Chapter 2 of this thesis, the concept of multi-product use and its potential impacts on fuel costs of bioenergy and GHG emission reduction per area of agricultural land use are investigated. Especially, the relation between the economic value and the specific GHG emission reduction of a possible material application and the potential benefits of multiproduct use is analysed. Material uses regarded for multi-product use are the use of wheat grains for food, wheat straw for animal litter, hemp bark fibres for reinforced composites, hemp core fibres for animal litter, hemp seeds for food and cosmetics and poplar wood chips for pulp. For energy uses parts of the crops are used as solid fuel for electricity

  10. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    Science.gov (United States)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic

  11. Critical success factors for biomass. Identification/specification of critical success factors in the development and market introduction of biomass conversion systems for the production of electricity and/or heat and/or gaseous/liquid secondary energy carriers

    International Nuclear Information System (INIS)

    The Dutch government has set the policy target that in 2020 10% of the total energy consumption has to be provided by means of renewable energy sources. Biomass is expected to play a major role (25-30%) in this future renewable energy based energy supply system. However, it is still unclear if this biomass-based target will be reached. Although studies showed that success or failure of innovations and projects depend on a multitude of scientific, technical, economic and societal variables, a number of questions still remained unanswered. This information often concentrated exclusively on the cost price aspects. This study is conducted to identify the internal and external barriers or constraints other than cost aspects, which are of vital importance to a successful penetration of biomass in the Dutch energy market. Barriers with a decreasing influence on the market introduction of bioenergy in the Netherlands are: short-term contractability of biomass (organic waste streams) for energy purposes, applicable emission and waste policies, and unfamiliarity of bioenergy by the public and government. Barriers that potentially could play an important role on the market introduction of bioenergy in the Netherlands in the near future are: long-term contractability of biomass (organic waste streams and energy crops) for energy purposes, the 'new' emission constraints and their potential negative influence on the implementation of small-scale biomass-based combined-cycle plants, the rivalry of bioenergy with other renewable energy based technologies in a liberalising energy market, the social acceptance of bioenergy, the future European agriculture policy (energy crops), and the current status and development perspectives of biomass-based energy conversion technologies. 66 refs

  12. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim;

    2006-01-01

    high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag......The use of biomass for power generation can result in significant economical and environmental benefits. The greenhouse emissions can be reduced as well as the cost of the produced electricity. However, ash-related problems, including slagging, agglomeration, and corrosion, can cause frequent...... unscheduled shutdowns, decreasing the availability and increasing the cost of the produced power. In addition, the fouling of the heat exchange surfaces reduces the system efficiency. In this work the melting and rheological properties of various biomass and biomass/ coal ash samples were studied by using a...

  13. The emissions from a space-heating biomass stove

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, T.; Pinar, Y. [Agricultural Machinery Department, Agricultural Faculty, Ondokuz Mayis University, 55139, Samsun (Turkey)

    2007-01-15

    In this paper, the flue gas emissions of carbon monoxide (CO), nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}) and soot from an improved space-heating biomass stove and thermal efficiency of the stove have been investigated. Various biomass fuels such as firewood, wood shavings, hazelnut shell, walnut shell, peanut shell, seed shell of apricot (sweet and hot seed type), kernel removed corncob, wheat stalk litter (for cattle and sheep pen), cornhusk and maize stalk litter (for cattle pen) and charcoal were burned in the same space-heating biomass stove. Flue gas emissions were recorded during the combustion period at intervals of 5min. It was seen from the results that the flue gas emissions have different values depending on the characteristics of biomass fuels. Charcoal is the most appropriate biomass fuel for use in the space-heating biomass stoves because its combustion emits less smoke and the thermal efficiency of the stove is approximately 46%. (author)

  14. Development of a hot heat exchanger and a cleaning system for a 35 kW hermetic four cylinder Stirling engine for solid biomass fuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Marinitsch, Gerald; Schöch, Martin;

    2005-01-01

    been operated for more than 9,000 hours. Operating experiences gained from these plants formed the basis for the further development of this technology. The experiences showed that the efficiency of the Stirling hot gas heat exchanger and of the hot gas heat exchanger cleaning system have to be further...... optimised. Within the scope of a RD&D project, a new hot gas heat exchanger and a new cleaning system have been developed and optimised in cooperation of the AUSTRIAN BIOENERGY CENTRE GmbH, the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GmbH, Austria, and BIOS BIOENERGIESYSTEME Gmb......H, Austria. The new design of the Stirling hot gas heat exchanger has been developed in order to optimise the performance of the engine and simplify the geometry. In this respect, an equal distribution of the heat transfer across each tube in the hot gas heat exchanger, the reduction of the internal Helium...

  15. Priority order in using biomass resources - Energy systems analyses of future scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2013-01-01

    . This article compares the value of using biomass as a heat source and for electricity generation in a 100% renewable energy system context. The comparison is done by assuming an incremental decrease in the biomass available for the electricity and heat sector, respectively. The assumed scenarios...... for the decrease of biomass are made by use of an hourly energy system analysis model, EnergyPLAN. The results are shown in terms of system configuration, biomass fuel efficiency, system cost, and impacts on the export of electricity. It is concluded that the reduction of biomass in the heat sector is better than......According to some future Danish energy scenarios, biomass will become one of the two main pillars of the future energy system accompanied by wind power. The biomass can be used for generating heat and electricity, and as a transportation fuel in a future energy system according to the scenarios...

  16. Development of a new concept solar-biomass cogeneration system

    International Nuclear Information System (INIS)

    Highlights: • A new MCHP system is proposed using only renewable energy sources: CSP and biomass. • The system allows continuous production of electricity and heat over night and day. • A fluidized bed links heat from a Scheffler mirror and heat from biomass combustion. • The fluidized bed allows for a high heat transfer rate to the Stirling engine. - Abstract: A new concept of a system based on a Stirling engine for the combined production of heat and electric power is presented. The system uses two renewable energy sources, direct solar (thermodynamic solar) and biomass (indirect solar energy). Biomass combustion is conducted using a fluidized bed combustor. A second source of energy, given by the direct irradiation of the bed with a concentrated solar radiation, is integrated in the same system, using the fluidized bed as solar receiver. A Scheffler type mirror is adopted to allow irradiation of the system in a fixed focal point. A Stirling engine, integrated into the fluidized bed, converts heat into electricity. Advantages of the proposed solution are illustrated and some preliminary results on the performance of the system, obtained with a simple model, are presented

  17. Biomass energy systems and the environment

    Science.gov (United States)

    Braunstein, H. M.; Kanciruk, P.; Roop, R. D.; Sharples, F. E.; Tatum, J. S.; Oakes, K. M.

    The technology, resources, applied, and experimental features of biomass energy resources are explored, with an emphasis on environmental and social implications of large-scale biomass development. The existing land and water based biomass resource is described in terms of available energy, ecological concerns, agricultural crops, livestock production, freshwater systems, and ocean systems. Attention is given to proposed systems of biomass energy production from forestry and silviculture, agricultural crops, livestock wastes, and freshwater and ocean systems. A survey is made of various biomass materials, techniques for conversion to gas, liquid fuels, or for direct combustion, and impacts of large-scale biomass production and harvest are examined. Particular note is made of the effects of scaling biomass conversion systems, including near- and long-term applications, and ethics and aesthetic concerns.

  18. Multi basin desalination using biomass heat source and analytical validation using RSM

    International Nuclear Information System (INIS)

    Highlights: • Biomass boiler is coupled with multi basin solar still. • Top basin is divided into small stepped basins. • Surface response method is used for analytical validation. • Biomass is eco-friendly. • Higher productivity than conventional still. - Abstract: In this field a multi basin solar still is, used to heighten the productivity. The concept of integrating the multi basin still with biomass heat source is introduced in this research area. In the multi basin still heat exchanger is placed at the bottom end of the watershed region. The heat exchanger is connected to the biomass boiler heat source to create heat energy. This system increases the water temperature in the sword and also increases the productivity in the blade. The upper watershed is separated into small stepped basins. So the flat plate collector and stepped basin are used to increase the turnout in this work. The heat from lower basin is used by the upper basin for desalination. Experiments are conducted with various water depths. In this work the solar still behaves like a capacitor. A conventional still is fabricated and run parallel with the experimental setup for comparison. Sensible heat storage materials such as cement blocks, sand, glass eggs are added to the tail end and top basins to increase water temperature. Latent heat storage materials such as water, wax are introduced in the material body of small pellets to increase productivity. Biomass such as wood, wood wastes, palm wastes is tried in this workplace. A higher productivity is obtained for sensible storage materials when compared to latent heat storage. Theoretical analysis is performed by using RSM (response surface methodology) well agrees with experimental values. The efficiency of the system is compared with conventional still. Experiments are conducted in once flow mode, continuous stream mode and solar modes. Output from RSM are compared with experimental values for error analysis

  19. Solar-assisted biomass-district heating: projects in Austria and operational data; Solarunterstuetzte Biomasse-Fernwaermeversorgung: Projekte in Oesterreich und Betriebsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Faninger, G. [Institut fuer Interdisziplinaere Forschung und Fortbildung der Universitaeten Klagenfurt, Innsbruck und Wien (IFF), Klagenfurt (Austria)

    1998-12-31

    In recent years small-volume biomass district heating systems (district heat grids) have attracted increasing interest in Austria. By the end of 1997 some 359 biomass-district heating systems with an overall capacity of approximately 483 MW were in operation. If a biomass-district heating plant and a solar plant are combined the solar plant can supply most of the heat required outside the heating season. At present Austria runs 12 solar-assisted biomass-district heating grids with collector areas between 225 square metres and 1,250 square metres. In order to run these biomass-district heating systems in an economically and technically efficient way it is necessary to assure high quality in terms of planning, construction and operation. A list of criteria is set up on the basis of first operational data in order to evaluate energy efficiency and economic performance. These criteria should be applied in order to ensure that energy, environment and economy are equally considered in the planning and construction of solar-assisted biomass-district heating plants. They should also be helpful for the approval procedures of projects. (orig.) [Deutsch] Kleinraeumige Biomasse-Fernwaermeanlagen (Nahwaermenetze) fanden in den letzten Jahren zunehmendes Interesse in Oesterreich. So waren Ende 1997 insgesamt 359 Biomasse-Fernwaermeanlagen mit einer installierten Gesamtleistung von etwa 483 MW in Betrieb. Die Kombination einer Biomasse-Fernwaermeanlage mit einer Solaranlage bringt den Vorteil, dass die Waermebereitstellung ausserhalb der Heizsaison zu einem hohen Anteil ueber die Solaranlage vorgenommen werden kann. Derzeit werden in Oesterreich 12 solarunterstuetzte Biomasse-Nahwaermenetze mit Kollektorflaechen von 225 m{sup 2} bis 1.250 m{sup 2} betrieben. Um einen moeglichst effizienten und damit auch wirtschaftlichen Betrieb von solarunterstuetzten Biomasse-Fernwaermeanlagen zu gewaehrleisten, werden hohe Anforderungen an Planung, Ausfuehrung und Betrieb gestellt. Auf der

  20. 内加热移动床生物质炭化中试设备监控系统开发%Monitoring and control system development for pilot-scale moving bed biomass carbonization equipment with internal heating

    Institute of Scientific and Technical Information of China (English)

    丛宏斌; 赵立欣; 孟海波; 姚宗路

    2015-01-01

    consumption as well as difficulty in control of process parameters with biomass carbonization equipment, based on the development of moving bed biomass carbonization equipment with internal heating, monitoring and control system was developed by using the software platform of Kingview, and feedback control mechanism and cascade control technology the system are adopted. The monitoring and control system mainly includes feeding control system, the carbonization environment monitoring system, biochar discharging control system, and other auxiliary software system, etc. The main and deputy controllers for monitoring carbonization temperature and furnace pressure are respectively positional PID and incremental PID. Production test results show that monitoring and control system is stable and reliable, which can realize orderly control of equipment operation and directional control of carbonization environment. Compared with no monitoring system, equipment productivity increases by 18.3%, and the carbon yield increases by 2.3 points. Development and application of the monitor and control system provides technical support for the industrialization promotion of related equipments. In automatic work mode of the monitoring and control system, control mechanism and the control algorithm are the main influence factors in order to realize directional process control of the biochar. On the one hand, we need further optimize process parameters of different materials through a lot of production test under internal heating condition, on the other hand, we need further analysis the influence of control parameters (such as negative pressure, the air inlet opening, air inlet position, etc.) on the carbonization environment (such as carbonization temperature, heating rate, catalyst, etc.), and optimize the environment of coking equipment control mechanism and algorithm.%针对目前生物质炭化设备生产率低、炭化工艺参数控制困难等问题,在研制内加热移动床生物质

  1. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Directory of Open Access Journals (Sweden)

    A. Lindroth

    2009-08-01

    Full Text Available Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and −35 W m−2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m−2 and the minimum was −35 W m−2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. −0.1. In fact, the largest energy deficit

  2. Energy and exergy analyses of an integrated CCHP system with biomass air gasification

    International Nuclear Information System (INIS)

    Highlights: • Propose a biomass-gasification CCHP system. • A heat pipe heat exchanger is used to recover waste heat from product gas. • Present the energy and exergy analyses of the biomass CCHP system. • Analyze the annual off-design performances. - Abstract: Biomass-fueled combined cooling, heating, and power (CCHP) system is a sustainable distributed energy system to reduce fossil energy consumption and carbon dioxide emission. This study proposes a biomass CCHP system that contains a biomass gasifier, a heat pipe heat exchanger for recovering waste heat from product gas, an internal combustion engine to produce electricity, an absorption chiller/heater for cooling and heating, and a heat exchanger to produce domestic hot water. Operational flows are presented in three work conditions: summer, winter, and the transitional seasons. Energy and exergy analyses are conducted for different operational flows. The case demonstrated that the energy efficiencies in the three work conditions are 50.00%, 37.77%, and 36.95%, whereas the exergy efficiencies are 6.23%, 12.51%, and 13.79%, respectively. Destruction analyses of energy and exergy indicate that the largest destruction occurs in the gasification system, which accounts for more than 70% of the total energy and exergy losses. Annual performance shows that the proposed biomass-fueled CCHP system reduces biomass consumption by 4% compared with the non-use of a heat recovery system for high-temperature product gas

  3. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  4. An economic assessment of the use of short-rotation coppice woody biomass to heat greenhouses in southern Canada

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, Daniel W.; Yemshanov, Denys; Fraleigh, Saul; Allen, Darren; Preto, Fernando [Natural Resources (Canada)

    2011-01-15

    This study explores the economic feasibility of fossil fuel substitution with biomass from short-rotation willow plantations as an option for greenhouse heating in southern Ontario, Canada. We assess the net displacement value of fossil fuel biomass combustion systems with an integrated purpose-grown biomass production enterprise. Key project parameters include greenhouse size, heating requirements, boiler capital costs and biomass establishment and management costs. Several metrics have been used to examine feasibility including net present value, internal rate of return, payback period, and the minimum or break-even prices for natural gas and heating oil for which the biomass substitution operations become financially attractive. Depending on certain key assumptions, internal rates of return ranged from 11-14% for displacing heating oil to 0-4% for displacing natural gas with woody biomass. The biomass heating projects have payback periods of 10 to >22 years for substituting heating oil and 18 to >22 years for replacing a natural gas. Sensitivity analyses indicate that fossil fuel price and efficiency of the boiler heating system are critical elements in the analyses and research on methods to improve growth and yield and reduce silviculture costs could have a large beneficial impact on the feasibility of this type of bioenergy enterprise. (author)

  5. Impact of different national biomass policies on investment costs of biomass district heating plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The BIO-COST project - co-ordinated by E.V.A. - was funded by the European Commission's THERMIE Type B Programme. The objective of BIO-COST was to analyse the impact of national biomass policies on the investment costs of biomass district heating (DH) plants. The European comparison should help identifying measures to reduce investment costs for biomass DH plants and/or components down to a 'best practice' level. The investigation is based on the comparison of 20 biomass DH plants by country, with Denmark and Sweden having mainly high energy taxes as driver, while Austria and France rely mainly on subsidy systems. The results of BIO-COST show, that governmental policies can have a big impact especially on grid and buildings costs, effecting of course the overall costs of the plant enormously. Emission standards have their effects especially on the costs for technical equipment, however, this fact was not reflected in the BIO-COST data. The results do not show a clear advantage of either the energy tax approach or the subsidy approach: The French subsidy approach leads to fairly low cost levels compared to the Danish tax approach, while the Swedish tax approach seems to yield the lowest cost level. On the other hand the Austrian subsidy approach seems to intercrease investment costs. In principle both the tax as the subsidy approach can lead to the same effect: a project is calculated in such a way, that it just meets economic breakeven. This is typically the case when the project is not carried out by a private enterprise but by an operator aiming at enhanced public welfare (e.g. co-operative, municipality). In this case a subsidy model might yield more possibilities to encourage an economically efficient development, than a tax. Instead of giving subsidies as a fixed percentage of investments they could be adjusted to the actual needs of the project as proven by a standardised calculation. Of course this can create the incentive to expect higher

  6. Feasibility Analysis For Heating Tribal Buildings with Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Steve Clairmont; Micky Bourdon; Tom Roche; Colene Frye

    2009-03-03

    This report provides a feasibility study for the heating of Tribal buildings using woody biomass. The study was conducted for the Confederated Salish and Kootenai Tribes of the Flathead Reservation in western Montana. S&K Holding Company and TP Roche Company completed the study and worked together to provide the final report. This project was funded by the DOE's Tribal Energy Program.

  7. 基于新型生物质柴灶的热水供暖系统应用%The Application of Hot Water Heating System Based on a New Type Biomass Stove

    Institute of Scientific and Technical Information of China (English)

    宁美玲; 袁鹏丽; 赵昕; 王宗山; 端木琳

    2015-01-01

    In recent years, the rural area energy consumption is drawing more and more attention. Compared with the low efficiency of traditional stoves, which are widely used in northern residents, a new type of rural biomass stove with hot water circulation was introduced in this paper. When the biomass is burning and satisfying the daily cooking demand, the new biomass stoves not only can provide high temperature exhaust gas to heat the Kang, but also provide some hot water for the terminal of heating supply, such as indoor radiators and coils. Based on the test results, the total heat quantity can account for 57.9 percent of the total low calorific value. Though the initial investment of the new type biomass stove was about twice of the traditional stoves, it can greatly reduce the coal consumption. Compared with the traditional stove, the economic payback period of the new biomass stove is only 0.49 year. Combined with hot water heating system, the thermal efficiency of biomass stoves were greatly increased. For the rural residences, the new biomass stove can reduce the energy consumption and heating costs. Meanwhile, the indoor air temperature and thermal comfort were improved effectively.%近年来,农村能耗问题成为人们日益关注的重点,作为北方居民生活中广泛使用的传统生物质柴灶的效率仍较低,且使用功能单一。对开发一种新型的农村用生物质热水循环柴灶进行介绍,并对其热性能进行测试。新型生物质柴灶在满足传统炊事用能的基础上,排烟热量进入火炕采暖之外,还可为室内散热器及地热盘管等散热末端提供热量,总体供热量可占燃料热值的57.9%。虽然其初投资是传统炉具的1倍左右,但其可大幅度降低煤炭消耗,与传统生物质柴灶相比其经济回收期仅为0.49年。新型生物质柴灶供暖系统的应用,大大提高了柴灶的热效率,减少能耗,降低了供暖成本,同时也改善了室内温度与热舒适度。

  8. Development of small, modular biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, J.H. [Peninsula Energy Partners, Los Altos, CA (United States); Hulkkonen, S. [IVO/EPRI, Palo Alto, CA (United States); Dracker, R. [Bechtel Corp., San Francisco, CA (United States)

    1996-12-31

    This paper describes a collaborative effort between the Electric Power Research Institute, Bechtel Corporation and Imatran Voima Oy. The goal is commercialization of a biomass-fueled, modular (50 to 250 kW) heat and power technology for distributed applications. The technology to be selected will not present any major technical challenges, but first and foremost must be simple and reliable. Additional criteria include: acceptable capital cost, fuel flexibility, and the capability for meeting local environmental standards. As the capital cost of small units will be influenced by economies of fabrication, the economic viability of these systems depends upon the size of the domestic and international markets. Thus, evaluation of available conversion technologies was undertaken concurrently with a broad-based market assessment. The technology scan included all the commercial and pre-commercial biomass systems that could be located. Information was sorted into five categories: (1) gasifiers with either diesel or spark-ignited engines; (2) indirectly fired gas turbines; (3) directly fired gas turbines; (4) pyrolysis processes with diesel engines; or (5) conventional steam-cycles. The evaluation of the technologies was based on the above criteria, along with the recognition that the levelized cost of power from the system must be competitive with available diesel generation. The market for these systems within the contiguous 48 states is expected to be limited to situations involving forest ecosystem improvements and the reduction of forest fire hazards, and/or clean-up and remediation following natural disasters. Another North American market is remote villages in Canada and Alaska. By far the largest market is in developing nations where two billion people are without electricity for lighting, water pumping or refrigeration. Serving this latter market presents a major challenge, as each system will require establishment of a whole new local infrastructure.

  9. Desenvolvimento e construção de fornalha para biomassa com sistema de aquecimento direto e indireto do ar = Development and construction of a furnace for biomass with system of direct and indirect air heating

    Directory of Open Access Journals (Sweden)

    Fernanda Augusta de Oliveira Melo

    2010-07-01

    Full Text Available Uma fornalha, com opção para aquecimento direto e indireto de ar, foiprojetada e construída para utilizar, como combustível complementar à lenha, biomassa particulada, resíduo agroindustrial abundante e desperdiçado em boa parte. No intuito de verificar o funcionamento da fornalha, na opção de aquecimento direto e indireto, foram realizados três testes preliminares utilizando somente lenha como combustível. Nestes testes, avaliaram-se as temperaturas do ar ambiente, do ar aquecido na saída da fornalha e depois do ventilador, fluxo de ar, poder calorífico inferior e eficiência térmica. Com os dados obtidos nos testes, nas opções de aquecimento direto e indireto de ar, a fornalha mostrou-se flexível na opção de aquecimento, de fácil construção e operação, não exigindo mão-de-obra qualificada.A furnace, with a system for direct and indirect air heating, was projected and constructed to use biomass, particulate biomass, abundant and largely wasted agroindustrial refuse, as complementary fuel to firewood. With the objective of verifying furnace operation, in the option of direct and indirect heating, three preliminaries tests were conducted using only firewood as fuel. In these tests, the following variables were monitored: room air temperature, heated air temperature at the exit of the furnace and after the fan; room air relative humidity; warm air flow; lower calorific power and thermal efficiency of the furnace. In the tests the results showed, for both direct and indirect air heating, the furnace was shown to be flexible in the heating option, of easy construction and operation, not requiring skilled labor.

  10. Controlling the excess heat from oxy-combustion of coal by blending with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Turan, A.Z.; Yaman, S.; Kucukbayrak, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469, Maslak, Istanbul (Turkey)

    2010-11-15

    Two different biomass species such as sunflower seed shell and hazelnut shell were blended with Soma-Denis lignite to determine the effects of co-combustion on the thermal reactivity and the burnout of the lignite sample. For this purpose, Thermogravimetric Analysis and Differential Scanning Calorimetry techniques were applied from ambient to 900 C with a heating rate of 40 C/min under dry air and pure oxygen conditions. It was found that the thermal reactivities of the biomass materials and the lignite are highly different from each other under each oxidizing medium. On the other hand, the presence of biomass in the burning medium led to important influences not only on the burnout levels but also on the heat flows. The heat flow from the burning of lignite increased fivefold when the oxidizing medium was altered from dry air to pure oxygen. But, in case of co-combustion under oxygen, the excess heat arising from combustion of lignite could be reduced and this may be helpful to control the temperature of the combustion chamber. Based on this, co-combustion of coal/biomass blends under oxygen may be suggested as an alternative method to the ''Carbon Dioxide Recycle Method'' encountered in the oxyfuel combustion systems. (author)

  11. Gasification technologies for heat and power from biomass

    NARCIS (Netherlands)

    Beenackers, AACM; Maniatis, K; Kaltschmitt, M; Bridgwater, AV

    1997-01-01

    A critical review is presented of biomass gasifier systems presently commercially available or under development. Advantages and possible problem areas are discussed in relation to particular applications. Both large and small scale technologies are reviewed. Catalysed by the EC JOULE and AIR progra

  12. Biomass Production System (BPS) Plant Growth Unit

    Science.gov (United States)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  13. Investigation of radiative heat transfer in fixed bed biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    T. Klason; X.S. Bai; M. Bahador; T.K. Nilsson; B. Sunden [Lund Institute of Technology, Lund (Sweden). Division of Fluid Mechanics

    2008-08-15

    This paper presents an investigation of the radiative heat transfer process in two fixed bed furnaces firing biomass fuels and the performance of several widely used models for calculation of radiative heat transfer in the free-room of fixed bed furnaces. The effective mean grey gas absorption coefficients are calculated using an optimised version of the exponential wide band model (EWBM) based on an optical mean beam length. Fly-ash and char particles are taken into account using Mie scattering. In the investigated updraft small-scale fixed bed furnace radiative transfer carries heat from the bed to the free-room, whereas in the cross-current bed large-scale industry furnace, radiative transfer brings heat from the hot zones in the free-room to the drying zone of the bed. Not all the investigated models can predict these heat transfer trends, and the sensitivity of results to model parameters is fairly different in the two furnaces. In the small-scale furnace, the gas absorption coefficient predicted by using different optical lengths has great impact on the predicted temperature field. In the large-scale furnaces, the predicted temperature field is less sensitive to the optical length. In both furnaces, with the same radiative properties, the low-computational-cost P1 model predicts a temperature field in the free-room similar to that by the more time consuming SLW model. In general, the radiative heat transfer rates to the fuel bed are not very sensitive to the radiative properties, but they are sensitive to the different radiative heat transfer models. For a realistic prediction of the radiative heat transfer rate to the fuel bed or to the walls, more computationally demanding models such as the FGG or SLW models should be used. 37 refs., 7 figs., 2 tabs.

  14. Biomass energy systems program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  15. Heating systems for heating subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  16. Economic viability of the construction and operation of a biomass gasificator for poultry houses heating

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Fabio Luiz; Silva, Jadir Nogueira da; Tinoco, Ilda de Fatima Ferreira; Martin, Samuel; Melo, Lucas D.; Bueno, Mateus [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: fzanatta@vicosa.ufv.br

    2008-07-01

    In all poultry farms, at least in the first days of life of the chicken, it is necessary to heat the environment to obtain a good development of the chicken and good economics results. However, this additional heat generation is sometimes neglected or not well executed, because of the costs that this practice could bring. This research has the objective of analyze the costs of construction and operation of a Biomass Gasificator for Poultry Houses Heating in comparison with a direct furnace system. The fuel used in both systems was firewood of eucalyptus. For so much, economic analyzes was make considering the costs of the gasification systems implementation in substitution of the traditional system used in the company (direct furnace system). For the viability the adopted method was the partial budget and the complementary investments were analyzed through the cash flow elaboration and of determination of indicator of economic feasibility. (author)

  17. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii;

    2013-01-01

    District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...... as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...

  18. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd;

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  19. Process modelling of biomass conversion to biofuels with combined heat and power.

    Science.gov (United States)

    Sharma, Abhishek; Shinde, Yogesh; Pareek, Vishnu; Zhang, Dongke

    2015-12-01

    A process model has been developed to study the pyrolysis of biomass to produce biofuel with heat and power generation. The gaseous and solid products were used to generate heat and electrical power, whereas the bio-oil was stored and supplied for other applications. The overall efficiency of the base case model was estimated for conversion of biomass into useable forms of bio-energy. It was found that the proposed design is not only significantly efficient but also potentially suitable for distributed operation of pyrolysis plants having centralised post processing facilities for production of other biofuels and chemicals. It was further determined that the bio-oil quality improved using a multi-stage condensation system. However, the recycling of flue gases coming from combustor instead of non-condensable gases in the pyrolyzer led to increase in the overall efficiency of the process with degradation of bio-oil quality. PMID:26402874

  20. Heat Pipe Systems

    Science.gov (United States)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  1. Heat rejection system

    Science.gov (United States)

    Smith, Gregory C.; Tokarz, Richard D.; Parry, Jr., Harvey L.; Braun, Daniel J.

    1980-01-01

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  2. Geothermal Energy and Biomass Integration in Urban Systems: a Case Study

    OpenAIRE

    Moret, Stefano; Gerber, Léda; Amblard, Frédéric; Peduzzi, Emanuela; Maréchal, François

    2015-01-01

    Heating, electricity and transportation are the three components of urban systems final energy consumption. Geothermal energy and biomass are two promising renewable energy resources that can be used for the production of heat, electricity and biofuels, thus allowing a reduction of fossil fuel consumption and of the associated greenhouse gas emissions. The goal of this paper is to assess the potential for the integration of geothermal energy combined with biomass in the energy system of a cit...

  3. Independent System Operators and Biomass Power

    International Nuclear Information System (INIS)

    Since the Federal Energy Regulatory Commission issued its landmark open access transmission rule in 1996, the idea of creating and establishing independent system operators (ISOs) has gained momentum. ISOs may help combine individual utility transmission systems into more regional transmission networks, which ultimately will allow biomass companies to transmit power over longer distances while paying a single transmission rate. To the extent that ISOs are combined or operated with power exchanges, however, biomass companies will likely face even more competitive market pressures. Few operators have experience with ISOs and power exchanges, but preliminary results show that short-term electricity market prices are probably too low for most biomass companies to compete against. Without policy measures, biomass companies may have to pursue strategic opportunities with short-term, spot-market sales; direct bilateral sales to customers; alternative power exchanges; and perhaps a ''green'' power market and sales to ancillary service markets. In addition, prices will likely be more volatile in a restructured market so biomass generators should be selling during those times

  4. Opportunities for small scale biomass-electricity systems in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Senelwa, K.; Sims, R.E.H. [Massey University, Palmerston North (New Zealand). Institute of Technology and Engineering

    1999-09-01

    Surveys of rural household energy use activities incorporating the production and utilisation of woody biomass, and of the forest products industries incorporating forest harvesting, wood processing and residues generation, were undertaken to assess the availability of wood biomass that could be utilised in biomass-electricity systems in Kenya. Government forests could not be relied upon to supply fuelwood to decentralised village gasifier installations as they were far from main village clusters, and were mostly protected against subsistence harvesting. Although farm forestry on farms in rural areas was assessed to be well established, the standing stock of woody biomass of 0.7-4.6 m{sup 3} per farm was considered inadequate for continuous operation of a downdraft gasifier. The greatest potential was at sawmills processing more than 720 tonnes of logs per year and generating more than 390 tonnes of solid residues per year. Each of the 73 mills in this category (medium-large scale) had an annual potential to generate more than 0.85 x 10{sup 6} m{sup 3} of low heating value gas (4.6 MJ/m{sup 3}). The total annual gas potential from the 73 mills was 221 million cubic metres (Mm{sup 3}), equivalent to 24,000 tonnes of oil. The gas could generate up to 76 GWh (electric), and if part of a co-generation system, an additional 141.4 GWh of heat could be harnessed and used in timber drying kilns. Factors that determine the viability of biomass-electricity systems are discussed. The need for a demonstration unit installation at one of the sawmills is emphasised.

  5. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective.

    Science.gov (United States)

    Steubing, Bernhard; Zah, Rainer; Ludwig, Christian

    2012-01-01

    The optimal use of forest energy wood, industrial wood residues, waste wood, agricultural residues, animal manure, biowaste, and sewage sludge in 2010 and 2030 was assessed for Europe. An energy system model was developed comprising 13 principal fossil technologies for the production of heat, electricity, and transport and 173 bioenergy conversion routes. The net environmental benefits of substituting fossil energy with bioenergy were calculated for all approximately 1500 combinations based on life cycle assessment (LCA) results. An optimization model determines the best use of biomass for different environmental indicators within the quantified EU-27 context of biomass availability and fossil energy utilization. Key factors determining the optimal use of biomass are the conversion efficiencies of bioenergy technologies and the kind and quantity of fossil energy technologies that can be substituted. Provided that heat can be used efficiently, optimizations for different environmental indicators almost always indicate that woody biomass is best used for combined heat and power generation, if coal, oil, or fuel oil based technologies can be substituted. The benefits of its conversion to SNG or ethanol are significantly lower. For non-woody biomass electricity generation, transportation, and heating yield almost comparable benefits as long as high conversion efficiencies and optimal substitutions are assured. The shares of fossil heat, electricity, and transportation that could be replaced with bioenergy are also provided. PMID:22091634

  6. Waste heat recovery system

    International Nuclear Information System (INIS)

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  7. Heat Pipe Systems

    Science.gov (United States)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  8. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  9. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MWe; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  10. Heating Systems Specialist.

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…

  11. Solar-heating system

    Science.gov (United States)

    1979-01-01

    Report describes solar modular domestic-hot-water and space-heating system intended for use in small single family dwelling where roof-mounted collectors are not feasible. Contents include design, performance, and hardware specifications for assembly, installation, operation, and maintenance of system.

  12. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO2-eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O2-blown entrained flow, O2-blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO2-eq. 32 kg MWh−1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O2-blown entrained flow and O2-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO2-eq. 41 to 75 kg MWh−1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57–75 kg MWh−1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh−1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh−1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air–steam indirect gasification

  13. Fluidized bed heat treating system

    Energy Technology Data Exchange (ETDEWEB)

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  14. Biomass gasification systems for residential application: An integrated simulation approach

    International Nuclear Information System (INIS)

    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  15. Biomass energy systems information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  16. Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart

    2016-06-16

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.

  17. Biomass Pyrolysis: Comments on Some Sources of Confusions in the Definitions of Temperatures and Heating Rates

    Directory of Open Access Journals (Sweden)

    Jacques Lédé

    2010-04-01

    Full Text Available Biomass pyrolysis is usually characterized on the basis of temperature and heating rate. Unfortunately, these parameters are badly defined in processing reactors as well as in laboratory devices. From the results of simplified models, the present paper points out the significant mistakes that can be made when assuming that the actual temperature and heating rate of reacting biomass particles are the same as those of the external heating medium. The difficulties in defining these two parameters are underlined in both cases of a heat source temperature supposed to be constant or to increase with time.

  18. BIOMASS COMBUSTION IN GAS-TURBINE-BASED SYSTEMS

    Science.gov (United States)

    The paper gives results of a comparative evaluation of a range of biomass power generation systems. he objective was to identify systems most suitable for unique properties of biomass. he characteristics of biomass fuels were reviewed, and the performance of several gas-turbine-b...

  19. Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud

    2010-01-01

    A system level modelling study of three combined heat and power systems based on biomass gasification is presented. Product gas is converted in a micro gas turbine (MGT) in the first system, in a solid oxide fuel cell (SOFC) in the second system and in a combined SOFC–MGT arrangement in the third...

  20. Analysis of a furnace for heat generation using polydisperse biomass

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    In many agro-industrial activities, the processing of raw material generates a substantial amount of fine materials. Examples include the production of soluble coffee, processing of rice, and wood processing, among others. In many regions, these by-products keep piling up on the courtyard of companies or become an environmental problem for land dumps. However, detailed tests of these byproducts indicate that they are excellent sources of energy. With this in mind, a furnace was developed to generate clean and hot air, using the alimentation system for pneumatic transport. Wood sawdust was used as fuel for analysis. The obtained results were considered satisfactory, proven by the small heat losses, primarily by the non-burned carbon monoxide (less than 0.2%) and the cooling of the furnace (less than 2.5%) whereas the losses by the exhaust gases were a little more than 23%. The thermal efficiency of the furnace was considered high when compared to others with an indirect heating system, obtaining an average value of 73%. The developed furnace, beyond being efficient, allows the use of the waste from the wood industry, which is important in the reduction of environmental impacts and minimizing production costs associated with the acquisition of conventional energy. (author)

  1. Experimental Study on United Heating System of Solar Energy and Biomass Boiler%太阳能与生物质锅炉联合加热增温系统的试验研究

    Institute of Scientific and Technical Information of China (English)

    李季成; 李文哲

    2014-01-01

    The temperature is low in northern frigid area of our country , especially in winter .The temperature is the key factor that seriously affecting the activity of anaerobic fermentation microorganisms and restricting the biogas fermentation , and it is also the key issue that restricting the development and construction of the large-scale biogas project in frigid area .In order to solve this problem , a new idea is proposed in the paper , which heating for anaerobic fermentation sys-tem by the utilization of solar energy and biomass boiler , and takes the large-scale biogas project as the object of research in Fenglin village , Yi Long town , Yi ’ an County .The data of heating system under normal operation conditions of reactor can be monitored and acquired at any time by using the Force Control Configuration Software .Through the analysis of op-eration data of local coldest month ( January ) , the results show that the system under normal conditions can ensure the conventional gas production of large-scale biogas reactor in winter , which has an important guiding significance to the de-velopment of large-scale biogas project in northern frigid area .%我国北方高寒地区气温较低,特别在冬季,温度是影响厌氧发酵微生物的活性、制约沼气发酵的重要因素,也是限制在高寒地区发展建设大型沼气工程的关键问题。为解决这一问题,提出了利用太阳能与生物质锅炉联合为厌氧发酵系统加热增温的新思路,并以依安县依龙镇丰林村大型沼气工程为研究对象,利用力控组态软件随时监测和采集反应器正常运行情况下加热系统的数据。同时,对当地最冷月份1月的运行数据进行了分析,结果表明:在正常工作条件下,该系统可以保证大型沼气反应器冬季的正常产气,对北方高寒地区发展大型沼气工程具有重要的指导意义。

  2. Handbook of biomass downdraft gasifier engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T B; Das, A

    1988-03-01

    This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

  3. Controversy over Biomass Plant at Florida State Heats up

    Science.gov (United States)

    Mangan, Katherine

    2009-01-01

    This article reports that Florida State University officials are gearing up for what could be another bruising battle this month over a proposed biomass plant that could bring the campus cleaner, cheaper energy and monetary support for alternative-energy research. Or, it could bring noise and pollution to a nearby neighborhood, according to…

  4. A Comparative Technological Review of Hybrid CSP-Biomass CHP Systems in Europe

    OpenAIRE

    Hussain, C. M. Iftekhar; Duffy, Aidan; Norton, Brian

    2015-01-01

    This paper aims to explore different solar technologies and its suitability for hybridization with biomass for combined heat and power (CHP) generation in Europe. Although hybrid solar-biomass research and demonstration is in its infancy, it has the potential to provide dispatchable renewable energy at a significant scale over many areas in Europe. Therefore, this review examines the technical and economic reported performances on hybrid systems in order to assess the technical and economic v...

  5. Analysis of Operation Parameters in a Dual Fluidized Bed Biomass Gasifier Integrated with a Biomass Rotary Dryer: Development and Application of a System Model

    Directory of Open Access Journals (Sweden)

    Nargess Puadian

    2014-07-01

    Full Text Available An integrated system model was developed in UniSim Design for a dual fluidized bed (DFB biomass gasifier and a rotary biomass dryer using a combination of user-defined and built-in unit operations. A quasi-equilibrium model was used for modelling biomass steam gasification in the DFB gasifier. The biomass drying was simulated with consideration of mass and energy balances, heat transfer, and dryer’s configuration. After validation using experimental data, the developed system model was applied to investigate: (1 the effects of gasification temperature and steam to biomass (S/B ratio on the gasification performance; (2 the effect of air supplied to the fast fluidized bed (FFB reactor and feed biomass moisture content on the integrated system performance, energy and exergy efficiencies. It was found that gasification temperature and S/B ratio have positive effects on the gasification yields; a H2/CO ratio of 1.9 can be achieved at the gasification temperature of 850 °C with a S/B ratio of 1.2. Consumption of excessive fuel in the system at higher biomass feed moisture content can be compensated by the heat recovery such as steam generation while it has adverse impact on exergy efficiency of the system.

  6. Analytical Investigations of Kinetic and Heat Transfer in Slow Pyrolysis of a Biomass Particle

    OpenAIRE

    S.J Ojolo; C.A. Osheku; M.G Sobamowo

    2013-01-01

    The utilization of biomass for heat and power generation has aroused the interest of most researchers especially those of energy .In converting solid fuel to a usable form of energy,pyrolysis plays an integral role. Understanding this very important phenomenon in the thermochemical conversion processes and representing it with appropriate mathematical models is vital in the design of pyrolysis reactors and biomass gasifiers. Therefore, this study presents analytical solutions to the kinetic a...

  7. Research in biomass production and utilization: Systems simulation and analysis

    Science.gov (United States)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  8. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    International Nuclear Information System (INIS)

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality's energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality's energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies on neighbouring areas as an electricity buffer though. The costs of the scenario are at a comparable level with the reference situation, but with significantly higher needs for investments and lower fuel costs. Implementation of the scenario would therefore have a positive socio-economic impact as investments are more local labour-intensive than fuel supply. (author)

  9. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  10. Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas

    International Nuclear Information System (INIS)

    The paper presents the results of the experimental study on the simulated application of HTR (High Temperature Reactor) excess heat in the process of allothermal co-gasification of coal and biomass. The laboratory scale installation with a fixed bed gasifier and auxiliary gasification agents pre-heating system, simulating the utilization of the HTR excess heat, were applied in the study. Steam and oxygen were the gasification media employed, and the process was focused on hydrogen-rich gas production. The results of the co-gasification of fuel blends of various biomass content at 800 °C and in various system configurations proved that the application of the simulated HTR excess heat in pre-heating of the gasification agents leads to the increase in the gaseous product yield. Furthermore, the HCA (Hierarchical Clustering Analysis) employed in the experimental data analysis revealed that the gasification of fuel blends of 20 and 40%w/w of biomass content results in higher volumes of the total gas, hydrogen, carbon monoxide and carbon dioxide than gasification of fuel blends of higher biomass content. - Highlights: • Simulated utilization of HTR excess heat in co-gasification of coal and biomass. • Assessment of three system configurations in terms of hydrogen production. • Application of the HCA in the experimental data set analysis. • Variation in gas components volume and content with fuel blend composition

  11. Diseases and pests in biomass production systems

    International Nuclear Information System (INIS)

    The current status of disease and pest problems in willow and poplar biomass systems for energy within Canada, Sweden, the United Kingdom and the United States is described. The IEA Disease and Pest Activities within the recent Task XII (1995-1997), and previous Tasks since 1987, have provided outstanding opportunities for international co-operation which has served substantially to augment national research programmes. Work is described on recognizing different forms of an insect pest or pathogen and understanding the genetic basis of its variability, which is of fundamental importance in developing pest management strategies that exclude inputs of energy-rich materials such as pesticides. Options for more natural pest control are considered including breeding for resistance, plantation designs based on host genotype diversity and biological control 16 refs, 2 figs

  12. LCA of biomass-based energy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    2012-01-01

    on the reference year 2008, energy scenarios for 2030 and 2050 were assessed. For 2050 three alternatives for supply of transport fuels were considered: (1) fossil fuels, (2) rapeseed based biodiesel, and (3) Fischer–Tropsch based biodiesel. Overall, the results showed that greenhouse gas emissions per PJ energy......Decrease of fossil fuel consumption in the energy sector is an important step towards more sustainable energy production. Environmental impacts related to potential future energy systems in Denmark with high shares of wind and biomass energy were evaluated using life-cycle assessment (LCA). Based...... environmental impacts in the 2050 scenarios, in particular upstream impacts from land use changes (LUCs), fertilizer use and NOx emissions from the transport sector were critical. Land occupation (including LUC effects) caused by energy crop production increased to a range of 600–2100 × 106 m2/PJ depending...

  13. Projecting demand and supply of forest biomass for heating in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tromborg, Erik, E-mail: erik.tromborg@umb.no [Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, NO-1432 As (Norway); Havskjold, Monica; Lislebo, Ole [Xrgia as, P.O. Box 329, NO-1301, Sandvika (Norway); Rorstad, Per Kristian [Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, NO-1432 As (Norway)

    2011-11-15

    This paper assesses the increase in demand and supply for forest biomass for heating in Norway in 2020. By then there is a political aim to double the national production of bioenergy from the level in 2008. The competitiveness of woody biomass in central and district heating is analyzed in a model selecting the least-cost heating technology and scale in municipalities given a set of constraints and under different fuels price scenarios. The supply of forest biomass from roundwood is estimated based on data of forest inventories combined with elasticities regarding price and standing volumes. The supply of biomass from harvesting residues is estimated in an engineering approach based on data from the national forest inventories and roundwood harvest. The results show how the production of bioenergy is affected by changes in energy prices and support schemes for bioenergy. One conclusion from the analyses is that the government target of 14 TWh more bioenergy by 2020 is not likely to be met by current technologies and policy incentives. The contribution of the analysis is the detailed presentation of the heat market potentials and technology choices combined with supply functions for both roundwood and harvesting residues. - Highlights: > This paper accesses the demand and supply for forest biomass for heating in Norway in 2020. > Market share for wood in central and new district heating is analyzed in a cost-minimizing model. > The supply of forest biomass includes wood chips from import, roundwood and harvesting residues. > The production of bioenergy is affected by changes in energy prices and support schemes. > The government target for bioenergy is not met by current technologies and policy incentives.

  14. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  15. Structural Studies of Biomass Degrading Enzyme Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lunin, Vladimir V.; Alahuhta, Markus; Brunecky, Roman; Donohoe, Bryon; Xu, Qi; Bomble, Yannick J.; Himmel, Michael E.

    2014-08-05

    Renewable energy today comprises wind, photovoltaics, geothermal, and biofuels. Biomass is the leading source of renewable, sustainable energy used for the production of liquid transportation fuels. While the focus is shifting today from the ethanol towards next generation or advanced biofuels the real challenge however remains the same: reducing the recalcitrance of biomass to deconstruction, which yields the sugars needed for further processing.

  16. The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples

    International Nuclear Information System (INIS)

    This study examined and compared the effect of torrefaction on the heating value, elementary composition, and chlorine content of eight woody biomasses. The biomass samples were torrefied in a specially constructed batch reactor at 260 °C for 30, 60, and 90 min. The original biomasses as well as the solid, liquid, and gaseous torrefaction reaction products were analyzed separately. The higher heating values (HHV) of dry samples increased from 19.5–21.0 MJ  kg−1 to 21.2–23.2 MJ  kg−1 during 60 min of torrefaction. In all samples, the HHV increased 9 % on average. Furthermore, the effect of torrefaction time on the biomass HHV was studied. Measurements showed that after a certain point, increasing the torrefaction time had no effect on the samples' HHV. This optimal torrefaction time varied considerably between the samples. For more reactive biomasses, i.e., birch and aspen, the optimal torrefaction time was close 30 min whereas the HHV of less reactive biomasses, e.g., stumps, increased markedly even after a 60-min torrefaction. Another significant observation was that torrefaction reduced the chlorine content of the biomass samples. The chlorine concentration of the solid product dropped in most samples from the original by half or even as much as 90 %. The highest relative chlorine decrease was observed in the Eucalyptus dunnii sample, which also had the highest chlorine content of all the studied biomasses. The relative carbon content of the biomass samples increased during torrefaction as the average elementary composition changed from CH0.123O0.827 to CH0.105O0.674 after a 60-min torrefaction. - Highlights: • Eight woody biomass samples were torrefied at 260 °C. • The chemical and fuel properties of different wood species were analyzed. • Torrefaction reduced the biomass chlorine content. • Torrefaction increased the biomass HHV at maximum by a factor of 1.11. • Torrefaction decreased the biomass elementary O to C-ratio

  17. Competing uses of biomass : Assessment and comparison of the performance of bio-based heat, power, fuels and materials

    NARCIS (Netherlands)

    Gerssen-Gondelach, S. J.; Saygin, D.; Wicke, B.; Patel, M. K.; Faaij, A. P. C.

    2014-01-01

    The increasing production of modern bioenergy carriers and biomaterials intensifies the competition for different applications of biomass. To be able to optimize and develop biomass utilization in a sustainable way, this paper first reviews the status and prospects of biomass value chains for heat,

  18. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  19. District Heating System Using Heat Pump Installations and CHP

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2015-12-01

    Full Text Available The article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating puThe article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating pumps, evaporators heating and hot water. Heat pumps use carbon dioxide as refrigerant. During the transitional period of the year, and the summer heat pump for preparing hot-water supply system uses the heat of the surrounding air. The heat of the ambient air is used in the intermediate heat exchanger between the first and second stages of the heat pump to cool the gas after the first stage of the compressor of the heat pump.

  20. Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles

    International Nuclear Information System (INIS)

    In the small to medium power range the main technologies for the conversion of biomass sources into electricity are based either on reciprocating internal combustion or organic Rankine cycle engines. Relatively low energy conversion efficiencies are obtained in both systems due to the thermodynamic losses in the conversion of biomass into syngas in the former, and to the high temperature difference in the heat transfer between combustion gases and working fluid in the latter. The aim of this paper is to demonstrate that higher efficiencies in the conversion of biomass sources into electricity can be obtained using systems based on the supercritical closed CO2 Brayton cycles (s-CO2). The s-CO2 system analysed here includes two cascaded supercritical CO2 cycles which enable to overcome the intrinsic limitation of the single cycle in the effective utilization of the whole heat available from flue gases. Both part-flow and simple supercritical CO2 cycle configurations are considered and four boiler arrangements are investigated to explore the thermodynamic performance of such systems. These power plant configurations, which were never explored in the literature for biomass conversion into electricity, are demonstrated here to be viable options to increase the energy conversion efficiency of small-to-medium biomass fired power plants. Results of the optimization procedure show that a maximum biomass to electricity conversion efficiency of 36% can be achieved using the cascaded configuration including a part flow topping cycle, which is approximately 10%-points higher than that of the existing biomass power plants in the small to medium power range. - Highlights: • Supercritical CO2 cycles are proposed for biomass to electricity conversion. • Four boiler design options are considered. • High total system efficiency is due to the part-flow cascaded configuration. • The efficiency is higher than that of other small/medium size alternative systems

  1. Life cycle assessment of a biomass gasification combined-cycle power system

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  2. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  3. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y. [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T. [Aston Univ. Birmingham (United Kingdom); Beckman, D. [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  4. Solar Heating Systems: Instructor's Guide.

    Science.gov (United States)

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  5. Solar Heating Systems: Student Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  6. Considerations in implementing integrated biomass energy systems in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.; Ranney, J.W.

    1993-08-01

    In this paper, we discuss the issues and barriers associated with implementing integrated biomass energy systems in developing countries. An integrated biomass energy system in dependent on sustainably grown and managed energy crops, is supportive of rural development, is environmentally beneficial (locally and globally), is adapted to local conditions, takes advantage of by- and co-products, and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in rural Yunnan Province in Southwest China provided some financial/economic results, general conclusions, and an initial framework for conducting such assessments. Our assessment indicates that social and environmental benefits are substantial and that investment in the facility is well-justified. However, there are so many considerations to take into account when assessing biomass energy systems that their evaluation is exceedingly complex. These considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementing such systems requires another grouping of considerations into energy and economics, institutional and social issues, and environmental issues. These are further defined in an effort to establish a framework of evaluation and assessment for other such projects. The conclusions that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal.

  7. Influencing Swedish homeowners to adopt district heating system

    International Nuclear Information System (INIS)

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Ostersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey

  8. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    International Nuclear Information System (INIS)

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus trademark to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product

  9. Heat exchanger demonstration expert system

    Science.gov (United States)

    Bagby, D. G.; Cormier, R. A.

    1988-05-01

    A real-time expert system intended for detecting and diagnosing faults in a 20 kW microwave transmitter heat exchanger is described. The expert system was developed on a LISP machine, Incorporated (LMI), Lambda Plus computer using Process Intelligent Control (PICON) software. The Heat Exhanger Expert System was tested and debugged. Future applications and extensions of the expert system to transmitters, masers, and antenna subassemblies are discussed.

  10. Conventional and microwave-assisted pyrolysis of biomass under different heating rates

    OpenAIRE

    Wu, C.; Budarin, VL; Gronnow, MJ; de Bruyn, M.; Onwudili, JA; Clark, JH; Williams, PT

    2014-01-01

    Biomass was subjected to conventional and microwave pyrolysis, to determine the influence of each process on the yield and composition of the derived gas, oil and char products. The influence of pyrolysis temperature and heating rate for the conventional pyrolysis and the microwave power was investigated. Two major stages of gas release were observed during biomass pyrolysis, the first being CO/CO and the second one CH/H. This two-stage gas release was much more obvious for the conventional p...

  11. System, method, and apparatus for remote measurement of terrestrial biomass

    Science.gov (United States)

    Johnson, Patrick W

    2011-04-12

    A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

  12. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hongbo [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-Ku, 603-8577 Kyoto (Japan); Zhou, Weisheng; Nakagami, Ken' ichi [College of Policy Sciences, Ritsumeikan University, 603-8577 Kyoto (Japan); Gao, Weijun [Faculty of Environmental Engineering, The University of Kitakyushu, 808-0135 Kitakyushu (Japan)

    2010-05-15

    In this paper, a linear programming model has been developed for the design and evaluation of biomass energy system, while taking into consideration demand side characteristics. The objective function to be minimized is the total annual cost of the energy system for a given customer equipped with a biomass combined cooling, heating and power (CCHP) plant, as well as a backup boiler fueled by city gas. The results obtained from the implementation of the model demonstrate the optimal system capacities that customers could employ given their electrical and thermal demands. As an illustrative example, an investigation addresses the optimal biomass CCHP system for a residential area located in Kitakyushu Science and Research Park, Japan. In addition, sensitivity analyses have been elaborated in order to show how the optimal solutions would vary due to changes of some key parameters including electricity and city gas tariffs, biogas price, electricity buy-back price, as well as carbon tax rate. (author)

  13. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  14. Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator

    International Nuclear Information System (INIS)

    More than seventy district heating (DH) plants based on biomass are operating in South Tyrol (Italy) and most of them supply heat to residential districts. Almost 20% of them are cogenerative systems, thus enabling primary energy savings with respect to the separate production of heat and power. However, the actual performance of these systems in real operation can considerably differ from the nominal one. The main objectives of this work are the assessment of the energy performance of a biomass boiler coupled with an Organic Rankine Cycle (i.e. ORC) generator under real operating conditions and the identification of its potential improvements. The fluxes of energy and mass of the plant have been measured onsite. This experimental evaluation has been supplemented with a thermodynamic model of the ORC generator, calibrated with the experimental data, which is capable to predict the system performance under different management strategies of the system. The results have highlighted that a decrease of the DH network temperature of 10 °C can improve the electric efficiency of the ORC generator of one percentage point. Moreover, a DH temperature reduction could decrease the main losses of the boiler, namely the exhaust latent thermal loss and the exhaust sensible thermal loss, which account for 9% and 16% of the boiler input power, respectively. The analysis of the plant has pointed out that the ORC pump, the flue gases extractor, the thermal oil pump and the condensation section fan are the main responsible of the electric self-consumption. Finally, the negative effect of the subsidisation on the performance of the plant has been discussed. - Highlights: • Energy performance of a biomass boiler coupled to an ORC turbine in real operation. • Potential improvements of a CHP plant connected to a DH network. • Performance prediction by means of a calibrated ORC thermodynamic model. • Influence of the DH temperature on the electric efficiency. • Impact of the

  15. Economic development through biomass system integration. Volumes 2--4

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M.M.

    1995-10-01

    Report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners.

  16. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  17. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    Directory of Open Access Journals (Sweden)

    Sensho Honma

    2014-01-01

    Full Text Available The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.

  18. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  19. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass.

    Science.gov (United States)

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800 °C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800 °C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  20. BioSAR Airborne Biomass Sensing System

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  1. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  2. Sequential extraction partitioning of trace and nutrient elements in ashes from biomass firing district heating plants

    Directory of Open Access Journals (Sweden)

    Šyc M.

    2013-04-01

    Full Text Available Four different ashes from three district heating plants firing biomass were studied with the respect to their potential application as soil fertilizers. Major and trace elements content and some important characteristics of the studied ashes are also presented. Five stage sequential extraction procedure was used for the determination of distribution and speciation of As, Ca, Cd, Cr, Cu, K, Mg, Na, Ni, Pb and Zn in studied ash samples.

  3. Sequential Extraction Partitioning of Trace and Nutrient Elements in Ashes from Biomass Firing District Heating Plants

    OpenAIRE

    Šyc M.; Tošnarová M.; Hrma J.; Pohořelý M.; Svoboda K.; Punčochář M.

    2012-01-01

    Four different ashes from three district heating plants firing biomass were studied with the respect to their potential application as soil fertilizers. Major and trace elements content and some important characteristics of the studied ashes are also presented. Five stage sequential extraction procedure was used for the determination of distribution and speciation of As, Ca, Cd, Cr, Cu, K, Mg, Na, Ni, Pb and Zn in studied ash samples.

  4. Mercury (Hg) emissions from domestic biomass combustion for space heating.

    Science.gov (United States)

    Huang, Jiaoyan; Hopke, Philip K; Choi, Hyun-Deok; Laing, James R; Cui, Huailue; Zananski, Tiffany J; Chandrasekaran, Sriraam Ramanathan; Rattigan, Oliver V; Holsen, Thomas M

    2011-09-01

    Three mercury (Hg) species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM(2.5))) were measured in the stack of a small scale wood combustion chamber at 400°C, in the stack of an advanced wood boiler, and in two areas influenced by wood combustion. The low temperature process (lab-scale) emitted mostly GEM (∼99% when burning wood pellets and ∼95% when burning unprocessed wood). The high temperature wood boiler emitted a greater proportion of oxidized Hg (approximately 65%) than the low temperature system. In field measurements, mean PBM(2.5) concentrations at the rural and urban sites in winter were statistically significantly higher than in warmer seasons and were well correlated with Delta-C concentrations, a wood combustion indictor measured by an aethalometer (UV-absorbable carbon minus black carbon). Overall the results suggest that wood combustion may be an important source of oxidized mercury (mostly in the particulate phase) in northern climates in winter.

  5. Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass.

    Science.gov (United States)

    Wang, Xiaofei; Taylor, Steven; Wang, Yifen

    2016-10-01

    Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC-MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150-600 °C) and high-pressure pyrolysis processes. PMID:27262715

  6. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues

    International Nuclear Information System (INIS)

    This paper describes the potential applications of renewable energy sources to replace fossil fuel combustion as the prime energy sources in various countries, and discusses problems associated with biomass combustion in boiler power systems. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal, industrial and animal waste material. Brief summaries of the basic concepts involved in the combustion of biomass fuels are presented. Renewable energy sources (RES) supply 14% of the total world energy demand. RES are biomass, hydropower, geothermal, solar, wind and marine energies. The renewables are the primary, domestic and clean or inexhaustible energy resources. The percentage share of biomass was 62.1% of total renewable energy sources in 1995. Experimental results for a large variety of biomass fuels and conditions are presented. Numerical studies are also discussed. Biomass is an attractive renewable fuel in utility boilers. The compositions of biomass among fuel types are variable. Ash composition for the biomass is fundamentally different from ash composition for the coal. Especially inorganic constituents cause to critical problems of toxic emissions, fouling and slagging. Metals in ash, in combination with other fuel elements such as silica and sulfur, and facilitated by the presence of chlorine, are responsible for many undesirable reactions in combustion furnaces and power boilers. Elements including K, Na, S, Cl, P, Ca, Mg, Fe, Si are involved in reactions leading to ash fouling and slagging in biomass combustors. Chlorine in the biomass may affect operation by corrosion. Ash deposits reduce heat transfer and may also result in severe corrosion at high temperatures. Other influences of biomass composition are observed for the rates of combustion and pollutant emissions. Biomass combustion systems are non-polluting and offer significant protection of the environment. The reduction of greenhouse gases

  7. Prototype solar heating and combined heating cooling systems

    Science.gov (United States)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  8. Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System

    OpenAIRE

    Giedrė Streckienė; Salomėja Bagdonaitė

    2012-01-01

    The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional ...

  9. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    In many countries, the electricity supply and power plant operation are challenged by increasing amounts of fluctuating renewable energy sources. A smart energy system should be developed to integrate as much energy supply from fluctuating renewable sources and to utilise the scarce biomass...... resources as efficiently as possible. Using the advanced energy systems analysis tool EnergyPLAN and Denmark as a case, this analysis defines which of the three assessed types of CHP plants connected to district heating systems is most feasible in terms of total socioeconomic costs and biomass consumption...... as an unsustainable level of biomass consumption. Therefore, the regulatory framework should generally be considered in long-term planning of sustainable CHP systems....

  10. Investigating the impact of heat demand reductions on Swedish district heating production using a set of typical system models

    International Nuclear Information System (INIS)

    Highlights: • Four typical district heating systems is defined to represent the entire Swedish DH sector. • A scenario for heat demand reductions due to building energy efficiency improvements is studied. • Heat demand reductions in Swedish district heating systems reduce CO2 emissions and reduce the use of biomass and fossil fuels. • The heat production in different district heating systems should be considered to maximise the reduction of CO2 emissions. - Abstract: The European Union (EU) aims at reducing its CO2 emissions and use of primary energy. The EU also aims to improve the energy efficiency in buildings and promote the use of combined heat and power (CHP) plants in district heating (DH) systems. Due to significant differences among DH systems regarding fuel use and heat production units, results for one individual DH systems are not generally valid for other DH systems. Therefore, there is a need to generally describe entire DH sectors in a way that considers the heat production plant merit-orders of the individual DH systems. Here, four models of typical DH systems are defined to represent the Swedish DH sector. A scenario for stepwise heat demand reductions due to building energy efficiency improvements is studied. The results show that heat demand reductions in Swedish DH systems generally reduce global CO2 emissions and mainly reduce the use of biomass and fossil fuels, while the use of waste and industrial waste heat (IWH) is less influenced. The results further show that in order to maximise the reduction of CO2 emissions by energy conservation in buildings, the heat production technologies of the DH system should be considered. A large share of CHP production with a high electricity-to-heat output ratio decreases the possibilities to reduce global CO2 emissions through heat demand reductions

  11. Solar heating systems. Part 1

    International Nuclear Information System (INIS)

    Results of a survey, undertaken by a Danish specialist firm, concerning solar heating systems. The main aim of the analysis was to build up a basis for the choice of a strategy for a campaign for marketing these systems. The survey was founded on telephone interviews with ca. 500 house-owners located throughout the country. Questions posed related to the individuals' current mode of space heating and future wishes in this respect, the amount of acquired information on the subject and the nature of considerations regarding acquisition, the level of information acquired and the choice of information sources, the amount of realistic information on prices, possible subsidies and oil savings related to the supplementary use of solar energy, the name of the relevant commercial supplier and attitudes to a number of aspects connected with the solar heating systems. The results are presented by means of a short explanatory text and a large volume of data. Generally speaking, it is concluded that most people in Denmark are reasonably well-informed on solar heating systems, and that they take environmental considerations seriously. Differences of opinion were related to the fact that some felt that the system itself, placed on roofs, was ugly and could perhaps appear pretentious. Only 5% of the interviewed persons had actually been in contact with an installator, although the majority had a positive attitude towards solar heating systems. (AB)

  12. Study of biomass applied to a cogeneration system: A steelmaking industry case

    International Nuclear Information System (INIS)

    In this paper, a theoretical technical study was carried out using Brazilian available biomass materials (rice husk, coffee husk and elephant grass) compared to natural gas applied to an electric arc furnace (EAF) steelmaking process. Rice and coffee husk are biomass residues from the agriculture while elephant grass (Pennisetum Purpureum Schum) is an abundant, fast growing plant, which is used for cattle breeding. The ultimate analysis of the biomass materials was carried out in the research department of a Brazilian Steelmaking Industry. The results of the ultimate analysis were used to determine the lower calorific value and the mass flow rate of the biomass materials used in the cogeneration system. The actual steelmaking process uses natural gas to both improve the “cold spots” inside the furnace and contribute to minimize the use of electrical energy in the heating process. The feasibility study considers a combined heat and power plant (CHP) to generate electricity and heat to the electric arc furnace (EAF) process. This study used the First Law of Thermodynamics to determine the operational parameters of the cogeneration plant considering three cases of different operational parameters in the Rankine cycle. The technical results show that the natural gas consumption and exhaust gas generation were the lowest among the fuels in the three cases analyzed. Regarding the exhaust gases generation, some aspects should be highlighted: the combustion of biomass is considered carbon neutral; the exhaust gases generated may be used to scrap preheat; also, biomass is a renewable fuel in contrast with natural gas, which is a fossil fuel. Thus, an economic analysis, considering only the operational cost of the plant, was conducted exhibiting that elephant grass had the lowest operational cost, accounting for a reduction of about 9% in the second case and 15% in the third case compared to natural gas. Although the biomasses have lower LCV than natural gas, they

  13. Location Optimization for Biomass Trigeneration System with Pit Thermal Energy Storage: the Case of the City of Petrinja

    DEFF Research Database (Denmark)

    Ćosić, B.; Dominkovic, Dominik Franjo; Ban, M.;

    2015-01-01

    The combined production of electricity, heat and cold in biomass trigeneration power plants integrated with seasonal pit thermal energy storage ensures maximum utilization of biomass resources and at the same time reduction of variable operation costs of the system. Beside optimal size of trigene......The combined production of electricity, heat and cold in biomass trigeneration power plants integrated with seasonal pit thermal energy storage ensures maximum utilization of biomass resources and at the same time reduction of variable operation costs of the system. Beside optimal size....... In order to optimise location two steps optimisation has been used. In the first step, hybrid optimisation model with Genetic Algorithm and fmicon were used while in the second step model searches for minimum cost of transportation subtracted by increased costs of distribution network investment. Moreover...

  14. A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage

    International Nuclear Information System (INIS)

    Highlights: • Hybrid optimization model of biomass trigeneration system with PTES is developed. • Influence of premium feed-in tariffs on trigeneration systems is assessed. • Influence of total system efficiency on biomass trigeneration system with PTES is assessed. • Influence of energy savings on project economy is assessed. - Abstract: This paper provides a solution for managing excess heat production in trigeneration and thus, increases the power plant yearly efficiency. An optimization model for combining biomass trigeneration energy system and pit thermal energy storage has been developed. Furthermore, double piping district heating and cooling network in the residential area without industry consumers was assumed, thus allowing simultaneous flow of the heating and cooling energy. As a consequence, the model is easy to adopt in different regions. Degree-hour method was used for calculation of hourly heating and cooling energy demand. The system covers all the yearly heating and cooling energy needs, while it is assumed that all the electricity can be transferred to the grid due to its renewable origin. The system was modeled in Matlab© on hourly basis and hybrid optimization model was used to maximize the net present value (NPV), which was the objective function of the optimization. Economic figures become favorable if the economy-of-scale of both power plant and pit thermal energy storage can be utilized. The results show that the pit thermal energy storage was an excellent option for storing energy and shaving peaks in energy demand. Finally, possible switch from feed-in tariffs to feed-in premiums was assessed and possible subsidy savings have been calculated. The savings are potentially large and can be used for supporting other renewable energy projects

  15. Novel technologies to improve the performance of biomass pyrolsis systems

    Science.gov (United States)

    Liaw, Shi-Shen

    Biomass pyrolysis is a thermochemical conversion process to convert lignocellosic materials into bio-oil, gas, and char. The bio-oil can be further refined to produce transportation fuels, high-value chemicals and heat. Although fast pyrolysis is a very promising technology for high bio-oil production yield, the reactors used have several technological problems that limit their future techno-economic viability. Current fast pyrolysis reactors use large quantities of carrier gas that reduce their thermal efficiency. The use of sand to accelerate heating rates results in serious attrition problems responsible for sand contamination of the bio-char produced. Most of the fast pyrolysis reactors currently used need to process very small particles which consume large quantities of energy in grinding. The bio-oil produced is also highly acidic and corrosive mainly due to the presence of acetic acid. The lack of a viable technology to use the acetic acid contained in these oils is a major challenge for the development of viable bio-oil refineries. The objective of this dissertation is to evaluate several technologies to improve the techno-economic viability of biomass pyrolysis systems. The main hypotheses of this dissertation are: (1) high yields of bio-oils could also be obtained by using auger pyrolysis reactors using very low volumes of carried gas and no sand as a heat carrier if the system is fed with very small particles (2) The grinding energy can be reduced if the biomass is torrefied. There are torrefaction conditions that will not affect the overall yield of pyrolysis products (3) Acetic acid produced during pyrolysis can be removed with the use of a fractional condensation system (4) The acids produced during the torrefaction and pyrolysis with the use of the fractional condensation system can be anaerobically digested to produce methane. In this dissertation, it was proved through Py-GC/MS studies that yield of most of the pyrolytic products can be explained

  16. Performance Evaluation of a Lithium-Chloride Absorption Refrigeration and an Assessment of Its Suitability for Biomass Waste Heat

    Directory of Open Access Journals (Sweden)

    Sacha Oberweis

    2012-10-01

    Full Text Available This paper presents a computer model that will evaluate the performance of a thermo-chemical accumulator. The model is based on operational data such as temperatures and flow rates. The ultimate goal for this model is to estimate the coefficient of performance (COP of this unit when run on hot water from biomass combustion as the heat source. The outputs of the model are verified by comparing the simulation of the actual machine with published experimental data. The computed results for cooling COP are within 10% of the measured data. The simulations are all run for heat load temperatures varying between 80 °C and 110 °C. As expected, simulation results showed an increase in COP with increased heat source temperatures. The results demonstrate that the potential of combined solar and biomass combustion as a heat source for absorption cooling/heating in climates with low solar radiation can be coupled with biomass waste.

  17. Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Gadsbøll, Rasmus; Thomsen, Jesper;

    2016-01-01

    were conducted on a laboratory laminar entrained flow reactor (LFR) using solid fuel feed rates on the order of 10-20mgh-1. Employing a simple single step first order (SFOR) mechanism with an Arrhenius type rate expression, the best fit of the pyrolysis kinetics was found to be: A=18.9×103s-1, Ea=21305......This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments......Jmol-1. The accuracy of the derived global kinetics was supported by comparing predictions to experimental results from a 15kW furnace. The work emphasizes the importance of characterizing the temperature history of the biomass particles when deriving pyrolysis kinetics. The present results indicate...

  18. Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion

    International Nuclear Information System (INIS)

    The aim of this consequential life cycle assessment (LCA) is to compare district heating based on waste incineration with combustion of biomass or natural gas. The study comprises two options for energy recovery (combined heat and power (CHP) or heat only), two alternatives for external, marginal electricity generation (fossil lean or intense), and two alternatives for the alternative waste management (landfill disposal or material recovery). A secondary objective was to test a combination of dynamic energy system modelling and LCA by combining the concept of complex marginal electricity production in a static, environmental systems analysis. Furthermore, we wanted to increase the methodological knowledge about how waste can be environmentally compared to other fuels in district-heat production. The results indicate that combustion of biofuel in a CHP is environmentally favourable and robust with respect to the avoided type of electricity and waste management. Waste incineration is often (but not always) the preferable choice when incineration substitutes landfill disposal of waste. It is however, never the best choice (and often the worst) when incineration substitutes recycling. A natural gas fired CHP is an alternative of interest if marginal electricity has a high fossil content. However, if the marginal electricity is mainly based on non-fossil sources, natural gas is in general worse than biofuels

  19. Calcium bromide hydration for heat storage systems

    OpenAIRE

    Ai Niwa; Noriyuki Kobayashi

    2015-01-01

    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  20. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    OpenAIRE

    Sensho Honma; Toshimitsu Hata; Takashi Watanabe

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions chan...

  1. Prototype solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete air-collector system to meet needs of single-family dwelling is designed to operate in any region of United States except extreme north and south. Design can be scaled up or down to accomodate wide range of heating and hot-water requirements for single-family, multi-family, or commercial buildings without significantly changing design concept.

  2. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  3. An advanced extruder-feeder biomass liquefaction reactor system

    Science.gov (United States)

    White, Don H.; Wolf, D.; Davenport, G.; Mathews, S.; Porter, M.; Zhao, Y.

    1987-11-01

    A unique method of pumping concentrated, viscous biomass slurries that are characteristic of biomass direct liquefaction systems was developed. A modified single-screw extruder was shown to be capable of pumping solid slurries as high as 60 weight percent wood flour in wood oil derived vacuum bottoms, as compared to only 10 to 20 weight percent wood flour in wood oil in conventional systems. During the period August, 1985 to April, 1987, a total of 18 experimental continuous biomass liquefaction runs were made using white birch feedstock. Good operability with feed rates up to 30 lb/hr covering a range of carbon monoxide, sodium carbonate catalyst, pressures from 800 to 3000 psi and temperatures from 350 C to 430 C was achieved. Crude wood oils containing 6 to 10 weight percent residual oxygen were obtained. Other wood oil characteristics are reported.

  4. An inventory control model for biomass dependent production systems

    International Nuclear Information System (INIS)

    The financial performance of a biomass dependent production system was critiqued based on the development and validation of an inventory control model. Dynamic programming was used to examine the constraints and capabilities of producing ethanol from various biomass crops. In particular, the model evaluated the plantation, harvest, and manufacturing components of a woody biomass supply system. The optimum wood to ethanol production scheme produced 38 million litres of ethanol in the harvest year, at 13.6 million litre increase over the least optimal policy as demonstrated in the dynamic programming results. The system produced ethanol at a delivered cost of $0.38 L-1 which was consistent with the unit costs from other studies. Nearly 60% of the delivered costs were in ethanol production. The remaining costs were attributed to growing biomass (14%), harvest and shipment of the crop (18%), storage of the raw material and finished product (7%) and open-quotes lost salesclose quotes (2%). Inventory control, in all phases of production, proved to be an important cost consideration throughout the model. The model also analyzed the employment of alternative harvesting policies and the use of different or multiple feedstocks. A comparison between the least cost wood system and an even cut wood system further revealed the benefits of using an inventory control system

  5. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  6. Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system

    Science.gov (United States)

    Wongchanapai, Suranat; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2012-10-01

    The combination of biomass gasification and high-temperature solid oxide fuel cells (SOFCs) offers great potential as a future sustainable power generation system. In order to provide insights into an integrated small-scale SOFC-biomass gasification power generation system, system simulation was performed under diverse operating conditions. A detailed anode-supported planar SOFC model under co-flow operation and a thermodynamic equilibrium for biomass gasification model were developed and verified by reliable experimental and simulation data. The other peripheral components include three gas-to-gas heat exchangers (HXs), heat recovery steam generator (HRSG), burner, fuel and air compressors. To determine safe operating conditions with high system efficiency, energy and exergy analysis was performed to investigate the influence through detailed sensitivity analysis of four key parameters, e.g. steam-to-biomass ratio (STBR), SOFC inlet stream temperatures, fuel utilization factor (Uf) and anode off-gas recycle ratio (AGR) on system performance. Due to the fact that SOFC stack is accounted for the most expensive part of the initial investment cost, the number of cells required for SOFC stack is economically optimized as well. Through the detailed sensitivity analysis, it shows that the increase of STBR positively affects SOFC while gasifier performance drops. The most preferable operating STBR is 1.5 when the highest system efficiencies and the smallest number of cells. The increase in SOFC inlet temperature shows negative impact on system and gasifier performances while SOFC efficiencies are slightly increased. The number of cells required for SOFC is reduced with the increase of SOFC inlet temperature. The system performance is optimized for Uf of 0.75 while SOFC and system efficiencies are the highest with the smallest number of cells. The result also shows the optimal anode off-gas recycle ratio of 0.6. Regarding with the increase of anode off-gas recycle ratio

  7. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher QH,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  8. Gas, power and heat generation from biomass by allothermal gasification; Gas-, Strom- und Waermeerzeugung aus Biomasse durch allotherme Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Yaqub Chughtai, M. [H und C Engineering GmbH, Gummersbach (Germany); Muehlen, H.J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1998-09-01

    The allothermal DMT gasification process for biomass is a newcomer. The process, its initial materials, the uses of the product gas, and advantages of the allothermal process are described here. (orig./SR) [Deutsch] Der Einsatz des allothermen DMT-Vergasungsverfahrens fuer Biomasse ist neu. Verfahren, Einsatzstoffe und Produktgasnutzung, sowie Vorteile des allothermen Verfahrens werden hier beschrieben. (orig./SR)

  9. Optimization of a thermal storage unit combined with a biomass bioler for heating buildings

    OpenAIRE

    Butala, Vincenc; Stritih, Uroš

    2015-01-01

    The performance of a boiler with a built-in thermal storage unit is presented.The thermal storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the thermal storage unit makes it possible to heat even when the boiler is not operating, thus increasing the heating efficiency. A system with three components is described. The model of the system and the mathematical model were made using the TRNSYS program package and a test reference year (TRY). The...

  10. Application of Exergoeconomic and Exergoenvironmental Analysis to an SOFC System with an Allothermal Biomass Gasifier

    Directory of Open Access Journals (Sweden)

    George Tsatsaronis

    2009-12-01

    Full Text Available

    In the future, energy conversion systems will be needed that reduce the environmental impact and costs of energy supply when fossil fuels are employed. An alternative is using biomass as a renewable energy resource to achieve both effects. For this reason, interest in biomass gasification processes resurged considerably in the past years. In particular, combination of allothermal biomass gasification with a high-temperature solid oxide fuel cell (SOFC has met with great interest as an attractive option for electricity generation. To objectively evaluate this new biomass conversion process, the newly developed exergoenvironmental analysis and the established exergoeconomic analysis are applied. The basic idea of both methods is that in energy conversion systems, exergy represents the only rational basis for assigning environmental impacts and costs to the energy carriers and to the inefficiencies within the system. The present article identifies the most relevant system components from the environmental and economic points of view and provides information about possibilities of design improvements. Comparison of the results of both methods reveals that the most relevant process components are the SOFC, the heat exchanger for preheating the air, and the allothermal fluidized-bed gasifier. A special focus will be placed on differences between both analysis methods.

    •  This paper is an updated version of a paper published in the ECOS'08 proceedings.

  11. Analytical Model for Predicting the Heat Loss Effect on the Pyrolysis of Biomass Particles

    Institute of Scientific and Technical Information of China (English)

    Alireza Rahbari; Fatemeh Ebrahiminasab; Mehdi Bidabadi

    2013-01-01

    This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass parti-cles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly pre-mixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions:gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analy-sis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity (i.e. u 1ϕ ≥ ). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the de-termining factors on the flame temperature and burning velocity of biomass particles are declared in this research.

  12. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  13. Soil microbial biomass in organic farming system.

    OpenAIRE

    Araújo, Ademir Sérgio Ferreira de; Melo, Wanderley José de

    2010-01-01

    Agricultural production systems have to combine management practices in order to sustain soil's profitability and quality. Organic farming is gaining worldwide acceptance and has been expanding at an annual rate of 20% in the last decade, accounting for over 24 million hectares worldwide. Organic practices avoid applications of synthetic fertilizers and pesticides, rely on organic inputs and recycling for nutrient supply, and emphasize cropping system design and biological processes for pest ...

  14. Simulation and optimization of biomass harvest and transport system

    Energy Technology Data Exchange (ETDEWEB)

    Busato, Patricia; Berruto, Remigio; Piccarolo, Pietro [University of Turin (Italy). Dipt. di Economia e Ingegneria Agraria, Forestale e Ambientale (DEIAFA)], E-mail: patrizia.busato@unito.it

    2008-07-01

    The implementation of a biomass supply chain needs the delivery of good feasibility studies. Since biomass is characterized by low value and low energy density, the logistic costs is an important component in order to assess this feasibility. To design the logistics and estimate the costs is a complex task because the process consists of multiple work processes intensively interlinked. Bottlenecks within transport or unloading operations can reduce system capacity below the capacity of the harvester. A well-matched system can lower the cost of producing forages. The overall goal of this study was to present the combined use of both the simulation and linear programming models to optimize the flow of biomass from field to a power plant. The simulation predicted the overall system performance. The results from the simulation model were then used as input in the linear programming model, which chosen the best combination of equipment for each field distance and yield, in order to minimize the logistic costs, while satisfying some constraint like the number of hours available for harvest and the area to be harvested. The presented case study refers to corn silage harvest of an area of 4000 ha (72000 tDM). The logistic operation costs ranged from 17.00 Euros.tDM{sup -1} for 10 km to 31.86 Euros.tDM{sup -1} for 40 km biomass collection radius. The average unitary costs were respectively of 306 Euros.ha{sup -1} and 574 Euros.ha{sup -1}. (author)

  15. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  16. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  17. Evaluating the accuracy of the Distributed Activation Energy Model for biomass devolatilization curves obtained at high heating rates

    International Nuclear Information System (INIS)

    Highlights: • DAEM was applied to biomass pyrolysis using a wide range of heating rates. • The validity of the method was evaluated for high heating rates. • Activation energy of low heating rates differs from that of higher rates. - Abstract: The characteristic parameters of devolatilization, the activation energy and the frequency factor, can be obtained following different experimental approaches. In the Distributed Activation Energy Model (DAEM), these parameters are derived from several TGA curves that are typically obtained for constant, low heating rate experiments. Then, the results are used to model high heating rate processes typical of industrial combustors. In this work, a wide range of heating rates were employed to obtain different TGA curves of the biomass pyrolysis, in order to analyse the validity of DAEM when extrapolating the kinetic parameters obtained for low heating rate curves used in the laboratory to higher heating rates present in industrial applications. The TGA curves of the biomass pyrolysis employed in DAEM were varied from low heating rates (around 10 K/min, values typically found in the literature on DAEM), to high heating rates (up to 200 K/min). The differences in the activation energy and the frequency factor obtained for different heating rates, were evaluated and the validity of the model was discussed. The results show differences between the activation energy and the frequency factor obtained using low and high heating rates during the TGA tests. Therefore, if an accurate approximation is required when extrapolating the data to high heating rates, the tests should be carried out at high heating rates

  18. Preliminary Feasibility Study of a Forest Biomass Fueled Small-Scale District Heating Network in the Town of Marathon, Canada

    OpenAIRE

    Peiponen, Niko

    2015-01-01

    The objective of this thesis was to look into the possibility of constructing a forest biomass fueled district heating network in to the Town of Marathon, and to evaluate if it is feasible to carry on with a full-scale feasibility study. This thesis directly supported the Nipissing University’s Biomass Innovation Centre’s (BIC) Northern Ontario Biomass Initiatives – project. The base knowledge for the theory was gathered by using the internet, journal articles, e-books and other web docum...

  19. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  20. Dynamics of Technological Innovation Systems. The Case of Biomass Energy

    International Nuclear Information System (INIS)

    The starting point is that the current energy system largely depends on fossil fuels. This phenomenon, which is labelled as carbon lock-in, causes a long breakthrough period for renewable energy. The most suitable theoretical approach to analyse the development, diffusion and implementation of emergent technologies, such as renewable energy, is the Technological Innovation Systems' (TIS) perspective. This approach focuses on a particular technology and includes all those factors (institutions, actors, and networks) that influence its development. Recent research has identified several so-called System Functions that need to be fulfilled for a TIS to support successfully the evolution of a technology. In this paper we will use the following set of System Functions: F1: Entrepreneurial Activities, F2: Knowledge Development (learning), F3: Knowledge Diffusion through Networks, F4: Guidance of the Search, F5: Market Formation, F6: Resources Mobilisation, F7: Counteracting Resistance to Change (also Support from Advocacy Coalitions). By focusing on the System Functions the key processes that occur in a system which influence the development, diffusion and implementation of that technology will be identified and insight will be gained in the system dynamics. The System Functions are not independent but interact and influence each other. The nature of interactions whether they are positive or negative will influence the performance of the system respectively. Positive System Function fulfilment can lead to positive, i.e. virtuous cycles of processes that strengthen each other and lead to the building up of momentum that creates a process of creative destruction within the incumbent system. According to the same reasoning, a system in decline is characterised by one or more vicious cycles, where the System Functions interact and reinforce each other in a negative way. The results from the case studies showed that different functional patterns occurred for the Biomass

  1. Clean heating with wood. An electrostatic separator reduces particulate matter emissions from biomass boilers; Sauber heizen mit Holz. Ein elektrostatischer Abscheider senkt die Feinstaub-Emissionen von Biomassekesseln

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2016-08-01

    Despite considerable advances in firing technology, harmful particulate matter is produced when wood is combusted. Electrostatic precipitators, however, filter up to 90 per cent of particulate emissions from biomass boilers. These therefore enable wood burners to use a wider range of fuel and still meet the tightened requirements of Germany's 1st Ordinance on the Implementation of the Federal Immission Control Act. The major advantage: Both new and old heating plants can benefit from the new system.

  2. Biomass boilers

    OpenAIRE

    Nahodil, Jiří

    2011-01-01

    Bachelor’s thesis deals with the use of biomass for heating houses and apartment houses. The first part is dedicated to biomass. Here are mentioned the possibility of energy recovery, treatment and transformation of biomass into a form suitable for burning, its properties and combustion process itself. The second part is devoted to biomass boilers, their separation and description. The last section compares the specific biomass boiler with a boiler to natural gas, particularly from an economi...

  3. Potential utilization of biomass in production of electricity, heat and transportation fuels including energy combines - Regional analyses and examples; Potentiell avsaettning av biomassa foer produktion av el, vaerme och drivmedel inklusive energikombinat - Regionala analyser och raekneexempel

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Karin; Boerjesson, Paal

    2008-01-15

    The objective of this study is to analyse how the use of biomass may increase in the next 10-20 years in production of heat, electricity and transportation fuels in Sweden. In these analyses, the biomass is assumed to be used in a resource and cost efficient way. This means for example that the demand for heat determines the potential use of biomass in co-generation of heat and electricity and in energy combines, and that the markets for by-products determine the use of biomass in production of certain transportation fuels. The economic conditions are not analysed in this study. In the heat and electricity production sector, we make regional analyses of the potential use of biomass in production of small-scale heat, district heat, process heat in the forest industry and electricity produced in co-generation with heat in the district heating systems and forest industry. These analyses show that the use of biomass in heat and electricity production could increase from 87 TWh (the use in 2004/2005, excluding small-scale heat production with firewood) to between 113 TWh and 134 TWh, depending on the future expansion of the district heating systems. Geographically, the Stockholm province accounts for a large part of the potential increase owing to the great opportunities for increasing the use of biomass in production of district heat and CHP in this region. In the sector of transportation fuels we applied a partly different approach since we consider the market for biomass-based transportation fuels to be 'unconstrained' within the next 10-20 years. Factors that constrain the production of these fuels are instead the availability of biomass feedstock and the local conditions required for achieving effective production systems. Among the first generation biofuels this report focuses on RME and ethanol from cereals. We estimate that the domestic production of RME and ethanol could amount to up to 1.4 TWh/y and 0.7-3.8 TWh/y, respectively, where the higher

  4. Thermochemistry: the key to minerals separation from biomass for fuel use in high performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-12-31

    Biomass use in high efficiency thermal electricity generation is limited not by the properties of the organic component of biomass, but by the behavior of the associated mineral matter at high temperatures. On a moisture and ash free basis biomass, which has an average formula of CH{sub 1.4}O{sub 0.6}N{sub 0.1}, has a relatively low heating value of 18.6 GJ/t. However, this would not limit its use in high efficiency combustion systems because adequate high temperatures could be reached to achieve high carnot cycle efficiencies. These high temperatures cannot be reached because of the fouling and slagging propensities of the minerals in biomass. The mineral composition is a function of soils and the growth habit of the biomass, however, the most important element is potassium, which either alone or in combinating with silica forms the basis of fouling and slagging behaviors. Growing plants selectively concentrate potassium in their cells, which along with nitrogen and phosphorus are the key macronutrients for plant growth. Annual plants tend to have very high potassium contents, although wood biomass exclusive of the living cambial layer (i.e. minus the bark, small branches, and leaves) has minimal potassium content and other nutrients. Under combustion conditions the potassium is mobilized, especially in the presence of chlorine, at relative low temperatures and fouls heat transfer surfaces and corrodes high performance metals used, for example, in the high temperature sections of burners and gas turbines. Recent work has demonstrated the phenomenology of ash fouling, mainly by the potassium component of biomass, as well as identifying the key species such as KOH, KCl, and sulphates that are involved in potassium transport at temperatures <800 deg C. Techniques that separate the mineral matter from the fuel components (carbon and hydrogen) at low temperatures reduce or limit the alkali metal transport phenomena and result in very high efficiency combustion

  5. Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian;

    2013-01-01

    To investigate options for increasing the electrical efficiency of decentralized combined heat and power (CHP) plants fuelled with biomass compared to conventional technology, this research explored the performance of an alternative plant design based on thermal biomass gasification and solid oxide...... and SOFCs predicted a net electrical efficiency of 44.9% (LHV (lower heating value)) when 1.4 MWe power was produced. The work had significant focus on providing a highly accurate model of the complete plant. A sensitivity analysis revealed that the SOFC operating temperature, SOFC fuel utilization factor...

  6. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  7. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...

  8. Lighting system with heat distribution face plate

    Energy Technology Data Exchange (ETDEWEB)

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  9. Decay Heat Removal System of Monju

    International Nuclear Information System (INIS)

    MONJU has three decay heat removal systems. The intermediate heat exchanger of the decay heat removal system is incorporated within the main IHX shell, and the heat from the secondary system is rejected to the air. Forced circulation is adopted for both primary and secondary coolant, though natural circulation capability is designed into the plant itself. Feasibility of rejecting the decay heat through steam plant is also being studied. In this paper, MONJU's decay heat removal system design, operational procedures, and the considerations behind the concept will be presented. (author)

  10. 14 CFR 27.859 - Heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heating systems. 27.859 Section 27.859... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Fire Protection § 27.859 Heating systems. (a) General. For each heating system that involves the passage of cabin air over, or close to, the...

  11. Economic development through biomass system integration: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M.M. [Northern States Power Co., Minneapolis, MN (United States)

    1995-10-01

    This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

  12. Biomass Gasifier Energy Cyber-Physical System Design with Coupling of the Wind and Solar Energy

    Directory of Open Access Journals (Sweden)

    Zhihuan Zhang

    2013-07-01

    Full Text Available The air pollution in China has been quite serious, and biomass is extremely rich in large agricultural country. In the view of current situation, highly efficient solar collectors, wind energy and solar energy coupled heating straw gasification system is studied. The stability of continuous gas production is analyzed in various weather conditions including windy, calm, sunny and cloudy. Highly efficient solar panels, wind energy and solar energy coupled heating straw gasification control system is raised. This system overcomes the time variability of the weather conditions to ensure the stability of the continuous gas production under a variety of weather conditions. It has high quality of gas production, strong anti-interference ability and robustness.

  13. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    Science.gov (United States)

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely. PMID:26851894

  14. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  15. Modeling and Assessment of a Biomass Gasification Integrated System for Multigeneration Purpose

    Directory of Open Access Journals (Sweden)

    Shoaib Khanmohammadi

    2016-01-01

    Full Text Available The use of biomass due to the reduction in greenhouse gas emissions and environmental impacts has attracted many researchers’ attention in the recent years. Access to an energy conversion system which is able to have the optimum performance for applying valuable low heating value fuels has been considered by many practitioners and scholars. This paper focuses on the accurate modeling of biomass gasification process and the optimal design of a multigeneration system (heating, cooling, electrical power, and hydrogen as energy carrier to take the advantage of this clean energy. In the process of gasification modeling, a thermodynamic equilibrium model based on Gibbs energy minimization is used. Also, in the present study, a detailed parametric analysis of multigeneration system for undersigning the behavior of objective functions with changing design parameters and obtaining the optimal design parameters of the system is done as well. The results show that with exergy efficiency as an objective function this parameter can increase from 19.6% in base case to 21.89% in the optimized case. Also, for the total cost rate of system as an objective function it can decrease from 154.4 $/h to 145.1 $/h.

  16. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  17. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    were identified and compared based on a thermodynamic analysis. The operational performance of the configurations were investigated at both local and system level considering different DH network temperatures, different fuels and different production technologies in the DH network. The analysis show...... that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... applicability of components causes a significantly increased cost at high temperature lifts, compared to the most competitive thermodynamic cycle. At high and medium temperature lifts cycle efficiencies of 45 - 50 % of the theoretical maximum (Lorenz cycle limit) can be achieved, whereas for low temperature...

  18. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating...... effective to reduce from approximately 12% to 17% of future heat demand in buildings depending on assumed lifetime and costs of heat saving measures. Individual heating areas have higher penetration of heat savings than district heating areas. When district heating systems are expanded, an overall...... penetration of heat savings slightly decreases along with lower capacity investments and system costs....

  19. Carbon footprints of heating oil and LPG heating systems

    International Nuclear Information System (INIS)

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  20. Evaluation of biomass combustion based energy systems by cumulative energy demand and energy yield coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.; Oser, M.

    2004-07-01

    This final report prepared for the International Energy Agency (IEA) Bioenergy Task 32 presents a method for a comparison of different energy systems with respect to the overall energy yield during their life cycles. For this purpose, the Cumulative Energy Demand (CED) based on primary energy and the Energy Yield Factor (EYC) are introduced and determined for the following scenarios: Log wood, wood chips, and wood pellets for residential heating and - except for log wood - also for district heating. As an alternative to heat production, power production via combustion and use of the electricity for decentralised heat pumps is also looked at. The evaluation and comparison of both the EYC for all fuels and the EYC{sub N}R for the non-renewable part enables a ranking of energy systems without a subjective weighing of non-renewable and renewable fuels to be made. For a sustainable energy supply, it is proposed to implement renewable energy systems in future which achieve an energy yield EYC{sub N}R of at least greater than 2 but favourably greater than 5. The evaluation of the different scenarios presented is proposed as the future basis for the choice of the most efficient energy systems based on biomass combustion.

  1. Solar heating system installed at Stamford, Connecticut

    Science.gov (United States)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  2. Solar dynamic space power system heat rejection

    Science.gov (United States)

    Carlson, A. W.; Gustafson, E.; Mclallin, K. L.

    1986-01-01

    A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.

  3. Application of Heterogeneous Catalysis in Small-Scale Biomass Combustion Systems

    Directory of Open Access Journals (Sweden)

    Christian Thiel

    2012-04-01

    Full Text Available Combustion of solid biomass fuels for heat generation is an important renewable energy resource. The major part among biomass combustion applications is being played by small-scale systems like wood log stoves and small wood pellet burners, which account for 75% of the overall biomass heat production. Despite an environmentally friendly use of renewable energies, incomplete combustion in small-scale systems can lead to the emission of environmental pollutants as well as substances which are hazardous to health. Besides particles of ash and soot, a wide variety of gaseous substances can also be emitted. Among those, polycyclic aromatic hydrocarbons (PAH and several organic volatile and semi-volatile compounds (VOC are present. Heterogeneous catalysis is applied for the reduction of various gaseous compounds as well as soot. Some research has been done to examine the application of catalytic converters in small-scale biomass combustion systems. In addition to catalyst selection with respect to complete oxidation of different organic compounds, parameters such as long-term stability and durability under flue gas conditions are considered for use in biomass combustion furnaces. Possible catalytic procedures have been identified for investigation by literature and market research. Experimental studies with two selected oxidation catalysts based on noble metals have been carried out on a wood log stove with a retrofit system. The measurements have been performed under defined conditions based on practical mode of operation. The measurements have shown that the catalytic flue gas treatment is a promising method to reduce carbon monoxide and volatile organic compounds. Even a reduction of particulate matter was observed, although no filtering effect could be detected. Therefore, the oxidation of soot or soot precursors can be assumed. The selected catalysts differed in their activity, depending on the compound to be oxidized. Examinations showed that

  4. Effect of operating parameters on performance of an integrated biomass gasifier, solid oxide fuel cells and micro gas turbine system

    International Nuclear Information System (INIS)

    An integrated power system of biomass gasification with solid oxide fuel cells (SOFC) and micro gas turbine has been investigated by thermodynamic model. A zero-dimensional electrochemical model of SOFC and one-dimensional chemical kinetics model of downdraft biomass gasifier have been developed to analyze overall performance of the power system. Effects of various parameters such as moisture content in biomass, equivalence ratio and mass flow rate of dry biomass on the overall performance of system have been studied by energy analysis. It is found that char in the biomass tends to be converted with decreasing of moisture content and increasing of equivalence ratio due to higher temperature in reduction zone of gasifier. Electric and combined heat and power efficiencies of the power system increase with decreasing of moisture content and increasing of equivalence ratio, the electrical efficiency of this system could reach a level of approximately 56%.Regarding entire conversion of char in gasifier and acceptable electrical efficiency above 45%, operating condition in this study is suggested to be in the range of moisture content less than 0.2, equivalence ratio more than 0.46 and mass flow rate of biomass less than 20  kg h−1. - Highlights: • One-dimension chemical kinetics model of biomass gasifier has been developed. • Un-reacted char have been predicted along the height of the reduction zone of gasifier. • Effects of process parameters on char flow rate and efficiencies of BG, SOFC and GT system have been examined. • Regarding entire char conversion and acceptable system efficiency, the operating condition has been proposed

  5. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  6. The Forest Energy Chain in Tuscany: Economic Feasibility and Environmental Effects of Two Types of Biomass District Heating Plant

    Directory of Open Access Journals (Sweden)

    Claudio Fagarazzi

    2014-09-01

    Full Text Available The purpose of this study was to examine two biomass district heating plants operating in Tuscany, with a specific focus on the ex-post evaluation of their economic and financial feasibility and of their environmental benefits. The former biomass district heating plant supplies only public users (Comunità Montana della Lunigiana, CML: administrative body that coordinates the municipalities located in mountain areas, the latter supplies both public and private users (Municipality of San Romano in Garfagnana. Ex-post investment analysis was performed to check both the consistency of results with the forecasts made in the stage of the project design and on the factors, which may have reduced or jeopardized the estimated economic performance of the investment (ex-ante assessment. The results of the study point out appreciable results only in the case of biomass district heating plants involving private users and fuelled by biomasses sourced from third parties. In this case, the factors that most influence ex-post results include the conditions of the woody biomass local market (market prices, the policies of energy selling prices to private users and the temporal dynamics of private users’ connection. To ensure the consistency of ex-post economic outcome with the expected results it is thus important to: (i have good knowledge of the woody local market; (ii define energy selling prices that should be cheap for private users but consistent with energy production costs and (iii constrain private users beforehand to prevent errors in the plant design and in the preliminary estimate of return on investment. Moreover, the results obtained during the monitoring activities could help in providing information on the effectiveness of the supporting measures adopted and also to orient future choices of policy makers and particularly designers, to identify the most efficient configuration of district heating organization for improving energy and

  7. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  8. Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings

    OpenAIRE

    Chuduk, Svetlana

    2010-01-01

    In bachelor’s thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case study is low-rise residential building in Finland with under floor heating as a single heating system. The calculations of main parameters of under floor heating system and length of ground heat exchanger are conducted. As a result the conclusion about reasonable of using the studying system for low-rise residential building in Finn...

  9. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  10. Novel heat recovery systems for building applications

    OpenAIRE

    Ahmad, Mardiana Idayu

    2011-01-01

    The work presented in this thesis will explore the development of novel heat recovery systems coupled with low carbon technologies, and its integration to become one device with multifunction (building integrated heat recovery/cooling/air dehumidifier. In the first part of this thesis, an experimental performance of an individual heat recovery unit using Micro Heat and Mass Cycle Core (MHM3C) made of fibre papers with cross flow arrangement has been carried out. The unit was tested in an env...

  11. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  12. Control challenges in domestic heating systems

    DEFF Research Database (Denmark)

    Thybo, Honglian; Larsen, Lars F. S.; Weitzmann, Peter

    2007-01-01

    The objective of this paper is to analyze domestic heating applications and identify unfavorable building constructions and control challenges to be addressed by high performance heating control systems. Heating of domestic houses use a large amount of the total energy consumption in Scandinavia....... Hence the potential of reducing energy consumption by applying high performance control is vast. Indoor climate issues are becoming more in focus, which also leads to a demand for high performance heating systems. The paper presents an analysis of how the building elements of today's domestic houses...... with water based floor heating affect the control challenge. The analysis is documented with simulation results....

  13. In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass.

    Science.gov (United States)

    Kirtania, Kawnish; Tanner, Joanne; Kabir, Kazi Bayzid; Rajendran, Sharmen; Bhattacharya, Sankar

    2014-01-01

    Three types of woody biomass were investigated under pyrolysis condition to observe the change in the surface functional groups by Fourier transform infrared (FTIR) technique with increasing temperature under two different (5 and 150°C/min) heating rates. The experiments were carried out in situ in the infrared microscopy beamline (IRM) of the Australian Synchrotron. The capability of the beamline made it possible to focus on single particles to obtain low noise measurements without mixing with KBr. At lower heating rate, the surface functional groups were completely removed by 550°C. In case of higher heating rate, a delay was observed in losing the functional groups. Even at a high temperature, significant number of functional groups was retained after the higher heating rate experiments. This implies that at considerably high heating rates typical of industrial reactors, more functional groups will remain on the surface.

  14. Use of biomass for clean and efficient production of heat and power. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Lans, R. van der; Frandsen, J.B.F.; Johnsson, J.E.; Jensen, A.; Kiil, S.; Dam-Johansen, K.

    2001-03-01

    The present EFP98 project is the second phase of a long-term, strategic research project, the aim of which is to facilitate the use of significant amounts of biomass in the production of power and heat. The project deals with combustion and emission issues related to the use of biomass, specifically combustion of straw on a grate and wet flue gas desulphurization. A mathematical model for combustion of straw on a grate is developed as a tool to improve the understanding of this process. The model includes heat transfer to and in the bed as well as pyrolysis and char oxidation. To verify the model and to obtain a better understanding of fixed-bed straw combustion, a number of bench-scale laboratory experiments have been conducted at TNO in Holland. Predicted combustion rates and bed temperatures were in fairly good agreement with experimental fixed-bed data. A parameter analysis has identified the sensitivity of modeling predictions towards important parameters in the model. Measuring programs on straw firing have been conducted at Enstedvaerket and Masnedoe. Measuring results include gas temperature and gas composition (O{sub 2}, CO{sub 2}, CO. SO{sub 2}, NO) from different positions in the boiler. Data from Masnedoe include also results from co-firing of straw with other biomass fuels (25-35%). The results indicate that co-firing in the quantities does not significantly affect emissions. Nitrogen oxides emissions from Masnedoevaerket were found to be significantly higher than those of Ensted. The work on wet flue gas desulphurization on aimed to provide the information necessary to optimize and further develop the process. The main focus was fuel and sorbent flexibility, use of the waste product from the semi-dry FGD process as a sorbent in wet FGD, and ways of optimizing the Wet FGD process with respect to a high degree of desulphurization, a low content of residual limestone in the gypsum and a continuous steady state operation of the FGD plant. Laboratory

  15. Installation package for a solar heating system

    Science.gov (United States)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  16. Prototype solar-heating system design package

    Science.gov (United States)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  17. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  18. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  19. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x106 t-wet/ yr (0.14x106 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  20. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  1. Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2012-12-01

    Full Text Available The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional heat source, should allow covering the remaining heat demand. energyPRO software is used for system modelling. The paper evaluates heat demand, climate conditions and technical characteristics.Article in Lithuanian

  2. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  3. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    OpenAIRE

    Marc A. Rosen; Shoaib Mehmood; Bale V. Reddy

    2012-01-01

    The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel) and two coals (bituminous coal and lignite) are considered. Key system performance parameters are evaluated for various fuel combina...

  4. Analysis of biomass co-firing systems in Taiwan power markets using linear complementarity models

    International Nuclear Information System (INIS)

    Biomass co-firing systems in power plants generate electric power by the simultaneous combustion of biomass and fossil fuels. The co-firing process reduces investment costs by converting biomass energy into electricity in existing conventional power plants. Biomass co-firing significantly reduces carbon dioxide and sulfur dioxide emissions in power generation. To meet the increase in biomass demand, this paper has considered systematic energy crop production, which is expected to increase in the near future. Our aim is to analyze biomass co-firing systems in the Taiwanese electricity market. In this paper, we study two emerging biomass feedstocks: switchgrass and Miscanthus. We focus on the impact of energy crop co-firing on carbon dioxide and sulfur dioxide emissions for electricity generation. A Nash-Cournot competition model, which simulates potential biomass co-firing scenarios, is formulated for power markets. A case study conducted in the Taiwanese electricity market showed that biomass co-firing lowers total electricity demand and sale. Miscanthus is more economical than switchgrass in terms of the production cost and the land required to generate biopower for the same levels of biomass co-firing. - Highlights: → Biomass co-firing system in electricity market is analyzed in this paper. → The research studies the impact of two energy crops in co-firing system. → This paper conducts a case study of co-firing system in Taiwan power markets.

  5. Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy.

    Science.gov (United States)

    Via, Brian K; Adhikari, Sushil; Taylor, Steve

    2013-04-01

    The goal of this study was to characterize the changes in biomass with torrefaction for near infrared reflectance (NIR) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy for sweetgum, loblolly pine, and switchgrass. Calibration models were built for the prediction of proximate analysis after torrefaction. Two dimensional (2D) correlation spectroscopy between NIR and FTIR was found to precisely explain the depolymerization at key functional groups located within hemicellulose, cellulose, and lignin. This novel 2D technique also demonstrated the possibility of assigning key NIR wavenumbers based on mid IR spectra. Hemicellulose based wavenumbers were found to be most sensitive to torrefaction severity with complete degradation at 250-275°C. Lignin associated wavenumbers exhibited the least degradation to severity but was still detected with 2D correlation spectroscopy. Finally, calibration models for proximate analysis were performed and while both systems could be used for rapid monitoring, NIR performed better than FTIR.

  6. Biomass enables the transition to a carbon-negative power system across western North America

    Science.gov (United States)

    Sanchez, Daniel L.; Nelson, James H.; Johnston, Josiah; Mileva, Ana; Kammen, Daniel M.

    2015-03-01

    Sustainable biomass can play a transformative role in the transition to a decarbonized economy, with potential applications in electricity, heat, chemicals and transportation fuels. Deploying bioenergy with carbon capture and sequestration (BECCS) results in a net reduction in atmospheric carbon. BECCS may be one of the few cost-effective carbon-negative opportunities available should anthropogenic climate change be worse than anticipated or emissions reductions in other sectors prove particularly difficult. Previous work, primarily using integrated assessment models, has identified the critical role of BECCS in long-term (pre- or post-2100 time frames) climate change mitigation, but has not investigated the role of BECCS in power systems in detail, or in aggressive time frames, even though commercial-scale facilities are starting to be deployed in the transportation sector. Here, we explore the economic and deployment implications for BECCS in the electricity system of western North America under aggressive (pre-2050) time frames and carbon emissions limitations, with rich technology representation and physical constraints. We show that BECCS, combined with aggressive renewable deployment and fossil-fuel emission reductions, can enable a carbon-negative power system in western North America by 2050 with up to 145% emissions reduction from 1990 levels. In most scenarios, the offsets produced by BECCS are found to be more valuable to the power system than the electricity it provides. Advanced biomass power generation employs similar system design to advanced coal technology, enabling a transition strategy to low-carbon energy.

  7. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging......The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP......)demonstration and research plant,named “Viking” at the Technical University of Denmark. The plant and engine have been operated continuously and unmanned. Producer gas properties and contaminations have been investigated. No detectable tar content was observed in the gas that goes to the engine; this was confirmed by three...

  8. Comparison of swimming pools alternative passive and active heating systems based on renewable energy sources in Southern Europe

    International Nuclear Information System (INIS)

    This article examines different passive and active heating systems for swimming pools. The passive systems introduced in this article are: * The swimming pools' enclosure. * The placement of floating insulating covers on the pools' surfaces whenever they are not used. The examined active systems in this article are: * A biomass heater. * A biomass heater and solar collectors combi-system. * Vertical geothermal heat exchangers (GHE) co-operating with geothermal heat pumps (GHP). The methodology employed for the introduced systems' evaluation is the arithmetic computational simulation of the swimming pools' annual heating, using annual time series of averaged hourly values for the available solar radiation and the calculated pools' thermal power demand (heating loads). The dimensioning of the active systems aims at the maximisation of the heating production from R.E.S. (renewable energy sources). and the optimisation of the corresponding investments' economic indexes. The examined systems are evaluated technically and economically versus fundamental criteria. It is proved that significant reduction of the heating loads is achieved with the introduced passive systems. The reduced swimming pools' heating loads can be successfully covered by the proposed R.E.S. active systems. The fossil fuels consumption is eliminated. The corresponding investments' payback periods can be lower than 5 years. - Highlights: • The passive solar systems reduce the swimming pools heating loads more than 90%. • The examined active heating system exhibit payback periods lower than 3.5 years. • The energy saving is maximised with a biomass heater – solar collectors system. • Single biomass heaters exhibits the shortest payback period. • GHE–GHP can be used in cases of low solar radiation and lack of biomass fuels

  9. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  10. Gasification for power, CHP and polygeneration Biomass Gasification for Combined Heat Power (CHP) Applications: the GAMECO Project

    OpenAIRE

    Authier, O; Khalfi, Az-Eddine; Sanchez, L.; Aleman, Y; Delebarre, A; Mauviel, G; Dufour, A; Rogaume, Y; Poirier, J.; Kerhoas, J

    2014-01-01

    International audience Air-blown fluidised bed biomass gasification is a well adapted technology for Combined Heat Power (CHP) applications with syngas valorisation in a gas engine. However, it is not mature yet. Despite promising prototypes, CHP gasification needs further improvements to become the reference technology in the medium-size CHP market. This is the purpose of the GAMECO project, which aims at improving an existing technology by optimising its operation, increasing its feedsto...

  11. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  12. Maximal Heat Generation in Nanoscale Systems

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Ling; LI Shu-Shen; ZENG Zhao-Yang

    2009-01-01

    We investigate the heat generation in a nanoscale system coupled to normal leads and find that it is maximal when the average occupation of the electrons in the nanoscale system is 0.5,no matter what mechanism induces the heat generation.

  13. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  14. LPV Identification of a Heat Distribution System

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon

    2010-01-01

    This paper deals with incremental system identification of district heating systems to improve control performance. As long as various parameters, e.g. valve settings, are kept fixed, the dynamics of district heating systems can be approximated well by linear models; however, the dynamics change ....... The approach is tested on a laboratory setup emulating a district heating system, where local controllers regulate pumps connected to a common supply. Experiments show that cross-couplings in the system can indeed be identified in closed-loop operation....

  15. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    OpenAIRE

    Sekret Robert; Nitkiewicz Anna

    2014-01-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exc...

  16. Modular district heating system MODiS

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K.; Ranne, A.; Koljonen, T. [VTT Energy, Espoo (Finland). Energy Systems

    2000-12-01

    MODiS (Modular District Heating System) products were developed for either building an entirely new district heating (DH) system or for renovating and extending an existing system. MODiS products comprise highly integrated prefabricated and pre- tested modules, where the modules themselves may be boilers, pumping stations, substations, metering devices, automation equipment, planning tools, information and management systems. The MODiS Concept tool was developed by VTT Energy for the rough planning of a MODiS district heating system. As a result, the MODiS Concept model can give the budget for a DH-system divided into the boiler plant, the district heating pipelines and the consumer substations. The annual investment and running cost of the system are evaluated. A dynamic simulation model for MODiS was also created with a real time simulation tool called APROS. The simulator can be used for studying normal operation, behaviour under emergency conditions, and process failures. The APROS simulation program has also been used to investigate an ejector connection in an apartment building and for analysing the operation of the ejector in relation to the entire heating system. A DH system in a Russian district heating zone was modelled with the programs. A knowledge-based tool, PIPECOR, has been developed and it estimates the remaining service life of the pipelines under the defined conditions, and the current corrosion rate. Renovation principles for the East European district heating systems have been developed during the project. (orig.)

  17. Aspects of heat recovery systems in underground mine ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Sbara, H.D.; Fytas, K.; Paraszczak, J. [Laval Univ., Quebec, PQ (Canada). Dept. of Mining, Metallurgical and Materials Engineering

    2009-07-01

    Underground mining in cold regions requires heating for surface buildings and fresh air intake. However, little research has been conducted on heat recovery systems in underground mines as they are not commonplace. The growing interest in heat recovery systems can be attributed to the increasing price of energy. This paper presented recommendations for heat recovery system designs found in the literature as well as designs from calculations. The design calculations were performed to evaluate the energy that could be recovered from exhaust mine air and discharged in the intake fresh air for different exhaust and ambient air conditions. Specifically, the paper discussed heating; exhaust air heat recovery; cross-flow tube-fin heat exchangers at intake and exhaust; transferring heat from intake to exhaust; natural heating and cooling system; ice stopes; mine water heat recovery; heat recovery of mine air compressors; existing heat recovery projects; and general steps to be followed when designing a heat recovery system for a mine site. These studies confirmed the value of establishing a program to facilitate the energy calculations for a heat recovery system. 12 refs., 5 figs.

  18. Heats of adsorption for charcoal nitrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.; Akkimaradi, B.S.; Rastogi, S.C. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group; Rao, R.R. [Government College for Boys, Kolar, Karnataka (India); Srinivasan, K. [Indian Institute of Science, Bangalore (India). Dept. of Mechanical Engineering

    1999-07-01

    This paper develops an empirical equation for correlation of the loading dependence of the heat of adsorption for two samples of activated charcoal-nitrogen systems. Details are given of the use of isotherm data, the evaluation of the heat of adsorption using the Clausius-Clapeyron equation, the plotting of primary adsorption data, and the plotting of the heat of adsorption as a function of the loading of the two samples. The need to consider the heat of adsorption property when designing a system in which a gaseous medium is adsorbed by a solid sorbent is discussed. (UK)

  19. Three-zonal engineering method of heat calculation for fluidized bed furnaces based on data on commercial investigations of heat generation distribution during biomass combustion

    Science.gov (United States)

    Litun, D. S.; Ryabov, G. A.

    2016-02-01

    A three-zonal method of heat calculation of furnaces for combustion of biomass and low-caloric fuel in the fluidized bed is described. The method is based on equations of thermal and material balances that account for heat generation by fuel in the zone, heat-and-mass transfer heat exchange between the furnace media and surfaces that bound the zone, and heat-and-mass transfer between furnace zones. The calculation procedure for heat generation by fuel in the fluidized bed (FB) using the heat generation portion by the fuel is proposed. Based on commercial investigations, the main factors that affect the average temperature in the FB and the portion of fuel heat that is released in the FB are determined. Results of commercial investigations showed that the airflow coefficient in the FB should be recognized as the main operation parameter that affects the average temperature in the FB and, consequently, heat generation in the FB. The gas flow rate in the FB can be marked out as the second factor that affects the consumption degree of oxidizer supplied in the FB. Commercial investigations revealed that mixing is affected by the gas flow rate in the FB and the bed material particle size, which may be changed during the boiler operation because of the agglomeration of particles of sand and ash. The calculation processing of commercial investigations on a KM-75-40M boiler of a CHP-3 of an Arkhangelsk Pulp and Paper Mill (APPM), which was carried out using the inverse problem procedure by means of a developed computer program, determined the range of the fuel heat release share in the FB, which was 0.26-0.45 at an excess air factor of 0.59-0.93 in the bed, and the heat release share in the maximum temperature zone in the total heat release in the superbed space. The heat release share in the bed is determined as an approximating function of the excess air factor in the bed and the fluidization number. The research results can be used during designing boilers with the

  20. Demonstrations of electric heating systems. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M.; Laitila, R.; Ruska, T.

    1998-07-01

    In 1991, Imatran Voima launched the Demonstration Project of Electric Heating Systems. The project investigated in detail the energy consumption, housing comfort and electric power output rates of approximately one hundred electrically heated single-family houses and updated the investment cost information of heating systems. The project implemented and monitored quality electric heating concepts that guarantee a high standard of housing comfort. The targets in the project provided with combinations of floor, ceiling and window heating systems totalled 33. Furthermore, the project included 42 targets provided with water-circulated floor or radiator heating systems and 22 houses that had moved from oil or district heating systems into electric heating. The number of metering years received in the energy consumption measurements totalled 339. During the course of the project, six partial reports, one master's thesis and three summary reports were published. This is the final report of the project. It deals in brief with the major results. The best electric heating concept, in terms of housing comfort, is a floor heating system using cables supplemented by ceiling and window heating. Thanks to the heating units installed in the structures, the operative temperature grows by about one degree in comparison with a corresponding target heated with radiators. A typical, room-specifically-heated 140 m{sup 2} house consumes a total of 24,000 kWh of energy per year. Of this amount, electric space heating accounts for 11,500 kWh, heating with wood for 1,500 kWh, heating of tap water for 4,000 kWh and household electricity for 7,000 kWh. In a house provided with a water-circulated electric heating system the total energy consumption is, owing to the adjustment and storage losses, about 10 % higher. Of the energy consumption in the house, most part takes place during the period of nighttime electricity. The nighttime load in a 24-hour period with very low temperatures

  1. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  2. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  3. Air leakage in residential solar heating systems

    Science.gov (United States)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  4. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  5. Reduction of environmental impacts of heat pump usage with special regard on systems with borehole heat exchangers

    Directory of Open Access Journals (Sweden)

    Tamás Buday

    2014-12-01

    Full Text Available Ground coupled heat pump systems are suitable for extracting subsurface thermal energy with low environmental impact especially regarding CO2 emission. The efficiency of such systems strongly depends on the temperature of the ambient heat (thus underground substrate. This temperature usually changes unfavourably during operation and efficiency becomes lower than the nominal value. Appropriate installation and operation cause lower temperature drop, thus higher efficiency. Consequently, it means lower electricity demand, therefore lower specific CO2 emission, more CO2 saving and lower operation costs. Quantitative analysis with 21 heat extraction models presented in the paper points out that the differences could be significant (up to 30 %, in addition using bivalent mode the environmental impact of the installation or/and operation can be reduced as well, especially using biomass firing as auxiliary heating.

  6. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...

  7. Biomass Energy Systems and Resources in Tropical Tanzania

    OpenAIRE

    Wilson, Lugano

    2010-01-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity.  About 90% of the total primary energy consumption of the country is from biomass.  Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply.  However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal.  Due to reasons that include the limited...

  8. Opportunities for Small Biomass Power Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  9. DEVELOPMENT AND EVALUATION OF A LOW-DENSITY BIOMASS FEEDING SYSTEM FOR FLUIDIZED BED GASIFIERS

    Directory of Open Access Journals (Sweden)

    A. E. Ghaly

    2013-01-01

    Full Text Available For efficient operation of a biomass gasifier, the biomass material must be fed continuously to the system. A feeding system for chopped straw and rice husk was designed, constructed and evaluated. It consisted of: a frame, a hopper, an auger, two agitators, a drive system and a power unit. Initial testing showed that wheat straw and rice husk, being highly cohesive materials, created tunnel flow and piping conditions. This occurs when the pressure above an impending dome of material is too small resulting in the creation of a stable dome and blockage of the discharge. In order to achieve good flow conditions, it was concluded that the hopper must operate under "mass outflow" and the material should not be allowed to build up along the flow channels. These objectives were achieved by the proper redesign of the hopper configuration, the installation of agitators in the hopper and use of an auger in the outlet duct leading into the gasifier. However, as the augur was used to move the biomass material from hopper to the gasifier, it was observed that hot gases leaked from the gasifier into the hopper and heat was also transmitted from the gasifier to the hopper though the augur shaft by conduction resulting in burning of biomass material in the hopper. Therefore, the augur shaft was fitted with copper tubing to serve as a water cooling system and the tapered section of the augur was fitted with a stainless steel section with water inlet and outlet to serve as a secondary cooling system. After, the system has been successfully modified for feeding wheat straw and rice husk, it was tested to determine the optimum operating conditions. Mass flow tests were performed with four sprocket combinations and four auger speeds. Increasing the auger speed and/or the lower agitator speed increased the straw output of the feeding system. However, increases in the upper agitator speed resulted in reduced mass flow of the material due to the mixing effect created

  10. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out.......Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...

  11. 14 CFR 25.1326 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ....1326 Pitot heat indication systems. If a flight instrument pitot heating system is installed, an indication system must be provided to indicate to the flight crew when that pitot heating system is not... pitot heating system is switched “off”. (2) The pitot heating system is switched “on” and any pitot...

  12. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    International Nuclear Information System (INIS)

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  13. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei;

    2016-01-01

    system were determined according to the principle of heat transfer. A model to predict indoor temperatures in the room was proposed, and it was determined that the predicted indoor temperatures agreed well with the measured data. Qualitative analyses of the effects of heated surface temperature and air...... change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20.......8% for calculating the transmission heat loss and ventilation heat loss, respectively, and between 16.0% and 17.4% for calculating the heating capacity of the hybrid system. Due to large relative calculation errors, it is necessary to consider the effect of heated surface and cool supply air on indoor temperatures...

  14. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain....../loss of the building and the supplied energy from the system. Several studies in the literature deal with control.(1-4)...

  15. Solar heating system installed at Troy, Ohio

    Science.gov (United States)

    1980-01-01

    The completed system was composed of three basic subsystems: the collector system consisting of 3,264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which included a 5,000 gallon insulated steel tank; and the distribution and control system which included piping, pumping and heat transfer components as well as the solemoid activated valves and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and was, therefore, a retrofit system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  16. Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant

    International Nuclear Information System (INIS)

    Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO2 emissions. - Highlights: • Part load simulation of a cogeneration plant integrated with biomas fast pyrolysis. • Analysis of energetic and environmental performance. • Assessment of different uses of the pyrolysis products

  17. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...

  18. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  19. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  20. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral...... of the tank design’s influence on the thermal performance of the systems is possible. By means of the calculations design rules for the two heat storage types are proposed........ The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...

  1. Heating, ventilation and air conditioning system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Whalley, R.; Abdul-Ameer, A. [British University in Dubai (United Arab Emirates)

    2011-03-15

    Heating, ventilation and air conditioning modelling methods, for large scale, spatially dispersed systems are considered. Existing techniques are discussed and proposals for the application of novel analysis approaches are outlined. The use of distributed-lumped parameter procedures enabling the incorporation of the relatively concentrated and significantly dispersed, system element characteristics, is advocated. A dynamic model for a heating, ventilation and air conditioning system comprising inlet and exhaust fans, with air recirculation, heating/cooling and filtration units is presented. Pressure, airflow and temperature predictions within the system are computed following input, disturbance changes and purging operations. The generalised modelling advancements adopted and the applicability of the model for heating, ventilation and air conditioning system simulation, re-configuration and diagnostics is emphasised. The employment of the model for automatic, multivariable controller design purposes is commented upon. (author)

  2. Assessing the Role of Particles in Radiative Heat Transfer during Oxy-Combustion of Coal and Biomass Blends

    Directory of Open Access Journals (Sweden)

    Gautham Krishnamoorthy

    2015-01-01

    Full Text Available This study assesses the required fidelities in modeling particle radiative properties and particle size distributions (PSDs of combusting particles in Computational Fluid Dynamics (CFD investigations of radiative heat transfer during oxy-combustion of coal and biomass blends. Simulations of air and oxy-combustion of coal/biomass blends in a 0.5 MW combustion test facility were carried out and compared against recent measurements of incident radiative fluxes. The prediction variations to the combusting particle radiative properties, particle swelling during devolatilization, scattering phase function, biomass devolatilization models, and the resolution (diameter intervals employed in the fuel PSD were assessed. While the wall incident radiative flux predictions compared reasonably well with the experimental measurements, accounting for the variations in the fuel, char and ash radiative properties were deemed to be important as they strongly influenced the incident radiative fluxes and the temperature predictions in these strongly radiating flames. In addition, particle swelling and the diameter intervals also influenced the incident radiative fluxes primarily by impacting the particle extinction coefficients. This study highlights the necessity for careful selection of particle radiative property, and diameter interval parameters and the need for fuel fragmentation models to adequately predict the fly ash PSD in CFD simulations of coal/biomass combustion.

  3. Solar-heating system performance tests

    Science.gov (United States)

    1979-01-01

    Report contains results of performance tests on complete system for solar space and hot-water heating system that uses commercially available components. Results were used to determine system suitability for field installation and to generate performance data base for comparison with future tests on field installed systems.

  4. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  5. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  6. Design information for solar-heating systems

    Science.gov (United States)

    1979-01-01

    Report contains preliminary design information for two solar-heating and hot water systems presently under development. Information includes quality control data, special tooling specifications, hazard analysis, and preliminary training program for installation contractors.

  7. Prototype solar-heating system - installation manual

    Science.gov (United States)

    1978-01-01

    Manual for prototype solar-heating system gives detailed installation procedures for each of seven subsystems. Procedures for operation and maintenance are also included. It discusses architectural considerations, building construction considerations, and checkout-test procedures.

  8. Modular solar-heating system - design package

    Science.gov (United States)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  9. Solar Heating System at a Racquetball Club

    Science.gov (United States)

    1982-01-01

    Detailed 93-page report describes Arlington, Virginia racquetball club which obtains heat and hot water for its support area from solar collectors. Report explains modes of operation of system and details of acceptance-test plan.

  10. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  11. Heat reduction of the MWD telemetry system

    OpenAIRE

    Matviykiv, Taras

    2012-01-01

    In this paper the simplified thermal model of conventional downhole MWD (Measurements While Drilling) telemetry system has been made. The heat reduction methods for the IC (integrated circuits) components of downhole drilling tools have been analyzed.

  12. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...... heating and cooling with pipes embedded in room surfaces (floor, wall, and ceiling), the application increased significantly worldwide. Earlier application of radiant heating systems was mainly for residential buildings because of its comfort and free use of floor space without any obstruction from...... installations. For similar reasons, as well as possible peak load reduction and energy savings, radiant systems are being widely applied in commercial and industrial buildings....

  13. In situ heat treatment process utilizing a closed loop heating system

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  14. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    Science.gov (United States)

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  15. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  16. Overview of waste heat utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  17. Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater

    International Nuclear Information System (INIS)

    Highlights: • Thermoelectric power generation from thermal oil heater exhaust is estimated. • Different thermoelectric materials are investigated for maximizing output power. • Bismuth telluride has been found the best TE material to apply in this application. • The estimated annual output power is 181,209 kW h from the proposed system. - Abstract: This study reports estimation of the amount of electrical power produced by thermoelectric generator (TEG) placed between flue gas duct and fresh air duct of an industrial thermal oil heater. Plate fin heat sink on hot and cold side of the TEG module was inserted into the flue gas and fresh air duct respectively. The effect of various design parameters, flow parameters were investigated in order to maximize the electrical power generation. Then the best suited conditions were applied to new thermoelectric generator module based on recently developed thermoelectric materials. A Bi2Te3 based commercial module (HZ-2) produce 3.7 W, where new module, based on p-type (Bi,Sb)2Te3 and n-type hot forged Bi2Te3 generate 4.4 W, at the same operating condition, which is about 19% improvement in output electrical power compared to commercial module. Estimated annual electrical power generation from this proposed system could be around 181,209 kW h. Thermal efficiency of the TEG modules based on recently developed thermoelectric materials could be enhanced up to 8.18%. The specifications of plate fin heat sinks as well as thermoelectric properties of the p-n materials of the system have substantial impact on the performance of TEG module

  18. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  19. Residential solar-heating system - design brochure

    Science.gov (United States)

    1978-01-01

    Design brochure for commercially-available solar-heating system is valuable to architects, engineers, and designers. It contains information on system configuration, system sizing, and mechanical layout. Drawings and specifications of all components and typical installation details are included in appendix.

  20. Residential solar-heating/cooling system

    Science.gov (United States)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  1. Definition of a remuneration system for heat from renewable resources; Ausgestaltung einer Einspeiseverguetung fuer erneuerbare Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Dettli, R.; Ott, W.; Philippen, D.; Umbricht, A.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) deals with proposals for a remuneration system for heat obtained from renewable resources. Local and regional district heating systems cover around three percent of Swiss heating needs. The authors estimate that, if these systems were to be operated completely using renewable resources such as biomass, ambient heat and the renewable portion of heat from waste incineration, around seven per cent of needs could be met. Further, around 10,000 heating systems with a power of more than 350 kW could be operated with renewables. A further potential for the use of renewable heating resources can be found in wastewater treatment plants and industrial waste heat. Various obstacles and restraints on the use of renewable resources in the heating area are discussed. The idea of providing a cost-covering remuneration system for heat is discussed and compared with that for renewable electricity. The proposed system is discussed, which would provide investment subsidies, risk-coverage and project development subsidies. The report discusses the results of a market analysis and the differences to be found between the markets for electricity and heat. Existing promotional programs are noted and the aims of a possible remuneration system are discussed. A concept for a promotion program for renewable heat generation and the use of waste heat is introduced. The installations to be promoted and the amount of remuneration to be paid out are discussed. Finally, the costs and the effects of the proposed promotion scheme are discussed. A comprehensive appendix provides details on the proposed system and provides information on market volume, energy resources, networks and infrastructure, providers of heat energy, heat consumers and general conditions as far as factors such as pricing and legislation are concerned. Finally, the 'Climate Cent' foundation is commented on.

  2. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    OpenAIRE

    Eileen Tortora; Franco Rispoli; Domenico Borello; Alessandro Corsini

    2013-01-01

    The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP) Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting tran...

  3. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank;

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade.......D. studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway. Close cooperation between the researchers and the industry partners ensures that the results of the project can be utilized. By the end of the project the industry partners will be able to bring the developed systems onto the market...

  4. CAREM-25: Residual heat removal system

    International Nuclear Information System (INIS)

    The objective of this work was the definition and consolidation of the residual heat removal system for the CAREM 25 reactor. The function of this system is cool down the primary circuit, removing the core decay heat from hot stand-by to cold shutdown and during refueling. In addition, this system heats the primary water from the cold shutdown condition to hot stand-by condition during the reactor start up previous to criticality. The system has been designed according to the requirements of the standards: ANSI/ANS 51.1 'Nuclear safety criteria for the design of stationary PWR plants'; ANSI/ANS 58.11 'Design criteria for safe shutdown following selected design basis events in light water reactors' and ANSI/ANS 58.9 'Single failure criteria for light water reactor safety-related fluid systems'. The suggested design fulfills the required functions and design criteria standards. (author)

  5. Prototype solar heating and hot water systems

    Science.gov (United States)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  6. Dual energy use systems: District heating survey

    Science.gov (United States)

    1980-07-01

    The current status of and problems facing district heating systems operated by electric utilities were identified. The technical and economic factors which can affect the present and future success of district heating systems in the United States were evaluated. A survey of 59 district heating electric utilities was conducted to determine the current status of the industry. Questions developed to obtain data on technical, economic, regulator, and marketing factors were included in the survey. Literature on district heating in the U.S. and abroad was collected from governments, industry and foreign sources and reviewed to aid in evaluating the current and future potential of the industry. Interviews were held with executives of 16 utilities that operate district heating systems in order to determine corporate attitudes. A summary of the literature obtained is provided. Survey results are tabulated and described. The interviews and survey data were used to compile 10 case studies of utilities operating district heating systems under a braod range of circumstances.

  7. Biomass removal, retention, and costs associated with biomass harvesting in the partial harvest systems of Ontario's Great Lakes-Saint Lawrence forest region : preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, D. [Toronto Univ., ON (Canada). Faculty of Forestry

    2010-07-01

    Recent bioenergy policy developments in Ontario have increased interest in forest biomass supply research. Biomass harvested from clearcut and partial harvest system in the Great Lakes-Saint Lawrence (GLSL) region can be used to supply centralized pellet plants or directly to forest mill-based conversion facilities for electricity generation. Preliminary results from a biomass harvesting trial conducted in the GLSL have confirmed that whole-tree harvesting (WTH) and the removal of skid trail results in increased biomass removal and improved operational productivity relative to conventional cut-to-length methods. Biomass removals can be increased through the imposition of smaller minimum topping diameters and the harvesting of unmerchantable trees. The results of a study conducted to evaluate the difference between conventional and biomass harvesting in a shelterwood and selection system in the GLSL has indicated that increases in the amount of firewood and small, irregular blocks of wood recovered from biomass harvests are negligible compared with conventional harvesting practices. Biomass harvesting trials are currently being conducted to determine biomass removal and operational productivity calculations for determining the overall economic feasibility of biomass harvesting for energy in the region.

  8. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  9. Use of geothermal energy for heating systems

    OpenAIRE

    REZNICHENKO, ARTEM

    2014-01-01

    TFG en intercambio académico. Jade Hochschule (Wilhelmshaven/Oldenburg/Elsfleth) [en] This project makes a study of heat extraction from the soil in order to provide heat to a building. This energy is renewable and clean. Low temperature geothermal energy has very low levels of use. In the last decades, the use of renewable energy is growing exponentially. The biggest part of energy consumption goes to heating systems, that is why the use of geothermal energy can save lots of natural resou...

  10. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system

    Science.gov (United States)

    Kaneko, T.; Brouwer, J.; Samuelsen, G. S.

    This paper addresses how the power and temperature are controlled in a biomass gas fueled solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system. A SOFC and MGT dynamic model are developed and used to simulate the hybrid system performance operating on biomass gas. The transient behavior of both the SOFC and MGT are discussed in detail. An unstable power output is observed when the system is fed biomass gas. This instability is due to the fluctuation of gas composition in the fuel. A specially designed fuel controller succeeded not only in allowing the hybrid system to follow a step change of power demand from 32 to 35 kW, but also stably maintained the system power output at 35 kW. In addition to power control, fuel cell temperature is controlled by introduction and use of a bypass valve around the recuperator. By releasing excess heat to the exhaust, the bypass valve provided the control means to avoid the self-exciting behavior of system temperature and stabilized the temperature of SOFC at 850 °C.

  11. Project of the solar heating system

    OpenAIRE

    Pořízka, Jaromír

    2008-01-01

    The diploma thesis studies the elaboration of project about thermal solar systém for all- season service. System is used for heating of outdoor pool and in the winter season for the heating of nearby garage in the village Lipůvka. The aim of the work was to make a proportioning, choosing the right parts and calculating the economic and ecologic balance.

  12. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin-Na; Wang, Bing [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Li, Gang [Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, 325006 Wenzhou, Zhejiang Province (China); Wang, Sheng [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Crowley, David E., E-mail: crowley@ucr.edu [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Zhao, Yu-Hua, E-mail: yhzhao225@zju.edu.cn [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The maximum amount of Acid Black 172 sorption was about 2.98 mmol/g biomass. Black-Right-Pointing-Pointer Amine groups played a major role in the biosorption of Acid Black 172. Black-Right-Pointing-Pointer The reasons of increased dye sorption by heat-treated biomass were proposed. - Abstract: The ability of Pseudomonas sp. strain DY1 to adsorb Acid Black 172 was studied to determine the kinetics and mechanisms involved in biosorption of the dye. Kinetic data for adsorption fit a pseudo-second-order model. Increased initial dye concentration could significantly enhance the amount of dye adsorbed by heat-treated biomass in which the maximum amount of dye adsorbed was as high as 2.98 mmol/g biomass, whereas it had no significant influence on dye sorption by live biomass. As treated temperature increased, the biomass showed gradual increase of dye sorption ability. Experiments using potentiometric titration and Fourier transform infrared spectroscopy (FTIR) indicated that amine groups (NH{sub 2}) played a prominent role in biosorption of Acid Black 172. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis indicated that heat treatment of the biomass increased the permeability of the cell walls and denatured the intracellular proteins. The results of biosorption experiments by different cell components confirmed that intracellular proteins contributed to the increased biosorption of Acid Black 172 by heat-treated biomass. The data suggest that biomass produced by this strain may have application for removal of metal-complex dyes from wastewater streams generated from the dye products industry.

  13. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms

    International Nuclear Information System (INIS)

    Highlights: ► The maximum amount of Acid Black 172 sorption was about 2.98 mmol/g biomass. ► Amine groups played a major role in the biosorption of Acid Black 172. ► The reasons of increased dye sorption by heat-treated biomass were proposed. - Abstract: The ability of Pseudomonas sp. strain DY1 to adsorb Acid Black 172 was studied to determine the kinetics and mechanisms involved in biosorption of the dye. Kinetic data for adsorption fit a pseudo-second-order model. Increased initial dye concentration could significantly enhance the amount of dye adsorbed by heat-treated biomass in which the maximum amount of dye adsorbed was as high as 2.98 mmol/g biomass, whereas it had no significant influence on dye sorption by live biomass. As treated temperature increased, the biomass showed gradual increase of dye sorption ability. Experiments using potentiometric titration and Fourier transform infrared spectroscopy (FTIR) indicated that amine groups (NH2) played a prominent role in biosorption of Acid Black 172. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis indicated that heat treatment of the biomass increased the permeability of the cell walls and denatured the intracellular proteins. The results of biosorption experiments by different cell components confirmed that intracellular proteins contributed to the increased biosorption of Acid Black 172 by heat-treated biomass. The data suggest that biomass produced by this strain may have application for removal of metal-complex dyes from wastewater streams generated from the dye products industry.

  14. Sustainability of biomass electricity systems. An estimate of costs, macro-economic and environmental impacts

    International Nuclear Information System (INIS)

    Since the 1990s there has been a renewal of interest in the possibility of sustainable generating energy from biomass, an interest driven in part by the climate issue. Other motives are the search for alternatives for parts of Western agriculture and progress in the technological feasibility of efficiently producing high-quality energy from biomass. World-wide this renewed interest has led to a clear increase in research, demonstration and commercial implementation of biomass energy systems. A recent thesis concludes that biomass can contribute to all aspects of sustainability. In the context of sustainable development (often viewed as a concept having economic, social and ecological dimensions), the central question asked by this Ph.D. research is: How do biomass electricity systems compare to fossil-fuel systems and to the land-use that they may replace, in terms of costs, macro-economic and environmental impacts. This article presents a number of conclusions

  15. 46 CFR 154.178 - Contiguous hull structure: Heating system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for... the heating capacity to meet § 154.174(b)(2) or § 154.176(b)(2); (b) Have stand-by heating to...

  16. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.;

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...... will be tested. Laboratory studies as well as on-line measurements in district heating systems using probes in a specially designed sidestream unit are included in the practical part of the project....

  17. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank;

    2005-01-01

    . In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  18. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  19. Solar-heating system design data brochure

    Science.gov (United States)

    1979-01-01

    Report details design and performance specifications of complete system for space and hot-water heating that is assembled from commercially available components. System can meet need of single family dwelling having approximately 1,200 sq ft of floor area and can be scaled to requirements of larger or smaller installations.

  20. Stochastic modelling of central heating systems

    DEFF Research Database (Denmark)

    Hansen, Lars Henrik

    1997-01-01

    and the degree Erhvervsforsker (a special Danish degree, equivalent to ``Industrial Ph.D.''). The thesis is mainly concerned with experimental design and system identification for individual components in water based central heating systems. The main contribution to this field is on the nonlinear dynamic...

  1. Solar-heating system design package

    Science.gov (United States)

    1980-01-01

    Report describes solar heating system composed of warm-air solar collector, logic control unit, and switching and transport unit, that meets government standards for installation in residential dwellings. Text describes system operation and performance specifications complemented by comprehensive set of subcomponent design drawings.

  2. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar...

  3. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  4. Design and Performance Evaluation of a Solar Assisted Heat Pump Dryer Integrated with Biomass Furnace for Red Chilli

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performance of a solar assisted heat pump dryer integrated with biomass furnace has been designed and evaluated for drying red chillies, and drying kinetics of red chillies were evaluated. The red chillies were dried from 22 kg with moisture content of 4.26 db to moisture content of 0.08 db which needed 11 hours, with the average drying chamber temperature, drying chamber relative humidity, and an air mass flow rate of 70.5°C, 10.1%, and 0.124 kg/s, respectively, while the open sun drying needed 62 hours. Compared to open sun drying, this dryer yielded 82% saving in drying time. The drying rate, the specific moisture extraction rate, and thermal efficiency of the dryer were estimated in average to be about 1.57 kg/h, 0.14 kg/kWh, and 9.03%, respectively. Three mathematical models, the Newton, Henderson-Pabis, and Page models, were fitted to the experimental data on red chillies dried by solar assisted heat pump dryer integrated with biomass furnace and open sun drying. The performance of these models was evaluated by comparing the coefficient of determination (R2, mean bias error (MBE, and root mean-square error (RMSE. The Page model gave the best results for representing drying kinetics of red chillies.

  5. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.

    Science.gov (United States)

    Kumar, Amit; Sokhansanj, Shahab; Flynn, Peter C

    2006-01-01

    This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8 x 10(6) dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/ stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4 x 10(6) dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems. PMID:16915632

  6. Influence of an oxic settling anoxic system on biomass yield, protozoa and filamentous bacteria.

    Science.gov (United States)

    Rodriguez-Perez, Santiago; Fermoso, Fernando G

    2016-01-01

    An oxic settling anoxic system coupled with an activated sludge process has been studied to reduce sewage sludge production. The reduction of sludge yield, excess sludge production and active biomass yield were 51.7%, 52.9% and 67.1%, respectively, compared with the control system. The oxic reactor of the oxic settling anoxic system, even with a lower active biomass concentration than the oxic reactor of control system, showed a higher metabolic activity in their active biomass. Diversity and crawling ciliates group have been shown as promising bioindicators of active biomass yield reduction. The identification of floc-forming bacteria in the control system suggested that oxic settling anoxic system will improve settling properties compared to a Conventional Activated Sludge process. PMID:26479432

  7. Holistic Modeling, Design & Analysis of Integrated Stirling and Auxiliary Clean Energy Systems for Combined Heat and Power Applications

    Science.gov (United States)

    Nayak, Amrit Om

    The research revolves around the development of a model to design and analyze Stirling systems. Lack of a standard approach to study Stirling systems and difficulty in generalizing existing approaches pose stiff challenges. A stable mathematical model (integrated second order adiabatic and dynamic model) is devised and validated for general use. The research attempts to design compact combined heat and power (CHP) system to run on multiple biomass fuels and solar energy. Analysis is also carried out regarding the design of suitable auxiliary systems like thermal energy storage system, biomass moisture removal system and Fresnel solar collector for the CHP Stirling system.

  8. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  9. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  10. Heat flux dynamics in dissipative cascaded systems

    OpenAIRE

    de Lorenzo, S.; Farace, A.; Ciccarello, F.; De Palma, G; Giovannetti, V.

    2014-01-01

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can gre...

  11. Deposition onto heat exchanger surfaces from the co-firing of coal and biomass

    OpenAIRE

    Legrave, Nigel A

    2011-01-01

    In the latter part of the 20th century, there has been a continuing global concern of the consumption of fossil fuels used in power production. There is further concern of the gaseous emissions that are created from this consumption and an awareness of climbing carbon dioxide (CO2) levels that are exhausted into the atmosphere. The concept of co-firing fossil fuel with varying levels of biomass species is not new but there is a requirement to explore its applications further...

  12. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    Energy Technology Data Exchange (ETDEWEB)

    Rupar, K.; Sanati, M. [Vaxjo University (Sweden). School of Biosciences and Process Technology

    2003-12-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  13. Economic and environmental benefits analysis of decentralized heating using biomass gasification gas in rural area%农村生物质气化燃气分散供暖经济和环境效益分析

    Institute of Scientific and Technical Information of China (English)

    周卫红; 陈冠益; 马隆龙; 颜蓓蓓; 夏宗鹏

    2014-01-01

    为了充分利用农业废弃物资源,改善北方农村冬季供暖条件,该文对生物质气化燃气分散式供暖技术进行了经济和环境效益分析,探讨其在农村供暖中的可行性。生物质气化分散式供暖具有节约能源、减少大气污染、温度调节方便等优点。通过借鉴天然气分散式供暖的研究成果和对生物质气分散式供暖进行分析,结果表明采取分段式控温、分房间控温和建筑物节能改造等手段可将供暖费用降到合理水平,基本与城市供暖费用相同。通过该文分析可知生物质气化燃气分散式供暖可以作为农村供暖的一种新模式。%The economic and environmental benefits of decentralized heating technology produced by burning gas through the biomass gasification method were analyzed in this paper. The whole decentralized heating system can be divided into three sections. In the first section, the biomass is converted into the biomass gasification gas (i.e., combustible gas). In the second, pipelines are adopted through which the biomass gasification gas is transported to the user’s home. Indoor heating pipes consist of the third section, which connect the transporting pipelines with a gas-heating stove located at the user’s home. The economic estimation shows that the heating cost is 37.59 yuan per square meter in rural areas during a heating period with this kind of decentralized heating system, which is higher than the heating cost in cities. But the decentralized heating method has many other advantages, such as saving energy, easy charging, easy adjusting of the temperature, reducing gas costs, and simultaneous hot water supply. The decentralized heating cost is charged by gas consumption. Thus, household heat meters should be installed for measuring the gas consumption;and accordingly, the charge calculation can be obtained for heating enterprises. Users can easily adjust the indoor temperature in different periods

  14. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  15. Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven [Auburn Univ., AL (United States)

    2016-07-11

    Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests on forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.

  16. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the be

  17. The mathematical description of the gasification process of woody biomass in installations with a plasma heat source for producing synthesis gas

    Science.gov (United States)

    Sadrtdinov, A. R.; Safin, R. G.; Gerasimov, M. K.; Petrov, V. I.; Gilfanov, K. K.

    2016-04-01

    The article presents the scheme of processing of plant biomass in the gasification installation with a plasma heat source to produce synthesis gas suitable for chemical industry. The analyzed physical picture of raw materials' recycling process underlies a mathematical description of the process set out in the form of the basic differential equations with boundary conditions. The received mathematical description allows calculating of the main parameters of equipment for biomass recycling and to determine the optimal modes of its operation.

  18. High biomass sorghum production across tillage systems and nitrogen rates

    Science.gov (United States)

    Bioenergy production has traditionally focused on perennial crops; however, these crops require an establishment period before they can be utilized. High biomass sorghum (Sorghum bicolor L. Moench) grown as an annual crop can be used during this establishment period, but typical yields and nutrient...

  19. 14 CFR 23.1326 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... Instruments: Installation § 23.1326 Pitot heat indication systems. If a flight instrument pitot heating system... provided to indicate to the flight crew when that pitot heating system is not operating. The indication... alert the flight crew if either of the following conditions exist: (1) The pitot heating system...

  20. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... this part and each cargo heating system must: (a) Meet the standards of Subchapters F (Marine... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section...

  1. Introduction of renewable energy sources in the district heating system of Greece

    Directory of Open Access Journals (Sweden)

    Nikolaos Margaritis

    2016-06-01

    Full Text Available The district heating (DH system of Greece, mainly supported from lignite fired stations, is facing lately significant challenges. Stricter emission limits, decreased efficiency due to old age and increased costs are major challenges of the lignite sector and are expected to result in the decommissioning of several lignite-fired units in the coming years. As a result, managers of DH networks are currently investigating alternative scenarios for the substitution of thermal power that it is expected to be lost, through the integration of Renewable Energy Sources (RES into the system. In this paper, the DH systems of Kozani and Ptolemaida are examined regarding possible introduction of RES. The first study examines district heating of Kozani and alternative future options for covering a part of city’s thermal load whereas the second study refers to a biomass CHP plant (ORC technology, 1MWe, 5MWth to be powered from a biomass mixture (wood chips and straw.

  2. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized...... CHP plants. A clean product gas was produced by the demonstrated two-stage gasifier, thus only simple gas conditioning was necessary prior to the SOFC stack. The plant was investigated by thermodynamic modeling combining zero-dimensional component models into complete system-level models. Energy...

  3. Biomass production of Artemia in air-water-lift raceway system

    Digital Repository Service at National Institute of Oceanography (India)

    Royan, J.P.; Vijayaraghavan, S.; Krishnakumari, L.

    to 6.3 kg/m 3 in the GSL strain; 3.78 and 4.35 kg/m in the Indian and Sri Lankan strains respectively. The advantages of biomass produc tion of Artcmia through AWL are discussed. Key-words: Artcmia, Biomass, AWL Raceway System Artemia biomass... system is fairly simple. Advantages ofculturing Artemia in raceways are many; different stages of Arternia such as nauplii, pre-adults and adults produced can be used for hatcheries and pet fishery market either in live fonn/frozen or freeze-dried fonn...

  4. Resource Assessment for Microalgal/Emergent Aquatic Biomass Systems in the Arid Southwest: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, B. W.; Arthur, M. F.; Taft, L. G.; Wagner, C. K.; Lipinsky, E. S.; Litchfield, J. H.; McCandlish, C. D.; Clark, R.

    1982-12-23

    This research project has been designed to facilitate the eventual selection of biomass production systems using aquatic species (microalgal and emergent aquatic plant species (MEAP) which effectively exploit the potentially available resources of the Southwest.

  5. Multiplexed logic controls solar-heating system

    Science.gov (United States)

    Currie, J. R.

    1981-01-01

    Four inexpensive thermocouples monitor temperatures at key points. On command from logic circuitry, dampers open and close to direct airflow, and fan and auxiliary heater shut on or off. Controlling complex arranges heating system in any one of four operating configurations.

  6. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P. Reche; Reyes, N. Ruiz [Department of Telecommunication Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain); Gonzalez, M. Gomez [Junta of Andalusia, 23470 Maestro Francisco Yuste 2, Cazorla, Jaen (Spain); Jurado, F. [Department of Electrical Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain)

    2008-08-15

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  7. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  8. Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

    1996-07-01

    This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

  9. Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration

    International Nuclear Information System (INIS)

    A low-temperature heat driven heat engine is proposed as a cost-effective system for power and heat production for small scale applications. The external heat source allows flexibility in the design; the system may be coupled with various available renewable sources including biomass/biofuel/biogas combustion, geothermal heat, concentrated solar radiation, and industrial waste heat, by selecting appropriate off-the-shelf components from the HVAC (heating, ventilation, and air conditioning), refrigeration, and automotive industries for use in an ORC (organic Rankine cycle). A theoretical analysis and an experimental study are carried out for an ORC with R134a as the working fluid, utilizing a low-temperature heat source (Tsource < 150 °C), with focus on the expansion and boiling processes. The complete ORC model is comprised of models for the expander, working fluid pump, boiler, and condenser. Thermodynamic and heat transfer models are developed to calculate the local and averaged heat transfer coefficient of the working fluid throughout the boiling process, based on the geometry of the selected heat exchanger. Data collected for the experimental ORC test bench are used to validate the expander and boiler models. A case study is performed for the proposed ORC, for cogeneration of power and heat in a residential application. The results of the case study analysis for the proposed ORC system indicate a cycle efficiency of 0.05, exergy efficiency of 0.17, and energy and exergy cogeneration efficiency of 0.87, and 0.35, respectively. - Highlights: • Development and investigation of a scroll based Rankine heat engine operating with R134a. • Thermodynamic analyses of the system and its components. • Heat transfer analyses of boiler and condenser. • Dynamic analysis of expander. • Model validation through performed experiments on an ORC test bench

  10. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  11. Thermo-economic optimization of a Solid Oxide Fuel Cell – Gas turbine system fuelled with gasified lignocellulosic biomass

    International Nuclear Information System (INIS)

    Highlights: • Biomass gasification combined with SOFC–GT hybrid system was studied. • Syngas hot cleaning unit is used in order to improve the efficiency of the system. • Energy integration in order to recover the maximum heat available inside the process. • Multi-objective optimization maximizing the efficiency and minimizing the capital investment costs. - Abstract: Within the context of sustainable energy supply and CO2 emissions reduction a Solid Oxide Fuel Cell (SOFC) – gas turbine hybrid system, fuelled with gasified woody biomass is studied in detail for small and medium scale applications (100 kWth,BM and 8 MWth,BM of dry biomass input). The system consists of an air dryer unit, a gasifier, a hot cleaning section made of a particulate removal unit (cyclone and candle filter) and a two-stage tar removal unit, a SOFC and a gas turbine with optional CO2 capture. This modern technology has the advantage of using a renewable and CO2-neutral source and to be economically competitive at medium scales. The competitiveness of different process options is systematically compared by applying a coherent approach combining flowsheeting, energy integration and economic evaluation in a multi-objective optimization framework. This analysis reveals the importance of process integration maximizing the heat recovery and valorizing the waste heat, by cogeneration for example. The studied process options include direct and indirect circulating fluidized bed gasifier (using respectively oxygen or steam as gasification agent) and Viking gasifier, atmospheric or pressurized systems and optional pre-reforming in the hot gas cleaning. To close the thermal energy balance, a fraction of the produced syngas can be burnt. The energy integration results reveal that the steam production for the gasification and reforming are key parameters (S/B and S/C ratio) defining the process performance. A multi-objective optimization maximizing the efficiency and minimizing the capital

  12. District heating on the way up - thanks to the biomass-boom?; Fernwaerme im Aufwind, dank Biomasseboom?

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, L.

    2006-07-01

    This article summarises the contributions made at the traditional conference held by the Swiss District Heating Association in Zurich in 2006. Several lectures on the fundamentals of district heating based on renewable energy resources were presented. Swiss National Councillor Doris Leuthard commented on the impending transition from non-renewable to renewable energy resources, which she considered as being the formative element for the future. Dr. Reinhard Madlener, professor at the Swiss Federal Institute of Technology in Zurich, showed how increased use of efficient technologies and renewable energy could strengthen the competitive position of companies in a sustainable way. Gottfried Lamers from the Austrian Office for Agriculture, Forestry, Environment and Waters discussed efforts being made and emphasised the difficulty of making progress in CO{sub 2} reduction in the road-traffic area. Further presentations included contributions on various methods of using biomass, including practical experience gained in Guessing, Austria, and Toblach, Italy. Urs Steiner from EBL, a local energy utility in north-western Switzerland, discussed the efforts being made in the renewables area, which include 16 regional district heating schemes fired with wood-chippings. A panel-discussion in the afternoon completed the conference.

  13. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  14. France's heat health watch warning system

    Science.gov (United States)

    Pascal, Mathilde; Laaidi, Karine; Ledrans, Martine; Baffert, Elsa; Caserio-Schönemann, Céline; Le Tertre, Alain; Manach, Jacques; Medina, Sylvia; Rudant, Jérémie; Empereur-Bissonnet, Pascal

    2006-01-01

    In 2003, a Heat Health Watch Warning System was developed in France to anticipate heat waves that may result in a large excess of mortality. The system was developed on the basis of a retrospective analysis of mortality and meteorological data in fourteen pilot cities. Several meteorological indicators were tested in relation to levels of excess mortality. Computations of sensibility and specificity were used to choose the meteorological indicators and the cut-offs. An indicator that mixes minimum and maximum temperatures was chosen. The cut-offs were set in order to anticipate events resulting in an excess mortality above 100% in the smallest cities and above 50% in Paris, Lyon, Marseille and Lille. The system was extended nationwide using the 98th percentile of the distribution of minimum and maximum temperatures. A national action plan was set up, using this watch warning system. It was activated on 1st June 2004 on a national scale. The system implies a close cooperation between the French Weather Bureau (Météo France), the National Institute of Health Surveillance (InVS) and the Ministry of Health. The system is supported by a panel of preventive actions, to prevent the sanitary impact of heat waves.

  15. Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Manoj Kumar, PhD

    2011-02-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  16. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  17. Policy Impact on Economic Viability of Biomass Gasification Systems in Indonesia

    Directory of Open Access Journals (Sweden)

    Pranpreya Sriwannawit

    2016-03-01

    Full Text Available Indonesia is facing challenges on the lack of electricity access in rural areas and the management of agricultural waste. The utilization of waste-to-energy technology can help in mitigating these issues. The aim of this paper is to assess the economic viability of a biomass gasification system for rural electrification by investigating its competitiveness in relation to various government supports. Financial modelling is applied to calculate Net Present Value (NPV, Internal Rate of Return (IRR, and Levelized Cost of Electricity (LCOE. NPV and IRR results indicate that biomass gasification is an economically viable option when appropriate financial government supports exist. LCOE result indicates that biomass gasification system is already more economically competitive compared to diesel generator even without additional support but it is less competitive compared to the national electricity grid tariff. In conclusion, the biomass gasification system is an economically viable option for rural electrification in Indonesian context.

  18. 14 CFR 125.206 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... flight instrument pitot heating system unless the airplane is equipped with an operable pitot heat... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 125.206... Equipment Requirements § 125.206 Pitot heat indication systems. (a) Except as provided in paragraph (b)...

  19. 14 CFR 135.158 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... instrument pitot heating system unless the airplane is also equipped with an operable pitot heat indication... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 135.158... Equipment § 135.158 Pitot heat indication systems. (a) Except as provided in paragraph (b) of this...

  20. Heat storage in solar thermal systems

    OpenAIRE

    Sedmidubský, Petr

    2014-01-01

    This bachelor´s thesis deals with heat storage in solar thermal systems. The first part of the thesis is devoted to the solar energy. The problems with its use are described in this part. The second part is devoted to solar thermal systems. Various types and designs of solar thermal systems are described in this part. The third part of thesis is devoted to the various types of solar thermal systems. The principle of their operation, advantages, disadvantages and the possibility of their pract...

  1. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua;

    2014-01-01

    is a tank in tank heat storage with domestic hot water in the inner tank and space heating water in the outer tank. The total tank volume is 750 liters and the solar collector area is 9 m2. The auxiliary energy supply system is based on electrical heating element(s)/heat pump and is different for all three......Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys...

  2. A systems biology approach to heat stress, heat injury, and heat stroke

    Science.gov (United States)

    Stallings, Jonathan D.; Ippolito, Danielle L.

    2015-05-01

    Heat illness is a major source of injury for military populations in both deployed and training settings. Developing tools to help leaders enhance unit performance while reducing the risk of injury is of paramount importance to the military. Here, we review our recent systems biology approaches to heat stress in order to develop a 3-dimensional (3D) realistic thermoregulation model, identify the molecular basis and mediators of injury, and characterize associated biomarkers. We discuss the implications of our work, future directions, and the type of tools necessary to enhance force health protection in the future.

  3. Solar heating and cooling systems design and development

    Science.gov (United States)

    1977-01-01

    The development and delivery of eight prototype solar heating and cooling systems for installation and operational test was reported. Two heating and six heating and cooling units will be delivered for single family residences, multiple family residences and commercial applications.

  4. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  5. Different heating systems for single family house: Energy and economic analysis

    Directory of Open Access Journals (Sweden)

    Turanjanin Valentina M.

    2016-01-01

    Full Text Available The existing building stock energy consumption accounts for about 38% of final energy consumption in Republic of Serbia. 70% of that energy is consumed by residential sector, mostly for space heating. This research is addressed to the single family house building placed in the Belgrade city. The house has ground and first floor with total heating area of 130 m2 and pellet as space heating source. The aim of this paper is to evaluate energy and economic analysis for different heating systems. Several homeheating were compared: Option 1 (biomass combustion boiler using pellet as a fuel, Option 2 (gas combustion boiler and Option 3 (heat pump. The building performance was evaluated by TRNSYS 17 simulation code. Results show estimated savings using renewable energy sources. [Projekat Ministarstva nauke Republike Srbije, br. III42008

  6. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    Directory of Open Access Journals (Sweden)

    Antonio Rigueiro-Rodríguez

    2012-02-01

    Full Text Available Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener and beta (Jaccard and Magurran biodiversity for a period of four years in a P. radiata silvopastoral system. The experiment consisted of a randomized block design of two treatments (continuous and rotational grazing. Biomass, and species abundances were measured - biodiversity metrics were calculated based on these results for a two years of grazing and two years of post-grazing periods. Both continuous and rotational grazing systems were useful tools for reducing biomass and, therefore, fire risk. The rotational grazing system caused damage to the U. europaeus shrub, limiting its recovery once grazing was stopped. However, the more intensive grazing of U. europaeus plants under rotational had a positive effect on both alpha and beta biodiversity indexes due to the low capacity of food selection in the whole plot rather than continuous grazing systems. Biomass was not affected by the grazing system; however the rotational grazing system is more appropriate to reduce U. europaeus biomass and therefore forest fire risk at a long term and to enhance pasture biodiversity than the continuous grazing system.

  7. A Theoretical Study of two Novel Concept Systems for Maximum Thermal-Chemical Conversion of Biomass to Hydrogen

    Directory of Open Access Journals (Sweden)

    Jacob N. Chung

    2014-01-01

    Full Text Available Two concept systems that are based on the thermochemical process of high-temperature steam gasification of lignocellulosic biomass and municipal solid waste are introduced. The primary objectives of the concept systems are 1 to develop the best scientific, engineering, and technology solutions for converting lignocellulosic biomass, as well as agricultural, forest and municipal waste to clean energy (pure hydrogen fuel, and 2 to minimize water consumption and detrimental impacts of energy production on the environment (air pollution and global warming. The production of superheated steam is by hydrogen combustion using recycled hydrogen produced in the first concept system while in the second concept system concentrated solar energy is used for the steam production. A membrane reactor that performs the hydrogen separation and water gas shift reaction is involved in both systems for producing more pure hydrogen and CO2 sequestration. Based on obtaining the maximum hydrogen production rate the hydrogen recycled ratio is around 20% for the hydrogen combustion steam heating system. Combined with pure hydrogen production, both high temperature steam gasification systems potentially possess more than 80% in first law overall system thermodynamic efficiencies.

  8. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  9. Paths to bioenergy villages. A guideline for a independent supply of heat and electricity based on biomass in rural area. 3. ed.; Wege zum Bioenergiedorf. Leitfaden fuer eine eigenstaendige Waerme- und Stromversrogung auf Basis von Biomasse im laendlichen Raum

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Hans; Eigner-Thiel, Swantje; Girschner, Walter; Karpenstein-Machan, Marianne; Roland, Folker; Ruwisch, Volker; Sauer, Benedikt; Schmuck, Peter

    2010-12-15

    Bioenergy villages are one component for the sustainable energy supply in rural areas. The guideline under consideration is intended to encourage people in villages to switch their heat supply and electricity supply on the bases of biomass. The focus of this process-oriented guideline is on: (1) A presentation of the social feasibility, especially the involvement, motivation and encouragement of the population; (2) The presentation of concepts for a nature-friendly cultivation of the required biomass; (3) The treatment of economic and legal issues from the perspective of the people involved.

  10. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    Science.gov (United States)

    Sekret, Robert; Nitkiewicz, Anna

    2014-03-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  11. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    Directory of Open Access Journals (Sweden)

    Sekret Robert

    2014-03-01

    Full Text Available Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  12. Performance of Integrated Hydronic Heating Systems.

    Energy Technology Data Exchange (ETDEWEB)

    BUTCHER,T.A.

    2007-12-20

    A variety of system configurations are used in North America to meet the heating and domestic hot water needs of single-family homes. This includes, for example: warm air furnaces with electric water heaters; boilers with integrated hot water coils; and boilers with 'indirect' hot water storage tanks. Integrated hydronic systems which provide both heat and hot water are more popular only in the Northeast and mid-Atlantic regions. For those making decisions about configurations of these integrated hydronic systems, including control options, little information is available concerning the annual energy cost implications of these decisions. This report presents results of a project to use a direct load emulation approach to measure the performance of hydronic systems, develop performance curves, and to provide decision tools to consumers. This is a laboratory measurement system involving direct energy input and output measurements under different load patterns. These results are then used to develop performance correlations for specific systems that can be used to predict energy use in specific applications. A wide range of system types have been tested under this project including conventional boilers with 'tankless' internal coils for domestic hot water production, boilers with indirect external storage tanks, tank type water heaters which may also be used for space heating, condensing oil- and gas-fired systems, and systems with custom control features. It is shown that low load and idle energy losses can have a very large impact on the total annual energy use and that the potential energy savings associated with replacing old equipment with newer, high efficiency equipment with low losses at idle or low load can be in the 25% range. These savings are larger than simple combustion efficiency measurements would indicate.

  13. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  14. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  15. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated...

  16. Panorama 2010: Which biomass resources should be used to obtain a sustainable energy system?

    International Nuclear Information System (INIS)

    Biomass is the leading renewable energy in the world today. Moreover, the introduction of biomass into energy systems presents certain advantages as far as reducing greenhouse gas emissions is concerned. However, its mobilization still presents many challenges relative to the competition between uses and the management of local natural resources (e.g. water, soil and biodiversity). Therefore, the technologies involved should be structured so that this resource can be developed to be truly sustainable. (author)

  17. Numerical Investigation of Floor Heating Systems in Low Energy Houses

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Jensen, Claus Franceos

    2002-01-01

    – a heavy system integrated into the concrete floor and a light system which is placed in heat transfer plates – have been investigated, using different supply temperatures to the floor heating system, and different control strategies. The aim of the study is to compare the two types of floor heating......In this paper an investigation of floor heating systems is performed with respect to heating demand and room temperature. Presently (2001) no commercially available building simulation programs that can be used to evaluate heating demand and thermal comfort in buildings with building integrated...... heating and cooling systems exist. In Denmark over 80 % of all new single-family houses are using the building integrated floor heating systems. Therefore methods to evaluate building integrated heating must be developed. To examine this a simulation model of a room with floor heating has been created...

  18. Energy from Biomass for Conversion of Biomass

    Science.gov (United States)

    Abolins, J.; Gravitis, J.

    2009-01-01

    Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

  19. IV. International Slovak Biomass Forum

    International Nuclear Information System (INIS)

    The publication has been set up as proceedings of the conference dealing with use of biomass for energy production. The main conference topics are focused on the following scopes: Session 1: Strategies, politics, legislation tools, implementation issues; Session 2: Bioenergy market and business; Session 3: Biomass resources and fuel production; Session 4: Combustion and boiler system, technology; Session 5: Utilisation of biomass, practical examples (CHP, WWTP, DH, Central heating, Stakeholders); Session 6: Application of R + D in praxis in the short term horizont. In these proceedings 44 contributions are included

  20. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [ENVIRON; Yavuzturk, Cy [University of Hartford; Pinder, George [University of Vermont

    2015-04-15

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  1. Energy and greenhouse gas balance of decentralized energy supply systems based on organic agricultural biomass

    OpenAIRE

    Kimming, Marie

    2011-01-01

    More and more farms apply organic production methods to reduce their environmental impact, but currently even organic farms are mainly using fossil fuels. Technologies available today or in the near future make it possible to produce heat, electricity and fuels from agricultural residues or woody biomass. The agricultural sector can thereby contribute to the fulfillment of climate goals and energy security without reducing the output of food products. The thesis describes and assesses possibl...

  2. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures...

  3. Entransy dissipation analysis and optimization of separated heat pipe system

    Institute of Scientific and Technical Information of China (English)

    QIAN XiaoDong; LI Zhen; MENG JiAn; LI ZhiXin

    2012-01-01

    Seperated heat pipe systems are widely used in the fields of waste heat recovery and air conditioning due to their high heat transfer capability,and optimization of heat transfer process plays an important role in high-efficiency energy utilization and energy conservation.In this paper,the entransy dissipation analysis is conducted for the separated heat pipe system,and the result indicates that minimum thermal resistance principle is applicable to the optimization of the separated heat pipe system.Whether in the applications of waste heat recovery or air conditioning,the smaller the entransy-dissipation-based thermal resistance of the separated heat pipe system is,the better the heat transfer performance will be.Based on the minimum thermal resistance principle,the optimal area allocation relationship between evaporator and condenser is deduced,which is numerically verified in the optimation design of separated heat pipe system.

  4. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  5. Biomass energy

    International Nuclear Information System (INIS)

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  6. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO2, N2O and CH4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  7. Reno Industrial Park geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants have been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.

  8. Prototype solar heating and combined heating and cooling systems

    Science.gov (United States)

    1978-01-01

    Designs were completed, hardware was received, and hardware was shipped to two sites. A change was made in the heat pump working fluid. Problem investigation of shroud coatings for the collector received emphasis.

  9. Solution to problems of bacterial impurity of heating systems

    Science.gov (United States)

    Sharapov, V. I.; Zamaleev, M. M.

    2015-09-01

    The article describes the problems of the operation of open and closed district heating systems related to the bacteriological contamination of heating-system water. It is noted that district heating systems are basically safe in sanitary epidemiological terms. Data on the dangers of sulfide contamination of heating systems are given. It is shown that the main causes of the development of sulfate-reducing and iron bacteria in heating systems are a significant biological contamination of source water to fuel heating systems, which is determined by water oxidizability, and a low velocity of the motion of heating-system water in the heating system elements. A case of sulfide contamination of a part of the outdoor heat-supply system of the city of Ulyanovsk is considered in detail. Measures for cleaning pipelines and heating system equipment from the waste products of sulfate-reducing bacteria and iron bacteria and for improving the quality of heating-system water by organizing the hydraulic and water-chemistry condition that makes it possible to avoid the bacteriological contamination of heating systems are proposed. The positive effect of sodium silicate on the prevention of sulfide contamination of heating systems is shown.

  10. Ion cyclotron resonance heating system on Aditya

    Indian Academy of Sciences (India)

    D Bora; Sunil Kumar; Raj Singh; S V Kulkarni; A Mukherjee; J P Singh; Raguraj Singh; S Dani; A Patel; Sai Kumar; V George; Y S S Srinivas; P Khilar; M Kushwah; P Shah; H M Jadav; Rajnish Kumar; S Gangopadhyay; H Machhar; B Kadia; K Parmar; A Bhardwaj; Suresh Adav; D Rathi; D S Bhattacharya

    2005-02-01

    An ion cyclotron resonance heating (ICRH) system has been designed, fabricated indigenously and commissioned on Tokamak Aditya. The system has been commissioned to operate between 20·0 and 47·0 MHz at a maximum power of 200 kW continuous wave (CW). Duration of 500 ms is sufficient for operation on Aditya, however, the same system feeds the final stage of the 1·5 MW ICRH system being prepared for the steady-state superconducting tokamak (SST-1) for a duration of 1000 s. Radio frequency (RF) power (225 kW) has been generated and successfully tested on a dummy load for 100s at 30·0 MHz. Lower powers have been coupled to Aditya in a breakdown experiment. We describe the system in detail in this work.

  11. Efficiency of heat pump ventilation and water heating system in an indoor swimming pool

    OpenAIRE

    Безродний, Михайло Костянтинович; Кутра, Дмитро Сергійович; Морощук, Олександр Олександрович

    2014-01-01

    The thermodynamic efficiency of the heat pump ventilation and water heating system of indoor swimming pool with partial exhaust air recirculation and heat pump bypass is analyzed in the paper. The purpose of the work is to determine the system efficiency depending on the change of fresh supply air temperature, ventilation system intensity and heat pump bypassing factor. As a result of implementing the developed mathematical model using the method of successive approximations, dependences of t...

  12. Modelling fireside corrosion of heat exchangers in co-fired pulverised fuel power systems

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield Univ. (United Kingdom). Energy Technology Centre; Fry, A.T. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    As a result of concerns about the effects of CO{sub 2} emissions on the global environment, there is increasing pressure to reduce such emissions from power generation systems. The use of biomass co-firing with coal in conventional pulverised fuel power stations has provided the most immediate route to introduce a class of fuel that is regarded as both sustainable and carbon neutral. In the future it is anticipated that increased levels of biomass will need to be used in such systems to achieve the desired CO{sub 2} emission targets. However there are concerns over the risk of fireside corrosion damage to the various heat exchangers and boiler walls used in such systems. Future pulverised fuel power systems will need to be designed to cope with the effects of using a wide range of coal-biomass mixes. However, such systems will also need to use much higher heat exchanger operating temperatures to increase their conversion efficiencies and counter the effects of the CO{sub 2} capture technologies that will need to be used in them. Higher operating temperatures will also increase the risk of fireside corrosion damage to the critical heat exchangers. This paper reports work that has been carried out to develop quantitative corrosion models for heat exchangers in pulverised fuel power systems. These developments have been particularly targeted at producing models that enable the evaluation of the effects of using different coal-biomass mixtures and of increasing heat exchanger operating conditions. Models have been produced that have been targeted at operating conditions and materials used in (a) superheaters/reheaters and (b) waterwalls. Data used in the development of these models has been produced from full scale and pilot scale plants in the UK using a wide range of coal and biomass mixtures, as well as from carefully targeted series of laboratory corrosion tests. Mechanistic and neural network based models have been investigated during this development process to

  13. Making environmental assessments of biomass production systems comparable worldwide

    International Nuclear Information System (INIS)

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  14. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  15. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  16. System applications CRC -Biomass + Coal; Aplicaciones Sistema CRC-Biomasa+Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Main object of Phase I of the project is to analyse the technical-economic feasibility of the combined use of biomass and coal for power generation in the Spanish region of Andalusia, by means of new medium-size independent power plants or using biomass as supplementary fuel in existing large coal power plants, including: -Analysis and classification of biomass and coal resources in the region -Technical-economic study of conventional alternatives using the steam cycle -Analysis of efficiency improvement provided by advanced Rankine-cycle technologies, like the SMR cycle -Analysis of alternatives based on parallel combined cycles using gas turbines, including advanced solutions, like the EAPI and CRC-EAPI systems. -Description and evaluation of different biomass drying systems. -Description and evaluation of the three main biomass gasification systems currently under development: atmospheric direct, atmospheric indirect and pressurized. Main objects of Phase II of the project are to analyse a specific application of the EAPI system to a real cogeneration plant project and to analyse the application of the CRC2 system to a commercial supercritical power plant, including technical-economic study of both applications. (Author)

  17. Monju secondary heat transport system sodium leak

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takeo; Hiroi, Hiroshi; Usami, Shin [Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Monju Construction Office; Iwata, Koji

    1996-10-01

    On December 8, 1995, the sodium leakage from the secondary heat transport system (SHTS) occurred in the piping room of the reactor auxiliary building in Monju. The secondary sodium leaked through a temperature sensor, due to the breakaway of the tip of the well tube of the sensor installed near the outlet of the intermediate heat exchanger (IHX) in the C loop of SHTS. The reactor core remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. There were no adverse effects for operating personnel or the surrounding environment. The cause of the well tube failure is considered to result from high cycle fatigue due to flow induced vibrations. Delay in draining the sodium from the leaking loop increased the consequential effects from sodium combustion products. (author)

  18. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  19. Utilization of emergent aquatic plants for biomass-energy-systems development

    Energy Technology Data Exchange (ETDEWEB)

    Kresovich, S.; Wagner, C.K.; Scantland, D.A.; Groet, S.S.; Lawhon, W.T.

    1982-02-01

    A review was conducted of the available literature pertaining to the following aspects of emergent aquatic biomass: identification of prospective emergent plant species for management; evaluation of prospects for genetic manipulation; evaluation of biological and environmental tolerances; examination of current production technologies; determination of availability of seeds and/or other propagules, and projections for probable end-uses and products. Species identified as potential candidates for production in biomass systems include Arundo donax, Cyperus papyrus, Phragmites communis, Saccharum spontaneum, Spartina alterniflora, and Typha latifolia. If these species are to be viable candidates in biomass systems, a number of research areas must be further investigated. Points such as development of baseline yield data for managed systems, harvesting conceptualization, genetic (crop) improvement, and identification of secondary plant products require refinement. However, the potential pay-off for developing emergent aquatic systems will be significant if development is successful.

  20. Energy from biomass. Teaching material; Energie aus Biomasse. Ein Lehrmaterial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    The textbook discusses the available options for power and heat generation from biomass as well as the limits of biomass-based power supply. The main obstacle apart from the high cost is a lack of knowledge, which the book intends to remedy. It addresses students of agriculture, forestry, environmental engineering, heating systems engineering and apprentice chimney sweepers, but it will also be useful to all other interested readers. [German] Biomasse kann aufgrund seiner vielfaeltigen Erscheinungs- und Umwandlungsformen sowohl als Brennstoff zur Waerme- und Stromgewinnung oder als Treibstoff eingesetzt werden. Die energetische Nutzung von Biomasse birgt zudem nicht zu verachtende Vorteile. Zum einen wegen des Beitrags zum Klimaschutz aufgrund der CO{sub 2}-Neutralitaet oder einfach, weil Biomasse immer wieder nachwaechst und von fossilen Ressourcen unabhaengig macht. All den bisher erschlossenen Moeglichkeiten der energetischen Nutzung von Biomasse moechte dieses Lehrbuch Rechnung tragen. Es zeigt aber auch die Grenzen auf, die mit der Energieversorgung durch Bioenergie einhergehen. Hohe Kosten und ein erhebliches Informationsdefizit behinderten bisher eine verstaerkte Nutzung dieses Energietraeges. Letzterem soll dieses Lehrbuch entgegenwirken. Das vorliegende Lehrbuch wurde fuer die Aus- und Weiterbildung erstellt. Es richtet sich vor allem an angehende Land- und Forstwirte, Umwelttechniker, Heizungsbauer und Schornsteinfeger, ist aber auch fuer all diejenigen interessant, die das Thema ''Energie aus Biomasse'' verstehen und ueberblicken moechten. (orig.)

  1. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Grundl, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric C.D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States)

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  2. Submersible pumping system with heat transfer mechanism

    Science.gov (United States)

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  3. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  4. Application of a New Dynamic Heating System Model Using a Range of Common Control Strategies

    Directory of Open Access Journals (Sweden)

    Joshua Fong

    2016-06-01

    Full Text Available This research investigates the overall heating energy consumptions using various control strategies, secondary heat emitters, and primary plant for a building. Previous research has successfully demonstrated that a dynamic distributed heat emitter model embedded within a simplified third-order lumped parameter building model is capable of achieving improved results when compared to other commercially available modelling tools. With the enhanced ability to capture transient effects of emitter thermal capacity, this research studies the influence of control strategies and primary plant configurations on the rate of energy consumption of a heating system. Four alternative control strategies are investigated: zone feedback; weather-compensated; a combination of both of these methods; and thermostatic control. The plant alternative configurations consist of conventional boilers, biomass boilers, and heat pumps supporting radiator heating and underfloor heating. The performance of the model is tested on a primary school building and can be applied to any residential or commercial building with a heating system. Results show that the new methods reported offer greater detail and rigor in the conduct of building energy modelling.

  5. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  6. Operation strategy analysis of a geothermal step utilization heating system

    International Nuclear Information System (INIS)

    Geothermal energy has been successfully applied in many district heating systems. In order to promote better use of geothermal energy, it is important to analyze the operation strategy of geothermal heating system. This study proposes a comprehensive and systematic operation strategy for a geothermal step utilization heating system (GSUHS). Calculation models of radiator heating system (RHS), radiant floor heating system (RFHS), heat pump (HP), gas boiler (GB), plate heat exchanger (PHE) and pump are first established. Then the operation strategy of the GSUHS is analyzed with the aim to substantially reduce the conventional energy consumption of the whole system. Finally, the energy efficiency and geothermal tail water temperature are analyzed. With the operation strategy in this study, the geothermal energy provides the main heating amount for the system. The heating seasonal performance factor is 15.93. Compared with coal-fired heating, 75.1% of the standard coal equivalent can be saved. The results provide scientific guidance for the application of an operation strategy for a geothermal step utilization heating system. -- Highlights: ► We establish calculation models for the geothermal step utilization heating system. ► We adopt minimal conventional energy consumption to determine the operation strategy. ► The geothermal energy dominates the heating quantity of the whole system. ► The utilization efficiency of the geothermal energy is high. ► The results provide guidance to conduct operation strategy for scientific operation.

  7. Prototype testing of heat pipes for spacecraft heat control systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, L.L.; Gil, V.V.; Zharikov, N.A.; Zelenin, V.E.; Syvorotka, O.M.; Uvarov, E.I.

    1980-05-01

    Prototype testing of heat pipes for spacecraft heat control was done on board the Interkosmos-15 satellite launched on 19 June 1976. The purpose was to gather data for optimizing the design, namely the capillary structure and the selection of heat transfer agent, as well as to verify the soundness of manufacturing technologies and test procedures. Three heat pipes were tested, each 412 mm long with a 14 mm outside diameter. All had been made of an aluminum alloy. In two pipes the capillary structure consisted of 0.6 x 0.5 mm/sup 2/ rectangular channels running axially along the inside wall, in the third pipe a 1 mm thick tubular mesh of Kh18N10T steel wire running coaxially inside served as the capillary structure. The heat transfer agent was Freon-11 in one of the first two pipes and synthetic liquid ammonia in the other two pipes. The three pipes were mounted radially around a radiator as the hub, with the test conditions controllable by means of an electric heater coil along the evaporation zone of each pipe, resistance thermometers for the evaporation zone and for the condensation zone of each, and also an external cooling fan. The radial distribution of temperature drops along the pipes was measured and the thermal fluxes were calculated, these data being indicative of the performance under conditions of weightlessness over the 0 to 70/sup 0/C temperature range. The somewhat worse performance of the heat pipe with a tubular capillary mesh inside is attributable to formation of vapor bubbles which impede the mass transfer along such an artery.

  8. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  9. Methodology based on Geographic Information Systems for biomass logistics and transport optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Perpina, C.; Alfonso, D.; Perez-Navarro, A.; Penalvo, E.; Vargas, C.; Cardenas, R. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n Edificio 8E, 2a, 46022 Valencia (Spain)

    2009-03-15

    The aim of this study is to contribute by outlining a procedure for achieving an optimal use of agricultural and forest residue biomass. In this regard, it develops and applies a methodology focused on logistics and transport strategies that can be used to locate a network of bioenergy plants around the region. This methodology was developed using a Geographic Information Systems and it provides information on the spatial distribution of biomass residues. This is accomplished by taking into consideration the amount of residue left within a rectangle with an area of 1 km{sup 2}, and making a regular grid overlap for the region under consideration. The centroid of each square will be evaluated and classified as 'origin' (source of biomass collection) or 'destination' (potential location of the bioenergy plant) depending on technical, economic, environmental and social constraints. The study focuses on mapping potential sites for tapping biomass energy and optimal locations for bioenergy plants. To identify and map optimal locations it is necessary to evaluate the time, distance and transport costs involved in the road transportation of biomass by means of a network analysis. The methodology was applied in the Valencian Community because the intense agricultural, agro-alimentary and timber activity in the region means there is a high potential for biomass. (author)

  10. Modeling stump biomass of stands using harvester measurements for adaptive energy wood procurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Vesa, Lauri [ForestCalc Consulting Oy Ltd., 80230 Joensuu (Finland); Palander, Teijo [School of Forest Sciences, University of Eastern Finland, 80100 Joensuu (Finland)

    2010-09-15

    The value and volumes of industrial stump fuel supply are increasing for energy production. Accurate estimates of aboveground and belowground biomass of trees are important when estimating the potential of stumps as a bioenergy source. In this study two stump biomass equations were adapted and tested using them as calibrated stump biomass models computed as the cumulative sum by a local stand. In addition, variables derived from stem measurements of the forest harvester data were examined to predict stump biomass of a stand by applying regression analysis. The true stump yield (dry weight) was used as the reference data in the study. Both biomass models performed well (adjusted R{sup 2} {proportional_to} 0.84) and no advance was found in using other stem dimensions as independent variables in the model. The stand-level model can be used in innovative stump biomass prediction tools for increasing efficiency of energy wood procurement planning to stands within a certain area. In practice, wood procurement managers would need to adapt developed system and decide whether the degree of accuracy/precision provided by the models is acceptable in their local stand harvesting conditions. (author)

  11. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  12. 14 CFR 121.342 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... a flight instrument pitot heating system unless the airplane is also equipped with an operable pitot... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 121.342... heat indication systems. No person may operate a transport category airplane or, after December...

  13. 24 CFR 3285.905 - Heating oil systems.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heating oil systems. 3285.905... Installation Instructions § 3285.905 Heating oil systems. It is recommended that the installation instructions include the following information related to heating oil systems, when applicable: (a) Homes equipped...

  14. Reliability analysis of the combined district heating systems

    Science.gov (United States)

    Sharapov, V. I.; Orlov, M. E.; Kunin, M. V.

    2015-12-01

    Technologies that improve the reliability and efficiency of the combined district heating systems in urban areas are considered. The calculation method of reliability of the CHP combined district heating systems is proposed. The comparative estimation of the reliability of traditional and combined district heating systems is performed.

  15. Heat-Transfer Fluids for Solar-Energy Systems

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

  16. High temperature solar heating and cooling systems for different Mediterranean climates: Dynamic simulation and economic assessment

    International Nuclear Information System (INIS)

    The paper presents a dynamic model of an innovative solar heating and cooling system (SHC) based on the coupling of Parabolic Trough Collectors (PTC) with a double-stage LiBr-H2O absorption chiller; auxiliary energy for both heating and cooling is supplied by a biomass-fired heater. The system layout also includes a number of additional components such as: cooling tower, pumps, heat exchangers, etc. The consumption of non-renewable energy resources is only due to the small amount of electrical energy consumed by some auxiliary device. A case study is presented, in which the SHC provides space heating and cooling and domestic hot water for a small university hall, all year long. Both the SHC system and the building were dynamically simulated in TRNSYS. In order to evaluate the performance of the investigated system in various climatic conditions, the analyses were performed for seven Mediterranean cities in Italy, Spain, Egypt, France, Greece and Turkey. The analysis was also performed for a similar SHC in which the biomass heater was replaced by a gas-fired heater, in order to evaluate the influence of biomass to the overall system economic and energetic performance. In addition, a parametric analysis was performed in order to evaluate the sensitivity of the results, when varying some of the main design and operating parameters, such as: collector field area, tank volume and set-point temperatures. The results showed that the SHC system layout investigated can be competitive for the majority of the locations analysed, although the economic profitability is higher for the hottest climates. - Highlights: → In the high temperature SHC system the auxiliary heat is provided by biomass. → The energetic performance of the system is excellent during the summer. → In the winter the system suffers of the low beam radiation incident on the PTC. → The Simple Pay Back Period is encouraging, particularly in case of public funding. → An increase of the solar field area

  17. Power system for electric heating of pipelines

    OpenAIRE

    Novik, Frode Karstein

    2008-01-01

    Direct electrical heating (DEH) of pipelines is a flow assurance method that has proven to be a good and reliable solution for preventing the formation of hydrates and wax in multiphase flow lines. The technology is installed on several pipelines in the North Sea and has become StatoilHydros preferred method for flow assurance. Tyrihans is the newest installation with 10 MW DEH for a 43 km pipline. However, the pipeline represents a considerable single-phase load which makes the power system ...

  18. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi;

    2012-01-01

    the operation on fault analysis and control. A significant improvement of the MFM methodology has been recently proposed, where the “role” concept was introduced to enable the representation of structural entities and the conveyance of important information for building up knowledge bases, with the purpose......Multilevel Flow Modeling (MFM) is a well recognized methodology for functional modeling of complex systems which primarily focuses on the representation of their goals and functions. It has been successfully used in industrial process, e.g. nuclear power plant, chemical plants etc. to facilitate...... components e.g. storage tanks, are modeled using the MFM methodology. Both the goals and functions of material and energy processes and the control functions of the heating systems are represented in the MFM models. It is found that varying the physical system setup results in only little differences among...

  19. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  20. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Roni; Kara G. Cafferty; Christopher T Wright; Lantian Ren

    2015-06-01

    China has abundant biomass resources, which can be used as a potential source of bioenergy. However, China faces challenges implementing biomass as an energy source, because China has not developed the highly networked, high-volume biomass logistics systems and infrastructure. This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to the U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum under different scenarios in China. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study shows that the logistics cost of corn stover and sweet sorghum stalk will be $52.95/dry metric ton and $52.64/ dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk will be down to $36.01/ dry metric ton and $35.76/dry metric ton, respectively. The study also performed a sensitivity analysis to find the cost factors that cause logistics cost variation. A sensitivity analysis shows that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, causing a variation of $6 to $12/metric ton.

  1. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    Science.gov (United States)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  2. An Interactive Energy System with Grid, Heating and Transportation Systems

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker

    occurring with power generation purposes, there is an interest on extending this tendency to other strategic systems like the heating, gas and transportation. This implies that at least an important part of these systems will have to be electrified. From a power system perspective, this means...... and economic aspects of these networks, an active demand response represents a promising solution. This research work is based on the opportunity of interacting the electrical power system and the heating, gas and transportation systems to ensure a correct and efficient operation of the distribution systems...... that it will have to undergo a significant load increase in the future. Due to its nature, most of this load is expected to be accommodated at the power distribution level. This implies a need for finding new alternatives to operate and control the medium and low voltage networks. Considering the technical...

  3. Heating performance of a ground source heat pump system installed in a school building

    Institute of Scientific and Technical Information of China (English)

    Jaedo; SONG; Kwangho; LEE; Youngman; JEONG; Seongir; CHEONG; Jaekeun; LEE; Yujin; HWANG; Yeongho; LEE; Donghyuk; LEE

    2010-01-01

    The heating performance of a water-to-refrigerant type ground source heat pump system is represented in this paper under the actual working conditions of the GSHP(ground source heat pump) system during the winter season of 2008.Ten heat pump equipments with the capacity of 10 HP each and a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth were constructed.We investigated a variety of working conditions,including the outdoor temperature,the ground temperature,and the water temperature of inlet and outlet of the ground heat exchanger in order to examine the heating performance of the GSHP system.Subsequently,the heating capacity and the input power were investigated to determine the heating performance of the GSHP system.The average heating coefficient of performance(COP) of the heat pump was noted to be 5.1 at partial load of 47%,while the overall system COP was found to be 4.2.Also,performance of the GSHP system was compared with that of air source heat pump.

  4. Biogas production supported by excess heat – A systems analysis within the food industry

    International Nuclear Information System (INIS)

    Highlights: • A systems analysis when moving from external to internal production and use of biogas at an industry. • The aim is to study the impacts on greenhouse gas emissions and economics from this switch. • The study compares the choice of using biogas or industrial excess heat to heat the digester. • Internal biogas production supported by excess heat has environmental and economic benefits. - Abstract: The aim of this paper was to study the effects on greenhouse gases and economics when a change is made in the use of industrial organic waste from external production and use of biogas (A) to internal production and use (B). The two different system solutions are studied through a systems analysis based on an industrial case. The baseline system (A) and a modified system (B) were compared and analysed. Studies show that industrial processes considered as integrated systems, including the exchange of resources between industries, can result in competitive advantages. This study focuses on the integration of internally produced biogas from food industry waste produced by a food company and the use of excess heat. Two alternative scenarios were studied: (1) the use of available excess heat to heat the biogas digester and (2) the use of a part of the biogas produced to heat the biogas digester. This study showed that the system solution, whereby excess heat rather than biogas is used to heat the biogas digester, was both environmentally and economically advantageous. However, the valuation of biomass affects the magnitude of the emissions reduction. Implementing this synergistic concept will contribute to the reaching of European Union climate targets

  5. An Integrated Control System for Heating and Indoor Climate Applications

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh

    2012-01-01

    Low temperature hydronic heating and cooling systems connected to renewable energy sources have gained more attention in the recent decades. This is due to the growing public awareness of the adverse environmental impacts of energy generation using fossil fuel. Radiant hydronic sub-floor heating...... pipes and radiator panels are two examples of such systems that have reputation of improving the quality of indoor thermal comfort compared to forced-air heating or cooling units. Specifically, a radiant water-based sub-floor heating system is usually combined with low temperature heat sources, among...... which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance...

  6. Evaluating root zone water quality impacts associated with various biomass production systems across landscape positions

    Science.gov (United States)

    Welsh, W.; Zhou, X.; Helmers, M. J.; Schulte Moore, L.; Isenhart, T.; Kolka, R.

    2011-12-01

    Evaluating the water quality impacts of biomass production systems is essential to assessing biomass production systems' environmental impacts. The objective of this study is to determine potential water quality impacts of various production systems across different landscape positions. Five production systems are being evaluated: (1) continuous corn, (2) corn-soy/triticale-soy, (3) switchgrass, (4) triticale/sorghum, and (5) triticale/trees, at five landscape locations: (1) summit, (2) shoulder, (3) backslope, (4) toeslope, and (5) floodplain. Each production system is randomly assigned within three replicates at each landscape location. Soil water samples are taken monthly during the growing season from two suction lysimeters per plot at a depth of 60cm. Initial results indicate significant differences between the production systems and a likely association between fertilizer input and NO3-N concentrations with corn plots having the highest concentration and the tree plots having the lowest. Relatively high concentrations in the corn and sorghum plots following fertilization were observed the first year and similar results are being observed early in the second year of observations. A significant landscape effect was observed late in the growing season during the first year of this study. Quantifying the environmental impacts of biomass production systems will aid in optimizing deployment as producers gear up to meet biomass production demand.

  7. Comparative evaluation of biomass power generation systems in China using hybrid life cycle inventory analysis.

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  8. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  9. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger;

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  10. Multimode solar-heating system--Columbia, South Carolina

    Science.gov (United States)

    1981-01-01

    Report describes failure of six-mode pyramidal-optics system to reduce winter energy savings. Over 12 month period, control problems, energy dissipation, and high operating-energy requirements undermined system efficiency. Energy savings were maximal when system in direct space-heating or hot-water preheating mode. In least efficient mode, heat pumps alternatively mingled storage or collector energy, and space heating was provided by electric heat strip.

  11. Prototype solar heating and cooling systems, including potable hot water

    Science.gov (United States)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  12. A Numerical Study on System Performance of Groundwater Heat Pumps

    OpenAIRE

    Jin Sang Kim; Yujin Nam

    2015-01-01

    Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs) are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomia...

  13. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  14. Energy and exergy evaluation of an integrated solar heat pipe wall system for space heating

    Indian Academy of Sciences (India)

    ROONAK DAGHIGH; ABDELLAH SHAFIEIAN

    2016-08-01

    In this paper, an integrated solar heat pipe wall space heating system, employing double glazed heat pipe evacuated tube solar collector and forced convective heat transfer condenser, is introduced. Thermal performance of the heat pipe solar collector is studied and a numerical model is developed to investigate thethermal efficiency of the system, the inlet and outlet air temperatures and heat pipe temperature. Furthermore, the system performance is evaluated based on exergy efficiency. In order to verify the precision of the developed model, the numerical results are compared with experimental data. Parametric sensitivity for design features and material associated with the heat pipe, collector cover and insulation is evaluated to provide a combination with higher thermal performance. Simulation results show that applying a solar collector with more than 30 heat pipes is not efficient. The rate of increasing in temperature of air becomes negligible after 30 heat pipes and the trend of the thermal efficiency is descending with increasing heat pipes. The results also indicate that at a cold winter day of January, the proposed system with a 20 heat pipe collector shows maximum energy and exergy efficiency of 56.8% and 7.2%, which can afford warm air up to 30°C. At the end, the capability of the proposed system tomeet the heating demand of a building is investigated. It is concluded that the best method to reach a higher thermal covered area is to apply parallel collectors

  15. Capacity study for solid biomass facilities - scenarios for supply and demand of solid biomass for electricity and heat generation in north west Europe

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Junginger, H.M.; Faaij, A.P.C.

    2012-01-01

    Background: The growing awareness for climate change and security of supply leads to a increasing share of renewable energy in which biomass plays an important role. Especially in the European Union (EU-27), where member states have agreed on a binding target of a 20% renewable energy share of tota

  16. Integration of waste processing and biomass production systems as part of the KSC Breadboard project.

    Science.gov (United States)

    Garland, J L; Mackowiak, C L; Strayer, R F; Finger, B W

    1997-01-01

    After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams. PMID:11542556

  17. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  18. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    OpenAIRE

    Antonio Rigueiro-Rodríguez; Rabia Mouhbi; José Javier Santiago-Freijanes; María del Pilar González-Hernández; María Rosa Mosquera-Losada

    2012-01-01

    Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener) and beta (Jaccard and Magurran) biodiversity for a period of four years in a P. radiata silvopastoral system....

  19. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...... in the heating system. The heat storage was tested in a heat storage test facility. The most important characteristics of the heat storage were determined by means of the tests and recommendations for the design of the heat storage were given....

  20. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  1. A Numerical Study on System Performance of Groundwater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Jin Sang Kim

    2015-12-01

    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  2. Thermal Propulsion Capture System Heat Exchanger Design

    Science.gov (United States)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  3. Performance Analysis of a Hybrid District Heating System

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Duic, Neven;

    2015-01-01

    Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work......, the performance of a hybrid district energy system for a small town in Croatia has been analysed. Mathematical model for process analysis and optimisation algorithm for optimal system configuration has been developed and described. The main goal of the system optimisation is to reduce heat production costs....... Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems...

  4. CFD Analysis of a Hybrid Heat Pipe for In-Core Passive Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Yeong Shin; Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Station blackout (SBO) accident is the event that all AC power is totally lost from the failure of offsite and onsite power sources. Although electricity was provided from installed batteries for active system after shutdown, they were failed due to flooding after tsunami. The vulnerability of the current operating power plant's cooling ability during extended station blackout events is demonstrated and the importance of passive system becomes emphasized. Numerous researches about passive system have been studied for proper cooling residual heat after Fukushima nuclear power plant accident. Heat pipe is the effective passive heat transfer device that latent heat of vaporization is used to transport heat over long distance with even small temperature difference. Since liquid flows due to capillary force from wick structure and steam flows up due to buoyancy force, power is not necessary. Heat pipe is widely used in removal of local hot spot heat fluxes in CPU and thermal management in space crafts and satellites. Hybrid control rod, which consists of heat pipe with B{sub 4}C for wick structure material can be used for removing residual heat after. It can be applied to both for shutdown and cooling of decay heat in reactor. This concept is independent of external reactor situation like operator's mistake or malfunction of active cooling system. Heat pipe cooling system can be applied to Emergency Core Cooling System, In-Vessel Retention, containment and spent fuel cooling, contributing to decrease Core Damage Frequency.

  5. Decentralised power generation using solid biomass - Know-how on combined heat and power generation for investors; Dezentrale Stromerzeugung mit Feststoffbiomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Gaegauf, Ch.; Sattler, M.

    2007-01-15

    This comprehensive report made by the Centre of Appropriate Technology and Social Ecology in Langenbruck, Switzerland presents a summary of know-how for investors on combined heat and power generation using solid biomass in installations with an electrical rating of up to one megawatt. Topics covered include a review of the reasons for using biomass to generate electricity - with the results of an analysis of potential in Switzerland and the European Union - and of economic assessment methods for the choice of technology and manufacturers. A SWOT (strengths, weaknesses, opportunities and threats) analysis of technologies is presented and existing biomass-fired installations in Switzerland are listed. A comparison with centrally-refined combustibles is presented and examples of cost and profitability calculations are given. Finally technological background information is presented, including information on 'forgotten' technologies.

  6. Optimal Power Consumption in a Central Heating System with Geothermal Heat Pump

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2011-01-01

    Driving a ground source heat pump in a central heating system with the minimum power consumption is studied. The idea of control is based on the fact that, in a heat pump, the temperature of the forward water has a strong positive correlation with the consumed electric power by the compressor. Th...

  7. Ultimate heat sink and directly associated heat transport systems for nuclear power plants

    International Nuclear Information System (INIS)

    The scope of the Guide covers design considerations for various types of ultimate heat sinks (UHS) and directly associated heat transport systems, and for types and sources of related heat transport fluids. The scope encompasses the conditions for using the UHS for reactor safety following postulated initiating events, as well as its selection, sizing and reliability

  8. Optimum Organization and Maximum Capabilities of Heat-Pump Heating Systems

    Science.gov (United States)

    Tsirlin, A. M.; Kuz‧min, V. A.

    2016-05-01

    The authors obtained a lower bound for the energy consumption in heating (maintaining an assigned temperature distribution in the system of intercommunicating chambers) and the corresponding distributions of the total heat-transfer coefficients and the temperature of the working medium of a heat pump in contact with the chambers and the environment.

  9. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    Increasing the building energy efficiency in recent years results in noticeably reduction in their heating demand. Combined with the current trend for utilizing low temperature heat sources, it raises the necessity of introducing a new generation of district heating [DH] systems with lowered...

  10. 14 CFR 25.833 - Combustion heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.833 Combustion heating systems. Combustion heaters must be approved. Pressurization...

  11. Solar heating and cooling systems design and development. [prototype development

    Science.gov (United States)

    1977-01-01

    The development of twelve prototype solar heating/cooling systems, six heating and six heating and cooling systems, two each for single family, multi-family, and commercial applications, is reported. Schedules and technical discussions, along with illustrations on the progress made from April 1, 1977 through June 30, 1977 are detailed.

  12. Control and energy optimization of ground source heat pump systems for heating and cooling in buildings

    OpenAIRE

    Cervera Vázquez, Javier

    2016-01-01

    [EN] In a context of global warming concern and global energy policies, in which heating and cooling systems in buildings account for a significant amount of the global energy consumption, ground source heat pump (GSHP) systems are widely considered as being among the most efficient and comfortable heating and cooling renewable technologies currently available. Nevertheless, both an optimal design of components and an optimal operation of the system as a whole become crucial so that these ...

  13. Integrated conceptual design of a robust and reliable waste-heat district heating system

    International Nuclear Information System (INIS)

    The various governmental policies aimed at reducing the dependence on fossil fuels for space heating and the reduction in its associated emission of greenhouse gases such as CO2 demands innovative measures. District heating systems using residual industrial waste heats could provide such an efficient method for house and space heating. In such systems, heat is produced and/or thermally upgraded in a central plant and then distributed to the final consumers through a pipeline network. This paper studies the technical, economic, institutional and environmental feasibilities of using low-level residual industrial waste heat for the district heating of Delft, The Netherlands. An integrated conceptual design approach that takes into account both the technical and institutional design of the system has been adopted and has resulted in a feasible and robust system design. The technical part of the integrated conceptual design consisted in the estimation of the heat demands, the design of the heat upgrading system, equipment sizing, the network morphology and/or spatial connectivity and the exergy losses in the needed infrastructure as well as the economic viability of the system. An isopropanol-hydrogen-acetone chemical heat pump was selected for the process and has been modelled in ASPEN plus (registered) . The conventional cost estimation model has been modified to account for uncompensated system downtimes

  14. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt;

    The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating...

  15. Biomass boiler energy conversion system analysis with the aid of exergy-based methods

    International Nuclear Information System (INIS)

    Highlights: • Conventional exergy analysis and advanced exergy analysis are performed. • The combustion process dominates the exergy destruction. • Increase excess air will decrease the overall boiler exergy efficiency. • Increase the SH temperatures will increase the overall boiler exergy efficiency. • The avoidable exergy destructions in the air heaters are very small. - Abstract: The objective of this paper is to establish a theoretical framework for the exergy analysis and advanced exergy analysis of a real biomass boiler. These analyses can be used for both the diagnosis and optimization of a biomass boiler as well as for the design of a new biomass boiler. Conventional exergy analysis is performed to recognize the source(s) of inefficiency and irreversibility and identify exergy destruction in different components of the biomass boiler. An advanced exergy analysis is performed to provide comprehensive information about the avoidable exergy destruction and real fuel-saving potential for each component, as well as the overall system. Sensitivity studies of several design parameters including the excess air, biomass moisture and steam parameters were evaluated. The results show that the maximum exergy destruction occurs in the combustion process, followed by the Water Walls (WW) & Radiant Superheater (RSH) and the Low Temperature Superheater (LTSH). The fuel-saving and exergy efficiency improvement strategies for different components are discussed in this paper

  16. Biomass energy systems program summary. Information current as of September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This program summary describes each of the DOE's Biomass Energy System's projects funded or in existence during fiscal year 1979 and reflects their status as of September 30, 1979. The summary provides an overview of the ongoing research, development, and demonstration efforts of the preceding fiscal year as well. (DMC)

  17. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    . The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  18. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power

    NARCIS (Netherlands)

    Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; Werf, van der G.R.

    2012-01-01

    The Global Fire Assimilation System (GFASv1.0) calculates biomass burning emissions by assimilating Fire Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects for gaps in the observations, which are mostly due to cloud cover, and filters spu

  19. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  20. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    International Nuclear Information System (INIS)

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON

  1. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [University of California San Diego

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  2. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  3. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  4. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWhheat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  5. Biogas production from Macrocystis pyrifera biomass in seawater system.

    Science.gov (United States)

    Fan, Xiaolei; Guo, Rongbo; Yuan, Xianzheng; Qiu, Yanling; Yang, Zhiman; Wang, Fei; Sun, Mengting; Zhao, Xiaoxian

    2015-12-01

    Marine sediments from littoral and sublittoral location were evaluated as inocula for methane production from anaerobic fermentation of Macrocystis pyrifera in seawater system. Littoral sediment showed the higher methanogenetic activity from acetate and resulted in a higher biomethane yield of 217.1±2.4mL/g-VS, which was comparable with that reported in freshwater system with desalted seaweeds. With 0.8mM sodium molybdate added, both the maximal methane yield and concentration increased while the lag-time was greatly shortened, suggesting that sulfate was one of the major inhibitors. Microbial community analysis revealed that degradation of M. pyrifera needed cooperation of very complex microbial populations. Hydrogenotrophic methanogens had an absolute dominance in distribution compared with the acetotrophic ones, indicating syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis might play important roles in the thalassic anaerobic fermentation system. These results clearly showed that biomethane production of raw seaweeds in seawater system was feasible. PMID:26344241

  6. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...

  7. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems

    International Nuclear Information System (INIS)

    Since the energy crises of the 1970s, many countries have become interest in biomass as a fuel source to expand the development of domestic and renewable energy sources and reduce the environmental impacts of energy production. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The methods available for energy production from biomass can be divided into two main categories: thermo-chemical and biological conversion routes. There are several thermo-chemical routes for biomass-based energy production, such as direct combustion, liquefaction, pyrolysis, supercritical water extraction, gasification, air-steam gasification and so on. The pyrolysis is thermal degradation of biomass by heat in the absence of oxygen, which results in the production of charcoal (solid), bio-oil (liquid), and fuel gas products. Pyrolysis liquid is referred to in the literature by terms such as pyrolysis oil, bio-oil, bio-crude oil, bio-fuel oil, wood liquid, wood oil, liquid smoke, wood distillates, pyroligneous tar, and pyroligneous acid. Bio-oil can be used as a fuel in boilers, diesel engines or gas turbines for heat and electricity generation.

  8. Marine biomass system: anaerobic digestion and production of methane

    Energy Technology Data Exchange (ETDEWEB)

    Haven, K.F.; Henriquez, M.; Ritschard, R.L.

    1979-04-01

    Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment demands, employment patterns, material demands and residual levels associated with each technology for each of several national and regional scenarios.

  9. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Science.gov (United States)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  10. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Directory of Open Access Journals (Sweden)

    Dhanushkodi Saravanan

    2015-12-01

    Full Text Available Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  11. Mixed Enzyme Systems for Delignification of Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Elisa M. Woolridge

    2014-01-01

    Full Text Available The application of enzymes such as laccase and xylanase for the preparation of cellulose from lignocellulosic material is an option for those industries seeking to reduce the use of chlorine-containing bleach agents, thus minimizing the environmental impact of their processes. Mixed hydrolytic and oxidative enzyme systems have been well described in the context of biopulping, and thus provide good precedent regarding effectiveness, despite the susceptibility of xylanase to inactivation by laccase-generated oxidants. This paper examines the progress towards development of sequential and simultaneous mixed enzyme systems to accomplish delignification.

  12. Waste heat conducting system for side burner regenerative coke oven batteries with divided heating system. [German Patent

    Energy Technology Data Exchange (ETDEWEB)

    Thiersch, F.; Strobel, M.; Schmitz, T.

    1980-08-21

    In the well known waste heat removal system for side burner regenerative coking over batteries with divided heating system both flues could be used simultaneously and equally. The flues in the longitudinal direction of the battery open into a common chimney foot connection at one end of the battery. They are individually connected via opposite groups of transverse flues to opposite groups of waste heat elbows of waste heat valves on the machine and on the coke side.

  13. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  14. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anindita, E-mail: anidu14@gmail.com [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  15. Dynamics of Technological Innovation Systems : The case of biomass energy

    NARCIS (Netherlands)

    Negro, S.O.

    2007-01-01

    The starting point is that the current energy system is largely dependant on fossil fuels. This phenomenon, which is labelled as carbon lock-in by Unruh (2000), makes the breakthrough of renewable energies long, slow, and tedious. The most suitable theoretical approach to analyse the development, di

  16. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    DEFF Research Database (Denmark)

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt;

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  17. Numerical evaluation of plate heat exchanger performance in geothermal district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, T. [Iceland Univ., Reykjavik (Iceland)

    1996-12-31

    This paper describes the performance of plate heat exchangers in residential water radiator heating systems receiving their heat from geothermal resources. Radiator theory is reviewed and determination of annual hot water requirements for space heating is discussed. Performance evaluation is made of plate heat exchangers and results obtained by means of two equations commonly used for this purpose, the Sieder-Tate and the Dittus-Boelter equations, compared to results obtained with a simplified equation where heat transfer in the heat exchanger is assumed to depend only on the fluid mass flow on both sides. It is found that for prevailing temperature ranges in Icelandic geothermal systems the mass pow approximation gives results very close to those determined by the more complicated conventional equations. (UK)

  18. A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS)

    OpenAIRE

    Healey Sean P; Patterson Paul L; Saatchi Sassan; Lefsky Michael A; Lister Andrew J; Freeman Elizabeth A

    2012-01-01

    Abstract Background Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return data were collected globally in spatially discrete full waveform “shots,” which have been shown to be strongly correlated with aboveground forest biomass. Relationships observed at spatially coincident field plots may be used to model biomass at all GLAS shots,...

  19. Co-production of pyrolysis oil and district cooling in biomass-based CHP plants: Utilizing sequential vapour condensation heat as driving force in an absorption cooling machine

    International Nuclear Information System (INIS)

    The ever-increasing demand for cooling requires new and sustainable ways of producing it. Absorption cooling is one such well-known technique that can be employed, the driving force in which is heat. When a flash pyrolysis process, with sequential vapour condensation, is integrated into a biomass-based combined heat and power plant (CHP plant), excess heat may arise in the condensers. This study demonstrates the utilization of this excess heat in an absorption cooling machine for producing district cooling. The maximum boiler load in the used CHP plant was 80 MW: the excess condenser heat created during the period June–August was 6.4 MW, which resulted in the production of 5 MW district cooling. The production of electrical power increased by 8.6% on a yearly basis, with a base load production during June–August of 2.8 MW. Using an absorption cooling machine increases the energy conversion efficiency of the CHP plant with an integrated pyrolysis process by 1.3% on a yearly basis; the energy efficiency of the pyrolysis process alone increases by 6%. An increased utilization of the condenser heat for district cooling is possible at an almost constant overall energy conversion efficiency and is demonstrated with two additional cases. - Highlights: • Energy enhancement of a biomass-based CHP plant with integrated pyrolysis process. • Simulation of a single-stage absorption cooling cycle in CHEMCAD. • Utilizing waste condenser heat for district cooling production in three cases. • Simulation of a plant with productions of heat, power, cooling and bio-oil

  20. A new heat storage system using metal hydrides

    Science.gov (United States)

    Ono, S.; Kawamura, M.; Ishido, Y.; Akiba, E.; Higano, S.

    The development of a prototype chemical heat storage system, designed for the accumulation of fairly high temperature (300 - 400 C) waste heat, and called the Hydriding Heat Storage system is presented. Mg2Ni hydride is used as the high temperature heat storing medium, and LaNi5H6 is used as a reservoir for the hydrogen released from the heat storing medium. The system has been in development since 1976, and a 2000 kcal heat capacity prototype system is to be completed by 1982. Basic investigations, i.e., reaction kinetics of absorption and desorption, and heat transfer characteristics of the hydride and/or the metal powder packed bed, are described.

  1. Application of Predictive Control in District Heating Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1993-01-01

    In district heating systems, and in particular if the heat production cakes place at a combined heat and power (CHP) plant, a reasonable control strategy is to keep the supply temperature from the district heating plant as low as possible. However, the control is subject to some restrictions....... A district heating system is an example of a non-stationary system, and the model parameters have to be time varying. Hence, the classical predictive control theory has to be modified. Simulation experiments are performed in order to study the performance of modified predictive controllers. The systems ape......, for example, that the total heat requirement for all consumers is supplied at any time and each individual consumer is guaranteed some minimum supply temperature at any time. A lower supply temperature implies lower heat loss from the transport and the distribution network, and lower production costs...

  2. The role of district heating in future renewable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Möller, Bernd; Mathiesen, Brian Vad;

    2010-01-01

    Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted...... to 100 per cent Renewable Energy Sources (RES) in the year 2060 including reductions in space heating demands by 75 per cent. By use of a detailed energy system analysis of the complete national energy system, the consequences in relation to fuel demand, CO2 emissions and cost are calculated for various...... heating options, including district heating as well as individual heat pumps and micro CHPs (Combined Heat and Power). The study includes almost 25 per cent of the Danish building stock, namely those buildings which have individual gas or oil boilers today and could be substituted by district heating...

  3. Sensible heat receiver for solar dynamic space power system

    Science.gov (United States)

    Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris

    1991-01-01

    A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  4. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted.

  5. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. PMID:26826573

  6. Optimal Operation of Biomass Gasifier Based Hybrid Energy System

    OpenAIRE

    Balamurugan, P.; Kumaravel, S.; Ashok, S.

    2011-01-01

    The focus of the world on renewable energy sources is growing rapidly due to its availability and environment friendliness. However, the renewable energy influenced by natural conditions is being intermittent, it is difficult to accomplish stable energy supply only by one kind of renewable energy source. In order to achieve reliability, it is necessary to integrate two or more energy sources together in an optimal way as hybrid energy system. Optimal allocation of sources, unpredictable load ...

  7. Heat Saving Strategies in Sustainable Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Thellufsen, Jakob Zinck; Aggerholm, Søren;

    which are being renovated anyway. This will decrease the net heat demand of space heating and hot water by approximately 50% compared to the present level, while the implementation of heat savings in buildings which are not being renovated hardly pays. Moreover, the analysis points in the direction......One of the important issues related to the implementation of future sustainable smart energy systems based on renewable energy sources is the heating of buildings. Especially, when it comes to long‐term investment in savings and heating infrastructures it is essential to identify long‐term least......‐term target of becoming completely fossil‐free by 2050, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least‐cost heating strategy seems to be to implement savings in new buildings and buildings...

  8. Efficient harvesting of wet blue-green microalgal biomass by two-aminoclay [AC]-mixture systems.

    Science.gov (United States)

    Ji, Hye-Min; Lee, Hyun Uk; Kim, Eui Jin; Seo, Soonjoo; Kim, Bohwa; Lee, Go-Woon; Oh, You-Kwan; Kim, Jun Yeong; Huh, Yun Suk; Song, Hyun A; Lee, Young-Chul

    2016-07-01

    Blue-green microalgal blooms have been caused concerns about environmental problems and human-health dangers. For removal of such cyanobacteria, many mechanical and chemical treatments have been trialled. Among various technologies, the flocculation-based harvesting (precipitation) method can be an alternative if the problem of the low yield of recovered biomass at low concentrations of cyanobacteria is solved. In the present study, it was utilized mixtures of magnesium aminoclay [MgAC] and cerium aminoclay [CeAC] with different particle sizes to harvest cyanobacteria feedstocks with ∼100% efficiency within 1h by ten-fold lower loading of ACs compared with single treatments of [MgAC] or [CeAC]. This success was owed to the compact networks of the different-sized-ACs mixture for efficient bridging between microalgal cells. In order to determine the usage potential of biomass harvested with AC, the mass was heat treated under the reduction condition. This system is expected to be profitably utilizable in adsorbents and catalysts. PMID:27023387

  9. Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment.

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, D L; Ni, Wei-Ming; Wang, G Geoff

    2015-06-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed. PMID:25817196

  10. Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits

    OpenAIRE

    Brownsort, Peter A

    2009-01-01

    This study focuses on performance of biomass pyrolysis processes for use in biochar systems. Objectives are to understand the range of control of such processes and how this affects potential benefits of pyrolysis biochar systems, in particular for climate change mitigation. Slow, intermediate and fast pyrolysis processes are reviewed. Product yield distributions change depending on feedstock composition and preparation, control of temperature and material flows. These allow s...

  11. Performance of Space Heating in a Modern Energy System

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2011-01-01

    In the paper we study the performance of a number of heat supply technologies. The background of the study is the changes in the Danish energy systems over the last three decades which have caused integration of large shares of combined heat and power (CHP), renewable fuels and wind power....... These changes mean that there is a significant integration of electricity and heat supply in the system and that several technologies may be beneficial. In particular, heat pumps are under consideration and are often considered to be renewable energy. We study how to distribute fuel and emissions to the heat...... supply. We find that heat supply is low-efficient seen from an exergy viewpoint, between 1% and 26% utilization. As exergy is a quantification of primary energy, we conclude that far better utilization of primary energy is possible. We also find that combined heat and power and domestic heat pumps...

  12. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  13. Experimental research on LiBr refrigeration - Heat pump system applied in CCHP system

    International Nuclear Information System (INIS)

    A new heat recovery technique for a LiBr refrigeration-heat pump system applied in CCHP(Combined Cooling, Heating and Power system) system is proposed in this paper. The system can recover the heat of the LiBr refrigeration cooling water to heat the demineralized water of the boiler. Experimental research on the operating characteristics of the compound system is carried out and the obtained conclusions are as follows: The LiBr refrigeration-heat pump system is able to perform stably and flexibly. The heat pump system has a relative large coefficient of performance (COPP) which can be as high as 6.13. When the outlet temperature of the demineralized water is 67.8 oC, the CCHP system brings 26.6% decrease in primary energy rate consumption compared with the combined heat and power production system (CHP) plus electricity-driven refrigeration. It is suggested that heat pumps should be used in CCHP system to heat the demineralized water of the boiler by recovering the exhaust heat of the LiBr refrigeration system. - Highlights: → LiBr refrigeration-heat pump system applied in CCHP system is proposed. → This system can recover the heat of the LiBr refrigeration cooling water to heat the demineralized water of the boiler. → Using heat pump to recover exhaust heat can increase the energy efficiency of the whole CCHP.

  14. Theoretical Investigation of the Performance of a Novel Loop Heat Pipe Solar Water Heating System for Use in Beijing, China

    OpenAIRE

    ZHAO, Xudong; Wang, Zhangyuan; Tang, Qi

    2010-01-01

    Abstract A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. ...

  15. Solar-heating and cooling system design package

    Science.gov (United States)

    1980-01-01

    Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

  16. Fluctuation theorems for excess and housekeeping heats for underdamped systems

    OpenAIRE

    Lahiri, Sourabh; Jayannavar, A. M.

    2013-01-01

    We present a simple derivation of the integral fluctuation theorems for excess housekeeping heat for an underdamped Langevin system, without using the concept of dual dynamics. In conformity with the earlier results, we find that the fluctuation theorem for housekeeping heat holds when the steady state distributions are symmetric in velocity, whereas there is no such requirement for the excess heat. We first prove the integral fluctuation theorem for the excess heat, and then show that it nat...

  17. Assessment of two-level heat pump installations’ power efficiency for heat supply systems

    Directory of Open Access Journals (Sweden)

    Аlla Е. Denysova

    2015-06-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources has essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two-level heat pump installation operating as heat source the Odessa city ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of geothermal heat supply. Calculated are the values of electric energy consumption N by the compressors’ drive, and the heat supply system transformation coefficient µ for a source of geothermal heat from ground waters of Odessa city allowing to estimate efficiency of two-level heat pump installations.

  18. Simulation of a heat pump system for total heat recovery from flue gas

    International Nuclear Information System (INIS)

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  19. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  20. Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs

    International Nuclear Information System (INIS)

    Farmers can use their own agricultural biomass residues for heat production in small-scale systems, enabling synergies between the district heating (DH) sector and agriculture. The barriers to entry into the Swedish heat market were extremely high as long as heat distribution were considered natural monopoly, but were recently lowered due to the introduction of a regulated third party access (TPA) system in the DH sector. This study assesses the potential impact on greenhouse gas emissions and cost-based heat price in the DH sector when farmers vertically integrate into the heat supply chain and introduce more local and agricultural crops and residues into the fuel mix. Four scenarios with various degree of farmer integration, were assessed using life cycle assessment (LCA) methodology, and by analysis of the heat production costs. The results show that full integration of local farm and forest owners in the value chain can reduce greenhouse gas emissions and lower production costs/heat price, if there is an incentive to utilise local and agricultural fuels. The results imply that farmer participation in the DH sector should be encouraged by e.g. EU rural development programmes. - Highlights: • Five DH production systems based on different fuels and ownership were analysed. • Lower GHG emissions were obtained when farmers integrate fully into the DH chain. • Lower heat price was obtained by full vertical integration of farmers. • Salix and straw-based production resulted in the lowest GHG and heat price

  1. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    Energy Technology Data Exchange (ETDEWEB)

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  2. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  3. A review of large-scale solar heating systems in Europe

    International Nuclear Information System (INIS)

    Large-scale solar applications benefit from the effect of scale. Compared to small solar domestic hot water (DHW) systems for single-family houses, the solar heat cost can be cut at least in third. The most interesting projects for replacing fossil fuels and the reduction of CO2-emissions are solar systems with seasonal storage in combination with gas or biomass boilers. In the framework of the EU-APAS project Large-scale Solar Heating Systems, thirteen existing plants in six European countries have been evaluated. lie yearly solar gains of the systems are between 300 and 550 kWh per m2 collector area. The investment cost of solar plants with short-term storage varies from 300 up to 600 ECU per m2. Systems with seasonal storage show investment costs twice as high. Results of studies concerning the market potential for solar heating plants, taking new collector concepts and industrial production into account, are presented. Site specific studies and predesign of large-scale solar heating plants in six European countries for housing developments show a 50% cost reduction compared to existing projects. The cost-benefit-ratio for the planned systems with long-term storage is between 0.7 and 1.5 ECU per kWh per year. (author)

  4. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  5. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  6. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  7. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  8. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  9. Contribution of domestic heating systems to smart grid control

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Meybodi, Soroush Afkhami;

    2011-01-01

    How and to what extent, domestic heating systems can be helpful in regaining power balance in a smart grid, is the question to be answered in this paper. Our case study is an under-floor heating system supplied with a geothermal heat pump which is driven by electrical power from the grid. The idea...... is to deviate power consumption of the heat pump from its optimal value, in order to compensate power imbalances in the grid. Heating systems could be forced to consume energy, i.e. storing it in heat buffers when there is a power surplus in the grid; and be prevented from using power, in case of power shortage....... We have investigated how much power imbalance could be compensated, provided that a certain, yet user adjustable, level of residents' thermal comfort is satisfied. It is shown that the large heat capacity of the concrete floor alleviates undesired temperature fluctuations. Therefore, incorporating...

  10. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    Science.gov (United States)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  11. Catalytically supported reduction of emissions from small-scale biomass furnace systems; Katalytisch unterstuetzte Minderung von Emissionen aus Biomasse-Kleinfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kraus, Markus; Matthes, Mirjam; Roland, Ulf [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Bindig, Rene; Einicke, Wolf-Dietrich [Leipzig Univ. (Germany)

    2011-06-29

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  12. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...

  13. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  14. Active heat exchange system development for latent heat thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lefrois, R.T.; Knowles, G.R.; Mathur, A.K.; Budimir, J.

    1979-02-01

    The report describes active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250/sup 0/C to 350/sup 0/C, using the heat of fusion of molten salts for storing thermal energy. It identifies over 25 novel techniques for active heat exchange thermal energy storage systems. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. Comparison of these costs with current state-of-the-art systems should be avoided due to significant differences in developmental status. The heat exchange concepts were sized and compared for 6.5 MPa/281/sup 0/C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out. The study resulted in the selection of a shell and coated-tube heat exchanger concept and a direct contact-reflux boiler heat exchange concept. For the storage medium, a dilute eutectic mixture of 99 wt % NaNO/sub 3/ and 1 wt % NaOH is selected for use in experimenting with the selected heat exchanger concepts in subsequent tasks.

  15. Biomass power; Biomasse-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Woergetter, M.

    2003-07-01

    The author reports about use of biomass in Austria and Bavaria: power generation, production of biodiesel, bioethanol, energy efficiency of small biomass furnaces. (uke) [German] Bioenergie wird von breiten Kreisen als wichtiger Ansatz in Richtung einer nachhaltigen Entwicklung in Europa gesehen. Die Herausforderung liegt dabei im neuen Herangehen an Entscheidungen; Dimensionen der Wirtschaft, der Umwelt und der Gesellschaft sind dabei zu beruecksichtigen. Bioenergie ist somit keine reine Frage der Umwelt, sondern zielt auf den Umbau unseres Systems in Richtung Nachhaltigkeit. (orig.)

  16. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage

    International Nuclear Information System (INIS)

    Highlights: • An experimental thermal investigation of hybrid renewable heating system is presented. • Analyses were done by using real data obtained from a prototype structure. • Exergy efficiency of system components investigated during discharging period are close to each other as 32%. • The average input energy and exergy rates to the LHS were 0.770 and 0.027 kW. • Overall total energy and exergy efficiencies of LHS calculated as 72% and 28.4%. - Abstract: In this study an experimental thermal investigation of hybrid renewable heating system is presented. Latent heat storage stores energy, gained by solar collectors and supplies medium temperature heat to heat pump both day time also night time while solar energy is unavailable. In addition to this an accumulation tank exists in the system as sensible heat storage. It provides supply–demand balance with storing excess high temperature heat. Analyses were done according to thermodynamic’s first and second laws by using real data obtained from a prototype structure, built as part of a project. Results show that high percent of heat loses took place in heat pump with 1.83 kW where accumulator-wall heating cycle followed it with 0.42 kW. Contrarily highest break-down of exergy loses occur accumulator-wall heating cycle with 0.28 kW. Averagely 2.42 kW exergy destruction took place in whole system during the experiment. Solar collectors and heat pump are the promising components in terms of exergy destruction with 1.15 kW and 1.09 kW respectively. Exergy efficiency of system components, investigated during discharging period are in a close approximately of 32%. However, efficiency of solar collectors and charging of latent heat storage are 2.3% and 7% which are relatively low. Average overall total energy and exergy efficiencies of latent heat storage calculated as 72% and 28.4% respectively. Discharging energy efficiency of latent heat storage is the highest through all system components. Also heat

  17. [Carbon monoxide poisoning by a heating system].

    Science.gov (United States)

    Dietz, Eric; Gehl, Axel; Friedrich, Peter; Kappus, Stefan; Petter, Franz; Maurer, Klaus; Püschel, Klaus

    2016-01-01

    A case of accidental carbon monoxide poisoning in several occupants of two neighboring residential buildings in Hamburg-Harburg (Germany) caused by a defective gas central heating system is described. Because of leaks in one of the residential buildings and the directly adjacent wall of the neighboring house, the gas could spread and accumulated in both residential buildings, which resulted in a highly dangerous situation. Exposure to the toxic gas caused mild to severe intoxication in 15 persons. Three victims died still at the site of the accident. Measures to protect the occupants were taken only with a great delay. As symptoms were unspecific, it was not realized that the various alarms given by persons involved in the accident were related to the same cause. In order to take appropriate measures in time it is indispensible to recognize, assess and check potential risks, which can be done by using carbon monoxide warning devices and performing immediate COHb measurements with special pulse oximeters on site. Moreover, the COHb content in the blood should be routinely determined in all patients admitted to an emergency department with unspecific symptoms.

  18. Conventional heating systems is heating with geothermal water, v. 15(60)

    International Nuclear Information System (INIS)

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  19. Conventional heating systems is heating with geothermal water, v. 15(59)

    International Nuclear Information System (INIS)

    The Geothermal Energy (GE) is a new renewable energy source with many advantages and specifics. Present mainly application of GE is in agriculture. In Geothermal System Kochani the GE uses for district heating and industrial uses also. There are many problems to solve before using the geothermal energy for district heating: direct application feasibility for heating rooms and industrial using existing heating installation system (90/70°C); the level of heating needs covering without installation reconstruction; techno-economical justification of this reconstruction ; covering of pike heating needs. The answers of these enigmas you have in this written effort. The results were practically justified in about ten object in Kochani. (Author)

  20. The heat recovery with heat transfer methods from solar photovoltaic systems

    Science.gov (United States)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-04-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc.

  1. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  2. Solar dynamic heat rejection technology. Task 1: System concept development

    Science.gov (United States)

    Gustafson, Eric; Carlson, Albert W.

    1987-01-01

    The results are presented of a concept development study of heat rejection systems for Space Station solar dynamic power systems. The heat rejection concepts are based on recent developments in high thermal transport capacity heat pipe radiators. The thermal performance and weights of each of the heat rejection subsystems is addressed in detail, and critical technologies which require development tests and evaluation for successful demonstration are assessed and identified. Baseline and several alternate heat rejection system configurations and optimum designs are developed for both Brayton and Rankine cycles. The thermal performance, mass properties, assembly requirements, reliability, maintenance requirements and life cycle cost are determined for each configuration. A specific design was then selected for each configuration which represents an optimum design for that configuration. The final recommendations of heat rejection system configuration for either the Brayton or Rankine cycles depend on the priorities established for the evaluation criteria.

  3. Development of Vertical Ground Heat Exchanger for Ground-Source Heat Pump System

    OpenAIRE

    Jalaluddin

    2012-01-01

    ABSTRACT: Geothermal energy as environmentally friendly energy source with wide range of applications such as for space heating and cooling, hot water supply and applications in the agricultural field has been used in practical engineering. The well-known application is for space heating and cooling in residential and commercial buildings with using ground-source heat pump (GSHP) system. An advantage of using the geothermal energy is the stability of the temperature range of ground at tens...

  4. Applicability of sewage heat pump air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  5. Present status and future perspective of nuclear heat application systems

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Fumizawa, Motoo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1996-05-01

    We need to intensely investigate real possibilities of nuclear heat application systems which exploit high potential of nuclear energy as a promising candidate of the future energy resource in the world. In this paper, we considered social, economical, technical conditions necessary for the development of nuclear heat application systems. We also investigated several nuclear heat application systems which reform coal into traffic fuel like hydrogen, methane and methanol, and discussed advantages and disadvantages of the systems. We showed it was possible to reduce carbon dioxide emission of the systems compared with old systems, but we found carbon dioxide tax was the key issue from the viewpoint of economical competitiveness. (author).

  6. Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery

    International Nuclear Information System (INIS)

    Different heat pump systems were used to recover the heat from waste water with mean temperature of 45 °C and produce hot water with the temperature up to 95 °C. Those systems include single-stage vapor compression heat pump (system 1), two-stage heat pump with external heat exchanger (system 2), two-stage heat pump with refrigerant injection (system 3), two-stage heat pump with refrigerant injection and internal heat exchanger (system 4), two-stage heat pump with flash tank (system 5) and two-stage heat pump with flash tank and intercooler (system 6). Thermodynamic and economic analyses were conducted to compare the performance of each system. Results showed that the COP and exergy efficiency for both system 5 and system 6 are quite close, and much higher than those of other systems. Besides, the payback period of both system 5 and system 6 are also shorter as compared to other systems. Considering both the thermodynamic performance and economic quality of the system, system 5 is finally preferred since less initial investment is required for system 5 as compared to system 6. - Highlights: • Different heat pump systems were introduced to recover the heat of waste water. • Thermodynamic and economic performances of those systems were analyzed and compared. • The two-stage heat pump system with flash tank was preferred

  7. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    An energy supply based on 100% renewable energy in Denmark is the official goal for the Danish energy policy towards 2050. A smart energy system should be developed to integrate as much supply from fluctuating renewable sources and to utilise the scarce biomass resources as efficiently as possible...

  8. Generalized Performance Characteristics of Refrigeration and Heat Pump Systems

    OpenAIRE

    Mahmoud Huleihil; Bjarne Andresen

    2010-01-01

    A finite-time generic model to describe the behavior of real refrigeration systems is discussed. The model accounts for finite heat transfer rates, heat leaks, and friction as different sources of dissipation. The performance characteristics are cast in terms of cooling rate (r) versus coefficient of performance (w). For comparison purposes, various types of refrigeration/heat pump systems are considered: the thermoelectric refrigerator, the reverse Brayton cycle, and the reverse Rankine ...

  9. An inexpensive economical solar heating system for homes

    Science.gov (United States)

    Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.

    1976-01-01

    A low-cost solar home heating system to supplement existing warm-air heating systems is described. The report is written in three parts: (1) a brief background on solar heating, (2) experience with a demonstration system, and (3) information for the homeowner who wishes to construct such a system. Instructions are given for a solar heating installation in which the homeowner supplies all labor necessary to install off-the-shelf components estimated to cost $2,000. These components, which include solar collector, heat exchanger, water pump, storage tank, piping, and controls to make the system completely automatic, are available at local lumber yards, hardware stores, and plumbing supply stores, and are relatively simple to install. Manufacturers and prices of each component used and a rough cost analysis based on these prices are included. This report also gives performance data obtained from a demonstration system which was built and tested at the Langley Research Center.

  10. Combustion Air Pre-heating from Ash Sensible Heat in Municipal Waste Incineration Systems

    OpenAIRE

    Zakariya Kaneesamkandi

    2014-01-01

    Heat recovery from bottom ash is more important in municipal waste combustion systems than in any other solid fuel combustion since almost 50% of it comprises of non-combustibles. In this study, an ash cooling system using air as the cooling medium has been modeled for pre-heating the combustion air. Air cooling has several advantages over water cooling methods. The study involves modeling using Gambit tool and is solved with the fluent solver. Municipal solid waste incineration systems have ...

  11. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m2. As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m2 and 36 W/m2, respectively

  12. Analysis of thermosyphon heat exchangers for use in solar domestic hot water heating systems

    Science.gov (United States)

    Dahl, Scott David

    1998-11-01

    A recent innovation in the solar industry is the use of thermosyphon heat exchangers. Determining the performance of these systems requires knowledge of how thermosyphon flow rate and heat exchanger performance vary with operating conditions. This study demonstrates that several thermosyphon heat exchanger designs operate in the laminar mixed convection regime. Empirical heat transfer and pressure drop correlations are obtained for three tube-in-shell heat exchangers (four, seven, and nine tube). Thermosyphon flow is on the shell side. Correlations are obtained with uniform heat flux on the tube walls and with a mixture of glycol and water circulating inside the tubes. Ranges of Reynolds, Prandtl, and Grashof numbers are 50 to 1800, 2.5 and 6.0, and 4×105 to 1×108, respectively. Nusselt number correlations are presented in a form that combines the contributions of forced and natural convection, Nu4Mixed=Nu4Forced+Nu4Natural. The Nusselt number is influenced by natural convection when the term Raq0.25/(Re0.5Pr0.33) is greater than unity. Pressure drop through these three designs is not significantly affected by mixed convection because most pressure drop losses are at the heat exchanger inlet and outlet. A comparison and discussion of the performance of several other heat exchanger designs (tube-in-shell and coil-in- shell designs) are presented. Generally, the coil-in- shell heat exchangers perform better than the tube-in- shell heat exchangers. Data from all heat exchanger designs is used to develop a new one-dimensional model for thermosyphon heat exchangers in solar water heating systems. The model requires two empirically determined relationships, pressure drop as a function of water mass flow rate and the overall heat transfer coefficient-area product (UA) as a function of Reynolds, Prandtl, and Grashof number. A testing protocol is presented that describes the procedure to obtain the data for the correlations. Two new TRNSYS component models are presented

  13. Biomass fuelled indirect fired micro turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2005-07-01

    This report summarises the findings of a project to further develop and improve a system based on the Bowman TG50 50kWe turbine and a C3(S) combustor with a high temperature heat exchanger for the production of electricity from biomass. Details are given of the specific aims of the project, the manufacture of a new larger biomass combustor, the development of startup and shutdown procedures, waste heat recuperation, adaption of a PC-based mathematical model, and capital equipment costs. The significant levels of carbon emission savings and the commercial prospects of the biomass generator gas turbine combined heat and power (CHP) system are considered, and recommendations are presented.

  14. Optimization of Temperature Schedule Parameters on Heat Supply in Power-and-Heat Supply Systems

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2009-01-01

    Full Text Available The paper considers problems concerning optimization of a temperature schedule in the district heating systems with steam-turbine thermal power stations having average initial steam parameters. It has been shown in the paper that upkeeping of an optimum network water temperature permits to increase an energy efficiency of heat supply due to additional systematic saving of fuel. 

  15. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  16. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  17. Solar space-heating system--Yosemite National Park, California

    Science.gov (United States)

    1981-01-01

    A 12 months performance of Visitors Center installation suffered from low insolation, high energy dissipation, and equipment breakdown. System has 980 square feet of liquid flat-plate collectors, water energy storage, 4-mode control, heat exchangers, pumps, and plumbing. Design expected system to supply over 50 percent of annual heating demand, but only 109 million Btu were conserved.

  18. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  19. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  20. Preliminary design package for Sunspot Domestic Hot Water Heating System

    Science.gov (United States)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.